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Abstract

This thesis is focused on low computational cost and low encoding delay algorithms for 

image/video coding and for the rate control problem. Ten algorithms and four estimates are 

proposed which can be classified along three main streams. In the first stream, three algorithms 

are designed for indirectly optimizing the visual quality for JPEG-LS for the same compression 

rates as the standard. They are based on the different tolerance of HVS across different textures 

and they exploit the prediction scheme of JPEG-LS for accurate texture identification. In the 

second stream, pixel trend variation is used in the design of two algorithms in order to improve 

the compression rates by up to 9% in the padding problem of boundary macroblocks in MPEG- 

4. Pixel trend variation is also used through two novel algorithms in order to reduce the MSE 

error by up to 3% for the same compression rates in the case of diagonal edge detection in 

JPEG-LS. In the third stream, four novel estimates are proposed to optimize "on-the-fly" the R- 

D performance of the MPEG-2 rate control scheme. This is achievable through exponential 

modulation, non-variance based activity estimates and local activity estimation. Improvements 

by up to 3.5db for the same bit rates as the standard were observed. Finally, two algorithms that 

improve the "rate only" MPEG-2 rate control scheme in R-D terms, by explicitly considering 

distortion in the quantization step size assignment through a Lagrangian based local 

optimization are proposed. The proposed schemes achieve improvements of 0.5-ldb as 

compared to the Idb improvements of traditional R-D optimization techniques for the same 

compression rates as the standard but with just a small fraction of the operations needed. 

All the algorithms and the estimates proposed are ideal for online compression applications 

where low computational complexity and encoding delay are of prime importance.
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CHAPTER 1 -INTRODUCTION 

1.1 Introduction to image and video coding

The field of image and video coding has seen considerable advancements in the last 

few years. It is a multi-disciplinary field, spanning electrical engineering, computer 

graphics, networks and data communications, neural networks and human computer 

interaction. Furthermore, image and video coding will be very important in the future for 

two reasons: the need for storage savings and the need for bandwidth optimization.

The need for storage savings mostly affects the disciplines of computer science and 

consumer electronics. In computer science, storage mostly relates to multimedia databases 

stored in servers where the true size of the database changes dynamically and is affected 

profoundly by the compression rates of multimedia elements. In consumer electronics, 

storage is important in any digital device such as a camera or digital video disks where the 

compression rate determines the quality of the stored medium (voice, images, home video 

etc).

The need for bandwidth optimization is evident in any sort of information transfer. 

Video and audio streaming, voice mail, multimedia applications over the web are just some 

examples where bandwidth is an important factor. This is likely to become an increasing 

problem due to the exponential growth of demand for multimedia based services. 

Furthermore, bandwidth optimization is more important than storage conservation since 

storage is relatively cheap while network capacity is expensive.

In image and video coding there are two conflicting requirements: compression and 

quality (both objective and subjective). Although there is no exact mathematical 

relationship between them, we can say that when compression increases, quality decreases



and vice versa. Any compression scheme also has to take into account the computational 

overhead. Compression of images and videos is computationally expensive and low 

computational cost schemes could provide better solutions for real time situations.

However there is a strong relation between image and video coding. While in the 

case of image coding spatial redundancy is exploited for improving compression rates, the 

extra temporal dimension gives more opportunities for exploitation of redundancy in video 

coding. Quality issues (both in statistical terms and in visual quality terms) are common to 

both image and video coding. In this perspective, any improvements in image coding are 

either directly applicable to video coding or are applicable with minor modifications.

This thesis is focused upon the development of novel low computational cost 

algorithms for image and video coding based on the JPEG-LS, MPEG-2 and MPEG-4 

standards. Through these algorithms, new ideas will be explored for potentially improving 

the standards and attempts will be made to reconcile the conflicting requirements of 

compression and quality.

A detailed description of the standards is beyond the scope of any PhD thesis. 

Image and video coding standards have been developed over a period of years from a large 

number of people and after a strong collaboration between companies and academics. 

However, the scope of this research spans more than one coding standard, seeking a 

balance between compression rates, quality and complexity.

1.2 Research Objectives

The general research objective is to develop low cost algorithms for image/video

compression and for the rate control problem.

The specific research objectives can be summarized as:



1. To develop an HVS based approach for JPEG-LS and subsequently to add rate control 

to the standard based on this HVS approach.

2. To utilize pixel trend variation for improving the padding scheme of MPEG-4 in terms 

of compression performance and for performing low cost diagonal edge detection for 

JPEG-LS.

3. To devise low cost estimates for "on-the-fly" improvements of the R-D performance of 

MPEG-2 and to use Lagrangian theory for local optimization of the buffer based only 

rate control scheme of the standard.

1.3 An Overview of the Thesis

Chapter 2 represents the "Literature review" part of this thesis, where essential background 

and state of the art techniques about image/video coding will be presented. Since some of 

the proposed algorithms in this thesis are based on properties of the Human Visual System 

(HVS), the corresponding section refers to current research on this topic. Subsequently, in 

the "Image and Video Coding standards" section, "the big picture" of the most important 

image and video coding standards along with potential applications and trade-offs involved 

will be presented. In the section about "Wavelet based image/video coding", issues and 

algorithms about the state of the art wavelet based codecs will be discussed. The section 

about "Motion estimation and segmentation" will present some recent research efforts for 

these two computationally intensive problems. The section about "Adaptive quantization" 

will examine the problems of scalar and vector quantization as a more general case, and 

many theoretical issues relating quantization and adaptivity will be investigated. This 

section is very relevant to this thesis since many of the proposed algorithms use adaptive 

quantization to improve R-D and visual performance. In the section entitled "Lossless



image compression", adaptivity and modeling issues in the context of lossless coding will 

be addressed through the description of the design rationale of the JPEG-LS standard for 

lossless/near lossless image compression. The section entitled "Empirical versus model 

based R-D approaches", will present and critically evaluate previous work in the R-D 

optimization area, relating to the proposed algorithms for low cost R-D improvements. The 

literature review will conclude with a section entitled "Rate Distortion and complexity" 

which will address the issue of complexity in a rate distortion framework. This is relevant 

to the presented algorithms in this thesis, since all of them are low computational cost 

schemes. In Chapters 3-5, existing approaches relating to the investigated problems will be 

examined on individual problem basis and research contributions will be presented in the 

following order:

a) Proposed algorithms for the investigated problems.

b) Experimental results by testing the proposed algorithms against the standards.

c) Critical evaluation of the proposed algorithms along with conclusions. 

Finally, Chapter 6 will conclude this thesis by summarizing the main research 

contributions and proposing further research directions.

1.4 Research contributions

This thesis has resulted in a variety of contributions in refereed journals and conferences 

which are represented by the following list:
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CHAPTER 2 - AN OVERVIEW OF IMAGE/VIDEO COMPRESSION

ALGORITHMS

2.1 The Human Visual System

The study of HVS has been covered within the field of psychophysics and it usually 

involves intensive experiments and visual tests. A very useful model from this research is 

the Multi-Channel model [1] according to which HVS is modeled as a bank of filters, with 

each filter tuned to a specific band of spatial frequency and orientation. Two key concepts, 

the contrast sensitivity and the masking effect govern the perception of the signal in each 

band. The contrast sensitivity accounts for the perception of a single band and the masking 

effect quantises the interactions between several bands. Contrast sensitivity is defined for a 

given spatial frequency as the minimum amplitude of the signal required in order to be 

detected. The Human Visual System perceives the output of each band with different 

sensitivity. For example it is more sensitive to lower spatial frequencies than to higher 

frequencies and is more sensitive to horizontal and vertical patterns than to diagonal ones. 

The masking effect describes the fact that if there are more than one signal (in different 

bands) present in the same area and the energy of the largest signal is higher than any 

others by some threshold, all other signals will be masked. There are two types of masking 

effects for still images. The first is due to the DC band of the signal. Because the DC band 

corresponds to background luminance, it is also known as background luminance masking. 

On the other hand, if the masking is caused by other higher frequency bands, it is usually 

called texture masking. For video or motion pictures there is another type of masking 

known as temporal masking. This is due to the fact that human eyes have to be focused on 

an object long enough (e.g. 0.1 seconds) in order to clearly see the details of that object.



Hence, a scene with fast moving objects or frames just after a scene change is usually 

masked. More details of HVS related studies can be found in [1-4, 26-30]. To distinguish 

statistical from visual issues* two kinds of quality are currently used in image and video 

coding research, namely the objective and the subjective quality. Objective quality is the 

statistical measure of the distance between the original and the reconstructed image/video 

frame and the usual metrics are the Peak Signal to Noise Ratio (PSNR) or the Mean Square 

Error (MSE). On the other hand, there is no reliable statistical metric for subjective 

quality, it can only be evaluated by running experiments with users or with reference to 

models of HVS. In general, it seems that the requirement is that the tolerance of HVS to 

distortion is frequency dependent in images, while constant or near constant distortion is 

desired for video sequences due to extra sensitivity of HVS to luminance changes. 

Comparing the objective and subjective measures of quality, we can say that PSNR or 

MSE can show the average amount of information loss, while the subjective quality can 

show where the information loss occurred.

2.2 Image and Video Coding standards 

2.2.1 Image coding

The research efforts have centered around the development of compression standards such 

as JPEG lossy, JPEG-LS and JPEG2000 [5-6, 17-19].

JPEG lossy [31,111] can achieve high compression rates (> 80% typically) of arbitrary size 

grey scale and colour images [32] at the expense of image quality loss. The image is split 

into 8*8 blocks of pixels which are individually processed in a raster scan order from left 

to right and from top to bottom. First, each 8*8 pixel block is transformed into the



frequency domain by using the Forward Discrete Cosine Transform (FDCT) [20]. This 

transformation effectively packs the signal into 64 bands and the packed signal is 

represented after transformation with 64 coefficients. FDCT and its inverse transform, 

namely Inverse Discrete Cosine Transform or IDCT, are very important in the compression 

pipeline since most of the compression is achieved due to these transforms. They are still 

an active research topic with the majority of research centered around fast algorithms of 

implementing them [32-35] or theoretical lower bounds for the minimum number of 

operations required in implementations [36-42]. The DCTed coefficients produced by the 

FDCT transform are quantized using frequency weighted quantization in the signal 

domain. After quantization, the DCTed coefficients are processed in a zigzag order and are 

finally entropy coded, based either on Huffman coding [21,110,112] or binary arithmetic 

coding [110,113-115].

JPEG-LS is the latest standard for lossless/near lossless coding. The image pixels are 

processed separately (i.e the 8*8 block structure is not used) and each pixel is predicted 

based on a template of neighboring pixels. The errors (or the quantized errors in the near 

lossless case) are entropy coded. The decoder follows the reverse procedure by using the 

same prediction mechanism for reconstruction. More about JPEG-LS in Chapters 3 and 4.

JPEG2000 [6] is the newest standard for coding still colour images. It offers a variety of 

important features such as:

  Very low bit rates (<= 0.25 bits/pixel) using wavelet based sub-band coding [43-49]

  Ability to compress/decompress both continuous tone and bi-level images

  Both lossless and lossy compression mechanisms

  Progressive transmission



Robustness to bit errors

Image security using labelling [50], stamping or encryption

2.2.2 Video coding.

In the field of video coding, the bandwidth is the determinant factor for the classification of

standards.

There have been several major initiatives in video coding such as :

  Video coding for video teleconferencing, which has led to the ITU standards called 

H261 for ISDN videoconferencing [22] . H263 for Plain Old Telephone Service 

(POTS) [23] and H262 for ATM/broadband videoconferencing.

  Video coding for storing movies on CD-ROM, in the order of 1.2Mbits/sec allocated to 

video coding and 256kbits/sec allocated to audio coding which led to the initial MPEG- 

1 standard.

  Video coding for broadcast and for storing video on DVD (digital video disks) with on 

the order of 2-15 Mbits/sec allocated to video and audio coding which led to the 

MPEG-2 standard [51].

  Video coding for low bit rate telephony over POTS networks, with as little as 

lOkbits/sec allocated to video and as little as 5.3kbits/sec allocated to voice coding, 

which led to H324 standard [52].

  Coding of separate audio-visual objects, both natural and synthetic, which lead to ISO- 

MPEG-4 standard [17,54,55].

  Coding of multimedia meta-data (i.e data describing the features of the multimedia 

data) which lead to MPEG-7 standard.
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Px64 and the H2x (x=61,63) family [22-25] are used for low bandwidth 

multimedia applications. The H261 video codec, initially intended for ISDN 

teleconferencing is the baseline video mode for most multimedia conferencing systems. 

The H262 video codec is essentially the high bit rate MPEG-2 standard and will be 

described later in this Chapter. The H263 low bit rate video codec is intended for use in 

POTS teleconferencing at modem rates from 14.6 to 56kbits/sec where the modem rate 

includes video coding, speech coding, control information etc.

The H261 codec encodes video frames using a Discrete Cosine Transform (DCT) 

on blocks of size 8*8 pixels, much the same as used for the JPEG lossy codec described 

previously. An initial frame (called intra frame) is coded and transmitted as an independent 

frame. Subsequent frames, which are modeled as changing slowly due to small motions of 

objects in a scene, are coded efficiently in the inter mode using motion compensation 

(MC)[53] on 16*16 pixel macroblocks (integer pixel displacement). The produced motion 

vectors are transmitted together with the quantized DCT coded difference between the 

predicted and original macroblocks. Quantization is performed using an adaptive quantizer 

and entropy coding using a Huffman coder .

The H263 video codec is based on the same DCT and motion compensation 

techniques as used in H261 but also provides several incremental improvements such as:

  Half pixel motion compensation

  Unrestricted motion vectors

  Arithmetic coding instead of Huffman coding
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MPEG-4: Most recently, the focus has shifted to object-based coding at rates as low 

as 8kbits/sec or lower or as high as IMbits/sec or higher. The MPEG-4[17,54-55] standard 

is the first audio-visual compression standard that follows the object based coding instead 

of block based coding approach. The main advantages of the standard can be summarized 

as:

  Reduction of blocking artifacts due to the non block based coding mechanism

  Audio and video stream synchronization which is important for multimedia 

presentations

  Supports user interactivity necessary for multimedia authoring through scene 

composition from arbitrary audio-visual objects

  Ability to easily edit parts of the compressed bit-stream without requiring full

decompression 

More about MPEG-4 in Chapter 4.

The MPEG-1 Video Coding Standard [7,8,97,98] is a true multimedia standard with 

specifications for coding, compression and transmission of audio, video and data streams 

in a series of synchronized multiplexed packets. The driving focus of the standard was 

storage of multimedia content on a standard CD-ROM, which supported data transfer rates 

of 1.4Mbits/sec and a total storage capacity of about 600Mbytes. The video coding in 

MPEG-1 is very similar to the video coding of the H.26X series described above. Spatial 

coding is achieved by taking the 8*8 pixel blocks, quantizing the DCT coefficients based 

on perceptual weighting criteria, storing the DCT coefficients for each block in a zigzag 

scan and doing a variable length coding on the resulting DCT coefficient stream. Temporal 

coding is achieved by using the ideas of uni and bi-directional motion compensated 

prediction with three types of pictures, namely:
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  I or intra pictures which are coded independently of all previous or future frames.

  P or predictive pictures which are coded based on previous I or previous P pictures.

  B or bi-directionally predictive pictures which are coded based on either the next

and/or previous pictures.

The MPEG-2 standard [7,8,97,98] was designed to provide the capability of 

compressing, coding and transmitting high quality, multi-channel signals over terrestrial 

broadcast, satellite distribution and broad-band networks. The MPEG-2 video part of the 

standard was originally designed for high quality encoding of interlaced video from 

standard TV with bit rates in the order of 4-9 Mbits /sec. As it evolved, MPEG-2 video was 

expanded to include high-resolution video, such as HDTV, as well as hierarchical or 

scalable video coding for a range of applications. The video encoder consists of an inter- 

frame/field DCT encoder, a frame/field motion estimator and compensator and a variable 

length encoder (VLE). The frame/field DCT encoder exploits spatial redundancies and the 

frame/field motion compensator exploits temporal redundancies in the video signal. The 

standard uses the same frame types as MPEG-1.

2.3 Wavelet based image/video coding

Wavelet based image/video coding is the newest trend in the field and has become a reality 

mainly due to reductions of the computational complexity of proposed schemes. The 

benefits of using wavelets for compression can be summarized as better rate distortion 

performance (R-D) at lower bit rates and scalability in both rate and quality. Scalability of 

rate and quality is aided by the wavelet transform itself since the separation between the 

"base" image/video signal and its details is performed naturally. JPEG 2000 used wavelets 

for compression and the main algorithm employed is based on Shapiro's contribution [44],
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better known as the embedded zerotree wavelet (EZW) algorithm. The central ideas in this 

algorithm are joint exploitation of significant redundancy between subbands and 

progressive encoding. The algorithm can be described as follows: 

Step 1: Search all coefficients to find the one with the maximum magnitude, Cmax . The

-max
initial threshold is then determined as: TQ =

Step 2 (Dominant pass) : Scan all coefficients into the encoder along the zigzag route as 

shown in Figure 2.1. For each coefficient, one of the four classifications is assigned: 

positive symbol (POS), negative symbol (NOS), isolated zero symbol (IZ) and zerotree 

root symbol (ZTR). The details of such assignment are illustrated in Figure 2.2. 

Step 3 (Subordinate pass) : Divide the range [!Q, Cmax |) into two intervals:

[7o,M),[M, Cmax |), where M=(TQ +|Cmax |)/2is the medium value in the range. 

Examine all significant coefficients in the dominant pass. If each coefficient is greater than 

M, the coefficient is assigned into the interval [M, Cmax |)and a bit 1 is produced. 

Otherwise, bit 0 is produced. Details are illustrated in Figure 2.3.

LL3_

HL3
HL2

HH2

LH1'

HLl

Figure 2.1: Scanning route
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Figure 2.2: Dominant pass
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Input significant coefficient
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the reconstructed 
value is:

Bit 0 produced, 
the reconstructed 
value is: 
(7b+M)/2

Figure 2.3: Subordinate pass

Step 4: Change the threshold to half of its previous value. Repeat the process from Step 2 

for all non significant coefficients until either there are no more non significant coefficients 

or the threshold has fallen below a critical value.

The efficient exploitation of redundancy between subbands in the above algorithm lies on 

the fact that once a coefficient in a parent subband is classified as insignificant (i.e. the 

code Zero Tree Root (ZTR) has been produced), no bits need to be transmitted for its 

descendant coefficients in a lower subband in case they are also insignificant. The only 

exception to this rule (in which case an isolated zero code (IZ) code will also be produced) 

is when an insignificant coefficient comes from a significant parent and has significant 

descendants. This is a necessary price to pay in transmitting such a coefficient along with 

the IZ code, in order to avoid losing significant information down the tree and therefore 

generating large distortions. This scheme obviously improves compression rates since the 

probability of having insignificant descendant coefficients stemming from insignificant
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parent coefficients is very high. It is also interesting to note that an insignificant coefficient 

in a resolution T, can be classified as significant at a finer resolution Tl. This is important 

since it clearly shows that certain coefficients are only carriers of details in the signal. 

Progressive encoding is achieved in the subordinate pass, as illustrated in Figure 2.3. For 

every significant coefficient, an extra degree of detail is added in every subordinate pass 

(represented by the produced bits 0 or 1) starting from the most significant bits (MSB) and 

progressively reaching the least significant bits (LSB). In this manner, a bit-plane for 

significant coefficients is produced in every iteration, signifying the added image detail for 

the given resolution. Progressive encoding has become an important issue in state of the art 

codecs due to mainly three reasons. Firstly, the progressive mechanism enables the encoder 

to achieve a given bit rate pretty accurately at a low computational cost. Secondly, the 

decoder can stop decoding at any given point, generating an image that is the best possible 

representation with a given bit budget. This is of practical interest in broadcast applications 

where multiple decoders of varying computational, display and bandwidth capabilities 

receive the same bit stream. Such receivers can decode the bit stream according to their 

particular needs and capabilities. Thirdly, progressive encoding is also very useful for 

indexing and browsing where only a rough approximation is sufficient for deciding 

whether an image/video frame needs to be decoded or received in full. The process of 

screening images/video frames can be sped up considerably if after decoding only a small 

portion of the compressed data, one can decide if the target image/video frame is present. If 

not, decoding is aborted and the next image/video frame is requested, making it possible to 

scan a large amount of image/video frames quickly. Once the desired image/video frame is 

located, it can be fully decoded. Shapiro's algorithm was enhanced by Said and Pearlman 

[43] who exploited further redundancy between subbands, thus achieving improvements of 

0.3-0.6db for the same bit rates.
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2.4 Motion estimation and segmentation

In the context of video coding, a variety of sub-optimal search algorithms for block based 

motion estimation have been proposed in the literature. All the proposed schemes attempt 

to find a balance between speed of motion estimation, statistical quality of the 

reconstructed frames as compared to the originals and bit rate of the transmitted motion 

information. These algorithms can be broadly classified in two categories. The first 

category consists of the traditional search algorithms such as Three Step Search (TSS) 

[165], Four Step Search (FSS) [166], Spiral Search (SS) [167], Two Dimensional 

Logarithmic Search (LS) [168], Orthogonal Search (OS) [169], Cross Search (CS) [170], 

One at a Time Search (OTM) [171] etc. A common feature of the traditional search 

techniques is that in terms of speeding up the motion estimation, they either choose to 

evaluate (in terms of a statistical metric) only a subset of pixels inside the search window 

or they even use early jump-out techniques in the pixel subset to speed up the computation 

even further. MPEG-2 (TM5) chose an intermediate solution in order to balance speed and 

accuracy since it performs a full spiral search inside the search window, sped up by a jump 

out technique applied every 16 pixels for the macro-block to be motion 

estimated/compensated. MPEG-4 chose the Diamond Search (DS) [173-174], since it was 

shown that for small motion, typical in video conferencing sequences, it outperforms all 

other search methods in terms of computational complexity and reconstructed frame 

quality [172]. The problem with the traditional search methods is that they do not exploit 

the correlation of motion vectors of adjacent macro-blocks to the motion vector of the 

macro-block to be encoded, thus making the choices of the initial point for the search and 

of the size of the search window ad-hoc. This problem is addressed by the second class of 

motion estimation methods, namely the predictive techniques where the initial search point 

and the search window size are determined by a function of the motion vectors of adjacent
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macro-blocks. For example, in H263 the median of the motion vectors of adjacent macro- 

blocks is chosen as initial search point. A wide range of predictive search methods have 

been proposed. In the Adaptive Spiral Search (ASS), the size of the search window is also 

adaptively chosen based on a threshold [175]. The median of the Mean Absolute 

Differences (MAD) between adjacent macro-blocks and their predictors is used as a 

threshold. The spiral search is stopped when the calculated MAD falls below this 

threshold. In the Adaptive Window Size Search (AWSS), the motion vectors of the 

adjacent macro-blocks are classified in three categories, namely small, large and medium 

[175]. Each category corresponds to a certain window size. The window size that 

corresponds to the category containing the majority of the motion vectors is chosen as the 

size of the search window. In the absence of a clear winner, a medium window size is 

chosen. A full search is subsequently performed only in the intersection of this window 

and the original search space. In the Extended Majority Voting Search (EMV), the motion 

vectors of the adjacent macro-blocks will both determine the type of the search, TSS for 

large motion and FSS otherwise, as well as the initial search point [175]. 

Motion segmentation refers to labeling pixels/blocks associated with different coherently 

moving objects or regions of a frame in a video sequence. The process of segmenting 

motion can be seen as an extension of pixel/block based motion estimation, since groups of 

pixels/blocks comprising scene objects or scene regions and having coherent motion are 

assigned the same label. The estimation of the 2-D dense motion field, which is used for 

determining coherent motion, can be block based (MPEG-2, MPEG-4), pixel recursive 

based, optical flow equation based or determined by Bayesian probabilities [176]. Motion 

segmentation is particularly effective in the case of non-uniform motion of 

pixels/objects/regions in a scene. Essentially, motion segmentation is an optimization 

process since pixels/blocks comprising objects/regions have to be clustered one or more
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times according to whether they form a locally uniform motion field. As such, motion 

segmentation algorithms are not appropriate in a real time video coding framework 

because they are computationally expensive. It is difficult to associate a generic figure of 

merit with a motion segmentation result according to Altunbasak et. al [177] since the 

usefulness of segmentation really depends on the application. If motion segmentation is 

employed to improve the compression efficiency, then over-segmentation may not cause a 

concern provided that it results in reduction of errors between the object/region to be 

encoded and its predictor. On the other hand, if it is used for object definition, as in the 

MPEG-4 standard, then it is of outmost importance that the resulting motion boundaries 

align with actual object boundaries. Although, it may not be possible to achieve this in a 

fully automated manner, elimination of outlier motion vector estimates and imposition of 

spatio-temporal smoothness constraints improve the chances of obtaining more meaningful 

segmentation results. Various approaches exist in the literature for motion segmentation 

[176] which may be grouped as segmentation by affine clustering [178], segmentation by 

Hough transform analysis [179], segmentation by Markov Random Fields (MRF) 

modeling [180] which is computationally intensive, segmentation by mixture modeling 

[181], simultaneous motion estimation and segmentation [182], segmentation by dominant 

motion estimation [183-184] and segmentation by change-detection-mask analysis with 

temporal integration [185-186] . Segmentation by dominant motion analysis [183-184] 

refers to extracting one object (with the dominant motion) from the scene at a time. 

Multiple object segmentation can be achieved by repeating the procedure on the residual 

image after each object is extracted. Multiple object segmentation could have some 

problems when there is no single dominant motion in a scene. Wang and Adelson [178] 

suggested clustering of affine motion parameters (initialized by dividing the frame into 

blocks) with some pre- and post- processing. All pixel/block based segmentation methods,
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including [178,183], suffer from the drawback that the segmentation map may contain 

isolated labels (outliers), thus suggesting potential over-segmentation. Spatial continuity 

constraints in the form of Gibs random field models have been introduced to overcome this 

problem [187]. The simultaneous Bayesian motion estimation and segmentation approach 

has also been proposed [182] at considerable computational cost.

2.5 Adaptive Quantization

In scalar quantization, each of the samples (blocks) generated by the input source is 

quantized separately. Then the set of input blocks 5 will be some subset of R , the set of 

real numbers. The code-book design problem consists in selecting a finite number L of 

values r-e R to be used as reproduction levels, as well as the corresponding codewords to

be transmitted, c( . For a sample X{ and its corresponding reconstructed sample Xf, the 

encoding algorithm will be such that X,- -r^ where r; is the reproduction level closest to 

Xf. Under the assumption of a stationary source with known statistics, well known design 

techniques can be used to determine the (r{ , ct ) pairs. For instance, the Lloyd-Max 

quantizer design technique [79,116] provides optimal, i.e distortion minimising rt 's for 

fixed length ci 's . The model can be either explicit, through knowledge of the probability 

density function (pdf) of the source, or implicit through the choice of a specific training 

sequence or set of blocks as being characteristic of the source.

If 5 is a finite set (as is the case for example with image pixels) then one can use entropy 

coding techniques to minimise the expected number of bits needed'to encode the source 

without distortion, i.e Xt '-Xi . This would be an example of lossless compression. Calling

sl ,s2 ,---.,sN the elements of S , assume their probabilities p(sl ),p(s2),....p(sN ) are 

known.Then the first order entropy of the source in bits is:
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H=-ZP(sk )*loz2 (p(Sk )-) (2.1)
K—l

The entropy dictates a lower bound in the number of bits per input sample needed to 

transmit sequences generated by the source assuming that the source follows the model and 

the samples are to be coded individually. Well known techniques such as Huffman or 

arithmetic coding can provide performance close to the entropy. Note that given a 

continuous set S and a set of reproduction levels rt one can measure the expected 

probability of the r( 's and then use entropy coding to determine the c, s. The resulting ci s

will be of variable length.

The main point to note is that both the scalar quantizer and entropy coder rely on having an 

available model of the input source. In cases where the source is known to be non- 

stationary one can resort to techniques that adapt the codebook to changing statistics.

When we encode blocks Xi which contain n samples, i.e. for S a subset of Rn , we are

considering the more general Vector Quantization (VQ) codebook design problem. Similar 

properties, although without a simple optimization procedure, can be defined for vector 

quantization schemes. See [79] for an excellent review of VQ Techniques. 

Note that as the dimensions of the vector increase, it becomes increasingly unrealistic to 

expect to obtain explicit models of the source, hence VQ techniques rely on training 

sequences to design the codebooks. Obviously the codebook obtained through training will 

do a good job of representing the blocks within the training set , as measured by how well 

the codebook performs for blocks outside the training set. Also increasing the dimension 

of the vector increases the complexity of both the codebook design and the encoding 

procedure.

For the above reasons VQ schemes of interest typically rely on relatively small values of n 

(number of samples). Given the complexity of generating a codebook typical approaches
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use a fixed one (JPEG, MPEG) although recent work has also explored different strategies 

for updating the codebook "on the fly" while encoding the source [79,117-121]. 

Due to the complexity of the codebook design and encoding mechanism of the methods 

described above, all practical image/video coding algorithms rely on the "divide and 

conquer" approach to make the coding design and encoding algorithm realizable. Discrete 

cosine transform (DCT) based coding[122] , VQ[79] are examples of algorithms that 

decompose the input signal into sub-blocks, which are independently quantized (sub-block 

size codebooks can then be designed). Similarly, sub-band and wavelet coders produce 

several sets of samples (each of the bands) which can then be quantized independently. 

Let's consider the design for a linear transform DCT based coder in more detail, since 

Chapter 5 of this thesis refers to the MPEG-2 standard, which uses such a coder. A video 

frame is first decomposed into blocks on which the DCT is computed. Then the resulting 

set of coefficients (in the transform domain) is quantized. While there is no theoretical 

justification to encoding independently the transform coefficients (or sub-bands in wavelet 

based codecs), in practice this approach is used under the generally correct assumption that 

after the signal decorrelation achieved by the DCT, the gain to be expected by using vector 

quantization would be limited. Therefore, one can treat the set of all coefficients 

corresponding to the same frequency as a single source for which a single quantizer has to 

be designed. The problem of determining how coarsely to quantize each of the coefficients 

is again one where models are typically used. For example in the case of DCT methods, 

one can measure the variance of each of the coefficients based on an image or a set of 

images and then use bit allocation techniques to determine the coarseness of quantization 

[116]. This results in set of factors (usually denoted as a quantization matrix) which 

specify the relative coarseness of quantization for each of the coefficients. For simplicity of 

implementation, uniform quantizers are normally used and then the codewords for each of
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the possible quantized values are found in order to minimize the entropy using variations 

of Huffman coding [21,110,112]. It should be pointed out that inter coefficient correlation 

is exploited to some extent by using techniques such as zigzag scanning and run length 

coding [123]. Example of this design technique can be found in [97,123,124]. 

Furthermore, to make the design of these systems more versatile, an additional parameter 

called quantization parameter (QP) is also available. This determines the coarseness of 

quantization for a given block (as the MQUANT parameter in MPEG) or for all the blocks 

in the image (as in JPEG lossy). While the quantization matrix determines the relative 

coarseness of quantization for each of the coefficients, the QP parameter scales the 

quantizer step sizes equally for all the coefficients in the block, while preserving the 

relative degrees of coarseness determined by the quantization matrix. Thus, if QP can 

change on a block by block basis, it allows the encoder to assign different levels of 

quantization coarseness to each block. Typically, increasing QP results in higher 

compression at the cost of higher distortion. The role of this parameter is analogous to that 

of the gain, in gain shape VQ schemes [79]. To transmit the coder corresponding to a given 

input block it will be necessary to first communicate to the decoder which codebook was 

selected and then transmit the index of the appropriate codeword. Thus, the QP value can 

be seen as an overhead information.

Design of sub-band codecs [125,126] resort to similar techniques where quantizers are 

designed a priori and trained on some representative set of images. Similar training 

approaches have also been used for wavelet based coding schemes [127] . Only more 

recent work [128], along with Shapiro's pioneering zerotree wavelet based coding scheme 

[44] have achieved a higher degree of adaptivity by exploiting dependencies between 

bands while not requiring training.
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Finally, it should be pointed out that choosing the codelengths for the different vectors in 

block based motion compensated video coding also resorts to training. In this case, a first 

phase in the design process determines which vectors turn out to be more "popular" and the 

relative frequencies of occurrence are then used to compute an entropy code for the 

vectors.

A common thread of all the schemes mentioned above is to operate on smaller coding units 

(blocks in DCT and VQ, bands in sub-band and wavelet coding, pixels in JPEG-LS, 

vectors in motion compensation) and define a codebook for such units. The main 

motivation of this approach is the reduced complexity of all small coding units approaches, 

as well as the difficulty of achieving good models for larger block sizes. In most cases the 

codebook does not change after the design stage. In the following discussion it is assumed 

that the codebook is fixed and our aim is to achieve some adaptivity. 

Let's consider two cases according to whether the encoder chooses the codeword 

corresponding to a block form from a single codebook or from one among several possible 

codebooks. The latter is the most attractive alternative to implement adaptive encoding 

algorithms, but good results can be obtained using the former approach as well. As an 

example, thresholding algorithms perform an adaptive encoding within a single codebook. 

For instance in [130,131] thresholding is used to remove in an R-D optimal way, 

coefficients after having quantized the whole image by using a single QP. A similar 

approach has been proposed to improve the performance of a wavelet based encoder in 

[132].

Obviously, the simplest encoding algorithm is that which maps each of the input blocks 

into a codeword regardless of the context. In other words, each block symbol will be 

considered independently of the others and will be mapped to the nearest codeword (in 

terms of the distortion measure used). If several code-books are used, then the choice of
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the codebooks will also be made independently, so that for instance one can choose the 

same codebook for all blocks in the source or choose a codebook for each block based on 

some other factor, e.g. the buffer fullness in a typical buffer controlled scheme. This 

approach has the advantage of not requiring encoding delay. JPEG lossy is an example 

where a fixed codebook is used for all blocks in the image, whereas MPEG-2 chooses the 

codebook on a macroblock basis, depending partially on the buffer fullness (see Chapter 

5).

Roughly speaking, we can define adaptivity as the ability to change the choice of 

codeword for a given block depending on the context. More formally, if Xf is the current

block and X i=f(Xi ) is the codeword nearest to it within the codebook (in the sense of

the distortion being minimised) , than an adaptive encoding algorithm selects X / which

may be different from X*,- .

Let's denote R( X i ) and D( X i ) the rate and distortion for a given codeword X i , where

R( X, ) includes any possible overhead needed to specify the choice of codebook C,.

Adaptivity can be summarized by writing the encoding algorithm for block i as :

Xi = f(Xi,...,Xi-i,Xi,...,Xi_i,Xf,...,Xff) (2.2)

In the case of :

Xi = f(X'«,...,X >M,X I-) (23)

we would be considering backward adaptation. In some cases, if multiple codebooks are

used, the information of which codebook to be used would not necessarily have to be sent

as overhead since both encoder and decoder have access to the information needed to adapt

the coding rule (except for X ; ). A predictive scheme would be an example of this type 

of adaptation, since past quantized blocks are used to predict the current one and the
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predictor defines the codebook to be used. In the context of rate control, memoryless 

schemes (where the buffer state is fed back to choose the next codebook) would not require

overhead, while schemes where the incoming block X t is analysed before the codebook 

decision is made, would require overhead. In an R-D framework, the MPEG-2 rate control 

scheme operating on a macroblock basis would not require overhead since it is based on 

the buffer estimate from previously encoded macroblocks. In a visual perception 

framework though, it would require overhead since the activity of the macroblock to be 

encoded also plays a role in the determination of the quantization step size. To minimise 

the overhead, the standard only sends the quantization parameter (MQUANT) to the 

decoder if it has changed. Still the amount of bits consumed in overhead information can 

be significant and the estimates proposed in the first part of Chapter 5 deal with this 

problem from the R-D point of view. 

Conversely, if the encoding rule was such that:

X\ = = f(Xi,...,Xi+D+1 ) (2.4)

we would have an example of forward adaptation. Again, if multiple codebooks are used, 

the encoder will have to rely on sending its choice of codebook to the decoder, since the 

decision will be based on information available only at the encoder. Note that in this 

example, the encoding delay would be D+l blocks since the encoder has to know the next 

D+l blocks in order to quantize block i. All of the empirical approaches for R-D 

performance optimization in Chapter 5 fall in the category of forward adaptive schemes. 

The notion of adaptivity in quantization is a popular area of research. Recent work 

[133,134] looks at forward adaptive quantization and describes a procedure to optimally 

obtain the various codebooks from a training set of data. Two different approaches can be 

mentioned in the case of backward adaptive quantization. In [135-137], the objective is to 

adjust the support region of a sealer quantizer so that the quantizer can be used in
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conjunction with a predictor in DPCM system. The original idea of Jayant's adaptive 

quantizer [135,116,138] was to change the support region based on the previous quantized 

sample, while in [136] more than one sample of memory is used. In [137] both the support 

region and the bin sizes can be adjusted, although the bin sizes are restricted to a finite set 

of values.

A somewhat different problem is tackled in [120] where an initial tree structured vector 

quantizer (TSVQ) is first designed with a rate higher than the rate available for 

transmission. Then the adaptive algorithm chooses which sub-tree of the previously 

designed tree has to be used for every instant. Both encoder and decoder keep counts of the 

number of samples that correspond to each of the nodes in the tree and they select the 

subtree which minimises the expected distortion (under the assumption that future samples 

will have the same distribution as past ones).

Note that all these systems use (implicitly or explicitly) simple models of the source to 

determine changes in quantization. For instance [135] assumes that the sources are 

relatively smooth but have varying dynamic range, so that the role of the adaptation is to 

estimate the changes in the variance of the source (so the dynamic range of the quantizer is 

adapted) while a uniform quantizer is used. Similarly, the assumption in [120] is that the 

initially designed tree structured codebook is sufficiently representative of the expected 

input signals, so that the adaptive algorithm can find a "good sub-tree" at any time. In the 

work relating to the Lagrangian framework in Chapter 5, the aim is to explicitly utilise the 

buffer state model of the MPEG-2 rate control scheme and then adapt the quantization 

scheme to get the best performance for the given model.

2.6 Lossless data compression
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Since lossless coding [139] is gaining popularity due to advances in the communications 

field, it would be instructive to see the underlying principles in more detail. The state of the 

art in lossless coding is described by the JPEG-LS standard in its lossless mode of 

operation and the core of this standard is described by the LOCO-I algorithm (LOw 

Complexity Lossless Compression for Images). Lossless data compression schemes often 

consist of two distinct and independent components: modelling and coding. The modelling 

part can be formulated as an inductive inference problem in which the data (i.e. the image) 

is observed sample by sample in some pre-defined order. At each time instant t, and after

having scanned past data xf - x\x2 xt , one wishes to make inferences on the next 

sample value xt+{by assigning a conditional probability distribution P^lx*) to it. Ideally, 

the code length contributed by xt+iis -\ogP(xt+i/xt ) bits. In a sequential formulation of

the problem, the distribution P(.l xf ) is learned from the previously encoded pixels in the 

encoder side and it is available to the decoder as it decodes the past pixels sequentially. 

The conceptual separation between the modelling and coding operations [114] was made 

possible by the invention of the arithmetic coders (AC) [115,140,141], which can realise 

any probability assignment />(./.) dictated by the model to a pre-set precision. In [85], the 

authors present a process for universal modelling which essentially optimizes the 

sequential probability assignment problem at the expense of high complexity. Rather than 

pursuing this optimization, the main objective driving the design of LOCO-I is to project 

the image modelling principles outlined in [85] into a low complexity plane, both from the 

modelling and coding perspective. This task is formidable, especially from the coding 

perspective, because generic arithmetic coders, enabling the most general probabilistic 

coding models, are ruled out in software implementations of many low complexity
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applications. This is due to the fact that in the AC algorithm [115,140,141], the encoder 

has to update the probabilities of incoming symbols, which is a computationally expensive 

process due to the large number of conditional probabilities that need to be estimated. If 

the source is stationary and the model is correct then AC can provide a performance very 

close to the first order entropy. However, in real life environments, where sources need not 

be stationary, the performance of the algorithm is determined by how well it adapts to the 

changing statistics of the source. In that sense, the model tracking part of the AC algorithm 

plays an essential part in the system performance which further adds to the complexity. 

The problem of tracking the changing source statistics in a practically realisable way in 

terms of the accuracy/complexity trade-off, is reflected in IBM's implementation of AC 

[142]. The main problem is to find, for every newly arrived symbol whether the occurrence 

is normal (i.e. consistent with the current model) or non normal (i.e. unexpected with the 

current model). The proposed solution is to have different rates of change in the model so 

that the estimated probability of the most likely symbol will change slowly, while the 

estimated probability of the least likely symbol will change faster. The basic idea is that 

unlikely events (such as the occurrence of the least likely symbol) may signal a change in 

the distribution. These ideas also highlight the main trade-off in defining an adaptive 

coding algorithm. Because of the need to adapt to changing statistics, the scheme of [142] 

will perform worse than a static algorithm for an i.i.d source. A similar trade-off can also 

be seen in the context of adaptive filtering, where in Least Mean Square (LMS) type 

algorithms fast convergence conies at a price of noisy behaviour if the source is stationary 

[143].

While [85] represents the best published compression results of significant computational 

complexity in the modelling process, it can be argued that lower cost modelling approaches 

such as the ones represented by the Sunset family of algorithms [158-161] are competitive
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in terms of the entropy/complexity trade-off. The diminishing returns in terms of entropy 

of computationally expensive modelling approaches can also be seen in the work relating 

to the CALIC [162] and TMW [163] compression algorithms.

On the other hand, simplicity driven schemes propose minor variations of traditional 

DPCM techniques [164] and include Huffman coding of prediction residuals obtained with 

some fixed predictor. These simpler techniques are fundamentally limited in their 

compression performance by the first order entropy of the prediction residuals and the 

compression gap between these schemes and the more complex ones is significant. 

As another example of adaptation in the context of lossless coding, it has been shown that 

the Huffman coding tree can be modified on the fly so that the code would adapt to the 

changing statistics or learn them starting with no prior knowledge [144-146]. A first 

approach to generate these statistics would be to choose the number of samples N over 

which symbol occurrences are counted. However, a fully adaptive scheme would also 

require a procedure to change N if necessary during the coding process in order to improve 

the performance. Recent work [147] presents a solution to this last question at the cost of 

some complexity by proposing that the window size N be updated by choosing, among 

several possible sizes, the one producing a code with better compression. 

It is worth noting that the question of what constitutes a good model for random data is a 

topic of interest not only for compression but also as a model per se. Indeed, the minimum 

description length (MDL) technique introduced by Rissanen [148,149] provides a link 

between these two problems by establishing the asymptotic optimality on describing a 

distribution with a set of parameters that requires the least total number of bits to be 

encoded when counting both the bits needed to describe the model and the bits needed to 

encode the occurrences of the different symbols within the model. This criterion has been
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shown to also provide an asymptotically optimal universal code for data generated by a 

stationary source in [85].

Let's examine the JPEG-LS standard in more detail. Initially, the predictive value for the 

pixel to be encoded is estimated based on a fixed template of neighbouring pixels. The 

predictive error is then calculated as the difference between the actual value of the pixel to 

be encoded minus its predictive value. It is well known [164] that prediction residuals in 

continuous tone images are adequately modelled by a Two Sided Geometric Distribution 

(TSGD). According to this distribution, the probability of an integer value e of the

IE\ ^ —— „»,.. ~.^ .^ j^^v^-v,^ ~ „ i , where 6 belongs to the interval (0,1) and controls

the two sided exponential decay rate. However, in context conditioned models, an offset // 

is typically present in the prediction error signal [160] due to possible bias in the 

prediction. If we break this offset /J. into an integer part R (bias) and to a fractional part p 

(shift), the TSGD parametric class assumed by JPEG-LS for the fixed prediction error s at 

each context is given by:

= C(9,p)*6 £~R+P\ e = 0,±1,±2.... (2.5)

where C(0,p) = (1-9)1(9 p + &p ) is a normalisation factor. After adaptive prediction, 

resulting in bias cancellation, equation (2.5) reduces to:

e = o,±i,±2.... (2.6)

where 0 < 9 < 1 and 0 < p < 1 .

Assuming a to be the alphabet size, the error range of the residuals is subsequently reduced 

to the interval [-a/2,a/2-l] resulting in further improvements in compression efficiency. 

The context that conditions the encoding of the current prediction residual is constructed 

from the local gradients of surrounding pixels, which govern the statistical behaviour of the
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prediction error. To reduce the modelling cost, the local gradients are quantized into a 

smaller number of approximately equiprobable connected regions. The number of contexts 

is further reduced (context merging) due to the assumption that a context triplet (ql,q2,q3), 

where qi represents a local gradient, is equiprobable with the context triplet (-ql,-q2,-q3) 

for the same prediction error. The general formula for the number of contexts after context

•3

merging is (2 * T + 1) / 2 , where T is a tailorable parameter for different images. 

The standard uses a low cost procedure for bias cancellation of the context dependent 

distribution of the prediction errors. In the following pseudo-code, B and C are model 

parameters, N represents the occurrences of a given context and e is the error residual:

B = B+ e ; /* accumulate prediction residual */

N= N+l; /* update occurrence counter */

/* update correction value */

if(B<=-N){

C=C-1;B=B+N;

If(B<=-N)B=-N+l;

}

elseif(B>0){ 

C=C+1;B=B-N; 

If (B>0) B=0;

}

Finally, JPEG-LS chose to use a special variant of Golomb codes (GPO2) to encode the 

quantised error residuals. Given a positive integer parameter m, the mth order Golomb 

code Gm encodes an integer y >= 0 in two parts: a unary representation [ylm\ and a 

modified binary representation of y mod m. The modified binary representation uses
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[logmj bits if y < 2\*°& m l-m and |~logm~] bits otherwise. The special case of Golomb

codes with m = 2 leads to very simple encoding/decoding procedures: the code for y is 

constructed by appending the k least significant bits of y to the unary representation of the 

number formed by the remaining higher order bits of y. The length of the encoding is

k + 1 + \y/2 and these codes are referred as Golomb-power-of-2 (GPO2) codes. 

2.7 Empirical versus model based R-D approaches

In the following discussion, the most common R-D approaches in image and video coding 

will be reviewed. The "video coding terminology" will be used, although all of the 

surveyed techniques are also applicable in an image coding framework. 

In the empirical approaches for R-D optimization, the entire video sequence or part of the 

future frames is known in advance. Figure 2.4 shows a typical block diagram of the 

empirical approaches.

Prediction and 
Transform

Quantizer

Channel rate

Buffer size

Controller

Figure 2.4: Empirical R-D approaches

Entropy 
Coder

Distortion
rate
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From the above diagram, it can be clearly seen that empirical approaches are 

computationally intensive in estimating the R-D performance, since the distortion can only 

be measured after block reconstruction and the rate after entropy coding. It can also be 

inferred that, if a number of iterations are needed for the final estimation of the quantizer 

step size Q, the complexity increases even more. In Chapter 5, a detailed complexity 

analysis will be presented in terms of the number of operations needed, for a variety of 

empirical approaches that follow the pattern described in Figure 2.4. 

Most of the empirical R-D optimisation approaches are based on the Lagrange multiplier 

method. Let's consider initially the case where the units of encoding are independent and 

where the buffer size is infinite (no buffer constraints). The independence of quantization 

means that the quantization setting for a given unit of encoding does not affect any of the 

other units. The size of a "unit" can be a macroblock in a Local Control Scheme, or a frame 

in the Global Control case. In this discussion, let's assume that the Control Scheme is local.

The optimisation problem can then be formulated as follows:

Formulation 2.7.1: Independent macroblock Coding without Buffer Constraints

Mb 
Determine q(i), i = 1,2,. . .Mb in order to minimise ^ "•i W ' subject to

I ri(qt }<=B (2.7) 
i=l 

where Mb are the number of macroblocks in the frame to be encoded, d, (qO is the

distortion of macroblock i when quantized with quantization step qt , r; is the produced rate 

for macroblock i, and B is the number of bits allocated to the current frame. 

The above problem can be solved by using the Lagrange Multiplier method according to 

the following theorem:
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Theorem 2.7.2: Lagrange Multiplier method

If a set of q*i , i=l,2,..Mb minimises the following set of expressions for a given A , 

di(qi)+A*ri(qi),i=l,2 ) ..Mb , (2.8) 

then it is also a solution to Formulation 2.7.1 for a given B equal to

Mb * 
B (/l)= £ n(q ,•) (2.9)

i=l

In the above theorem, Btf) is the total bit rate achieved for a given Lagrange multiplier 

which is used to minimise the set of expressions described by equation (2.8). 

Theorem 2.7.2 is valid in both continuous space (where qi takes a continuous range of 

values) and discrete space (where qi is only defined for only some discrete values such as 

in the MPEG-2 case). A proof of this theorem can be found in Chapter 14 of [100] for the 

continuous case, and in [101] for the discrete case. To find the multiplier that minimises 

the set of expressions in equation (2.8), the bisection method [103-104] can be used:

Algorithm 2.7.3: Lagrange Multiplier Method with Bisection Search

Step 1. Make an initial guess on A1 and /12 , with Al < A2 .

Step 2. Substitute /ll into (1.6) and minimise the set of expressions to derive q*i , i =

1,2 ..... Mb .

Substitute qi into (1.7) to get B'(/11 ).

Step 3. Follow the same procedure as in Step 2 for A2 to get B'( A2 ).

Step 4. If [B'( A. 1 ) - B]. [B'(/l2 ) - B] > 0, i.e, the solution does not fall in between the two

initial guess values, go to Step 1 and make another guess. Otherwise, continue to the next

step.

Step 5. Let & m =(^1 + A2 )/2.
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Step 6. Follow the same procedure as in Step 2 for A m to get q*t , i = 1, 2,..., Mb

Step 7. If [B'( A1 ) - B]. [B\/12 ) - B] < 0 , substitute XI by /I w , otherwise, substitute 

/ll by A m

Step 8. Check if

<£
B

Where £ is a pre-set small number. If this condition holds, the optimisation is done and 

the solution is q*i , i = 1, 2,..., Mb . Otherwise, go to Step 5 for another iteration.

In addition to bisection search, other iterative algorithms for solving non-linear equations 

(see Chapter 6 of [102]) can also be used for searching the solution. For the case where qi's 

are discrete and finite, an algorithm has been proposed in [61]. Note that in the Lagrange 

Multiplier Method, all input data have to be collected (for calculating r-q and d-q 

functions) before any real encoding can take place. A method which used sliding-window 

to shorten the delay based on constant slope optimization algorithm has been proposed in 

[58,105]. The computational complexity of Algorithm 2.7.3 is lower than the dependent 

quantization case, because the R-D measurement and the minimisation of equation (2.8) 

can be done independently for each block. However, this assumption is not met by an 

MPEG encoding scheme where rate-distortion values for a given frame depend on 

previously quantized frames. Therefore, the algorithm can not be applied to MPEG 

directly.

If there are constraints on the buffer size , but the macroblocks are still independently

encoded, the Formulation 2.7.1 becomes:

Formulation 2.7.4: Independent macroblock coding with buffer constraints
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Determine q\, i=l,2,. . .,Mb in order to minimise 
Mb
£ di(4i) (2.10)

subject to b(i,q1 ,q2,.....qi)<bmax i=l,2,..,Mb (2.11) 

where bmax is the buffer size and bj is the buffer state when macroblock i is encoded.

The buffer state after macroblock i is coded is given by the following recursion: 

b(i,qi,q2 , .....qO = max(b(i-l,qi,q2 , .....qi_i) + r,(qi) -rb , 0) (2.12) 

where rb is the number of bits output to the channel (constant).

Equation (2.12) implies that the buffer state is updated based on the previous buffer state 

plus the number of bits when macroblock i is encoded minus the number of bits output to 

the channel (constant). The max function is used to handle the buffer underflow case. 

Because the value of the buffer occupancy for each macroblock depends on the 

quantization steps of previous macroblocks, it is no longer possible to optimise each 

macroblock independently.

There are multiple constraints in the above formulation. It is still possible to solve the 

problem with multidimensional Lagrange multipliers [106] but the technique proposed 

becomes very complex in both the formulation and the calculation at a higher dimension. 

A method based on forward Dynamic Programming, known as Viterbi Algorithm has been 

proposed [58,107,108] . The first step is to build a special trellis graph. The trellis consists 

of several stages, with each stage corresponding to a block to be coded. A node in the stage 

is defined as a particular buffer occupancy, after the block corresponding to that stage is 

coded. The branches, which connect nodes from stage i to stage i + 1, are grown for every 

node in stage i and for every possible quantization setting for block i. The cost for each 

branch is then defined as the distortion produced with the corresponding quantization 

setting. The problem becomes to find a path in the trellis graph that has smallest total cost, 

which can be solved by dynamic programming techniques. The buffer constraints are
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satisfied by "pruning" all the branches that violate the constraints during the growth of the 

trellis. This algorithm can find the true global optimum solution. However, the number of 

nodes could grow rapidly with the number of stages, which contributes the increase of both 

the computational complexity and the memory requirement. Several techniques have also 

been proposed to reduce the complexity, including the use of buffer state clustering, sliding 

window, and an approximation using the Lagrange multiplier method. 

In the dependent quantization case, the fact that the R-D characteristics of predicted frames 

(P and B frames in an MPEG-2 framework) are dependent on their reference frames, has 

also been considered in the literature [74,106]. By considering the unit of encoding to be a 

whole frame for ease of description and by considering the buffer unconstrained case, the 

optimisation becomes:

Formulation 2.7.5: Dependent frame coding without buffer constraints

N
Determine q; , i= 1,2,... N to minimise 5Xz'G?i><72'—9z') subject toz'=l

AT
R (2.13)

Where qj is now the quantization step for the whole frame i and R is the bit budget for the 

whole Group of Pictures (GOP).

Two interesting observations can be made regarding Formulation 2.7.5. First, that it is 

easily parametrised in case joint optimisations are desired. For example, in [155] a joint 

thresholding and quantizer selection is proposed for transform coding for the JPEG 

baseline coder but it is easily extended in a video coding framework. Assuming that the 

thresholding technique is applicable on a frame basis, Formulation 2.7.5 becomes:

Formulation 2.7.6: Joint optimization of quantizer section and thresholding in dependent 

frame coding without buffer constraints
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N
Determine (q; ,tj) i=l,2,.. .N to minimise ^ d{ ((q\ , tl), (q^, t2)..., (qi, ft)) subject

z=l
N 

to Zri((qi,tV),(q2,t2)...,(qi,ti))<R (2.14)

Where tj is the thresholding technique chosen for frame i. Formulation 1.10.5 is generic in 

the sense that it can accommodate any joint optimisation of a number of parameters.

Second, it can be easily seen that the rate rl (q\,q2,...,qi) for every frame in the Group of

Pictures is actually a composite rate:

rt (ql,q2,...,qi) = rcoejficiejts (ql,q2,..qi) + rmotiorj,ql,q2,...,qi) + rseg(q^q2^ qi) (2.15)

where rcoejficients (ql,q2,...qi)is the bit rate produced by the quantized transformed 

coefficients, rmotion (ql,q2,...,qi) is the rate allocated to motion information and 

rseg(ql,q2,..qi) * s tne rate necessary to convey the segmentation information to the

decoder. Equation (2.15) is also generic since the coefficient transformation can be either 

DCT or wavelet based, the motion information can be either associated with blocks of 

fixed or variable size (regions) and the segmentation information depends purely on the 

representation of the frame to be encoded (e.g. block based versus quadtree based 

schemes).

The minimisation of Formulation 2.7.6 has to be solved in an N dimensional space and 

unfortunately the cost function described by equation (2.8) can no longer be minimised 

independently. It is evident that the complexity grows exponentially not only for the 

operations required in the minimisation but also for the evaluation of the R-D functions 

which has to be done over all possible quantization settings. In the case of joint 

optimization schemes, as the one described in Formulation 2.7.6, it is worth mentioning 

that each extra parameter added to the optimization procedure increases the computational 

cost exponentially.
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The complexity of the minimisation of formulations 2.7.5 and 2.7.6 can be reduced by

using the monotonicity property [109]:

Definition 2.7.7

For any dependent coding system, for any A >= 0, if the quantization step size of qi is

finer than that of q* implies:

J2(qi,q2)<J2(q*,q2) (2.16)

then the coding system is defined to possess the monotonicity property.

In the above definition,

h (qi.q2) = d2(qi,q2) + ^ * r2(qi,q2) and J2 (q*,q2) = d2(q*,q2) + ^* r2(q*,q2) (2.17)

which are the cost functions of rate and distortion for a coding unit in the dependent case.

The monotonicity property implies that a better quality (finer quantization) in the reference

frame will lead to more efficient coding in the R-D sense. Most of the MPEG encoding

results in [74] confirm this property. By applying the monotonicity property, many

branches and nodes in the trellis can be eliminated (pruned), thus saving computations

including the costly evaluation of the rate quantization and distortion quantization

functions associated with these nodes and branches. Even after pruning though, the R-D

evaluations needed to optimise the quantization settings may still require a significant

amount of computation.

Trellis based optimisations are guaranteed to give the optimal R-D performance, while

solutions based on pruning, approximations and heuristics will give sub-optimal R-D

estimation, compensated by the smaller computational cost.

In most model based approaches, the statistical model for Gaussian sources is used

because it usually leads to simpler expressions.
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Theorem 2.7.8: Rate-Distortion Function for Gaussian Source

The rate distortion function for a zero mean Gaussian source with variance a is:

R(d) = (2.18)

0 d>a2

where the distortion d is measured in terms of squared error and R(d) is measured in

bits/pixel..

In model based R-D approaches, there is also the assumption that the distortion and the

quantization step are linearly related:

D(q) = m*q , m an integer greater than 1 (2.19)

A proof of theorem 2.7.8 can be found in [110]. The above model assumes an explicit 

relation between rate and distortion so the R-D characteristics of the encoding unit are 

predicted rather than derived from the actual encoding process with every/some of the 

quantization settings. Furthermore, no future encoding units are needed so these models are 

suitable for online applications requiring low cost and encoding delay. 

The above model has been used in many contexts where a rate distortion function is 

required [73]. To estimate the model parameters, the variance can be measured directly 

from source data and the value of m has to be estimated some way. The problem of this 

general model, when applied to an MPEG framework, is that a general DCT transformed 

video signal is usually not a Gaussian source and the linear assumption in equation (2.19) 

does not generally hold. The non-linearity between distortion and quantizer step size is 

especially evident in P and B frames of a video sequence. As such, the above model is 

likely to produce significant errors in R-D estimation when used in a realistic encoding 

scheme.
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From all the above discussion we can infer that in order to perform online image/video 

coding of reasonable computational complexity, hybrid schemes that combine the 

simplicity of model based approaches with the benefits of the optimisation based empirical 

approaches are necessary. These schemes are expected to reconcile the conflicting 

requirements of compression rates, quality and complexity. The second part of Chapter 5 is 

targeted towards such schemes.

2.8 Rate Distortion and complexity

From the above discussion, it can be inferred that in terms of improving the R-D 

performance in image and video coding, the main research efforts are centered around:

• Better transformations [46,127,150]

• Improved quantizer bit allocation [60,61,74]

• Efficient entropy coding [129]

There are a number of algorithms that provide high efficiency in each of these areas. 

Examples include using the wavelet transform with progressive quantization and efficient 

entropy coding [43,44,151-154], DCT with optimal thresholding and quantization [155], 

DCT with progressive coding [156], variable block size DCT [157], etc. In none of the 

above works the complexity issue is considered. Typically, encoders with longer memory, 

more computational power and larger context statistics can perform better than encoders 

with fewer resources. In a complexity constrained environment, such as in software 

implementation of real time en/de-coding systems and in battery limited pervasive devices, 

complexity becomes a major concern in addition to rate distortion performance. Normally, 

one would prefer to have a system that encodes or decodes with a higher frame rate with a 

small degradation in picture quality rather than to have a slightly better rate distortion
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performance with much more complexity or delay. Thus in order to achieve the best of

rate-distortion-complexity performance, all three factors must be explicitly considered

together.

With the fast increase in the clock speed and performance of general purpose processors,

software only solutions for image and video coding are of great interest. Software solutions

result not only in cheaper systems, since no specialised hardware needs to be bought, but

also provide extra flexibility as compared to specialised hardware.

Consistent with this trend for low computational complexity algorithms for software only

codecs, this thesis will present a variety of such algorithms in the contexts of image and

video coding.
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CHAPTER 3 - LOW COST RATE CONTROL ALGORITHMS FOR IMAGE 

CODING IN A JPEG-LS FRAMEWORK

3.1 Introduction to JPEG-LS

JPEG-LS is the latest international standard for lossless/near lossless still image 

compression. The formal standard was issued in 1998. As with previous JPEG standards, 

JPEG-LS is based on a combination of optimized coding schemes selected from a number 

of successful candidate algorithms on a world wide competitive basis.

The operation of JPEG-LS for lossless/near lossless image compression can be 

divided in the following four parts: i) run-length coding, ii) non-linear prediction, iii) 

context-based statistics modeling and iv) Golomb coding[88,89]. The information loss in 

the standard (near lossless mode) is induced by a constant integer value called NEAR. This 

NEAR value is user defined and its range is between 1 and 9. The predictive pattern or 

template, used for selecting either the run length or the non-run length coding modes and 

also for context based statistical modeling, consists of four neighboring pixels of the pixel 

to be encoded (Figure 3.1).
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Figure 3.1: Predictive pattern in JPEG-LS
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Since the number of contexts produced is large with this arrangement, only three 

delta values are considered as shown below:

=b-c; A 3 =c-<r, (3.1)

If the three delta values are less than the NEAR value, this indicates that the local 

image texture is very smooth and the run length coding mode is chosen. Otherwise the non- 

run mode will be selected, in which the encoding is done using techniques such as 

predictive coding, quantization using the NEAR value in the quantization step 

determination and finally entropy coding.

To maximize the performance of predictive coding, JPEG-LS adopted a simple 

edge detection scheme involving only three out of the four neighboring pixels in order to 

analyze the local texture and to determine the predictive value. The predictive value is 

estimated according to the following rules: 

i) If an edge is detected, the pixel not on the edge is taken as the predictive value as

shown in Figures 3.2(a) and (b). This case reflects that the local texture is rough, 

ii) Otherwise, the predictive value is a+b-c. This case reflects that the local texture is

smooth.
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Figure 3.2(a): Predictive value for 
horizontal edge prediction

Figure 3.2(b): Predictive value for 
vertical edge prediction
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The important element in the above prediction scheme is that it not only returns a 

predictive value, but it also characterizes local texture.

The predicted errors are then quantized using the single parameter NEAR for the 

determination of the quantization step, before they are encoded using LGC (Limited length 

Golomb coding). With such an information loss scheme introduced in JPEG - LS, the 

major drawback is that the information loss introduced is fixed and predetermined by the 

value NEAR. This can cause conflict between compression efficiency and quality 

requirements since smooth areas in the image will incur the same information loss as 

rougher areas. However, human visual perception is more sensitive to smoother areas in 

the context of image coding. This discrepancy between the way information loss is 

distributed in the standard and the way an HVS (Human Visual System) treats information 

loss, gives rise to the following set of objectives:

1. The need for designing a low cost technique that will distribute information loss 

according to HVS tolerance among different textures to improve performance in terms 

of visual quality and rate distortion terms.

2. The need for designing low cost rate control algorithms that utilize such a multilevel 

information loss distribution for achieving a given compression rate, while optimizing 

the image quality in HVS terms, regardless of the variety of compressibility of the input 

images.

The design of a low cost multilevel information loss distribution according to HVS could 

exploit the simple but effective prediction scheme that JPEG-LS uses for activity analysis. 

However, the design of a low cost rate control algorithm according to HVS is more 

challenging since, from the literature, we can see that most of the current research 

addresses the problem from the rate distortion point of view, which may not be the optimal 

approach from an HVS point of view. Furthermore, most of the approaches used are
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computationally expensive as they treat rate control as an optimization problem. 

Specifically, in a number of rate distortion approaches [58-60,62-69] it was observed that 

the R-D (rate-distortion) characteristics of the input data have to be measured before any 

decision can be made about the quantization step assignment or information loss 

distribution. Typical work includes dynamic programming [58] and Lagrange multiplier 

optimization[59-62]. To obtain the R-D characteristics, various techniques have been 

proposed. These include trellis-based[58], model based[60,66]and piecewise approximated 

[66] approaches. The situation is further exasperated as some of these techniques require 

multiple passes over the input data to obtain the R-D curves, and a considerable number of 

iterations in order the approximation for the quantization step size assignment to converge 

to the optimal solution.

The high computational complexity of current approaches for the rate control 

problem in still image coding, coupled with the different sensitivity of HVS towards 

different textures calls for effective and efficient algorithms. Towards this end, an HVS 

based multilevel information loss scheme is initially developed and is subsequently used in 

the design of two low cost rate control algorithms for JPEG-LS. The chapter concludes 

with potential applications of the second rate control algorithm in the context of medical 

imaging.

3.2 Multilevel information loss in JPEG-LS image compression

To optimize the information loss distribution, local texture analysis can be 

exploited by considering the characteristics of human visual perception towards different 

textures. Specifically, in the case of rough textures, human perception of distortion tends to 

be more tolerant in comparison with the case of smooth texture (i.e. irregularities in
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smooth areas are easily detected, whereas in rougher areas they are much harder to 

pinpoint). This property gives the opportunity for designing a scheme where the 

information loss parameter NEAR in JPEG-LS, will vary according to texture properties so 

that a better balance between compression rate and visual quality of reconstructed images 

can be achieved. In this chapter, such a scheme is proposed and is based on the prediction 

mechanism of JPEG-LS (see Section 3.1) but also uses a multilevel information loss 

distribution, instead of using a single information loss parameter (NEAR). The flexibility 

of the multilevel information loss distribution combined with the simple but accurate 

prediction mechanism of the standard are the keys in distributing information loss 

according to the affordance of the human visual system. In the proposed scheme, three 

parameters (namely NEAR_H, NEAR_M, NEAR_L) are used, corresponding to the three 

texture types (namely rough, smooth, very smooth) identified by the JPEG-LS prediction 

scheme. The information loss is allocated according to the following rules:

i) If the run length coding mode is selected, the minimum amount of information loss

is afforded since the texture is very smooth. Parameter NEARJL reflects this rule, 

ii) If an edge is not detected in the prediction phase (Section 3.1), the texture is still

smooth but more information can afford to be lost than in the run length mode

case. Parameter NEAR_M reflects this rule, 

iii) If an edge is detected, more information can afford to be lost than in the previous

two cases. Parameter NEAR_H reflects this rule.

The modified (HVS based) information loss distribution of the standard is illustrated in the 

following figure:
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Figure 3.3: Modified information loss distribution in JPEG-LS

The assessment of the proposed scheme was performed by devising two sets of 

experiments. In these experiments, the JPEG - LS software was enhanced with the 

necessary modifications, in order to account for the multiple levels of information loss.

In the first set of experiments, the fact that the proposed scheme is competitive 

even in terms of conventional image quality measurements (PSNR) was established . The 

results after applying the proposed technique on the typical JPEG - LS test image sample 

(testS.pgm) can be summarized in Table 3.1. The "testS.pgm" image was specifically 

recommended from the JPEG committee as a suitable test image for proposed compression 

algorithms. The three digit NEAR values for the proposed scheme correspond to the triplet 

(NEAR_L, NEAR_M, NEAR_H).

Table 3.1: Phase 1 of experiments for testS.pgm
JPEG - LS

NEAR
1
2
3
4
4

CR PSNR(db)
2.48:1 50.94
2.89:1 46.34
3.13:1 42.68
3.39:1 40.77
3.39:1 40.77

The proposed Scheme
NEAR values CR PSNR(db)

Oil 2.45:1 51.50
122 2.82:1 47.13
233 3.11:1 43.68
344 3.39:1 41.38
335 3.40:1 40.83
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Table 3.1 shows that the proposed scheme does not lose any ground even in terms 

of conventional measurement of image quality (PSNR values) for the same compression 

rates as the standard, provided a suitable triplet of NEAR values is chosen. While all 

compression ratios remain similar to JPEG - LS , with the first two digits at least being the 

same, the PSNR values achieved by the proposed scheme remain very competitive and 

even slightly better in some cases compared to the ones JPEG - LS produced. This could 

be important in applications where the PSNR metric really matters (e.g. medical imaging, 

video aided terrain mapping, etc.) since in these applications the average distance per pixel 

between original and reconstructed images is more important than visual considerations.

In the second phase of the experiments, which utilized the same three parameter 

information loss distribution as in the first phase, the fact that the proposed scheme is able 

to produce higher compression ratios and better visual quality of the reconstructed images 

compared to JPEG - LS was shown. By better visual quality, we refer to the ability of the 

algorithm to retain smooth texture better than the standard, for the same or higher 

compression rates, rather than to enhance smooth texture. Consequently, the visual effect 

becomes better but also the visual distance between original and reconstructed smooth 

textures is kept close. In contrast, in the case of smoothing, the visual effect may become 

better, but the visual distance between original and reconstructed images may increase. All 

the experiments in Table 3.2 produced reconstructed images with lower PSNR values 

compared to JPEG - LS but with better visual quality. This is mostly visible on the bottom 

left quartile where the texture is smooth. The lower PSNR values are expected, since in 

order to retain smooth texture, we need to compress more on rough textures to achieve 

higher compression rates than JPEG-LS. A representative table of results follows, along 

with reconstructed images for visual inspection.
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It was also shown that the conventional measurement in terms of PSNR of the

image quality does not take into account the human visual system perception of image 

quality (i.e. you can have reconstructed images of better visual image quality in accordance 

to HVS with lower PSNR values). This is because the statistical quality, measured in 

PSNR terms, only shows how much information is lost in the reconstructed image as 

compared to the original. Where this information is lost is not considered. On the contrary, 

visual quality based schemes distribute information loss differently to different textures 

depending on the tolerance of HVS to distortion. In Table 3.2, the triplets of NEAR values 

were empirically found.

Table 3.2: Phase 2 of experiments for testS.pgm
JPEG-LS

Compression Ratio
2.49:1
2.49:1
2.89:1
2.89:1
2.89:1
3.13:1
3.13:1
3.13:1
3.39:1

NEAR
1
1
2
2
2
3
3
3
4

Proposed Algorithm
Compression Ratio

2.64:1
2.79:1
2.92:1
3.05:1
3.19:1
3.13:1
3.23:1
3.39:1
3.44:1

(NEAR_L, M,H)
(0,1,2)
(0,2,2)
(1,2,3)
(1,2,4)
(1,2,5)
(1,3,4)
(1,4,4)
(1,4,5)
(1,5,5)

Figure 3.4(a) is the original "testS.pgm" image and Figure 3.4(b) is its bottom left quartile 

blown up. To see the effect of the algorithm on smooth textures, the bottom left quartile of 

the reconstructed images (both for JPEG-LS and for the proposed scheme) is blown up in 

Figures 3.4(c)-3.4(h). From visual inspection, we notice that JPEG-LS produces a variety 

of artifacts with respect to the original image, while the proposed algorithm retains smooth 

texture better and produces higher compression rates (Table 3.2).
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Figure 3.4(a): Original "testS.pgm"

Figure 3.4(b): Smooth part of testS.pgm blown up
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Figure 3.4(c): Reconstructed by JPEG-LS (NEAR=4)

Figure 3.4(d): Reconstructed by the proposed scheme 
(NEAR_L=1,NEAR_M=5,NEAR_H=5).
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Figure 3.4(e): Reconstructed by JPEG-LS (NEAR=2)

Figure 3.4(f): Reconstructed by the proposed scheme 
(NEAR_L=1 ,NEAR_M=2,NEAR_H=5).
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Figure 3.4(g): Reconstructed by JPEG-LS (NEAR=3)

Figure 3.4(h): Reconstructed by the proposed scheme 
(NEAR_L= 1 ,NEAR_M=4,NEAR_H=5).
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3.3 Low cost algorithms for Rate Control in still image compression

In this section, a low cost algorithm based on HVS considerations is initially proposed in 

order to add rate control to JPEG-LS. The standard does not provide this feature, which 

may be important in applications such as digital cameras where a captured image may be 

required to fit accurately in the space available of a previously deleted image. 

Subsequently, an improved second algorithm is proposed which attempts to address jointly 

the problems of rate control with the visual quality improvement.

Problem formulation: Given a user defined target compression ratio, can we design a rate 

control algorithm based on JPEG-LS that exploits the multilevel information loss scheme 

described in the previous section? Can this rate control algorithm achieve bit rates closer to 

the target compared to the standard? What is the performance of such an algorithm both in 

terms of statistical (PSNR) and of visual image quality?

3.3.1 1st algorithm proposed

The first algorithm proposed is designed to assess the feasibility of adding a low cost rate 

control mechanism to JPEG-LS. In such a scheme, both the rate and distortion are 

controlled through changing the three NEAR parameters of the multilevel information loss 

distribution discussed above. In particular, what is really examined is the range of 

compression rates in which such a scheme is applicable and the negative effects of such a 

scheme in terms of PSNR. The negative effects on PSNR are expected since we rather 

intend to control R-D low cost and online, rather than apply the computationally expensive 

offline R-D optimization methods .The proposed algorithm proceeds as follows:
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To detect the compressibility of each input image, the compression ratio can be computed 

and compared with a user defined target compression ratio as encoding proceeds. Such a 

comparison would provide a good indication of whether the information loss should be 

increased or decreased in order to force the compression ratio to be close to or equal to the 

target. To this end, the compression of an input image can be described as a two 

dimensional function, the range of which is defined by the size of the image. Hence the 

overall problem can also be described as an automatic control process through which the 

achieved compression ratio at the termination point is regulated to be equal or close to a 

pre-defined target compression ratio.

However, there are two unique features associated with this problem:

(i) To achieve the best possible quality for the reconstructed images at the decoding 

end, the compression ratio should be allowed to vary according to the local 

compressibility. The variation of the compression ratio will be controlled by the 

increment/decrement of the three information loss parameters (NEAR values) 

described in the previous section. Any excessive adjustments made by the control 

process will either incur unnecessary information loss and hence jeopardize the 

decoded image quality or will adversely affect the control over the compression 

rate. In order to avoid these problems, information loss should only be introduced 

when it is absolutely necessary and the unit of increment/decrement of the three 

NEAR parameters should be small.

(ii) When extra information loss is required, it should only be introduced to those 

regions which tend to tolerate more information loss from the human visual 

perception point of view.
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To exploit the first feature, we convert the compression ratio from a two dimensional 

function to a one-dimensional function by allowing the compression ratio to be assessed 

only at the end of each row. By on-line compression ratio, we refer to the compression ratio 

that is computed at a point before the next pixel is to be encoded. By designating the 

assessment points at the end of each row along the raster scan route, we have the advantage 

of allowing the compression ratio to adjust itself according to the local compressibility 

embedded inside each row.

At each compression assessment point, the rate control is implemented according to the 

simple principle that if the on-line compression ratio is smaller than the target compression 

ratio, we should introduce extra information loss in order to force the on-line compression 

ratio to be close to the target. Otherwise, we should decrease the information loss in order 

not to spoil the image quality.

To exploit the second feature, we design the increase of information loss in a cycle of the 

three values of NEAR corresponding to the multilevel information loss scheme developed 

previously. The order of increase is designed as incrementing the NEAR_H parameter first 

, the NEARJVI parameter subsequently and the NEAR_L parameter finally. The increase 

of the NEAR values is also controlled by three thresholds (LimitHM, LimitML and 

LimitL) . LimitHM denotes the maximum distance between NEAR_H and NEAR_M, 

LimitML denotes the maximum distance between NEAR_M and NEAR_L, and LimitL 

denotes the maximum increase of NEAR_L respectively. Figure 3.5 shows the three 

NEAR parameters and their respective limits of increase. The highest value NEAR_H can 

have is the value 9 and the lowest value NEARJL can have is 0, which are the 

highest/lowest allowable NEAR values from the standard.
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Figure 3.5: The change of the NEAR values along with their thresholds in the
proposed rate control scheme

NEAR_H is always incremented first in the cycle as long as its distance from 

NEAR_M is less than LimitHM.. If NEAR_H has reached its limit, we then start to 

increase NEAR_M in the same way until it reaches the LimitML. Similarly we proceed for 

the increase of NEAR_L.

If we do not use the distance thresholds, excessive high value of NEAR_H or NEAR_M 

will bring extra distortion not only to the local region but also to the local texture which is 

even more damaging than the simple loss of information.

By considering the prediction scheme adopted by JPEG-LS, it is clear that the neighboring 

pixels used for prediction are not the originals but the reconstructed ones and are 

dependent on the NEAR value that the JPEG-LS uses as the information loss parameter. If 

NEAR_H is excessively high, yet the other two or one parameter is kept low, the pixels 

reconstructed by NEAR_H may not represent the true texture of the local region because 

edges may be detected instead of smooth regions. This situation results in distortion 

introduced to the decoded image and the compression ratio also deteriorates because of the 

wrong prediction.
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Assuming that TCR and OCR represent the target compression ratio and the on-line 

compression ratio respectively, the proposed rate control algorithm can be summarized as 

follows:

Step 1: All parameters are initialized as: NEAR_H = NEAR_M = NEAR_H . It was found 

empirically that such a setting achieves rates closer to the target, while at the same time the 

PSNR differences between the non rate controlled JPEG-LS and the rate controlled 

proposed scheme become smaller. Extra variables are added representing the target 

compression ratio (TCR) and the online compression ratio (OCR). OCR is calculated as 

the total number of bits produced at each assessment point. LimitHM, LimitML and LimitL 

are also initialized.

Step 2: At the end of each row, comparison between OCR and TCR is made in order the 

rate control process to start as shown in Figures 3.6(a) and 3.6(b).
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Figure 3.6(a): A flow chart for the rate 
control algorithm design when OCR < 

TCR
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Figure 3.6(b): A flow chart for the rate 
control algorithm design when OCR > 

TCR

The principle adopted in designing the rate control algorithm is that the distances between 

the three information loss parameters should be kept within reasonable limits defined by 

LimitHM, LimitML and LimitL. Each time in a cycle of increase the three parameters 

reach their distance limits, the parameters d_HM, dJVIL and Lcount ,which represent the 

number of increments within the cycle for NEAR_H,NEAR_M and NEAR_L respectively, 

are reset in order to give more room for increase in the next cycle. A similar path is 

followed in the decrease cycle with the only exception that the LimitL is not considered.

When OCR < TCR, we need to induce more information loss in order the OCR to increase, 

three information loss parameters are increased in the orderThe

NEAR._H,NEAR_M,NEAR_ L in this case. Otherwise (OCR > TCR), we need to reduce
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the amount of information loss and the information loss parameters are decreased in the 

order NEAR_L,NEAR_M,NEAR_H. This order follows the principle that we should throw 

away information where it is least visible in case the compression rate needs to be 

increased and only when it is absolutely necessary in order to control the rate, to consider 

throwing away information where the local texture is smooth. Conversely we should retain 

information where it is most visible in case the compression rate needs to be decreased and 

only when it is absolutely necessary in order to control the rate accurately, to consider also 

retaining information on rough textures.

It should be noted from Figures 3.6(a) and 3.6(b) that Lcount represents the total number of 

increments made for NEAR_L, not the maximum value NEAR_L can have. In other words, 

NEAR_L can have any value but the number of increments it can have within each cycle is 

limited by the parameter LimitL. This is to ensure that the distance between the NEAR_L 

and the NEAR_M parameters is retained for the reasons described above but also for 

allowing the NEAR_L parameter to take any value in the range 0 to 9 in case the accurate 

control of the compression rate demands that NEARJL takes a value greater than Lcount. 

For the case that the on-line compression ratio is greater than the target compression ratio 

(OCR>TCR), the information loss parameters should be decreased until lossless mode is 

reached. The decrease is designed to follow the reverse order: NEAR_L,NEAR_M and 

NEAR_H. This is designed on the same ground that we should maximise the reconstructed 

image quality while the compression ratio is under control. Generally speaking, we should 

try to decrease NEAR_L first whenever it is possible, i.e the distance d_ML is within its 

limit. Otherwise, we will try to decrease NEAR_M as long as d_HM is within its limit. 

Finally, we decrease NEAR_H .

63



There are some salient features in the design of the proposed algorithm that are explained 

in detail here:

1. We intend to control the compression rate of the source image inside the same limits as 

JPEG-LS but utilizing an HVS approach instead. For this reason, the range of the three 

NEAR parameters is the same as the single parameter NEAR used in the standard. 

Although the compression rate is source dependent, we will typically achieve 

compression rates between 2:1 and 5:1. If higher rates are desired, standards like the 

DCT based JPEG lossy would be more appropriate.

2. A multitude of compression rates are achievable with the proposed scheme which are 

not reachable with JPEG-LS. This is because we have essentially parametrized the 

information loss distribution, as opposed to the constant information loss used by the 

standard, according to the number of different texture types identifiable in the 

prediction phase of the standard. We could have evaluated the online compression ratio 

multiple times inside each row, thus improving the control over the bit rate but 

unavoidably this would spoil the quality of the reconstructed image due to excessive 

control. Furthermore, this would add to the computational complexity of our algorithm 

due to the multiple comparisons and parameter adjustments shown in Figures 3.6(a) and 

3.6(b).

3. The starting values of the three NEAR parameters are also important. If we start too 

low, looking to achieve a high compression rate, we may never reach this rate because 

we will run out of image rows to compress. Conversely, if we start too high trying to 

achieve a low compression rate, we can again fail to reach it if we run out of rows. 

Furthermore, if we do reach the desired compression rate this will happen only after we 

have spoiled the image quality unreasonably. In general a balance should be found
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empirically between the starting values of the NEAR parameters and the desired 

compression rate.

4. To reflect the principle of different tolerance of HVS to different textures the condition 

NEAR_L<=NEAR_M<=NEAR_H is crucial for the proposed algorithm.

3.3.2 Experimental evaluation for the proposed scheme

To assess the performance of the proposed rate control algorithm on a number of image 

samples, we used a software implementation in C. The objective was to achieve exactly or 

to be sufficiently close to a user defined compression ratio but also to evaluate how 

negative the effect of adding rate control to JPEG-LS would be in terms of PSNR values. 

The overall experiments are designed in two phases: (i) to test the effectiveness of the rate 

control algorithm in terms of achieving target compression rates and to get an indication 

about the range of compression rates achievable with such a scheme; (ii) to assess the 

reconstructed image quality in terms of PSNR (peak signal to noise ratio) values. 

Tables 3.3 and 3.4 illustrate the test results for a group of image samples when the target 

compression ratio is set at 2:1,3:1 respectively. Table 3.5 illustrates the initial NEAR 

values we used for both rate controlled and non rate controlled algorithms. It is seen that 

rate controlled compression ratios for all images are indeed close to their targets. This 

clearly shows that our rate control algorithm is effective. For a further comparison, the non- 

rate controlled compression ratios for the same initial settings are also presented in the last 

column of each table. To illustrate what kind of effect the rate control algorithm could have 

on the reconstructed image quality, we have used the non-rate controlled JPEG-LS as our 

benchmark. The experiment is carried out to use the compression ratio achieved by the 

non-rate controlled JPEG-LS as our target compression ratio. We then compare the two
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PSNR values, as the two compression ratios are very close. The test results are illustrated 

in Table 3.6 for all the tested images. The results show that the rate controlled PSNR is 

indeed close to the non-controlled one by an average of 2-3 db. It is well expected that rate- 

control based on a multilevel information loss distribution will inevitably introduce extra 

information loss in order to achieve the target compression ratio, since TCR is reached 

through adjustments of the NEAR parameters instead of natural compression.

Table 3.3 Rate Control F.xnerimenl
Image Samples

Baboon
Barb

Bridge
Camera

Salad

Rate Controlled CR
2.03:1
2.00:1
1.99:1
1.98:1
2.05:1

tal Results <TCR - 2:1^
Non Rate Controlled JPEG-LS

1.8:1
1.69:1
1.90:1
1.85:1
1.58:1

Table 3.4 Rate Control Exnerimenl
Image Samples

Baboon
Barb

Bridge
Camera
Salad

Rate Controlled CR
2.99:1
2.96:1
3.00:1
2.83:1
3.00:1

[al Results <TCR = 3:1^
Non Rate Controlled JPEG-LS

3.00:1
2.52:1
2.96:1
2.80:1
2.81:1

Table 3.5 Initial NEAR Values
Initial NEAR_L,NEAR_M,NEAR_H

(0,0,0)
(1,1,1)
(2,2,2)

TCR
<=2.5
<=3.5
<=4.0

Table 3.6 Results of Comnressed Tmape Oualitv (PSNR^
Image 

Samples
Baboon

Barb
Bridge
Camera
Salad

Rate Controlled 
CR PSNR(db)

3.73:1 33.79
4.63:1 35.17
3.51:1 34.81
4.09:1 36.31
4.78:1 34.27

Non Rate Controlled JPEG-LS 
CR PSNR(db)

3.73:1 34.40
4.64:1 38.85
3.54:1 36.74
4.22:1 42.47
4.78:1 35.59
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3.3.3 2nd algorithm proposed

The second algorithm proposed is centered around the same features as the first algorithm 

(i.e exploiting local compressibility, small increments/decrements of the information loss 

parameters and information loss allocated in accordance to HVS tolerance). The purpose of 

the scheme is to jointly optimize the control over the compression rate along with low cost 

visual quality optimization (in the smooth texture retaining sense). Its major differences 

from the first algorithm are:

1. The notion of predicted compression ratio is utilized. A number of on-line 

compression ratios can be obtained during the process of encoding with JPEG-LS, 

corresponding to each compression assessment point. These OCRs can be viewed as a 

history or a record of local compressibility for all those regions that have already been 

encoded. Hence, the records can be utilized to predict their contribution to the final 

compression ratio towards the end of encoding, which is also the OCR achieved at the last 

compression assessment point. This prediction follows the same principle as that of general 

predictive coding that, given previous statistics, a prediction is made based on a local 

context for what happens in the future corresponding to the similar type of context. As it is 

not possible to know what compressibility or local texture could be for the non-encoded 

part of the image, we can only use the already encoded part to predict the future which has 

the similar local texture. Since it is difficult to optimize such a prediction scheme, we 

propose to use linear prediction in order to exploit its simplicity . This can also be viewed 

as a line-fitting problem, in which, we are trying to use a straight line to characterize as 

many points as possible. The similarity between the rate control problem using a predicted
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compression rate and the line fitting problem is illustrated in Figure 3.7. Therefore, the 

predictive line can be constructed in such a way that the distance between the line and all 

the concerned OCR values is kept minimum. Hence, the remaining issue is to determine 

how many OCR values should be involved in this line-fitting process and how those values 

should be selected. Assuming the z'th row has just been encoded, a simpler predictive line 

can be constructed by selecting only two points, (i, OCR[i]) and (i-d, OCR[i-d]\ where d 

is an integer representing how far away the second point used in prediction is from the 

current row i, as shown in Figure 3.7. 

OCRfx]

i-3 height

Figure 3.7: Line fitting prediction with two points (d=3)

In our algorithm design, the value of d is empirically determined to be 3. As a result, the 

final compression ratio can be predicted by the following equation corresponding to the 

point (height, PCK):

PCR = OCR[ i]+( height -i)x OCR[i]-OCR[i-d]
(3.2)

dis tan ce 

At each compression assessment point, the rate control is implemented on the simple

principle that if the predicted compression ratio (PCR) is smaller than the target 

compression ratio (TCR), we should introduce extra information loss in order to influence 

the on-line compression ratio as such that the final compression ratio at the end of
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encoding could be close to the target. Otherwise, we decrease the information loss to allow 

better compression quality or to allow opportunities of compensation for any extra 

information loss introduced earlier.

2.The order of increase/decrease of the three NEAR parameters is not exactly the 

same as the previous algorithm. A potential limitation of the previous scheme is that if a 

NEAR parameter needs to be increased in cycle i and cycle (i+1) is a decrease cycle 

(OCR>TCR), it is not guaranteed that the same NEAR parameter will be decreased. As an 

example, consider the case where LimitML is equal to 2 and in cycle i, NEAR_M is 

increased once. This will result in increase of the distance between NEARJL and 

NEAR_M by one, so d_ML = 1. If cycle (i+1) is a decrease cycle, according to the 

previous algorithm, NEAR_L will be decreased by one and not NEAR_M, while the 

distance between the two parameters (d_ML) will be equal to two. In this algorithm 

design, we explored the potential of guaranteeing that if a NEAR parameter is incremented 

in a cycle i, it will be the same parameter that will be decremented in the reverse cycle i+1, 

around a small neighborhood of the target compression rate. This essentially aids in 

reducing the magnitude of the fluctuations of the compression rate around the target, thus 

improving the control over the rate.

We used an array implementation for the proposed algorithm. The distance parameters and 

the constants reflecting the limits of increase/decrease are not utilized since we chose that 

the maximum distance allowed between NEAR parameters will be equal to unity. This aids 

in preserving the small distance between NEAR parameters which is crucial both in terms 

of quality and compression rate, since its inter-linked to the prediction scheme, as 

explained above. Furthermore, such a scheme guarantees that the minimum information 

loss will be induced when the PCR needs to be increased thus preserving the image quality.
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To simplify the notation in the following discussion, we will denote the three 

NEAR parameters with their acronyms (i.e L for NEAR_L, M for NEAR_M and H for 

NEARJH). To correctly identify the right parameter for the next adjustment, either increase 

or decrease, we use two arrays of three elements to hold the parameters, which have 

already been adjusted through the cycle, as well as those remaining parameters. This is 

illustrated in Figure 3.8, which shows the initial state before rate control is started. Each 

time a parameter is increased or decreased, it will be moved from its original position 

across to the corresponding position in the other array, i.e., H on top, M in the middle and 

L at the bottom. Hence, the rate control algorithm can be described by the movement of the 

three parameters from one array to the other according to the pre-defined order of 

adjustment. The order of movement of the information loss parameters can be described as 

follows:

(i) To increase the information loss parameter, the algorithm will search the I-array in 

a top-down direction. The first parameter accessed will be increased and moved to 

the D-array at its corresponding position.

(ii) To decrease the information loss parameter, the algorithm would search the D-array 

instead in a bottom-up direction and move the first parameter accessed to the I- 

array at its corresponding position;

(iii) Whenever the parameter being moved is the last one inside the array (either I or D), 

the array which is full needs to be renamed as an I-array if the next adjustment is to 

increase, and D-array if the next move is to decrease. In other words, the array full 

of parameters is always renamed by the name of the next adjustment. This is 

designed to ensure that the correct order of movement is always maintained even 

when one of the arrays becomes empty.
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The overall rate-control algorithm can also be described by the flow-chart given in Figure

3.9.

D I

H

M

Figure 3.8: Initial state of parameters

D

Search D-array along bottom-up 
direction

Search I-array along top-down 
direction

Decrease the first parameter by one Increase the first parameter by one

Move parameter to I-array

I
Move parameter to D-array

No Yes
Array full?

Rename the full array by the 
next adjustment (I or D)

Figure 3.9: Algorithm flow chart
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To further illustrate the key operations of the algorithm, we present an example in which it 

is assumed that the rate control operations for a sequence of nine compression assessment 

points are given below:

/, /, D, D, D, D, I, I, I 

Where / stands for increase of parameters and D for decrease of parameters.

Further assume that the starting state of the parameters is the same as that illustrated 

in Figure 3.8 . Hence, the array full of parameters can be named as I-array, since the next 

adjustment is to increase the parameter. Along the top-down direction, the two parameters, 

H and M, can be increased by one and moved to the D-array as a result of the two I- 

operations in the above sequence. After that, the state of parameters can be described by 

Figure 3.10-(a).

As the next move in the sequence is to decrease the parameter, the search will be 

conducted instead in the D-array along the bottom-up direction to identify the parameter to 

be decreased and moved to the I-array. This would give us a state of parameters as shown 

in Figure 3.10-(b). After the second D operation inside the sequence is completed, it can be 

seen that the D-array becomes empty and the array full of parameters needs to be renamed, 

according to the rate control algorithm proposed. The state before the renaming of the array 

is illustrated in Figure 3.10-(c). Since the next move is another decrease, the original I- 

array should now be renamed as D, and the parameter L is moved across to the I-array as 

shown in Figure 3.10-(d). Carrying on with the remaining operations in the sequence, the 

rest of all corresponding states can be shown in Figure 3.10-(e), (f), (g) and (h) 

respectively. Note in Figure 3.10-(h), the two arrays are renamed again as a result of the 

original I-array in Figure 3.10-(g) becomes empty and the next move is I.
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As a matter of fact, by varying the size of the two arrays, the algorithm can be 

designed to have variable steps of increase or decrease to interpret the local textures, if 

more drastic change of information loss is required. This can be achieved by adding more 

elements of M, H and L into the two arrays. One example is shown in Figure 3.11, where 

two arrays of five elements are designed and thus the adjustment of L would not be made 

until both M and H are adjusted twice. The rest of the algorithm remains the same as 

already described. Finally, from Figure 3.11, it can also be seen that any form of 

adjustment on those three parameters can be made by rearranging the size of the array and 

the position of each parameter.
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The comnleted seauence = I. I

(a)

The completed seauence = 1.1. D. D 

(c)

D I

The completed seauence = 1.1. D. D. D. D

(e)

The completed sequence = I, I, D 

(b)

I

The completed seauence = 1.1. D. D. D

(d) 
D I

The comvleted seauence = 1.1. D. D. D. D. I

(f)
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D

H

M

D

The completed sequence = I, I, D, D, D, D, I, I The completed sequence = I, I, D, D, D, D, I, I, 

(g) (h)

Figure 3.10: An example of rate control for the sequence: I, I, D, D, D, D, I, I, I

H

H

M

M

Figure 3.11: Rate control with delayed action for parameter L
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3.3.4 Experimental evaluation and analysis of the proposed scheme

We evaluated the proposed scheme in terms of effectiveness and efficiency. The 

effectiveness refers to the performance of the algorithm in terms of achieving compression 

rates as close as possible to the target. As in the previous algorithm, the range of 

compression rates by the proposed scheme is intended to be the same as in JPEG-LS. In 

this light, this scheme will also be evaluated in terms of achieving rates of 2:1 and 3:1. 

Any higher compression rates are better served by the JPEG lossy standard. The rate 

control efficiency refers to the assessment of the reconstructed image quality for those 

image samples measured by both PSNR values and visual inspection. The issue about the 

balance of the choice of the initial NEAR parameters and the desired target compression 

rates is also of relevance to the proposed scheme for the reasons outlined in the previous 

algorithm.

After determining an appropriate initial setting for the three parameters (L,M,H) 

empirically, we present the experimental results in two phases, i.e., the test of rate control 

efficiency as the first phase, and the test of rate control effectiveness as the second phase.

To carry out the assessment, we firstly run the JPEG-LS on the same group of 

image samples to produce a set of variable compression ratios and PSNR values. We then 

use those compression ratios achieved by JPEG-LS as the target compression ratios (PCR) 

to test our rate controlled design. In this way, all the compression ratios can be maintained 

very close, which enables a sensible comparison between PSNR values. However, it must 

be stressed that this arrangement produces a disadvantage for the proposed algorithm 

because the results achieved by JPEG-LS use natural compression. Yet the proposed 

algorithm has to go through the rate control process to redistribute the information loss, in 

order to achieve the compression ratios similar to those by JPEG-LS. To this end, it is
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impossible for any rate controlled algorithm using a multilevel information loss 

distribution to produce better PSNR values than that of JPEG-LS. Nonetheless, we expect 

the comparison to give us an indication on how negative our rate control effect is in 

comparison with the ideal situation where no rate control is added. As a result, we measure 

the quality performance by a so-called relative difference between the rate-controlled 

PSNR and the non-rate-controlled PSNR values. This is defined as follows:

T> 7 „• JVCC no/ controlled ~ * mte controlledRe lative dm = ————— = —————————— - ——— (3.3) 
~ PW7?r JJVIVno<_ contra/fed

All the test results are given in Table 3.7, in which we listed all compression ratios, PSNR 

values and the relative difference values achieved by the two algorithms. From this table, it 

can be clearly seen that: (a) the proposed rate control algorithm is very effective since it is 

able to control the compression ratio very close to the ones achieved by JPEG-LS; (b) 

when the JPEG-LS compression ratios are used as the target, the PSNR values achieved by 

the proposed algorithm are indeed very close. This can also be indicated by those relative 

difference values, which vary from 0.5% to 8.9%.

The test results in Table 3.7 illustrate that the image quality produced by the 

proposed rate control algorithm is competitive to the one by the non-controlled JPEG-LS, 

even when the quality is measured by PSNR values.

As stated in the introduction, the proposed algorithm is aiming at jointly optimising 

the image quality measured by human visual inspection rather than by PSNR values and 

the control over the bit rate, by distributing information loss according to HVS principles. 

Unless the rate control algorithm is more advanced though (which implies complexity and 

long encoding delays) , it is impossible to improve the PSNR performance as compared to 

JPEG-LS. To prove the efficiency of the proposed scheme in HVS terms, we further

77



present the samples of "testS.pgm", the JPEG standard test image, in Figure 3.12 for a 

visual comparison and inspection. To facilitate a comprehensive visual inspection, Figure 

3.12 is arranged as follows:

• Fig.3.12-(a) corresponds to the original testS; Fig. 3.12-(b) corresponds to the blown up 

bottom left quartile (smooth part) of Fig. 3.12(a).

• Fig.3.12-(c) and (d) present the blown up smooth part of the reconstructed testS by the 

non-controlled JPEG-LS and the proposed algorithm respectively, when the distortion 

level is set to NEAR=3;

• Fig.3.12-(e) and (f) present the blown up smooth part of the reconstructed testS by 

JPEG-LS and the proposed algorithm, when the distortion level for JPEG-LS is set to 

NEAR=4;

• Fig.3.12-(g) and (h) present the blown up smooth part of the reconstructed testS by 

JPEG-LS and the proposed algorithm, when the distortion level for JPEG-LS is set to 

NEAR=5.

From all images in Figure 3.12, it can be seen that the reconstructed testS by the proposed 

algorithm clearly show better visual quality than those by JPEG-LS, especially in the 

region at the bottom left where smooth texture dominates. This is because that the 

proposed rate control is able to distribute the distortion to those noisy textured areas, while 

the distortion level is kept low in the smooth ones. In the case of JPEG-LS, the same 

distortion level has to be applied throughout the whole image without any difference.

To further prove the testing results, we also asked a group of 10 people to view all 

the reconstructed images and make their options without knowing which image 

reconstructed by what algorithm. To carry out such a test, five options are established. 

They are: (1) no difference between A and B; (2) A is better than B; (3) B is better than A;
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(4) A is closer to the original; (5) B is closer to the original. To ensure a fair rating, those 

images reconstructed by the proposed algorithm are labelled as A, and those reconstructed 

by JPEG-LS are labelled as B. The overall test results are given in Table 3.8.

In the second phase of the experiments we ran the rate control algorithm on the 

same group of six image samples and tested the effectiveness of the proposed algorithm, in 

which the target compression ratios are set to be 2:1 and 3:1, which is well within the range 

of near lossless compression. The experimental results are given in Table 3.9-(a) and (b) 

respectively. Consistent with the above discussion concerning the importance of the 

balance between the initial settings and the target rate, we empirically chose (0,0,2) as the 

starting point for target compression ratio 2:1 and (1,8,9) as the starting point for target 

compression ratio 3:1.

To further facilitate comparison of the proposed algorithm with the non rate- 

controlled JPEG-LS, the compression rates produced by the standard along with their 

respective PSNRs are also shown in Tables 3.9-(a) and (b). The JPEG-LS results are 

obtained by varying the value of NEAR and picking up the nearest one to each target 

compression ratio. In fact, it is not practically possible to manually adjust the parameter 

NEAR for each input image to achieve a compression ratio close to the target. This is 

because we do not know the compressibility of each input image before the compression 

can be done, and it is not allowed in practice to compress each image with various NEAR 

values first and then choose the closest one.

From all the results presented in Table 3.9, it can be summarized that: (i) all 

compression ratios achieved by our algorithm are indeed controlled at the target 

compression ratio; (ii) without rate control, the nearest compression ratio achieved by 

JPEG-LS is still not close enough to the target, even after the parameter NEAR is adjusted 

manually.
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Finally, we also tested the proposed algorithm with 5 elements as shown in Figure 

3.11. It is discovered that there is no significant difference between the arrays with 3 

elements and 5 elements. This is expected since the effect of delaying increment of the 

parameter L can be achieved by initial settings with larger distance between L and other 

parameters.

Table 3.7: Phase-1 Rate Control Experimental Results (Initial L, M, H = 1,8,9)
Image 

samples
Baboon.pgm
Barb.pgm
Bridge.pgm
Camera.pgm
Salad.pgm
TestSg.pgm

Proposed Algorithm 
CR PSNR(db)

3.445:1
4.161:1
4.002:1
4.752:1
4.731:1
3.133:1

35.248
38.131
34.265
36.831
35.198
39.89

Non Rate Controlled JPEG-LS 
CR PSNR(db) NEAR

3.488:1
4.158:1
4.104:1
4.907:1
4.783:1
3.127:1

35.478
40.101
34.453
40.447
35.586
42.677

7
4
8
4
7
3

Relative- 
diff
0.6%
4.9%
0.5%
8.9%
1%

6.5%

Table 3.8: Visual Perception Quality Rating Test Results
Image Samples
Baboon
Barb
Bridge
Camera
Salad
TestS

Option- 1
10
8
10
6
10
0

Option-2
0
2
0
4
0
0

Option-3
0
0
0
0
0
0

Option-4
0
0
0
0
0
10

Option-5
0
0
0
0
0
0

Table 3.9-(a) Phase-2 Rate Control Experimental Results 
(Initial L, M, H = 0,0,2 and Target-Compression-Ratio = 2:1)

Image 
Samples

Baboon
Barb
Bridge
Camera
Salad
TestS

The Proposed Algorithm

C. Ratio PSNR(dB)

1.997:1 44.891
2.01:1 51.672
2.001:1 45.999
2.039:1 53.961
1.999:1 50.07
2.091:1 51.802

The Non-rate-controlled JPEG-LS

Closest C. Ratio PSNR(dB)

1.800:1 49.685
1.690:1 INF
1.899:1 49.899
1.849:1 INF
1.578:1 INF
1.915:1 INF

NEAR
Values

1
0
1
0
0
0

80



Table 3.9-(b) Rate Control Experimental Results 
(Initial L, M, H = 1,8,9 and Target-Compression-Ratio = 3:1)

Image 
Samples

Baboon
Barb
Bridge
Camera
Salad
TestS

The Proposed Algorithm

C. Ratio PSNR(dB)

2.994:1 37.444
3.002:1 42.507
3.005:1 38.077
3.013:1 44.144
2.999:1 41.58
3.01:1 40.745

The Non-rate-controlled JPEG-LS

Closest C. Ratio PSNR(dB)

2.998:1 38.153
2.524:1 49.893
2.956:1 39.950
2.802:1 49.927
2.810:1 45.143
3.127:1 42.677

NEAR 
Values

5
1
4
1
2
3
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Figure 3.12(a): Original "testS.pgm"

Figure 3.12(b): Smooth part of testS.pgm blown up
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Figure 3.12(c): Reconstructed tests by JPEG-LS 
with NEAR parameter equal to 3

Figure 3.12(d): Reconstructed testS by the proposed 
algorithm
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Figure 3.12(e): Reconstructed testS by JPEG-LS 
with NEAR parameter equal to 4

Figure 3.12(f): Reconstructed testS by the proposed 
algorithm with the same compression ratio as iri (e)
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Figure 3.12(g): Reconstructed testS by JPEG-LS 
with NEAR narameter eoual to 5

Figure 3.12(h): Reconstructed testS by the proposed 
algorithm with the same compression ratio as in (g)

Figure 3.12: Visual comparison of testS between 
JPEG-LS and the proposed rate-controlled JPEG-LS
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3.4 Applications in Medical Imaging

We also tested the second proposed algorithm in medical images. Such kind of images 

have unique features since both the texture smoothness should be preserved but also 

excessive information loss in edges should be avoided. This requirement is tighter than just 

retaining texture smoothness but it is justifiable since the importance of retaining edge 

detail in medical applications is more critical than in the entertainment industry. We 

wanted to assess if in this particular kind of images, our algorithm is still effective and if it 

can preserve texture smoothness for the same bit rates as the standard. Potential uses of the 

scheme could include tracking progress in wound/rash healing or just providing the 

physician with a bigger gamut of image qualities than the JPEG-LS standard. Tables 

3.10(a) and (b) show the performance of our algorithm in terms of effectiveness for a 

variety of compression rates as compared to JPEG-LS. It is evident that in the range of 

compression rates between 2:1-4:1 we can achieve rates closer to the TCR than JPEG-LS. 

Finally, Figures 3.13(a)-3.13(d) and 3.14(a)-3.14(d) are presented for a visual comparison 

between the proposed scheme and the non-rate controlled JPEG-LS , for two typical wound 

and rash images. Figure 3.13(a) is the original wound image and Figure 3.13(b) is the 

blown up smooth part of the wound. Figure 3.14(a) and 3.14(b) correspond to the original 

and to the blown up smooth part of the rash image. By comparing Figures 3.13(c) and 

3.13(d) to Figure 3.13(b), we can see that the proposed algorithm retains smooth texture 

better even in wound images for the same bit rates as the standard. This happens due to the 

HVS based information loss scheme used. The same point is shown by comparing Figures 

3.14(c) and 3.14(d) to Figure 3.14(b) for rash images. In particular, it can be seen that 

JPEG-LS has induced artifacts in Figures 3.13(c) and 3.14(c) represented as lines in the 

smooth regions, whereas our scheme (shown in Figures 3.13(d) and 3.14(d) ) has



preserved the texture smoothness better, thus providing reconstructed images closer to 

the original image . In order to compare fairly our technique with the non-rate controlled 

JPEG-LS, we used the rate produced by the standard as the target rate in our scheme for the 

visual part of the experiments. Furthermore, the starting points for our algorithm are the 

ones shown in Tables 3.10(a) and 3.10(b). From the visual comparison experiments, we 

can finally infer that the proposed scheme performs better in the medical imaging context 

when both the requirements for high compression rates (high NEAR values) and for 

retaining smooth texture are critical.

Table 3.10(a) Rate Control Experimental Results for Figure 3.13(a)
(Initial L, M, H = 1,5,5)

Target 
Compression 

Rates
2:1
3:1
4:1

JPEG-LS 
Closest Compression 

Ratio
1.97:1

2.917:1
3.774:1

Proposed Algorithm 
Compression Ratio

2.03:1
3.05:1
3.83:1

Table 3.10(b) Rate Control Experimental Results for Figure 3.14(a)
(Initial L, M, H = 2,3,6)

Target 
Compression 

Rates
2:1
3:1
4:1

JPEG-LS 
Closest Compression 

Ratio
1.908:1
2.918:1
3.706:1

Proposed Algorithm 
Compression Ratio

2.090:1
3.013:1
4.032:1
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Figure 3.13(a): Original wound

Figure 3.13(b): Blown up part of original 
wound image

Figure 3.13(c): Blown up part of
reconstructed wound image by JPEG-

LS with NEAR=7

Figure 3.13(d): Reconstructed wound
image by the proposed scheme.

(L,M,H) = (1,5,5), TCR= Rate produced
by JPEG-LS with NEAR=7



Figure 3.14(a): Original rash image

Figure 3.14(b): Blown up part of the 
original rash image

Figure 3.14 (c) : Blown up part of the
rash image, reconstructed by JPEG-LS

with NEAR=6

Figure 3.14(d): Blown up part of the
rash image reconstructed by the

proposed scheme. (L,M,H) = (2,3,6),
TCR= Rate produced by JPEG-LS with

NEAR=6
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3.5 Conclusions

In this chapter, we initially presented a prediction driven multilevel information loss 

distribution scheme in order to optimize the visual quality of the JPEG-LS standard for the 

same bit rates. The proposed information loss distribution scheme was based on HVS 

principles and achieved better visual quality and higher compression rates than the 

standard. It was also very competitive even in terms of PSNR performance as compared to 

JPEG-LS for the same compression rates as the standard, provided a suitable triplet of 

information loss parameters was chosen. The purpose of the multilevel information loss 

distribution was to resolve the conflict in visual terms of assigning constant information 

loss to all textures in an image regardless of smoothness characteristics. Subsequently, we 

used the multilevel information loss distribution in order to add rate control in JPEG-LS. 

We presented two algorithms to achieve this. The first algorithm proposed was shown to be 

more effective than JPEG-LS in achieving rates close to the user defined compression 

rates. The negative impact of the addition of the rate control process was measured to be in 

the range 2-3db. This impact was expected since any rate control algorithm has to go 

through adjustments of the quantization parameters (NEAR values) in order to achieve the 

target rates, whereas the standard achieves them through natural compression. We 

subsequently improved the rate control algorithm design by using a more adaptive scheme 

for the change of the information loss parameters (NEAR values) and by using predictive 

instead of online measures to control the bit rate. The second algorithm proposed was 

shown to be more effective than JPEG-LS in producing bit rates closer to user defined 

target compression rates . It was also shown to be more efficient than the standard in 

retaining smooth texture closer to the original image for the same bit rates. Finally, we 

examined the potential usefulness of the second algorithm proposed in the context of
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applying rate control in JPEG-LS for medical images. The quality requirements for medical 

imaging are more stringent compared to the requirements of digital photography since we 

can not afford to lose too much information on edges. We showed that our algorithm is 

retaining texture smoothness better than JPEG-LS even for medical images for the same bit 

rates and is also more effective than the standard in achieving target rates in the range 2.1 

to 3:1. For this specific type of images, our second algorithm performs best in visual terms 

when both the requirements for high compression rates and for smooth texture retaining are 

critical. Potential uses in medicine could include tracking the progress of wound/rash 

healing.
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CHAPTER 4 - LOW COST, PIXEL TREND BASED IMPROVEMENTS OF 

COMPRESSION RATES AND QUALITY IN IMAGE/VIDEO CODING

4.1 Introduction

Pixel trend estimation is very important in improving compression rates and quality in the 

context of image and video coding. In the case of MPEG-4 for example, pixel trend 

variations in boundary macroblocks can be efficiently utilised to improve compression 

rates for boundary macroblocks for the same quality as the standard. In the case of 

diagonal edge detection in JPEG-LS, the Mean Square Error (MSB) can be reduced for the 

same bit rates as the standard, if pixel correlation is appropriately exploited. This chapter 

will initially present two low cost padding techniques for boundary macroblocks that are 

used to improve the coding efficiency of arbitrary shaped objects in MPEG-4 for the same 

quality as the standard. Subsequently, two low cost edge detection schemes will be 

proposed for JPEG-LS which also cater for the accurate prediction of diagonal edges along 

with horizontal and vertical ones. It will be shown that the proposed edge detection 

schemes outperform the standard in MSB terms for the same bit rates.

4.2 Overview of the MPEG-4 standard

MPEG-4 [9-10] is the first audio-visual standard that represents a scene as a composition 

of audio-visual objects (AVOs) with a certain spatial and temporal behavior. 

Consequently, an image frame is represented as a composition of AVOs with a number of 

intrinsic properties which includes shape, motion and texture [70]. The separate encoding 

of these individual AVOs is a powerful tool that can remove a number of limitations
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inherent to other systems and standards such as MPEG-1 and MPEG2. First, it enables 

interaction with meaningful objects within the same scene. It also enables the re-use of 

data if the possibility exists to separately store and access objects, rather than frames. It 

gives the user the ability to create his/her own content by combining several of these stored 

objects in the same or different places. Excluding the audio component, an image frame is 

represented in MPEG-4 as a composition of video objects (VOs). Each video object is 

divided into a number of object layers, to allow for spatial and temporal scalability. For 

example, in a scene comprising of a person and some furniture, the person and the 

furniture can be defined as two separate object layers. Under each object layer there is an 

ordered sequence of snapshots in time, which are referred to as video object planes 

(VOPs). In the previous example, the person taken as a separate entity from the rest of the 

frame, in a sequence of frames, forms a VOP. These VOPs are the basic unit where 

MPEG-4 video compression is applied. A VOP is essentially a rectangular area that 

completely contains a video object but with the minimum number of macro-blocks 

contained within it.

The macro-blocks within a VOP are categorized into three groups and are treated 

differently according to the group they belong to. Those that belong to the interior of the 

video object are motion-compensated and predicted in a way identical to that of MPEG-2 

and h26x (x= 1,2,3). Subsequently, the prediction errors along with motion information are 

encoded. Those macro-blocks that are completely outside the video object but belong to 

the VOP are not coded as they belong to a different object or the background. A special 

shape adaptive motion compensation and prediction scheme is used for coding the macro- 

blocks that straddle the boundaries of an object. Figure 4.1 shows an example of the 

macroblock classification scheme used in MPEG-4.
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Figure 4.1: Macroblock classification scheme in a VOP. I
denotes internal macroblocks, E external macroblocks, B

boundary macroblocks

4.3 Reference VOP Padding

In MPEG-4's object based motion compensation / prediction scheme, after the reference 

VOP has been identified, a three-stage process pads the pixels that are outside the VO. The 

boundary macro-blocks are first padded using horizontal repetitive padding [hor_pad in 

Figure 4.2]. Under this scheme, each sample at the boundary of the VO is replicated 

horizontally to the left and/or to the right direction in order to fill the transparent region 

outside the VO. If there are two boundary sample values for filling a sample outside of a 

VO, the two boundary samples are averaged.
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The remaining unfilled transparent horizontal samples are padded using vertical repetitive

padding [hv_pad in Figure 4.2], which is essentially the horizontal padding technique,

performed in a vertical direction

After all the boundary macroblocks have been padded, the exterior macroblocks

immediately next to them are filled by replicating the samples at the border of the

boundary macroblock (Extended Padding [Epad in Figure 4.2]) that has the highest priority

number The remaining exterior macroblocks which are not located next to any boundary

macroblock are filled with the value 128.

Figure 4.2 depicts the MPEG-4 padding technique, while Figure 4.3 depicts the priority of

boundary macroblocks.

F[y][x] Predictions Frame Store

Saturation

Decoded B

S[y][x] S'[y][x] Alpha Blocks

ack hor_pad[y][x] hv_pad[y][x]

Figure 4.2: MPEG-4 padding technique
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Figure 4.3: Priority of boundary macroblocks

The padded VOP is then used as a reference for motion compensation and prediction of 

arbitrary shaped boundary macroblocks of the VO to be encoded. During this process the 

exterior pixels (pixels that are outside the video object) of the boundary macro-block to be 

encoded are made inactive. After the error blocks are calculated, they are transformed into 

the frequency domain with a special shape adaptive discrete cosine transform (SADCT) 

[11,13]. This transformation only codes the pixels belonging to the VO in the error blocks, 

thus reducing the actual amount of bits which would be needed to code the DCT 

coefficients. SADCT essentially aids in increasing the quality for the same bit rate at a 

slightly increased implementation complexity.

4.4 Drawback of the MPEG-4 Padding technique and Proposed Linear 

Extrapolated Padding Technique (LEP)

The main drawback of the above padding technique lies in the fact that it does not make 

use of the trend of pixel value variation often present near object boundaries for the
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boundary macroblock to be encoded. Extensive experiments carried out by us indicated 

that within arbitrary shaped boundary macro-blocks certain trends exist, with respect to 

pixel value variation. Thus, replicating the external pixel values of the reference VO 

without taking this fact into account is not optimal.

Initially, it would be helpful to identify the geometric conditions under which 

improvements of the MPEG-4 padding technique for boundary macroblocks would be 

possible. Figures 4.4 and 4.5 aid in clarifying these geometric conditions.

inactive
Cur - Pad

Cur - Ref.
Reference 

Block
Current 
Block

Error 
Block

Figure 4.4: Error block formation in boundary blocks when 
the shape of the block to be encoded is inside the shape of the

reference block

inactive
Cur - Pad

Cur - Ref.

Reference 
Block

Current 
Block

Error 
Block

Figure 4.5: Error block formation in boundary blocks when
the shape of the block to be encoded encompasses the shape of

the boundary block
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From Figure 4.4 it can be inferred that only the pixels inside the shape of the boundary

macroblock to be encoded are considered active in the motion compensation process.

Under this geometrical condition, it can be seen that the padding values of the reference

macroblock have no effect on the produced error macroblock. Thus, the coding efficiency

of such macroblocks can not be improved by modifying the padding technique.

From Figure 4.5 it can be inferred that some of the produced errors to be encoded will

depend on the padding pixel values (Cur - Pad area). This implies that if the padding

scheme of the reference macroblock is modified appropriately, potential coding gains

could be achieved for the same quality.

As a simple solution to the geometrical condition shown in Figure 4.5, we propose the use

of a single iteration of a row-based linear extrapolation padding [LEP] step, to predict

those exterior pixels adjacent to the boundary pixels of the reference VO. These projected

pixel values would then be predicted by the proposed linear extrapolation scheme as

follows:

Assume that ' n' (\<n<N) consecutive pixels in a row, immediately either to the left or

to the right of a projected pixel, are within the video object. Let these ' n ' pixel values be

represented by Pn . Let Xn represent the column numbers of these pixels relative to the

column number of the projected pixel. We use a linear equation of the form

Pn = Ax X n + B to fit all the internal pixel values denoted by Pn , in least squared error

terms, as follows:

Prediction error for a single pixel Pt is given by:

Ei =Pi -(AX i +B) (4.1) 

For least, total squared error,
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(4.2)

and

= 0 (4.3)

By simplifying equation 4.2 and equation 4.3 above, we arrive at the following matrix 

equation.

N

1=1
B

AT

S xf,
1=1

(4.4)

After constants A and fiare found from the matrix equation 4.4, equation 

Pt• = Ax X t + B is used to do the extrapolation and find the projected pixel value. Pixel A 

in Figure 4.6, illustrates a projected pixel that would be found following a similar 

procedure. In this way all the projected pixels will be determined by the variation trend of 

those interior pixel values of the VO, close to the boundary.

B 

B

D

A

Figure 4.6 : Qlnterior pixels, Kh Projected pixels

However, projected pixels that satisfy certain specific neighbourhood conditions need 

special attention as described below.
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• In cases where Pn are bounded by two projected pixels [e.g., pixels denoted by B in 

Figure 4.6], both projected pixels are determined using the same linear equation.

• If a projected pixel is flanked by interior pixels both on the left and right [e.g., pixel C 

of Figure 4.6], the above process is performed in both directions and the average of the 

two resulting extrapolated pixel values are taken as the value of the projected pixel.

• In cases where n = 1 [ e.g., pixel D of Figure 4.6], the projected pixel value is taken as

equal to the single interior pixel value.

After all the projected pixels are padded, the MPEG-4 horizontal and vertical padding steps 

are performed to pad the rest of the exterior pixels within the macro-block. Note that the 

projected pixels that were padded using linear extrapolation now act as the new boundary 

pixels. After all boundary macro-blocks are padded similarly, extended padding is used to 

pad the remaining exterior macro-blocks within the VOP bounding rectangle. 

Figure 4.7 shows the proposed modification to the MPEG-4 padding procedure in

schematic form. fr ^r ^ f[y][x]

Decoded 
Block

Padded Block

Figure 4.7: Modified padding
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4.5 Experimental Results for LEP

Experiments were carried out to calculate the coding gains obtainable with the proposed 

technique. The test results taken at various temporal locations for five test sequences are 

shown in Table 4.1. The Extended Compression Ratio (ECR) represents the percentage 

improvement obtainable over MPEG-4 for coding all boundary blocks of video objects in 

the frame denoted by a higher index, taking the frame with the lower index as the 

reference. ECR% is defined as follows:

ECR- Bou-bits proposed

Bou_bitsmpeg4

Results in Table 4.1 clearly indicate that the proposed modification enhances the 

performance of the MPEG-4 padding technique.
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Table 4.1: Experimental Results
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Further experiments indicated that with linear extrapolation, the optimal results in terms of 

compression gain, are obtained when the number of iterations is limited to one. This is 

justifiable as further padding steps, which follow a linear variation towards the exterior, 

may result in larger prediction errors for pixels further away from the boundary. 

Note that this additional LEP stage would not modify the prediction error blocks of 

arbitrary shaped current blocks that find predictors which are completely enclosed within 

the reference VO. For constant luminance boundary blocks of the reference VO, the 

additional LEP step will result in an identical padding, to that of MPEG-4. The coding 

gains are achieved in boundary blocks where the shape of the current block extends beyond 

the reference VO shape, thus making the padded pixel values active, in the calculation of 

the prediction error.

Experiments were also performed to check the feasibility of using the proposed technique 

in the vertical direction as well, i.e. before MPEG-4, vertical padding is done. The results 

indicated that the extra coding gains obtainable are insignificant and are not worthy of the 

added complexity.

4.6 Extrapolated Average Padding

Further experiments performed using the MPEG-4 padding technique and the proposed 

LEP technique indicated that they did not perform well in encoding arbitrary shaped 

MPEG-4 video objects that have been severely distorted (or have changed shape severely) 

between consecutive video frames. 

Figure 4.8 illustrates the reason for this failure.
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: Error block formation in severely distorted boundary blocks

In the case of the MPEG-4 padding technique, the area (Cur - Pad) consists of errors 

which are the difference between the corresponding boundary pixel values of the reference 

VOP (Pad) and the interior pixels of the boundary macro-block (Cur) to be encoded. 

In the case of the Linear Extrapolated Padding Technique (LEP) , the area (Cur - Pad) 

consists of errors which are the difference between the corresponding extrapolated 

boundary pixel values of the reference VOP (Pad) and the interior pixels of the boundary 

macro-block (Cur) to be encoded.

In both cases, if the non-overlapping area is large, the boundary pixel values of the 

reference VOP (or the linear extrapolated boundary pixel values in the LEP technique) 

may not be a good approximation for the interior pixels of the arbitrarily shaped boundary 

macroblock to be encoded. This is mostly evident for interior pixels that that are further 

away from the shape boundary in the current macroblock to be encoded. Thus, the methods 

discussed above (i.e. MPEG-4 method and the LEP technique) would fail to produce lower 

magnitude error blocks.
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As a solution to this, we propose an Extrapolated Average Padding (EAP) technique for 

severely distorted reference VOPs. Here, the horizontal and vertical repetitive padding 

steps discussed in Section 4.3 are replaced by the EAP technique as illustrated in Figure 

4.9.

s[y][x]

Decoded Block

Figure 4.9: Extrapolated Average Padding

A mathematical approach to the padding technique is described as follows. Firstly, the 

arithmetic mean value A of all the pixels p (i,j) of the boundary macro-block situated in the 

interior of the reference VOP is calculated using the following formula:

P(i,j) (4.6)

where, (1 < z, j < 8), N is the number of pixels situated within the reference VOP. The

division by N is done by rounding to the nearest integer. The next step is to assign A to

each block pixel situated outside the object region L, i.e.

p(i,j) = A for all (z,;)gL (4.7)

After the boundary macro-blocks are padded according to the above technique,
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Extended Padding (see Section 4.3) is used to pad the exterior macro-blocks. Any exterior 

macro-block that does not get padded at the end of this stage would be padded using the 

value 128.

4.7 A Hybrid Padding Scheme combining LEP and EAP

Experimental investigations showed that the LEP technique works best when the matching 

shapes are close, thus performing well, especially in sequences where objects change shape 

at a slower pace. In contrast, the EAP technique was found to perform best when the shape 

changes are large. Most video sequences fall into the first category. However, the 

importance of dealing with large shape mismatches between consecutive VOPs cannot be 

ignored, especially due to the fact that most video objects would consist of both types. 

Thus, a hybrid approach that identifies the areas in an object that are 'distorted' and 

'undistorted' and apply the appropriate technique to pad the reference frame boundary 

blocks of such areas, would increase the compression efficiency. Due to the importance of 

keeping this classification process computationally inexpensive, we use a simple criteria 

described below, for this purpose.

Firstly, the LEP technique is used to pad the reference frame VOP. Motion compensation 

for all the arbitrary shaped boundary blocks in the current frame VOP is now performed 

taking this padded VOP as the reference. Subsequently, for each matching pair a measure 

of mismatch is calculated by averaging the three largest 'mismatch distances', HI, H2 and 

H3. (see Figure 4.10). If this average is greater than a threshold, T (2.0 for our 

experiments) a decision is made to re-pad the pixels that are within the best matching 

block, but are outside the shape of the reference video object, using the EAP technique, 

i.e.,

105



If

Current VOP 
boundary block

Large overlapping 
area - pixels to be 
padded with the 
average

Matching block 
from reference 
VOP

Figure 4.10: Matching geometry under which EAP 
would be more efficient than LEP.

The prediction errors are calculated based on these new padding values. For the remaining 

blocks the prediction values are calculated using the original padding values [i.e. padded 

using LEP] of the reference frame VOP.

4.8 Experimental results and analysis of the hybrid scheme

Experiments were carried out to calculate the coding gains obtainable with the proposed 

hybrid technique. The test results taken at various temporal locations for seven, standard 

test sequences are shown in Table 4.2.

Results in Table 4.2 indicate that the proposed technique produces better compression 

results as compared to the standard MPEG-4 padding technique. Extra compression gains 

of up to 9% over the MPEG-4 padding technique have been obtained for coding boundary 

blocks of video objects in such sequences.
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Results show that the proposed technique also improves the performance of the LEP 

technique applied as a stand-alone system as described in our previous work in [71] 

particularly in sequences such as 'football', 'tennis' and 'parachute'. These sequences 

contain objects that are distorted severely in certain parts of the objects. Thus, it could be 

deduced that the proposed scheme adequately identifies, in a low complexity framework, 

the boundary blocks that are 'distorted' and uses the EAP technique in padding the 

appropriate reference VOP blocks. Thus, this technique is best used in coding video 

sequences with objects that are severely distorted.
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Table 4.2. Experimental Results

4.9 The edge detection scheme of JPEG-LS and its assessment

Although the predictive template was shown in the introduction section of Chapter 3, it 

will be shown again in this chapter (Figure 4.11) for clarity reasons. In fact the
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geographical location of the pixel values inside the template is critical to the proposed 

algorithms, so its re-use is further justified.

Pixel to be encoded

Figure 4.11: Predictive pattern in JPEG-LS

From the standard document of JPEG-LS it can be seen that predictive value of the 

pixel to be encoded is calculated according to the following pseudo-code:

if(c>= max(a, b)) P = min(a, b); 

else{

if(c <= min(a, b)) P = max(a, b); 

else P = a+b-c;

(4.8)

where a,b,c are pixels in the template and max(a, b) and min(a, b) stands for the maximum

value and the minimum value among the two pixels, a and b, in the predictive template.

To assess the existing prediction scheme in JPEG-LS, further analysis of the above pseudo­

codes can be made to reveal the following facts:

• An edge would be detected among the three pixels when either c >= max(a, b) or c <= 

min(a, b) is satisfied. Whether the edge is horizontal or vertical depends on which pixel 

is the maximum or minimum value between a and b. When c >= max(a, b) is satisfied,
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as an example, max(a, b)=a give us a vertical edge and max(a, b)=b a horizontal edge. 

Similarly, the condition, c <- min(a, b), would give us a vertical edge if min(a, b)=a 

and a horizontal edge if min(a,b)=b. Figures 4.12(a) and 4.12(b) show such an edge 

detection process. From the geographical arrangement shown in Figures 4.12(a) and 

4.12(b), it can be seen that a logical selection of the predictive value would be the 

pixel, which is not on the detected edge.

x=min(a,b) a

a<b

a>b

x=max(a,b)

a>b

Figure 4.12(a): Edge detection for 
c>=max(a,b)

Figure4.12(b):Edge detection for 
c<=min(a,b)

• All other cases are represented by the condition: min(a, b) < c < max(a, b). Under this 

condition, it is difficult to construct a predictive value to cover all possibilities in the 

local texture. This is because there is no clear justification to determine whether there 

is an edge or not. Even if there is an edge, it is difficult to classify appropriately. This is 

due to the fact that any prediction has to be dependent on the unknown pixel value jc. 

For instance, a horizontal edge may be detected only when x is found to be closer to a, 

or a vertical edge be detected if x is closer to b. In fact, the choice of a+b-c is an 

excellent balance among all possible situations.

• From the above analysis, it can be verified that the prediction scheme adopted in JPEG- 

LS only considers the detection of a horizontal edge or a vertical edge among the
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predictive template to produce a predictive value. This is logical in the sense that the 

variety of intensity values around a neighbourhood area can always be described by the 

two types of edges, when the viewing angle is limited to the local predictive template. 

In other words, combinations of many vertical and horizontal edges can produce a line 

with arbitrary shape or edges in any image. However, what matters here is whether the 

description by the two edges will be accurate enough to minimise the predictive errors. 

In cases where a diagonal edge exists inside the predictive template, it can be expected 

that the errors produced can be unnecessarily high.

4.10 Two algorithms for low cost diagonal edge detection in JPEG-LS

Therefore, to further improve the prediction scheme, one of the possibilities is to 

consider the diagonal edge detection among the three pixels inside the predictive 

template. Due to the fact that the diagonal distance between a and b is larger than any 

other ones inside the template, and the diagonal edge detected can also be interpreted as 

either a vertical or a horizontal edge in most cases, it can be anticipated that the 

occurrence of a true diagonal edge would be much less frequent compared with that of 

vertical and horizontal edges. Consequently, the possible improvement would be 

dependent on the number of cases where a true diagonal edge does exist inside the local 

areas of the input image. Essentially, the possibility of improvement can be explored 

along two directions: (i) to accurately detect those true diagonal edges; (ii) to correctly 

construct the predictive value, based on the diagonal edge detected. 

In order to detect a diagonal edge, only two possibilities exists among the three pixels, 

a, b and c, which are 45° and 135°. It can also be assumed that there is no edge with 

one pixel wide inside the predictive pattern, or if any, such edge can be ignored by our
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scheme since it is hardly possible to produce any meaningful prediction out of this type 

of edge.

Considering all the possibilities in the light of the existing prediction scheme designed in 

JPEG-LS, a detailed analysis of the diagonal edge detection and prediction can be carried 

out for each of the predictive contexts given in the pseudo-codes, i.e., (i) min(a, 

b)<c<max(a, b); (ii) c >max(a, b); and (Hi) c < min(a, b).

Firstly, when the condition min(a, b)<c<max(a, b) is satisfied, it can be seen that any 

prediction for the pixel value x can only be determined by the unknown pixel x. This is 

reflected in the Figure 4.13(b). If x is close to a we would get a horizontal edge, if x is 

close to b a vertical edge and if x is close to c a diagonal edge, respectively. Hence, it is 

unlikely to have any further improvement with this predictive context without jeopardising 

the good predictive results already achieved by JPEG-LS.

Secondly, with the condition c >max(a, b), it is not difficult to see that we would get the 

case described in Figure 4.13(a), if there exists one diagonal edge. The principle is that we 

need to detect the diagonal edge with the best possible accuracy from the information 

given by the available pixels at both encoding and decoding ends, not by the unknown 

pixel x. Furthermore, since c >max(a, b) we could anticipate that the pixel value c 

although it could be used for detecting diagonal edges, it would not necessarily influence 

the predictive value of x since the distance between x and a, b is expected to be smaller 

than the distance between x and c ( refer to the predictive template in Figure 4.11). We also 

expect that x would be more correlated to the pixel a than to the pixel b since x and a are 

on the current scan-line while b is on the previous scan-line. So in both the proposed 

schemes we initially test for horizontal edges, followed by diagonal edges, followed by 

vertical edges. By testing through threshold bounded gradients for the existence of 

diagonal edges before resorting to vertical edges, we could potentially reduce the
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prediction error. If a diagonal edge is detected, this is indication that the pixel value of d in 

the template tends to be smaller than pixels a and b and could be potentially used for 

compensating for the large error that a predicted value such as pixel b would produce. 

Following this reasoning, a weighted predictive value of the pixels b and d would be more 

appropriate. This is illustrated in Figure 4.14(a). The analysis for the condition 

c < min(a,fc) is exactly the same. This is illustrated in Figure 4.14(b).

b c

(a) (b)

Figure 4.13: Possible forms of diagonal edges

(a) (b)

Figure 4.14: Possible forms of pixel intensities in diagonal edges

Based on the above observations we design our first algorithm as follows: 

4.10.1 Weight based diagonal edge detection

We propose that the predictive value of x in the case of a diagonal edge being detected can 

be estimated based on a weighted average of the pixels b and d using the following 

equation:
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D al*d + a2*b
P = ———————— , //im(4-9)

where «7,a2 are weights relative to the pixels b and d. Equation (4.9) would bring the 

predictive value down to be closer to the unknown pixel x.

So the edge detection scheme that JPEG-LS uses and is described in equation (4.8) 

can be enhanced for also predicting diagonal edges as follows:

if(c>= max(a, b))

{

if(a<=b)P = a;

else if( (b-d)>=Tl and (c-a)>=T2 )

p= al*d+a2*b (diagonal edge detection) (4.10)
al+a2

else P = b;

}

else{

if(c <=min(a, b))

{

if(a>=b)P = a;

else if( (d-b)>=Tl and (a-c)>=T2 )

p= al*d+a2*b (diagonal edge detection) 
al+a2

else P = b;}

else P=a+b-c; (condition min(a, b)<c<max(a, b);)
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where a, b, c, d are pixels on the predictive template (Figure 4.11) and P is the predictive 

value of the pixel to be encoded (x on the template). Also T1,T2 are empirically defined 

thresholds used to detect diagonal edges based on pixel gradients. The reason for using 

only two thresholds in our prediction scheme is that we also want our scheme to be of low 

computational cost. A more elaborate treatment of detecting diagonal edges using more 

thresholds could also be used for minimising the predictive error[87]. 

It's worth noticing that the proposed edge detection scheme performs better if the weights 

al,a2 in equation (4.9) are not equal. In fact it performs best if a2>al. This can be 

expected since the pixel x on the predictive template is more correlated to pixel b than to 

pixel d.

4.10.2 Including pixel a in the prediction

In this algorithm, we intend to exploit the effect of the pixel a (see template in Figure 4.11) 

in the determination of the predictive value of pixel x in the case of a diagonal edge being 

detected. The proposed algorithm, like the one described in 4.10.1, also pertains to the 

cases of Figures 4.14(a) and 4.14(b). The reasoning here is that since pixel a is the most 

correlated to the pixel x inside the predictive template (see Figure 4.10), it could 

potentially improve the predictive value of pixel x in the presence of diagonal edges. So 

instead of predicting using only a weighted average of pixels b and d in the template, we 

can include pixel a in the prediction as follows: 

if(c>= max(a, b))

{

if(a<=b)P = a;
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else if( (b-d)>=Tl and (c-a)>-T2 )

„ a + d+b . ,. , . .p=—-— (diagonal edge detection) (4-11)

else P = b;

}

else{

if(c<= min(a, b))

{

if(a>=b)P = a;

else if( (d-b)>=Tl and (a-c)>=T2 )

P=-——- (diagonal edge detection)

else P = b;

}

else P=a+b-c; (condition min(a, b)<c<max(a, b);)

}

where a, b, c, d are pixels on the predictive template (Figure 4.11) and P is the predictive 

value of the pixel to be encoded (x on the template). Also 77,72 are empirically defined 

thresholds used to detect diagonal edges based on pixel gradients. The reason for using 

only two thresholds is that we intend our algorithm to be of low computational cost.

4.10.3 Experiments for the two proposed algorithms

To test the proposed algorithms, we implemented both the prediction schemes and run the 

programmes on a group of four commonly used testing images: Lena, Boat, Camera,

115



Bridge and Clown. In order to ensure a fair comparison with the existing JPEG-LS scheme, 

we assessed the performance of the proposed prediction schemes in two measurements: (i) 

the mean-square-error between each pixel to be encoded and its predictive value; (ii) the 

compression ratio. The first measurement is designed to assess the accuracy of the 

proposed prediction schemes benchmarked by the existing state of the art prediction 

adopted in JPEG-LS, the latest JPEG standard for lossless/near lossless image 

compression. The second measurement is designed to see if the proposed schemes have 

any impact upon the compression performance without any change to the entire coding 

scheme, including statistics modelling and Golomb entropy coding. To ensure such a fair 

comparison, all three algorithms have exactly the same number of operations including 

coding-mode selection, statistics modelling and entropy coding, apart from the prediction 

being different.

The experimental results for the weight based diagonal edge detection can be summarised 

in Tables 4.3-4.5 while the results after including pixel a in the prediction mechanism can 

be summarised in Tables 4.6-4.8. In the Tables of the weighted scheme, al and a2 

represent weights while in all Tables of results Tl and T2 represent empirically found 

thresholds. The percentage predictive Mean Square Error improvement (PMSE) for the 

same compression rate can also be calculated as follows:

-MSEproposd scheme PMSE= ————————r7;—————————————xl°° (4.12)

This value is represented by the third column in all Tables of results.

From these tables, it can be seen that, for all image samples tested, the proposed 

schemes outperform JPEG-LS in terms of predictive MSB values for the same compression
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rates as the standard. As analysed earlier, the extent of improvement depends on the image 

content, i.e., the number of true diagonal edges, which may exist inside the input image.

Another interesting aspect, which can be observed from Table 4.3-4.8, is that, 

although the prediction schemes are improved in terms of accuracy measured by predictive 

MSB values, the compression ratios stay the same. This is expected due to the fact that the 

entropy coding length is determined by statistical modelling [85],yet this part of operation 

is not revised in the light of the proposed diagonal edge detection. In this sense, smaller 

predictive error may not necessarily produce higher compression efficiency. The decisive 

factor for compression efficiency is how accurate could the statistical modelling produce 

statistical information to drive the entropy coding [86] .However, when predictive error is 

minimised, the direct and positive effect upon statistical modelling would be significant, 

since the statistical distribution of those errors would become more focused around its 

mean value as opposed to being scattered [85].With JPEG-LS, the specific advantage can 

be illustrated in that the number of context quantization regions could be reduced and more 

probabilities could be assigned around the centre of the statistical distribution. Another 

impact upon compression efficiency by smaller predictive errors can be seen with the near 

lossless compression mode in JPEG-LS. The near lossless mode requires a small 

quantization of those predictive errors in order to produce higher compression ratios. To 

this end, the reconstructed image quality could benefit by introducing smaller quantization 

step corresponding to the smaller predictive errors [83,84].
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Samples

Lena
Boat

Camera
Clown
Salad

Jet

JPEG-LS 
MSB

37.435
80.571

215.664
94.19

128.895
44.978

Weighted 
predictive 

MSE
36.599
80.152
213.59
92.712
127.97
44.641

PMSE 
improvement

2.23%
0.52%
0.96%
1.56%
0.71%
0.74%

JPEG- 
LS 
CR

1.991:1
2.09:1
1.849:1
1.702:1
1.578:1
2.096:1

Weighted 
predictive 

CR
1.991:1
2.09:1
1.849:1
1.702:1
1.579:1
2.096:1

Table 4.3: Experimental Results for weighted predictive scheme 
(Tl=T2=10,al=l,a2=2)

Samples

Lena
Boat

Camera
Clown
Salad

Jet

JPEG-LS
MSE

37.435
80.571

215.664
94.19

128.895
44.978

Weighted 
predictive 

MSE
36.327
80.394

213.996
92.624
127.826
44.477

PMSE 
improvement

2.95%
0.21%
0.77%
1.66%
0.82%
1.11%

JPEG- 
LS 
CR

1.991:1
2.09:1
1.849:1
1.702:1
1.578:1
2.096:1

Weighted 
predictive 

CR
1.991:1
2.09:1
1.849:1
1.702:1
1.578:1
2.095:1

Table 4.4: Experimental Results for weighted predictive scheme 
(Tl=T2=5,al=2,a2=3)

Samples

Lena
Boat

Camera
Clown
Salad

Jet

JPEG-LS 
MSE

37.435
80.571

215.664
94.19

128.895
44.978

Weighted 
predictive

MSE
36.713
80.184

213.944
92.857
127.958
44.749

PMSE 
improvement

1.92%
0.48%
0.79%
1.41%
0.72%
0.50%

JPEG- 
LS 
CR

1.991:1
2.09:1
1.849:1
1.702:1
1.578:1
2.096:1

Weighted 
predictive 

CR
1.991:1
2.09:1
1.849:1
1.702:1
1.579:1
2.096:1

Table 4.5: Experimental Results for weighted predictive scheme 

(Tl=T2=8,al=l,a2=3)
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Samples

Lena
Boat

Camera
Clown
Salad

Jet

JPEG-LS 
MSE

37.435
80.571

215.664
94.19

128.895
44.978

Proposed 
MSE

36.853
80.206

213.958
93.37

128.125
44.906

PMSE % 
improvement

1.55%
0.45%
0.79%
0.87%
0.59%
0.16%

JPEG- 
LS 
CR

1.991:1
2.09:1
1.849:1
1.702:1
1.578:1
2.096:1

Proposed 
CR

1.991:1
2.09:1
1.849:1
1.702:1
1.579:1
2.096:1

Table 4.6: Experimental Results by including pixel a in the prediction

scheme (T1=T2=10)

Samples

Lena
Boat

Camera
Clown
Salad

Jet

JPEG-LS 
MSE

37.435
80.571

215.664
94.19

128.895
44.978

Proposed 
MSE

36.763
80.298

214.159
93.476
127.86
44.904

PMSE % 
improvement

1.79%
0.33%
0.69%
0.75%
0.80%
0.16%

JPEG- 
LS 
CR

1.991:1
2.09:1
1.849:1
1.702:1
1.578:1
2.096:1

Proposed 
CR

1.991:1
2.09:1
1.849:1
1.702:1
1.578:1
2.095:1

Table 4.7: Experimental Results by including pixel a in the prediction scheme
(T1=T2=5)

Samples

Lena
Boat

Camera
Clown
Salad

Jet

JPEG-LS 
MSE

37.435
80.571

215.664
94.19

128.895
44.978

Proposed
MSE

36.797
80.239

214.155
93.391
128.015
44.92

PMSE 
improvement

1.70%
0.41%
0.69%
0.84%
0.68%
0.12%

JPEG- 
LS 
CR

1.991:1
2.09:1
1.849:1
1.702:1
1.578:1
2.096:1

Proposed 
CR

1.991:1
2.09:1
1.849:1
1.702:1
1.579:1
2.096:1

Table 4.8: Experimental Results by including pixel a in the prediction

scheme
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4.11 Conclusions

In this chapter, we initially proposed a simple Linear Extrapolated Padding technique 

(LEP) to improve the compression efficiency for the reference VOP padding problem in 

MPEG-4. Compression improvements of up to 6.9% were observed as compared to the 

MPEG-4 padding scheme. Subsequently, we proposed a shape distortion adaptive hybrid 

padding technique to minimise prediction errors in coding arbitrary shaped video objects in 

MPEG-4 video sequences. The proposed hybrid technique is particularly effective in 

coding video sequences with objects, having a quick pace of shape change. Compression 

gains of up to 9% over the MPEG-4 padding technique have been obtained for coding 

boundary blocks of video objects in such sequences, for the same quality as the standard. 

Further experimental analysis indicated that the selection of the threshold value, T, plays a 

major role in the performance of the hybrid algorithm. At present, we have used a fixed 

threshold (see Section 4.7). It is expected that a dynamic approach in setting this threshold 

value would enhance the performance and the flexibility of the present version of the 

algorithm.

We can conclude that if low computational complexity is at premium, the LEP scheme for 

the reference VOP padding problem is sufficient for improving the compression rate over 

MPEG-4 for the same quality. On the other hand if compression rate is at premium, the 

hybrid scheme is a better choice.

In the second part of the chapter, two algorithms were presented for adding diagonal edge 

detection to JPEG-LS, in addition to the horizontal and vertical edges detected by the 

standard . Both algorithms utilised pixel correlation inside the predictive template in order 

to improve the prediction in the presence of diagonal edges, thus reducing the produced 

predictive MSB. It is worth noting, that both the proposed schemes improve the predictive
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MSE only, for the same bit rates as the standard, but this is expected since no changes on 

the compression mechanism of JPEG-LS are applied. The observed predictive MSE 

improvements are up to 2.9% for the first scheme and up to 1.9% for the second scheme in 

predictive Mean Square Error (MSE) values for the same bit rates as the standard. The 

extend of improvement depends of course on the percentage of the diagonal edges in the 

image.
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CHAPTER 5 - LOW COMPUTATIONAL COST R-D IMPROVEMENTS IN

MPEG-2 VIDEO CODING

5.1 Introduction

The rate distortion approaches in the context of video coding can be broadly classified into 

two major categories. The first category contains the analytic approaches whose objective 

is to derive a set of mathematical formulas for the R-D curves based on the statistical 

properties of the source data. In these approaches, the coding system and the video frames 

are first decomposed into components whose statistical models are already known. Then 

they are combined together to form a complete analytic model. Typical work can be found 

in Hang and Chen [72] and in Ding and Liu [73] .The problem with these models is that 

they show relatively large errors in the estimation of the rate distortion characteristics [60] 

and that their accuracy depends on the number of control points used to fit the R-D data. 

Given that the best results from data fitting are obtained when all the data points are used, 

the complexity of these approaches can still be high when improved accuracy is desired.

The second category of R-D optimisations contains empirical approaches. The 

observed R-D performance data of the encoding system is mathematically processed first 

and its output serves as an estimate of the R-D curves for the encoding system. Typical 

work includes dynamic programming [58] and Lagrange multiplier optimisation [59,62,74- 

76] which generally involve multiple iterations over the R-D data. Considering the fact 

that the best results from those observed data are obtained when most, if not all, the data is 

used, these approaches are also of high computational complexity. The complexity is even 

more increased in empirical approaches by the overhead required in order to enable the
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optimal trellis path being determined in the optimisation stage. To reduce the number of 

control points, interpolation functions are also proposed to improve the complexity in the 

process of estimating the R-D data [60]. This work aims to trade complexity to accuracy, 

producing sub-optimal R-D estimates for rate control design. In general, empirical 

approaches are not suitable for low encoding delay video coding because of the high 

overhead in CPU cycles associated with the optimisation of the rate-distortion 

performance.

The MPEG-2 standard [7,8,97,98] was developed for low end-to-end delay video 

compression of broadcasting quality. It can not afford high complexity due to optimisation 

overheads in the encoding stage. In fact, it is evident from the test document that its 

performance along with visual quality measurements were very seriously considered in 

every part of the compression pipeline. In particular, the MPEG-2 rate control scheme 

follows a different approach than the ones outlined above, namely it is a "direct buffer state 

feedback scheme". These schemes do not measure and monitor the distortion by using 

multiple-pass coding. Instead the buffer occupancy and the activity analysis determines 

the quantization settings. Consequently, decisions about quantization step size assignments 

on a macroblock basis (mquant parameter) are made online, which can only become 

possible when information about the current macroblock or previously encoded 

macroblocks is primarily used in the decision-making process.

The work presented in this chapter consists of two parts. In the first part, four novel 

activity estimates for improving on the fly the rate distortion performance of the MPEG-2 

rate control scheme (TM5) are presented. This part of the work initially identifies the 

drawbacks in R-D terms of the normalisation scheme used in the standard for activity 

estimation and subsequently improves the R-D performance by proposing new activity 

estimates. In the second part of the chapter, two low cost rate control algorithms for
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MPEG-2 are presented which are based on Lagrange theory. Unlike the offline approaches 

based on Lagrange multipliers, the proposed rate control schemes are applicable online 

since they still fall into the "direct buffer state feedback schemes". Furthermore, they also 

improve the estimation of the R-D characteristics as compared to MPEG-2 by explicitly 

including distortion in the calculation of the quantization step size per macroblock through 

a Lagrangian formulation.

5.2 Review of the MPEG-2 rate control algorithm

The rate control scheme adopted in MPEG-2 can be formulated as, given a group of N 

frames and a range of quantization parameters, mquante [mquantmin ,mquantmax ], find q* 

=(qi q2 ... qN) with <?, e [mquant^, mquant^ ], such that:

( 1 N 1 
q*=arg min N Tj2di (<^ ^'^I qelmquant^mquant^] N £j I

subject to the condition that the overall bit rate is not greater than a pre-set target. In 

equation (5.1), the distortion measurement, di(q), can be quantitative such as PSNR (peak- 

signal-to-noise-ratio) or subjective such as visual perception characteristics.

To reduce the level of complexity and the cost of computing, MPEG pursued the 

issue along the subjective distortion measurement, which allocates the value of mquant 

according to two factors. One factor is the buffer fullness and the other is the activity 

measurement within each macroblock. Therefore, to encode the ;th macroblock inside each 

frame, its mquant is determined by the following equation:

mquant j =Qj xN _act j (52)
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where Qj is a modulation parameter, which indicates the contribution from the buffer- 

fullness, and N_actj is a normalised activity indicating the contribution from the activity 

analysis on they'th macro-block.

The activity analysis in MPEG-2 is mainly carried out by calculating the variance of 

original pixel values within each macro-block in connection to an average activity derived 

from the preceding frame. Specifically, MPEG determines the value of N_actj as given 

below:

2xact j +avg _act
N _ act j = ——————————— /c ^ 

J act +2xavg _act ^'J}

avg_act is the average of all local

activities used to encode its preceding frame. Since each macro-block consists of four 8 X 8 

blocks, its activity is seen to be determined by the minimum variance value out of those of 

four 8 X 8 blocks. For all the 64 original pixel values, Pk (fce [1, 64]), the variance can be 

calculated as follows:

64 2 (54) 
k=l

I 64 
where P^mean =~x £ Pi represents a mean value of the block.

i_1

Essentially, the contribution to the rate control from activity analysis is described by 

equation (5.3), from which, it is seen that the value of normalised activity, N_actj, is not 

only determined by the activity of the jth macro-block, actj, but also by the average 

activity, avg_act. of the previously encoded frame. The latter can be viewed as a stabilising 

factor to ensure that any temporary drastic change incurred at the current niacroblock will 

not dominate the role of activity analysis for rate control. This is also seen as the
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contribution from the history of activity analysis, which is very important in light of the 

fact that neighbouring frames and blocks are highly correlated due to the nature of the 

video sequence data. If we take the average activity as a constant for the time being, we 

can convert equation (5.3) into:

N act= 2x+c 
x+2c (5.5)

where c is a constant value determined by the history of activity analysis.

If we ignore Qj, in equation (5.2), it can be revealed that MPEG-2 relies on the 

normalised activity to optimise the picture quality while rate control is achieved by 

distributing the information loss according to the visual perception characteristics. By 

further examining equations (5.3) and (5.5) it can be seen that the increase or decrease of 

the normalised activity estimate (N_actj,) depends on the relation between the two 

parameters, actj and c (avg_act). If we let actj, the local activity inside theyth macro-block 

vary at: actj=0, actj=c, actj=2c, actj=kxc (k is an integer), the change of N_actj can be 

illustrated in Figure 5.1(a).

Figure 5.1 (a): Normalised activity as a function of average activity 
of previous frame

c 2c 3c 4c 5c 6c 7c 8c 9c 10c 

Average activity of previous frame
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The curve in Figure 5.1 (a) shows that the range of N_actj varies from 0.5 to an upper- 

bound value of 2 .Therefore, the principle of activity estimation in MPEG-2 can be 

explained as that the higher activity macroblocks in relation to the average activity of the 

previously encoded frame provide a favourable environment for more information loss 

(higher distortion) and lower activity for less information loss (lower distortion).

The contribution to rate control from buffer fullness is relatively straightforward in 

MPEG-2, in which three virtual buffers are allocated to accommodate the encoding process 

for I-frames, P-frames and B-frames respectively. To encode a x-type frame, the virtual 

buffer fullness is determined at macro-block level, which is then used to determine the 

modulation parameter, Qj, for the jth macro-block. This operation can be described by the 

following equation:

(5.6)

2xbit_rate
where r =——————— is a so-called reaction parameter determined by the channel bit- picture _rate

rate and the picture-rate; d* is the virtual buffer fullness for the jth macro-block inside the

x-type frame, which is determined according to: (a) the target bit rate allocated to this 

frame to be encoded; (b) the number of bits generated by encoding the previous (j-1) 

macro-blocks inside this frame; and (c) the initial buffer fullness before encoding of this 

frame starts.

5.2.1 Drawbacks of the MPEG-2 rate control scheme

Implicitly, the rate control model of MPEG-2 assumes that the distribution of bits among 

macroblocks for the frame to be encoded is uniform, which is not accurate due to the
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variability of the bit rates produced on a macroblock basis. Although neighbouring 

macroblocks tend to produce similar amount of bits due to pixel correlation, this is 

definitely not accurate for maeroblocks that are further apart in a frame. It can also be 

observed that any attempt to alter the uniform distribution of bits per macroblock that the 

standard uses for rate control is unlikely to succeed since we can not know the exact 

amount of bits that the macroblock will produce when encoded a priori. The standard also 

uses a variance based normalisation scheme for activity estimation which is very sensitive 

to small changes in activity characteristics and as such not optimal in rate distortion terms 

since it produces a non-uniform information loss distribution [14,15]. To make the rate 

control algorithm even more sub-optimal in R-D terms, the activity of the macroblock to 

be encoded is assumed to be close to the average activity of the previously encoded frame 

(avg_act) which may not always be the case. The combined effect of the inaccurate bit 

allocation per macroblock, of the extra sensitive normalisation scheme and on the incorrect 

assumption about similarity in activities leads to unnecessary fluctuations in the 

quantization step assignment phase which is not optimal in rate distortion terms [14,15]. 

Finally, the standard does not consider distortion explicitly in the estimation of the 

quantizer step size per macroblock which also aids in R-D sub-optimality.

5.3 Improving the rate distortion performance by using a local activity estimate

As evidenced by equation (5.3), the normalised activity estimate for the macro-block to be 

encoded depends on the relation between the macro-block activity and the average activity 

of the previously encoded frame. In the case when the activity of the current macro-block 

is smaller than the average activity of the previously encoded frame, the normalised 

activity value is less than one and conversely it is greater than one. On the average, it is 

assumed that the activity of the macro-block to be encoded is similar to the activity of the

128



previous frame which will give a value for the normalised estimate close to one. The 

problem here is that the average activity of the previous frame is a global estimate and as 

such it does not utilise local activity information.

To illustrate the point, consider a scenario where the previous frame is smooth texture wise 

while the current frame is rough. According to equation (5.3), all the macro-blocks of the 

current frame will be over-normalised since the value of the normalisation estimate will be 

greater than one. Then, the estimation of the quantizer moderator mquant, for every 

macro-block of the current frame, will depend on the discrepancy of the buffer bit residue 

from the uniform distribution model and the assumption is that by over-normalising the 

macro-blocks of the current frame, this distance from the uniform model will decrease. 

While more information loss in rough areas can be afforded, the distance between the 

buffer estimate and the uniform distribution model is not guaranteed to decrease in a 

predictable manner since there is a lot of variability in the bit rate production of different 

macro-blocks. As a result, unnecessary over-normalisation could occur which would lead 

to PSNR degradation for a given target frame rate. This over-normalisation occurs because 

the average activity of the previous frame is used as part of the normalisation function. 

The point for non-optimal normalisation because of the globality of the activity estimate 

used, can also be demonstrated by the converse example in which the current frame is 

smooth but the previous frame is rough. In this case, according to equation (5.3), every 

macro-block in the current frame will be under-normalised since the value of the 

normalisation estimate will be less than one. This may be in accordance to the principle of 

minimal information loss towards smooth textures but its repercussions on the buffers can 

be realised by observing that the buffer estimate Qj in equation (5.2) assumes a uniform 

distribution of bits in the frame. In other words every macro-block is expected to produce 

approximately (Target number of bits per frame/number of macro-blocks per frame) bits.
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In a frame where the percentage of smooth macro-blocks is larger than the percentage of 

rough macro-blocks (as the one we use in this example) this may not be the case and as a 

result, as encoding proceeds in the frame the straying from the uniform distribution model 

will increase. In terms of the quantization parameter mquant described in equation (5.2), it 

is assumed that although the buffer estimate increases, it will be moderated by the under- 

normalisation. Again because of the variability of the bit rates of different macro-blocks, 

this assumption may not be true. If this is the case, we will have degradation of the rate 

distortion performance after a point, in order buffer overflows to be avoided. The 

undesirable effects of over and under normalisation because of the globality of the average 

activity estimate of the previous frame can be remedied by utilising local activity 

information described in the following scheme.

Step 1: Compare the absolute value of the distance between the activity of the macro-block 

to be encoded and the activity of the macro-block just preceding it, to the absolute value of 

the distance between the activity of the macro-block to be encoded and the average activity 

of the previously encoded frame. If the former is smaller, this implies that the current 

macro-block is more correlated to the one preceding it with respect to activity, than it is 

with the previously encoded frame. If the latter is smaller, it implies that the macro-block 

to be encoded is more correlated to the previous frame, activity wise. 

Step 2: Choosing the smallest of the two distances (in absolute value terms) will also give 

us the best estimate (activity of the previous macro-block or average activity of the 

previously encoded frame) to be used for the normalisation. The normalisation will be 

performed using this best estimate in the place of avg_act in equation (5.3). 

The principle behind this scheme is that similar activity macro-blocks should be 

normalised similarly while at the same time over and under normalisation should be 

avoided as described above. Formally, suppose that macro-block j is the one to be encoded
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and it's not the first macro-block in the frame. Then, the following relation best describes 

the proposed scheme:

if abs _ d (actj - act^ ) < abs _ d (actj - avg _ act)
use actj_: instead of avg _ act for normalisation (5.7)
else use avg _ act for normalisation

where act7 and act^ are the activities of macro-block j and of the one preceding it,

abs_d denotes the absolute value of the distance between activities and avg_act is the 

average activity of the previously encoded frame.

As can seen from equation (5.7), the proposed scheme is a low complexity one and as such 

suitable for real time applications. We tested extensively this technique versus MPEG-2 in 

terms of rate distortion, for the same final number of bits. Improvements up to 2.5 db along 

the luminance (Y) and the two chrominance components (U,V) are reported. It is worth 

noticing that more than 98% of the frames tested showed improvements in both luminance 

and chrominance components. Figures [5.1-5.5] summarise the performance results for the 

luminance component and Figures [5.6-5.9] for the chrominance components for a set of 

commonly used test sequences. Finally Table 5.1 compares the final number of bits 

produced for the two schemes.
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Figure 5.1: Luma Component of m'ss 
america sequence

£44 

42

MPEG-2

Normalisation 
using local 
activity 
estimates

1 11 21 31 41 51 

Frame No

Rgure 5.2: Luma Component of 
calendar sequence
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Figure 5.3: Luma Component of susie 
sequence
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Figure 5.4: Luma component of 
salesman sequence
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Figure 5.5: Luma Component of trevor 
sequence
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Rgure 5.6: U Chroma Component of 
salesman sequence
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Figure 5.7: V Chroma Component of 
salesman sequence
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Figure 5.8: U Chroma Component of 
calendar sequence
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Figure 5.9: V Chroma Component of 
calendar sequence
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Table 5.1 : Bit rates produced by the proposed scheme versus MPEG-2
Test Sequences

Miss America (50 frames)

Susie (50 frames)

Mobile (40 frames)
Trevor (50 frames)

Salesman (50 frames)

Normalization using 
local activity 
estimation
1275359 bytes

2500311 bytes

1999972 bytes
293805 bytes

1276342 bytes

MPEG-2

127521 3 bytes

2500740 bytes

2000711 bytes
293847 bytes

1276037 bytes
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5.4. Improving the rate distortion performance by using a family of exponential 

modulators

We investigated the potential of using a family of exponential modulators in order to 

improve the rate distortion performance for the same final number of bits as the MPEG-2 

standard. The motivation here is to attempt to stabilise the undesirable variation of the 

normalisation estimate in order to achieve more optimal R-D performance. Note that we 

can not simply substitute the normalised activity estimate with a constant value because a 

potentially wrong choice will lead to R-D performance degradation. Since its evident from 

equation (5.2) that there is undesirable variation both from the buffer estimate and the 

normalised activity estimate, we attempt to reduce the total variation by modulating the 

normalisation part. So instead of using only equation (5.3) for normalisation, we 

additionally normalise using:

(5g)

This in effect re-maps the range of the normalisation function described in equation 

(5.3) from the interval (0.5,2) to smaller range intervals. For example when k=l the 

interval is (0.27,0.38), when k =2 the interval is (0.04-0.14) etc. It can be observed that the 

proposed family of exponential modulators gives more control to the buffer estimate than 

to the normalised activity estimate, seeking an alternative balance point between them. At 

the same time, it enables more quantization parameters to be packed in the lower end of the 

quantization spectrum while still retaining certain adaptivity. It finally aids in a more 

uniform information loss distribution across macro-blocks and frames. 

This more constant information loss distribution aids in turn to further improvements in 

PSNR performance, since less overhead bits are needed in order the decoder to be 

informed about changes in the quantization parameters. It can be observed from equation
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(5.2) that reduction of overheads implies that the buffer estimate Qj becomes smaller for 

the target number of bits allocated to a macroblock and as a result the quantization 

parameter mquant decreases. Consequently, we can achieve less information loss for the 

same target number of bits per macro-block in the quantization phase of MPEG-2. Thus, 

continuous reduction of overheads on a macroblock basis will result in PSNR 

improvements on a frame basis for the same target number of bits as the standard. 

Regarding computational complexity, the proposed family of exponential modulators costs 

just four extra operations per macro-block, namely one negation of N_actj, one 

multiplication with the real value k, one exponentiation of the result and one multiplication 

of the exponentiated result with the normalised activity estimate. Due to the low 

computational cost the proposed family of exponential modulators is suitable for real time 

applications.

The distribution of the quantizer moderators (mquants) of the proposed family of 

exponential modulators will peak at a different point (very slightly higher) than the one at 

MPEG-2 rate control at the low end of the quantization spectrum. This will prevent buffer 

overflows. It would be impossible for the proposed scheme to have the quantizer 

moderators distribution peaking at the same or lower point as compared to MPEG-2 since 

the determination of the quantizer moderators is more buffer oriented. Also the savings in 

overheads, due to the more uniform information loss distribution further aid in the 

avoidance of buffer overflows. A further interesting property of the proposed scheme is 

that the range of the quantizer moderators will be smaller at the lower end of quantization 

spectrum.

We tested extensively the proposed exponential modulation versus MPEG-2 in terms of 

rate distortion, for the same final number of bits. Improvements up to 3.5 db along the 

luminance (Y) and up to 3.5db and 3db across the two chrominance components (U,V) are
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reported. It is worth noticing that more than 98% of the frames tested showed 

improvements in both luminance and chrominance components. Figures [5.10-5.14] 

summarise the performance results for the luminance component and Figures [5.15-5.18] 

for the chrominance components for a set of commonly used test sequences. Table 5.2 

compares the final number of bits produced for the two schemes, while Table 5.3 indicates 

the savings in overheads due to the more uniform information loss distribution. Finally, 

from our experiments the optimal value of the real k in equation (5.8) was found to be 1.
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Figure 5.10: Luma Component of miss 
america sequence
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Figure 5.12: Luma component of susie 
sequence
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Rgure 5.13: Luma Component for 
salesman sequence
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Figure 5.14: Luma Component for trevor 
sequence
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Figure 5.15: U Chroma Component for 
salesman sequence
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Figure 5.16: V Chroma Component of 
salesman sequence
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Figure 5.17: U Chroma Component of 
calendar sequence
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Figure 5.18: V Chroma Component of 
calendar sequence
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Table 5.2 : Bit rates produced by the proposed scheme versus MPEG-2
Test Sequences

Miss America (50 frames)

Susie (50 frames)

Mobile (40 frames)
Trevor (50 frames)

Salesman (50 frames)

Exponential function for 
normalization
(Nact *e(-k*N_act))
1275099 bytes

2501 166 bytes

1998400 bytes
2937 17 bytes

1279982 bytes

MPEG-2

1275213 bytes

2500740 bytes

20007 11 bytes
293847 bytes

1276037 bytes

Table 5.3: Bit savings in transmission of the changes of the final modulation 
factors

Test Video 
Sequences

Miss 
america
Calendar
Susie
trevor
salesman

Bits transmitted using 
the exponential function 
for normalization

23710

9485
56390
7450
20885

Bits transmitted using the 
MPEG-2 normalization 
function

31290

65855
82265
17430
36090

% 
savings 
in bits

24.3

85.6
31.5
57.3
42.2
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5.5 Low computational cost activity estimates

As evidenced by equation (5.3), the normalised activity estimate N_actj for each 

macroblock to be encoded depends on the relation between a variance based local activity 

estimate and on the average activity of the previously encoded frame measured in terms of 

variance. We wanted to investigate if there are activity estimates other than variance that 

reduce the undesired variability of the normalisation process (thus being more optimal in 

R-D terms) for the same final number of bits produced and for the same normalisation 

function (equation 5.3) as the standard.

We propose the standard deviation of pixel values in a block and the sum of absolute 

differences between pixel values and the block mean (SAD) as alternative activity 

estimates for improving the rate distortion performance. 

Formally, the standard deviation of an 8*8 block of pixels is defined as:

64 2 
std_dev ^rjj. = ll/64x E(?k -P_mean) (59)

k=l

! 64 
where P _mean=-—x £p; represents a mean value of the block and Pk (k^[l, 64])

denotes any pixel value in the block.

In the context of MPEG-2 rate control, the 8*8 sub-block with the minimal standard 

deviation can be used as a representative for the activity of the macroblock to be encoded. 

Also the average activity of the previously encoded frame is now calculated based on 

standard deviation. The extra overhead for using standard deviation for activity measure, as 

compared to variance, is just 4 operations per macroblock for determining the square roots 

of the four constituent 8*8 sub-blocks.
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The sum of absolute differences between pixel values and the block mean (SAD) of an 

8*8 block is defined as:

64 
5AD blk =l/64x £ abs(Pk - P_mean) /5 10)

k = l

I 64 
where "-inean=—xZpi represents a mean vaiue of the block and Pk (k^ [1, 64])

denotes any pixel value in the block. The 8*8 sub-block with the minimal SAD can be 

used as a representative for the activity of the macroblock to be encoded. Also the average 

activity of the previously encoded frame is now calculated based on SAD. No extra 

overhead by using this measure is imposed as compared to variance, because the 64 extra 

multiplications per macroblock that the variance estimate needs are substituted by 64 

estimations of absolute values of differences.

To assess the rate distortion performance of the proposed activity estimates, namely the 

SAD and the standard deviation we run extensive experiments on commonly used video 

sequences. We report improvements up to 2.8 db for both the SAD and the standard 

deviation estimates for the same final number of bits. These PSNR performance results are 

shown in Tables [5.19-5.28] from where it can be seen that the proposed estimates 

outperform the variance based estimate used in MPEG-2 rate control for the same final 

number of bits as the standard. The final number of bits produced for the proposed activity 

estimates as compared to the bits produced by MPEG-2 is shown in Table 5.4. Finally, 

Tables 5.5 and 5.6 show that the number of bits needed for informing the decoder about 

changes in the quantization parameters is substantially reduced by using the proposed 

estimates. This implies that the quantization parameter mquant per macro-block changes 

less frequently and as such the information loss distribution produced by the proposed 

estimates is more uniform as compared to MPEG-2. The positive effects of a more
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uniform information loss distribution in PSNR terms for the same compression rates as the 

standard, is explained in detail in the previous section.

Figure 5.19: Luma Component of miss 
america sequence
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Figure 5.20: Luma Component of miss 
america sequence
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Figure 5.21: Luma Component of 
calendar sequence
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Rgure 5.22: Luma Component of 
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Rgure 5.23: Luma Component of susie 
sequence
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Rgure 5.24: Luma Component of susie 
sequence
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Figure 5.25: Luma Component of 
salesman sequence

11 21 31 41 51 

Frame No

MPEG-2 
(variance)

STD 
DEVIATION

« 49 
= 47 
S 45 
i43 
£ 41 

39

Rgure 5.26: Luma Component of 
salesman sequence
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Figure 5.27: Luma Component of trevor 
sequence

11 21 31 41 51 

Frame No

MPEG-2 
(variance)

STD 
DEVIATION

Rgure 5.28: Luma Component of trevor
sequence 
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Table 5.4: Comparison of the final number of bits produced
Test Sequences

Miss America (50 frames)

Susie (50 frames)

Mobile (40 frames)
Trevor (50 frames)

Salesman (50 frames)

SAD Activity 
estimate

1275 165 bytes

2500347 bytes

2000223 bytes
2938 14 bytes

1276290 bytes

Standard 
deviation activity 
estimate

1275161 bytes

2500293 bytes

2000142 bytes
293849 bytes

1276278 bytes

MPEG-2

1275213 bytes

2500740 bytes

20007 11 bytes
293847 bytes

1276037 bytes

Table 5.5: Bit savings in transmission of the changes of the quantization 
parameter (mquant) in SAD case

Test Video Sequences

Miss America (50 frames)
Mobile (40 frames)
Susie (50 frames)
Trevor (50 frames)
Salesman (50 frames)

Bits 
transmitted 
using SAD for 
activity 
estimation

26550
24010
51310
9995
25125

Bits transmitted 
using variance 
based activity 
estimation 
(MPEG-2)

31290
65855
82265
17430
36090

% savings in 
bits

15.15
63.54
37.63
42.66
30.38

Table 5.6: Bit savings in transmission of the changes of the quantization
parameter (mquant) in standard deviation case

Test Video Sequences

Miss America (50 frames)
Mobile (40 frames)
Susie (50 frames)
Trevor (50 frames)
Salesman (50 frames)

Bits
transmitted
using
standard
deviation for
activity
estimation

26880
25460
52800
9840
25620

Bits transmitted
using variance
based activity
estimation
(MPEG-2)

31290
65855
82265
17430
36090

% savings in
bits

14.09
61.34
35.82
43.55
29.01
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5.6 Review of the R-D approaches in the context of video coding

In general, all existing work on rate-control with R-D optimization methods can be roughly 

categorised into analytic approaches and empirical approaches. The empirical approaches 

can be further divided, according to the distortion criterion they seek to minimise, into 

techniques that attempt to minimise the maximum distortion (MINMAX) and the ones that 

attempt to minimise the average (or total) distortion (MINAVE) for a given bit rate. The 

class of MINMAX approaches is dominated by mostly trellis-based techniques, whereas 

the class of MINAVE approaches can be classified as both trellis-based techniques and 

model-based techniques. Finally, the class of model-based techniques can be further 

divided into two major categories depending on whether the bit rate control is based on 

pre-analysis or prediction. In pre-analysis control schemes, the quantization settings of a 

frame can be made dependent on future frames, whereas in predictive control schemes, the 

quantization settings are only dependent on the current and the previously encoded frames. 

The purpose of this section is to assess all these rate distortion approaches in a real time 

video coding framework, and explore the possibility of converting those techniques into a 

real-time framework by revealing their advantages and disadvantages.

5.6.1 Analytic model based approaches

These approaches attempt to predict the R-D characteristics of an input source based on 

probabilistic models [72,73,90-94,99]. One typical example is the logarithmic rate model 

[72] which can be outlined below:

r(q)=a+0*log(-) (5.11)
q

Where the parameters or and p can be found through curve fitting and they may also
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depend on the quantizer's step size q . The main disadvantage of the above models is that 

they are too inaccurate in terms of the number of bits produced to be useful in a rate 

control context. Typically, errors in bit rates range from 40% for I frames, up to 150% for 

P frames, and even up to 400% for B frames. By introducing a third parameter y to control 

the curvature of the rate function, another example of existing models can be described 

[73] as follows:

r(q}=a+JLq r

These models improve the bit rate error in comparison with that of logarithmic models.But 

its accuracy is still unsatisfactory for rate-distortion performance optimisation, especially 

for P and B frames inside low activity video sequences.

A careful examination of the above models reveal the following four issues:

• Firstly, it is innaccurate to apply such analytic models to R-D optimizations at frame or 

macroblock level, since video coding is a highly non-linear process, which can not be 

characterised by those simple models as given above. The innaccuracy of the rate 

models is further expanded by the fact that practical video encoders also use 

techniques such as run-length coding, and quantization with wider range of 

quantization steps, in order to achieve the best possible compression efficiency [77].

• Secondly, the models given above virtually assume that the distortion (in terms of MSE 

measurement) is proportional to the quantization step. Yet the encoding is a non-linear 

process, which makes the estimation error even larger [60].

• Thirdly, to improve the accuracy of predicting R-D characteristics, either the models 

themselves have to be designed into more complicated forms or more control points 

have to be used for data fitting [60]. In both cases, the computational complexity will
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prevent it from being used on real-time basis.

• Finally, the above models only attempt to predict the R-D characteristics of a video 

source based on a set of simple mathematical formulas. Due to the variety of the 

statistics embedded in different video sequences, which may not fit in well with the 

probabilistic models, it is unlikely for those models to perform optimally.

5.6.2 Empirical approaches

Empirical approaches attempt to optimise the R-D performance of a video coding system 

based on observed data or previously processed data. This category can be further analysed 

in two broad classes according to the distortion criterion they seek to optimise [78].The 

first class seeks to minimise the average (or total) distortion measure for a given bit rate or 

vice versa [58-60]. This class of empirical approaches can be referred to as the MESfAVE 

approaches. The philosophy behind it is that if the average/total distortion is minimised, 

the best quality of encoding a video sequence is obtained in the long run. The second class 

is represented by so called MINMAX approaches. Their goal is to minimise the maximum 

source distortion for a given bit rate, or vice versa. The philosophy behind MINMAX 

approaches is that, by minimising the maximum source distortion, no single distortion will 

be extremely bad and hence the overall quality will become stable. Representative 

techniques proposed in both classes include dynamic programming [58,78] and Lagrange 

multiplier based optimisations [95,59,62,74-76]. However, all existing techniques 

involving dynamic programming need to construct a trellis of R-D characteristics that 

grows exponentially with the size of the input source. Furthermore, when they are 

combined with Lagrange multiplier based techniques for R-D optimisation, multiple pass 

and iterations over the input source data are often necessary for the estimation of the 

optimal R-D characteristics. Hence, these approaches are not suitable for on-line rate
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control design. Their computing cost and level of complexity is often high. Nonetheless, an 

interesting sub-class of MINAVE approaches is the one that uses models (e.g. different 

kinds of splines) to predict the R-D characteristics from a limited set of controlling points 

[60,96] .In these approaches, the predicted R-D controlling points along with the original 

ones are fed into an optimisation process (potentially involving multiple iterations) based 

on the Lagrange multiplier method. In this way, both the MINAVE distortion criterion and 

the bit rate criterion can be satisfied. As a matter of fact, the model based empirical 

approaches aim at reducing the computational complexity at the expense of accuracy in 

estimating the R-D characteristics of the input source. In comparison with the analytic 

approaches as described above [60] they are shown to exhibit greater accuracy in 

estimating the R-D characteristics at frame level. Model based approaches can finally be 

subdivided into pre-analysis control schemes with delayed decision and predictive control 

schemes, according to the encoding delay allowed [60]. In the delayed decision pre­ 

analysis control schemes, the R-D characteristics of the whole group of pictures (GOP) 

have to be processed/optimised before the first frame of the GOP can be encoded, thus 

incurring an encoding delay of one GOP. On the other hand, the basic premise behind 

predictive control schemes is that, inside a GOP, the frame to be encoded is likely to have 

similar R-D characteristics with the last encoded frame of the same type. This implies that 

it is sufficient to consider only one set of R-D characteristics per frame type for the whole 

GOP optimization and also that R-D characteristics of future frames can be approximated 

by R-D characteristics of the most recently encoded frames of the same types. Therefore, 

while the optimisation is still performed on a GOP basis, the current frame can be 

immediately encoded and sent to the output channel after its quantization settings have 

been estimated. Subsequently, the bit budget for the GOP will be updated along with the 

GOP structure and the procedure will be repeated for a newly arrived frame until all frames
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in the GOP have been processed. Thus, there will be only one frame encoding delay. 

Comparison of the two approaches [60] reveals that predictive schemes further reduce the 

computational complexity at the expense of sub-optimality in the estimation of the R-D 

characteristics. The reduction in computational complexity is due to the fact that, instead of 

constructing controlling points for every frame to be encoded, predictive schemes use one 

set of controlling points per frame type, which is updated after the current frame is 

encoded. The key point in predictive rate control schemes is that they are only slightly sub- 

optimal as compared to the delayed decision pre-analysis schemes, which implies that the 

assumption about the similarity of R-D characteristics between frames of the same type 

inside a GOP is a valid one. This fact will be used as a foundation for our proposed 

algorithms in online rate control design using the Lagrange multiplier method in the latter 

sections.

However, there are two problems associated with the model-based empirical 

approaches, which relate to computational complexity and the dependency of the 

quantizers among different frame types inside a group of pictures (GOP). Computational 

complexity and the dependent quantization are correlated in the sense that frame 

dependent quantization promotes computational complexity. Typically, the I-frames inside 

a GOP are the main information carriers since one or more P frames will be predicted from 

them and they are not predicted themselves from any other frame. Due to the fact that the 

Mean Square Error (MSB) of the reference frames directly influences the MSB of the 

predictive frames [60] we can not be frugal in selecting fixed quantizers for the I-frames. 

In order to achieve a reasonable R-D optimization, we would have to grow a trellis for 

every I-frame in a GOP. Trellis growth often incurs exponential increase of computational 

cost with respect to the size of the input source. More details of the discussion will be 

provided in Section 5.7.1 of this chapter. An ad-hoc selection of quantization steps for I-
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frames could potentially run the risk of producing sub-optimal results that would fail to 

justify its computational overhead. In addition, such a policy could even spoil the quality 

of successive P and B frames or even cause problems of overflows and underflows in the 

MPEG-2 buffer. For those model-based empirical approaches, the complexity issue could 

become worse due to the inter-dependency of different frame types inside a GOP when 

quantization step is selected. As an example, for every controlling point (R-D pair) of an I- 

frame, there is a corresponding set (called representative set) of controlling points in a P- 

frame. Therefore, the controlling points in P-frames can be represented as:

NControl_ points _P ~^control_ points _I *^control_pomts_rep_set (5.13) 

Where Ncontroi_po Âs_P denotes the number of controlling points in a P-frame, 

N control_ points_i denotes the number of controlling points in an I-frame and 

Ncontrol_points_rep_set denotes the number of controlling points in the representative set.

Such a representative set, for instance, could have the quantiser step size being 

{1,2,3,5,8,13,21,31}, which capture the exponential decay property. For B-frames, the 

complexity increases even more since they are bi-directionally predicted from two P- 

frames and they need even a greater number of controlling points. Regardless of trellis 

growth or not, the consequence is that the computational overhead of the model based 

empirical approaches is still high since considerable number of controlling points are 

generally needed for the R-D optimization.

Finally, in terms of the encoding delay, the empirical based methods can be 

subdivided into the GOP delay methods and the frame delay methods [60]. GOP based 

delay methods would require the entire group of pictures to be fed in and processed before 

encoding its first frame. Trellis based and spline based approaches fall into this category. 

As a result, they would be more suitable for off-line applications rather than online ones. 

An on-line rate control algorithm suitable for real time video compression needs to
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combine the simplicity of a rate/distortion model with the improved estimation of R-D 

characteristics, offered by empirical approaches, at a low computational cost. The two rate 

control algorithms we proposed here are designed based on this principle, which adopts the 

rate-control model used in MPEG-2.

5.7 Towards online rate control using the Lagrange multiplier method in MPEG-2

From the above discussion and the description of the MPEG-2 rate control algorithm in 

Section 5.2, we can infer the following:

• MPEG-2 is designed for low complexity online video coding of broadcast quality. The 

rate control algorithm used in the standard is "rate based only", and hence it is not 

optimal in R-D terms.

• The R-D optimizations proposed in the literature focus on reducing the computational 

cost and encoding delay as compared to the optimal R-D estimation, while a reasonable 

estimation of the R-D characteristics is retained. However, they are still 

computationally intensive especially when dependent quantization among frames is 

taken into account. In addition, the encoding delay incurred is at least one frame (e.g. 

predictive control based approaches). Therefore, these approaches are not suitable for 

on-line rate control.

• The assumption about similarities in R-D characteristics between frames of the same 

type is valid, which can be confirmed by both experiments and reports by the existing 

published work [60]. Predictive control approaches result in slightly sub-optimal R-D 

estimates as compared to delayed decision pre-analysis approaches. The significance 

with the former lies in the fact that the computational cost and the encoding delay are 

significantly reduced.
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Motivated by the last observation, we investigated the similarity of the R-D characteristics 

between adjacent macroblocks in the frame to be encoded. From our extensive 

experiments, it is observed that adjacent macroblocks in a frame exhibit similar rate- 

distortion characteristics due to the high pixel correlation and the differential motion vector 

encoding. In this respect, only a limited neighborhood of the macroblock to be encoded 

needs to be considered for rate distortion modeling. In the MPEG-2 framework, we can 

further observe that the correlation due to the differential motion vector encoding is broken 

at the beginning of every slice (group of macroblocks). This leaves only a small history 

window of previously encoded macroblocks on the same slice to be considered and thus it 

is reasonable to assume that the previous macroblock of the one to be encoded is the most 

correlated one in terms of rate distortion characteristics. Hence, a localized modeling 

technique can be designed to reduce the search intensity when Lagrange multiplier theory 

is applied to the rate control design. This makes it the key feature in our proposed rate 

control algorithm design.

Based on localized modeling, we can re-formulate the rate control problem in the 

MPEG-2 standard (described in Section 5.2) for the macroblock to be encoded as follows:

Given a macroblock to be encoded, which is of size N (256 pixels), and a range of 

quantization parameters [mquant min ,mquant max ], find q* = mquant with 

mquantefmquant mjn ,mquant max ], such that:

q =arg min—d(mquant) (5.14)
N ,

subject to the condition that the macroblock bit rate r(q*) is not greater than the target rate 

set by MPEG-2.

According to the Lagrange multiplier method, the following combined cost 

function can be produced:
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'q (O + A(f)*rg (O (5.15) 

where, at time ? of encoding, >l(0 is the Lagrange multiplier used for x(t) , the macroblock

to be encoded and eq(t) and rq(t) are the corresponding distortion and rate for the 

quantizer step q.

A theorem presented by Shoham and Gersho [61], states that the quantizer step q* 

corresponding to a rate rq*(t) that minimizes equation (5.15) for a given Lagrange 

multiplier A(t) , is also a solution to equation (5.14) for a target rate rq*(t). Since we use as 

the distortion measure for the current macroblock the well known Mean-Square-Error 

(MSB), the term eq(t) in equation (5.15) actually denotes the normalized sum of the 

distances between original and reconstructed pixels in the current macroblock. Hence, 

equation (5.15) can be rewritten as:

+Mt)*rq (t) (5.16)

where N is the macroblock size (256 pixels), *,•(?) and *;(0 represent the original pixel

and the reconstructed one in the same macro-block.

To minimize T^(t \ (x(t)) with respect to rate , we have:

>

For the current macroblock to be encoded, we approximate the derivative of the sum of the 

reconstructed pixel values with respect to the estimated bit rate as follows:

-*,•(*-!)) 
t'=l i=l

r(t) -
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where rq(t) represents the estimated bit rate of the macroblock to be encoded corresponding 

to a quantizer step size q, and rqi(t-l) represents the actual bit rate of the previously 

encoded macroblock using a quantizer step of ql.

Substituting equation (5.18) in (5.17) and solving for the estimated bit rate for the current 

macroblock q will yield:

N — N —— ———j«j(f) -*•(*-]))
(5.19)

We could have solved the minimization problem of equation (5.16) with computationally 

expensive methods. Such techniques include encoding and reconstructing the current 

macroblock for every possible quantization step to estimate its R-D characteristics (trellis 

growing) or using a certain number of controlling points and interpolating the rest of the R- 

D data by using splines. The high computational complexity of such approaches will be 

analyzed in Section 5.7.1.

Essentially, the above design relates the estimated rate of the current macroblock to 

the actual rate of a previously encoded macroblock via a Lagrange multiplier (A value). To 

jointly improve the distortion performance, we propose two options in the same 

Lagrangian formulation. The first option is to relate a distortion metric (e.g. MSB) of the 

current macroblock to the corresponding metric of a previously encoded. The second 

option is to relate the quantizer step size for the current macroblock with the quantizer step 

size of a previously encoded macroblock. Among the two options, the second option is 

justified due to an approximation result in quantization theory [79] which explicitly relates 

the MSB with the quantizer step size on a macroblock basis. To this end, our low-cost 

approach can be evidenced by the simple approximation we use for the derivative 

estimation in equation (5.18).
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Equation (5.19) forms the basis of our rate control algorithm design and is used to 

derive the quantizer moderator mquant in MPEG-2 for the macroblock to be encoded. 

Starting from a fixed Lagrange multiplier A, we can control the actual rate of the 

macroblock to be encoded on line, based on the information of R-D statistics from the 

previously encoded macroblock only. It should be noted that, in equation (5.19), the actual 

rate produced by encoding the previous macroblock (i.e r(t-lj) is always known before the 

current macroblock is encoded and as such it can be treated as an available constant. In 

addition, the recursion between different values of /I, except A(t=0) that is a fixed 

constant, is of the following form:

l)±C t>0 (5.20)

Where c denotes a constant step size whose sign depends on the feedback mechanism.

From equation (5.19), we can also observe that the Lagrange multiplier could be 

regarded as a global moderator for estimation of bit rate as the current macro-block is 

encoded.

In contrast to traditional R-D approaches where the quantizer step size for the 

whole frame to be encoded is determined after multiple iterations on the Lagrangian 

formulation, MPEG-2 determines the quantizer step size on a macroblock basis and based 

on a "rate only" model (Section 5.2). Consequently, by using a Lagrangian formulation 

which incorporates distortion explicitly in the feedback mechanism on a macroblock basis, 

we expect to improve the accuracy of the rate model used by MPEG-2 in R-D terms. In the 

context of MPEG-2, this will result in improving the accuracy in estimating the 

modulation parameter Qj which indicates the contribution of the buffer fullness in the 

estimation of the macroblock quantizer step mquant in equation (5.2).
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From the discussion in Section 5.2, we can infer that MPEG-2 performs an accurate 

quantization step assignment per macroblock when every macroblock rate is equal to the 

target bit rate set by the standard. The target rate is the same for all macroblocks inside a 

frame and hence can be treated as a constant. Consequently, a uniform information loss 

distribution is assumed since the same number of bits is allocated for every macroblock. 

Suppose that we are to encode a macroblock at time t. According to the MPEG-2 rate 

control scheme, the buffer fullness at that instant will be:

t-l

t-l
dxj(t)corr =d+ ^(actual _rate(i) + S(i)-taiget_rate) (5.22) ,-—i

d j(t) = d + ^(actual _rate(i)-tsa:get_rate) (5.21)
z=l 

Where d denotes the buffer occupancy from previous frames, actual _rate(i) the rate

produced by macroblock i and target_rate the target rate per macroblock set by the 

standard.

From our rate control design highlighted by equations (5.19-5.20), a more optimal 

R-D based approach can be designed as follows:

t-l
-SO

1=1

where (actual_rate(i)+ 8 (i)) is the right hand side of equation (5.19)

Hence, the quantization step size in equation (5.2) will now be determined by:

d x j(t)corr *3l
mquant= —— J- — —— —— = Qj (5.23) 

r

Where r is the reaction parameter (constant) discussed in Section 5.2 and dj (t) corr is

now the corrected estimate from equation (5.22). The normalisation of the buffer estimate 

by using equation (5.23) has to be performed in order to avoid the problems of overflow 

and underflow.
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The feedback criterion is another important part of our scheme. We can reward the 

buffer if the previous macroblock produces less bits than it was expected and penalize the 

buffer on the contrary.

Finally, the proposed algorithm can be summarized by the following pseudo-codes:

if (r(f-l) <
{
decreased according to (5.20)
calculate the estimated bit -rate of
the current macroblock according to (5.19)
calculate the corrected buffer estimate according to (5.22)
calculate mquant according to (5.23)

else

increased according to (5.20)
calculate the estimated bit -rate of
the current macroblock according to (5.19)
calculate the corrected buffer estimate according to (5.22)
calculate mquant according to (5.23)

Where r(t-l) is the actual bit rate produced by the previous macroblock, B(t-l) is the 

expected rate of the previous macroblock and the Lagrange multiplier is the control 

parameter for the feedback scheme. The above operations apply to all macroblocks inside a 

frame, except the first one. For the first macroblock, the estimate for the actual rate r(t=0) 

is calculated as in MPEG-2. This design only applies to P and B frames inside a GOP in 

our algorithm design. For I-frames, the MPEG-2 scheme is retained.

In an MPEG-2 context, the R-D statistics of the previously encoded macroblock 

along with its quantization step size mquant are already known when the current 

macroblock is processed. Hence, they do not need to be estimated again. Consequently, we
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would only need to calculate the distortion metric (in the MSE approach) for the current 

macroblock before it is encoded, and use this metric to estimate its bit rate in the 

Lagrangian formulation. In the case of using the quantizer step size approximation, we do 

not need any extra operations since MPEG-2 calculates mquant for the current macroblock 

anyway. In this case we can directly use the quantizer step size for the current macroblock 

to estimate its bit rate. It should be noted that since we consider the problem of visually 

weighted quantization [80,81] as a separate one, it remains to be our primary aim to 

improve the performance of the MPEG-2 rate control algorithm in terms of R-D 

performance. To this end, although the quantizer step size per macroblock as calculated by 

MPEG-2 is a combined estimate of buffer fullness and visual weighting (see Section 5.2), 

we only use the buffer fullness part in the approximation for the quantizer step size. 

By examination of the above rate control design and the relationship between the MSE 

and quantization, our second proposed rate control algorithm can be formulated. 

Specifically, the quantization theory [79] reveals the fact that the Mean Square Error 

(MSE) is approximately proportional to the square of the quantization step size for the 

macroblock to be encoded, which can be described as follows:

« _ (524)
where t refers to the current time indicating the macroblock to be encoded. Hence, the cost 

function in equation (5.15) can be rewritten as:

+A,(t)*r(t) (5.25)
J. Zs

where Q(t) is the quantization step size for the current macroblock to be encoded, r (t) is 

the expected bit rate for the current macroblock when Q(t) is used as the quantization step
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and A(f)is the Lagrange multiplier. Our objective is to minimize the combined cost 

function with respect to the bit rate estimate of the current macroblock. This gives us:

6(0 ,.8(6(0),.
s6

We approximate the derivative of the quantizer step size with respect to the estimate of the 

bit rate for the current macroblock as follows:

r(f) -r\t-D (5 '27>

Substituting equation (5.27) in (5.26) and solving for the estimate of the bit rate for the 

current macroblock yields:

The rest of the procedure in determining the quantization step mquant is exactly the same 

as in the Mean Square Error case (MSE). The main difference here is that the 

computational cost is even lower. This is because the quantizer step sizes of the current and 

previous macroblocks are already available and so is the bit rate of the previously encoded 

macroblock. This eliminates the reconstruction of the current macroblock and saves the 

computing cost on all operations involved, which include inverse quantization, IDCT, 

adding the errors in place and calculating the Mean Square Error (MSE).

The proposed algorithms attempt to combine the simplicity of the MPEG-2 rate control 

scheme to the R-D optimizations described in Section 5.6.2. Instead of iterating multiple 

times for R-D optimization over a number of controlling points in order to estimate the 

quantization step size for the current frame/macroblock, we can achieve this online and 

with low computational cost based on a combination of the localized modeling principle
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and the Lagrange multiplier theory.

A rate control algorithm design on top of MPEG-2 and based on the features just 

described would have the following properties:

• It would improve the estimation of the R-D characteristics as compared to MPEG-2 

rate control scheme due to the explicit consideration of distortion in the selection of the 

quantizer step size on a macroblock basis.

• Compared to the least computational cost techniques described in Section 5.6.2 for R-D 

optimization (predictive control using controlling points), the proposed schemes would 

reduce the computational cost even further. Due to the localized modeling, the 

proposed algorithms require reconstructing the current macroblock only once (MSB 

approach) or not at all (quantizer step size approach), as opposed to multiple 

reconstructions needed in the R-D techniques involving a number of controlling 

points.

• The encoding delay would also be reduced with the proposed schemes, compared with 

the least computationally intensive R-D approaches. The predictive control schemes 

would require the R-D optimization process to be completed for the whole frame 

before the first macroblock of this frame is actually encoded and sent to the output 

channel. Furthermore, for every frame to be encoded, the optimization is still 

performed for the whole group of pictures, which potentially imply multiple iterations 

in the Lagrangian formulation. In the proposed schemes, the first one is based on the 

MSE criterion, and it would be able to improve the R-D performance on the fly and 

send the encoded macroblock to the channel with only one macroblock delay. The 

second proposed scheme, which is quantizer step based, would require zero delay since 

no macroblock reconstruction is necessary.
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5.7.1 Complexity analysis

To highlight our low cost approach in designing the proposed algorithms, this section 

contributes a detailed complexity analysis in comparison with representative existing R-D 

based rate control algorithms. A fair measure of computational cost for the rate control 

problem in MPEG-2, in a rate distortion sense, will have to incorporate two factors [82]. 

The first factor is the number of comparisons needed for finding the optimal trellis path in 

the optimization stage and the second is the number of individual operations needed for 

constructing the controlling points on the rate distortion curve. Clearly, for a frame with N 

macroblocks and X controlling points on the rate distortion curve, X N comparisons are 

needed in the optimization stage for the optimal trellis path. The number of operations 

needed for constructing a controlling point (rate, distortion pair) can be analyzed as 

follows:

• Number of operations needed for the DCT calculation per macroblock ((luminance + 

chrominance) 8*8 blocks). We denote these operations by the letter D.

• Number of operations needed for the quantization per macroblock ((luminance + 

chrominance) 8*8 blocks). We denote these operations by the letter Q.

• Number of operations needed for entropy coding of the quantised DCT coefficients. 

Only at this stage the rate is known for a controlling point. We denote these operations 

by the letter E.

• Number of operations needed for inverse quantization per macroblock ((luminance + 

chrominance) 8*8 blocks). We denote these operations by the letter L.

• Number of operations for the IDCT calculation per macroblock ((luminance + 

chrominance) 8*8 blocks). We denote these operations by the letter I.
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• Number of operations needed for adding the errors between the current macroblock and 

its best match on the reference frame in place. We denote these operations by the letter 

A.

• Number of operations for the mean square error calculation (MSB) per macroblock.

Only after this step, the distortion is known. We denote these operations with the letter

M.

An optimization algorithm with respect to the quantizer step size that is trellis based and 

uses X controlling points would need N*X*(D+Q+E+L+I+A+M) + X N operations, 

which makes it extremely difficult for real time video coding. In the case of model based 

empirical approaches (i.e different kinds of splines) the number of operations depends on 

both the frame type and the spline type. In general, due to the inter-dependency in 

quantization between predictor and the predicted (or bi-directionally predicted) frames, the 

number of controlling points for I frames is smaller than the number of controlling points 

for P frames. In turn, since B frames are predicted from two P frames, the number of 

controlling points for P frames is smaller than that of controlling points for B frames. In 

addition, the number of operations needed to fit a spline model depends on the type of 

spline and includes both the operations (additions + multiplications) for estimating the 

rate/distortion but also the operations needed to estimate the spline coefficients. In general 

simpler splines need less operations. If we denote the operations needed to fit a spline 

model with the letter S, we have:

(5.29)

where X/ , X P , X B denote the number of controlling points for I,P,B frames respectively.
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The main difference between predictive control schemes and delayed pre-analysis 

control schemes in terms of the number of controlling points used in the optimization is 

that for the former there is only one set of controlling points per frame type, compared to 

one set per individual frame for the latter. So the total number of operations in a OOP 

based R-D optimization for a delayed pre-analysis control scheme would be: 

^*A^X/%DK>^£+£+/+AfM+S)+^^

(5.30)

where W/, WP , WB denote the number of I,P,B frames inside a group of pictures.

Whereas, the total number of operations in a GOP based R-D optimization for a 

predictive control scheme would be smaller, which can be worked out as:

N*X!*(D+Q+E+L+I+A+M+S)+N*Xp*(D+Q+E+L+I+A+M+S)+N*XB*(D+Q^E+L+I+A+M+S)

(5.31)

This is because the controlling points for each frame type have to be constructed only once 

and would not be updated until the current frame is encoded .

In contrast, the proposed algorithm based on the Mean Square Error (MSB) in 

Section 5.7 is not trellis based and does not need controlling points or spline models for 

optimization. So, the required amount of operations over a group of pictures is:

N*Wj *(D+Q+E+L+I+A+M)+N*WP *(D+Q+E+L+I+A+M+S)+N*WB *(D+Q+E+L+I+A+M+S) (5.32)

The second algorithm proposed in Section 5.7 has an even smaller computational cost, 

since it does not involve macroblock reconstruction. So the number of operations over a 

GOP is:

N*Wj *(D+Q+E)+N*WP *(D+Q+E)+N*WB *(D+Q+E) (5.33)

In the above complexity analysis, we only considered the operations needed for the 

construction of the controlling points with respect to the length of the input source when 

this length is measured in macroblock units. We did not consider the number of iterations
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over this set of controlling points in order the optimization constraints to be satisfied. This 

is the case in the R-D optimization methods proposed in the literature, but not for our 

proposed algorithm design since we only use the Lagrangian formulation as a feedback 

mechanism to improve the rate prediction for the macroblock to be encoded. Although fast 

methods for reducing the number of iterations exist [61], this number is usually greater 

than one. The number of iterations can not be expressed directly as a function of the length 

of the source, since it has to do more with the specific optimization method chosen and the 

constraints imposed on the problem. It actually indicates the number of comparisons 

needed in order the minimum Lagrangian cost to be found. Nonetheless, the number of 

iterations may still be important in terms of the absolute number of operations, if the 

optimization method is slowly converging [60].

Even with the fact that only the total number of operations for the construction of 

controlling points on a GOP basis is counted, it is evident that both the rate control 

algorithms proposed are of smaller computational complexity as compared to delayed pre­ 

analysis control schemes. As compared to the predictive control schemes, the proposed 

algorithm design is also of lower complexity. This is because spline based predictive 

control schemes would still need a number of controlling points per frame type, which is 

usually more than the number of frames of this type inside a group of pictures in an 

MPEG-2 context. In this case, without considering again the multiple iterations of the 

predictive control schemes, it can be worked out that the total number of operations in 

equations (5.33) and (5.32) is less than the operations in equation (5.31).

Although direct buffer state feedback schemes are usually of lower computational 

complexity as compared to traditional R-D approaches, their complexity still depends on 

the number of controlling points used in the optimization. The only difference is that such 

schemes would have to rely on current or past information as opposed to the ability of
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predicting future information, which is the case in traditional R-D approaches. Any such 

optimization scheme that does not utilize localized modeling and excluding the number of 

iterations for the optimization constraints to be satisfied would need the number of 

operations per group of pictures given in equation (5.31). An example of such work can be 

found in Chen and Wong [63].Even direct buffer state feedback schemes that attempt to 

minimise the Lagrangian formulation of equation (5.15) on a single macroblock basis 

could be computationally expensive because of the techniques used to collect the R-D data. 

In relevant work found in Choi and Park [59], curve fitting techniques are used to obtain 

the R-D data points. In terms of complexity, these techniques are still computationally 

intensive and thus this part of the optimization will still have to be performed offline. This 

is because in curve fitting techniques the number of operations needed is dependent on the 

relation between rate and distortion in an MPEG-2 context, on the number of control points 

used in the interpolation method and on the number of control points that need to be 

estimated from the fitting process. Given that most proposed R-D models are either 

exponential or logarithmic (Section 5.6.1) , that the interpolation accuracy is increased 

with the number of interpolators and that in MPEG-2 we need to consider 32 quantization 

choices per macroblock, the computational cost can still be high.. Schemes like the 

aforementioned are apparently more computationally intensive than our proposed rate 

control algorithms which use a combination of localised modelling and of low cost R-D 

estimation online.

In the context of TM5 technique, each macroblock of the current frame will be 

reconstructed after the frame is encoded for two reasons. Firstly, the reconstructed frame 

may be used as a reference for the next frame to be encoded. Secondly, the PSNR value 

needs to be calculated to indicate the image quality in the reconstructed video sequences. 

To this end, it is irrelevant in terms of operations if a macroblock is reconstructed
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immediately after it is encoded or if it is reconstructed with the rest of the macroblocks 

after the whole frame is encoded. That's why we do not count the operations for 

reconstructing the previous macroblock in equation (5.19) in the complexity analysis. In 

conclusion, the complexity of the two rate control algorithms we proposed can be regarded 

as the same level as that in the current MPEG-2 rate control scheme.
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5.7.2 Experiments

The proposed rate control algorithms were tested versus the MPEG-2 rate control 

algorithm for a variety of video sequences including both fast (e.g. calendar sequence) and 

slow motion ones (e.g. Miss America). In order to test the performance of both the 

proposed schemes under different channel rates, we run the experiments at the low, 

medium and high ranges of MPEG-2, based on the TM5 implementation. This roughly 

corresponds to channel rates of 1.152, 5 and 10 Megabits per second respectively. The 

testing under different channel rates is important since it implies different R-D behavior 

[77].We also tested the proposed schemes under small (20*16 Kbits), medium (80*16 

Kbits) and large (160*16Kbits) buffer capacities to ensure that the proposed improvements 

in R-D estimation would not violate buffer constraints. The initial choice for the Lagrange 

multiplier in both the proposed algorithms was set to 1000 with increments or decrements 

of a fixed step size of 20. In the proposed rate control algorithms, the target settings for 

each frame in a group of pictures is determined by the MPEG-2 algorithm, as opposed to 

explicit target settings set by the algorithms proposed in the literature [60].

On the average, improvements from 0.5db to Idb per frame were observed for the 

same final number of output bits produced in all the test cases. The PSNR performance of 

the online rate control algorithm described in Section 5.7 (MSE based) versus MPEG-2 is 

shown in Figures 5.29-5.33 for the same number of target bits. Figures 5.34-5.38 compare 

the PSNR performance of the second proposed algorithm in Section 5.7 (Quantizer step 

size based) versus MPEG-2 while the target bit rate is maintained the same. The 

compression rates for both schemes versus MPEG-2 are shown in Table 5.7.

As expected, both the proposed algorithms trade computational complexity for sub- 

optimality in estimating the R-D characteristics of a video sequence, which is a common
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characteristic of all "buffer feedback" based schemes. It is worth noticing though, that the 

average PSNR improvements in model based empirical approaches rarely exceed IdB per 

frame [60],yet their complexity in terms of absolute number of operations is high as 

analyzed in Section 5.7.1. In addition, any simplification of the spline models (e.g. piece- 

wise linear splines instead of piece-wise cubic splines [60])is shown to induce losses of up 

to 0.2 db per frame for the same number of bits produced. This factor seriously questions 

the gains of model-based empirical approaches in terms of R-D optimization versus 

computational complexity, especially in the context of low end-to-end delay video coding. 

It can also be seen from the results that for each test video sequence the two rate control 

methods perform virtually the same in PSNR terms for the same bit rates. This is expected 

since they both rely on a combination of localized modeling for reducing the 

computational cost and a Lagrangian formulation for improving the estimation of R-D 

characteristics. Finally, both the proposed algorithms will reduce the encoding delay as 

compared to the R-D approaches described in Section 5.6.2.

The proposed MSB based rate control algorithm will induce an encoding delay of 

one macroblock only as compared to predictive control approaches that require at least one 

frame encoding delay. The quantizer step size based rate control algorithm will induce zero 

encoding delay.

Traditional rate distortion approaches can be sped up with parallel implementation 

or with pipelined compression [58,60], although this may require special hardware or 

software. They are still relevant in the context of real time video coding because there are 

real time applications which can afford high end-to-end delay [60].Furthermore, when the 

delay and computational cost are not an issue, these techniques are shown to perform close 

to the optimal in estimating R-D characteristics of an input source [58,60].However, 

standards such as MPEG-2 or H.263 are designed for low end-to-end delays and based on
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simple designs not only for their rate control but for all stages of the compression system. 

Indeed, there may be applications such as videophones or video-conferencing that high 

end-to end-delay is not acceptable. It is in this light that low cost rate control algorithms, 

which are still model based but also locally R-D optimized, are extremely important in any 

attempt to improve the online rate-distortion performance of video coding systems.

Figure 4.29 : Luma Component of miss 
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Figure 5.31: Luma Component of susie 
sequence
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Figure 5.32: Luma Component of 
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Figure 5.33: Luma Component of trevor 
sequence
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Figure 5.35: Luma Component of 
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Figure 5.37: Luma Component of 
salesman sequence
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Table 5.7: Comparison of the final number of bytes produced
Test Sequences

Miss America
Calendar

Susie
Salesman
Trevor

MPEG-2

294048
833855
1458991
294302
293878

MSE based R-D 
improvement

293921
833800
1458444
294076
293831

Quantization step size 
based R-D improvement

293873
833800
1458350
294082
293800

5.8 Conclusions

In this chapter, the problem of low computational cost R-D improvements of the MPEG-2 

rate control scheme was considered. It was shown that for low encoding delay video 

compression, there exist schemes which improve "on the fly" the R-D performance of the 

rate control algorithm of the standard. In the first part of the chapter, four improved activity 

estimation schemes in R-D terms were proposed. It was shown that local activity 

estimation, based on the distance of the activity of the currently encoded macroblock as 

related to the activity of adjacent macroblocks and to the average activity of the previously 

encoded frame, may be beneficial in improving the R-D performance of the standard. 

Experiments showed that increases in PSNR values of encoded frames up to 2.5db 

(luminance+chrominance components) for the same number of bits as the standard can be 

achieved. Subsequently, exponential modulation was used to reduce the unnecessary 

fluctuation of the quantizer step size per encoded macroblock. The reduction in this 

fluctuation results in a more uniform quality across macroblocks of the encoded frame, 

while at the same time more quantization parameters are packed in the lower end of the 

quantization spectrum. This improves the PSNR values per frame since the majority of the 

macroblocks are assigned lower quantization parameters. The increase in bit production 

due to smaller quantizer step sizes is offset by the reduction in the overheads transmitted. It
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was shown that the proposed modulators achieved per frame improvements up to 3.5db in 

the luminance and 3.5 and 3db in the two chrominance components respectively for the 

same final number of bits as MPEG-2. Two novel statistical estimates were also proposed 

in order to reduce the quantization step assignment fluctuations in MPEG-2 rate control. It 

was shown that the variability in the activity normalization phase of the quantizer step size 

selection, caused by the extra sensitive to changes variance, can be reduced by using the 

Sum of Absolute Differences (SAD) and the standard deviation of pixel samples (STD) 

instead. Thus, more uniform quality can be achieved across macroblocks of a frame, for 

the same normalization function as the standard, since less overheads need to be 

transmitted in order to indicate quantizer step size changes. Improvements up to 2.8db per 

frame for both the proposed statistical estimates were observed for the same final bit rate 

as the standard.

In the second part of the chapter, the "rate only" based rate control scheme of MPEG-2 was 

enriched by explicitly including distortion in the estimation of the quantization step 

through a low cost Lagrangian formulation. Two locally optimal algorithms in R-D terms 

were proposed and their complexity was assessed in terms of absolute number of 

operations versus a variety of well known R-D optimization approaches. It was shown that, 

whereas well known computationally intensive R-D approaches rarely achieve 

improvements of over Idb per frame, the proposed schemes achieved 0.5db-ldb 

improvements per frame for a much lower computational cost and encoding delay for the 

same number of bits as the standard.

The proposed low cost activity estimates for improving the R-D performance along with 

the locally optimal (in R-D terms) Lagrangian based schemes, could have significant 

potential in real time applications or in applications where the PSNR performance is at 

premium. Typical examples include surveillance systems, video aided terrain mapping etc.
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CHAPTER 6- THESIS CONCLUSION AND FURTHER RESEARCH

This thesis reported on the design, development and analysis of ten low cost algorithms 

and four estimates for image and video compression. The proposed algorithms and 

estimates refer to the JPEG-LS standard for still image compression and to the MPEG-2 

and MPEG-4 standards for video compression.

In the third chapter, three algorithms were proposed for JPEG-LS. Initially, a multilevel 

information loss distribution is developed in order to indirectly optimize the image quality 

in visual terms. The HVS principle followed, reflects the different tolerance of the human 

visual system across different textures and the prediction scheme of the standard was 

modified to reflect this principle. Specifically, the retaining of information as much as 

possible in smooth textures was enforced, whereas information loss was increased in rough 

areas where the HVS is less sensitive. In this manner a better balance between visual 

quality and compression rates was achieved. The multilevel information loss distribution 

was shown to produce higher compression rates and better visual quality than JPEG-LS. It 

was also shown to be very competitive even in PSNR performance for the same 

compression rates as the standard, provided a suitable triplet of information loss 

parameters was chosen. Subsequently, the possibility of adding rate control to the standard 

was investigated. Two low cost rate control algorithms were designed based on the 

suggested information loss distribution and their performance in both PSNR terms and 

visual quality was assessed. It was shown that in contrast to computationally expensive rate 

distortion techniques for optimizing the R-D performance, it is possible to optimize the 

visual performance via low cost schemes and produce images of better visual quality for 

the same compression rates as JPEG-LS. Since every rate control scheme has to enforce 

the compression rate close to a defined target, whereas the standard just exploits the natural 

compressibility without considering rate control, both of the rate control schemes proposed
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showed an average degradation of 2-3 db in PSNR terms for the same compression rates as 

the standard. It was also shown that the two proposed low cost rate control schemes are 

capable of controlling the compression rates in the ranges 2:1 and 3:1. This is important in 

the context of digital photography where users may decide to compress an image at a 

compression rate of their choice or alternatively to fit an image in the space of a previously 

deleted image. The third chapter concluded with potential applications of one of the rate 

control algorithms in the context of medical imaging. The domain of medical imaging 

imposes stricter requirements as compared to the domain of the entertainment industry in 

terms of the information loss distributions, since in applications such as wound/rash 

healing we can afford to lose less information on edges. Despite this fact, one of the rate 

control schemes proposed, managed to outperform JPEG-LS by retaining smooth texture 

better than the standard for the same compression rates even in this application domain. In 

the case of medical imaging, the compression rates were also controlled in the ranges 2:1 

and 3:1.

The key point in the HVS based, multilevel information loss distribution, was the 

characterization of texture according to the JPEG-LS prediction scheme. A refined JPEG- 

LS prediction scheme with more than three texture denominations could improve both the 

results in terms of the information loss distribution and consequently the HVS based rate 

control algorithms. This of course would increase the complexity of the algorithms but it 

still is a future direction to be considered, especially in applications where the visual 

quality is of outmost importance.

In the fourth chapter, four low cost algorithms were presented for utilizing pixel value 

trends in improving compression rates and MSE performance in the MPEG-4 and JPEG- 

LS standards. In the MPEG-4 case, the pixel trend considerations for the padding problem 

in boundary macroblocks resulted in the proposed Linear Extrapolated Padding technique

185



(LEP). When this technique was applied in padding the reference macroblock in the 

horizontal direction, it resulted in compression improvements of up to 6.9% as compared 

to MPEG-4. No significant compression improvements were found when LEP was also 

applied in the vertical direction. For severely distorted boundary macroblocks, the 

Extrapolated Average Padding (EAP) technique was also proposed and a hybrid algorithm 

that dynamically chooses the most appropriate of the two padding techniques proposed was 

designed. The choice of the optimal padding technique depended on a simple measure of 

distance mismatch as compared to a fixed threshold. Improvements in compression rates of 

up to 9% were observed with the hybrid padding scheme, as compared to the padding 

scheme of the MPEG-4 standard.

In this direction, a more elaborate mismatch measure and a dynamic threshold could 

enhance the performance of the hybrid scheme. The low computational complexity was a 

prime factor in the proposed design and this justifies the simple design choices. 

The fourth chapter concludes with two low cost algorithms for adding diagonal edge 

detection in JPEG-LS. The standard does not include diagonal edge detection since it is 

limited to horizontal and vertical edges only. Although this is the case in most images, in 

the presence of diagonal edges, JPEG-LS will perform poorly in MSE terms due to 

inadequate prediction. The proposed two algorithms exploit pixel trend variation via local 

gradients in order to detect diagonal edges accurately and use a weighted scheme for the 

predicted values, based on the pixel correlation inside the predictive template. The two 

schemes show improvements in MSE terms of 3 and 2% correspondingly for the same 

compression rates as the standard. It is worth noticing that the two algorithms for diagonal 

edge detection do not change the compression rates of the standard. This is expected since 

no modification in the entropy coding scheme of JPEG-LS was attempted. The more
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accurate prediction resulting from the proposed schemes could be used for improving the 

statistical context modeling, which is a key element of JPEG-LS.

A more elaborate diagonal edge detection could be a way forward but it would involve 

increasing the computational complexity. As in chapter two, the simple design choices 

taken were aimed in low computational cost schemes.

In the fifth chapter, the issue of low cost improvements of the rate distortion performance 

in MPEG-2 based video coding was addressed. Four improved estimates were proposed 

for improving "on-the-fly" the rate distortion performance of the MPEG-2 rate control 

scheme. They all aimed in reducing the unnecessary fluctuations of the quantizer step size 

assignment per macroblock, for the rate control scheme of the standard. Ideas like local 

activity estimation, exponential modulation and alternative statistical estimates (sum of 

absolute differences between sample pixels and mean and normalization based on standard 

deviation instead of variance) were explored. It was shown that the activity normalization 

phase of MPEG-2 is not optimal in R-D terms and as such, the above estimates can 

provide low cost solutions for R-D improvements. The PSNR performance of exponential 

modulation showed improvements of up to 3.5db, the local activity estimation of up to 

2.5db and the SAD and STDEV of up to 2.8db for the same final number of bits as the 

standard for a variety of commonly used video sequences.

A more elaborate activity estimation and normalization process could improve R-D 

performance in MPEG-2, but this would result in increasing the computational complexity. 

Chapter 5 concluded by presenting two low cost algorithms for online R-D improvements 

in MPEG-2 rate control, which are based on the buffer based rate control scheme of the 

standard but they also use Lagrangian theory for local optimization. By minimizing locally 

the Lagrangian R-D formulation by a simple derivative approximation, we can improve in 

a computationally inexpensive manner the "rate only" buffer feedback mechanism of
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MPEG-2 by explicitly considering distortion in the estimation of the quantizer step size per 

macroblock. The value of the proposed algorithms stems from the fact that PSNR 

improvements of 0.5-Idb are achievable for the same number of bits as the standard, with 

extremely low computational cost optimizations and encoding delay. This has to be 

compared to the Idb improvements for the same number of bits as MPEG-2, of well 

known R-D optimization approaches which are computationally very intensive, they incur 

high encoding delays and as such they are realistically only applicable offline. A detailed 

complexity analysis of the proposed two algorithms versus a variety of well know R-D 

approaches is included in the chapter.

Both the proposed schemes used the rate distortion characteristics of the previously 

encoded macroblock only in the Lagrangian formulation. R-D optimization approaches 

that consider a limited window of macroblocks in the past or future, can be used for 

improving even more the rate distortion performance of the MPEG-2 rate control scheme. 

Although this direction is possible, it will undoubtedly increase complexity since the 

number of operations needed for the collection of the R-D characteristics and the number 

of iterations needed for the optimization method to converge will be higher.

188



References

1- C.J. van den Branden Lambrecht and O.Verscheure, "Perceptual quality measure using a 

spatio-temporal model of the human visual system,", in Proc. of IS&T/SPIE Digital Video 

Compression 96, (San Jose, CA), pp 450-461, Feb. 1996.

2. C.A. Burbek and D.H. Kelly, "Spatio-temporal characteristics of visual mechanisms", 

excitatory-inhibitory model," Journal of the Optical Society of America, Vol 70, pp 1121-1126, 

Sep. 1980.

3. G.E. Legge and J.M.Foley, "Contrast masking in human vision", Journal of the Optical 

Society of America, Vol 70. pp. 1458-1471, Dec 1980

4. B.A.Wandell, Foundations of Vision, Sinauer Associates, Inc, 1995

5. ISO/IEC JTC 1/SC 29/WG1 FCD 14495-public draft, July 16th, 1997. 

http ://w ww. jpeg. org/public/j peglinks .htm

6. JTC 1.29.14, 15444: Call for contributions for JPEG-2000, http://www.jpeg.org

7. MPEG-2 encoder v.l.la, MPEG Software simulation Group, (online) 

http://www.mpeg.org/tristan/MPEG/MSSG

8. MPEG-2, Test model 5(TM5) Doc. ISO/IEC JTCl/SC29/WGll/93-225b, Test Model 

Editing Committee, Apr 1993.

9. ISO/ffiC/MPEG'97: "MPEG-4 video verification model 8.0", Document N1996, July 1997.

10. ISO/IEC/MPEG'97: "MPEG-4 Requirement - Version 3", MPEG Requirements Group, 

Document N1682,April 1997.

11. P. Kauff., B. Makai., S. Rauthenberg., U. Golz, J. De Lameillieure, T. Sikora, "Functional 

coding of video using a shape-adaptive DCT algorithm and an object-based motion prediction 

toolbox", IEEE Transactions on Circuits & Systems in Video Technology-7, pp. 181-196, 

February 1997.

189



12. R. Schaafer, "MPEG-4: a multimedia compression standard for interactive applications and 

services", ffiE Electronic & Communication Engineering Journal, Vol. 10, No. 6, pp. 253-262, 

1998.

13. T. Sikora, "Low complexity shape-adaptive DCT for coding of arbitrarily shaped image 

segments", Signal Processing, Image Communications, Vol. 7, pp. 381-395,1995.

14. D.T Hoang, E.L Linzer and J.S.Vitter "Lexicographic bit allocation for MPEG video", 

Journal of Visual Communication and Image Representation, Dec. 1997.

15. L.Qian, D.Jones, K.Ramchandran, S.Appadwedula "A General Joint Source-Channel 

Matching Method for Wireless Video Transmission", ICIP 99.

16. MPEG-4 Standards - MPEG97/N1796 - ISO/EEC JTC1/SC29/WG11- July 1997.

17. G.K.Wallace, "The JPEG Still Picture Compression Standard", IEEE Trans. On Consumer 

Electronics, December 1991.

18. Digital Compression and Coding of Continuous tone Still Images, Part 1, Requirements and 

Guidelines, ISO/EEC JTC1 Draft International Standard 10918-1, November 1991

19. Digital Compression and Coding of Continuous tone Still Images, Part 2. Compliance 

Testing, ISO/IEC JTC1 Committee Draft 10918-2, December 1991.

20. M.Nelson, Data Compression Book, M&T Books, 1991

21. D.A.Huffman, "A method for the Construction of Minimum-Redundancy Codes", Proc. of 

the Inst. Of Radio Engineers, Vol. 40, 1952, pp. 1098-1101.

22. ITU-T Recommendation H261: Video codec for audio-visual services at px64 kbits, Mar.

1993

23. Draft ITU-T Recommendation H263: Video Coding for Low bit rate communication, July

1995.

24. ITU-T/SG15, Video Codec Test Model, TMN7, Nice, Feb. 1997.

25. ITU-T/SG15, Video Codec Test Model, TMN8, Portland, Jun. 1998.

190



26. CJ. van den Branden Lambrecht and O.Verscheure, " A Working Spatio-Temporal model 

of the Human Visual System for Image Restoration and Quality Assessment Applications", in 

Proceedings of ICASSP, pp 2293-2296, Atlanta, GA, May 7 1996.

27. A.Watson, Handbook of perception and human performance, chapter 6, Temporal 

Sensitivity, John Wiley 1986.

28.1.A.Olzak and J.P.Thomas, Handbook of perception and human performance, chapter 7, 

Seeing Spatial Patterns, John Wiley, 1986.

29. C.J. van den Branden Lambrecht and O.Verscheure, "Efficient Spatio-Temporal 

Decomposition for Perceptual Processing of Video Sequences", in Proc. of ICJP, Lausanne, 

Switzerland, September 16-19, 1996

30. O.Verscheure, "Perceptual Video Activity Measure", Technical Report, Swiss Federal 

Institute of Technology, June 1996

31. W.B.Pennebaker and J.L.Mitchell, "JPEG Still Image Data Compression Standard", New 

York, Van Nostrand Reinhold, 1993.

32. C.S.Wen-Hsiung Chen and S.Fralick, " A fast computational algorithm for the discrete 

cosine transform", IEEE Trans. On Communications, 1997.

33. A.Ligtenberg and M.Vetterli," A Discrete Fourier/Cosine Transform chip", IEEE Journal of 

Selected Areas in Communications",vol. SAC-4, pp 49-61, Jan. 1996.

34. Z.Wang, " Fast algorithms for the discrete wavelet transform and the discrete Fourier 

transform", IEEE Trans. On Signal Processing, vol ASSP-32, pp. 803-816, Aug. 1984

35. B.Lee, " A new algorithm to compute the discrete cosine transform", IEEE Trans on Signal 

Proc. vol ASSP-32, pp. 1243-1245, Dec. 1984

36. P.Duhamel and H.H.Mida, " New 2n DCT algorithms suitable for VLSI implementation", 

in Proc of ICASSP 87, (Dallas), p. 1805, Apr. 1987.

191



37. C.Loeffler, A.Ligtenberg and G.Moschytz, " Practical fast 1-D DCT with 11 

multiplications", in Proc. of ICASSP 1989.

38. E.Feig and E.Linzer," Discrete Cosine Transform algorithms for image data compression", 

in Proc. of Electronic Imaging 90, p. 84,1990.

39. M.Vetterli, "Tradeoffs in the computation of mono and multi-dimensional DCT's", tech 

report, Ctr. Of Telecommunications Research, Columbia University, June 1988.

40. E.Feig and S.Winograd, " On the multiplicative complexity of the discrete cosine 

transform", IEEE Trans. On Information theory, 1992.

41. H.R.Wu and Z.Man, " Comments on fast algorithms and implementation of 2-D recursive 

cosine transform", IEEE Trans. On Circuits and Systems for Video Technology, 1998.

42. N.LCho and S.U.Lee," A fast 4*4 DCT algorithm for the recursive 2-D DCT", IEEE Trans. 

On Circuits and Systems for Video Technology, 1998.

43. A.Said and W.Pearlman," A new fast and efficient image codec based on Set Partitioning in 

Hierarchical Trees", IEEE Trans. Circuits and Systems for Video Technology, vol. 6, June 3, 

1996.

44. J.M.Shapiro, " Embedded image coding using zero-trees of wavelet coefficients", IEEE 

Trans. On Signal Proc., 41(12):3445-3462, Dec. 1993.

45. G.M.Davies and S.Chawla, " Image coding using optimised significance tree quantization", 

in Proc. Data Compression Conference (J.A.Storer and M.Cohn, eds) pp. 387-396, Mar. 1997.

46. M.Vetterli and J.Covacevic, Wavelets and Sub-band Coding, Prentice-Hall, Englewood 

Cliffs, NJ. 1995.

47. M.Vetterli, "Multi-dimensional sub-band coding: Some theory and algorithms", Signal 

Processing, vol. 6, pp. 97-112, 1984.

48. J.W.Woods and S-D-ONeil, "Sub-band coding of images", IEEE Transactions on Acoustics, 

Speech and Signal Processing, vol. 32, no 5, pp. 1278-1288, Oct. 1986.

192



49. J.Covacevic, "Sub-band coding systems incorporating quantizer models", IEEE 

Transactions on Image Processing, vol 4, no 5, pp. 543-553, May 1995.

50. Still Picture Interchange File Format, ITU-T Recommendation T.84[ISO/IEC 10918-4].

51. B.G.Haskell, A. Puri, and A.N.Netravali, " Digital Video: An introduction to MPEG-2", 

New York, Chapman and Hall,1997.

52. ITU-T Recommendation, H324, "Line Transmission of non-telephone signals-Terminal for 

low bit rate multimedia communication".

53. A.Puri, R.Aravind and B.G.Haskell, "Adaptive frame/field motion compensated video 

coding", Signal Processing Image Communication, vol. 1-5, pp. 39-58, Feb. 1993.

54. Special Issue on MPEG-4, Signal Processing, Image Communication, vol. 9, May 1997.

55. Special Issue on MPEG-4, Signal Processing, Image Communication, vol. 10, July 1997.

56. International Committee for Standardisation, Final Committee draft ISO/IEC 14496-2, " 

Coding of Audio Visual Objects: Visual".

57. G.Privat and I.Le-Hin," Hardware support for shape decoding from 2D region based image 

representations", in Multimedia Hardware Architectures 1997, Proc. SPBE, San Jose, CA, vol. 

3021,1997, pp. 149-159.

58. A. Ortega, K. Ramchandran and M. Vetterli. 'Optimal trellis-based buffered compression 

and fast approximations',IEEE Trans. Image Processing, Vol 3, Jan 1994, pp 26-40.

59. J. Choi and D. Park. 'A stable feedback control of the buffer state using controlled 

Lagrange multiplier method', IEEE Trans. Image Processing, Vol 3, Sept 1994, pp 546-558.

60. LJ. Lin and A. Ortega 'Bit-rate control using piecewise approximated rate-distortion 

characteristics' IEEE Trans. Circuits & Systems for Video Technology, Vol 8, No 4, August 

1998, pp 446-459.

61. Y. Shoham and A. Gersho 'Efficient bit allocation for an arbitrary set of quantizers', IEEE 

Trans. Acoust, Speech, Signal Processing, Vol 36, Sept 1988, pp 1445-1453.

193



62. S.W Wu and A. Gersho 'Rate-constrained optimal block-adaptive coding for digital tape 

recording of HDTV IEEE Trans. Circuits Syst. Video Technology, Vol 1, Mar 1991, pplOO- 

112.

63. C.T Chen and A. Wong 'A self-governing rate buffer control strategy for pseudo-constant 

bit rate video coding', IEEE Trans. Image Processing, Vol 2, Jan 1993, pp 50-59.

64. C.Y Hsu, A. Ortega and A. Reibman 'Joint selection of source and channel rate for VBR 

video transmission under ATM policing constraints' IEEE J. Select. Areas Commun., Vol 15, 

Aug. 1997, pp 1016-1028.

65. G. Keesman, I. Shah and R. Klein-Gunnewiek 'Bit-rate control for MPEG encoders' Signal 

Processing, Image communication, Vol 6, pp 545-560, Feb 1995.

66. L.J Lin , A. Ortega and C.C.J Kuo 'Rate control using spline-interpolated R-D 

characteristics' Proc. SPIE Visual Commun. Image Processing'96, Orlando, FL., Mar. 1996, pp 

111-122.

67. A. Reibman and B.G Haskell 'Constraints on variable bit-rate video for ATM networks', 

IEEE Trans. Circuits Syst. Video Technology, Vol 2, pp 361-372, Dec. 1992.

68. T. Wiegand, M. Lightstone, et al. 'Rate-distortion optimized mode selection for very low bit 

rate video coding and the emerging H.263 standard', IEEE Trans. Circuits Syst. Video Tech. 

Vol 6, Apr 1996, pp 182-190.

69. J. Zdepsky, D. Raychaudhuri and K. Joseph 'Statistically based buffer control policies for 

constant rate transmission of compressed digital video', IEEE Trans. Communication, Vol 39, 

No 6, June 1991, pp 947-957.

70. T.Sikora, "The MPEG-4 Video Standard Verification Model", IEEE Trans. CSVT. Vol. 7, 

No 1, Feb. 1997.

194



71 • E.A.Edirisinghe, J.Jiang and C.Grecos," A Novel Shape Padding Technique for improving

MPEG-4 Compression Efficiency", IEE Electronics Letters, Vol. 35, No 17, Aug. 1999, pp.

1453-1454.

72. H.M Hang and J.J Chen "Source model for transform video coder and its application - part

I: fundamental theory", IEEE Trans. Circuits and Systems for Video Technology, Vol 7, pp.

287-311, April 1997.

73. W.Ding and B.Liu, "Rate Control of MPEG video coding and recording by rate quantization 

modelling," IEEE Trans. Circuits Syst. Video Tech., vol. 6, no l,pp. 12-20,Feb 1996.

74. K.Ramchandran, A.Ortega, and M.Vetterli, "Bit Allocation for dependent quantization with 

applications to multiresolution and MPEG video coders", IEEE Trans. Image Proc, vol 3, no 

5,pp. 533-545,Sep. 1994.

75. D.W.Lin, M.H.Wang and JJ.Chen, "Optimal delayed coding of video sequences subject to a 

buffer size constraint", Proc. of SPffi Visual Communications and Image Processing, 1993, 

Cambridge, MA, November 1993,pp. 223-234.

76. J.Lee and B.W.Dickinson, "Joint optimization of frame type selection and bit allocation for 

MPEG video encoders", Proc. ICIP 1994, Austin, TX, 1994, vol 2, pp. 962-966.

77. J.R.Corbera, S.Lei, "Rate Control in DCT Video Coding for Low Delay Communications", 

IEEE Trans. Circuits Syst. Video Tech., vol. 9, no 1, pp. 172-185, Feb 1999.

78. G.Schuster, G.Melnikov, A.K.Katsaggelos, "A Review of the Minimum Maximum 

Criterion for Optimal Bit Allocation among Dependent Quantisers", IEEE Transactions on 

Multimedia, vol 1, no l.pp 3-17, March 99.

79. A.Gersho, R.M.Gray, Vector Quantization and Signal Compression, Norwell, MA, Kluwer 

Academic, 1992.

195



80. S. Daly, K. Matthews and J.R.Corbera, "Face-based visually optimised image sequence 

coding", in Proc. IEEE Int. Conf. Image Processing (ICIP), Chicago, EL, Oct. 1998, vol. HI, pp. 

443-447.

81. L-J Lin and A.Ortega, "Perceptually based video rate control using pre-filtering and 

predicted rate-distortion characteristics", in ICD? 97, Santa Barbara, CA, Sept. 1997.

82. G.M.Schuster, A.K.Katsaggelos, "Fast and efficient mode and quantizer selection in the rate 

distortion sense for H263", Proceedings of Visual Communication and Image Processing, 1996.

83. J. Jiang 'A low cost content adaptive and rate controllable near lossless image codec in 

DPCM domain' IEEE Trans. On Image Processing, Vol 9, No 4, 2000, pp543-554.

84. J. Jiang and M. Reddy ' An open-loop rate control scheme for JPEG-LS near lossless image 

compression' IEE Electronics Letters, Vol 35, No. 6,1999, pp465-466.

85. MJ Weinberger, JJ Rissanen. and R.B Arps. 'Applications of universal context modeling to

lossless compression of grey-level images' IEEE Trans. On Image Processing, Vol 5, No 4,

1996, pp 575-586.

86. MJ Weinberger, G.Seroussi, G.Sapiro 'LOCO-I: A low complexity, context-based, lossless

image compression algorithm' Proceedings of Data Compression Conference, Utah, 1996, pp

140-149.

87. B.Guo, J Jiang, S.Y.Yang 'Revision to Edge detection based prediction in JPEG-LS', 

Proceedings of SIP 2000,Las Vegas.

88. R.F Rice 'Some practical universal noiseless coding techniques: III' Tech. Report JPL, Vol

91-3, Jet Propulsion Laboratory, Pasadena, CA, November, 1991.

89. R.F Rice 'Some practical universal noiseless coding techniques' Tech. Report JPL, Vol 79-

22, Jet Propulsion Laboratory, Pasadena, CA, March, 1979.

90. D.F.Frimout, J.Biemond and R.L.Lagendik, " Forward rate control for MPEG recording", in

Proc. SPffi Visual Commun. Image Processing, Cambridge, MA, Nov. 93, pp. 184-194.

196



91. A.Nicoulin, M.Mattaveli, W.Li, A.Basso, A.Popat, and M.Kunt," Image sequence coding 

using motion compensated sub-band decomposition", in Motion Analysis and Image Sequence 

Processing, M.I.Sezan and R.N.Lagendjik, Eds. Norwell, MA, Kluwer Academic, 1993, pp. 

225-256.

92. B.Tao, H.A.Peterson and B.W.Dickinson, "A rate quantization model for MPEG encoders", 

in Proc. ICIP, Santa Barbara, CA, vol. 1, Oct. 1997, pp. 338-341.

93.T.Chiang and Y.Q.Zhang, "A new rate control scheme using quadratic rate distortion

model", IEEE. Trans. Circuits and Systems for Video Technology, vol. 7, pp. 246-250, Feb.

1997.

94. A.Y.K.Yan and M.L.Liou," Adaptive Predictive Rate Control Algorithm for MPEG videos

by rate quantization method", in Proc. Picture Coding Symposium. Berlin, Germany, Sept.

1997, pp.619-624.

95. D.A.Pierre," Optimization Theory with Applications", New York, Dover, 1986.

96. K.M.Uz, J.M.Shapiro and M.Czigler," Optimal bit allocation in the presence of quantizer 

feedback", Proc. ICASSP 93, Minneapolis, MN, Apr. 1993, vol. V, pp. 385-388.

97. D.LeGall, "MPEG: a video compression standard for multimedia applications", 

Communications of the ACM, vol 34, no, 4, pp. 46-58, April 1991.

98. J.Mitchell, W. Pennebaker, C.E. Fogg and DJ. LeGall, MPEG video compression standard, 

Chapman and Hall, New York, 1997.

99. J.Katto and M.Ohta, "Mathematical analysis of MPEG compression capability and its 

application to rate control", in Proc. of ICIP 95, Washington DC, 1995, vol. 2, pp. 555-559.

100. D.G.Lueberger, Linear and Nonlinear Programming, Addison Wesley 1984.

101. H.Everett, "Generalised Lagrange multiplier method for solving problems of optimum 

allocation of resources", Operations Research, vol. 11, pp. 319-417, 1963.

102. G.Dahlquist and A.Bjorck, Numerical Methods, Prentice-Hall, 1974.

197



103. J.E.Dennis and R.B.Schnabel, Numerical methods for unconstrained optimisation and 

non-linear equations, Prentice-Hall, Englewood Cliffs, NJ. 1993.

104. K.Ramchandran and M.Vetterli, "Best wavelet packet bases in a rate distortion sense", 

IEEE Trans. On Image Processing, vol.2, no.2, pp. 160-175, Apr. 1993.

105. A Ortega, " Optimal bit allocation under multiple rate constraints", In Proc. of DCC 

96,Snowbird, Utah, Apr. 1996.

106. JJ.Chen and D.W.Lin, " Optimal Coding of Video Sequences over ATM networks", In 

Proc. ICIP 1995, vol. 1, Washington DC, pp.21-24, Oct. 1995.

107. A.J.Viterbi and J.K.Omura, Principles of Digital Communication and Coding, New 

York, McGraw-Hill, 1979.

108. G.D.Forney," The Viterbi algorithm", Proc. IEEE, vol. 61, pp. 268-278, Mar. 1973.

109. A Ortega, Optimisation Techniques for adaptive quantization of image and video under 

delay constraints, Phd Thesis, Columbia University 1994.

110. T.G.Cover and J.A.Thomas, Elements of Information Theory, Ch. 13, John Wiley and 

sons, Inc. 1991.

111. ITU-T 81. Information Technology, Digital Compression and Coding of Continuous- 

Tone Still Images, Requirements and Guidelines. Recommendation T.81, ITU, 1992.

112. M.Schindler, "Practical Huffman Coding", http://compressconsult.com/huffman, 

October 1998.

113. G.G.Langdon, "An introduction to arithmetic coding", IBMJ.Res.Develop., 28, 135-

149,1984.

114. J.J. Rissanen and G.G.Langton, "Arithmetic Coding", IBMJ.Res. Develop.",23, 149-

162, March 1979.

115. R.M.Witten, I.H.Neal and J.G.Cleary, "Arithmetic Coding for Data Compression",

Communications of the ACM, 30(6),520-540,June 1987.

198



116. N.S.Jayant, and P.Noll. "Digital Coding of waveforms: Principles and Application to 

Speech and Video", Prentice Hall, Englewood Cliffs, New Jersey, 1984.

117. M.Goldberg and H.Sun, " Frame adaptive vector quantization for image sequence 

coding", IEEE Trans. On Comm., COM-33:629-635, May 1998.

118. W-T Chen, R-F Chang, and J-S Wang, " Image sequence coding using adaptive finite 

state vector quantization", IEEE Trans. On Circuits and Sys. For Video Technology, 2(1): 15- 

24,Mar. 1992.

119. R-F Chang, W-T Chen and J-S Wang, " Image Sequence Coding using adaptive non- 

uniform tree structured vector quantization", Journal of Visual Communication and Image 

representation, 2(2): 166-176, June 1991.

120. R-F Chang, W-T Chen and J-S Wang, " Image sequence coding using adaptive tree 

structured vector quantization with multipath searching", IEE Proc. I, 139(1): 9-14, Feb. 1992.

121. C.Constantinescu and J.A.Storer, " Online adaptive vector quantization with variable 

size codebook entries", In Proc. of the Data Compression Conference, pages 34-41, Mar. 1993.

122. A.N.Netravali and B.G.Haskell, Digital Pictures, Representation and Compression, 

Plenum Press, New York, 1988.

123. G.K.Wallace, "The JPEG still picture compression standard", Communications of the 

ACM, 34(4):30-44,April 1991.
>

124. JPEG technical specification: Revision (DRAFT), joint photographic experts group, 

ISO/ffiC JTC1/SC2/WG8, CCITT SGVIII, August 1990.

125. Y.H.Kim and J.Modestino," Adaptive entropy-coded sub-band coding of images", IEEE 

Trans. On Image Proc, l(l):31-48,, Jan 1992.

126. P.H.Westerink, D.E.Boekee, J.Biemond and J.W.Woods, "Sub-band coding of images 

using vector quantization", IEEE Trans. On Comm, 36:713-719, 1989.

199



127. M.Antonini, M.Barlaud, P.Mathieu and I.Daubechies, " Image coding using wavelet 

transform", IEEE Trans. On Image Processing, 1(2):205-220, Apr. 1992.

128. A.Lewis and G.Knowles, " Image compression using the 2-d wavelet transform", IEEE 

Trans. On Image Processing, 1(2):244-250, Apr. 1992.

129. C.Chrysafis and A.Ortega, "Efficient context based entropy coding for lossy wavelet 

packet compression", In Proc. of DCC 97.

130. K.Ramchandran and M.Vetterli, " Rate distortion optimal fast thresholding with 

complete JPEG/MPEG decoder compatibility", IEEE Trans. On Image Processing, 1994.

131. K.Ramchandran and M.Vetterli, "Syntax constrained encoder optimization using 

adaptive quantization thresholding for JPEG/MPEG coders", in J.A.Storer and M.Cohn editors, 

Proc. of the Data Compression Conf., pages 146-155,Snowbird, Utah, March 1994.

132. Z.Xiong, N.P.Galatsanos and M.T.Orchard, " Marginal analysis prioritisation for image 

compression based on hierarchical wavelet decomposition", In Proc. of ICASSP 93, pages 546- 

549, Minneapolis, MN, Apr. 1993.

133. P.A.Chu, M.Effros, R.M.Gray, " A vector quantization approach to universal noiseless 

coding and quantization", IEEE Trans. On Info. Th, 1994.

134. M.Effros, P.A.Chu and R.M.Gray, " Variable dimension weighted universal vector 

quantization and noiseless coding", In Proc. of Data Compression, DCC94, pages 2-11, 

Snowbird, Utah, Mar. 1994.

135. N.S.Jayant, "Adaptive quantization with a one word memory", Bell. Sys. Tech. J. 

52(7): 1119-1144, Sept. 1973.

136. S.Chrissafulli, R.B.Bitmead, " Adaptive quantization : solution via non-adaptive linear 

control", IEEE Trans. On Comm, 41(5): 7141-748,May 1993.

200



137. A.R.Calderbank, S.W.McLaughlin and D.F.Lyons, "A low complexity two stage 

adaptive vector quantizer", In Proc. of the 25th CISS, pages 582-587, Baltimore, MD, Mar. 

1991.

138. D.J.Goodman and A.Gersho, Theory of adaptive quantizers", IEEE Trans. On Comm, 

COM-22(8):1037-1045,Aug. 1994.

139. T.C.Bell, J.C.Cleary and I.H.Witten, Text compression, Prentice Hall, Englewood 

Cliffs, NJ, 1990.

140. G.G.Langton and J.Rissanen, "Compression of black and white images with arithmetic 

coding", IEEE Trans. On Comm., COM-29(6):858-867,Jun. 1981.

141. W.B.Pennebaker, J.L.Mitchell, G.G. Langton and R.B.Arps, "An overview of the basic 

principles of the Q-codec adaptive binary arithmetic coder", IBM Journal of Research and 

Development 32(6):717-726, Nov. 1988.

142. W.B.Pennebaker and J.L.Mitchell, "Probability estimation of the Q-coder",JJ3M 

J.Res.Develop., 32(6):737-752,Nov. 1988.

143. J.G.Proakis, C.M.Rader, F.Link and C.L.Nikias, Advanced digital signal processing, 

Macmillan,New York, 1992.

144. R.S.Gallager, "Variations on a theme by Huffman", IEEE Trans. On Info. Theory, IT- 

24(6):668-674,Nov. 1978.

145. D.Knuth, "Dynamic Huffman Coding", Journal of Algorithms, (6):163-180, 1985.

146. J.S.Vitter, "Dynamic Huffman Coding", ACM Trans. On Math. Software, 15(2): 158- 

167,1989.

147. H-C. Huang, J-L.Wu, "Windowed Huffman coding algorithm with size adaptation", IEE 

Proc. 1,140(2): 109-113,Apr. 1993.

148. J.Rissanen, "Universal coding, information, prediction and estimation", IEEE Trans. On 

Info. Theory, IT-30(4):629-636, 1984.

201



149. J.Rissanen, Stochastic complexity in statistical inquiry, World Scientific, Singapore, 

1989.

150. K.Ramchandran, Z.Xiong, K.Asai and M.Vetterli," Adaptive transformations for image 

coding using spatially varying wavelet packets", IEEE Trans. On Image Proc, 1996.

151. D.Taubman and A.Zakhor, " Multirate 3-D sub-band coding of video", IEEE Trans. On 

Image Proc., 1994.

152. H-J.Wang and C-C Kuo, " A multi threshold wavelet coder (MTWC) for high fidelity 

image compression", 1997.

153. J.Li and S.Lei," An embedded still image coder with rate distortion optimization", IEEE 

Trans. On Image Proc., 1999.

154. B-B.Chai, J.Vass, X.Zhuang, "Significant-linked connected component analysis for 

wavelet image coding", IEEE Trans. On Image. Proc. 1999.

155. M.Crouse and K.Ramchandran, "Joint thresholding and quantizer selection for transform 

image coding. Entropy constrained analysis and applications to baseline JPEG", IEEE Trans. 

On Image Proc., 1997.

156. J.Li, J.Li and C-C. Kuo, "Layered DCT still image compression", IEEE Trans. On Circ. 

and Syst. For Video Tech., 1997.

157. G.J.Sullivan and R.L.Baker," Efficient quad-tree coding of images and video", In Proc. 

ofICASSP91, 1991.

158. S.Todd, G.G. Langton Jr. and J.Rissanen, "Parameter reduction and context selection for 

compression of the gray scale images", IBM Jl. Res. Develop., vol 29 (2) pp. 188-193, Mar.

1985.

159. G.G.Langton Jr., A.Gulati and E.Seiler, " On the JPEG model for lossless image

compression" in Proc. 1992 DCC (Snowbird, Utah, USA), pp. 172-180, Mar. 1992.

202



160. G.Glangton Jr. and M.Mareboyana, "Centering of context dependent components of 

prediction error distributions of images", in Proc. SPffi, vol 2028, pp. 26-31, July 1993.

161. G.Glangton Jr and C.A.Haidinyak, "Experiments with lossless and virtually lossless 

image compression algorithms", in Proc. SPffi, vol 2418, pp. 21-27,Feb. 1995.

162. X.Wu and N.D. Memon, "Context-based, adaptive, lossless image coding", ffiEE Trans. 

Commun. vol. 45(4), pp. 437-444, Apr. 1997.

163. B.Meyer and P.Tischer, "TMW - A new method for lossless image compression", in 

Proc. 1997 International Picture Coding Symposium (PCS 97), (Berlin, Germany), Sept. 1997.

164. A.Netravali and J.O.Limb, "Picture Coding: a review", Proc. IEEE, vol 68, pp. 366-406,

1980.

165. R.Li, B.Zeng and M.L.Liou, "A new three step search algorithm for block motion

estimation", ffiEE Trans. On Circuits and Systems for Video Technology, vol. 4, no 4, pp. 438-

442, Aug. 1994.

166. L.Po and W.Ma, "A novel Four Step Search Algorithm for Fast Block Motion

Estimation", ffiEE Trans. On Circuits and Systems for Video Technology, vol. 6, no 3, pp. 313-

317, June 1996.

167. T.Zahariadis and D.Kalivas, " A spiral search algorithm for fast estimation of block 

motion vectors", Signal Processing VIII, theories and applications, proceedings of the 

EUSIPCO 96, Eighth European Signal Processing Conference, p.3, pp. 1079-1082, vol 2.

168. J.Jain and A.Jain, "Displacement measurement and its application in interframe image 

coding", ffiEE Trans. On Communications, vol. COM-29, pp. 1799-1808, Dec. 1981.

169. A.Puri, H.Hang and D.Schilling, "An efficient block matching algorithm for motion 

compensated coding", Proceedings ffiEE ICASSP, pp. 25.4.1-24.4.4, 1987.

170. M.Ghanbari, " The Cross Search Algorithm for Motion Estimation". ffiEE Trans. On 

Communications, vol. COM-38, no. 7, pp. 950-953, July 1990.

203



171. R.Sinivasan, K.Rao, "Predictive coding based on efficient motion estimation", 

International Conference on Communications, Part 1, pp. 521-526,1988, Amsterdam.

172. A.Tourapis, G.Shen, M.Liou, O.Au, I.Ahmad , "A New Predictive Diamond Search 

Algorithm for Block Based Motion Estimation", VCIP 2000.

173. S.Zhou and K.K.Ma, " A new Diamond Search Algorithm for fast block matching 

motion estimation", Proc. of Int. Conf. Information, Communications and Signal Processing , 

vol 1, pp. 292-6,1997.

174. J.Y.Tham, S.Ranganath, M.Ranganath and A.A.Kassim, "A Novel Unrestricted Center- 

Biased Diamond Search Algorithm for Block Motion Estimation", IEEE Transactions on 

Circuits and Systems for Video Technology Vol. 8, pp. 369-377, Aug. 1998.

175. M.Alkanhal, D.Turaga and T.Chen, " Correlation based Search Algorithms for Motion 

Estimation", Proc. of Picture Coding Symposium, Portland, OR, April 21-25, 1999.

176. A.M.Tekalp, Digital Video Processing, Prentice Hall, New York, 1995.

177. Y.Altunbasak, P.E.Eren and A.M.Tekalp, "Region-Based Parametric Motion 

Segmentation Using Color Information", In Journal of Graphical Models and Image Processing, 

vol. 60, No 1, January, pp. 13-23, 1998.

178. J.Y.A.Wang and E.H.Adelson, " Representing moving images with layers", IEEE Trans. 

Image Proc. 3(5), Sept. 1994, 625-638.

179. M.Bober and J.Kittler, "On combining the Hough transform and multi-resolution MRFs 

for the robust analysis of complex motion", in Proc. of Second Asian Conference on Computer 

Vision (ACCV), Dec. 1995.

180. J-M Odobez and P.Bouthemy, " Direct model based image motion segmentation for 

dynamic scene analysis", in Proc. of Second Asian Conference on Computer Vision (ACCV), 

Dec. 1995.

204



181. Y.Weiss and E.H.Adelson, " A unified mixture framework for motion segmentation: 

Incorporating spatial coherence and estimating the number of models", in Proc. IEEE Int. Conf. 

Computer Vision and Pattern Recognition, June 1996.

182. M.M.Chang, A.M.Tekalp and M.I.Sezan, " An algorithm for simultaneous motion 

estimation and scene segmentation", in Proc. IEEE ICASSP, Adelaide, Australia, April 1994.

183. J.R.Bergen, P.J.Burt and K.Hanna, "Dynamic multiple motion computation" in Journal 

of Artificial Intelligence and Computer Vision (Y.A.Feldman and A.Bruckstein Eds), pp. 147- 

156, Elsevier, Amsterdam, 1992.

184. M.Irani and S.Peleg, " Motion analysis for image enhancement: Resolution, Occlusion 

and Transparency", Journal of Visual Communication and Image Representation, 4(4), Dec. 

1993, 324-335.

185. R.Mech and P.Gerken, "Automatic segmentation of moving objects", Doc. No 

ISO/IEC/JTC1/SC29/WG11 MPEG 96/1188, Sept. 1996.

186. G.Russo and S.Colonnese, "Automatic segmentation Techniques", Doc. No 

ISO/IEC/JTC1/SC29/WG11 MPEG 96/1181, Sept. 1996.

187. D.W.Murray and B.F.Buxton, " Scene segmentation from visual motion using global 

optimization", IEEE Trans. Pattern Anal. Machine Intel., 9(2) Mar. 1987, 220-228.

205




