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ABSTRACT

Recent successes of deep learning have been achieved at the expense of a very

high computational and parameter complexity. Today, deployment of both

inference and training of deep neural networks (DNNs) is predominantly in

the cloud. A recent alternative trend is to deploy DNNs onto untethered,

resource-constrained platforms at the Edge. To realize on-device intelligence,

the gap between algorithmic requirements and available resources needs to be

closed. One popular way of doing so is via implementation in finite precision.

While ad-hoc trial and error techniques in finite precision deep learning

abound, theoretical guarantees on network accuracy are elusive. The work

presented in this dissertation builds a theoretical framework for the imple-

mentation of deep learning in finite precision. For inference, we theoretically

analyze the worst-case accuracy drop in the presence of weight and acti-

vation quantization. Furthermore, we derive an optimal clipping criterion

(OCC) to minimize the precision of dot-product outputs. For implementa-

tions using in-memory computing, OCC lowers ADC precision requirements.

We analyze fixed-point training and present a methodology for implement-

ing quantized back-propagation with close-to-minimal per-tensor precision.

Finally, we study accumulator precision for reduced precision floating-point

training using variance analysis techniques.

We first introduce our work on fixed-point inference with accuracy guaran-

tees. Theoretical bounds on the mismatch between limited and full precision

networks are derived. Proper precision assignment can be readily obtained

employing these bounds, and weight-activation as well as per-layer precision

trade-offs are derived. Applied to a variety of networks and datasets, the pre-

sented analysis is found to be tight to within 2 bit. Furthermore, it is shown

that a minimum precision network can have up to ∼ 3.5× lower hardware

complexity than a binarized network at iso-accuracy. In general, a minimum

precision network can reduce complexity by up to ∼ 10× compared to a full
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precision baseline while maintaining accuracy. Per-layer precision analysis

indicates that precision requirements of common networks vary from 2 bit to

10 bit to guarantee an accuracy close to the floating-point baseline.

Then, we study DNN implementation using in-memory computing (IMC),

where we propose OCC to minimize the column ADC precision. The signal-

to-quantization-noise ratio (SQNR) of OCC is shown to be within 0.8 dB of

the well-known optimal Lloyd-Max quantizer. OCC improves the SQNR of

the commonly employed full range quantizer by 14 dB which translates to

a 3 bit ADC precision reduction. The input-serial weight-parallel (ISWP)

IMC architecture is studied. Using bit-slicing techniques, significant energy

savings can be achieved with minimal accuracy lost. Indeed, we prove that a

dot-product can be realized with a single memory access while suffering no

more than 2 dB SQNR drop. Combining the proposed OCC and ISWP noise

analysis with our proposed DNN precision analysis, we demonstrate ∼ 6×
reduction of energy consumption in DNN implementation at iso-accuracy.

Furthermore, we study the quantization of the back-propagation training

algorithm. We propose a systematic methodology to obtain close-to-minimal

per-layer precision requirements for guaranteed statistical similarity between

fixed-point and floating-point training. The challenges of quantization noise,

inter-layer and intra-layer precision trade-offs, dynamic range, and stability

are jointly addressed. Applied to several benchmarks, fixed-point training is

demonstrated to achieve high fidelity to the baseline with an accuracy drop

no greater than 0.56%. The derived precision assignment is shown to be

within 1 bit per tensor of the minimum. The methodology is found to reduce

representational, computational, and communication costs of training by up

to 6×, 8×, and 4×, respectively, compared to the baseline and related works.

Finally, we address the problem of reduced precision floating-point train-

ing. In particular, we study accumulation precision requirements. We present

the variance retention ratio (VRR), an analytical metric measuring the suit-

ability of accumulation mantissa precision. The analysis expands on concepts

employed in variance engineering for weight initialization. An analytical ex-

pression for the VRR is derived and used to determine accumulation bit-

width for precise tailoring of computation hardware. The VRR also quanti-

fies the benefits of effective summation reduction techniques such as chunked

accumulation and sparsification. Experimentally, the validity and tightness

of our analysis are verified across multiple deep learning benchmarks.
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CHAPTER 1

INTRODUCTION

About a decade ago, the deep neural network (DNN) AlexNet [1] won the

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [2]. It was

the only deep learning model presented at the competition in 2012, and it

beat its runner up by more than 10 percentage points in the Top-5 error

metric. Since then, intensive research interest in deep learning arose and

major advances were realized.

In subsequent editions of ILSVRC, all winners of the competitions used

deep learning models. Recently, the models have surpassed human level

accuracy. First achieving this feat was ResNet [3] in 2017. The scope of deep

learning successes even expanded beyond visual data processing. Indeed,

DNNs are today the most powerful predictive models in different cognitive

tasks such as speech [4, 5] and natural language [6, 7] processing. Deep

learning has also helped machines beat human champions in complex games

such as Go [8].

Much of the success of DNNs has been achieved at the expense of a very

high computational and parameter complexity. For instance, AlexNet re-

quires over 800 million multiply-accumulates (MACs) per image and has 60

million parameters. Google’s Deepface [9] requires 500 million MACs/image

and involves more than 120 million parameters. In addition, training such

models using the stochastic gradient descent (SGD) algorithm is much more

compute intensive with 100s of exa-ops and gigabytes of data storage re-

quired [10]. Such enormous complexities have forced deployment of both

inference and training of DNNs in the cloud (see Figure 1.1) rather than

onto untethered, resource-constrained platform at the Edge and tiny devices

[11].

While deep learning has thrived thus far in the cloud, some applications

require deployment of DNN onto Edge and tinyML [11] devices [12], as de-

picted in Figure 1.1. Mobile visual data processing is required for real-time
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Figure 1.1: Cloud, Edge, and TinyML applications.

face recognition [13]. Similarly, mobile speech processing is required for voice

activity detection and recognition [14]. Private and local text analysis and

translation necessitates natural language processing at the Edge [15]. Strin-

gent latency constraints require local processing in autonomous driving and

systems [16]. Finally, patient-specific physiological data should not be trans-

mitted by biomedical wearables [17].

Without on-device intelligence, the above applications are traditionally im-

plemented using a sensor-cloud-actuator setup. A device captures raw data,

transmits it to the cloud, waits for it to be processed, and finally receives

an instruction for actuation. Such a scheme has three drawbacks. First, the

application level latency is harmed by the wait/idle time in which data is

transferred to and from the cloud. Second, the device energy consumption

itself is dominated by the cost of the transceiver. Third, the device-cloud

data exchange can lead to privacy concerns [18]. In contrast, with on-device

intelligence, these bottlenecks are bypassed and decisions are immediately

generated in-situ. Depending on the application, the total energy and la-

tency can be reduced by orders of magnitude [19], while preserving privacy.

However, several challenges remain in the quest to realize on-device intelli-

gence.

When DNNs are to be deployed onto embedded devices, a large mismatch

arises between algorithmic requirements and available resources. Figure 1.2

describes an example of such mismatch in the context of real-time inference

for image classification. A typical low complexity state-of-the-art model re-

quires ∼ 20 MB storage, ∼ 165 GOPS throughput (for real-time inference),

2
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Figure 1.2: Challenges in resource-constrained machine learning.

and ∼ 5 GOPS/input compute. We target the implementation of such al-

gorithm onto an ARM Cortex-M7 microcontroller, the state-of-the-art in

tinyML applications [20]. This device has an embedded storage of ∼ 1.3

MB, a peak performance of ∼ 0.2 GOPS, and an energy efficiency of ∼ 1.2

GOPS/W. We further assume it to be powered by an embedded battery

such the Samsung S8 Battery, rated at ∼ 2000 mAH when operated at 0.8

V. Thus, comparing algorithmic requirements to available resources, we find

a ∼ 15× storage gap, a ∼ 800× throughput gap, and a capability to process

only ∼ 140 inputs before the battery runs out.

The above difficulties in Edge deployment of DNNs can be alleviated via

the use of accelerator architectures. Such architectures, in contrast to CPUs

and GPUs, provide significant benefits in terms of energy and latency. In-

deed, accelerators are precision-optimized as per DNN quantization noise

tolerance. Furthermore, accelerator architecture is tailored to match the

dataflow of algorithms. Such tailoring leads to orders-of-magnitude in energy

and latency savings compared to traditional architectures found in CPUs,

GPUs, and even MCUs.
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Recently, several accelerators have been proposed in the context of both

inference and training. An early example is Eyeriss [21], a 16 bit fixed-point

inference accelerator. Later, a tensor processing unit was introduced by

Google [22] and supported both inference (8 bit fixed-point) and training (16

bit floating-point). IBM released a training accelerator using 16 bit floating-

point [23] which was recently upgraded to 4 bit radix-4 floating-point [24].

Intel worked on a neural processing system using a new number format (16

bit flexpoint) [25]. Nvidia demonstrated prototyping of an 8 bit fixed-point

inference accelerator using novel synthesis techniques [26]. Beyond digital

realizations, analog/mixed-signal circuits have also been employed using in-

memory computing. These have typically implemented binary (1 bit) DNNs

[27, 28, 29, 30, 31, 14, 32, 33, 34, 35, 36, 37, 38].

The list of accelerators mentioned above is by no means exhaustive; nonethe-

less, it highlights an important trend. Traditional single (32 bit) and double

(64 bit) floating-point precisions found in CPUs and GPUs are never utilized.

Justifiably, reduced precision is required in accelerators as it leads to linear

and quadratic reduction of storage and compute complexities, respectively.

Rather than optimizing precision in a theoretically sound manner, the

above works have relied on trial-and-error techniques. Indeed, extensive

simulations on several benchmarks are performed, and if results indicate a

suitable empirical accuracy, the corresponding precision is selected for imple-

mentation. Such empiricism requires a substantial design effort and does not

guarantee optimality, i.e., that minimum DNN precision requirements have

been found. This leads to the formulation of two fundamental questions:

1. What are a DNN’s minimum precision requirements for a given accu-

racy level?

2. Can those requirements be determined analytically?

The work presented in this dissertation will answer both questions. The

methods proposed benefit acceleration at Edge [12], tinyML [11], and also

cloud [23] platforms.
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Figure 1.3: Approaches to reduced complexity machine learning: (a) post-
training quantization, (b) in-training quantization, (c) structural methods,
and (d) quantized back-propagation.

1.1 Related Work

In Figure 1.3, we cluster approaches to reduced complexity machine learning

into four categories: (a) post-training quantization, (b) in-training quan-

tization, (c) structural methods, and (d) quantized back-propagation. We

henceforth describe each of these areas and review notable works related to

them.

Post-training quantization is depicted in Figure 1.3 (a). The setup sim-

ply consists of taking a pre-trained floating-point network and implementing

it in finite precision. The challenge in doing so is to determine suitable

precision requirements for weights and activations across the multiple lay-

ers. A notable advantage of this approach is that it does not necessitate

any training. Thus, any state-of-the art floating-point network realization
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[1, 39, 3, 40, 41, 42, 43, 44] can be employed. Furthermore, accuracy guar-

antees can be obtained when using this approach as explained in Chapter 2

of this dissertation. Finally, as training is not required, privacy concerns are

avoided [18].

Prior work in post-training quantization includes a signal-to-quantization

(SQNR) study for custom fixed-point representations [45]. Despite being

analytical, the proposed solution does not optimize the actual network-level

accuracy and makes the unrealistic assumption of perfectly linear activa-

tions. More recently, a similar approach, termed Data Free Quantization

(DFQ), was proposed [46] where an improvement to the analysis was done

by leveraging converged BatchNorm [47] statistics. Other works in this area

have proposed using hybrid high/low precision regimes to improve accuracy

[48, 49]. While all of these works have the merit of leveraging high accuracy

state-of-the-art DNNs, none provide guarantees on the accuracy of the finite

precision derived network. Recent trends in post-training quantization are

depicted in Figure 1.4.

In-training quantization is depicted in Figure 1.3 (b). Finite precision

inference is embedded into the forward path of the back-propagation train-

ing loop. Since SGD is known to be noise tolerant, it is hoped that the

training process compensates for forward quantization. If successful, accu-

rate finite precision networks can be obtained. The SGD algorithm requires

loss gradients of activations and weights. Forward quantization introduces

a non-differentiable operation, and approximations are made in the back-

ward path. Derivatives are computed using the straight-through estimator

(STE) [50] which hides the discontinuous discretization operation from the

optimization algorithm.

In-training quantization has two main drawbacks: 1) it combines opti-

mization techniques that are not well understood theoretically (non-convex

gradient descent and STE), and 2) it forces the user to be involved in the

training process, which is a typically highly complex task. As such, it is

currently unknown if this approach has any theoretical guarantees. Further-

more, training implies access to a dataset which can be problematic in certain

applications. Nonetheless, in-training quantization has generated significant

interest by virtue of numerous empirical successes.

Early work on in-training quantization showed that the STE can be used

to obtain accurate binary weighted [51, 52] and fully binarized [51] networks,
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Figure 1.4: Recent trends in in-training and post-training quantization. Re-
ported Top-1 accuracy is for AlexNet. Referred works are: BinaryNet [51],
XNOR-Net [52], Dorefa-Net [53], HWGQ [54], INCQ [55], WEBQ [56], LQ-
Net [57], PACT [58], CLIPQ [59], QN [60], FP8 [61], FP4 [24], ReLeQ [62],
BISC-DNN [49], OMSE [63], and ALigN [64].

provided the employed networks and datasets are simple. While this sur-

prised the community, it is appreciated today that state-of-the-art binary

DNNs are still elusive when considering complex networks and datasets.

DorefaNet [53] showed that by increasing forward precision to 2 bit or 4

bit, in-training quantization accuracy can be improved. LQNet [57] has

achieved state-of-the-art accuracy with 2 bit forward representations. How-

ever, the quantization is non-uniform and the number format used is uncon-

ventional, which can cause hurdles in hardware implementations. PACT [58]

has achieved state-of-the-art accuracy with 4 bit uniform quantization in the

forward path. The feat was achieved by embedding clipping on the activa-

tions as a learnable parameter in the SGD loop. Recent trends in in-training

quantization are depicted in Figure 1.4.

In-training quantization is often preferred to post-training quantization

due to empirical evidence that it allows more aggressive precision reduc-

tion. However, post-training quantization, when properly employed, has the

advantage of having accuracy guarantees. What is then the price to pay

for such guarantees? More specifically, how much more reduction does in-
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Figure 1.5: Accuracy vs. Complexity of binarized network and post-training
quantization approaches for: (a) AlexNet on ImageNet, and (b) VGG-9 on
CIFAR-10. The computational cost counts the number of full additions (FAs)
involved in processing one input.

training quantization offer compared to post-training quantization? Some

works on post-training quantization such as BISC-DNN [49] and ALigN [64]

have employed a precision of 7 bit and 8 bit, respectively. Nonetheless, these

works have failed to maintain state-of-the-art accuracy. Our work has shown

that 9 bit are typically required for guaranteeing accuracy close to that of

the baseline (see Figure 1.4). In contrast, PACT [58], the present state-of-

the-art in-training quantization technique, achieves similar accuracy using 4

bit. Thus, the price to pay for accuracy guarantees is at most 5 bit. More

details are provided in Chapter 2 of this dissertation.

Figure 1.4 also shows that binarized networks, though popular, have yet

to achieve state-of-the-art accuracy on large models and datasets such as

AlexNet deployed on ImageNet. Common binarized networks such as Bina-

ryNet [51] and XNOR-Net [52] have an accuracy drop with respect to the

baseline of over 10 percentage points as shown in Figure 1.5 (a). Binarized

networks do achieve state-of-the-art accuracy on simple models and datasets,

such as a VGG-9 network on the CIFAR-10 [65] dataset (see Figure 1.5). In-

terestingly, we demonstrate ∼ 3.5× complexity reduction over BinaryNet at

iso-accuracy for that network. This is due to the fact that whenever binarized

networks have achieved high accuracy, the network topology has usually been

made wider, therefore causing the overall complexity to be higher.

8



Structural methods, such as model compression, constitute a set of

inference efficiency techniques orthogonal but related to quantization. As

depicted in Figure 1.3 (c), efficient models are searched during the opti-

mization process via time-varying forward structures. The most popular

structural method is pruning, or parameter sparsification [66]. Pruning can

reduce the parameter complexity of large models by up to ∼ 100×. One

limitation of pruning is that the resulting structure is very irregular and

hence not hardware-friendly. Parameter clustering [67] is another approach

which applies vector quantization algorithms on weight tensors. Recently,

neural architecture search (NAS) [68] has emerged as a promising technique

for finding structurally efficient networks.

In general, the drawbacks of structural methods are similar to those of

in-training quantization. Accuracy guarantees are lacking, and significant

training complexity is required. To achieve state-of-the-art accuracy, the

required structure-modifying training can take weeks and even months [69].

Combining the approaches discussed thus far is possible. A popular method

to improve finite precision accuracy is to combine post- and in-training quan-

tization. Often referred to as retraining [70], this hybrid approach performs

in-training quantization with a state-of-the-art pre-trained network as an

initial point. Quantization and structural techniques can also be applied

together as was done in trained ternary quantization (TTQ) [71].

So far we have discussed inference efficiency techniques. To complete the

story of reduced complexity machine learning, we also discuss efficient train-

ing. This problem is significantly harder than that of efficient inference.

Quantized back-propagation is used to reduce the complexity of the

training algorithm and is depicted in Figure 1.3 (d). The goal is to implement

the entire back-propagation algorithm in finite precision. It was first explored

by quantizing all tensors to 16 bit fixed-point, save for the weight accumula-

tors which remained in 32 bit floating-point [72]. Successful convergence was

achieved thanks to the use of stochastic quantization.

Major advances since then have been achieved by exploring novel number

formats. For instance, flexpoint [25] was proposed to track the dynamic range

of 16 bit fixed-point tensors via the use of a 5 bit shared exponent. Aug-

menting flexpoint with stochastic quantization effectively results in WAGE

[73]. Alternatively, novel low precision floating-point formats have been suc-

cessful in training at 8 bit [74] and 4 bit [24]. The novelties have been in
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(a) (b)

Figure 1.6: Difficulty in training with noise. Implementation of the least
mean square (LMS) regression algorithm using: (a) correct update equations,
and (b) biased noise in the updates.

modifying the exponent/mantissa representations and using radix-4 for the

latter’s exponent.

Many of the previous works have used stochastic quantization as a regular-

izer. All prior works have used full precision accumulators. Neither feature

is hardware friendly, but both are necessary to avoid undesired biases in the

weight updates. Indeed, the presence of a bias prohibits convergence in any

feedback loop based algorithm, such SGD. We illustrate the phenomenon in

Figure 1.6 where we implement a least mean square (LMS) regressor. When

a non-zero mean noise term is inserted into the feedback computation, LMS

fails to converge. In our work in Chapter 4, we show how to circumvent these

issues in the context of training DNNs.

1.2 Dissertation Contributions and Organization

Much progress has been made in the area of finite precision machine learning.

As discussed above, ad-hoc trial and error techniques abound, but none pro-

vide guarantees. Consequently, principled techniques guiding the design of

deep learning systems on resource-constrained systems remain elusive. The

work presented in this dissertation builds a theoretical framework for the

implementation of deep learning in finite precision.

Specifically, the contributions of this dissertations are: (1) development
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of theoretical bounds on inference accuracy of fixed-point deep neural net-

works, (2) derivation of optimal clipping strategies in dot-product outputs to

minimize analog-to-digital converter precision in in-memory computing ar-

chitectures, (3) methodology for implementing fixed-point back-propagation

with close-to-minimal per-tensor precision, and (4) analysis of accumulation

bit-width required in reduced precision floating-point training.

Contributions in this dissertation lead towards a framework for obtaining

theoretical guarantees on DNN precision for both inference and training. For

inference, dot-product input (weight/activation) and output (column ADC

in IMC) precision is determined so as to guarantee accuracy. For training,

precision of all back-propagation tensors (in fixed-point) and accumulated

partial sums (in floating-point) is determined to guarantee convergence.

The remainder of this dissertation is organized as follows:

Chapter 2 introduces our work on fixed-point inference with accuracy

guarantees. This work applies to the post-training quantization setup and

enables design of minimum precision fixed-point networks. Unlike existing

methods which determine precision in ad-hoc manners, via extensive simu-

lations, our results are based on theoretical analyses and lead to accuracy

guarantees. In particular, theoretical bounds on the mismatch between lim-

ited and full precision networks are derived. Consequently, proper precision

assignment can be readily obtained employing these bounds, and weight-

activation as well as per-layer precision trade-offs are derived. The pro-

posed principled precision reduction is applied to a variety of networks and

datasets. Results indicate that the presented analysis is tight within 2 bit

and that theoretical bounds successfully predict trends of accuracy vs. pre-

cision. In particular, supported by empirical validation, our bounds reveal

a ∼ 4× increase in accuracy drop per bit reduction in precision. Further-

more, for small datasets, it is shown that a minimum precision network can

have up to ∼ 3.5× lower hardware complexity than a binarized network at

iso-accuracy. For large models and datasets, a minimum precision network

can reduce complexity by up to ∼ 10× compared to a full precision baseline

while maintaining accuracy. An ad-hoc quantized 8 bit network is shown to

have higher complexity and lower accuracy than a minimum precision one,

highlighting the importance of our methods. Per-layer precision analysis in-

dicates that precision requirements of common networks vary from 2 bit to

10 bit for guaranteed accuracy.
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Chapter 3 proposes the optimal clipping criterion (OCC) to minimize the

column ADC precision of in-memory architectures. These ADCs consume a

significant amount of energy and face stringent area constraints. Current

practices in ADC precision design are overly conservative. Using our pro-

posed OCC, ADC precision can be significantly reduced while maintaining

accuracy, thereby reducing energy consumption and facilitating ADC design.

It is first shown that the signal-to-quantization-noise ratio (SQNR) of OCC

is within 0.8 dB of the well-known optimal Lloyd-Max (LM) quantizer. OCC

improves the SQNR of the commonly employed full range (FR) quantizer by

14 dB which translates to a 3 bit ADC precision reduction. Furthermore,

the input-serial weight-parallel (ISWP) IMC architecture is studied. Using

bit-slicing techniques, significant energy savings can be achieved with mini-

mal accuracy lost. Indeed, we prove that a dot-product can be realized with

a single memory access while suffering no more than 2 dB SQNR drop. An

analytical methodology for proper IMC design subject to DNN accuracy con-

straint is derived. Combining the proposed OCC and ISWP noise analysis,

we demonstrate ∼ 6× reduction of energy consumption at iso-accuracy.

Chapter 4 includes a systematic methodology to obtain close-to-minimal

per-layer precision requirements for guaranteed statistical similarity between

fixed-point and floating-point training. The difficulties in realizing quan-

tized back-propagation arise from an improper understanding of feedback

tensor quantization effects. Existing methods only focus on quantization of

a subset of required tensors such as gradients. Further, current practices

are typically based on heuristics where modifications to the number format

are used, which cause hurdles in hardware implementations. In contrast,

we study fixed-point training and address all of its challenges: quantization

noise, inter-layer and intra-layer precision trade-offs, dynamic range, and sta-

bility. Our methodology is applied to several benchmarks, and fixed-point

training is demonstrated to achieve high-fidelity to the baseline with an ac-

curacy drop less than 0.56%. The derived precision assignment is shown to

be within 1 bit per tensor of the minimum. The methodology is found to

reduce representational, computational, and communication costs of training

by up to 6×, 8×, and 4×, respectively, compared to the baseline and related

works.

Chapter 5 presents an analysis of mantissa requirements in accumula-

tors for guaranteed convergence of reduced precision floating-point training.
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Most work on quantized back-propagation has focused on the issue of ten-

sor representation precision. Such advances led to complexity reduction in

multipliers employed in a hardware implementation. However, the problem

of partial sum accumulation has been largely overlooked. Instead, full preci-

sion accumulators are used causing the complexity of a multiply-accumulate

unit to be dominated by that of its adder. Our work addresses the problem

of partial sum accumulation quantization via the definition of the variance

retention ratio (VRR). This analytical metric measures the suitability of ac-

cumulation mantissa precision. The analysis expands on concepts employed

in variance engineering for proper weight initialization. An analytical expres-

sion for the VRR is derived and used to determine accumulation bit-width

for precise tailoring of computation hardware. The VRR analysis is also ap-

plied to techniques such as chunked accumulation and sparsification. Such

techniques are known to alleviate the burden on accumulator precision re-

quirements, and their benefits are quantified via the VRR. Experimentally,

the validity and tightness of our analysis are verified across multiple deep

learning benchmarks.

Chapter 6 concludes this dissertation by providing a comprehensive sum-

mary and directions for future research.
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CHAPTER 2

FIXED-POINT INFERENCE WITH
THEORETICAL GUARANTEES

In this chapter, we introduce our work on fixed-point inference with accu-

racy guarantees. We derive theoretical bounds on the misclassification rate

in the presence of limited precision. Employing these bounds, we readily de-

termine minimum precision assignment and derive weight-activation as well

as per-layer precision trade-offs. The analysis is then applied to a variety of

networks and datasets and is shown to be tight. Finally, it is found that our

minimum precision networks offer the best complexity vs. accuracy trade-

offs, outperforming even stat-of-the-art binarized networks.

2.1 Motivation

Neural networks have achieved state-of-the-art accuracy on many machine

learning tasks. AlexNet [1] had a deep impact a few years ago in the Im-

ageNet Large Scale Visual Recognition Challenge (ILSVRC) and triggered

intensive research efforts on deep neural networks. Recently, ResNet [3] has

outperformed humans in recognition tasks.

These networks have very high computational complexity. For instance,

AlexNet has 60 million parameters and 650,000 neurons [1]. Its convolutional

layers alone require 666 million multiply-accumulates (MACs) per 227× 227

image (13k MACs/pixel) and 2.3 million weights [21]. Deepface’s network

involves more than 120 million parameters [9]. ResNet is a 152-layer deep

residual network. This high complexity of deep neural networks prevents

its deployment on energy and resource-constrained platforms such as mobile

devices and autonomous platforms.
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2.1.1 Related Work

One of the most effective approaches for reducing resource utilization is to

implement fixed-point neural networks. As mentioned in [45], there are two

approaches for designing fixed-point neural networks: (1) directly train a

fixed-point neural network, and (2) quantize a pre-trained floating-point neu-

ral network to obtain a fixed-point network.

As an example of fixed-point training, [72] showed that 16 bit fixed-point

representation incurs little accuracy degradation by using stochastic round-

ing. A more aggressive approach is to design binary networks such as [75]

which used bitwise operations to replace the arithmetic operations and [52]

which explored optimal binarization schemes. BinaryConnect [76] trained

networks using binary weights while BinaryNet [51] trained networks with

binary weights and activations.

Although these fixed-point training approaches make it possible to design

fixed-point neural networks achieving excellent accuracy, training based on

fixed-point arithmetic is generally harder than floating-point training since

the optimization is done in a discrete space.

Hence, in this chapter, we focus on the second approach that quantizes

a pre-trained floating-pointing network to a fixed-point network. This ap-

proach leverages the extensive work in training state-of-the-art floating-point

neural networks such as dropout [44], maxout [42], network-in-network [43],

and residual learning [3] to name a few. In this approach, proper precision

needs to be determined after training to reduce complexity while minimiz-

ing the accuracy loss. In [77], exhaustive search is performed to determine

a suitable precision allocation. Recently, [45] offered an analytical solution

for non-uniform bit precision based on the signal-to-quantization-noise ratio

(SQNR). However, the use of non-uniform quantization step sizes at each

layer is difficult to implement as it requires multiple variable precision arith-

metic units.

In addition to fixed-point implementation, many approaches have been

proposed to lower the complexity of deep neural networks in terms of the

number of arithmetic operations. Han et al. [78] employ a three-step train-

ing method to identify important connections, prune the unimportant ones,

and retrain on the pruned network. In [79] original convolutional layers are

replaced by smaller sequential layers to reduce computations. These ap-
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proaches are complementary to our technique of quantizing a pre-trained

floating-point neural network into a fixed-point one.

In this chapter, we obtain analytical bounds on the accuracy of fixed-point

networks that are obtained by quantizing a conventionally trained floating-

point network. Furthermore, by defining meaningful measures of a fixed-

point network’s hardware complexity, viz. computational and representa-

tional costs, we develop a principled approach to precision assignment using

these bounds in order to minimize these complexity measures.

2.1.2 Contributions

Our contributions are both theoretical and practical. We summarize our

main contributions:

• We derive theoretical bounds on the misclassification rate in presence

of limited precision and thus determine analytically how accuracy and

precision trade-off with each other.

• Employing the theoretical bounds and the back-propagation algorithm,

we show that proper precision assignments can be readily determined

while maintaining accuracy close to floating-point networks.

• We analytically determine which of weights or activations need more

precision, and we show that typically the precision requirements of

weights are greater than those of activations for fully-connected net-

works and are similar to each other for networks with shared weights

such as convolutional neural networks.

• We introduce computational and representational costs as meaningful

metrics to evaluate the complexity of neural networks under fixed pre-

cision assignment.

• We validate our findings on numerous networks and datasets demon-

strating the ease with which fixed-point networks with complexity smaller

than state-of-the-art binary networks can be derived from pre-trained

floating-point networks with minimal loss in accuracy.
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It is worth mentioning that our proposed method is general and can be

applied to every class of neural networks such as multilayer perceptrons and

convolutional neural networks.

2.2 Fixed-Point Neural Networks

2.2.1 Accuracy of Fixed-Point and Floating-Point Networks

For a given floating-point neural network and its fixed-point counterpart we

define: 1) the floating-point error probability pe,fl = Pr{Ŷfl 6= Y } where Ŷfl

is the output of the floating-point network and Y is the true label; 2) the

fixed-point error probability pe,fx = Pr{Ŷfx 6= Y } where Ŷfx is the output

of the fixed-point network; 3) the mismatch probability between fixed-point

and floating-point pm = Pr{Ŷfx 6= Ŷfl}. Observe that:

pe,fx ≤ pe,fl + pm. (2.1)

The right-hand side represents the worst case of having no overlap between

misclassified samples and samples whose predicted labels are in error due to

quantization. We provide a formal proof of (2.1) in Section 2.9. Note that

pe,fx is a quantity of interest as it characterizes the accuracy of the fixed-point

system. We employ pm as a proxy to pe,fx because it brings in the effects of

quantization into the picture as opposed to pe,fl which solely depends on the

algorithm. This observation was made in [80] and allowed for an analytical

characterization of linear classifiers as a function of precision.

2.2.2 Fixed-Point Quantization

The study of fixed-point systems and algorithms is well established in the

context of signal processing and communication systems [12]. A popular

example is the least mean square (LMS) algorithm for which bounds on

precision requirements for input, weights, and updates have been derived [81].

In such analyses, it is standard practice [82] to assume all signed quantities

lie in [−1, 1] and all unsigned quantities lie in [0, 2]. Of course, activations

and weights can be designed to satisfy this assumption during training. A B
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bit fixed-point number afx would be related to its floating-point value a as

follows:

afx = a+ qa, (2.2)

where qa is the quantization noise which is modeled as an independent uni-

form random variable distributed over
[
−∆

2
, ∆

2

]
, where ∆ = 2−(B−1) is the

quantization step [82].

2.2.3 Complexity in Fixed-Point

We argue that the complexity of a fixed-point system has two aspects: com-

putational and representational costs. In what follows, we consider activa-

tions and weights to be quantized to BA and BW bit, respectively.

The computational cost is a measure of the computational resources uti-

lized for generating a single decision, and is defined as the number of 1 bit

full adders (FAs). A full adder is a canonical building block of arithmetic

units. We assume arithmetic operations are executed using the commonly

used ripple carry adder [83] and Baugh-Wooley multiplier [84] architectures

designed using FAs. Consequently, the number of FAs used to compute a

D-dimensional dot product of activations and weights is [85]:

DBABW + (D − 1)(BA +BW + dlog2(D)e − 1). (2.3)

Hence, an important aspect of the computational cost of a dot product is

that it is an increasing function of the product of activation precision (BA),

weight precision (BW ), and dimension (D).

We define the representational cost as the total number of bits needed to

represent all network parameters, i.e., both activations and weights. This cost

is a measure of the storage complexity and communications costs associated

with data movement. The total representational cost of a fixed-point network

is:

|A|BA + |W|BW (2.4)

bits, where A and W are the index sets of all activations and weights in
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the network, respectively. Observe that the representational cost is linear in

activation and weight precisions as compared to the computational cost.

Equations (2.3) - (2.4) illustrate that, though computational and represen-

tational costs are not independent, they are different. Together, they describe

the implementation costs associated with a network. We shall employ both

when evaluating the complexity of fixed-point networks.

2.2.4 Setup

Here, we establish notation. Let us consider neural networks deployed on a

M -class classification task. For a given input, the network would typically

have M class scores {zi}Mi=1 and the decision would be ŷ = arg max
i=1,...,M

zi. Each

numerical output is a function of weights and activations in the network:

zi = f ({ah}h∈A, {wh}h∈W) (2.5)

for i = 1, . . . ,M , where ah denotes the activation indexed by h and wh

denotes the weight indexed by h. When activations and weights are quantized

to BA and BW bits, respectively, the output zi is corrupted by quantization

noise qzi so that:

zi + qzi = f ({ah + qah}h∈A, {wh + qwh}h∈W) , (2.6)

where qah and qwh are the quantization noise terms of the activation ah

and weight wh, respectively. Here, {qah}h∈A are independent uniformly dis-

tributed random variables on
[
−∆A

2
, ∆A

2

]
and {qwh}h∈W are independent uni-

formly distributed random variables on
[
−∆W

2
, ∆W

2

]
, with ∆A = 2−(BA−1)

and ∆W = 2−(BW−1).

In quantization noise analysis, it is standard to ignore cross-products of

quantization noise terms as their contribution is negligible. Therefore, using

Taylor’s theorem, we express the total quantization noise at the output of

the fixed-point network as:

qzi =
∑
h∈A

qah
∂zi
∂ah

+
∑
h∈W

qwh
∂zi
∂wh

. (2.7)

Note that the derivatives in (2.7) are obtained as part of the back-propagation
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algorithm. Thus, using our results, it is possible to estimate the precision

requirements of deep neural networks during training itself. As will be shown

later, this requires one additional back-propagation iteration to be executed

after the weights have converged.

2.3 Bounds on Mismatch Probability

2.3.1 Second-order Bound

We present our first result. It is an analytical upper bound on the mismatch

probability pm between a fixed-point neural network and its floating-point

counterpart.

Theorem 1. Given BA and BW , the mismatch probability pm between a

fixed-point network and its floating-point counterpart is upper bounded as

follows:

pm ≤
∆2
A

24
E


M∑
i=1
i 6=Ŷfl

∑
h∈A

∣∣∣∣∂(Zi−ZŶfl )

∂Ah

∣∣∣∣2
|Zi − ZŶfl|

2

+
∆2
W

24
E


M∑
i=1
i 6=Ŷfl

∑
h∈W

∣∣∣∣∂(Zi−ZŶfl )

∂wh

∣∣∣∣2
|Zi − ZŶfl|

2

 ,
(2.8)

where expectations are taken over a random input and {Ah}h∈A, {Zi}Mi=1, and

Ŷfl are thus random variables.

Proof. The detailed proof can be found in Section 2.9. Here, we provide the

main idea and the intuition behind the proof.

The heart of the proof lies in evaluating Pr
(
zi + qzi > zj + qzj

)
for any

pair of outputs zi and zj where zj > zi. Equivalently, we need to evaluate

Pr
(
qzi − qzj > zj − zi

)
. But from (2.7), we have:

qzi − qzj =
∑
h∈A

qah
∂(zi − zj)

∂ah
+
∑
h∈W

qwh
∂(zi − zj)
∂wh

. (2.9)

In (2.9), we have a linear combination of quantization noise terms, and qzi−qzj
is a zero mean random variable having a symmetric distribution. This means
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that Pr
(
qzi − qzj > zj − zi

)
= 1

2
Pr
(
|qzi − qzj | > |zj − zi|

)
, which allows us

to use Chebyshev’s inequality. Indeed, from (2.9), the variance of qzi − qzj is

given by:

∆2
A

12

∑
h∈A

∣∣∣∣∂(zi − zj)
∂ah

∣∣∣∣2 +
∆2
W

12

∑
h∈W

∣∣∣∣∂(zi − zj)
∂wh

∣∣∣∣2 ,
so that

Pr
(
zi + qzi > zj + qzj

)
≤

∆2
A

∑
h∈A

∣∣∣∂(zi−zj)
∂ah

∣∣∣2 + ∆2
W

∑
h∈W

∣∣∣∂(zi−zj)
∂wh

∣∣∣2
24 |zi − zj|2

.

(2.10)

As explained in Section 2.9, it is possible to obtain to (2.8) from (2.10) using

standard probabilistic arguments.

Before proceeding, we point out that the two expectations in (2.8) are

taken over a random input but the weights {wh}h∈W are frozen after training

and are hence deterministic.

Several observations are to be made. First notice that the mismatch prob-

ability pm increases with ∆2
A and ∆2

W . This is to be expected as smaller preci-

sion leads to more mismatch. Theorem 1 says a little bit more: the mismatch

probability decreases exponentially with precision because ∆A = 2−(BA−1)

and ∆W = 2−(BW−1).

Note that the quantities in the expectations in (2.8) can be obtained as

part of a standard back-propagation procedure. Indeed, once the weights

are frozen, it is enough to perform one forward pass on an estimation set

(which should have statistically significant cardinality), record the numerical

outputs, perform one backward pass and probe all relevant derivatives. Thus,

(2.8) can be readily computed.

Another practical aspect of Theorem 1 is that this operation needs to be

done only once as these quantities do not depend on precision. Once they are

determined, for any given precision assignment, we simply evaluate (2.8) and

combine it with (2.1) to obtain an estimate (upper bound) on the accuracy of

the fixed-point instance. This way the precision necessary to achieve a specific

mismatch probability is obtained from a trained floating-point network. This

clearly highlights the gains in practicality of our analytical approach over a
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trial-and-error based search.

Finally, (2.8) reveals a very interesting aspect of the trade-off between

activation precision BA and weight precision BW . We rewrite (2.8) as:

pm ≤ ∆2
AEA + ∆2

WEW , (2.11)

where

EA = E


M∑
i=1
i 6=Ŷfl

∑
h∈A

∣∣∣∣∂(Zi−ZŶfl )

∂Ah

∣∣∣∣2
24|Zi − ZŶfl |

2


and

EW = E


M∑
i=1
i 6=Ŷfl

∑
h∈W

∣∣∣∣∂(Zi−ZŶfl )

∂wh

∣∣∣∣2
24|Zi − ZŶfl|

2

 .
The first term in (2.11) characterizes the impact of quantizing activations

on the overall accuracy while the second characterizes that of weight quan-

tization. It might be the case that one of the two terms dominates the sum

depending on the values of EA and EW . This means that either the activa-

tions or the weights are assigned more precision than necessary. An intuitive

first step to efficiently get a smaller upper bound is to make the two terms

of comparable order. That can be made by setting ∆2
AEA = ∆2

WEW which

is equivalent to

BA −BW = round

(
log2

√
EA
EW

)
, (2.12)

where round() denotes the rounding operation. This is an effective way of

taking care of one of the two degrees of freedom introduced by (2.8).

A natural question to ask would be which of EA and EW is typically larger.

That is to say, to whom, activations or weights, should one assign more pre-

cision? In deep neural networks, there are more weights than activations,

a trend particularly observed in deep networks with most layers fully con-

nected. This trend, though not as pronounced, is also observed in networks

with shared weights, such as convolutional neural networks. However, there

exist a few counterexamples such as the networks in [51] and [86]. It is thus

reasonable to expect EW ≥ EA, and consequently the precision requirements

22



of weights will, in general, be more than those of activations.

One way to interpret (2.11) is to consider minimizing the upper bound

in (2.8) subject to BA + BW = c for some constant c. Indeed, it can

be shown that (2.12) would be a necessary condition of the corresponding

solution. This is an application of the arithmetic-geometric mean inequality.

Effectively, (2.11) is of particular interest when considering computational

cost which increases as a function of the product of both precisions (see

Section 2.2.3).

2.3.2 Tighter Bound

We present a tighter upper bound on pm based on the Chernoff bound.

Theorem 2. Given BA and BW , the mismatch probability pm between a

fixed-point network and its floating-point counterpart is upper bounded as

follows:

pm ≤ E

 M∑
i=1
i 6=Ŷfl

e−S
(i,Ŷfl)

P
(i,Ŷfl)
1 P

(i,Ŷfl)
2

 , (2.13)

where, for i 6= j,

S(i,j) =
3(Zi − Zj)2∑

h∈A

(
D

(i,j)
Ah

)2

+
∑

h∈W

(
D

(i,j)
wh

)2 ,

D
(i,j)
Ah

=
∆A

2

∂(Zi − Zj)
∂Ah

, D(i,j)
wh

=
∆W

2

∂(Zi − Zj)
∂wh

,

P
(i,j)
1 =

∏
h∈A

sinh
(
T (i,j)D

(i,j)
Ah

)
T (i,j)D

(i,j)
Ah

,

P
(i,j)
2 =

∏
h∈W

sinh
(
T (i,j)D

(i,j)
wh

)
T (i,j)D

(i,j)
wh

,

and

T (i,j) =
S(i,j)

Zj − Zi
.
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Proof. Again, we leave the technical details for Section 2.9. Here we also

provide the main idea and intuition.

As in Theorem 1, we shall focus on evaluating Pr
(
zi + qzi > zj + qzj

)
=

Pr
(
qzi − qzj > zj − zi

)
for any pair of outputs zi and zj where zj > zi. The

key difference here is that we will use the Chernoff bound in order to account

for the complete quantization noise statistics. Indeed, letting v = zj − zi, we

have:

Pr
(
qzi − qzj > v

)
≤ e−tvE

[
et(qzi−qzj )

]
for any t > 0. We show that:

E
[
et(qzi−qzj )

]
=
∏
h∈A

sinh (tda,h)

tda,h

∏
h∈W

sinh (tdw,h)

tdw,h
,

where da,h = ∆A

2

∂(zi−zj)
∂ah

and dw,h = ∆W

2

∂(zi−zj)
∂wh

. This yields:

Pr
(
qzi − qzj > v

)
≤ e−tv

∏
h∈A

sinh (tda,h)

tda,h

∏
h∈W

sinh (tdw,h)

tdw,h
. (2.14)

We show that the right-hand-side is minimized over positive values of t when:

t =
3v∑

h∈A (da,h)2 +
∑

h∈W (dw,h)2
.

Substituting this value of t into (2.14) and using standard probabilistic ar-

guments, we obtain (2.13).

The first observation to be made is that Theorem 2 indicates that, on

average, pm is upper bounded by an exponentially decaying function of the

quantity S(i,Ŷfl) for all i 6= Ŷfl up to a correction factor P
(i,Ŷfl)
1 P

(i,Ŷfl)
2 . This

correction factor is a product of terms typically centered around 1 (each

term is of the form sinh(x)
x
≈ 1 for small x). On the other hand, S(i,Ŷfl), by

definition, is the ratio of the excess confidence the floating-point network has

in the label Ŷfl over the total quantization noise variance reflected at the

output, i.e., S(i,Ŷfl) is the SQNR. Hence, Theorem 2 states that the tolerance

of a neural network to quantization is, on average, exponentially decaying

with the SQNR at its output. In terms of precision, Theorem 2 states that

pm is bounded by a double exponentially decaying function of precision (that
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Figure 2.1: Validity of bounds for MNIST when: (a) BW = BA and (b)
BW = BA + 3 as dictated by (2.12) (EA = 41 and EW = 3803 so that

log2

√
EW
EA
≈ 3.2). FX Sim denotes fixed point simulations.

is an exponential function of an exponential function). Note how this bound

is tighter than that of Theorem 1.

This double exponential relationship between accuracy and precision is not

too surprising when one considers the problem of binary hypothesis testing

under additive Gaussian noise [87] scenario. In this scenario, it is well known

that the probability of error is an exponentially decaying function of the

signal-to-noise ratio (SNR) in the high-SNR regime. Theorem 2 points out

a similar relationship between accuracy and precision but it does so using

rudimentary probability principles without relying on high-SNR approxima-

tions.

While Theorem 2 is much tighter than Theorem 1 theoretically, it is not as

convenient to use. In order to use Theorem 2, one has to perform a forward-

backward pass and select relevant quantities and apply (2.13) for each choice

of BA and BW . However, a lot of information, e.g. the derivatives, can be

reused at each run, and so the runs may be lumped into one forward-backward

pass. In a sense, the complexity of computing the bound in Theorem 2 lies

between the evaluation of (2.11) and the complicated conventional trial-and-

error based search.

We now illustrate the applications of these bounds.
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Table 2.1: Results for MNIST: Comparison of accuracy, computational cost,
and representational cost with state-of-the-art related works. Chosen preci-
sion assignments are obtained from Figure 2.1.

Precision Assignment Test error (%)
Computational
Cost (106 FAs)

Representational
Cost (106 bits)

Floating-point 1.36 N/A N/A
(8, 8) 1.41 82.9 7.5
(6, 6) 1.54 53.1 5.63
(6, 9) 1.35 72.7 8.43
(4, 7) 1.43 44.7 6.54

SQ (16, 16) [72] 1.4 533 28
BN (1, 1) [51] 1.4 117 10

2.4 Bound Validation Results

We conduct numerical simulations to illustrate both the validity and use-

fulness of the analysis developed in the previous section. We show how it

is possible to reduce precision in an aggressive yet principled manner. We

present results on two popular datasets: MNIST and CIFAR-10. The metrics

we address are threefold:

• Accuracy measured in terms of test error.

• Computational cost measured in #FAs (see Section 2.2.3, (2.3) was

used to compute #FAs per MAC).

• Representational cost measured in bits (see Section 2.2.3, (2.4) was

used).

We compare our results to similar works conducting similar experiments: 1)

the work on fixed-point training with stochastic quantization (SQ) [72] and

2) BinaryNet (BN) [51].

2.4.1 DNN on MNIST

First, we conduct simulations on the MNIST dataset for handwritten char-

acter recognition [88]. The dataset consists of 60K training samples and 10K

test samples. Each sample consists of an image and a label. Images are of
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size 28× 28 pixels representing a handwritten digit between 0 and 9. Labels

take the value of the corresponding digit.

In this first experiment, we chose an architecture of 784 − 512 − 512 −
512−10, i.e., 3 hidden layers, each of 512 units. We first trained the network

in floating-point using the back-propagation algorithm. We used a batch

size of 200 and a learning rate of 0.1 with a decay rate of 0.978 per epoch.

We restore the learning rate every 100 epochs, the decay rate makes the

learning rate vary between 0.1 and 0.01. We train the first 300 epochs using

15% dropout, the second 300 epochs using 20% dropout, and the third 300

epochs using 25% dropout (900 epochs overall). It appears from the original

dropout work [44] that the typical 50% dropout fraction works best for very

wide multi-layer perceptrons (MLPs) (4096 to 8912 hidden units). For this

reason, we chose to experiment with smaller dropout fractions.

The only pre-processing done is to scale the inputs between −1 and 1. We

used ReLU activations with the subtle addition of a right rectifier for values

larger than 2 (as discussed in Section 2.2). The resulting activation is also

called a hard sigmoid. We also clipped the weights to lie in [−1, 1] at each

iteration. The resulting test error we obtained in floating-point is 1.36%.

Figure 2.1 illustrates the validity of our analysis. Indeed, both bounds

(based on Theorems 1 and 2) successfully upper bound the test error obtained

through fixed-point simulations. Figure 2.1 (b) demonstrates the utility of

(2.12). Indeed, setting BW = BA allows us to reduce the precision to about

6 or 7 bit before the accuracy start degrading. In addition, under these

conditions we found EA = 41 and EW = 3803 so that log2

√
EW
EA
≈ 3.2.

Thus, setting BW = BA + 3 as dictated by (2.12) allows for more aggressive

precision reduction. Activation precision BA can now be reduced to about 3

or 4 bit before the accuracy degrades. To compute the bounds, we used an

estimation set of 1000 random samples from the dataset.

As observed in Figure 2.1, the bounds closely track the increase in test

error. Indeed, it is found that the test error increase roughly quadruples for

every bit reduced. This is in accordance with our theoretical results where pm

has an exponential relationship with precision and is expected to quadruple

as the number of bits is decremented. This relationship between accuracy

and precision can be exploited in end-to-end system design where a fixed-

point network’s accuracy needs to be tuned in order to achieve an overall

inference accuracy.
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We compare our results with SQ which used a 784−1000−1000−10 archi-

tecture on 16 bit fixed-point activations and weights. A stochastic rounding

scheme was used to compensate for quantization. We also compare our re-

sults with BN with a 784− 2048− 2048− 2048− 10 architecture on binary

quantities. A stochastic rounding scheme was also used during training.

Table 2.1 shows some comparisons with related works in terms of accuracy,

computational cost, and representational cost. For comparison, we selected

four notable design options from Figures 2.1 (a,b):

A. Smallest (BA, BW ) such that BW = BA and pm ≤ 1% as bounded by

Theorem 1. In this case (BA, BW ) = (8, 8).

B. Smallest (BA, BW ) such that BW = BA and pm ≤ 1% as bounded by

Theorem 2. In this case (BA, BW ) = (6, 6).

C. Smallest (BA, BW ) such that BW = BA + 3 as dictated by (2.12) and

pm ≤ 1% as bounded by Theorem 1. In this case (BA, BW ) = (6, 9).

D. Smallest (BA, BW ) such that BW = BA + 3 as dictated by (2.12) and

pm ≤ 1% as bounded by Theorem 2. In this case (BA, BW ) = (4, 7).

As can be seen in Table 2.1, the accuracy is similar across all design op-

tions including the results reported by SQ and BN. Interestingly, for all four

design options, our network has a smaller computational cost than BN. In

addition, SQ’s computational cost is about 4.6× that of BN (533M/117M).

The greatest reduction in computational cost is obtained for a precision as-

signment of (4, 7) corresponding to a 2.6× and 11.9× reduction compared to

BN (117M/44.7M) and SQ (533M/44.7M), respectively. The corresponding

test error rate is of 1.43%. Similar trends are observed for representational

costs. Again, our four designs have smaller representational cost than even

BN. BN itself has 2.8× smaller representational cost than SQ (28M/10M).

Note that a precision assignment of (6, 6) yields 1.8× and 5.0× smaller repre-

sentational costs than BN (10M/5.63M) and SQ (28M/5.63M), respectively.

The corresponding test error rate is 1.54%.

The fact that we are able to achieve lesser computational and representa-

tional costs than BN while maintaining similar accuracy highlights two im-

portant points. First, the width of a network severely impacts its complexity.

We made our network four times as narrow as BN’s and still managed to use
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Figure 2.2: Validity of bounds for CIFAR when BW = BA which is also

dictated by (2.12) (EA = 21033 and EW = 31641 so that log2

√
EW
EA
≈ 0.29).

FX Sim denotes fixed point simulations.

Table 2.2: Results for CIFAR-10: Comparison of accuracy, computational
cost, and representational cost with state-of-the-art related works. Chosen
precision assignments are obtained from Figure 2.2.

Precision Assignment Test error (%)
Computational
Cost (106 FAs)

Representational
Cost (106 bits)

Floating-point 17.02 N/A N/A
(12, 12) 17.08 3626 5.09
(10, 10) 17.23 2749 4.24

SQ (16, 16) [72] 25.4 4203 4.54
BN (1, 1) [51] 10.15 3608 6.48

eight times as many bits per parameter without exceeding BN’s complexity.

Second, our results illustrate the strength of numbering systems, specifically,

the strength of fixed-point representations. Our results indicate that a cor-

rect and meaningful multi-bit representation of parameters is better in both

complexity and accuracy than a 1 bit unstructured allocation.

2.4.2 CNN on CIFAR 10

We conduct a similar experiment on the CIFAR10 dataset [65]. The dataset

consists of 60k color images each representing airplanes, automobiles, birds,

cats, deer, dogs, frogs, horses, ships, and trucks. Of these images, 50k consti-

tute the training set, and the 10k remaining are for testing. SQ’s architecture
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on this dataset is a simple one: three convolutional layers, interleaved by max

pooling layers. The output of the final pooling layer is fed to a 10-way soft-

max output layer. The reported accuracy using 16 bit fixed-point arithmetic

is a 25.4% test error. BN’s architecture is a much wider and deeper archi-

tecture based on VGG [39]. The reported misclassification rate of the binary

network is an impressive 10.15% which is of benchmarking quality even for

full precision networks.

We adopt a similar architecture as SQ, but leverage recent advances in

convolutional neural networks (CNNs) research. It has been shown that

adding networks within convolutional layers (in the ‘Network in Network’

sense) as described in [43] significantly enhances accuracy, while not incurring

much complexity overhead. Hence, we replace SQ’s architecture by a deep

one which we describe as 64C5−64C1−64C1−MP2−64C5−64C1−64C1−
MP2− 64C5− 64FC− 64FC− 64FC− 10, where C5 denotes 5× 5 kernels,

C1 denotes 1 × 1 kernels (they emulate the networks in networks), MP2

denotes 2× 2 max pooling, and FC denotes fully connected components. As

is customary for this dataset, we apply zero-phase component analysis (ZCA)

whitening to the data before training. Because this dataset is a challenging

one, we first fine-tune the hyperparameters (learning rate, weight decay rate,

and momentum), then train for 300 epochs. The best accuracy we reach in

floating point using this 12-layer deep network is 17.02%.

Figure 2.2 shows the results of our fixed-point simulation and analysis.

Note that, while both bounds from Theorems 1 and 2 still successfully upper

bound the test error, these are not as tight as in our MNIST experiment.

Furthermore, in this case, (2.12) dictates keeping BW = BA as EA = 21033

and EW = 31641 so that log2

√
EW
EA
≈ 0.29. The fact that EW ≥ EA is

expected as there are typically more weights than activations in a neural

network. However, note that in this case the contrast between EW and EA

is not as sharp as in our MNIST experiment. This is mainly due to the

higher weight to activation ratio in fully connected DNNs than in CNNs.

Furthermore, the trends of test error increase as a function of precision are

once again verified. The mismatch rate approximately quadruples when bit-

width is decremented as estimated by our theoretical bounds.

We again select two design options:

A. Smallest (BA, BW ) such that BW = BA and pm ≤ 1% as bounded by
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Theorem 1. In this case (BA, BW ) = (12, 12).

B. Smallest (BA, BW ) such that BW = BA and pm ≤ 1% as bounded by

Theorem 2. In this case (BA, BW ) = (10, 10).

Table 2.2 indicates that BN is the most accurate with 10.15% test error.

Interestingly, it has lesser computational cost but more representational cost

than SQ. This is due to the dependence of the computational cost on the

product of BA and BW . The least complex network is ours when setting

(BA, BW ) = (10, 10) and its test error is 17.23% which is already a large

improvement on SQ in spite of having smaller computational and represen-

tational costs. This network is also less complex than that of BN.

The main takeaway here is that CNNs are quite different from fully con-

nected DNNs when it comes to precision requirements. Furthermore, from

Table 2.2 we observe that BN achieves the least test error. It seems that

this better accuracy is due to its greater representational power rather than

its computational power (BN’s representational cost is much higher than the

others as opposed to its computational cost).

2.5 Per-layer Precision Analysis

Next, we employ the DNN precision analysis framework above to provide a

theoretical basis and an analytical method for per-layer precision assignment

in DNNs. The proposed method can be employed by DNN designers to min-

imize overall precision without having to resort to expensive trial-and-error

simulation-based approaches that are prevalent today. We show that per-

layer minimum precision of input to output layers varies from 7 bit to 2 bit

and from 11 bit to 2 bit for networks processing the MNIST [88] and CIFAR-

10 [65] datasets, respectively. Therefore, per layer precision assignment leads

to much greater savings in complexity compared to a uniform assignment of

layer precisions. Indeed, for the MNIST and CIFAR-10 datasets, and for the

same level of accuracy, we show up to 4 bit reduction in minimum precision

compared to the coarse-grained approach of [89] and up to 8 bit reduction

compared to a naive uniform assignment [72, 21]. Moreover, we achieve same

accuracy but ∼ 3.5× less complexity than a state-of-the-art binary network,

BinaryNet [51]. Compared to a state-of-the-art fixed-point network [72], the
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Figure 2.3: Per-layer precision assignments for a feedforward neural network
architecture. Each layer performs either a matrix vector multiplication, or
a set of 2D convolutions, followed by a non-linear activation function. The
precision assignments for layer l are BA,l and BW,l for activations and weights,
respectively.

complexity savings are even higher (up to ∼ 14×) in spite of better accuracy.

2.5.1 Fine-grained Precision Analysis

For a given neural network with L layers, let {Al}Ll=1 {Wl}Ll=1 be the layer-

wise partitions of A and W , respectively. Consequently, as shown in Figure

2.3, if the per-layer precisions are {BA,l}Ll=1 and {BW,l}Ll=1 for activations and

weights, respectively, then (2.8) can be re-written as:

pm ≤
L∑
l=1

(
∆2
A,lEA,l + ∆2

W,lEW,l
)
, (2.15)
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where ∆A,l = 2−(BA,l−1) and ∆W,l = 2−(BW,l−1) are the activation and weight

quantization step-sizes at layer l, respectively, and

EA,l = E


M∑
i=1
i 6=Ŷfl

∑
h∈Al

∣∣∣∣∂(Zi−ZŶfl )

∂Ah

∣∣∣∣2
24|Zi − ZŶfl|

2


and

EW,l = E


M∑
i=1
i 6=Ŷfl

∑
h∈Wl

∣∣∣∣∂(Zi−ZŶfl )

∂wh

∣∣∣∣2
24|Zi − ZŶfl|

2


are the activation and weight quantization noise gains at layer l, respectively.

Observe that (2.15) is a sum of 2L terms where the quantization noise

gains are computed only once after training. The design parameters are the

2L precision assignments, {BA,l}Ll=1 and {BW,l}Ll=1. Once again, a sum of

independent terms is to be balanced. To do so, the minimum quantization

noise gain is first computed:

Emin = min
(
{EA,l}Ll=1 , {EW,l}

L
l=1

)
. (2.16)

Then, a reference minimum precision Bmin is chosen, and for each layer l,

similar to (2.12), the precision is set as follows:

BA,l = round

(
log2

(√
EA,l
Emin

))
+Bmin (2.17)

and

BW,l = round

(
log2

(√
EW,l
Emin

))
+Bmin. (2.18)

Note that at least one of the 2L precision assignments will equal Bmin.

Once again, (2.15)-(2.18) can be used to efficiently find the fine-grained

minimum precision requirements of a network. Here, (2.16), (2.17), and

(2.18) are used to reduce the search space from a 2L dimensional grid to

just a one dimensional axis. Afterwards, (2.15) is used to provide an initial

estimate of precision requirements. Note that the search space reduction is
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massive. For instance, for a 5 layer network, if we are considering precisions

up to 16 bit, the search space is reduced from 1610 to only 16 design points.

2.5.2 Complexity in Fixed-point

In order to quantify the benefits of the proposed precision reduction method,

we shall consider two measures of complexity [89]: computational and repre-

sentational costs.

The computational cost is the total number of full adders needed per deci-

sion. Note that each layer implements an ensemble of dot products in order

to realize either a matrix vector multiplication or a set of 2D convolutions.

Hence, the computational cost (measured in 1 bit full adders or FAs) of a

network is [89]:

L∑
l=1

[
Nl (DlBA,lBW,l + (Dl − 1)(BA,l +BW,l + dlog2(Dl)e − 1))

]
,

where Nl and Dl are the number and dimensionality of dot products com-

puted at layer l, respectively.

The representational cost is the total number of bits needed to represent

both weights and activations, and is given by:

L∑
l=1

(|Al|BA,l + |Wl|BW,l) .

2.6 Numerical Results - Small Models and Datasets

Numerical experiments on two datasets are considered: the MNIST dataset

for character recognition [88], and the CIFAR-10 dataset for object recogni-

tion [65]. For each, a neural network is first pre-trained as follows:

• MNIST: A multi-layer perceptron with architecture 784− 512− 512−
512− 10. The network is pre-trained using Vanilla SGD [90] and has a

baseline test error of 1.10% in floating-point.

• CIFAR-10: A convolutional neural network with architecture 32C3 −
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(a)

(b)

Figure 2.4: Plots showing quantization noise gains and per-layer precision
assignments for (a) MNIST and (b) CIFAR-10, to satisfy pm ≤ 1%. The
minimum precision to satisfy pm ≤ 1% with uniform precision assignment is
also shown.

32C3 −MP2 − 64C3 − 64C3 −MP2 − 128C3 − 128C3 − 256FC −
256FC−10. The network is pre-trained is trained using Vanilla Adam

[91] and has a baseline test error of 11.87% in floating-point.

Note that the architectures described above are inspired from those used by

BinaryNet [51] and are actually obtained by reducing the height of each layer
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Figure 2.5: Test error vs. minimum precision (Bmin), computational and
representational costs, for: (a) MNIST and (b) CIFAR-10 networks. A com-
parison with SQ [72] and BN [51] is also included.

by a factor of 4.

Each network is then quantized to fixed-point using three precision assign-

ment methods:

• The proposed fine-grained precision assignment.

• A coarse-grained precision assignment [89].

• A uniform or identical precision assignment for all activations and

weights.

The obtained results are compared to those reported by two state-of-the-art

works on reduced precision neural networks:

• Stochastic quantization (SQ) [72] - trained fixed-point networks.
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• BinaryNet (BN) [51] - trained binarized networks.

2.6.1 Results

Figure 2.4 shows the benefits of the proposed approach (2.15)-(2.18) com-

pared to a naive uniform precision assignment. Indeed, to satisfy a mismatch

probability of pm ≤ 1%, most precisions are less than the required uniform

precision. Furthermore, observe that the precision assignment matches the

quantization noise gain profile on a logarithmic scale. This is due to the

use of (2.16), (2.17), and (2.18). In addition, a general trend of decreasing

precision requirements with layer depth is noticed. This is in accordance

with recent findings demonstrating that perturbations at the early layers

of neural networks are often the most destructive [92]. Here, the proposed

method is naturally countering this effect by assigning more precision to the

lower levels. Similarly, it is seen that the precision assignments of weights

are typically more than those of activations, confirming the findings of [89].

Figure 2.5 shows that the coarse-grained approach [89] achieves a good

initial improvement over the naive uniform assignment, and is able to reduce

the minimum precision by up to 4 bit before the accuracy starts to degrade.

However, the proposed fine-grained method is noticeably superior and able

to reduce the minimum precision to just 2 bit without any notable accuracy

degradation for both networks. This corresponds to 4 bit less than the min-

imum precision obtained via the coarse-grained method for the CIFAR-10

network.

As far as complexity is concerned, the results obtained are superior to

those of SQ. For instance, on the CIFAR-10 dataset, the test error obtained

via the fine-grained precision assignment is ∼ 13% less than that reported

by SQ in spite of requiring ∼ 4× lower computational cost. Moreover, the

complexity savings of BN (binarized) are surpassed. Indeed, even though the

reported levels of accuracy are very close to those obtained via the proposed

method, the latter achieves ∼ 3× and ∼ 3.5× less computational cost for

the MNIST and CIFAR-10 networks, respectively, over the fully binarized

BN. Similar trends also hold for the representational costs. These results

reflect the importance of depth vs. width vs. precision considerations when

exploring reduced complexity neural networks.
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Figure 2.6: Precision analysis for ResNet-18 on CIFAR-10: (a) Test error vs.
Bmin for an identical weight/activation precision assignment for all layers and
a per-layer precision assignment based on the noise equalization method, and
(b) per-layer weight and activation precisions required to achieve pm < 1%.
‘FX Sim’ denotes FX simulations and ‘Bound’ denotes evaluation of the
upper bound in Theorem 1. Layer indices 19, 20, and 21 correspond to the
weight skip connection layers.

2.7 Numerical Results - Large Models and Datasets

Next, we apply our analyses and methods to significantly more complex

networks and larger datasets.

2.7.1 ResNet-18 on CIFAR-10

We deploy the ResNet-18 model [3] on the CIFAR-10 dataset. This network

is much more complex than all previously considered models. Indeed, it has

a depth of 18 feedforward layers and 3 weighted skip connection layers. The

model is pre-trained using the SGD algorithm and the floating-point accuracy

achieved is 94.53%.

In Figure 2.6 (a), we plot the fixed-point test error as a function of precision

when our analysis is applied. It is found that, for an identical precision

assignment for all activations and weights, a precision of 6 bit is required to

achieve pm ≤ 1%. The corresponding fixed-point accuracy is 93.74%. Our

bound in Theorem 1 predicts that a precision of 8 bit yields pm ≤ 0.56%.

When the method of per-layer precision assignment is employed, a mini-

mum precision Bmin of 3 bit suffices to achieve pm ≤ 1%. In this case, the
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fixed-point accuracy is of 94.35%. Furthermore, our bound in Theorem 1

predicts pm ≤ 0.91% for this precision assignment.

The above results solidify two aspects of our work: 1) our derived theoret-

ical bounds on the fixed-point accuracy are tight up to a 2 bit conservative

estimate of actual precision requirements, and 2) the use of noise equalization

leads to further precision reduction compared to the best uniform assignment

with no loss of accuracy.

Furthermore, we note that when precision is lowered below the aforemen-

tioned values of Bmin, the test error increases exponentially. We observe an

approximate quadrupling of mismatch rate when precision is decremented.

This is in accordance with our theoretical results and can be important in

the applications where accuracy requirements are tunable.

In Figure 2.6 (b), we plot the per-layer precisions required to achieve pm ≤
1% when the method of noise equalization is used. It is found that higher

precision is typically required for early layers as opposed to layers closer

to the output. Additionally, weight precision requirements are found to be

highest. Such findings are consistent with our aforementioned results on

smaller networks.

Related works on quantization-aware training have shown that accuracy

can be maintained for such networks using a 4 bit uniform precision as-

signment [53, 58]. These works rely on ad-hoc optimization techniques and

provide no accuracy guarantees. Our results indicate precision values rang-

ing from 3 to 9 bit in order to guarantee accuracy. Thus, we claim that the

price to pay for such guarantees is up to 5 additional bits in the fixed-point

network precision assignment.

2.7.2 AlexNet on ImageNet

Next, we demonstrate the applicability of our work using the AlexNet net-

work [1] deployed on the ImageNet dataset [2]. The network structure is of

8 feedforward layers, 5 of which are convolutional and 3 are fully connected.

Overall, it requires storage of over 60 million parameters and 800 million

multiply-accumulate operation to process a single input [21]. The ImageNet

dataset is significantly larger than any other dataset used thus far. It has over

a million images for training and 50,000 images for validation/testing. These
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(a) (b)

Figure 2.7: Precision analysis for AlexNet on ImageNet: (a) Test error vs.
Bmin for an identical weight/activation precision assignment for all layers and
a per-layer precision assignment based on the noise equalization method, and
(b) per-layer weight and activation precisions required to achieve pm < 1%.
‘FX Sim’ denotes FX simulations and ‘Bound’ denotes evaluation of the
upper bound in Theorem 1. The black solid and dashed lines correspond to
the floating-point test error and its 1% increase threshold, respectively.

natural images are organized into 1,000 classes. The pre-trained floating-

point network is downloaded from the Pytorch repository [93] and its Top-1

test error is of 43.45%.

In Figure 2.7 (a), we plot the fixed-point test error as a function of pre-

cision when our analysis is applied. First, for an identical weight/activation

precision assignment, it is found that a precision of 10 bit is required to

achieve pm ≤ 1%. The corresponding fixed-point test error is of 44.40%.

Using the bound in Theorem 1, we predict this accuracy is achieved for a 12

bit precision assignment. Thus, in this case, the looseness of the bound is

found to be 2 bit.

In contrast, when the method of noise equalization is used to obtain a per-

layer precision assignment, the same accuracy can achieved while lowering

Bmin to 6 bit. In this case the fixed-point test error is of 44.41%. Hence,

we once more demonstrate how our methods can be used to lower precision

by up to 4 bit while maintaining accuracy. Furthermore, using the bound

in Theorem 1, it is found that a Bmin = 8 is required to achieve the desired

accuracy. Hence, we once again find the looseness of the bound to be of 2

bit.

Figure 2.7 (a) also indicates that precision reduction leads to ∼ 3× increase
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Figure 2.8: Precision analysis for VGG-16 on ImageNet: (a) Test error vs.
Bmin for an identical weight/activation precision assignment for all layers and
a per-layer precision assignment based on the noise equalization method, and
(b) per-layer weight and activation precisions required to achieve pm < 1%.
‘FX Sim’ denotes FX simulations and ‘Bound’ denotes evaluation of the
upper bound in Theorem 1. The black solid and dashed lines correspond to
the floating-point test error and its 1% increase threshold, respectively.

in test error. Our bounds predict a 4× increase in pm when precision is decre-

mented. Hence, our theoretical results are found to be slightly conservative

compared to actual empirical findings. Nonetheless, the trends are similar

and can be important in applications having tunable precision requirements.

In Figure 2.7 (b), we plot the per-layer precisions required to achieve pm ≤
1% when the method of noise equalization is used. It is found that weights

require more precision than activations and that highest requirements are

attributed to the early layers. These findings are consistent with our earlier

results on small networks and datasets.

2.7.3 VGG-16 on ImageNet

Next, we demonstrate the applicability of our work using the VGG-16 net-

work [39] deployed on the ImageNet dataset. The VGG-16 network is even

larger and more complex than AlexNet. It consists of 16 feedforward layers,

13 of which are convolutional and 3 are fully connected. It has approxi-

mately 138 million parameters and requires 15 billion multiply-accumulate

operations to process one input. This network is known to boast one of the

best accuracies on the ImageNet dataset. The pre-trained floating-point net-
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work is downloaded from the Pytorch repository and its Top-1 test error is

26.66%.

In Figure 2.8 (a), we plot the fixed-point test error as a function of pre-

cision when our analysis is applied. First, for an identical weight/activation

precision assignment across all layers, it is found that 10 bit are required

to achieve pm ≤ 1%. The corresponding fixed-point test error is of 27.06%.

Using the bound in Theorem 1, we predict this accuracy is achieved for a 12

bit precision assignment. Thus, in this case, the looseness of the bound is

found to be of 2 bit.

When the method of noise equalization is applied, the same accuracy can

be achieved while reducing the precision by up to 5 bit. In this, it is found

that when Bmin is equal to 5 bit, the fixed-point test error is equal to 27.05%.

This result is further evidence that our methods allow for significant precision

reduction with no loss in accuracy. Furthermore, using the bound in Theorem

1, it is found that a Bmin = 8 is required to achieve the desired accuracy.

Hence, this time, the looseness of the bound is found to be 3 bit.

Figure 2.8 (a) also indicates that precision reduction leads to ∼ 4× in-

crease in test error which corroborates our theoretical results. Such trends

are important in designing fixed-point networks with tunable accuracy re-

quirements to be exploited by the application.

In Figure 2.8 (b), we plot the per-layer precision required to achieve pm ≤
1%. Our findings are consistent with all previously reported results. Weights

usually require most precision, particularly in the early layers.

2.7.4 Accuracy-aware Complexity Reduction

Finally, we demonstrate how our precision analysis above leads to accuracy-

aware complexity reduction. We use the AlexNet and VGG-16 networks

discussed above and study their computational vs. representational cost

trade-offs. To do so, we select, for both, design points that iso-accurate, i.e.,

having pm ≤ 1%. These designs are:

• Uniform precision assignment of 16 bit across all activation and weight

layers.

• Minimum uniform precision assignment to achieve pm ≤ 1%.
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(a) (b)

Figure 2.9: Computational vs. Representational cost trade-off for vari-
ous precision assignments for: (a) AlexNet and (b) VGG-16. NE, RCM,
and CCM correspond to noise equalization, representational cost minimizer,
and computational cost minimizer, respectively. All design points are iso-
accurate, i.e., have pm ≤ 1%, except for the 8 bit uniform one, which for
both networks has pm ≥ 2%.

• Precision assignment obtained via noise equalization (NE) such that

pm ≤ 1%.

• Representational Cost Minimizer (RCM) obtained by explicitly mini-

mizing the representational cost in (2.4) subject to pm ≤ 1%.

• Computational Cost Minimizer (CCM) obtained by explicitly minimiz-

ing the computational cost in (2.3) subject to pm ≤ 1%.

• RCM-CCM hybrid corresponding to solutions to the minimization of

linear combinations of computational and representational costs sub-

ject to pm ≤ 1%.

Note that the problem of minimizing the complexity costs subject to the

accuracy constraint can be solved efficiently using a grid search. This is be-

cause the Hessian matrix of the associated problem is always block diagonal.

The 16 bit uniform design point is chosen representative of common prac-

tices [21]. We also consider the popular choice of 8 bit often used by ad-hoc

designers.

In Figure 2.9, we plot representational vs. computational costs for the

above design points applied to both our AlexNet and ImageNet networks.
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The following insights are derived. The common choice of uniform 16 bit

is an overly conservative one since 10 bit suffice to achieve the same accuracy.

This difference of precision is equivalent to ∼ 40% and ∼ 50% reduction in

representational and computational costs, respectively.

Furthermore, NE yields an additional ∼ 30% and ∼ 50% in representa-

tional and computational costs, respectively, compared to the best uniform

precision assignment. This constitutes further evidence as to the importance

of our analysis.

Interestingly, NE is found to exhibit an excellent representational vs. com-

putational cost trade-off. It is found that CCM only reduces the computa-

tional cost by ∼ 10% compared to NE for both networks. On the other hand,

RCM only yields a ∼ 5% decrease in representational cost in the case of the

VGG-16 network.

When a linear combination of both costs is minimized (RCM-CCM hybrid),

a family of pareto-optimal design points is obtained. These points optimize

the trade-off between the two costs. We do observe that NE lies in close

proximity to this family on the representational vs. computational cost grid.

This proves that NE is a nearly optimal accuracy-aware complexity reduction

technique

Finally, we make an interesting observation regarding the commonly em-

ployed 8 bit uniform precision assignment. The corresponding design point,

which fails to maintain accuracy (pm ≥ 2%), has higher complexity than

NE, RCM, CCM, and their linear combinations. This is an important re-

sult indicating how ad-hoc designs can be both inaccurate and sub-optimal.

It is thus of utmost importance to design reduced-complexity networks in

an accuracy-aware manner, using the methods and analyses derived in our

work.

2.8 Summary

In this chapter we analyzed the quantization tolerance of neural networks.

We used our analysis to efficiently reduce weight and activation precisions

while maintaining fidelity similar to that of the floating-point initiation.

Specifically, we obtained bounds on the mismatch probability between a

fixed-point network and its floating-point counterpart in terms of precision.
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We showed that a neural network’s accuracy degradation due to quantiza-

tion decreases double exponentially as a function of precision. Our analysis

provides a straightforward method to obtain an upper bound on the net-

work’s error probability as a function of precision. We used these results on

real datasets to minimize the computational and representational costs of a

fixed-point network while maintaining accuracy.

Additionally, we have presented an analytical approach to fine-grained

precision assignment in deep neural networks (DNNs). The benefits of the

proposed approach in terms of minimum precision and complexity reduction

have been shown. A performance comparison with state-of-the-art binary

and fixed-point neural networks was illustrated and highlighted considerable

savings. The presented work allows DNN designers to determine minimum

precision requirements in DNNs and estimate their complexities without

needing to run lengthy simulations. The proposed method can be employed

to efficiently explore other dimensions in the design of low-complexity DNNs

such as the trade-off between precision vs. depth vs. width, and between

precision and pruning.

Our work addresses the general problem of resource-constrained machine

learning. One takeaway is that it is imperative to understand the trade-

offs between accuracy and complexity. In our work, we used precision as a

parameter to analytically characterize this trade-off. Nevertheless, additional

aspects of complexity in neural networks such as their structure and their

sparsity can also be accounted for. In fact, more work can be done in that

regard. Our work may be viewed as a first step in developing a unified and

principled framework to understand complexity vs. accuracy trade-offs in

deep neural networks and other machine learning algorithms.

2.9 Addendum: Proofs of Bounds on Mismatch

Probability

The main purpose of this section is to provide proofs for Theorems 1 and 2.
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Preliminaries

Here we shall give a proof of (2.1) as well as preliminary results that will be

needed to complete the proofs of Theorems 1 and 2.

Proposition 1. The fixed point error probability pe,fx is upper bounded as

shown in (2.1).

Proof. From the definitions of pe,fx, pe,fl, and pm,

pe,fx = Pr{Ŷfx 6= Y }

= Pr{Ŷfx 6= Y, Ŷfx = Ŷfl}+ Pr{Ŷfx 6= Y, Ŷfx 6= Ŷfl}

= Pr{Ŷfl 6= Y, Ŷfx = Ŷfl}+ Pr{Ŷfx 6= Y, Ŷfx 6= Ŷfl}

≤ pe,fl + pm.

Next is a simple result that allows us to replace the problem of upper

bounding pm by several smaller and easier problems by virtue of the union

bound.

Proposition 2. In an M-class classification problem, the total mismatch

probability can be upper bounded as follows:

pm ≤
M∑
j=1

M∑
i=1,i 6=j

Pr(Ŷfx = i|Ŷfl = j) Pr(Ŷfl = j). (2.19)
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Proof.

pm = Pr(Ŷfx 6= Ŷfl) = Pr

(
M⋃
j=1

(Ŷfx 6= j, Ŷfl = j)

)

≤
M∑
j=1

Pr(Ŷfx 6= j, Ŷfl = j)

=
M∑
j=1

Pr(Ŷfx 6= j|Ŷfl = j) Pr(Ŷfl = j)

=
M∑
j=1

Pr

(
M⋃

i=1,i 6=j

Ŷfx = i

∣∣∣∣Ŷfl = j

)
Pr(Ŷfl = j)

≤
M∑
j=1

M∑
i=1,i 6=j

Pr(Ŷfx = i|Ŷfl = j) Pr(Ŷfl = j),

where both inequalities are due to the union bound.

The next result is also straightforward, but quite useful in obtaining upper

bounds that are fully determined by averages.

Proposition 3. Given a random variable X and an event E, we have:

E [X · 1E ] = E [X|E ] Pr(E), (2.20)

where 1E denotes the indicator function of the event E .

Proof. By the law of total expectation,

E [X · 1E ] = E [X · 1E | E ] Pr(E) + E [X · 1E | Ec] Pr(Ec)

= E [X · 1 | E ] Pr(E) + E [X · 0 | Ec] Pr(Ec)

= E [X|E ] Pr(E).
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Proof of Theorem 1

Let us define pm,j→i for i 6= j as follows:

pm,j→i = Pr{Ŷfx = i | Ŷfl = j}. (2.21)

We first prove the following Lemma.

Lemma 1. Given BX and BF , if the output of the floating-point network

is Ŷfl = j, then that of the fixed-point network would be Ŷfx = i with a

probability upper bounded as follows:

pm,j→i ≤
∆2
A

24
E


∑

h∈A

∣∣∣∂(Zi−Zj)
∂Ah

∣∣∣2
|Zi − Zj|2

∣∣∣∣Ŷfl = j


+

∆2
W

24
E


∑

h∈W

∣∣∣∂(Zi−Zj)
∂wh

∣∣∣2
|Zi − Zj|2

∣∣∣∣Ŷfl = j

 . (2.22)

Proof. We can claim that, if i 6= j:

pm,j→i ≤ Pr{Zi + qZi > Zj + qZj | Ŷfl = j}, (2.23)

where the equality holds for M = 2.

From the law of total probability,

pm,j→i ≤
∫
fX(x) Pr

(
zi + qzi > zj + qzj | Ŷfl = j,x

)
dx, (2.24)

where x denotes the input of the network, or equivalently an element from

the dataset and fX() is the distribution of the input data. But for one specific

x given Ŷfl = j, we have:

Pr
(
zi + qzi > zj + qzj

)
=

1

2
Pr
(∣∣qzi − qzj ∣∣ > |zj − zi|) ,

where the 1
2

term is due to the symmetry of the distribution of the quanti-

zation noise around zero per output. By (2.7), we can claim that

qzi − qzj =
∑
h∈A

qah
∂(zi − zj)

∂ah
+
∑
h∈W

qwh
∂(zi − zj)
∂wh

. (2.25)
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Note that qzi − qzj is a zero mean random variable with the following

variance:
∆2
A

12

∑
h∈A

∣∣∣∣∂(zi − zj)
∂ah

∣∣∣∣2 +
∆2
W

12

∑
h∈W

∣∣∣∣∂(zi − zj)
∂wh

∣∣∣∣2 .
By Chebyshev’s inequality, we obtain

Pr
(
zi + qzi > zj + qzj

)
≤

∆2
A

∑
h∈A

∣∣∣∂(zi−zj)
∂ah

∣∣∣2 + ∆2
W

∑
h∈W

∣∣∣∂(zi−zj)
∂wh

∣∣∣2
24 |zi − zj|2

.

(2.26)

From (2.24) and (2.26), we can derive (2.22).

Substituting (2.22) of Lemma 1 into (2.19) and using (2.20),

pm ≤
M∑
j=1

M∑
i=1,i 6=j

∆2
A

24
E


∑

h∈A

∣∣∣∂(Zi−Zj)
∂Ah

∣∣∣2
|Zi − Zj|2

1Ŷfl=j


+

∆2
W

24
E


∑

h∈W

∣∣∣∂(Zi−Zj)
∂wh

∣∣∣2
|Zi − Zj|2

1Ŷfl=j


 , (2.27)

which can be simplified into (2.8) in Theorem 1.

Proof of Theorem 2

We start with the following lemma.

Lemma 2. Given BA and BW , pm,j→i is upper bounded as follows:

pm,j→i ≤ E

[
e−T ·V

∏
h∈A

sinh (T ·DA,h)

T ·DA,h

·
∏
h∈W

sinh (T ·DW,h)

T ·DW,h

∣∣∣∣Ŷfl = j

]
,

(2.28)

where T = 3V∑
h∈A∆2

A,h+
∑
h∈W ∆2

W,h
, V = Zj − Zi, DA,h = ∆A

2
· ∂(Zi−Zj)

∂Ah
, and

DW,h = ∆W

2
· ∂(Zi−Zj)

∂Wh
.

Proof. The setup is similar to that of Lemma 1. Denote v = zj − zi. By the
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Chernoff bound,

Pr
(
qzi − qzj > v

)
≤ e−tvE

[
et(qzi−qzj )

]
for any t > 0. Because quantization noise terms are independent, by (2.25),

E
[
et(qzi−qzj )

]
=
∏
h∈A

E
[
etqahd

′
ah

] ∏
h∈W

E
[
etqwhd

′
wh

]
,

where d′ah =
∂(zi−zj)
∂ah

and d′wh =
∂(zi−zj)
∂wh

. Also, E
[
etqahd

′
ah

]
is given by

E
[
etqahd

′
ah

]
=

1

∆A

∫ ∆A
2

−∆A
2

etqahd
′
ahdqah =

2

td′ah∆A

sinh

(
td′ah∆A

2

)
=

sinh (tdah)

tdah
,

where dah =
d′ah

∆A

2
. Similarly, E

[
etqwhd

′
wh

]
=

sinh (tdwh)
tdwh

where dwh =
d′wh

∆W

2
.

Hence,

Pr
(
qzi − qzj > v

)
≤ e−tv

∏
h∈A

sinh (tda,h)

tda,h

∏
h∈W

sinh (tdw,h)

tdw,h
. (2.29)

By taking logarithms, the right-hand side is given by

−tv +
∑
h∈A

(
ln sinh (tda,h)− ln (tda,h)

)
+
∑
h∈W

(
ln sinh (tdw,h)− ln (tdw,h)

)
.

This term corresponds to a linear function of t added to a sum of log-moment

generating functions. It is hence convex in t. By taking the derivative with

respective to t and setting to zero,

v +
|A|+ |W|

t
=
∑
h∈A

da,h
tanh(tda,h)

+
∑
h∈W

dw,h
tanh(tdw,h)

.

But tanh(x) = x− 1
3
x3 + o (x5), so dropping fifth-order terms yields:

v +
|A|+ |W|

t
=
∑
h∈A

1

t(1− (tda,h)2

3
)

+
∑
h∈W

1

t(1− (tdw,h)2

3
)
.

Note, for the terms inside the summations, we divided numerator and de-

nominator by da,h and dw,h, respectively, then factored the denominator by
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t. Now, me multiply both sides by t to get:

tv + |A|+ |W| =
∑
h∈A

1

1− (tda,h)2

3

+
∑
h∈W

1

1− (tdw,h)2

3

.

Also 1
1−x2 = 1 + x2 + o(x4), so we drop fourth-order terms:

tv + |A|+ |W| =
∑
h∈A

(
1 +

(tda,h)
2

3

)
+
∑
h∈W

(
1 +

(tdw,h)
2

3

)

which yields:

t =
3v∑

h∈A (da,h)2 +
∑

h∈W (dw,h)2
. (2.30)

Substituting (2.29) into (2.30) and using the similar method of Lemma 1, we

can derive (2.28) of Lemma 2.

Theorem 2 is obtained by substituting (2.28) of Lemma 2 into (2.19) and

using (2.20). Of course, D
(i,j)
Ah

is the random variable of da,h when ŷfx = i and

ŷfl = j, and the same applies to D
(i,j)
wh and dw,h. We dropped the superscript

(i, j) in the Lemma as it was not needed for the consistency of the definitions.
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CHAPTER 3

MINIMIZING ADC PRECISION FOR
INFERENCE ON IN-MEMORY

ARCHITECTURE

The previous chapter investigated the precision requirements of weights and

activations in a DNN realization. In this chapter, we study the precision re-

quirements of DNN dot-products, when implemented using in-memory com-

puting. Specifically, we propose the optimal clipping criterion for minimizing

the column ADC precision. Applying bit slicing techniques, we prove that ac-

curate dot-products can be realized with a single memory access. Finally, we

demonstrate that, as a consequence of our work, significant energy reduction

can be achieved while maintaining network level accuracy.

3.1 Motivation

In-memory computing (IMC) architecture [94, 95, 96] strives to eliminate the

separation of storage and compute. It does so by realizing functional opera-

tions (such as dot-products) within the bitcell array (BCA) during memory

accesses. In the process, the energy-delay product (EDP) of inference tasks

can be reduced by up to two orders of magnitude compared to the conven-

tional von Neumann architecture [28]. Since IMCs address the memory wall

problem, it is particularly attractive for memory-centric workloads such as

machine learning algorithms. In recent years, a large number of IMC imple-

mentations of DNNs have been proposed [27, 28, 29, 30, 31, 14, 32, 33, 34,

35, 36, 37, 38].

In spite of recent advances, IMCs face several challenges. First, functions

mapped to IMCs have been restricted to simple (binary) operations and al-

gorithms [76, 51, 52, 75]. Methods to increase IMC precision remain elusive.

Second, mapping of high-dimensional dot-products onto IMCs is often lim-

ited by analog noise sources, which are not fully understood [97, 98]. Third,

the energy and latency costs of column analog-digital converters (ADCs)
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dominate [98] the system energy efficiency. Finally, the dense BCA lay-

out imposes strict area and hence precision constraints on the ADCs [99].

Unfortunately, matching application-level accuracy requirements with such

precision constraints on ADCs is made challenging.

Efforts to address some of the above mentioned limitations have relied

on ad-hoc trial-and-error methods. The lack of an analytical framework to

guide the design of IMCs has led to designs that are overly conservative and

therefore sub-optimal in terms of efficiency. For example, the use of the

bit-growth criterion (BGC) to set ADC precision [100] avoids loss in fidelity

of bitline computations in the BCA much higher precision that necessary.

Many IMC designs employ ad-hoc methods to assign fewer ADC bits than

suggested by BGC and justify it via extensive simulations to show that DNN

accuracy is preserved. However, such methods do not provide any theoretical

guarantees.

Our work addresses the above mentioned limitations by making the fol-

lowing contributions:

• We propose the optimal clipping criterion (OCC) to minimize the col-

umn ADC precision requirements. The signal-to-quantization ratio

(SQNR) of OCC is shown to be within 0.8 dB of the well-known op-

timal Lloyd-Max (LM) quantizer [101]. OCC improves the SQNR by

14 dB compared to the commonly employed full range (FR) quantizer

which translates to a 3 bit reduction in ADC precision.

• We study the quantization noise in a input-serial weight-parallel (ISWP)

IMC which generalizes the popular bit-serial weight-parallel IMC in

[33]. We show that, using bit slicing techniques, significant energy sav-

ings can be achieved with minimal accuracy lost. Indeed, we prove

that a dot-product can be achieved with a single memory access while

suffering no more than 2 dB SQNR drop.

• We derive an analytical methodology for proper IMC design subject to

DNN accuracy constraint. Combining the proposed OCC for reduced

ADC precision and ISWP noise analysis, we demonstrate that per-layer

energy consumption can be reduced by a factor of ∼ 6×.

This chapter is organized as follows: Our problem setup with the corre-

sponding IMC model and architecture is introduced in Section 3.2. The op-
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Figure 3.1: The input-serial weight-parallel (ISWP) architecture

timal clipping criterion is presented in Section 3.3. An analysis of bit slicing

is included in Section 3.4. Section 3.5 contains our proposed optimization of

DNN implementation using IMC. Numerical results are presented in Section

3.6. Finally, Section 3.7 summarizes this chapter.

3.2 Problem Setup

Consider an N -dimensional dot-product y = wTx of real valued (signed)

weight and (unsigned) input vectors of precision BW and BX bit, respectively,
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and given by:

w =


w(1)

...

w(N)

 ; w(i) = wm

(
−w(i)

{0} +

BW−1∑
b=1

w
(i)
{b}2

−b

)

x =


x(1)

...

x(N)

 ; x(i) = xm

BX−1∑
b=0

x
(i)
{b}2

−b−1,

where w
(i)
{b} ∈ {0, 1} and x

(i)
{b} ∈ {0, 1} are the bth bits of w(i) ∈ [−wm, wm]

and x(i) ∈ [0, xm], respectively. The choice of unsigned inputs is to account

for the use of activations (e.g., ReLU) in DNNs.

3.2.1 The Input-Serial Weight-Parallel (ISWP) IMC

We consider the input-serial bit-parallel (ISBP) architecture (see Figure 3.1)

[97] which generalizes the architecture in [33] by allowing for multi-bit inputs

per read cycle.

The ISWP architecture stores w in the columns of the BCA where the BW

bit of w(i) are arrayed across BW columns in the ith row. During computation,

ISWP serializes the BX bit input vector x into NS =
⌈
BX
BS

⌉
input slices of

BS bit where

x(i) = xm

NS−1∑
s=0

x
(i)
{−s−}2

−sBs

with x
(i)
{−s−} being the sth slice given by:

x
(i)
{−s−} =

BS−1∑
b=0

x
(i)
{sBS+b}2

−b−1.

Processing the inputs at one slice per read cycle, the multi-bit dot-product

y = wTx is realized using the following powers-of-two (POT) combination:

y = xmwm

NS−1∑
s=0

(
−ys,0 +

BW−1∑
b=1

ys,b2
−b

)
2−sBS , (3.1)
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Table 3.1: Values of analog noise parameters in a 65 nm process

Parameter Value Parameter Value

ρ1 6.40× 10−18F ρ3 6.01× 10−33F2

ρ2 4.14× 10−21F VDD 1V

where bitline (BL) dot-product ys,b is computed as:

ys,b =
N∑
i=1

w
(i)
{b}x

(i)
{−s−}. (3.2)

3.2.2 Quantization and Analog Noise Effects

The BL dot-product ys,b in (3.2) is computed using analog circuits. Due to

noise, the observed BL dot-product ys,b is given by:

ys,b = ys,b + qAs,b + ηas,b , (3.3)

where qAs,b and ηas,b are the column ADC quantization noise and BL analog

noise, respectively. The expression for the variance of qAs,b will be presented

in Section 3.3 since it depends on the quantization method employed in the

ADC.

The analog noise term ηas,b includes capacitor mismatch, thermal effects,

and charge injection. The variance of analog noise term ηas,b [97] is given by:

σ2
ηas,b

= N

(
E
[
(w{}x{−})

2
]
ρ1

(1− 2−BS)2Co
+
ρ2

Co
+
ρ3

C2
o

)
, (3.4)

where w{} and x{−} are unindexed weight bits and input slices, respectively,

Co is the nominal bitcell (BC) capacitance, and ρ1, ρ2, and ρ3 are technology-

and layout-dependent parameters. For a 65 nm process [97], the values of

these parameters are listed in Table 3.1. The BC capacitance Co is an im-

portant design parameter trading off complexity and accuracy. In (3.4), the

noise variance decreases when Co increases. However, large values of Co cause

higher energy consumption and reduce memory density.

The impact of the noise sources in (3.3) on the accuracy of the dot-product

in (3.1) will be derived in Section 3.4.
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3.2.3 Energy Consumption

An IMC’s energy efficiency is quantified by the energy per 1 bit multiply-

accumulate (MAC) operation EOP [98]:

EOP =
NS

BX

(
EBC +

EADC
N

)
, (3.5)

where EBC is the energy consumed by the 1 bit MAC within the bitcell given

by

EBC = E
[
x{−}

]
CoV

2
DD, (3.6)

where E
[
x{−}

]
is the mean value of an input slice and VDD is the supply

voltage.

For a BA bit ADC, EADC is given by [102, 103]:

EADC = k1

(
BA + log2

(
ym
RY

))
+ k2

(
ym
RY

)2

4BA , (3.7)

where k1 = 10−13 J and k2 = 10−13 J are empirical parameters, ym is to the

largest dot -product that can be accumulated on the bitline, and RY is the

ADC quantization range. Equation (3.7) also indicates that the ADC energy

quadruples per bit of increase in its precision BA, emphasizing the need for

minimizing it without impacting accuracy.

3.3 The Optimal Clipping Criterion

Quantization of a signal x ∈ [xmin, xmax] to B bit is the process of mapping

its value to one of 2B pre-defined levels {xqi}2B

i=1. The quantized signal is

obtained as xq = arg min{xqi}2
B
i=1
|x − xqi |. The choice of quantization levels

sets the quantizer’s mean-squared error (MSE), desired to be small, and

defined as:

MSE(xq) = E
[
(x− xq)2

]
. (3.8)

Further, it is useful to employ an additive model of quantization noise [104,

105]. We write xq = x + qx, where qx is a random variable assumed to be
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zero-mean and independent from x. Its variance σ2
qx is equal to the MSE in

(3.8).

Given a signal distribution fx(), the Lloyd-Max (LM) algorithm [101, 106,

107] finds a set of quantization levels {xqi}2B

i=1 minimizing the quantizer’s

MSE in (3.8).

A conventional full range (FR) uniform quantizer simply sets xqi = xmin +

(i−1)∆x, for i = 1, . . . , 2B, where ∆x = (xmax−xmin)2−B is the quantization

step. It is useful to approximate its quantization noise term qx as a uniformly

distributed random variable [108, 82], i.e., qx ∼ U
[
−∆x

2
, ∆x

2

]
. Consequently,

we obtain σ2
qx = ∆2

x

12
, an expression for the quantizer’s MSE.

3.3.1 Clipped Quantization

Recently, we have shown that a uniform quantizer’s accuracy can be improved

by allowing for signal clipping [109]. Specifically, all quantization levels are

placed in a narrow interval [xL, xR], with xL > xmin and xR < xmax. The

resulting quantizer has an MSE consisting of quantization and clipping noise

terms [109]:

MSE(xq) =
∆2
x

12
+ σ2

c , (3.9)

where, by virtue of the new quantization range, the step size is given by

∆x = (xR − xL)2−B and the clipping noise variance equals:

σ2
c = E

[
(x− xL)2

1{x<xL}
]

+ E
[
(x− xR)2

1{x>xR}
]
. (3.10)

Thus, a clipped uniform quantizer exhibits a fundamental trade-off between

its quantization and clipping noise. Hereafter, we demonstrate how to opti-

mally clip a signal.

3.3.2 Optimally Clipped Quantization

We present the optimal clipping criterion (OCC) for signals with a Gaussian

distribution. Such signals are very prominent in machine learning systems,

particularly in dot-product outputs by virtue of the Central Limit Theorem

[110]. The following is our first main result:
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(a)

(b)

(c)

Figure 3.2: Illustration of various quantization strategies for a unit Gaussian
signal: (a) Lloyd-Max, (b) full range uniform, and (c) optimally clipped
uniform quantizers. The predicted and simulated MSEs are obtained via
evaluation of (3.8) using numerical integration and Monte Carlo simulations,
respectively.

Theorem 3. Given a Gaussian signal x ∼ N (µx, σ
2
x) and a B bit uniform

quantizer, the optimal quantization range is [µx − ζ(OCC)σx, µx + ζ(OCC)σx]

where the optimal clipping factor ζ(OCC) is the converging point of the follow-

ing recursive expression:

ζn+1 =

√
2
π
e−

ζ2n
2

4−B

3
+ 2Q(ζn)

, (3.11)

where Q() represents the Q-function of a standard Gaussian.
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Table 3.2: Comparison of MSE between OCC and LM

B ζ(OCC) σ2
(OCC) σ2

(LM)

σ2
(OCC)

σ2
(LM)

2 1.71 1.26× 10−1 1.17× 10−1 1.077

3 2.15 3.79× 10−2 3.45× 10−2 1.099

4 2.55 1.16× 10−2 9.50× 10−3 1.221

5 2.94 3.50× 10−3 2.50× 10−3 1.560

6 3.29 1.04× 10−3 8.14× 10−4 1.278

7 3.61 3.04× 10−4 2.13× 10−4 1.427

8 3.92 8.77× 10−5 7.15× 10−5 1.227

9 4.21 2.49× 10−5 2.02× 10−5 1.232

10 4.49 6.99× 10−6 5.11× 10−6 1.368

Proof. See Section 3.8.

An important consequence of Theorem 3 is that ζ(OCC) depends on the

number of bits B. Second, (3.11) does not explicitly compute ζ(OCC) and

requires an initial guess ζ0. The process is computationally simple. We

found that no more than 10 iterations are needed when ζ0 = 4.

The use of OCC and its comparison to LM and FR are illustrated in Figure

3.2. A unit Gaussian signal, confined to the interval [−6, 6], is quantized to

6 bit. Corresponding quantization levels are shown and quantizer MSE is

reported.

First, LM places most quantization levels near the mean as shown in Figure

3.2 (a). Intuitively, most of the representation is allocated to high-density

regions which minimizes the MSE. Unfortunately, the quantization levels are

non-uniform which can lead to design difficulty due to the need for complex

circuitry [111, 112].

In contrast, the non-parametric FR has a large MSE. Indeed, many of its

quantization levels are placed on the tails of the distribution which is data

inefficient as shown in Figure 3.2(b).

Figure 3.2(c) illustrates the improvements OCC provides. Via clipping,

the region of high signal density is pinpointed. As a result, the quantizer’s

accuracy is almost as good as LM’s and it maintains FR’s desirable property

of having uniformly placed quantization levels.

In Table 3.2, we tabulate ζ(OCC) for varying values of B of interest. We also

list σ2
(OCC) and σ2

(LM), the quantization noise variances for the OCC and LM

quantizers, respectively, when applied to a unit Gaussian random variable.
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These are obtained by evaluating (3.8) using numerical integration.

We also include the ratio
σ2

(OCC)

σ2
(LM)

. It is found that σ2
(OCC) is usually about

∼20% higher than σ2
(LM) and at worst 56% when B = 5. Equivalently, the

OCC has an SQNR within 0.8 dB of LM. Thus, the OCC, being a uniform

quantizer, constitutes a practical, yet reliable, alternative to LM.

3.3.3 Application of the OCC

Though OCC is meant for quantizing IMC dot-products it can be employed

for quantizing digitally computed dot-products as well. We study the ap-

plication of OCC in quantizing digital dot-products first and then IMC dot-

products.

OCC in digital dot-products

For a digital realization of the dot-product described in Section 3.2, there are

three sources of noise: input (qx→y), weight (qw→y), and output (qy) quan-

tization. The resulting signal-to-quantization-noise ratio (SQNR) is given

by:

SQNR =
σ2
y

σ2
qx→y + σ2

qw→y + σ2
qy

(3.12)

with

σ2
qx→y =

Nx2
mσ

2
w4−BX

12
; σ2

qw→y =
Nw2

mE[x2]4−BW

3
, (3.13)

and σ2
qy depending on the output quantization strategy.

We consider a dot-product of dimension N = 256 where inputs and weights

are uniformly distributed in [0, 1] and [−1, 1], respectively. Input and weight

precisions are chosen as BX = BW = 4. The upper bound on the SQNR in

(3.12) is 22.5 dB, obtained by setting σ2
qy = 0.

Output precision is typically set using the bit-growth criterion (BGC) [113]:

BY = BX +BW + log2(N). (3.14)

This criterion is known to be overly conservative. We consider three out-
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(a) (b)

(c)

Figure 3.3: Comparison of FR, OCC, and LM for output and ADC quanti-
zation: (a) SQNR vs. BY in digital dot-products, (b) SQNR vs. BA in IMC
dot-products, and (c) SNR vs. BA in IMC dot-products. The dot-product
dimension is N = 256 and input/weight precisions are set as BX = BW = 4.
The maximum achievable SQNR in (a) and (b) is 22.5dB. The bitcell capac-
itance used in (c) is Co = 1fF and the maximum achievable SNR is 14.5dB.
Solid lines ‘E’ are obtained via evaluation of (3.12), (3.16), (3.15), (3.17),
and (3.18); dashed lines ‘S’ are obtained using Monte Carlo simulations.

put quantization strategies: (1) FR employing the range [−N,N ], (2) OCC,

and (3) LM. For each, BY is swept and the SQNR is evaluated both ana-

lytically (using (3.12), (3.8), and (3.9)) and empirically (using Monte Carlo

simulations).

The results are shown in Figure 3.3. The following is observed: First,

OCC’s accuracy matches the optimal LM. The asymptotic SQNR of ∼ 22 dB

is attained for a value of BY = 6 for both quantizers. On the other hand,

the commonly employed FR has a much smaller SQNR. Its gap with respect

to LM and OCC is as high as 20 dB for BY = 5. In addition, it requires

BY = 10 to reach the SQNR asymptote. OCC thus boasts a 4 bit reduction

over FR, which is significant.
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OCC in IMC dot-products

For an IMC realization of the dot-product described in Section 3.2, there are

three quantization noise sources: input (qx→y), weight (qw→y), total column

ADC operations (qA→y). In addition, circuit non-idealities contribute to a

fourth term (ηa→y). The resulting signal-to-noise ratio (SNR) is given by:

SNR =
σ2
y

σ2
qx→y + σ2

qw→y + σ2
qA→y

+ σ2
ηa→y

, (3.15)

where σ2
qx→y and σ2

qw→y are given by (3.13), while σ2
qA→y

and σ2
ηa→y are derived

hereafter.

Additionally, it is useful to consider an ideal scenario where analog noise

does not exist (i.e., ηa→y = 0). In this case, we define the SQNR of the IMC

dot-product as:

SQNR =
σ2
y

σ2
qx→y + σ2

qw→y + σ2
qA→y

. (3.16)

The SQNR in (3.16) sets an upper bound on the SNR in (3.15).

We consider the bit-serial, bit-parallel (BSBP) architecture, a special case

of the ISWP architecture discussed in Section 3.2 using BS = 1 so that

NS = BX . The BSBP architecture is popular [33] because it is believed to

have the best accuracy (a claim we refute in Section 3.4). We consider the

same setup as above and first study the SQNR in (3.16). The asymptote of

22.5 dB is identical to the digital dot-product case and can be obtained by

setting σ2
qA→y

= 0. For the BSBP architecture, it can be shown that:

σ2
qA→y

=
4

9
x2
mw

2
m

(
1− 4−BX

) (
1− 4−BW

)
σ2
qAs,b

, (3.17)

where σ2
qAs,b

is the intermediate column ADC quantization noise variance

from (3.3). This quantity depends on the quantization strategy and can be

evaluate using (3.8) or (3.9).

Figure 3.3 (b) illustrates how the BSBP architecture’s SQNR varies with

BA. Once again, LM and OCC perform nearly identically. Compared to FR,

OCC yields a 14 dB improvement when BA = 4. Furthermore, OCC reaches

the SQNR asymptote for BA = 5 as opposed to FR which requires BA = 8.

Hence, OCC reduces ADC precision requirements by 3 bit.
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The SNR in (3.15) is also studied. In the BSBP setup, the total analog

noise variance is given by:

σ2
ηa→y =

4

9
x2
mw

2
m

(
1− 4−BX

) (
1− 4−BW

)
σ2
ηas,b

(3.18)

with σ2
ηas,b

given by (3.4). We use a value of Co = 1 fF, resulting in an

asymptotic SNR of 14.5 dB obtained by setting σ2
qA→y

= 0 in (3.15). Then,

BA is swept and the resulting SNR is included in Figure 3.3 (c). Once more,

OCC performs as accurately as LM. Furthermore, it improves on FR by up

to 10 dB for BA = 4. The asymptote of ∼ 14 dB is attained when BA = 5,

implying a 3 bit reduction compared to FR which requires BA = 8.

3.4 Bit Slicing Analysis

3.4.1 Noise Propagation and Futility of Bit Serialization

IMC precision limits [109], though not widely employed by hardware design-

ers, are known to exist [98]. When the column ADC precision BA is fixed

(for instance due to area constraints), designers attempt to improve IMC ac-

curacy by reducing the input precision. The usual argument is to re-purpose

the BGC in (3.14).

When applied to a column accumulation within an IMC architecture, BA

replaces BY , BS replaces BX , BW = 1, and N is set by the number of active

rows in the array. As BS is the only free design parameter, IMC designers,

usually attempt to satisfy BGC by choosing the smallest value for BS = 1,

i.e., use the BSBP architecture [33, 114]. This leads to NS = BX , i.e., a

maximal number of array accesses.

In reality, a trade-off between quantization noise from individual ADC

operations and accumulation of noise in POTs exists. We prove that the

common choice of BS = 1 is sub-optimal in terms of accuracy and energy

efficiency. We show that the use of a higher value for BS minimally impacts

σ2
qA→y

and σ2
ηa→y . First, we consider the impact of bit slicing on ADC quanti-

zation noise. We prove in Section 3.8 that, when individual input and weight
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Figure 3.4: Bit slicing gain β in (3.20).

bits are equally likely to be 0 or 1, and when the OCC is employed, then:

σ2
qA→y

=
Nσ2

(OCC)

(
1− 4−BX

) (
1− 4−BW

)
36x−2

m w−2
m

× β, (3.19)

where β is the ADC quantization noise bit slicing gain given by:

β =
5− 2−BS

1 + 2−BS
. (3.20)

In Figure 3.4, we plot β as a function of BS. The smallest value for β is

equal to 3 and corresponds to BS = 1, validating that the BSBP architecture

has the best accuracy. However, the largest value for β is equal to 5 when

BS → ∞. Thus, the impact of bit slicing causes a 1.6× increase in total

ADC quantization noise variance. This corresponds to a 2 dB SQNR drop

at worst which is equivalent to a third of an LSB [81]. Thus, in principle,

the accuracy benefits from using a single bit per slice are very limited and

arguably do not outweigh the price of accessing the array multiple times.

We also analyze the impact of bit slicing on analog noise. In Section 3.8,

we prove that:

σ2
ηa→y =

4x2
mw

2
m

(
1− 4−BX

) (
1− 4−BW

)
3 (1− 4−BS)

σ2
ηas,b

(3.21)

65



2 4 6 8 10
BS

12

14

16

18

20

SQ
NR

 (d
B)

(a)

2 4 6 8 10
BS

11

12

13

14

SN
R 

(d
B)

(b)

Figure 3.5: Impact of bit slicing on the accuracy of IMC dot-products: (a)
SNQR vs. BS and (b) SNR vs. BS. The legend is included at the top of the
figure and lists various values of BX and BA used. The dot-product dimension
is N = 256 and weight precision is set as BW = 4. The bitcell capacitance
used in (c) is Co = 1 fF. Solid lines ‘E’ are obtained via evaluation of (3.12),
(3.16), (3.15), (3.19), (3.21), and (3.22); dashed lines ‘S’ are obtained using
Monte Carlo simulations.

with:

σ2
ηas,b

= N

(
ρ1

(
2− 2−BS

)
12 (1− 2−BS)Co

+
ρ2

Co
+
ρ3

C2
o

)
. (3.22)

Thus, when BS increases, σ2
ηa→y decreases, though not drastically. This is not

surprising since higher BS leads to fewer memory accesses, meaning fewer

instances when circuit non-idealities are accumulated.

Summarizing our findings above, no clear advantages can be associated

with the use of BS = 1. Thus, we recommend choosing BS = BX when-

ever possible. Such fully sliced (FS) designs improve energy efficiency and

do not hinder accuracy. Generally, FS hardware is available for moderate

input precision values (BX ≤ 8) [30]. For applications necessitating high

input precision (BX > 8), we recommend choosing the largest value of BS

supported by the hardware.
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3.4.2 Impact on Dot-product Accuracy

We confirm our findings above by investigating the impact of bit-slicing on

the accuracy of IMC dot-products.

We use the same setup as in Section 3.6.1, but consider higher input pre-

cision BX to increase the choices for BS. Specifically, we keep BW = 4,

N = 256 but use BX = 8 and BX = 10. For each case, we sweep the value

of BS = 1, . . . , BX . The column ADC precision BA is also fixed to 3, 4, or 5

bit, and always uses the OCC.

Figure 3.5 (b) shows plots of the SQNR as a function of BS for these

various cases. Validating our analysis, results indicate that the choice of BS

has a minor effect on the SQNR. When BA = 3, the SQNR lies between ∼
14 dB for BS = 1 and ∼ 12 dB for BS → BX . Thus, our contention that

single bit slicing offers no more than a 2 dB SQNR boost is verified. Results

when BA > 3 also corroborate this finding. In general, when BA increases

(and ADC quantization noise no longer dominates), the SQNR sensitivity to

BS decreases.

Figure 3.5 (c) illustrates the impact of bit slicing on the SNR of IMC dot-

products given by (3.15). The setup is identical to the above SQNR study,

but analog noise is also enabled with Co = 1 fF. The SNR is minimally

affected by the choice of BS, as predicted. Its value is lower than the SQNR

for various configurations due to the presence of analog noise. When BA = 3,

the SNR lies between ∼ 11.5 dB for BS = 1 and ∼ 10.5 dB for BS → BX .

Thus, in the case of the SNR, the benefits of single-bit slicing are reduced to

just 1 dB. In fact, when BA = 5, the SNR does not vary as a function of BS,

but remains constant and equal to ∼ 14 dB.

3.5 DNN Implementation Methodology

3.5.1 Setup and Accuracy Analysis

We apply our analysis above for DNN inference using IMC architectures.

Direct mapping is considered. More precisely, we assume each layer’s com-

putation is mapped to a separate memory bank of appropriate size (matched

to the dot-product dimension at that layer). Thus, for each of the L layers,
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there are four design parameters to be determined: activation ({BX,l}Ll=1),

weight ({BW,l}Ll=1), and ADC ({BA,l}Ll=1) precisions, as well as bitcell capac-

itance ({Co,l}Ll=1).

In order to analyze the accuracy of the implemented DNN, we use the

mismatch probability metric [89], pm = Pr{ĈFL 6= ĈIMC}, measuring the

probability of disagreement in floating-point (ĈFL) and IMC (ĈIMC) pre-

dicted classes.

Following a similar approach to [115], we prove in Section 3.8 that the

following upper bound holds:

pm ≤
L∑
l=1

(
σ2
qx→yl

+ σ2
qw→yl

+ σ2
qA→yl

+ σ2
ηa→yl

)
EY,l, (3.23)

where, at layer l, σ2
qx→yl

, σ2
qw→yl

, and σ2
qA→yl

are the output referred variances

from input, weight, and ADC quantization noise, respectively; σ2
ηa→yl

is the

output referred variance from analog noise; and EY,l is the pre-activation

noise gain given by:

EY,l = E


M∑
i=1

i 6=ĈFL

∑
h∈Yl

∣∣∣∂(Zi−ZĈFL )

∂Yh

∣∣∣2
2|Zi − ZĈFL|

2

 (3.24)

with M being the number of classes, {Zi}Mi=1 being the network soft outputs,

and Yl being the index set of pre-activations (dot-product outputs) at layer

l.

3.5.2 Mismatch Budget Distribution

Consider the problem of IMC implementation, where a complexity metric

f() needs to be minimized subject to an accuracy constraint:

min
{BX,l,BW,l,BA,l,Co,l}Ll=1

f
(
{BX,l, BW,l, BA,l, Co,l}Ll=1

)
(3.25)

such that: pm ≤ pt,

where pt is the target worst-case mismatch allowed. One choice for f() can be

EOP in (3.5). The solution of the resulting optimization problem is beyond
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the scope of this dissertation.

Meaningful complexity metrics often monotonically increase as a function

of the various design parameters in (3.25). Such problems are typically solved

by finding extremal points satisfying the constraints [116, 117]. Thus, keep-

ing f() in (3.25) general, we show hereafter how to find such solutions via

mismatch budget distribution.

Note that the upper bound on pm in (3.23) can be written as:

pm ≤ pmX,W + pmA + pmη , (3.26)

where

pmX,W =
L∑
l=1

(
σ2
qx→yl

+ σ2
qw→yl

)
EY,l

pmA =
L∑
l=1

σ2
qA→yl

EY,l and pmη =
L∑
l=1

σ2
ηa→yl

EY,l

correspond to mismatches caused by input/weight quantization, ADC quan-

tization, and analog noise, respectively.

Thus, in order to satisfy the accuracy requirements, it is enough to find

extremal values for the 4L design parameters such that:

pmX,W ≤ α1pt and pmA ≤ α2pt and pmη ≤ α3pt, (3.27)

where α1 + α2 + α3 = 1. Thus, each of the three mismatch contributors can

be optimized separately.

The specific choice for (α1, α2, α3) relates to the complexity metric f()

in (3.25), i.e., the application. If the bitcell capacitance has to be kept as

small as possible due to area constraints, α3 should be made largest, allowing

for more analog noise. If the BCA is dense, the column ADC needs to be

physically small to enable pitch-matched design. In this case, α2 should be

made largest allowing for more ADC quantization noise but smaller precision.

Finally, α1 can be made largest if it is required to minimize activation and

weight precisions as much as possible. This is useful to reduce the number

of required columns and potentially the number of memory accesses.

Once the choice for (α1, α2, α3) is made, activation and weight per-layer

precision can be solved for via the method of noise equalization in [115, 118].
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In what follows, we derive a method to explicitly solve for per-layer ADC

precision and bitcell capacitance.

3.5.3 Per-layer ADC Precision via Noise Equalization

To solve pmA ≤ α2pt in (3.27), we formulate a per-layer precision assign-

ment following a noise equalization. As discussed in Sections 3.3 and 3.4, we

recommend FS dot-products using the OCC. For this strategy, we prove in

Section 3.8 that a noise equalized (NE) ADC precision assignment can be

obtained as:

BA,l = Bmin + γ ln
F

(OCC)
Y,l

F
(OCC)
min

(3.28)

for l = 1, . . . , L, where γ = 1
ln(3.4)

, Bmin is a reference precision, F
(OCC)
Y,l is the

OCC-normalized pre-activation noise gain at layer l, given by:

F
(OCC)
Y,l =

Nl

(
1− 2−BX,l

) (
1− 4−BW,l

) (
5− 2−BX,l

)
36x−2

m,lw
−2
m,l

EY,l (3.29)

with Nl being the dot-product dimension at layer l and xm,l, wm,l being the

activation/weight peaks at layer l, respectively; and F
(OCC)
min is the least of

{F (OCC)
Y,l }Ll=1. Thus, the search for per-layer ADC precisions is reduced in

(3.28) to a single axis (linear complexity) and consists of finding a suitable

value for Bmin. The resulting design will be referred to as FS/OCC/NE.

Similarly, we derive a per-layer precision assignment for bit-serial (BS) dot-

products using FR ADC quantization. The corresponding NE assignment is

given by (see Section 3.8):

BA,l = Bmin + log4

F
(FR)
Y,l

F
(FR)
min

(3.30)

for l = 1, . . . , L, where F
(FR)
Y,l is the FR-normalized pre-activation noise gain

at layer l, given by:

F
(FR)
Y,l =

N2
l

(
1− 4−BX,l

) (
1− 4−BW,l

)
27x−2

m,lw
−2
m,l

EY,l. (3.31)
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And once again we obtain a search over a single axis (linear complexity). We

term this design BS/FR/NE.

Note that BS/FR/NE is an improvement over the commonly employed bit-

serial, bit-growth (BS/BG) [33] which attempts to suppress all ADC quan-

tization noise using the following per-layer assignments:

BA,l = blog2(Nl)c+ 1 (3.32)

for l = 1, . . . , L. Finally, though not commonly employed, we also consider

FS/BG, the natural extension of BS/BG that applies to FS dot-products,

with per-layer assignment:

BA,l = BX,l + dlog2(Nl)e (3.33)

for l = 1, . . . , L. We use BS/BG and FS/BG to demonstrate the usefulness

of noise equalization. A comparison between FS/OCC/NE and BS/FR/NE

highlights the benefits of our proposed OCC and bit slicing analyses in Sec-

tions 3.3 and 3.4.

3.5.4 Per-layer Bitcell Capacitance Design

Depending on the available technology, the implementation could dictate

identical bitcells across all IMC arrays. In this case Co,l = Co for l = 1, . . . , L

making pmη a second-order polynomial in 1
Co

so that the upper bound pmη ≤
α3pt in (3.27) can be solved exactly. We do assume hereafter that different

BCAs can be used for different layers. Still, the upper bound on pmη can be

solved exactly since the latter is a polynomial in { 1
Co,l
}Ll=1. Notwithstand-

ing, a noise equalization method can be formulated leading to an extremal

solution.

Indeed, provided Co,l ≥ 1 fF for l = 1, . . . , L, then, as proven in the Section

3.8, the following per-layer bitcell capacitance value assignment equalizes

analog noise contributions:

Co,l = Cmin
GY,l

Gmin

(3.34)

for l = 1, . . . , L, where Cmin is a reference capacitance value, GY,l is the
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Table 3.3: Topological details of the VGG-9 DNN

Layer
index

Tensor
dimension

BX,l BW,l Dl Nl
# of

banks

1 (3,64,3,3) 7 8 27 27 1

Max Pool: 2× 2

2 (64,128,3,3) 6 7 576 512 2

Max Pool: 2× 2

3 (128,256,3,3) 6 6 1152 512 3

Max Pool: 2× 2

4 (256,256,3,3) 6 6 2304 512 5

Max Pool: 2× 2

5 (256,512,3,3) 6 6 2304 512 5

6 (512,512,3,3) 6 5 4608 512 9

Max Pool: 2× 2

7 (512,512,3,3) 6 5 4608 512 9

8 (512,512,3,3) 5 4 4608 512 9

9 (512,10) 4 4 512 512 1

The required activation/weight precisions (BX,l/BW,l) to satisfy the bound on pmX,W
in

(3.23) via noise equalization are listed. Additionally, per-layer tensor dimensions and

corresponding dot-product dimension Dl are included. Memory arrays of at most 512

rows are assumed to be utilizable. For each layer, the assumed array size Nl is listed,

and if need be, the computation is partitioned across multiple banks. Layers with 4D

tensors implement 2D convolutions whereas layers with 2D tensors implement matrix

vector multiplications.

capacitance-normalized preactivation noise gain at layer l, given by:

GY,l =
ρ1Nl

(
1− 4−BX,l

) (
1− 4−BW,l

) (
2− 2−BS,l

)
9x−2

m,lw
−2
m,l (1− 4−BS,l) (1− 2−BS,l)

EY,l (3.35)

with BS,l being the number of bits per slice used at layer l (BS,l = BX,l

for FS and BS,l = 1 for BS), and Gmin is the least of {GY,l}Ll=1. Much like

noise equalization for precision assignment, (3.34) reduces the search for per-

layer capacitance value into the single axis of Cmin. This search can thus be

performed in linear time.
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Table 3.4: Achieved accuracy under various implementations

Design Accuracy (%)

Floating-point 87.71

Fixed-point
(activation and weight quantization only)

87.47

FS/OCC/NE
without analog noise

87.14

BS/FR/NE
without analog noise

87.18

FS/OCC/NE
with analog noise

86.73±0.108

BS/FR/NE
with analog noise

86.74±0.113

3.6 Numerical Results

3.6.1 Experimental Setup

We illustrate the application of our analyses in Sections 3.3, 3.4, and 3.5

using a VGG-9 [119] network deployed on the CIFAR-10 [65] dataset. The

floating-point accuracy achieved is 87.79%. We choose pt = 1%, for the

worst-case accuracy drop, and α1 = α2 = α3 = 1
3
. Table 3.3 lists the

network details, including values for {BX,l}Ll=1 and {BW,l}Ll=1 required to

achieve pmX,W ≤ α1pt, as well as the dot-product dimension at each layer

{Dl}Ll=1. We assume the maximum dot-product dimension realizable in IMC

is 512. For each layer, we list the array size Nl used. If need be, dot-products

are partitioned into multiple banks as indicated. Note that the analysis of

Section 3.5 still holds under this setup with the caveat that pre-activation

noise gains are computed on partial dot-products.

Furthermore, Table 3.4 lists the inference accuracy for various implementa-

tions. By design, all accuracies fall within 1% of the floating-point baseline.

Thus, the comparisons and insights derived hereafter apply to iso-accurate

designs.

3.6.2 Per-layer ADC Precision Assignment

For each of the four implementations considered in Section 3.5.3, the corre-

sponding per-layer ADC precision assignments ({BA,l}Ll=1) are listed in Table
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Table 3.5: Per-layer ADC precision and bitcell capacitance values for various
implementations considered

ADC Precision BA,l
Layer Index FS/OCC/NE BS/FR/NE BS/BG FS/BG

1 8 5 5 12

2 8 9 10 15

3 8 9 10 15

4 7 9 10 15

5 8 9 10 15

6 7 9 10 15

7 8 9 10 15

8 6 8 10 14

9 7 9 10 13

Capacitance Value Co,l (fF)

Layer Index FS/OCC/NE BS/FR/NE

1 1.25 1.32

2 23.8 26.6

3 35.0 39.2

4 32.3 36.1

5 56.5 63.3

6 75.2 84.1

7 86.7 101.4

8 11.5 12.9

9 17.8 19.9

3.5.

We first compare the commonly employed BS/BG to BS/FR/NE. The

latter supposedly improves upon the former thanks to the use of noise equal-

ization. Nevertheless, the resulting precision values for {BA,l}Ll=1 are only 1

bit lower. It is only at layer 8 that BS/FR/NE improves on BS/BG by 2 bit.

This marginal improvement is explained next.

The FR-normalized pre-activation noise gain in (3.31) increases quadrat-

ically as a function of the dot-product dimension. Therefore, the impact

of ADC quantization on the network accuracy is most sensitive to {Nl}Ll=1,

the sole parameters accounted for by BS/BG in (3.32). This explains the

similarity between these two precision assignment strategies.

Next, let us compare FS/OCC/NE to FS/BG. The former ensures zero

ADC quantization noise for FS dot-products. Our proposed methods relax

this constraint by allowing for tolerable quantization noise in an accuracy-

optimal manner. This relaxation leads to massive ADC precision reduction
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of 7 to 8 bit, except for the first and last layers.

Finally, we compare FS/OCC/NE to BS/FR/NE, both of which use noise

equalization. Hence, this comparison serves as evidence supporting our ear-

lier contention in Sections 3.3 and 3.4 that (1) full slicing does not adversely

impact ADC quantization noise, and (2) the use of OCC leads to significantly

lower ADC precision requirements compared to FR.

Results do validate our claims. Save for the first layer, FS/OCC/NE always

leads to lower ADC precision than BS/FR/NE. The precision reduction is

1 to 2 bit for most layers. Note that the OCC-normalized pre-activation

noise gain only grows linearly with dot-product in (3.28), as opposed to

the aforementioned quadratic dependence of its FR-normalized counterpart.

Thus, we expect lower precision for large dot-product dimensions. This is

indeed observed in Table 3.5.

The first layer constitutes an exception whereby BS/FR/NE assigns only

5 bit compared to 8 bit for FS/OCC/NE. This is due to the very short

dot-product dimension of 27. Indeed, the OCC is intended to be used with

Gaussian distributions. Column outputs in IMC arrays typically follow such

distributions for large row-wise accumulations [110]. In fact, IMC is most

appropriate for high dimensionality problems where the inherent parallelism

and attractive density features of BCAs can be leveraged [96, 99]. Because

of its short dot-product, we argue that the first layer is in fact unfit to be

implemented using IMCs and could instead be handled using digital circuits.

3.6.3 Per-layer Bitcell Capacitance

Using noise equalization in (3.34), we determine per-layer bitcell capacitance

values ({Co,l}Ll=1) to be used for both FS/OCC/NE and BS/FR/NE. The

bitcell capacitance is a knob that only sets the analog noise which does not

depend on the ADC quantization strategy. Hence, the use of FS vs. BS is

only relevant in the comparison of the two implementations.

We claimed in Section 3.4 that the analog noise variance in (3.22) is mini-

mally impacted by the number of bits per slice. We did find that FS leads to

smaller analog variance compared to BS, but the reduction is minor. Should

this claim be true, the required capacitance values under both implementa-

tions are expected to be similar. Our results do validate this claim as per
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Figure 3.6: Per-layer precision normalized energy per operation EOP in (3.5)
for the FS/OCC/NE and BS/FR/NE implementations.

the listed values of {Co,l}Ll=1 in Table 3.5. It is found that FS/OCC/NE can

operate with smaller bitcell capacitance values compared to BS/FR/NE, but

the differences between the two are small and do not exceed 16%.

3.6.4 Per-layer Energy Consumption

We compare implementations FS/OCC/NE and BS/FR/NE in terms of en-

ergy consumption. We use the precision normalized energy per operation in

(3.5). There are two sources of energy savings that FS/OCC/NE benefits

from: (1) lower ADC precisions, and (2) smaller number of BCA accesses.

These benefits translate to ∼ 6× energy reduction compared to BS/FR/NE

as shown in Figure 3.6.

In general, FS on its own leads to an energy reduction factor approximately

equal to the activation precision. For instance, at layer 8, since BX,l =

5, a reduction of 5× is expected upfront. In addition, the smaller ADC

precision of BA,l = 6 for FS/OCC/NE compared to BA,l = 8 for BS/FR/NE

accentuates these savings by virtue of lower ADC energy EADC in (3.5). In

this case, reduction of ADC precision increases the energy savings factor from

5× to ∼ 5.4×. Interestingly, even for the first layer, where BS/FR/NE uses

a lower precision for the ADC, FS/OCC/NE still exhibits ∼ 4.2× energy

reduction due to the use of FS.
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3.7 Summary

In this chapter, an optimal clipping criterion for uniform quantization has

been derived. It was shown that even with uniformly placed quantization

levels, maximum SQNR/SNR (as achieved by the Lloyd-Max algorithm) can

be achieved. Thus, the trade-off between hardware compatibility and quan-

tization accuracy is eliminated. An analysis of bit slicing was performed

and it was found that full slicing suffers no clear disadvantages compared

to the bit-serial approach, believed to be most accurate. Thus, full slicing

is recommended potentially leading to significant energy reduction. Finally,

neural network implementation using IMC was investigated. An analytical

method for per-layer parameter optimization was proposed. Combining all

our contributions, iso-accurate inference at a much reduced cost was enabled.

The presented work allows IMC designers to push the available hardware

limits and target highly efficient DNN implementations. Future work in-

cludes derivation of similar analyses for different compute models, as well as

parameter design via constrained optimization using a complexity objective.

In general, expanding the proposed framework can lead to automated tools

assisting IMC designers in the seamless implementation of DNNs in hardware

operating at the limits of energy efficiency.

3.8 Addendum: Proofs of Theoretical Results

Proof of Theorem 3:

Without loss of generality, we consider B bit uniform quantization of a unit

Gaussian signal x ∼ N (0, 1) in the range [xL, xR]. A necessary condition for

optimality is xR = −xL = ζ by virtue of the distribution’s symmetry. The

MSE in (3.9) can be written as the following function of ζ:

f(ζ) =
ζ22−2B

3
+ 2

∫ ∞
ζ

1√
2π

(x− ζ)2e−
x2

2 dx, (3.36)
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where we used ∆x = ζ2−B and σ2
c = 2E

[
(x− ζ)2

1{x>ζ}
]
. Our task is to find

ζ(OCC) minimizing f(ζ) in (3.36) which can be written as:

f(ζ) = f0(ζ) +

√
2

π
(f1(ζ) + f2(ζ) + f3(ζ)) (3.37)

with f0(ζ) = ζ22−2B

3
, f1(ζ) =

∫∞
ζ
x2e−

x2

2 dx, f2(ζ) = −2ζ
∫∞
ζ
xe−

x2

2 dx, and

f3(ζ) = ζ2
∫∞
ζ
e−

x2

2 dx. It follows that:

f ′0(ζ) = 2ζ
2−2B

3
and f ′1(ζ) = −ζ2e−

ζ2

2 (3.38)

f ′2(ζ) = −2

∫ ∞
ζ

xe−
x2

2 dx+ 2ζ2e−
ζ2

2 = 2(ζ2 − 1)e−
ζ2

2 (3.39)

f ′3(ζ) = 2ζ

∫ ∞
ζ

e−
x2

2 dx− ζ2e−
ζ2

2 . (3.40)

Combining (3.37), (3.38), (3.39), and (3.40) yields:

f ′(ζ) = 2ζ
2−2B

3
+

√
2

π

(
2ζ

∫ ∞
ζ

e−
x2

2 dx− 2e−
ζ2

2

)
= 2

[
g0(ζ) +

√
2

π
(g1(ζ) + g2(ζ))

]
, (3.41)

where g0(ζ) = ζ 2−2B

3
, g1(ζ) = ζ

∫∞
ζ
e−

x2

2 dx, and g2(ζ) = −e− ζ
2

2 . It follows

that:

g′0(ζ) =
2−2B

3
and g′2(ζ) = ζe−

ζ2

2 (3.42)

g′1(ζ) =

∫ ∞
ζ

e−
x2

2 dx− ζe−
ζ2

2 . (3.43)

Combining (3.41), (3.42), and (3.43) yields:

f ′′(ζ) = 2

(
2−2B

3
+

√
2

π

∫ ∞
ζ

e−
x2

2 dx

)
, (3.44)
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which is strictly positive for any ζ. Hence, f(ζ) is convex and can be mini-

mized using Newton’s algorithm [120] via the following recursion:

ζn+1 = ζn −
f ′(ζn)

f ′′(ζn)
. (3.45)

Replacing (3.41) and (3.44) into (3.45) and substituting
√

2
π

∫∞
ζ
e−

x2

2 dx =

2Q(ζ) yields (3.11) in Theorem 3 which concludes our proof.

Derivation of eq. (3.19):

Combining (3.1) and (3.3), we have:

qA→y = xmwm

NS−1∑
s=0

(
−qAs,0 +

BW−1∑
b=1

qAs,b2
−b

)
2−sBS

and it follows that:

σ2
qA→y

= x2
mw

2
m

NS−1∑
s=0

BW−1∑
b=0

σ2
qAs,b

4−b4−sBS

=
4x2

mw
2
m

3
σ2
qAs,b

(
1− 4−BW

) (
1− 4−BX

)
1− 4−BS

. (3.46)

Recall the column ADC uses the OCC so that:

σ2
qAs,b

= Var(ys,b)σ
2
(OCC) = NVar(x{−s−}w{b})σ

2
(OCC). (3.47)

From the equiprobable bitwise representation assumption we have w{b} ∼
Be(0.5) is a Bernoulli random variable and x{−s−} = us

2BS
where us ∼ U(0, 2BS−

1) is a discrete uniform random variable. Hence, it can be shown that:

Var(x{−s−}w{b}) =

(
1− 2−BS

) (
5− 2−BS

)
48

. (3.48)

Substituting (3.48) and (3.47) into (3.46) yields (3.19) which concludes our

proof.

Derivation of eq. (3.21) and eq. (3.22):

First, (3.21) follows from combining (3.1) and (3.3) in a similar fashion as

was done to obtain (3.46). Then, (3.22) is obtained from (3.4) by evaluating:

E
[
(x{−s−}w{b})

2
]

=
1

12

(
1− 2−BS

) (
2− 2−BS

)
.
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This result itself is a consequence of the equiprobable bitwise representation

assumption discussed in the derivation of (3.19).

Derivation of eq. (3.23):

The proof can be obtained in an identical manner as that of Theorem 1 in

[89], but by considering perturbations on the pre-activations. Specifically, it

can be shown that:

pm ≤
L∑
l=1

σ2
ηyl
EY,l, (3.49)

where σ2
ηyl

is the variance of a perturbation per pre-activation at layer l. In

the IMC setup considered, we have

σ2
ηyl

= σ2
qx→yl

+ σ2
qw→yl

+ σ2
qA→yl

+ σ2
ηa→yl

. (3.50)

And (3.23) is obtained by substituting (3.50) into (3.49).

Derivation of eq. (3.28):

The following observation from Table 3.2 is first made:

σ2
(OCC)(B) ≈ 1.46× 3.4−B.

It follows, by virtue of (3.19), that, for FS/OCC/NE:

σ2
qA→yl

EY,l = 1.46× 3.4−BA,lF
(OCC)
Y,l . (3.51)

To achieve noise equalization, (3.51) should be identical for all l = 1, . . . , L.

This condition is equivalent to (3.28).

Derivation of eq. (3.30): When B bit FR quantization is used, σ2
qAs,b

in

(3.17) evaluates to N4−B/12. Consequently, for BS/FR/NE, we obtain:

σ2
qA→yl

EY,l = 4−BA,lF
(FR)
Y,l . (3.52)

As above, (3.52) is equalized across all layers l = 1, . . . , L, which is equivalent

to (3.30).

Derivation of eq. (3.34):

For sufficiently large capacitance (e.g., Co > 1 fF), (3.22) can be approxi-
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mated as:

σ2
ηas,b
≈ 1

Co
×
Nρ1

(
2− 2−BS

)
12 (1− 2−BS)

. (3.53)

Then, by virtue of (3.21) and (3.53), we obtain:

σ2
ηa→yl

EY,l =
Co,l
GY,l

. (3.54)

Equalizing (3.54) across all layers l = 1, . . . , L yields (3.34).
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CHAPTER 4

FIXED-POINT TRAINING WITH
CLOSE-TO-MINIMAL PRECISION

Chapters 2 and 3 have focused on network inference. In this chapter, we

study precision requirements of fixed-point training where every tensor in the

back-propagation loop is quantized. To do so, we address the challenges of

quantization noise, inter-layer and intra-layer precision trade-offs, dynamic

range, and stability. We derive a methodology to obtain close-to-minimal

per-layer precision requirements for guaranteed statistical similarity between

fixed-point and floating-point training. The methodology is applied to several

benchmarks and fixed-point training is shown to achieve high fidelity to the

baseline. The implication of our work in terms of training complexity is

finally quantified.

4.1 Motivation

A fundamental problem contributing to the high computational and param-

eter complexity of DNNs is their realization using 32 bit floating-point (FL)

arithmetic in GPUs and CPUs. Reduced-precision representations such as

quantized FL (QFL) and fixed-point (FX) have been employed in various com-

binations to both training and inference. Many employ FX during inference

but train in FL, e.g., fully binarized neural networks [51] use 1 bit FX in the

forward inference path but the network is trained in 32 bit FL. Similarly, [72]

employs 16 bit FX for all tensors except for the internal accumulators which

use 32 bit FL, and 3-level QFL gradients were employed [121, 122] to accel-

erate training in a distributed setting. Note that while QFL reduces storage

and communication costs, it does not reduce the computational complexity

as the arithmetic remains in 32 bit FL.

Thus, none of the previous works address the fundamental problem of

realizing true fixed-point DNN training, i.e., an SGD algorithm in which
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all parameters/variables and all computations are implemented in FX with

minimum precision required to guarantee the network’s inference/prediction

accuracy and training convergence. The reasons for this gap are numerous

including: (1) quantization errors propagate to the network output thereby

directly affecting its accuracy [45]; (2) precision requirements of different

variables in a network are interdependent and involve hard-to-quantify trade-

offs [89]; (3) proper quantization requires the knowledge of the dynamic range

which may not be available [123]; and (4) quantization errors may accumulate

during training and can lead to stability issues [72, 124].

Our work makes a major advance in closing this gap by proposing a sys-

tematic methodology to obtain close-to-minimum per-layer precision require-

ments of an FX network that guarantees statistical similarity with full preci-

sion training. In particular, we jointly address the challenges of quantization

noise, inter-layer and intra-layer precision trade-offs, dynamic range, and

stability. As in [89], we do assume that a fully-trained baseline FL network

exists and one can observe its learning behavior. While, in principle, such

assumption requires extra FL computation prior to FX training, it is to be

noted that much of training is done in FL anyway. For instance, FL train-

ing is used in order to establish benchmarking baselines such as AlexNet [1],

VGG-Net [119], and ResNet [3], to name a few. Even if that is not the case,

in practice, this assumption can be accounted for via a warm-up FL training

on a small held-out portion of the dataset [125].

Applying our methodology to three benchmarks reveals several lessons.

First and foremost, our work shows that it is possible to FX quantize all

variables including back-propagated gradients even though their dynamic

range is unknown [25]. Second, we find that the per-layer weight precision

requirements decrease from the input to the output while those of the activa-

tion gradients and weight accumulators increase. Furthermore, the precision

requirements for residual networks are found to be uniform across layers.

Finally, hyper-precision reduction techniques such as weight and activation

binarization [51] or gradient ternarization [121] are not as efficient as our

methodology since these do not address the fundamental problem of realiz-

ing true fixed-point DNN training.

We demonstrate FX training on three deep learning benchmarks (CIFAR-

10, CIFAR-100, SVHN) achieving high fidelity to our FL baseline in that

we observe no loss of accuracy higher than 0.56% in all of our experiments.
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Figure 4.1: Problem setup: FX training at layer l of a DNN show-
ing the quantized tensors and the associated precision configuration Cl =
(BWl

, BAl , BG
(W )
l
, B

G
(A)
l+1
, B

W
(acc)
l

).

Our precision assignment is further shown to be within 1 bit per tensor of

the minimum. We show that our precision assignment methodology reduces

representational, computational, and communication costs of training by up

to 6×, 8×, and 4×, respectively, compared to the FL baseline and related

works.

4.2 Problem Setup, Notation, and Metrics

We consider an L-layer DNN deployed on a M -class classification task using

the setup in Figure 4.1. We denote the precision configuration as the L× 5

matrix C = (BWl
, BAl , BG

(W )
l
, B

G
(A)
l+1
, B

W
(acc)
l

)Ll=1 whose lth row consists of the

precision (in bits) of weight Wl (BWl
), activation Al (BAl), weight gradient

G
(W )
l (B

G
(W )
l

), activation gradient G
(A)
l+1 (B

G
(A)
l+1

), and internal weight accu-

mulator W
(acc)
l (B

W
(acc)
l

) tensors at layer l. This DNN quantization setup is

summarized in Section 4.6.

4.2.1 Fixed-point Constraints and Definitions

We present definitions/constraints related to fixed-point arithmetic based on

the design of fixed-point adaptive filters and signal processing systems [105]:

• A signed fixed-point scalar a with precision BA and binary representa-

tion RA = (a0, a1, . . . , aBA−1) ∈ {0, 1}BA is equal to:

84



a = rA

(
−a0 +

∑BA−1
i=1 2−iai

)
, where rA is the predetermined dynamic

range (PDR) of a. The PDR is constrained to be a constant power

of 2 to minimize hardware overhead.

• An unsigned fixed-point scalar a with precision BA and binary repre-

sentation RA = (a0, a1, . . . , aBA−1) ∈ {0, 1}BA is equal to:

a = rA
∑BA−1

i=0 2−iai.

• A fixed-point scalar a is called normalized if rA = 1.

• The precision BA is determined as: BA = log2
rA
∆A

+ 1, where ∆A is

the quantization step size which is the value of the least significant bit

(LSB).

• An additive model for quantization is assumed: a = ã + qa, where

a is the fixed-point number obtained by quantizing the floating-point

scalar ã, qa is a random variable uniformly distributed on the inter-

val
[
−∆A

2
, ∆A

2

]
, and the quantization noise variance is V ar(qa) =

∆2
A

12
.

The notion of quantization noise is most useful when there is limited

knowledge of the distribution of ã.

• The relative quantization bias ηA is the offset: ηA = |∆A−µA|
µA

, where the

first unbiased quantization level µA = E
[
ã
∣∣ã ∈ I1

]
and I1 =

[
∆A

2
, 3∆A

2

]
.

The notion of quantization bias is useful when there is some knowledge

of the distribution of ã.

• The reflected quantization noise variance from a tensor T to a scalar

α = f(T ), for an arbitrary function f(), is: VT→α = ET→α
∆2
T

12
, where

∆T is the quantization step of T and ET→α is the quantization noise

gain from T to α.

• The clipping rate βT of a tensor T is the probability:

βT = Pr ({|t| ≥ rT : t ∈ T}), where rT is the PDR of T .

4.2.2 Complexity Metrics

We use a set of metrics inspired by those introduced by [89] which have also

been used by [67]. These metrics are algorithmic in nature which makes them

easily reproducible.
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• Representational Cost for weights (CW ) and activations (CA):

CW =
∑L

l=1 |Wl|
(
BWl

+B
G

(W )
l

+B
W

(acc)
l

)
and

CA =
∑L

l=1 |Al|
(
BAl +B

G
(A)
l+1

)
, which equals the total number of bits

needed to represent the weights, weight gradients, and internal weight

accumulators (CW ), and those for activations and activation gradients

(CA). 1

• Computational Cost of training:

CM =
∑L

l=1 |Al+1|Dl

(
BWl

BAl +BWl
B
G

(A)
l+1

+BAlBG
(A)
l+1

)
, where Dl is

the dimensionality of the dot product needed to compute one output

activation at layer l. This cost is a measure of the number of 1 bit full

adders (FAs) utilized for all multiplications in one back-prop iteration. 2

• Communication Cost : CC =
∑L

l=1 |Wl|BG
(W )
l
, which represents cost of

communicating weight gradients in a distributed setting [121, 122].

4.3 Precision Assignment Methodology and Analysis

We aim to obtain a minimal or close-to-minimal precision configuration Co

of a FX network such that the mismatch probability pm = Pr{Ŷfl 6= Ŷfx}
between its predicted label (Ŷfx) and that of an associated FL network (Ŷfl)

is bounded, and the convergence behavior of the two networks is similar.

Hence, we require that: (1) all quantization noise sources in the forward

path contribute identically to the mismatch budget pm [89], (2) the gradi-

ents be properly clipped in order to limit the dynamic range [123], (3) the

accumulation of quantization noise bias in the weight updates be limited

[72], (4) the quantization noise in activation gradients be limited as these are

back-propagated to calculate the weight gradients, and (5) the precision of

weight accumulators should be set so as to avoid premature stoppage of con-

vergence [81]. The above insights can be formally described via the following

five quantization criteria.

1We use the notation |T | to denote the number of elements in tensor T . Unquantized
tensors are assumed to have a 32 bit FL representation, which is the single-precision in a
GPU.

2When considering 32 bit FL multiplications, we ignore the cost of exponent addition
thereby favoring the FL (conventional) implementation. Boundary effects (in convolutions)
are neglected.
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Criterion 1. Equalizing Feedforward Quantization Noise (EFQN) Criterion.

The reflected quantization noise variances onto the mismatch probability pm

from all feedforward weights ({VWl→pm}Ll=1) and activations ({VAl→pm}Ll=1)

should be equal:

VW1→pm = . . . = VWL→pm = VA1→pm = . . . = VAL→pm .

Criterion 2. Gradient Clipping (GC) Criterion. The clipping rates of weight

({β
G

(W )
l
}Ll=1) and activation ({β

G
(A)
l+1
}Ll=1) gradients should be less than a max-

imum value β0:

β
G

(W )
l

< β0 and β
G

(A)
l+1

< β0 for l = 1 . . . L.

Criterion 3. Relative Quantization Bias (RQB) Criterion. The relative

quantization bias of weight gradients ({η
G

(W )
l
}Ll=1) should be less than a max-

imum value η0:

η
G

(W )
l

< η0 for l = 1 . . . L.

Criterion 4. Back-propagated Quantization Noise (BQN) Criterion. The

reflected quantization noise variance V
G

(A)
l+1→Σl

, i.e., the total sum of element-

wise variances of G
(W )
l reflected from quantizing G

(A)
l+1, should be less than

V
G

(W )
l →Σl

:

V
G

(A)
l+1→Σl

≤ V
G

(W )
l →Σl

for l = 1 . . . L,

where Σl is the total sum of element-wise variances of G
(W )
l .

Criterion 5. Accumulator Stopping (AS) Criterion. The quantization noise

of the internal accumulator should be zero, equivalently:

V
W

(acc)
l →Σ

(acc)
l

= 0 for l = 1 . . . L,

where V
W

(acc)
l →Σ

(acc)
l

is the reflected quantization noise variance from W
(acc)
l

to Σ
(acc)
l , its total sum of element-wise variances.

Further explanations and motivations behind the above criteria are pre-

sented in Section 4.6. The following claim ensures the satisfiability of the
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above criteria. This leads to closed form expressions for the precision re-

quirements we are seeking and completes our methodology. The validity of

the claim is proved in Section 4.6.

Claim 1. Satisfiability of Quantization Criteria. The five quantization cri-

teria (EFQN, GC, RQB, BQN, AS) are satisfied if:

• The precisions BWl
and BAl are set as follows:

BWl
= rnd

(
log2

(√
EWl→pm
E(min)

))
+B(min)

BAl = rnd

(
log2

(√
EAl→pm
E(min)

))
+B(min) (4.1)

for l = 1 . . . L, where rnd() denotes the rounding operation, EWl→pm

and EAl→pm are the weight and activation quantization noise gains

at layer l, respectively, B(min) is a reference minimum precision, and

E(min) = min
(
{EWl→pm}

L
l=1 , {EAl→pm}

L
l=1

)
.

• The weight and activation gradients PDRs are lower bounded as fol-

lows:

r
G

(W )
l
≥ 2σ

(max)

G
(W )
l

and r
G

(A)
l+1
≥ 4σ

(max)

G
(A)
l+1

for l = 1 . . . L, (4.2)

where σ
(max)

G
(W )
l

and σ
(max)

G
(A)
l+1

are the largest recorded estimates of the weight

and activation gradients standard deviations σ
G

(W )
l

and σ
G

(A)
l+1

, respec-

tively.

• The weight and activation gradients quantization step sizes are upper

bounded as follows:

∆
G

(W )
l

<
σ

(min)

G
(W )
l

4
and ∆

G
(A)
l+1

<
∆
G

(W )
l√

λ
(max)

G
(A)
l+1→G

(W )
l


∣∣∣G(W )

l

∣∣∣∣∣∣G(A)
l+1

∣∣∣
1/4

(4.3)

for l = 1 . . . L, where σ
(min)

G
(W )
l

is the smallest recorded estimate of σ
G

(W )
l

and λ
(max)

G
(A)
l+1→G

(W )
l

is the largest singular value of the square-Jacobian (Ja-

cobian matrix with squared entries) of G
(W )
l with respect to G

(A)
l+1.
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• The accumulator PDR and step size satisfy:

r
W

(acc)
l
≥ 2−BWl & ∆

W
(acc)
l

< γ(min)∆
G

(W )
l

for l = 1 . . . L, (4.4)

where γ(min) is the smallest value of the learning rate used during train-

ing.

Practical considerations: Note that one of the 2L feedforward preci-

sions will equal B(min). The formulas to compute the quantization noise gains

are given in Section 4.6 and require only one forward-backward pass on an

estimation set. We would like the EFQN criterion to hold upon convergence;

hence, (4.1) is computed using the converged model from the FL baseline.

For backward signals, setting the values of PDR and LSB is sufficient to

determine the precision using the identity BA = log2
rA
∆A

+ 1, as explained in

Section 4.2.1. As per Claim 1, estimates of the second-order statistics, e.g.,

σ
G

(W )
l

and σ
G

(A)
l+1

, of the gradient tensors, are required. These are obtained

via tensor spatial averaging, so that one estimate per tensor is required, and

updated in a moving window fashion, as is done for normalization parameters

in BatchNorm [47]. Furthermore, it might seem that computing the Jaco-

bian in (4.3) is a difficult task; however, the values of its elements are already

computed by the back-prop algorithm, requiring no additional computations

(see Section 4.6). Thus, the Jacobians (at different layers) are also estimated

during training. Due to the typical very large size of modern neural networks,

we average the Jacobians spatially, i.e., the activations are aggregated across

channels and mini-batches while weights are aggregated across filters. This

is again inspired by the work on Batch Normalization [47] and makes the

probed Jacobians much smaller.

4.4 Numerical Results

We conduct numerical simulations in order to illustrate the validity of the

predicted precision configuration Co and investigate its minimality and ben-

efits. We employ three deep learning benchmarking datasets: CIFAR-10,

CIFAR-100 [65], and SVHN [126]. All experiments were done using a Pascal

P100 NVIDIA GPU. We train the following networks:

• CIFAR-10 ConvNet: a 9-layer convolutional neural network trained on
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the CIFAR-10 dataset described as 2× (64C3)−MP2−2× (128C3)−
MP2− 2× (256C3)− 2× (512FC)− 10 where C3 denotes 3× 3 con-

volutions, MP2 denotes 2× 2 max pooling operation, and FC denotes

fully connected layers.

• SVHN ConvNet: the same network as the CIFAR-10 ConvNet, but

trained on the SVHN dataset.

• CIFAR-10 ResNet: a wide deep residual network [127] with ResNet-20

architecture but having 8 times as many channels per layer compared

to [3].

• CIFAR-100 ResNet: same network as CIFAR-10 ResNet save for the

last layer to match the number of classes (100) in CIFAR-100.

A step by step description of the application of our method to the above four

networks is provided in Section 4.6. We hope the inclusion of these steps

would: (1) clarify any ambiguity the reader may have from the previous

section and (2) facilitate the reproduction of our results.

4.4.1 Precision Configuration Co and Convergence

The precision configuration Co, with target pm ≤ 1%, β0 ≤ 5%, and η0 ≤
1%, via our proposed method is depicted in Figure 4.2 for each of the four

networks considered. We observe that Co is dependent on the network type.

Indeed, the precisions of the two ConvNets follow similar trends as do those

of the two ResNets. Furthermore, the following observations are made for

the ConvNets:

• Weight precision BWl
decreases as depth increases. This is consistent

with the observation that weight perturbations in the earlier layers are

the most destructive [92].

• The precisions of activation gradients (B
G

(A)
l

) and internal weight ac-

cumulators (B
W

(acc)
l

) increase as depth increases which we interpret as

follows: (1) the back-propagation of gradients is the dual of the forward-

propagation of activations, and (2) accumulators store the most infor-

mation as their precision is the highest.
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Figure 4.2: The predicted precision configurations Co for the CIFAR-10 Con-
vNet (a), SVHN ConvNet (b), CIFAR-10 ResNet (c), and CIFAR-100 ResNet
(d). For each network, the 5-tuple Ĉo represents the average number of bits
per tensor type. For the ResNets, layer depths 21 and 22 correspond to the
strided convolutions in the shortcut connections of residual blocks 4 and 7,
respectively. Activation gradients go from layer 2 to L + 1 and are “shifted
to the left” in order to be aligned with the other tensors.

• The precisions of the weight gradients (B
G

(W )
l

) and activations (BAl)

are relatively constant across layers.

Interestingly, for ResNets, the precision is mostly uniform across the layers.

Furthermore, the gap between B
W

(acc)
l

and the other precisions is not as

pronounced as in the case of ConvNets. This suggests that information is

spread equally among all signals which we speculate is due to the shortcut

connections preventing the shattering of information [128].

FX training curves in Figure 4.3 indicate that Co leads to convergence and

consistently track FL curves with close fidelity. This validates our analysis
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Figure 4.3: Convergence curves for the CIFAR-10 ConvNet (a), SVHN Con-
vNet (b), CIFAR-10 ResNet (c), and CIFAR-100 ResNet (d) including FL
training as well as FX training with precision configurations Co, C1, and C−1.

and justifies the choice of Co.

4.4.2 Near Minimality of Co

To determine that Co is a close-to-minimal precision assignment, we compare

it with: (a) C+1 = Co + 1L×5, and (b) C−1 = Co − 1L×5, where 1L×5 is an

L × 5 matrix with each entry equal to 13, i.e., we perturb Co by 1 bit in

either direction. Figure 4.3 also contains the convergence curves for the

two new configurations. As shown, C−1 always results in a noticeable gap

compared to Co for both the loss function (except for the CIFAR-10 ResNet)

and the test error. Furthermore, C+1 offers no observable improvements over

3PDRs are unchanged across configurations, except for r
W

(acc)
l

as per (4.4).
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Table 4.1: Complexity (CW , CA, CM , and CC) and accuracy (test error) for
the floating-point (FL), fixed-point (FX) with precision configuration Co,
binarized network (BN), stochastic quantization (SQ), and TernGrad (TG)
training schemes.

CW
(106b)

CA
(106b)

CM
(109FA)

CC
(106b)

Test
Error

CW
(106b)

CA
(106b)

CM
(109FA)

CC
(106b)

Test
Error

CIFAR-10 ConvNet SVHN ConvNet
FL 148 9.3 94.4 49 12.02% 148 9.3 94.4 49 2.43%

FX (Co) 56.5 1.7 11.9 14 12.58% 54.3 1.9 10.5 14 2.58%
BN 100 4.7 2.8 49 18.50% 100 4.7 2.8 49 3.60%
SQ 78.8 1.7 11.9 14 11.32% 76.3 1.9 10.5 14 2.73%
TG 102 9.3 94.4 3.1 12.49% 102 9.3 94.4 3.1 3.65%

CIFAR-10 ResNet CIFAR-100 ResNet
FL 1784 96 4319 596 7.42% 1789 97 4319 597 28.06%

FX (Co) 726 25 785 216 7.51% 750 25 776 216 27.43%
BN 1208 50 128 596 7.24% 1211 50 128 597 29.35%
SQ 1062 25 785 216 7.42% 1081 25 776 216 28.03%
TG 1227 96 4319 37.3 7.94% 1230 97 4319 37.3 30.62%

Co (except for the test error of CIFAR-10 ConvNet). These results support

our contention that Co is close-to-minimal in that increasing the precision

above Co leads to diminishing returns while reducing precision below Co leads

to a noticeable degradation in accuracy. Additional experimental results

provided in Section 4.6 support our contention regarding the near minimality

of Co. Furthermore, by studying the impact of quantizing specific tensors we

determine that that the accuracy is most sensitive to the precision assigned

to weights and activation gradients.

4.4.3 Complexity vs. Accuracy

We would like to quantify the reduction in training cost and expense in

terms of accuracy resulting from our proposed method and compare them

with those of other methods. Importantly, for a fair comparison, the same

network architecture and training procedure are used. We report CW , CA, CM ,

CC , and test error, for each of the four networks considered for the following

training methods:

• Baseline FL training and FX training using Co.

• Binarized network (BN) training, where feedforward weights and acti-

vations are binary (constrained to ±1) while gradients and accumula-

tors are in floating-point and activation gradients are back-propagated
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via the straight through estimator [50] as was done in [51].

• Fixed-point training with stochastic quantization (SQ). As was done

in [72], we quantize feedforward weights and activations as well as all

gradients, but accumulators are kept in floating-point. The precision

configuration (excluding accumulators) is inherited from Co (hence we

determine exactly how much stochastic quantization helps).

• Training with ternarized gradients (TG) as was done in TernGrad [121].

All computations are done in floating-point but weight gradients are

ternarized according to the instantaneous tensor spatial standard de-

viations {−2.5σ, 0, 2.5σ} as was suggested by [121]. To compute costs,

we assume all weight gradients use two bits although they are not really

fixed-point and do require computation of 32 bit floating-point scalars

for every tensor.

The comparison is presented in Table 4.1. The first observation is a mas-

sive complexity reduction compared to FL. For instance, for the CIFAR-10

ConvNet, the complexity reduction is 2.6× (= 148/56.5), 5.5× (= 9.3/1.7),

7.9× (= 94.4/11.9), and 3.5× (= 49/14) for CW , CA, CM , and CC , respectively.

Similar trends are observed for the other four networks. Such complexity re-

duction comes at the expense of no more than 0.56% increase in test error.

For the CIFAR-100 network, the accuracy when training in fixed-point is

even better than that of the baseline.

The representational and communication costs of BN are significantly

greater than those of FX because the gradients and accumulators are kept

in full precision, which masks the benefits of binarizing feedforward tensors.

However, benefits are noticeable when considering the computational cost

which is lowest as binarization eliminates multiplications. Furthermore, bi-

narization causes a severe accuracy drop for the ConvNets but surprisingly

not for the ResNets. We speculate that this is due to the high-dimensional

geometry of ResNets [129].

As for SQ, since Co was inherited, all costs are identical to FX, save for

CW which is larger due to full precision accumulators. Furthermore, SQ has

a positive effect only on the CIFAR-10 ConvNet where it clearly acted as a

regularizer.

TG does not provide complexity reductions in terms of representational
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and computational costs which is expected as it only compresses weight gra-

dients. Additionally, the resulting accuracy is slightly worse than that of all

other considered schemes, including FX. Naturally, it has the lowest commu-

nication cost as weight gradients are quantized to just 2 bit.

4.5 Discussion

4.5.1 Comparison with quantized training methods

Many works have addressed the general problem of reduced precision deep

learning. Finite precision training was explored in [72] which employed

stochastic quantization in order to counter quantization bias accumulation

in the weight updates. This was done by quantizing all tensors to 16 bit FX,

except for the internal accumulators which were stored in a 32 bit floating-

point format. An important distinction our work makes is the circumven-

tion of the overhead of implementing stochastic quantization [51]. Similarly,

DoReFa-Net [53] stores internal weight representations in 32 bit FL, but

quantizes the remaining tensors more aggressively. Thus arises the need to

re-scale and re-compute in floating-point format, which our work avoids. Fi-

nally, [25] suggests a new number format – Flexpoint – and was able to train

neural networks using slightly more than 16 bit per tensor element, with 5

shared exponent bits and a per-tensor dynamic range tracking algorithm.

Such tracking causes a hardware overhead bypassed by our work since the

arithmetic is purely FX. Augmenting Flexpoint with stochastic quantization

effectively results in WAGE [73], and enables integer quantization of each

tensor.

As seen above, none of the prior works address the problem of predicting

precision requirements of all training signals. Furthermore, the choice of

precision is made in an ad-hoc manner. In contrast, we propose a systematic

methodology to determine close-to-minimal precision requirements for FX-

only training of deep neural networks.
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4.5.2 Conclusion

In this chapter, we have presented a study of precision requirements in a

typical back-propagation based training procedure of neural networks. Us-

ing a set of quantization criteria, we have presented a precision assignment

methodology for which FX training is made statistically similar to the FL

baseline, known to converge a priori. We realized FX training of four net-

works on the CIFAR-10, CIFAR-100, and SVHN datasets and quantified the

associated complexity reduction gains in terms costs of training. We also

showed that our precision assignment is nearly minimal.

The presented work relies on the statistics of all tensors being quantized

during training. This necessitates an initial baseline run in floating-point

which can be costly. An open problem is to predict a suitable precision

configuration by only observing the data statistics and the network archi-

tecture. Future work can leverage the analysis presented in this chapter to

enhance the effectiveness of other network complexity reduction approaches.

For instance, weight pruning can be viewed as a coarse quantization process

(quantize to zero) and thus can potentially be done in a targeted manner by

leveraging the information provided by noise gains. Furthermore, parameter

sharing and clustering can be viewed as a form of vector quantization which

presents yet another opportunity to leverage our method for complexity re-

duction.

4.6 Addendum: Proofs and Additional Results

Summary of Quantization Setup

The quantization setup depicted in Figure 4.1 is summarized as follows:

• Feedforward computation at layer l:

Al+1 = fl(Al,Wl),

where fl() is the function implemented at layer l, Al (Al+1) is the ac-

tivation tensor at layer l (l + 1) quantized to a normalized unsigned

fixed-point format with precision BAl (BAl+1
), and Wl is the weight
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tensor at layer l quantized to a normalized signed fixed-point format

with precision BWl
. We further assume the use of a ReLU-like activa-

tion function with a clipping level of 2 and a max-norm constraint on

the weights which are clipped between [−1, 1] at every iteration.

• Back-propagation of activation gradients at layer l:

G
(A)
l = g

(A)
l (Wl, G

(A)
l+1),

where gl()
(A) is the function that back-propagates the activation gra-

dients at layer l, G
(A)
l (G

(A)
l+1) is the activation gradient tensor at layer

l (l + 1) quantized to a signed fixed-point format with precision B
G

(A)
l

(B
G

(A)
l+1

).

• Back-propagation of weight gradient tensor G
(W )
l at layer l:

G
(W )
l = g

(W )
l (Al, G

(A)
l+1),

where g
(W )
l () is the function that back-propagates the weight gradients

at layer l, and G
(W )
l is quantized to a signed fixed-point format with

precision B
G

(W )
l

.

• Internal weight accumulator update at layer l:

W
(acc)
l = U(W

(acc)
l , G

(W )
l , γ),

where U() is the update function, γ is the learning rate, and W
(acc)
l is

the internal weight accumulator tensor at layer l quantized to signed

fixed-point with precision B
W

(acc)
l

. Note that, for the next iteration, Wl

is directly obtained from W
(acc)
l via quantization to BWl

bit.

Further Explanations and Motivations behind Quantization
Criteria

Criterion 1 (EFQN) is used to ensure that all feedforward quantization

noise sources contribute equally to the pm budget. Indeed, if one of the

2L reflected quantization noise variances from the feedforward tensors onto

pm, say VWi→pm for i ∈ {1, . . . , L}, largely dominates all others, it would
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imply that all tensors but Wi are overly quantized. It would therefore be

necessary to either increase the precision of Wi or decrease the precisions of

all other tensors. The application of Criterion 1 (EFQN) through the closed

form expression (4.1) in Claim 1 solves this issue avoiding the need for a

trial-and-error approach.

Because FX numbers require a constant PDR, clipping of gradients is

needed since their dynamic range is arbitrary. Ideally, a very small PDR

would be preferred in order to obtain quantization steps of small magni-

tude, and hence less quantization noise. We can draw parallels from signal

processing theory, where it is known that for a given quantizer, the signal-to-

quantization-noise ratio (SQNR) is equal to SQNR(dB) = 6B+4.78−PAR
where PAR is the peak-to-average ratio, proportional to the PDR. Thus,

we would like to reduce the PDR as much as possible in order to increase

the SQNR for a given precision. However, this comes at the risk of over-

flows (due to clipping). Criterion 2 (GC) addresses this trade-off between

quantization noise and overflow errors.

Since the back-propagation training procedure is an iterative one, it is

important to ensure that any form of bias does not corrupt the weight up-

date accumulation in a positive feedback manner. FX quantization, being a

uniform one, is likely to induce such bias when quantized quantities, most

notably gradients, are not uniformly distributed. Criterion 3 (RQB) ad-

dresses this issue by using η as proxy to this bias accumulation as a function

of quantization step size and ensuring that its worst-case value is small in

magnitude.

Criterion 4 (BQN) is in fact an extension of Criterion 1 (EFQN), but for

the back-propagation phase. Indeed, once the precision (and hence quantiza-

tion noise) of weight gradients is set as per Criterion 3 (RQB), it is needed to

ensure that the quantization noise source at the activation gradients would

not contribute more noise to the updates. This criterion sets the quantization

step of the activation gradients.

Criterion 5 (AS) ties together feedforward and gradient precisions through

the weight accumulators. It is required to increment/decrement the feedfor-

ward weights whenever the accumulated updates cross over the weight quan-

tization threshold. This is used to set the PDR of the weight accumulators.

Furthermore, since the precision of weight gradients has already been de-

signed to account for quantization noise (through Criteria 2-4), the criterion
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requires that the accumulators do not cause additional noise.

Proof of Claim 1

The validity of Claim 1 is derived from the following five lemmas. Note that

each lemma addresses the satisfiability of one of the five quantization criteria

presented in this chapter and corresponds to part of Claim 1.

Lemma 3. The EFQN criterion holds if the precisions BWl
and BAl are set

as follows:

BWl
= rnd

(
log2

(√
EWl→pm
E(min)

))
+B(min)

BAl = rnd

(
log2

(√
EAl→pm
E(min)

))
+B(min)

for l = 1 . . . L, where rnd() denotes the rounding operation, B(min) is a ref-

erence minimum precision, and E(min) is given by:

E(min) = min
(
{EWl→pm}

L
l=1 , {EAl→pm}

L
l=1

)
. (4.5)

Proof. By definition of the reflected quantization noise variance, the EFQN,

by definition, is satisfied if:

∆2
W1

12
EW1→pm = . . . =

∆2
WL

12
EWL→pm =

∆2
A1

12
EA1→pm = . . . =

∆2
AL

12
EAL→pm ,

where the quantization noise gains are given by:

EWl→pm = E


M∑
i=1
i 6=Ŷfl

∑
w∈Wl

∣∣∣∣∂(Zi−ZŶfl )

∂w

∣∣∣∣2
2|Zi − ZŶfl |

2

 ;EAl→pm = E


M∑
i=1
i 6=Ŷfl

∑
a∈Al

∣∣∣∣∂(Zi−ZŶfl )

∂a

∣∣∣∣2
2|Zi − ZŶfl|

2


(4.6)

for l = 1 . . . L, where {Zi}Mi=1 are the soft outputs and ZŶfl is the soft out-

put corresponding to Ŷfl. The expressions for these quantization gains are

obtained by linearly expanding (across layers) those used in [89]. Note that

a second-order upper bound is used as a surrogate expression for pm.
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From the definition of quantization step size, the above is equivalent to:

2−2BW1EW1→pm = . . . = 2−2BA1EA1→pm = . . . = 2−2BALEAL→pm .

Let E(min) be as defined in (4.5):

E(min) = min
(
{EWl→pm}

L
l=1 , {EAl→pm}

L
l=1

)
.

We can divide each term by E(min):

2−2BW1
EW1→pm
E(min)

= . . . = 2−2BA1
EA1→pm
E(min)

= . . . = 2−2BAL
EAL→pm
E(min)

,

where each term is positive, so that we can take square roots and logarithms

such that:

BW1 − log2

(√
EW1→pm
E(min)

)
= . . . = BWL

− log2

(√
EWL→pm
E(min)

)

=BA1 − log2

(√
EA1→pm
E(min)

)
= . . . = BAL − log2

(√
EAL→pm
E(min)

)
.

Thus we equate all of the above to a reference precision B(min) yielding:

BWl
= log2

(√
EWl→pm
E(min)

)
+B(min) and BAl = log2

(√
EAl→pm
E(min)

)
+B(min)

for l = 1 . . . L. Note that because E(min) is the least quantization noise gain, it

is equal to one of the above quantization noise gains so that the corresponding

precision actually equates B(min). As precisions must be integer valued, each

of B(min), {BWl
}Ll=1, and {BAl}

L
l=1 have to be integers, and thus a rounding

operation is to be applied on all logarithm terms. Doing so results in (4.1)

from Lemma 3 which completes this proof.

Lemma 4. The GC criterion holds for β0 = 5% provided the weight and

activation gradient pre-defined dynamic ranges (PDRs) are lower bounded as

follows:

r
G

(W )
l
≥ 2σ

(max)

G
(W )
l

and r
G

(A)
l+1
≥ 4σ

(max)

G
(A)
l+1

for l = 1 . . . L,
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where σ
(max)

G
(W )
l

and σ
(max)

G
(A)
l+1

are the largest ever recorded estimates of the weight

and activation gradient standard deviations σ
G

(W )
l

and σ
G

(A)
l+1

, respectively.

Proof. Let us consider the case of weight gradients. The GC criterion by

definition requires:

β
G

(W )
l

= Pr
({
|g| ≥ r

G
(W )
l

: g ∈ G(W )
l

})
< 0.05.

Typically, weight gradients are obtained by computing the derivatives of a

loss function with respect to a mini-batch. By linearity of derivatives, weight

gradients are themselves averages of instantaneous derivatives and are hence

expected to follow a Gaussian distribution by application of the Central Limit

Theorem. Furthermore, the gradient mean was estimated during baseline

training and was found to oscillate around zero.

Thus

β
G

(W )
l

= 2Q

(
r
G

(W )
l

σ
G

(W )
l

)
,

where we used the fact that a Gaussian distribution is symmetric and Q()

is the elementary Q-function, which is a decreasing function. Thus, in the

worst case, we have:

β
G

(W )
l
≤ 2Q

 r
G

(W )
l

σ
(max)

G
(W )
l

 .

Hence, for a PDR as suggested by the lower bound in (4.2)

r
G

(W )
l
≥ 2σ

(max)

G
(W )
l

in Lemma 4, we obtain the upper bound:

β
G

(W )
l
≤ 2Q(2) = 0.044 < 0.05,

which means the GC criterion holds and completes the proof.

For activation gradients, the same reasoning applies, but the choice of a

larger PDR in (4.2)

r
G

(A)
l+1
≥ 4σ

(max)

G
(A)
l+1

than for weight gradients is due to the fact that the true dynamic range of the

activation gradients is larger than the value indicated by the second moment.
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This stems from the use of activation functions such as ReLU which make

the activation gradients sparse. We also recommend increasing the PDR even

more when using regularizers that sparsify gradients such as Dropout [44] or

Maxout [42].

Lemma 5. The RQB criterion holds for η0 = 1% provided the weight gradi-

ent quantization step size is upper bounded as follows:

∆
G

(W )
l

<
σ

(min)

G
(W )
l

4
for l = 1 . . . L,

where σ
(min)

G
(W )
l

is the smallest ever recorded estimate of σ
G

(W )
l

.

Proof. For the Gaussian distributed (see proof of Lemma 4) weight gradient

at layer l, the true mean conditioned on the first non-zero quantization region

is given by:

µ
G

(W )
l

=

∫ 3∆
G

(W )
l

2

∆
G

(W )
l
2

x exp

(
− x2

2σ2

G
(W )
l

)
dx(

Q

(
∆
G

(W )
l

2σ
G

(W )
l

)
−Q

(
3∆

G
(W )
l

2σ
G

(W )
l

))√
2πσ2

G
(W )
l

=

σ
G

(W )
l

(
exp

(
−

∆2

G
(W )
l

8σ2

G
(W )
l

)
− exp

(
−

9∆2

G
(W )
l

8σ2

G
(W )
l

))
(
Q

(
∆
G

(W )
l

2σ
G

(W )
l

)
−Q

(
3∆

G
(W )
l

2σ
G

(W )
l

))√
2π

,

where σ
G

(W )
l

is the standard deviation of G
(W )
l . By substituting ∆

G
(W )
l

=
σ
G

(W )
l

4
into the above expression of µ

G
(W )
l

and plugging in the definition of

relative quantization bias, we obtain:

η
G

(W )
l

=

∣∣∣∆
G

(W )
l
− µ

G
(W )
l

∣∣∣
µ
G

(W )
l

= 0.4% < 1%.

Hence, this choice of the quantization step satisfies the RQB. In order to

ensure the RQB holds throughout training, σ
(min)

G
(W )
l

is used in Lemma 5. This

completes the proof.
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Lemma 6. The BQN criterion holds provided the activation gradient quan-

tization step size is upper bounded as follows:

∆
G

(A)
l+1

<
∆
G

(W )
l√

λ
(max)

G
(A)
l+1→G

(W )
l


∣∣∣G(W )

l

∣∣∣∣∣∣G(A)
l+1

∣∣∣
1/4

for l = 1 . . . L,

where λ
(max)

G
(A)
l+1→G

(W )
l

, the largest singular value of the square-Jacobian (Jacobian

matrix with squared entries) of G
(W )
l with respect to G

(A)
l+1.

Proof. Let us unroll G
(W )
l and G

(A)
l+1 to vectors of size

∣∣∣G(W )
l

∣∣∣ and
∣∣∣G(A)

l+1

∣∣∣,
respectively. The element-wise quantization noise variance of each weight

gradient is
∆2

G
(W )
l

12
. Therefore we have:

VG(W )→Σl
=
∣∣∣G(W )

l

∣∣∣ ∆2

G
(W )
l

12
.

The reflected quantization noise variance from an activation gradient ga ∈
G

(A)
l+1 onto a weight gradient gw ∈ G(W )

l is

∣∣∣∣∂gw∂ga

∣∣∣∣2 ∆2

G
(A)
l+1

12
,

where cross products of quantization noise are neglected [89]. Hence, the

reflected quantization noise variance element-wise from G
(A)
l+1 onto G

(W )
l is

given by:
∆2

G
(A)
l+1

12
J
G

(A)
l+1→G

(W )
l

1∣∣∣G(A)
l+1

∣∣∣,
where J

G
(A)
l+1→G

(W )
l

is the square-Jacobian of G
(W )
l with respect to G

(A)
l+1 and

1 denotes the all one vector with size denoted by its subscript. Hence, we
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have:

V
G

(A)
l+1→Σl

=
∆2

G
(A)
l+1

12

(
J
G

(A)
l+1→G

(W )
l

1∣∣∣G(A)
l+1

∣∣∣
)T

1∣∣∣G(W )
l

∣∣∣
≤

∆2

G
(A)
l

12

∥∥∥∥JG(A)
l+1→G

(W )
l

1∣∣∣G(A)
l+1

∣∣∣
∥∥∥∥∥∥∥∥1∣∣∣G(W )

l

∣∣∣
∥∥∥∥

≤
√∣∣∣G(W )

l

∣∣∣∆2

G
(A)
l+1

12

∥∥∥J
G

(A)
l+1→G

(W )
l

∥∥∥∥∥∥∥1∣∣∣G(A)
l+1

∣∣∣
∥∥∥∥

≤ λ
(max)

G
(A)
l+1→G

(W )
l

√∣∣∣G(A)
l+1

∣∣∣ ∣∣∣G(W )
l

∣∣∣∆2

G
(A)
l+1

12
,

where we used the Cauchy-Schwarz inequality and the spectral norm of a ma-

trix. Next we set this upper bound on V
G

(A)
l+1→Σl

to be less than the value of

V
G

(W )
l →Σl

determined above. This condition, by definition, is enough to sat-

isfy the BQN criterion. Rearranging terms yields Lemma 6 which completes

the proof.

Earlier in the chapter, it was mentioned that each entry in the Jacobian

matrix above is already computed by the back-propagation algorithm. We

now explain how. Let us denote the instantaneous loss function being mini-

mized by ξ. Note that each entry of J
G

(A)
l+1→G

(W )
l

is of the form
∣∣∣ ∂gw
∂g

(0)
a

∣∣∣2 where

gw = ∂ξ
∂w

with w ∈ Wl and g
(0)
a = ∂ξ

∂a(0) with a(0) ∈ Al+1. The back-propagation

algorithm computes gw using the chain rule as follows:

gw =
∂ξ

∂w
=

∑
a(i)∈Al+1

∂ξ

∂a(i)

∂a(i)

∂w
.

In particular, note that g
(0)
a appears only once in the summation above and

is multiplied by ∂a(0)

∂w
. Thus ∂gw

∂g
(0)
a

= ∂a(0)

∂w
. This establishes that each entry of

the Jacobian matrix is already computed via the back-propagation algorithm.

Lemma 7. The AS criterion holds provided the accumulator PDR and quan-

tization step size satisfy:

r
W

(acc)
l
≥ 2−BWl and ∆

W
(acc)
l

< γ(min)∆
G

(W )
l

for l = 1 . . . L,

where γ(min) is the smallest value of the learning rate used during training.
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Proof. The lower bound on the PDR of the weight accumulator, given by

r
W

(acc)
l
≥ 2−BWl

for l = 1 . . . L, ensures that updates are able to cross over the feedforward

weight quantization threshold so that it can be updated. Additionally, the

lower bound on the quantization step size, given by

∆
W

(acc)
l

< γ(min)∆
G

(W )
l

for l = 1 . . . L, simply ensures that the internal weight accumulator overlaps

with the least significant part of the representation of the weight gradient

multiplied by the learning rate. Thus, the quantization noise of the internal

accumulator is zero, or equivalently,

V
W

(acc)
l →Σ

(acc)
l

= 0 for l = 1 . . . L

which, by definition, is enough for the AS criterion to hold. Note that this

criterion applies to the Vanilla-SGD learning rule (which was used in our

experiments). Future work includes extending this criterion to other learning

rules such as momentum and ADAM.

We close this section by discussing the approximation made by invoking the

Central Limit Theorem (CLT) in the proofs of Lemmas 4 and 5. This approx-

imation was made because, typically, a back-propagation iteration computes

gradients of a loss function being averaged over a mini-batch of samples. By

linearity of derivatives, the gradients themselves are averages, which war-

rants the invocation of the CLT. However, the CLT is an asymptotic result

which might be imprecise for a finite number of samples. In typical train-

ing of neural networks, the number of samples, or mini-batch size, is in the

range of hundreds or thousands [10]. It is therefore important to quantify

the preciseness, or lack thereof, of the CLT approximation. On way to do

so is via the Berry-Essen Theorem which considers the average of n inde-

pendent, identically distributed random variables with finite absolute third

moment ρ and standard deviation σ. The worst-case deviation of the cumu-

lative distribution of the true average from the of the approximated Gaussian

random variable (via the CLT), also known as the Kolmogorov-Smirnov dis-
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Figure 4.4: Additional experiments on minimality and sensitivity of Co: rel-
ative test error deviation with respect to Co as a function of (a) random
fractional precision perturbations, and (b) 1 bit precision reduction per ten-
sor type.

tance, KS, is upper bounded as follows: KS < Cρ√
nσ3 , where C < 0.4785

[130]. Observe that the quantity ρ
σ3 is data dependent. To estimate this

quantity, we performed a forward-backward pass for all training samples at

the start of each epoch for our four networks considered. The statistics ρ and

σ were estimated by spatial (over tensors) and sample (over training sam-

ples) averages. The maximum value of the ratio ρ
σ3 for all gradient tensors

was found to be 2.8097. The mini-batch size we used in all our experiments

was 256. Hence, we claim that the CLT approximation in Lemmas 4 and 5

is valid in our context up to a worst-case Kolmogorov-Smirnov distance of

KS < 0.4785×2.8097√
256

= 0.084.

Additional Results on the Minimality and Sensitivity of Co

The minimality experiments in Section 4.4 only consider a full 1 bit pertur-

bation to the full precision configuration matrix. We further investigate the

minimality of Co and its sensitivity to precision perturbation per tenor type.

The results of this investigation are presented in Figure 4.4.

First, we consider random fractional precision perturbations, meaning per-

turbations to the precision configuration matrix where only a random frac-

tion p of the 5L precision assignments is incremented or decremented. A

fractional precision perturbation of 1 (-1) corresponds to C+1 (C−1). A frac-

tional precision perturbation of 0.5 (-0.5) means that a randomly chosen half

of the precision assignments is incremented (decremented). Figure 4.4 (a)
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shows the relative test error deviation compared to the test error associated

with Co for various fractional precision perturbations. The error deviation

is taken in a relative fashion to account for the variability of the different

networks’ accuracies. For instance, an absolute 1% difference in accuracy

on a network trained on SVHN is significantly more severe than one on a

network trained on CIFAR-100. It is observed that for negative precision

perturbations the variation in test error is more important than for the case

of positive perturbations. This is further encouraging evidence that Co is

nearly minimal, in that a negative perturbation causes significant accuracy

degradation while a positive one offers diminishing returns.

It is also interesting to study which of the 5L tensor types is most sensitive

to precision reduction. To do so, we perform a similar experiment whereby

we selectively decrement the precision of all tensors belonging to the same

type (weights, activations, weight gradients, activation gradients, weight ac-

cumulators). The results of this experiment are found in Figure 4.4 (b).

It is found that the most sensitive tensor types are weights and activation

gradients while the least sensitive ones are activations and weight gradients.

This is an interesting finding raising further evidence that there exists some

form of duality between the forward propagation of activations and back

propagation of derivatives as far as numerical precision is concerned.

Illustration of Methodology Usage

We illustrate a step by step application of our precision assignment method-

ology to the four networks on which we reported results.

CIFAR-10 ConvNet

Feedforward Precisions: The first step in our methodology consists of

setting the feedforward precisions BWl
and BAl . As per Claim 1, this requires

using (4.1). To do so, it is first necessary to compute the quantization noise

gains using (4.6). Using the converged weights from the baseline run, we

obtain the noise gains listed in Table 4.2. Consequently, E(min) = 94.7 and

the feedforward precision offsets should be set according to (4.1) as listed in

Table 4.2. The value of B(min) is swept and pm is evaluated on the validation

set. It is found that the smallest value of B(min) resulting in pm < 1% is equal
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Table 4.2: Feedforward path precisions in the CIFAR-10 ConvNet

Noise gain values
Layer Index l 1 2 3 4 5
EWl→pm 1.52E+06 1.24E+06 4.21E+06 3.57E+06 2.35E+06
EAl→pm 5.51E+04 3.27E+02 5.15E+02 6.60E+02 7.78E+02

Layer Index l 6 7 8 9
EWl→pm 5.61E+05 5.97E+04 3.23E+04 8.66E+03
EAl→pm 7.49E+02 6.32E+02 2.37E+02 9.47E+01

Precision offsets
Layer Index l 1 2 3 4 5

BWl
7+B(min) 7+B(min) 8+B(min) 8+B(min) 7+B(min)

BAl 4+B(min) 1+B(min) 1+B(min) 1+B(min) 2+B(min)

Layer Index l 6 7 8 9

BWl
6+B(min) 5+B(min) 4+B(min) 3+B(min)

BAl 1+B(min) 1+B(min) 1+B(min) 0+B(min)

Feedforward precisions
Layer Index l 1 2 3 4 5 6 7 8 9

BWl
11 11 12 12 11 10 9 8 7

BAl 8 5 5 5 6 5 5 5 4

to 4 bit. Hence the feedforward precisions are set as listed in Table 4.2 and

as illustrated in Figure 4.2:

Gradient Precisions: The second step of the methodology is to deter-

mine the precisions of weight B
G

(W )
l

and activation B
G

(A)
l+1

gradients. As per

Claim 1, an important statistic is the spatial variance of the gradient tensors.

We estimate these variances via moving window averages, where at each it-

eration, the running variance estimate σ̂2 is updated using the instantaneous

variance σ̃2 as follows:

σ̂2 ← (1− θ)σ̂2 + θσ̃2,

where θ is the running average factor, chosen to be 0.1. The running variance

estimate of each gradient tensor is dumped every epoch. Using the maximum

recorded estimate and (4.2) we compute the PDRs of the gradient tensors

(as a reminder, the PDR is forced to be a power of 2). These are listed in

Table 4.3.

Furthermore, using the minimum recorded estimates of the weight gradient

spatial variances and (4.3), we compute the values of the quantization step
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Table 4.3: Backward path precisions in the CIFAR-10 ConvNet

Gradient PDR values
Layer Index l 1 2 3 4 5

r
G

(W )
l

5.00E-01 1.25E-01 1.25E-01 1.25E-01 6.25E-02

r
G

(A)
l+1

4.88E-04 9.77E-04 9.77E-04 1.95E-03 7.81E-03

Layer Index l 6 7 8 9
r
G

(W )
l

3.13E-02 3.13E-02 1.56E-02 1.25E-01

r
G

(A)
l+1

1.56E-02 7.81E-03 7.81E-03 3.13E-02

Weight gradient step-size values
Layer Index l 1 2 3 4 5

∆
G

(W )
l

3.91E-03 1.95E-03 9.77E-04 9.77E-04 4.88E-04

Layer Index l 6 7 8 9
∆
G

(W )
l

2.44E-04 2.44E-04 1.22E-04 4.88E-04

Square Jacobian matrix largest singular values
Layer Index l 1 2 3 4 5

λ
(max)

G
(A)
l+1→G

(W )
l

1.44E+02 2.37E+02 4.28E+02 2.03E+02 4.20E+01

Layer Index l 6 7 8 9

λ
(max)

G
(A)
l+1→G

(W )
l

9.08E+00 1.37E+01 1.26E+01 3.51E+00

Activation gradient step-size values
Layer Index l 1 2 3 4 5

∆
G

(A)
l+1

6.10E-05 3.05E-05 7.63E-06 1.53E-05 1.53E-05

Layer Index l 6 7 8 9
∆
G

(A)
l+1

1.53E-05 1.53E-05 7.63E-06 6.10E-05

Backward path tensor precision values
Layer Index l 1 2 3 4 5 6 7 8 9

B
G

(W )
l

9 9 9 9 9 9 9 9 10

B
G

(A)
l+1

5 8 9 9 11 12 11 11 11

B
W

(Acc)
l

13 15 14 14 16 18 19 21 20

sizes of the weight tensors and include them in Table 4.3. Hence the weight

gradient precisions B
G

(W )
l

are set as listed in Table 4.3 and as illustrated in

Figure 4.2.

In order to compute the activation gradient precisions, (4.3) dictates that

we need the values of largest singular values of the of the square-Jacobians of

G
(W )
l with respect to G

(A)
l+1 for l = 1 . . . L. The square Jacobian matrices are

estimated in a moving window fashion as for the variances above. However,
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Table 4.4: Feedforward path precisions in the SVHN ConvNet

Noise gain values and precision offsets
Layer Index l 1 2 3 4 5
EWl→pm 3.07E+03 4.50E+02 1.54E+03 1.79E+03 6.01E+03

BWl
6+B(min) 5+B(min) 6+B(min) 6+B(min) 7+B(min)

EAl→pm 7.58E+02 2.86E+00 7.09E+00 2.55E+00 8.33E+00

BAl 5+B(min) 1+B(min) 2+B(min) 1+B(min) 2+B(min)

Layer Index l 6 7 8 9
EWl→pm 1.25E+03 7.91E+01 1.20E+01 9.13E+00

BWl
6+B(min) 4+B(min) 2+B(min) 2+B(min)

EAl→pm 8.18E+00 1.78E+01 1.14E+00 3.90E-01

BAl 2+B(min) 3+B(min) 1+B(min) 0+B(min)

Feedforward precisions
Layer Index l 1 2 3 4 5 6 7 8 9

BWl
9 8 9 9 10 9 7 5 5

BAl 8 4 5 4 6 6 7 4 3

instead of updating a matrix every iteration, the updates are done every first

batch of every epoch. The maximum recorded singular values are listed in

Table 4.3.

Using the above values and (4.3) we obtain the values of the quantization

step sizes for the activation gradients as listed in Table 4.3. Hence the activa-

tion gradient precisions B
G

(A)
l+1

are set as listed in Table 4.3 and as illustrated

in Figure 4.2.

Internal Weight Accumulator Precisions: By application of (4.4), we

use the above results to obtain the internal weight accumulator precisions.

The only additional information needed is the value of the smallest learning

rate value used in the training, which in our case is 0.0001. We obtain the

precisions listed in Table 4.3 which are illustrated in Figure 4.2.

SVHN ConvNet

Feedforward Precisions: The quantization noise gains are used to obtain

values for the precisions as a function of B(min) as summarized in Table 4.4.

The value of B(min) is again swept, and it is found that the pm < 1% for

B(min) = 3. The feedforward precisions are therefore set as listed in Table

4.4 and as illustrated in Figure 4.2.

Gradient Precisions: The spatial variance of the gradient tensors is used
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Table 4.5: Backward path precisions in the SVHN ConvNet

Gradient PDR and step-size, and Square Jacobian singular values
Layer Index l 1 2 3 4 5

r
G

(W )
l

6.25E-02 1.56E-02 1.56E-02 1.56E-02 1.56E-02

∆
G

(W )
l

2.44E-04 6.10E-05 6.10E-05 6.10E-05 6.10E-05

r
G

(A)
l+1

4.88E-04 4.88E-04 9.77E-04 1.95E-03 3.91E-03

λ
(max)

G
(A)
l+1→G

(W )
l

5.13E+00 1.48E+02 3.25E+02 1.37E+02 8.84E+01

∆
G

(A)
l+1

3.05E-05 9.54E-07 9.54E-07 9.54E-07 1.91E-06

Layer Index l 6 7 8 9
r
G

(W )
l

7.81E-03 3.91E-03 3.91E-03 1.56E-02

∆
G

(W )
l

3.05E-05 1.53E-05 7.63E-06 6.10E-05

r
G

(A)
l+1

1.56E-02 3.91E-03 3.91E-03 3.13E-02

λ
(max)

G
(A)
l+1→G

(W )
l

2.20E+01 9.58E+00 1.78E+00 1.71E+00

∆
G

(A)
l+1

1.91E-06 9.54E-07 9.54E-07 7.63E-06

Backward path tensor precision values
Layer Index l 1 2 3 4 5 6 7 8 9

B
G

(W )
l

9 9 9 9 9 9 9 10 9

B
G

(A)
l+1

5 10 11 12 12 14 13 13 13

B
W

(Acc)
l

14 17 16 16 15 17 20 23 20

to determine the PDRs and the quantization step sizes of weight gradients.

The singular values of the square-Jacobians are needed to determine the

quantization step sizes of activation gradients. They were computed as listed

in Table 4.5. Hence the gradient precisions are set as listed in Table 4.5 and

as illustrated in Figure 4.2.

Internal Weight Accumulator Precisions: The smallest learning rate

value for this network is 0.001 which results in the precisions for the internal

weight accumulators in Table 4.5 as illustrated in Figure 4.2.

CIFAR-10 ResNet

Feedforward Precisions: The quantization noise gains are used to obtain

values for the precisions as a function of B(min) as summarized in Table 4.6.

Note that for weights, layer depths 21 and 22 correspond to the strided con-

volutions in the shortcut connections of residual blocks 4 and 7, respectively.
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Table 4.6: Feedforward path precisions in the CIFAR-10 ResNet

Noise gain values and precision offsets
Layer Index l 1 2 3 4 5 6
EWl→pm 2.41E+03 9.80E+02 1.22E+03 1.62E+03 1.52E+03 3.05E+03

BWl
11+B(min) 10+B(min) 10+B(min) 10+B(min) 10+B(min) 11+B(min)

EAl→pm 7.32E-01 5.15E-01 1.29E-01 1.12E-01 7.31E-02 8.98E-02

BAl 5+B(min) 5+B(min) 4+B(min) 4+B(min) 3+B(min) 3+B(min)

Layer Index l 7 8 9 10 11 12
EWl→pm 1.47E+03 2.15E+03 2.74E+03 4.96E+03 4.23E+03 4.20E+03

BWl
10+B(min) 11+B(min) 11+B(min) 11+B(min) 11+B(min) 12+B(min)

EAl→pm 7.70E-02 8.39E-02 6.38E-02 1.92E-01 1.54E-01 1.33E-01

BAl 3+B(min) 3+B(min) 3+B(min) 4+B(min) 4+B(min) 4+B(min)

Layer Index l 13 14 15 16 17 18
EWl→pm 7.25E+03 2.99E+03 2.86E+03 3.00E+03 5.02E+03 4.34E+03

BWl
11+B(min) 11+B(min) 11+B(min) 11+B(min) 10+B(min) 10+B(min)

EAl→pm 1.13E-01 8.51E-02 6.57E-02 1.29E-01 6.51E-02 2.16E-02

BAl 4+B(min) 3+B(min) 3+B(min) 4+B(min) 3+B(min) 2+B(min)

Layer Index l 19 20 21 22
EWl→pm 1.41E+03 1.30E+03 1.08E+02 8.31E+00

BWl
9+B(min) 7+B(min) 11+B(min) 11+B(min)

EAl→pm 4.80E-03 7.82E-04

BAl 1+B(min) 0+B(min)

Feedforward precisions
Layer Index l 1 2 3 4 5 6 7 8 9 10 11

BWl
14 13 13 13 13 14 13 14 14 14 14

BAl 8 8 7 7 6 6 6 6 6 7 7

Layer Index l 12 13 14 15 16 17 18 19 20 21 22
BWl

15 14 14 14 14 13 13 12 10 14 14
BAl 7 7 6 6 7 6 5 4 3

The value of B(min) is again swept, and it is found that the pm < 1% for

B(min) = 3. The feedforward precisions are therefore set as listed in Table

4.6 and as illustrated in Figure 4.2.

Gradient Precisions: The spatial variance of the gradient tensors is used

to determine the PDRs and the quantization step sizes of weight gradients.

The singular values of the square-Jacobians are needed to determine the

quantization step sizes of activation gradients. They were computed as listed

in Table 4.7. Hence the gradient precisions are set as listed in Table 4.7 and

as illustrated in Figure 4.2.

Internal Weight Accumulator Precisions: The smallest learning rate

value for this network is 0.001 which results in the precisions for the internal

weight accumulators in Table 4.7 as illustrated in Figure 4.2.
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Table 4.7: Backward path precisions in the CIFAR-10 ResNet

Gradient PDR and step-size, and Square Jacobian singular values
Layer Index l 1 2 3 4 5 6

r
G

(W )
l

2.50E-01 6.25E-02 6.25E-02 3.13E-02 3.13E-02 3.13E-02

∆
G

(W )
l

2.44E-04 3.05E-05 3.05E-05 3.05E-05 3.05E-05 3.05E-05

r
G

(A)
l+1

4.88E-04 2.44E-04 2.44E-04 2.44E-04 2.44E-04 2.44E-04

λ
(max)

G
(A)
l+1→G

(W )
l

8.07E+02 2.84E+03 2.84E+03 5.43E+03 5.43E+03 4.94E+03

∆
G

(A)
l+1

7.63E-06 4.77E-07 4.77E-07 2.38E-07 2.38E-07 2.38E-07

Layer Index l 7 8 9 10 11 12
r
G

(W )
l

3.13E-02 3.13E-02 3.13E-02 3.13E-02 3.13E-02 3.13E-02

∆
G

(W )
l

3.05E-05 3.05E-05 3.05E-05 3.05E-05 3.05E-05 3.05E-05

r
G

(A)
l+1

2.44E-04 2.44E-04 4.88E-04 4.88E-04 2.44E-04 2.44E-04

λ
(max)

G
(A)
l+1→G

(W )
l

4.94E+03 1.22E+03 1.22E+03 1.08E+03 1.08E+03 8.07E+02

∆
G

(A)
l+1

2.38E-07 4.77E-07 4.77E-07 4.77E-07 4.77E-07 9.54E-07

Layer Index l 13 14 15 16 17 18
r
G

(W )
l

3.13E-02 3.13E-02 1.56E-02 1.56E-02 1.56E-02 1.56E-02

∆
G

(W )
l

3.05E-05 3.05E-05 1.53E-05 1.53E-05 1.53E-05 1.53E-05

r
G

(A)
l+1

2.44E-04 4.88E-04 4.88E-04 4.88E-04 2.44E-04 2.44E-04

λ
(max)

G
(A)
l+1→G

(W )
l

8.07E+02 1.93E+02 1.93E+02 2.98E+02 2.98E+02 3.01E+02

∆
G

(A)
l+1

9.54E-07 9.54E-07 9.54E-07 4.77E-07 2.38E-07 2.38E-07

Layer Index l 19 20 21 22
r
G

(W )
l

1.56E-02 1.56E-02 1.56E-02 2.50E-01

∆
G

(W )
l

7.63E-06 7.63E-06 1.91E-06 3.05E-05

r
G

(A)
l+1

2.44E-04 6.25E-02

λ
(max)

G
(A)
l+1→G

(W )
l

3.01E+02 2.32E+01

∆
G

(A)
l+1

5.96E-08 3.81E-06

Backward path tensor precision values
Layer Index l 1 2 3 4 5 6 7 8 9 10 11

B
G

(W )
l

11 12 12 11 11 11 11 11 11 11 11

B
G

(A)
l+1

7 10 10 11 11 11 11 10 11 11 10

B
W

(Acc)
l

9 13 13 13 13 12 13 12 12 12 12

Layer Index l 12 13 14 15 16 17 18 19 20 21 22
B
G

(W )
l

11 11 11 11 11 11 11 12 12 14 14

B
G

(A)
l+1

9 9 10 10 11 11 11 13 15

B
W

(Acc)
l

11 12 13 13 13 15 15 18 16 12 13

CIFAR-100 ResNet

Feedforward Precisions: The quantization noise gains are used to obtain

values for the precisions as a function of B(min) as summarized in Table 4.8.
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Table 4.8: Feedforward path precisions in the CIFAR-100 ResNet

Noise gain values and precision offsets
Layer Index l 1 2 3 4 5 6
EWl→pm 2.32E+03 8.23E+02 1.18E+03 1.28E+03 1.70E+03 2.78E+03

BWl
10+B(min) 9+B(min) 10+B(min) 10+B(min) 10+B(min) 10+B(min)

EAl→pm 1.42E+00 7.84E-01 2.52E-01 1.46E-01 7.68E-02 7.40E-02

BAl 5+B(min) 4+B(min) 4+B(min) 3+B(min) 3+B(min) 3+B(min)

Layer Index l 7 8 9 10 11 12
EWl→pm 3.03E+03 5.80E+03 7.29E+03 9.20E+03 9.81E+03 1.41E+04

BWl
10+B(min) 11+B(min) 11+B(min) 11+B(min) 11+B(min) 11+B(min)

EAl→pm 7.52E-02 8.70E-02 1.38E-01 2.49E-01 2.11E-01 1.51E-01

BAl 3+B(min) 3+B(min) 3+B(min) 4+B(min) 3+B(min) 3+B(min)

Layer Index l 13 14 15 16 17 18
EWl→pm 7.67E+03 1.40E+04 1.13E+04 1.09E+04 5.35E+03 3.97E+03

BWl
11+B(min) 11+B(min) 11+B(min) 11+B(min) 11+B(min) 11+B(min)

EAl→pm 1.54E-01 1.09E-01 1.93E-01 2.36E-01 1.27E-01 3.01E-02

BAl 3+B(min) 3+B(min) 3+B(min) 4+B(min) 3+B(min) 2+B(min)

Layer Index l 19 20 21 22
EWl→pm 8.35E+02 2.30E+01 6.78E+03 6.03E+03

BWl
9+B(min) 7+B(min) 11+B(min) 11+B(min)

EAl→pm 2.01E-02 1.80E-03

BAl 2+B(min) 0+B(min)

Feedforward precisions
Layer Index l 1 2 3 4 5 6 7 8 9 10 11

BWl
13 12 13 13 13 13 13 14 14 14 14

BAl 8 7 7 6 6 6 6 6 6 7 6

Layer Index l 12 13 14 15 16 17 18 19 20 21 22
BWl

14 14 14 14 14 14 14 12 10 14 14
BAl 6 6 6 6 7 6 5 5 3

The value of B(min) is again swept, and it is found that the pm < 1% for

B(min) = 3. The feedforward precisions are therefore set as listed in Table

4.8 and as illustrated in Figure 4.2.

Gradient Precisions: The spatial variance of the gradient tensors is used

to determine the PDRs and the quantization step sizes of weight gradients.

The singular values of the square-Jacobians are needed to determine the

quantization step sizes of activation gradients. They were computed as listed

in Table 4.9. Hence the gradient precisions are set as listed in Table 4.9 and

as illustrated in Figure 4.2.

Internal Weight Accumulator Precisions: The smallest learning rate

value for this network is 0.001 which results in the precisions for the internal

weight accumulators in Table 4.9 as illustrated in Figure 4.2.
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Table 4.9: Backward path precisions in the CIFAR-100 ResNet

Gradient PDR and step-size, and Square Jacobian singular values
Layer Index l 1 2 3 4 5 6

r
G

(W )
l

5.00E-01 6.25E-02 6.25E-02 3.13E-02 6.25E-02 3.13E-02

∆
G

(W )
l

6.10E-05 1.53E-05 1.53E-05 1.53E-05 1.53E-05 1.53E-05

r
G

(A)
l+1

2.44E-04 1.22E-04 6.10E-05 6.10E-05 6.10E-05 6.10E-05

λ
(max)

G
(A)
l+1→G

(W )
l

6.46E+02 1.86E+03 1.86E+03 3.54E+03 3.54E+03 5.11E+03

∆
G

(A)
l+1

9.54E-07 1.19E-07 1.19E-07 1.19E-07 1.19E-07 5.96E-08

Layer Index l 7 8 9 10 11 12
r
G

(W )
l

3.13E-02 3.13E-02 3.13E-02 3.13E-02 3.13E-02 3.13E-02

∆
G

(W )
l

1.53E-05 1.53E-05 1.53E-05 1.53E-05 1.53E-05 1.53E-05

r
G

(A)
l+1

6.10E-05 1.22E-04 1.22E-04 1.22E-04 1.22E-04 1.22E-04

λ
(max)

G
(A)
l+1→G

(W )
l

5.11E+03 1.05E+03 1.05E+03 8.23E+02 8.23E+02 6.37E+02

∆
G

(A)
l+1

5.96E-08 1.19E-07 1.19E-07 2.38E-07 2.38E-07 2.38E-07

Layer Index l 13 14 15 16 17 18
r
G

(W )
l

3.13E-02 3.13E-02 1.56E-02 3.13E-02 1.56E-02 1.56E-02

∆
G

(W )
l

1.53E-05 7.63E-06 7.63E-06 7.63E-06 7.63E-06 7.63E-06

r
G

(A)
l+1

1.22E-04 1.22E-04 2.44E-04 1.22E-04 6.10E-05 6.10E-05

λ
(max)

G
(A)
l+1→G

(W )
l

6.37E+02 2.31E+02 2.31E+02 2.79E+02 2.79E+02 2.80E+02

∆
G

(A)
l+1

2.38E-07 2.38E-07 2.38E-07 1.19E-07 1.19E-07 1.19E-07

Layer Index l 19 20 21 22
r
G

(W )
l

1.56E-02 6.25E-02 3.13E-02 1.56E-02

∆
G

(W )
l

3.81E-06 7.63E-06 1.53E-05 7.63E-06

r
G

(A)
l+1

6.10E-05 7.81E-03

λ
(max)

G
(A)
l+1→G

(W )
l

2.80E+02 7.81E+01

∆
G

(A)
l+1

5.96E-08 2.38E-07

Backward path tensor precision values
Layer Index l 1 2 3 4 5 6 7 8 9 10 11

B
G

(W )
l

14 13 13 12 13 12 12 12 12 12 12

B
G

(A)
l+1

9 11 10 10 10 11 11 11 11 10 10

B
W

(Acc)
l

12 15 14 14 14 14 14 13 13 13 13

Layer Index l 12 13 14 15 16 17 18 19 20 21 22
B
G

(W )
l

12 12 13 12 13 12 12 13 14 12 12

B
G

(A)
l+1

10 10 10 11 11 10 10 11 16

B
W

(Acc)
l

13 13 14 14 14 14 14 17 18 13 14

115



CHAPTER 5

FLOATING-POINT TRAINING WITH
ACCUMULATION BIT-WIDTH SCALING

Chapter 4 studied the precision requirements for fixed-point training. In this

chapter, we study reduced precision floating-point training. Prior work has

investigated the effects of representation quantization, but none has stud-

ied the impact of partial sum accumulation quantization. Thus, the hard-

ware benefits from reduced precision training currently face bottlenecks by

virtue of the large accumulators used. In this chapter, we analytically obtain

mantissa precision requirements of all accumulators in the back-propagation

algorithm. To do so, we present the variance retention ratio (VRR), a met-

ric quantifying the suitability, or lack thereof, of a floating-point precision

configuration. A formula for the VRR is derived and used to determine

accumulation bit-width for precise tailoring of computation hardware. Ex-

perimentally, the validity and tightness of our analysis are verified across

multiple deep learning benchmarks.

5.1 Motivation

There are several reasons why reduced precision deep learning has attracted

the attention of both hardware and algorithms researchers. First, it offers

well-defined and scalable hardware efficiency, as opposed to other complexity

reduction techniques such as pruning [66, 71], where handling sparse data

is needed. Indeed, parameter complexity scales linearly while multiplication

hardware complexity scales quadratically with precision bit-width [53]. Thus,

any advance towards truly binarized networks [51] corresponds to potentially

30x - 1000x complexity reduction in comparison to single precision floating-

point hardware. Second, the mathematics of reduced precision has direct

ties with the statistical theory of quantization [104]. In the context of deep

learning, this presents an opportunity for theoreticians to derive analytical
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Figure 5.1: The importance of accumulation precision: (a) Convergence
curves of an ImageNet ResNet 18 experiment using reduced precision accu-
mulation. The current practice is to keep the accumulation in full precision
to avoid such divergence. (b) Estimated area benefits when reducing the
precision of a floating-point unit (FPU). The terminology FPa/b denotes an
FPU whose multiplier and adder use a and b bit, respectively. Our work
enables convergence in reduced precision accumulation and gains an extra
1.5× ∼ 2.2× area reduction.

trade-offs between model accuracy and numerical precision [45, 89].

Most ongoing efforts on reduced precision deep learning solely focus on

quantizing representations and always assume wide accumulators, i.e., ideal

summations. The reason for this is that reduced precision accumulation

can result in severe training instability and accuracy degradation, as illus-

trated in Figure 5.1 (a) for ResNet 18 (ImageNet) model training. This is

especially unfortunate, since the hardware complexity in reduced precision

floating-point numbers (needed to represent small gradients during train-

ing) [74, 131] is dominated by the accumulator bit-width. To illustrate this

dominance we developed a model underpinned by the hardware synthesis of

low-precision floating-point units (FPU), that translates precision into area

complexity of the FPU. Comparisons obtained from this model are shown in

Figure 5.1 (b). We observe that accumulating in high precision severely lim-

its the hardware benefits of reduced precision computations. This presents a

new angle to approach the problem of reduced precision deep learning train-

ing; this approach concerns determining suitable accumulation precision and

forms the basis of our work. Our findings are that the accumulation precision

requirements in deep learning training are nowhere near 32 bit, and in fact

could enable further complexity reduction of FPUs by a factor of 1.5 ∼ 2.2×.
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Our work is concerned with establishing theoretical foundations for esti-

mating the accumulation bit precision requirements in deep learning. While

this topic has never been addressed in the past, there is prior work in both

deep learning and high-performance computing communities that aligns well

with ours.

Most early work on reduced precision deep learning considers fixed-point

arithmetic or a variation of it [72]. However, when considering quantiza-

tion of signals involving the back-propagation algorithm, finding a suitable

fixed-point configuration becomes challenging due to a weak handle on the

scalar dynamic range of the back-propagated signals. Thus, hardware solu-

tions have been sought, and, accordingly, other number formats were consid-

ered. Flexpoint [25] is a hybrid version between fixed-point and floating-point

where scalars in a tensor are quantized to 16 bit fixed-point but share 5 bit

of exponent to adjust the dynamic range. Similarly, WAGE [73] augments

Flexpoint with stochastic quantization and enables integer quantization. All

of these schemes focused on representation precision, but mostly used 32 bit

accumulation. Another option is to use reduced precision floating-point as

was done in MPT [131], which reduces the precision of most signals to 16 bit

floating-point, but incurs accuracy degradation when reducing the accumu-

lation precision from 32 bit. Recently, [74] quantized all representations to 8

bit floating-point and experimentally found that the accumulation could be

in 16 bit with algorithmic contrivance, such as chunk-based accumulation, to

enable convergence.

The issue of numerical errors in floating-point accumulation has been clas-

sically studied in the area of high-performance computing. Robertazzi and

Schwartz [132] were among the first to statistically estimate the effects of

floating-point accumulation. Assuming a stream of uniformly and exponen-

tially distributed positive numbers, estimates for the mean square error of

the floating-point accumulation were derived via quantization noise analysis.

Because such analyses are often intractable (due to the multiplicative nature

of the noise), later works on numerical stability focus on worst-case estimates

of the accumulation error. Higham [133] provides upper bounds on the error

magnitude by counting and analyzing round-off errors. Following this style

of worst-case analysis, Castaldo et al. [134] provide bounds on the accu-

mulation error for different summing algorithms, notably using chunk-based

summations. Different approaches to chunking are considered and their ben-
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efits are estimated. It is to be noted that these analyses are often loose as

they are agnostic to the application space. To the best of our knowledge, a

statistical analysis of the accumulation precision specifically tailored to deep

learning training remains elusive.

5.1.1 Contributions

Our contribution is both theoretical and practical. We introduce the variance

retention ratio (VRR) of a reduced precision accumulation in the context of

the three deep learning dot products. The VRR is used to assess the suit-

ability, or lack thereof, of a precision configuration. Our main result is the

derivation of an actual formula for the VRR that allows us to determine

accumulation bit-width for precise tailoring of computation hardware. Ex-

perimentally, we verify the validity and tightness of our analysis across three

benchmarking networks (CIFAR-10 ResNet 32, ImageNet ResNet 18 and

ImageNet AlexNet).

5.2 Background on Floating-Point Arithmetic

The following basic floating-point definitions and notations are used in our

work:

Floating-point representation: A b bit floating-point number a has a

signed bit, e exponent bits, and m mantissa bits so that b = 1+e+m. Its bi-

nary representation is (Bs, B
′
1, . . . , B

′
e, B

′′
1 , . . . , B

′′
m) ∈ {0, 1}b and its value is

equal to: a = (−1)Bs × 2E × (1 +M) where E = −(2e−1− 1) +
∑e

i=1B
′
i2

(e−i)

and M =
∑m

i=1B
′′
i 2−i. Such a number is called a (1, e,m) floating-point

number.

Floating-point operations: One of the most pervasive arithmetic func-

tions used in deep learning is the dot product between two vectors which

is the building block of the generalized matrix multiplication (GEMM). A

dot product is computed in a multiply-accumulate (MAC) fashion and thus

requires two floating-point operations: multiplication and addition. The re-

alization of an ideal floating-point operation requires a certain bit growth at

the output to avoid loss of information. For instance, in a typical MAC oper-

ation, if c← c+a×b where a is (1, ea,ma) and b is (1, eb,mb), then c should be
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Figure 5.2: The three GEMM calls, and hence accumulations, in one iteration
of the back-propagation algorithm: (a) the forward propagation (FWD), (b)
the backward propagation (BWD), and (c) gradient computation (GRAD).
The accumulation of these three GEMMs is across multiple dimensions (mini-
batch size, feature maps, output channels etc.) and their lengths are usually
very long.

(1,max(ea, eb)+2,ma+mb+1+∆E), which depends on the bit-precision and

the relative exponent difference of the operands ∆E. However, it is often more

practical to pre-define the precision of c as (1, ec,mc), which requires round-

ing immediately after computation. Such rounding might cause an operand

to be completely or partially truncated out of the addition, a phenomenon

called “swamping” [133], which is the primary source of accumulation errors.

5.3 Accumulation Variance

The second-order statistics (variance) of signals are known to be of great

importance in deep learning. For instance, in prior works on weight initial-

ization [41, 135], it is customary to initialize random weights subject to a

variance constraint designed to prevent vanishing or explosion of activations

and gradients. Thus, such variance engineering induces fine convergence of
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DNNs. Importantly, in such analyses, the second-order output statistics of

a dot product are studied and expressed as a function of that of the ac-

cumulated terms, which are assumed to be independent and having similar

variance. A fundamental assumption is: V ar(s) = nV ar(p), where V ar(s)

and V ar(p) are the variances of the sum and individual product terms, re-

spectively, and n is the length of the dot product. One intuition concerning

accumulation with reduced precision is that, due to swamping, some product

terms may vanish from the summation, resulting in a lower variance than

expected: V ar(s) = ñV ar(p), where ñ < n. This constitutes a violation of

a key assumption and effectively leads to the re-emergence of the difficulties

in training neural networks with improper weight initialization which often

harms the convergence behavior [41, 135].

To explain the poor convergence of our ResNet 18 run (Figure 5.1 (a)), we

evaluate the behavior of accumulation variance across layers. Specifically, we

check the three dot products of a back-propagation iteration: the forward

propagation (FWD), the backward propagation (BWD), and the gradient

computation (GRAD), as illustrated in Figure 5.2. Indeed, there is an ab-

normality in reduced precision GRAD as shown in Figure 5.3. It is also

observed that the abnormality of variance is directly related to accumulation

length. From Figure 5.3, the break point corresponds to the switch from

the first to the second residual block. The GRAD accumulation length in

the former is much longer (4×) than the latter. Thus, evidence points to

the direction that for a given precision, there is an accumulation length for

which the expected variance cannot be properly retained due to swamping.

Motivated by these observations, we propose to study the trade-offs among

accumulation variance, length, and mantissa precision.

Before proceeding, it is important to note that our upcoming analysis dif-

fers in style from many works on reduced precision deep learning where it

is common to model quantization effects as additive noise causing increased

variance [136]. Our work does not contradict such findings, since prior works

have considered representation quantization whose effects are by nature dif-

ferent from intermediate roundings in partial sums.
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break point

Figure 5.3: Snapshot of measured weight gradient variance as a function of
layer index for our ResNet 18 experiment. An abnormal variance is observed
for the reduced precision accumulation.
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Figure 5.4: Illustration of the difference between full swamping and partial
swamping when macc = 6 and mp = 4. The bit-shift of pi due to exponent
difference may cause partial (e.g., stage 1-4) or full truncation of pi’s bits,
called swamping.

5.4 Mantissa Precision Requirements Analysis

We assume sufficient exponent precision throughout and treat reduced preci-

sion floating-point arithmetic as an unbiased form of approximate computing,

as is customary. Thus, our work focuses on associating second-order statistics

to mantissa precision.
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We consider the accumulation of n terms {pi}ni=1 which correspond to the

element-wise product terms in a dot product. The goal is to compute the

correct nth partial sum sn where si =
∑i

i′=1 pi′ . We assume, as in [135],

that the product terms {pi}ni=1 are statistically independent, zero-mean, and

have the same variance σ2
p. Thus, under ideal computation, the variance

of sn (which is equal to its second moment) should be V ar(sn)ideal = nσ2
p.

However, due to swamping effects, the variance of sn under reduced precision

is V ar(sn)swamping 6= V ar(sn)ideal.

Let the product terms {pi}ni=1 and partial sum terms {si}ni=1 have mp and

macc mantissa bits, respectively. Our key contribution is a formula for the

variance retention ratio V RR =
V ar(sn)swamping

V ar(sn)ideal
. The VRR, which is always

less than or equal to unity, is a function of n, mp, and macc only, which

needs no simulations to be computed. Furthermore, to preserve quality of

computation under reduced precision, it is required that V RR → 1. As it

turns out, the VRR for a fixed precision is a curve with “knee” with respect

to n, where a break point in accumulation length, beyond which a certain

mantissa precision is no longer suitable, can be easily identified. Accordingly,

for a given accumulation length, the mantissa precision requirements can be

readily estimated.

Before proceeding, we formally define swamping. As illustrated in Figure

5.4, the bit-shift of pi due to exponent difference may cause partial (e.g.,

stage 1-4) or full truncation of pi’s bits, called swamping. We define (1) “full

swamping” which occurs when |si| > 2macc |pi+1|, and (2) “partial swamping”

which occurs when 2macc−mp |pi+1| < |si| ≤ 2macc |pi+1|. These two swamping

types will be fully considered in our analysis.

5.4.1 Variance Retention Ratio

In the lemma below, we first present a formula for the VRR when only full

swamping is considered.

Lemma 8. The variance retention ratio of a length n accumulation using

macc mantissa bits, and when only considering full swamping, is given by:

V RRfull swamping =

∑n−1
i=2 iqi + nq̃n

kn
, (5.1)
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where qi = 2Q
(

2macc√
i

)(
1− 2Q

(
2macc√
i−1

))
, q̃n = 1−2Q

(
2macc√

n

)
, k =

∑n−1
i=2 qi+

q̃n is a normalization constant, and Q denotes the elementary Q-function.

The proof is provided in Section 5.7. A preliminary check is that a very

large value of macc in (5.1) causes all {qi}n−1
i=1 terms to vanish and q̃n to

approach unity. This makes V RR → 1 for high precision as expected. On

the other hand, if we assume macc to be small, but let n → ∞, we get

nq̃n → 0 because the Q-function term will approach 1 exponentially fast as

opposed to the n term which is linear. Furthermore, the terms inside the

summation having a large i will vanish by the same argument, while the n

term in the denominator will make the ratio decrease and we would expect

V RR → 0. This means that with limited precision, there is little hope to

achieve a correct result when the accumulation length is very large. Also,

the rapid change in VRR from 0 to 1 indicates that VRR can be used to

provide a sharp decision boundary for accumulation precision.

The above result only considers full swamping and is thus incomplete. Next

we augment our analysis to take into account the effects of partial swamping.

The corresponding formula for the VRR is provided in the following theorem.

Theorem 4. The variance retention ratio of a length n accumulation using

mp and macc mantissa bits for the input products and partial sum terms,

respectively, is given by:

V RR =

∑n−1
i=2 (i− α)+qi1{i>α} +

∑mp
jr=2(n− αjr)+q

′
i1{n>αjr} + nk3

kn
, (5.2)

where (x)+ =

x if x > 0

0 otherwise
, 1A =

1 if A is true

0 otherwise
,

α = 2macc−3mp

3

∑mp
j=1 2j(2j − 1)(2j+1 − 1), qi = 2Q

(
2macc√

i

)(
1− 2Q

(
2macc√
i−1

))
,

αjr = 2macc−3mp

3

∑jr−1
j=1 2j(2j − 1)(2j+1 − 1),

q′jr = Njr−12Q
(

2macc−mp+jr−1
√
n

)(
1− 2Q

(
2macc−mp+jr√

n

))
,k = k1 + k2 + k3,

k1 =
∑n−1

i=2 qi1{i>α}, k2 =
∑mp

jr=2 q
′
i1{n>αjr}, and k3 = 1− 2Q

(
2macc−mp+1

√
n

)
.

The proof is provided in Section 5.7. Observe the dependence on macc,

mp, and n. Therefore, in what follows, we shall refer to the VRR in (5.2) as

V RR(macc,mp, n). Once again, we verify the extremal behavior of our for-

mula. A very large value of macc in (5.2) causes k1 ≈ k2 ≈ 0 and k3 ≈ 1. This
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makes V RR→ 1 for high precision as expected. In addition, assuming small

macc and letting n → ∞, we get nk3 → 0 because k3 decays exponentially

fast due to the Q-function term. By the same argument, q′jr → 0 for all jr

and qi → 0 for all but small values of i. Thus, the numerator will be small,

while the denominator will increase linearly in n causing V RR → 0. Thus,

once more, we establish that with limited accumulation precision, there is

little hope for a correct result.

5.4.2 VRR with Chunk Based Accumulations

Next we consider an accumulation that uses chunking. In particular, assume

n = n1 × n2 so that the accumulation is broken into n2 chunks, each of

length n1. Thus, n2 accumulations of length n1 are performed and the n2

intermediate results are added to obtain sn. This simple technique is known

to greatly improve the stability of sums [134]. The VRR can be used to

theoretically explain such improvements. For simplicity, we assume two-level

chunking (as described above) and same mantissa precision macc for both

inter-chunk and intra-chunk accumulations. Applying the above analysis, we

may obtain a formula for the VRR as provided in the corollary below, which

is proved in Section 5.7.

Corollary 1. The variance retention ratio of a length n = n1 × n2 accu-

mulation with chunking, where n1 is the chunk size and n2 is the number of

chunks, using mp and macc mantissa bits for the input products and partial

sum terms, respectively, is given by:

V RRchunking =V RR(macc,mp, n1)

× V RR (macc,min (macc,mp + log2(n1)) , n2) . (5.3)

5.4.3 VRR with Sparsity

It is common to encounter sparse operands in deep learning dot products.

Since addition of zero is an identity operation, the effective accumulation

length is often less than as described by the network topology. Indeed, for a

given accumulation, supposedly of length n, if we can estimate the non-zero
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ratio (NZR) of its incoming product terms, then the effective accumulation

length is NZR× n.

Thus, when an accumulation is known to have sparse inputs with known

NZR, a better estimate of the VRR is

V RRsparsity = V RR(macc,mp, NZR× n). (5.4)

Similarly, when considering the VRR with chunking, we may use knowledge

of sparsity to obtain the effective intra-accumulation length as NZR × n1.

This change is reflected both in the VRR of the intra-chunk accumulation

and the input precision of the inter-chunk accumulation:

V RRchunking and sparsity = V RR(macc,mp, NZR× n1)

× V RR (macc,min (macc,mp + log2(NZR× n1)) , n2) .

(5.5)

In practice, the NZR can be estimated by making several observations from

baseline data. Using an estimate of the NZR makes our analysis less conser-

vative.

5.4.4 Usage of Analysis

For a given accumulation setup, one may compute the VRR and observe

how close it is to the ideal value of 1 in order to judge the suitability of the

mantissa precision assignment. It turns out that when measured as a function

of accumulation length n for a fixed precision, the VRR has a breakdown

region. This breakdown region can very well be observed when considering

what we define as the normalized exponential variance lost:

v(n) = en(1−V RR). (5.6)

In Figure 5.5 (a,b) we plot v(n) for different values of macc when considering

both normal accumulation and chunk-based accumulation with a chunk-size

of 64. The value of mp is set to 5 bit, corresponding to the product of

two numbers in (1,5,2) floating-point format [74]. We consider macc to be

suitable for a given n only if v(n) < 50 because in all plots the variance lost

rapidly increases when v(n) > 50 and n increases. On the other hand, when
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Figure 5.5: Normalized variance lost as a function of accumulation length
for different values of macc for (a) a normal accumulation (no chunking) and
(b) a chunk-based accumulation (chunk size of 64). The “knees” in each
plot correspond to the maximum accumulation length for a given precision
which indicates how the VRR is to be used to select a suitable precision.
(c) VRR as a function of chunk-size for several accumulation setups. The
dashed lines correspond to the value of the VRR when no chunking is used.
The flat maximas indicate that the exact choice of a chunking size is not of
paramount importance.

v(n) < 50 and n decreases, the variance lost quickly drops to zero. This

choice of a cut-off value is thus chosen based purely on the accumulation

length and precision.

In addition, when performing chunk-based accumulation, the chunk size

is a hyperparameter that, a priori, cannot be determined trivially. Castaldo

et al. [134] identified an optimal chunk size minimizing the loose upper

bound on the accumulation error they derived. In practice, they did not

find the accumulation error to be sensitive to the chunk-size. Neither did

Wang et al. [74] who performed numerical simulations. By sweeping the
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chunk size and observing the accumulation behavior on synthetic data, it

was found that chunking significantly reduces accumulation error as long

as the chunk size is not too small nor too large. Using our analysis, we

provide a theoretical justification. Figure 5.5 (c) shows the VRR for various

accumulation setups, including chunking when the chunk size is swept. For

each case we see that chunking raises the VRR to a value close to unity.

Furthermore, the VRR curve in that regime is “flat”, meaning that a specific

value of chunk size does not matter as long as it is not too small or too

large. One intuition is that a moderate chunk size prevents both inter- and

intra-chunk accumulations to be as large as the original accumulation. In

our upcoming chunking experiments we use a chunk size of 64 as was done

by [74].

5.5 Numerical Results

Using the above analysis, we predict the mantissa precisions required by the

three GEMM functions for training the following networks: ResNet 32 on the

CIFAR-10 dataset, ResNet 18 and AlexNet on the ImageNet dataset. Those

benchmarks were chosen due to both their popularity and topologies which

present large accumulation lengths, making them good candidates against

which we can verify our work. We use the same configurations as [74]; in

particular, we use 6 bit of exponents in the accumulations, quantize the

intermediate tensors to (1,5,2) floating-point format, and keep the final layer’s

precision in 16 bit. The technique of loss scaling [131] is used in order to limit

underflows of activation gradients. A single scaling factor of 1000 was used

for all models tested.

In order to realize rounding of partial sums, we modify the CUDA code of

the GEMM function (which, in principle, can be done using any framework).

In particular, we add a custom rounding function where the partial sum

accumulation occurs. Quantization of dot product inputs is handled similarly.

The predicted precisions for each network and layer/block are listed in

Table 5.1 for the case of normal and chunk-based accumulation with a chunk

size of 64. Several insights are to be noted.

• The required accumulation precision for CIFAR-10 ResNet 32 is in

general lower than that of the ImageNet networks. This is simply

128



Table 5.1: The predicted precisions required for all accumulations of our
considered networks. Each table entry is an ordered tuple of two values which
correspond to the predicted mantissa precision of both normal and chunk-
based accumulations, respectively. The precision requirements of FWD and
BWD are typically smaller than those of GRAD. The latter needs the most
precision for layers/blocks close to the input as the size of the feature maps
is highest in the early stages. The benefits of chunking are nonlinear but
range from 1 to 6 bit.

CIFAR-10 ResNet 32g
Layer(s) Conv 0 ResBlock 1 ResBlock 2 Resblock 3

FWD (6,5) (6,5) (7,5) (7,5)
BWD N/A (6,5) (7,5) (8,5)
GRAD (11,8) (11,8) (10,6) (9,6)

ImageNet ResNet 18
Layer(s) Conv 0 ResBlock 1 ResBlock 2 Resblock 3 ResBlock 4

FWD (9,6) (7,5) (8,5) (8,5) (9,6)
BWD N/A (8,6) (9,6) (9,6) (10,6)
GRAD (15,10) (15,9) (12,8) (10,6) (9,5)

ImageNet AlexNet
Layer Conv 1 Conv 2 Conv 3 Conv 4 Conv 5 FC 1 FC 2
FWD (7,5) (9,5) (9,5) (8,5) (8,5) (9,6) (8,5)
BWD N/A (8,5) (8,5) (10,8) (8,5) (8,5) (8,5)
GRAD (10,7) (9,6) (8,6) (6,5) (6,5) (6,5) (6,5)

because the network topology imposes shorter dot products.

• Though topologically the convolutional layers in the two ImageNet

networks are similar, the precision requirements do vary. Specifically,

the GRAD accumulation depends on the feature map dimension which

is mostly dataset dependent, yet AlexNet requires less precision than

ResNet 18. This is because the measured sparsity of the operands was

found to be much higher for AlexNet.

• Figure 5.5 suggests that chunking decreases the precision requirements

significantly. This is indeed observed in Table 5.1, where we see that

the benefits of chunking reach up to 6 bit in certain accumulations, e.g.,

the GRAD accumulation in the first ResBlock of ImageNet ResNet 18.

Because our predicted precision assignment ensures the VRR of all GEMM

accumulations to be close to unity, we expect reduced precision training to
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Figure 5.6: Convergence curves for (a) CIFAR-10 ResNet 32, (b) ImageNet
ResNet 18, and (c) ImageNet AlexNet, and (d) final accuracy degradation
with respect to the baseline as a function of precision perturbation (PP). The
solid and dashed lines correspond to the no chunking and chunking case,
respectively. Using our predicted precision assignment, the converged test
error is close to the baseline (no more than 0.5% degradation) but increases
significantly when the precision is further reduced.

converge with close fidelity to the baseline. Since our work focuses on accu-

mulation precision, in our experiments, the baseline denotes accumulation in

full precision. For a fair comparison, all upcoming results use (1,5,2) repre-

sentation precision. Thus, the effects of reduced precision representation are

not taken into account.

The goal of our experiments is to investigate both the validity and con-

servatism of our analysis. In Figure 5.6, we plot the convergence curves

when training with our predicted accumulation precision for a normal accu-

mulation. The runs corresponding to chunk-based accumulations were also

performed but are omitted since the trend is similar. Furthermore, we re-
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peat all experiments with precision perturbation (PP), meaning a specific

reduction in precision with respect to our prediction. For instance, PP = 0

indicates our prediction while PP = −1 corresponds to a 1 bit reduction.

Finally, in order to better visualize how the accumulation precision affect con-

vergence, we plot in Figure 5.6 (d) the accuracy degradation as a function of

precision perturbation for each of our three networks with both normal and

chunk-based accumulations. The following are to be noted:

• When PP = 0, the converged accuracy always lies within 0.5% of the

baseline, a strong indication of the validity of our analysis. We use a

0.5% accuracy cut-off with respect to the baseline as it corresponds to

an approximate error bound for neural networks obtained by changing

the random numbers seed [10, 137].

• When PP < 0, a noticeable accuracy degradation is observed, most

notably for ImageNet ResNet 18. The converged accuracy is no longer

within 0.5% of the baseline. Furthermore, a clear trend observed is

that the higher the perturbation, the worse the degradation.

• ImageNet AlexNet is more robust to perturbation than the two ResNets.

While PP = −1 causes a degradation strictly > 0.5%, it is not much

worse than the PP = 0 case. This observation aligns with that from

neural net quantization that Alexnet is robust due to its overly parame-

terized network structure [138]. But the trend of increasing degradation

remains the same.

• Figure 5.6 (d) suggests that the effects of PP are more pronounced

for a chunk-based accumulation. Since the precision assignment itself

is lower (Table 5.1), a specific precision perturbation corresponds to

a relatively higher change. For example, decreasing 1 bit from a 6

bit assignment is more important than decreasing 1 bit from a 10 bit

assignment. Further justification can be obtained by comparing Figures

5.5 (a) and 5.5 (b) where consecutive lines are less closely aligned for

the chunk-based accumulation, indicating more sensitivity to precision

perturbation.

Thus, overall, our predictions are adequate and close to the limits beyond

which training becomes unstable. These are very encouraging signs that our

analysis is both valid and tight.
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5.6 Summary

We have presented an analytical method to predict the precision required

for partial sum accumulation in the three GEMM functions in deep learning

training. Our results prove that our method is able to accurately pinpoint

the minimum precision needed for the convergence of benchmark networks to

the full precision baseline. Our theoretical concepts are application agnostic,

and an interesting extension would be to consider recurrent architectures

such as LSTMs. In particular, training via backpropagation in time could

make the GRAD accumulation very large depending on the number of past

time-steps used. In such a case, our analysis is of great relevance to training

precision optimization. On the practical side, this analysis is a useful tool

for hardware designers implementing reduced-precision FPUs, who in the

past have resorted to computationally prohibitive brute-force emulations.

We believe this work addresses a critical missing link on the path to truly

low-precision floating-point hardware for DNN training.

5.7 Addendum: Proofs of Theoretical Results

Preliminaries and Assumptions

The analysis of stability of sums under reduced-precision floating-point ac-

cumulation is a classically difficult problem. Indeed, statistically characteriz-

ing recursive rounding effects is often mathematically intractable. Therefore,

most prior works have considered worst-case analyses and provided loose

bounds on accuracy of computation as a function of precision [134]. In

contrast, the results presented in this chapter were found to be tight; how-

ever, they necessitate a handful of assumptions for mathematical tractability.

These assumptions are listed and discussed hereafter, and the proofs of the

theoretical results presented in the chapter follow in this section.

Assumption 1: The product terms {pi}ni=1 are statistically independent,

zero-mean, and have the same variance σ2
p.

This assumption, which was mentioned in Section 5.3, is a standard one

in works where the issue of variance in deep learning is studied [135]. Note

that as a result we have V ar(sn)ideal = Eideal [s2
n] because Eideal [sn] = 0.
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Assumption 2: Computation in reduced precision floating-point arith-

metic is unbiased with respect to the baseline.

This assumption is also standard in works studying quantization noise and

effects [89, 115, 118]. An important implication is that V ar(sn)swamping =

Eswamping [s2
n] because Eswamping [sn] = Eideal [sn] = 0.

Assumption 3: The accumulation is monotonic in the iterations leading

to a full swamping event.

This assumption means that we shall focus on a typical scenario where

the partial sums {si}ni=1 grow in magnitude while product terms {pi}ni=1 are

of the same order. In other words, we do not consider catastrophic events

where full swamping occurs unexpectedly (the probability of such event is

small in any case).

Assumption 4: We consider a partial sum si that experiences full swamp-

ing in reduced precision accumulation to be statistically independent from

prior partial sums si′ for i′ < i.

All partial sums {si}ni=1 are statistically dependent as they are computed

in a recursive manner. Our assumption is that should swamping noise be so

significant to cause full swamping, then the recursive dependence on prior

partial sums is broken.

Assumption 5: Once a full swamping event occurs, the computation of

partial sum accumulation is halted.

It is possible, but unlikely, that the computation might recover from swamp-

ing. A partial recovery of the computation is also possible but causes negli-

gible effects on the final result. Thus, such scenarios are neglected. Assump-

tions 3, 4, and 5 will be particularly useful for mathematical tractability in

the proof of Lemma 8.

Assumption 6: The bits of the mantissa representation of partial sums

{si}ni=1 and product terms {pi}ni=1 are equally likely to be zero or one.

This is yet again a standard assumption in quantization noise analysis

which will be particularly useful in the proof of Theorem 4.

Proof of Lemma 8

In order to compute the VRR, we first need to compute V ar(sn) during

swamping, i.e., V ar(sn)swamping = Eswamping [s2
n], where the equality holds by
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application of Assumptions 1 and 2. To do so, we rely on the Law of Total

Expectation. Indeed, assume that A is the set of events that describe all

manners in which the accumulation sn experiencing swamping can occur,

and let P (A) be the probability of event A ∈ A. Hence, by the Law of Total

Expectation, we have that

V ar(sn)swamping =
∑
A∈A

E

[
s2
n

∣∣∣∣A]P (A). (5.7)

It is in fact a difficult task to enumerate and describe all events in A. Thus

we consider a reduced set of events Â ⊂ A which is representative enough of

the manners in which the accumulation occurs, yet tractable so that it can

be used as a surrogate to A in (5.7). We shall form the set Â by application

of Assumption 3, 4, and 5 as we proceed.

We consider a scenario where the first occurrence of full swamping is at

iteration i of the summation for i = 2 . . . n− 1. This happens if:

|si| > 2macc |pi+1| and |si′ | < 2macc |pi′+1| for i′ = 1 . . . i− 1. (5.8)

Instead of looking at the actual absolute value of an incoming product term,

we replace it by its typical value of σp. Furthermore, we simplify the condition

of no swamping prior to iteration i by only considering the accumulated sum

at the previous iteration. This is due to Assumption 3 which allows us to

consider a simplified scenario where the accumulation is monotonic in the

iterations leading to full swamping. Hence, our simplified condition for the

first occurrence of full swamping at iteration i is given by:

|si−1| < 2maccσp < |si|.

As iteration i corresponds to a full swamping event, we may invoke Assump-

tion 4 and treat each of the two inequalities above independently. Finally, we

invoke Assumption 5: since full swamping happens at iteration i, then the

result of the accumulation is sn = si since the computation in the following

iterations is halted.

Thus, the event set Â we construct for our analysis consists of the mutually

exclusive events {Ai}n−1
i=2 where Ai is the event that full swamping occurs for

the first time at iteration i under the above assumptions. The condition for
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event i to happen is given by (5.8). By the Central Limit Theorem, which

we use by virtue of the si being a summation of independent, identically

distributed product terms, we have that si ∼ N (0, iσ2
p), so that:

P (Ai) = 2Q

(
2macc√

i

)(
1− 2Q

(
2macc√
i− 1

))
= qi. (5.9)

Furthermore, by Assumption 5 we have:

E

[
s2
n

∣∣∣∣Ai] = E
[
s2
i

]
= iσ2

p. (5.10)

We also add to our space of events, the event An where no full swamping

occurs over the course of the accumulation. This event happens if |sn| <
2maccσp and thus has probability P (An) = 1 − 2Q

(
2macc√

n

)
= q̃n. Since this

event corresponds to the ideal scenario, we have E

[
s2
n

∣∣∣∣An] = nσ2
p.

Thus, under the above conditions we have:

V ar(sn)swamping =
1

k

n∑
i=2

E

[
s2
n

∣∣∣∣Ai]P (Ai) =
σ2
p

k

(
n−1∑
i=2

iqi + nq̃n

)
, (5.11)

where k =
∑n−1

i=2 qi + q̃n is a normalization constant needed as Â does not

describe the full probability space.

Consequently we obtain (5.1) as formula for the VRR completing the proof

for Lemma 8.

Proof of Theorem 4

First, we do not change the description of the events {Ai}n−1
i=2 above. Notably,

by Assumption 5, once full swamping occurs, i.e., |si| > 2maccσp, the compu-

tation is stuck and stops. The probability of this event is P (Ai) as above.

However, to account for partial swamping, we alter the result of E

[
s2
n

∣∣∣∣Ai].
Indeed, partial swamping causes additional loss of variance. When the input

product terms have mp bits of mantissa, then before event Ai can occur, the

computation should go through each of the mp stages described in Figure 5.4.

We again use Assumption 3 and consider a typical scenario for each of the

mp stages of partial swamping preceding a full swamping event whereby the
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accumulation is monotonic and the magnitude of the incoming product term

is close to its typical value σp. Under this assumption, stage j is expected to

happen for the following number of iterations:

Nj = 2macc+1−(mp−j) = 2macc−mp+j+1 (5.12)

for j = 1 . . .mp. At stage j, j least significant bits in the representation

of the incoming product term are truncated (swamped). The variance lost

because of this truncation, which we call fractional variance loss E[f 2
j ], can

be computed by assuming the truncated bits are equally likely to be 0 or 1

(Assumption 6), so that:

E[f 2
j ] = σ2

p

2j−1∑
k=0

1

2j
(
2−mpk

)2

 = σ2
p2
−2mp

(2j − 1)(2j+1 − 1)

6
. (5.13)

Hence, the total fractional variance lost before the occurrence of even Ai is

NjE[f 2
j ]. Thus, we update the value of variance conditioned on Ai as follows:

E

[
s2
n

∣∣∣∣Ai] =
(
iσ2
p −NjE[f 2

j ]
)

+

= σ2
p

(
i− 2macc−3mp

3

mp∑
j=1

2j(2j − 1)(2j+1 − 1)

)
+

, (5.14)

where we used the operator (x)+ =

x if x > 0

0 otherwise
in order to guarantee

that the variance is positive. Effectively, we neglect the events Ai where i

is so small that the variance retained is less than the variance lost due to

partial swamping. In other words, an event whereby full swamping occurs

very early in the accumulation is considered to have zero probability and we

replace P (Ai) in (5.9) by:

P (Ai) = qi1{i>α}, (5.15)

where qi = 2Q
(

2macc√
i

)(
1− 2Q

(
2macc√
i−1

))
as in (5.9), 1 is the indicator func-

tion, and α = 2macc−3mp

3

∑mp
j=1 2j(2j − 1)(2j+1 − 1) as in (5.14).

In addition, some boundary conditions need to be accounted for. These
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include the cases when no full swamping happens before the accumulation

is complete but partial swamping does happen. We again consider a typ-

ical scenario as above and append our event set A with mp − 1 boundary

events
{
A′jr
}mp
jr=2

, where the event A′jr corresponds to the case where the

computation has gone through stage jr − 1 of partial swamping but has not

reached stage jr yet. The condition for this event is σp2
macc−mp+jr−1 < |sn| <

σp2
macc−mp+jr and occurs typically for up to Njr−1 iterations. The total frac-

tional variance lost is:

σ2
p

jr−1∑
j=1

Nj

2j−1∑
k=0

1

2j
(
2−mpk

)2

 = σ2
p

2macc−3mp

3

jr−1∑
j=1

2j(2j − 1)(2j+1 − 1).

(5.16)

Hence,

E

[
s2
n

∣∣∣∣A′jr] = σ2
p (n− αjr)+ , (5.17)

where αjr = 2macc−3mp

3

∑jr−1
j=1 2j(2j−1)(2j+1−1). And the probability of event

A′jr is given by:

P (A′jr) = q′jr1{n>αjr}, (5.18)

where q′jr = Njr−12Q
(

2macc−mp+jr−1
√
n

)(
1− 2Q

(
2macc−mp+jr√

n

))
, and the mul-

tiplication by Njr−1 reflects the number of iterations the event may occur

for.

Finally, the event An is updated and corresponds to the case where neither

partial nor full swamping occurs. The condition for this event is |sn| <
2macc−mp+1 and has a probability P (An) = 1− 2Q

(
2macc−mp+1

√
n

)
.

Putting things together, we use the law of total expectation as in (5.7) to

compute:

V ar(sn)swamping =

σ2
p

k

[
n−1∑
i=2

(i− α)+qi1{i>α} +

mp∑
jr=2

(n− αjr)+q
′
i1{n>αjr} + nk3

]
, (5.19)

where k = k1 + k2 + k3, k1 =
∑n−1

i=2 P (Ai), k2 =
∑mp

jr=2 P (A′jr), and k3 =
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P (An). Hence, the formula for the VRR in (5.2) in the theorem follows and

this concludes the proof.

Proof of Corollary 1

Applying the above analysis, we may compute the variance of the intermedi-

ate results as σ2
pn1V RR(macc,mp, n1). To compute the variance of the final

result, first note that the mantissa precision of the incoming terms to the

inter-chunk accumulation (the results from the intra-chunk accumulation) is

min (macc,mp + log2(n1)). The reason is that since the intra-chunk accumu-

lation uses macc mantissa bits, the mantissa cannot grow beyond macc due

to the rounding nature of the floating-point accumulation. However, if macc

is large enough and n1 is small enough, it is most likely that the mantissa

has not grown to the maximum. Assuming accumulation of terms having

statistically similar absolute value as was done for the VRR analysis, then

the bit growth of the mantissa is logarithmic in n1 and starts at mp.

Hence, the variance of the computed result sn when chunking is used is:

V ar(sn)chunking = σ2
pn1V RR(macc,mp, n1)

× n2V RR (macc,min (macc,mp + log2(n1)) , n2) (5.20)

and hence the VRR with chunking can be computed using (5.3) in Corollary

1. This completes the proof.

138



CHAPTER 6

CONCLUSION AND FUTURE WORK

This dissertation has addressed a hard, real problem, that of finite preci-

sion deep learning. While prior work and methods abound, none provide

analytical guarantees on accuracy. Instead, current practices rely on ad-hoc

techniques, largely based on trial-and-error approaches. In contrast, this

dissertation addresses the issue of finite precision deep learning with theo-

retical guarantees. Therefore, the results presented in this dissertation can

be used by hardware and software designers in order to implement accuracy-

aware finite precision algorithms. In this final chapter, we summarize this

dissertation’s contributions and provide directions for future research.

6.1 Summary of Contributions

This dissertation formulates a theoretical framework for the implementation

of deep learning in finite precision. For inference, we theoretically analyzed

the worst-case accuracy drop in the presence of weight and activation quan-

tization. Furthermore, we derived an optimal clipping criterion guaranteed

to minimize precision of dot-product outputs. For implementations using

in-memory computing, this results in a lower ADC precision requirement.

We analyzed fixed-point training and presented a methodology for imple-

menting fully quantized back-propagation with close-to-minimal per-tensor

precision. Finally, we studied accumulator precision for reduced precision

floating-point training using variance analysis techniques. More specifically,

our contributions are summarized as follows.

In the context of DNN inference, theoretical bounds on the misclassifica-

tion rate in presence of limited precision were first derived. Proper precision

assignment was obtained employing these bounds, and weight-activation as

well as per-layer precision trade-offs were quantified. The proposed princi-
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pled precision reduction was applied to a variety of networks and datasets.

Additionally, we proposed the OCC to minimize the column ADC precision

in in-memory architectures. The SQNR of OCC was shown to be as accurate

as the optimal LM. Using bit-slicing techniques, significant energy savings

were achieved with minimal accuracy loss. An analytical methodology for

proper IMC design subject to DNN accuracy constraint was derived.

In the context of DNN training, we derived a systematic methodology

to obtain close-to-minimal per-layer precision requirements for guaranteed

statistical similarity between fixed-point and floating-point training. The

challenges of quantization noise, inter-layer and intra-layer precision trade-

offs, dynamic range, and stability were jointly addressed, and the method-

ology was applied to several benchmarks. Furthermore, we presented the

VRR of a reduced precision accumulation in the context of back-propagation

dot-products. Our analysis was applied to determine mantissa precision re-

quirements in floating-point accumulators. Experimentally, the validity and

tightness of our analysis were verified across multiple deep learning bench-

marks.

The work presented in this dissertation does have a few limitations. First,

obtaining theoretical guarantees on a DNN’s accuracy does lead to conserva-

tive designs. Indeed, minimum precision networks obtained via our analysis

were found to have higher requirements (by approximately 5 bit) compared

to other methods, particularly in the scope of in-training quantization [58].

One caveat is that such works have no accuracy guarantees and require sub-

stantial empirical tuning. Additionally, all accuracy guarantees that were

derived in this dissertation have been provided with respect to an existing

full precision baseline. Thus, we have not provided absolute guarantees on

a network’s accuracy in an a priori manner. Notwithstanding, it is impor-

tant to note that such theoretical results do not even exist for full precision

networks, i.e., when finite precision effects are excluded.

6.2 Future Research Prospects

The conclusions and insights derived from this dissertation work can provide

a strong basis for future research directions.

Upper Bounds on the Accuracy of In-Training Quantization: Much
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of the presented work on inference accuracy was related to post-training

quantization. In-training quantization can lead to more aggressive results,

but lacks a theoretical backing. We posit that an analysis similar to the

one provided in this dissertation can be applied to in-training quantization.

Specifically, we believe existential upper bounds on the converged accuracy

can be derived. Indeed, using mixed-integer programming techniques, worst-

case deviation between full precision and quantized dot-products can readily

be obtained. By combining such classical results to a variant of our presented

analysis, we believe the following question can be answered: Given a network,

dataset, and pre-determined precision of activation and weights, what is the

best accuracy that training with quantization can possibly achieve?

Theoretical Basis for Distributed Training: Training large models

on large datasets necessitates distribution of SGD onto multiple devices [10].

When the number of such devices increases, the latency is dominated by

the transmission of gradients and synchronization of all learners. As such,

gradient compression techniques, such as quantization, are often applied to

accelerate training. Our work on fixed-point training presented in this dis-

sertation can be used to guide the communication strategy between learners.

First, the gradient compression aspect can be studied in a manner similar

to that of gradient quantization noise. Second, the asynchronous updates

and impact on convergence are related to the issues of early stopping and

stability discussed when analyzing the feedback loop of the back-propagation

algorithm. Thus, a great potential exists to expand our work into the area

of distributed learning.

Hardware-Aware Training: A recent approach for generating efficient

networks, tailored to the potential deployment platform, is to embed hard-

ware models within the training algorithm. Such methods include neural ar-

chitecture search and are known to be prohibitively compute intensive [69].

Our developed analytical models derived in this dissertation can be used to

significantly speed up such algorithms. Indeed, rather than invoking time-

consuming trial and error routines, the impact of hardware implementation

on the accuracy can be instantly predicted. Therefore, the time complexity

of a search can be reduced by one whole dimension.

Analytical Guarantees on Adversarial Robustness: While DNNs

have achieved impressive success when deployed with natural data, concerns

have started to appear about their vulnerability. Indeed, specifically tailored
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perturbation attacks were shown to implode the accuracy of state-of-the-art

networks [139]. Many techniques have been proposed to robustify networks

against adversarial attacks [140]. Unfortunately, prior work has been largely

empirical, lacking a theoretical understanding. We postulate that our theo-

retical work developed in this dissertation can advance the understanding of

adversarial robustness. Indeed, our work has employed general noise models

for quantization as a building block. Interestingly, two of the state-of-the-

art adversarial attacks, DeepFool [141] and JSMA [142], employ the concept

of activation noise gains to compute adversarial samples. Thus, we believe

important insights from our work on quantization can be leveraged in the

context of adversarial machine learning.

Applications Beyond Deep Learning: Many applications are bene-

fiting today from the advances of machine learning. However, some signal

processing applications have known optimal algorithms that are much sim-

pler and theoretically sound. Implementation of such algorithms in finite

precision is an important and difficult problem. Indeed, the noise tolerance

of signal processing applications is much lower than that of deep learning.

As such, statistical error compensation techniques can be used in tandem

with finite precision implementation. Such applications include radar signal

processing chains where finite impulse response (FIR) filters are the main

building block. Such filters are traditionally implemented using time-domain

convolution which was found to be weak in tolerating quantization noise and

non-idealities in IMC architectures. One option for statistical error compen-

sation is filtering via frequency-domain convolution which has a low peak-to-

average ratio and best utilization of the IMC structure.

By means of theoretical analyses, the work presented in this dissertation

constitutes a first important step in the principled design and implemen-

tation of finite precision deep learning systems. The nature of the meth-

ods presented can be extended to tangential problems in the broader scope

of training and inference. As mentioned above, opportunities exist in the

context of in-training quantization, distributed and hardware-driven train-

ing, adversarial machine learning and applications in signal processing. It is

hoped that such extensions of our work will occur in the future.
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