10 research outputs found

    Mining Top-K Frequent Itemsets Through Progressive Sampling

    Full text link
    We study the use of sampling for efficiently mining the top-K frequent itemsets of cardinality at most w. To this purpose, we define an approximation to the top-K frequent itemsets to be a family of itemsets which includes (resp., excludes) all very frequent (resp., very infrequent) itemsets, together with an estimate of these itemsets' frequencies with a bounded error. Our first result is an upper bound on the sample size which guarantees that the top-K frequent itemsets mined from a random sample of that size approximate the actual top-K frequent itemsets, with probability larger than a specified value. We show that the upper bound is asymptotically tight when w is constant. Our main algorithmic contribution is a progressive sampling approach, combined with suitable stopping conditions, which on appropriate inputs is able to extract approximate top-K frequent itemsets from samples whose sizes are smaller than the general upper bound. In order to test the stopping conditions, this approach maintains the frequency of all itemsets encountered, which is practical only for small w. However, we show how this problem can be mitigated by using a variation of Bloom filters. A number of experiments conducted on both synthetic and real bench- mark datasets show that using samples substantially smaller than the original dataset (i.e., of size defined by the upper bound or reached through the progressive sampling approach) enable to approximate the actual top-K frequent itemsets with accuracy much higher than what analytically proved.Comment: 16 pages, 2 figures, accepted for presentation at ECML PKDD 2010 and publication in the ECML PKDD 2010 special issue of the Data Mining and Knowledge Discovery journa

    Efficient Discovery of Association Rules and Frequent Itemsets through Sampling with Tight Performance Guarantees

    Full text link
    The tasks of extracting (top-KK) Frequent Itemsets (FI's) and Association Rules (AR's) are fundamental primitives in data mining and database applications. Exact algorithms for these problems exist and are widely used, but their running time is hindered by the need of scanning the entire dataset, possibly multiple times. High quality approximations of FI's and AR's are sufficient for most practical uses, and a number of recent works explored the application of sampling for fast discovery of approximate solutions to the problems. However, these works do not provide satisfactory performance guarantees on the quality of the approximation, due to the difficulty of bounding the probability of under- or over-sampling any one of an unknown number of frequent itemsets. In this work we circumvent this issue by applying the statistical concept of \emph{Vapnik-Chervonenkis (VC) dimension} to develop a novel technique for providing tight bounds on the sample size that guarantees approximation within user-specified parameters. Our technique applies both to absolute and to relative approximations of (top-KK) FI's and AR's. The resulting sample size is linearly dependent on the VC-dimension of a range space associated with the dataset to be mined. The main theoretical contribution of this work is a proof that the VC-dimension of this range space is upper bounded by an easy-to-compute characteristic quantity of the dataset which we call \emph{d-index}, and is the maximum integer dd such that the dataset contains at least dd transactions of length at least dd such that no one of them is a superset of or equal to another. We show that this bound is strict for a large class of datasets.Comment: 19 pages, 7 figures. A shorter version of this paper appeared in the proceedings of ECML PKDD 201

    Échantillonnage progressif guidé pour stabiliser la courbe d'apprentissage

    Get PDF
    National audienceL'un des enjeux de l'apprentissage artificiel est de pouvoir fonctionner avec des volumes de données toujours plus grands. Bien qu'il soit généralement admis que plus un ensemble d'apprentissage est large et plus les résultats sont performants, il existe des limites à la masse d'informations qu'un algorithme d'apprentissage peut manipuler. Pour résoudre ce problème, nous proposons d'améliorer la méthode d'échantillonnage progressif en guidant la construction d'un ensemble d'apprentissage réduit à partir d'un large ensemble de données. L'apprentissage à partir de l'ensemble réduit doit conduire à des performances similaires à l'apprentissage effectué avec l'ensemble complet. Le guidage de l'échantillonnage s'appuie sur une connaissance a priori qui accélère la convergence de l'algorithme. Cette approche présente trois avantages : 1) l'ensemble d'apprentissage réduit est composé des cas les plus représentatifs de l'ensemble complet; 2) la courbe d'apprentissage est stabilisée; 3) la détection de convergence est accélérée. L'application de cette méthode à des données classiques et à des données provenant d'unités de soins intensifs révèle qu'il est possible de réduire de façon significative un ensemble d'apprentissage sans diminuer la performance de l'apprentissage

    Techniques for improving clustering and association rules mining from very large transactional databases

    Get PDF
    Clustering and association rules mining are two core data mining tasks that have been actively studied by data mining community for nearly two decades. Though many clustering and association rules mining algorithms have been developed, no algorithm is better than others on all aspects, such as accuracy, efficiency, scalability, adaptability and memory usage. While more efficient and effective algorithms need to be developed for handling the large-scale and complex stored datasets, emerging applications where data takes the form of streams pose new challenges for the data mining community. The existing techniques and algorithms for static stored databases cannot be applied to the data streams directly. They need to be extended or modified, or new methods need to be developed to process the data streams.In this thesis, algorithms have been developed for improving efficiency and accuracy of clustering and association rules mining on very large, high dimensional, high cardinality, sparse transactional databases and data streams.A new similarity measure suitable for clustering transactional data is defined and an incremental clustering algorithm, INCLUS, is proposed using this similarity measure. The algorithm only scans the database once and produces clusters based on the user’s expectations of similarities between transactions in a cluster, which is controlled by the user input parameters, a similarity threshold and a support threshold. Intensive testing has been performed to evaluate the effectiveness, efficiency, scalability and order insensitiveness of the algorithm.To extend INCLUS for transactional data streams, an equal-width time window model and an elastic time window model are proposed that allow mining of clustering changes in evolving data streams. The minimal width of the window is determined by the minimum clustering granularity for a particular application. Two algorithms, CluStream_EQ and CluStream_EL, based on the equal-width window model and the elastic window model respectively, are developed by incorporating these models into INCLUS. Each algorithm consists of an online micro-clustering component and an offline macro-clustering component. The online component writes summary statistics of a data stream to the disk, and the offline components uses those summaries and other user input to discover changes in a data stream. The effectiveness and scalability of the algorithms are evaluated by experiments.This thesis also looks into sampling techniques that can improve efficiency of mining association rules in a very large transactional database. The sample size is derived based on the binomial distribution and central limit theorem. The sample size used is smaller than that based on Chernoff Bounds, but still provides the same approximation guarantees. The accuracy of the proposed sampling approach is theoretically analyzed and its effectiveness is experimentally evaluated on both dense and sparse datasets.Applications of stratified sampling for association rules mining is also explored in this thesis. The database is first partitioned into strata based on the length of transactions, and simple random sampling is then performed on each stratum. The total sample size is determined by a formula derived in this thesis and the sample size for each stratum is proportionate to the size of the stratum. The accuracy of transaction size based stratified sampling is experimentally compared with that of random sampling.The thesis concludes with a summary of significant contributions and some pointers for further work

    FI-FG: Frequent Item Sets Mining from Datasets with High Number of Transactions by Granular Computing and Fuzzy Set Theory

    Get PDF
    Mining frequent item set (FI) is an important issue in data mining. Considering the limitations of those exact algorithms and sampling methods, a novel FI mining algorithm based on granular computing and fuzzy set theory (FI-GF) is proposed, which mines those datasets with high number of transactions more efficiently. Firstly, the granularity is applied, which compresses the transactions to some granules for reducing the scanning cost. During the granularity, each granule is represented by a fuzzy set, and the transaction scale represented by a granule is optimized. Then, fuzzy set theory is used to compute the supports of item sets based on those granules, which faces the uncertainty brought by the granularity and ensures the accuracy of the final results. Finally, Apriori is applied to get the FIs based on those granules and the new computing way of supports. Through five datasets, FI-GF is compared with the original Apriori to prove its reliability and efficiency and is compared with a representative progressive sampling way, RC-SS, to prove the advantage of the granularity to the sampling method. Results show that FI-GF not only successfully saves the time cost by scanning transactions but also has the high reliability. Meanwhile, the granularity has advantages to those progressive sampling methods

    A COMPREHENSIVE GEOSPATIAL KNOWLEDGE DISCOVERY FRAMEWORK FOR SPATIAL ASSOCIATION RULE MINING

    Get PDF
    Continuous advances in modern data collection techniques help spatial scientists gain access to massive and high-resolution spatial and spatio-temporal data. Thus there is an urgent need to develop effective and efficient methods seeking to find unknown and useful information embedded in big-data datasets of unprecedentedly large size (e.g., millions of observations), high dimensionality (e.g., hundreds of variables), and complexity (e.g., heterogeneous data sources, space–time dynamics, multivariate connections, explicit and implicit spatial relations and interactions). Responding to this line of development, this research focuses on the utilization of the association rule (AR) mining technique for a geospatial knowledge discovery process. Prior attempts have sidestepped the complexity of the spatial dependence structure embedded in the studied phenomenon. Thus, adopting association rule mining in spatial analysis is rather problematic. Interestingly, a very similar predicament afflicts spatial regression analysis with a spatial weight matrix that would be assigned a priori, without validation on the specific domain of application. Besides, a dependable geospatial knowledge discovery process necessitates algorithms supporting automatic and robust but accurate procedures for the evaluation of mined results. Surprisingly, this has received little attention in the context of spatial association rule mining. To remedy the existing deficiencies mentioned above, the foremost goal for this research is to construct a comprehensive geospatial knowledge discovery framework using spatial association rule mining for the detection of spatial patterns embedded in geospatial databases and to demonstrate its application within the domain of crime analysis. It is the first attempt at delivering a complete geo-spatial knowledge discovery framework using spatial association rule mining

    On Privacy-Enhanced Distributed Analytics in Online Social Networks

    Get PDF
    More than half of the world's population benefits from online social network (OSN) services. A considerable part of these services is mainly based on applying analytics on user data to infer their preferences and enrich their experience accordingly. At the same time, user data is monetized by service providers to run their business models. Therefore, providers tend to extensively collect (personal) data about users. However, this data is oftentimes used for various purposes without informed consent of the users. Providers share this data in different forms with third parties (e.g., data brokers). Moreover, user sensitive data was repeatedly a subject of unauthorized access by malicious parties. These issues have demonstrated the insufficient commitment of providers to user privacy, and consequently, raised users' concerns. Despite the emergence of privacy regulations (e.g., GDPR and CCPA), recent studies showed that user personal data collection and sharing sensitive data are still continuously increasing. A number of privacy-friendly OSNs have been proposed to enhance user privacy by reducing the need for central service providers. However, this improvement in privacy protection usually comes at the cost of losing social connectivity and many analytics-based services of the wide-spread OSNs. This dissertation addresses this issue by first proposing an approach to privacy-friendly OSNs that maintains established social connections. Second, approaches that allow users to collaboratively apply distributed analytics while preserving their privacy are presented. Finally, the dissertation contributes to better assessment and mitigation of the risks associated with distributed analytics. These three research directions are treated through the following six contributions. Conceptualizing Hybrid Online Social Networks: We conceptualize a hybrid approach to privacy-friendly OSNs, HOSN. This approach combines the benefits of using COSNs and DOSN. Users can maintain their social experience in their preferred COSN while being provided with additional means to enhance their privacy. Users can seamlessly post public content or private content that is accessible only by authorized users (friends) beyond the reach of the service providers. Improving the Trustworthiness of HOSNs: We conceptualize software features to address users' privacy concerns in OSNs. We prototype these features in our HOSN}approach and evaluate their impact on the privacy concerns and the trustworthiness of the approach. Also, we analyze the relationships between four important aspects that influence users' behavior in OSNs: privacy concerns, trust beliefs, risk beliefs, and the willingness to use. Privacy-Enhanced Association Rule Mining: We present an approach to enable users to apply efficiently privacy-enhanced association rule mining on distributed data. This approach can be employed in DOSN and HOSN to generate recommendations. We leverage a privacy-enhanced distributed graph sampling method to reduce the data required for the mining and lower the communication and computational overhead. Then, we apply a distributed frequent itemset mining algorithm in a privacy-friendly manner. Privacy Enhancements on Federated Learning (FL): We identify several privacy-related issues in the emerging distributed machine learning technique, FL. These issues are mainly due to the centralized nature of this technique. We discuss tackling these issues by applying FL in a hierarchical architecture. The benefits of this approach include a reduction in the centralization of control and the ability to place defense and verification methods more flexibly and efficiently within the hierarchy. Systematic Analysis of Threats in Federated Learning: We conduct a critical study of the existing attacks in FL to better understand the actual risk of these attacks under real-world scenarios. First, we structure the literature in this field and show the research foci and gaps. Then, we highlight a number of issues in (1) the assumptions commonly made by researchers and (2) the evaluation practices. Finally, we discuss the implications of these issues on the applicability of the proposed attacks and recommend several remedies. Label Leakage from Gradients: We identify a risk of information leakage when sharing gradients in FL. We demonstrate the severity of this risk by proposing a novel attack that extracts the user annotations that describe the data (i.e., ground-truth labels) from gradients. We show the high effectiveness of the attack under different settings such as different datasets and model architectures. We also test several defense mechanisms to mitigate this attack and conclude the effective ones

    Nuevos enfoques en aprendizaje incremental

    Get PDF
    Actualmente el volumen de datos que se genera en diferentes ámbitos es muy elevado, llegando incluso a ser difícil de almacenar. Realizar tareas de aprendizaje automático ante tal cantidad de información está provocando que sean necesarios nuevos algoritmos. En esta tesis se presentan distintas aportaciones en el ámbito del aprendizaje incremental, las cuales, fundamentalmente, están dirigidas a mejorarlo usando algoritmos basados en cotas de concentración y sistemas multiclasificadores

    Efficient Progressive Sampling for Association Rules

    No full text
    In data mining, sampling has often been suggested as an effective tool to reduce the size of the dataset operated at some cost to accuracy. However, this loss to accuracy is often difficult to measure and characterize since the exact nature of the learning curve (accuracy vs. sample size) is parameter and data dependent, i.e., we do not know apriori what sample size is needed to achieve a desired accuracy on a particular dataset for a particular set of parameters. In this article we propose the use of progressive sampling to determine the required sample size for association rule mining. We first show that a naive application of progressive sampling is not very efficient for association rule mining. We then present a refinement based on equivalence classes, that seems to work extremely well in practice and is able to converge to the desired sample size very quickly and very accurately. An additional novelty of our approach is the definition of a support-sensitive, interactive measure of accuracy across progressive samples
    corecore