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There is only one good in existence, which is knowledge,
and one evil, which is ignorance.

— Prof. Dr. Mohieddin Wainakh

Dedicated to those who have sacrificed themselves for the good of humanity
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S Y N O P S I S

More than half of the world’s population benefits from Online Social Networks’
(OSNs) services. A considerable part of these services is mainly based on apply-
ing analytics on user data to infer their preferences and enrich their experience
accordingly. At the same time, user data is monetized by service providers
to run their business models. Therefore, providers tend to extensively collect
(personal) data about users. However, this data is oftentimes used for vari-
ous purposes without informed consent of the users. Providers share this data
in different forms with third parties (e.g., data brokers). Moreover, user sensi-
tive data was repeatedly a subject of unauthorized access by malicious parties.
These issues have demonstrated the insufficient commitment of providers to
user privacy, and consequently, raised users’ concerns. Despite the emergence
of privacy regulations (e.g., GDPR and CCPA), recent studies showed that user
personal data collection and sharing sensitive data are still continuously in-
creasing.

A number of privacy-friendly OSNs have been proposed to enhance user pri-
vacy by reducing the need for central service providers. However, this improve-
ment in privacy protection usually comes at the cost of losing social connec-
tivity and many analytics-based services of the wide-spread OSNs. This disser-
tation addresses this issue by first proposing an approach to privacy-friendly
OSNs that maintains established social connections. Second, approaches that al-
low users to collaboratively apply distributed analytics while preserving their
privacy are presented. Finally, the dissertation contributes to better assessment
and mitigation of the risks associated with distributed analytics. These three
research directions are treated through the following six contributions.

conceptualizing hybrid online social networks

We conceptualize a hybrid approach to privacy-friendly OSNs, Hybrid Online So-
cial Network (HOSN). This approach combines the benefits of using Centralized
Online Social Networks (COSNs) and Decentralized Online Social Networks
(DOSNs). Users can maintain their social experience in their preferred COSN

while being provided with additional means to enhance their privacy. Users
can seamlessly post public content or private content that is accessible only by
authorized users (friends) beyond the reach of the service providers.

improving the trustworthiness of hosns

We conceptualize software features to address users’ privacy concerns in OSNs.
We prototype these features in our HOSN approach and evaluate their impact on
the privacy concerns and the trustworthiness of the approach. Also, we analyze
the relationships between four important aspects that influence users’ behavior
in OSNs: privacy concerns, trust beliefs, risk beliefs, and the willingness to use.

privacy-enhanced association rule mining

We present an approach to enable users to apply efficiently privacy-enhanced
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association rule mining on distributed data. This approach can be employed
in DOSNs and HOSNs to generate recommendations. We leverage a privacy-
enhanced distributed graph sampling method to reduce the data required for
the mining and lower the communication and computational overhead. Then,
we apply a distributed frequent itemset mining algorithm in a privacy-friendly
manner.

privacy enhancements on federated learning

We identify several privacy-related issues in the emerging distributed machine
learning technique, Federated Learning (FL). These issues are mainly due to
the centralized nature of this technique. We discuss tackling these issues by
applying FL in a hierarchical architecture. The benefits of this approach include
a reduction in the centralization of control and the ability to place defense and
verification methods more flexibly and efficiently within the hierarchy.

systematic analysis of threats in federated learning

We conduct a critical study of the existing attacks in FL to better understand the
actual risk of these attacks under real-world scenarios. First, we structure the
literature in this field and show the research foci and gaps. Then, we highlight
a number of issues in (1) the assumptions commonly made by researchers and
(2) the evaluation practices. Finally, we discuss the implications of these issues
on the applicability of the proposed attacks and recommend several remedies.

label leakage from gradients

We identify a risk of information leakage when sharing gradients in FL. We
demonstrate the severity of this risk by proposing a novel attack that extracts
the user annotations that describe the data (i.e., ground-truth labels) from gra-
dients. We show the high effectiveness of the attack under different settings
such as different datasets and model architectures. We also test several defense
mechanisms to mitigate this attack and conclude the effective ones.
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Z U S A M M E N FA S S U N G

Mehr als die Hälfte der Weltbevölkerung nutzt die Dienste der sozialen Online-
Netzwerke (OSNs). Ein beträchtlicher Teil dieser Dienste basiert hauptsächlich
auf der Analyse von Nutzerdaten. Diese Analysen dienen dazu die Vorlieben
der Nutzer zu ermitteln und ihre Erfahrungen entsprechend zu bereichern.
Gleichzeitig werden die Nutzerdaten von den Dienstanbietern zu Geld ge-
macht, um ihre Geschäftsmodelle zu betreiben. Daher neigen die Anbieter dazu,
in großem Umfang (persönliche) Daten über die Nutzer. Diese Daten werden je-
doch oft für verschiedene Zwecke verwendet ohne dass zuvor die Zustimmung
der Nutzer eingeholt wurde. Die Anbieter teilen diese Daten in verschiedenen
Formen an Dritte (z. B. an Datenbroker). Außerdem waren sensible Nutzerda-
ten immer wieder Gegenstand eines unberechtigten Zugriffs durch böswillige
Parteien. Diese Vorkommmnisse zeigen, dass das Engagement der der Anbieter,
hinsichtlich des Datenschutzes der Nutzer und deren Bedenken, unzureichend
ist. Aufkommende Datenschutzbestimmungen (z. B. GDPR und CCPA) sind
hauptsächlich dazu gedacht, solche Bedenken zu zerstreuen, Jüngste Studien
haben jedoch gezeigt, dass die Erhebung von personenbezogenen Daten und
die Weitergabe sensibler Daten weiterhin kontinuierlich zunehmen.

Es wurde eine Reihe von datenschutzfreundlichen OSN vorgeschlagen, um
die Bedenken der Nutzer zu zerstreuen, indem sie den Bedarf an zentralen
Dienstanbietern verringern. Allerdings führt dieser Verbesserung des Schutzes
der Privatsphäre in der Regel zu einem Verlust sozialer Konnektivität und einer
Verschlechterung analytischer Dienste der weit verbreiteten OSNs. Diese Disser-
tation befasst sich mit diesem Problem, indem sie zunächst einen Ansatz für
datenschutzfreundliche OSNs vorschlägt, der etablierte soziale Verbindungen
aufrechterhält. Zusätzlich werden in dieser Arbeit Ansätze vorgestellt, die es
den Nutzern ermöglichen, gemeinsam verteilte Analysen unter Wahrung ihrer
Privatsphäre durchzuführen. Schließlich trägt die Dissertation dazu bei, die Ri-
siken, die mit verteilten Analysen verbunden sind, besser einzuschätzen und
zu entschärfen. Diese drei Forschungs Richtungen werden in den folgenden
sechs Beiträgen behandelt.

konzeptualisierung hybrider sozialer online-netzwerke

Wir konzipieren einen hybriden Ansatz für datenschutzfreundliche OSNs. Die-
ser Ansatz kombiniert die Vorteile der Verwendung von zentralisierte sozia-
le Online-Netzwerke (COSNs) und dezentralisierte soziale Online-Netzwerke
(DOSNs). Die Benutzer können ihr soziales Erlebnis in ihrem bevorzugten COSN

beibehalten, während ihnen zusätzliche Mittel zur Verbesserung ihrer Privat-
sphäre zur Verfügung gestellt werden. Die Nutzer können nahtlos öffentliche
oder private Inhalte posten, die nur von autorisierten Nutzern (Freunden) au-
ßerhalb der Reichweite der Dienstanbieter zugänglich sind.

verbesserung der vertrauenswürdigkeit von hosns

Wir konzipieren Softwarefunktionen, um die Datenschutzbedenken der Benut-
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zer in OSNs zu berücksichtigen. Wir prototypisieren diese Funktionen in un-
serem hybriden OSN-Ansatz und bewerten ihre Auswirkungen auf die Daten-
schutzbedenken und die Vertrauenswürdigkeit des Ansatzes. Darüber hinaus
analysieren wir die Beziehungen zwischen vier wichtigen Aspekten, die das
Verhalten der Nutzer in OSNs beeinflussen: Datenschutzbedenken, Vertrauens-
überzeugungen, Risikoüberzeugungen und die Bereitschaft zur Nutzung.

datenschutz-erweiterte assoziations-regel-mining

Wir stellen einen Ansatz vor, der es Nutzern ermöglicht, effizient datenschutz-
freundliche Assoziations-Regel-Mining auf verteilte Daten anzuwenden. Dieser
Ansatz kann in dezentralen und hybriden OSNs eingesetzt werden, um Emp-
fehlungen zu generieren. Wir nutzen ein datenschutzfreundliches verteiltes
Graphen-Sampling-Verfahren, um die für das Mining benötigten Daten zu re-
duzieren und den Kommunikations- und Rechenaufwand zu senken. Anschlie-
ßend wenden wir einen verteilten häufige Artikelgruppe Mining Algorithmus
auf eine datenschutzfreundliche Weise an.

datenschutzverbesserungen beim föderierten lernen

Wir haben mehrere datenschutzbezogene Probleme bei der aufkommenden ver-
teilten maschinellen Lerntechnik, föderiertes Lernen (FL), identifiziert. Diese
Probleme sind hauptsächlich auf die zentralisierte Natur dieser Technik zurück-
zuführen. Wir erörtern die Lösung dieser Probleme durch Anwendung von FL

in einer Hierarchiearchitektur. Zu den Vorteilen dieses Ansatzes gehören ei-
ne geringere Zentralisierung der Kontrolle und die Möglichkeit, Verteidigungs-
und Überprüfungsmethoden flexibler und effizienter innerhalb der Hierarchie
zu platzieren.

analyse von bedrohungen im föderierten lernen

Wir führen eine kritische Untersuchung der bestehenden Angriffe in FL durch,
um das tatsächliche Risiko dieser Angriffe in realen Szenarien besser zu ver-
stehen. Zunächst strukturieren wir die Literatur auf diesem Gebiet und zeigen
die Forschungsschwerpunkte und -lücken auf. Dann beleuchten wir eine Reihe
von Themen in (1) den Annahmen, die von Forschern üblicherweise gemacht
werden und (2) den Bewertungspraktiken. Abschließend diskutieren wir die
Auswirkungen dieser Probleme auf die Anwendbarkeit der vorgeschlagenen
Angriffe und empfehlen verschiedene Abhilfemaßnahmen.

etikettenleckage durch farbverläufe

Wir stellen fest, dass bei der gemeinsamen Nutzung von Gradienten in FL das
Risiko eines Informationsverlusts besteht. Wir demonstrieren die Schwere die-
ses Risikos, indem wir einen neuartigen Angriff vorschlagen, der die Nutzer-
kommentare, die die Daten beschreiben (d.h. die "ground-truth labels"), aus
Gradienten extrahiert. Wir zeigen die Wirksamkeit des Angriffs unter verschie-
denen Bedingungen, wie z.B. verschiedenen Datensätzen und Modellarchitek-
turen. Wir testen auch verschiedene Verteidigungsmechanismen, um diesen An-
griff zu entschärfen, und kommen zu dem Schluss, dass diese effektiv sind.
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Part I

P R E FA C E





1
I N T R O D U C T I O N

Online Social Networks (OSNs) are among the most powerful communication
tools in our modern society. Millions of users create profiles, share content,
and communicate with friends via OSNs on daily basis. Additionally, a huge
number of businesses increasingly employ OSNs to reach customers. That is,
the ever-growing user base of OSNs was tripled in the last decade to cover more
than half of the world’s population [56]. Along with this increase in the user
base, data generated by users is massively rising.

The dominant OSNs (e.g., Facebook and Twitter) are commercial; the service
providers of OSNs use the data of the users to generate revenue, mainly by
realizing targeted advertisements. For that, the user data is processed and ana-
lyzed to infer additional information about users. This information is also used
to enrich the user experience by customizing the services and recommending
interesting content (e.g., an article to read or a friend to connect with). However,
since the main revenue of the service providers come from user data, they prac-
tice bulk data collection. Beyond what is explicitly posted on OSNs, they track
users across the Internet and learn their preferences and behaviors using many
different technologies (e.g., third-party cookies).

1.1 problem statement

As of today, the mainstream of OSNs is realized in a centralized manner by the
platform providers. We refer to these networks as Centralized Online Social Net-
works (COSNs). That is, all kinds of data shared by users or generated by users’
interactions are controlled by a central provider and stored in their infrastruc-
tures. Unfortunately, the providers show consistently insufficient commitment
to user data and privacy protection [174]. Oftentimes, user data is used without
informed consent or misused in various ways [1]. The providers frequently dis-
close various forms of user data to third parties, e.g., data brokers. Furthermore,
user data was prone to unauthorized access on many occasions, e.g., Facebook
tokens hack 2018 [98], Twitter readable passwords 2018 [78], and Facebook’s
leak of user personal data 2021 [116]. Some parties violated the terms of use
of OSNs and harvested user data for suspicious purposes, such as Cambridge
Analytica 2016 [97]. The privacy of users in COSNs is constantly and seriously
threatened or even violated considering the aforementioned issues. This has led
to a remarkable increase in the users’ privacy concerns [139].

Emerging regulations, e.g., General Data Protection Regulation (GDPR) and
California Consumer Privacy Act (CCPA), came to force providers to follow
privacy-friendly practices such as obtaining user consent for data collection.
However, evidence shows that providers are increasingly collecting data, while
obscuring their practices in significantly longer and harder-to-read privacy poli-

3



introduction

cies [272], which leave users no choice but to give their uninformed consent.
From the technical perspective, several privacy-friendly OSNs were proposed
to address the users’ privacy concerns, including standalone Decentralized On-
line Social Networks (DOSNs) (e.g., Diaspora [224]), browser add-ons (e.g., Face-
Cloak [166]) and apps (e.g., Twitterize [51]). The better-accepted approaches
are DOSNs, which are based on Peer-to-Peer (P2P) networks, where not only
content (profiles, posts, likes, . . . ) is encrypted but a centralized authority is
eliminated altogether. Unfortunately, most of DOSNs proposals suffer from ma-
jor limitations, such as poor functionality and support [167], high usage com-
plexity [224], and/or low scalability [51]. Additionally, many users hesitate to
use such novel technologies due to lack of trust (a.k.a. penguin effect). More
importantly, users became dependent on COSNs due to their established social
connections, which can be lost when switching to new networks (a.k.a. lock-in
effect). As a result, DOSNs were not able to attract a sufficient number of users to
survive the competition with the dominant COSNs. For example, Diaspora, the
most popular DOSN, claims 21, 227 active users monthly [257] compared with
330 million for Twitter [248] and 2.89 billion for Facebook [247]. That is, there
is a need for innovative approaches to address the users’ privacy concerns and
simultaneously overcome the social lock-in and penguin effects. Based on that,
we can formulate our first research question as follows.

research question 1

What OSN approach is better suited to improve privacy while maintaining a
large number of users?

One additional drawback of DOSNs is the lower quality of services. Recom-
mender systems are typically used in OSNs to improve the services by recom-
mending interesting content for users. To build a recommender system, a va-
riety of data analytics techniques (data mining and machine learning) can be
applied. The application of these techniques to distributed data is called distrib-
uted analytics, where multiple entities process subsets of data and share collec-
tive insights. However, applying distributed analytics in DOSNs while maintain-
ing user privacy is challenging. Some research works proposed cryptography-
based solutions, where the user data is encrypted, thus, protected throughout
the process. These solutions employ secure multi-party computation [256], ho-
momorphic encryption, and other cryptography primitives [36, 133]. However,
despite some improvements, the computational and communication overhead
of these approaches remains high (per operation). Also, this overhead remark-
ably increases with the number of users in the system, which introduces scal-
ability issues and renders these approaches impractical for large-scale appli-
cations, such as OSNs. Another category of solutions uses perturbation tech-
niques to protect user data [57]. However, these solutions naturally incur a loss
of information, consequently, decreasing the utility of the analysis results. An
emerging approach for distributed machine learning, termed Federated Learn-
ing (FL) [175], is claimed to offer some privacy advantages by allowing users to
train joint models while keeping their data local. However, recent literature has
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shown that this approach is prone to information leakage under its default set-
ting, which means user data needs to be protected with additional security and
privacy measures. Overall, the three aforementioned solution categories, i.e.,
cryptography, perturbation, and FL, cannot be readily applied to large OSNs,
but need furthering and probably complementary approaches. Based on that,
we formulate our second overall research question.

research question 2

How to apply distributed analytics in OSNs privately and efficiently?

Despite the privacy benefits introduced by DOSNs through distributing the
user data, the data can still be prone to attacks [229]. One might even argue that
the distributed nature of the data extends the attack surface. Applying analyt-
ics techniques on distributed data also entails risks [114, 187]. Mitigating these
risks is therefore an important research challenge, for which two methodolog-
ical approaches exist: one possibility is to engage in research on appropriate
privacy-preserving techniques directly, the other approach investigates perti-
nent attacks on privacy first and may lead to the conceptualization of novel
attacks. Following that, research can concentrate on techniques for mitigating
these attacks. In our work, we adopt the latter approach and formulate the third
research question as follows.

research question 3

What are the potential attacks against distributed analytics and how can they
be mitigated?

In the next section, we summarize our contributions to address these ques-
tions.

1.2 contributions & publications

The contributions of this thesis are divided into three parts to tackle the three
aforementioned research questions (see Figure 1.1). These parts discuss hybrid
online social networks, privacy-enhanced distributed analytics, and threats to
distributed analytics. Next, we present our contributions in each of these parts
along with the corresponding publications. In total, the content of this thesis
is based on nine papers; eight of them have been published at respected peer-
reviewed conferences or journals, and one is under review.

1.2.1 Hybrid online social networks

This part focuses on proposing a novel approach to OSNs, where users can
access their favorite COSN, thus, communicate with their friends and established
communities, and yet acquire additional means for privacy control.
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Figure 1.1: Overview of the contributions.

conceptualizing hosns

Here, we propose the concept of Hybrid Online Social Networks (HOSNs), which
combines properties from COSNs and DOSNs. By that users benefit from both the
market penetration of COSNs and the privacy advantages of DOSNs. To prove
the viability of the concept, we develop Hushtweet, a Twitter application that
allows users to privately tweet and give anonymous likes on a private network.
The data on this network is encrypted and stored in a distributed fashion. Pri-
vate Tweets are then only accessible by authorized users (followers) beyond the
reach of the Twitter provider. Users can seamlessly switch between the usage
of Twitter and the private network within Hushtweet. This contribution was
published in [273].

improving the trustworthiness of hosns

Understanding the user perception for privacy-friendly OSNs in general, and
HOSN in particular is crucial to calibrate the development of the concept as well
as Hushtweet as an app. That is, we analyze the relationships between four
aspects that influence users’ perception and behavior: privacy concerns, trust
beliefs, risk beliefs, and the willingness to use. Also, we conceptualize and real-
ize software features to address users’ privacy concerns reported by Malhotra
et al. [171]. We showcase through an extensive user study that the developed
features contribute to trust improvement in Hushtweet. This contribution was
published in [26, 27].

1.2.2 Privacy-enhanced distributed analytics

Here, we tackle the second research question. In particular, we focus on ap-
plying two techniques in a distributed and privacy-enhanced manner, namely
Association Rule Mining (ARM) and neural networks through FL. We selected
ARM as it is one of the simple yet effective analytics techniques, while neural
networks are more sophisticated and used widely in state-of-the-art solutions
in several domains.
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privacy-enhanced association rule mining

We present an approach to enable efficient privacy-enhanced ARM on distrib-
uted data. In particular, this approach focuses on Frequent Itemset (FI) mining,
as it is the most expensive phase of ARM. Our approach combines an adapted
version of graph sampling and distributed FI mining techniques to (1) curtail
the data required for the mining and (2) reduce the communication and com-
putational overhead. We evaluate our approach on three real-world social net-
works datasets and show that users can achieve FIs with very high precision
and recall rates in well-connected networks, also for very small samples. This
contribution was published in [274, 278].

privacy enhancements on federated learning

Here, we look into enhancing the privacy of the emerging distributed machine
learning technique, FL. FL enables users to train a joint model collaboratively
while keeping their data local. They train the model locally and share only the
model updates with a central server, which aggregates the updates to obtain
an updated global model. In this work, we explore the potential benefits w.r.t.
privacy of applying FL in a hierarchical architecture, where the aggregation
of the updates happens in multiple layers through the hierarchy. We discuss
that this approach can reduce the concentration of power and control in the
hands of the central server. Also, the hierarchy allows applying defenses and
verification methods in a more flexible and efficient manner. This contribution
was published in [276].

1.2.3 Threats to distributed analytics

This part is dedicated to answering the third research question. It is comprised
of two major contributions as follows.

systematic analysis of threats in federated learning

We conduct a systematic quantitative and qualitative analysis of the publica-
tions on attacks against FL. We mainly classify the attacks based on two aspects:
(1) the properties of the attacks, (2) the experimental setups. The distribution
of publications among the defined classes allows us to derive the foci and gaps
in the research literature. We also highlight several issues in assumptions com-
monly made by researchers, as well as identify their implications on the appli-
cability of the proposed attacks. Finally, we identify multiple fallacies found in
the evaluation practices and discuss how these fallacies might impact the gen-
eralizability of the results. The paper [280] is based on this contribution and it
is under review.

label leakage from gradients

Here, we highlight the information leakage risk of sharing gradients in FL. We
propose a novel attack termed Label Leakage from Gradients (LLG), aims at
extracting ground-truth labels (i.e., annotations that describe correctly the char-
acteristics of user data) from gradients. The attack exploits the sign and mag-
nitude of the gradients of the last layer of a neural network to disclose the
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ground-truth labels of the training data. We measure the effectiveness of the at-
tack under a variety of setups, including different: datasets, federated training
algorithms, model architectures, and model convergence statuses. Finally, we
test LLG against two defense mechanisms: noisy gradients and gradient com-
pression (pruning). Results indicate that gradient compression can render the
attack ineffective while maintaining good model accuracy. A preliminary set of
results of this work was published in [277]. The full work [279] was accepted at
PETS 2022.

1.3 basic terms and concepts

In this section, we present a set of important terms and concepts used through-
out the rest of the thesis.

1.3.1 Online social networks

A social network refers to a social structure consisting of multiple entities such
as individuals and organizations [66]. Typically, overlapping subsets of these
entities have interests, activities, backgrounds, and/or friendships in common.
Online Social Networks (OSNs) are a special form of virtual social network, where
users mostly are able to create profiles, share content (text, images, and videos),
and interact with others in various ways [228]. OSNs can be user-oriented, where
the focus is on the relationships between the users. Thereby, the content is
shared within a community of users who are interconnected (e.g., Facebook
and Twitter). Other OSNs are content-oriented, i.e., the content is shared within a
community based on common interests, rather than the relationships between
users (e.g., Reddit and Youtube) [201].

1.3.2 Distributed analytics

The term analytics, as used in this thesis, became common with the growing
availability of large amounts of digital data created by sensors (Internet of
things), (online) users, and computers (log data in the widest sense). Thereby,
analytics denotes data analysis concepts as well as their application to concrete
datasets. Often, the goal of systematic analytics is the discovery of patterns and
the elicitation of insights on what might happen in the future, mainly to sup-
port decision making [60, 204]. There are many techniques for analyzing data
with different goals, capabilities, and complexities, ranging from simple statisti-
cal operations (e.g., average, histogram) to sophisticated algorithms (e.g., neural
networks). In this thesis, we focus on two categories of techniques, namely data
mining and machine learning. Data mining refers to the application of specific
algorithms to extract patterns from data [76]. Machine learning is the study
of algorithms that can produce and automatically improve models by the use
of data [181]. The two categories are significantly overlapping as they often
employ the same algorithms [29]. Distributed analytics refers to the distributed
application of these algorithms by multiple entities, with each entity possessing
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a subset of the data. When the processing concludes, the outcomes are aggre-
gated to generate collective insights.

1.3.3 Privacy

Privacy is a sweeping concept with different definitions varying in social, legal,
and computer science domains. In this thesis, we concentrate on the computer
science domain, where privacy problems are tackled by developing technical
solutions that achieve various privacy properties such as:

• Confidentiality is the property of the data being concealed from system en-
tities (e.g., subjects) unless they have been authorized to access it, in other
words, maintaining authorization restrictions on data access [226].

• Anonymity of a subject is the property of being not identifiable within a set
of subjects, known as anonymity set [210]. This set comprises the subjects
who may be related to a particular anonymous action. A subject performs
an action anonymously if they are indistinguishable (by the adversary) from
other subjects [59].

• From an adversary’s perspective, unlinkability of two or more items (subjects
or objects) means that the adversary cannot sufficiently distinguish whether
or not these items are related to each other [210]. The items can be of the
same nature, e.g., subject-subject, or heterogeneous, e.g., subject-object.

Further definitions of privacy properties can be found in [210] by Pfitzmann
and Hansen. Our contributions in this thesis aim to address the privacy prob-
lems in two contexts: online social networks and analytics.

privacy in online social networks . Privacy problems in OSNs reside
in the user-user relationship and user-service provider relationship. The so-
cial interactions mediated by OSNs’ services have disrupted the social bound-
aries between users, creating the need to renegotiate these boundaries. Service
providers extensively collect the personal data of users to run their business
model and generate revenue. Users are left without control or awareness of
the process by which service providers collect and analyze their data [99]. In
this thesis, we focus on empowering users w.r.t. their relationship with service
providers. In particular, we aim at enabling users to actively control and pro-
tect their own data instead of relying on a (un)trusted service provider. This
can be achieved through approaches that fulfill the aforementioned privacy
properties, which in turn allow eliminating or minimizing the personal data
disclosure. Further discussion of the properties obtained can be found in the
contribution chapters, where appropriate.

privacy in analytics . Analytics typically is applied on a sample dataset
to produce patterns that represent the distribution of the whole population at
hand. Here, we focus on protecting the users whose data was used to apply an-
alytics, i.e., the sample dataset. Privacy in this context is defined such that these
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patterns should not reveal (1) whether a particular user was part of the sample
dataset or not, i.e., the users should be unlinkable to the sample dataset, in other
words, the sampled users are anonymous within the population, and (2) informa-
tion about individual users beyond what can be inferred from the underlying
distribution [236]. Furthermore, in distributed analytics, the exchange of data
between the participating entities should be confidential to prevent (1) informa-
tion leakage to the outside world and (2) disclosure of unintended information
to other entities, i.e., to prevent entities from deriving additional information
about each other beyond what is necessary for the analytics task.

1.4 outline

This thesis is structured as follows. After this introduction, the first contribution
is presented in Chapter 2, where the concept of HOSN is provided. Chapter 3 fo-
cuses on improving the trustworthiness of our social network approach through
developing trust-related software features.

Moving on to Chapter 4, we propose a novel approach for applying associ-
ation rule mining on distributed data in DOSNs or HOSNs. Chapter 5 covers a
discussion on the potential privacy advantages of applying federated learning
in a hierarchical architecture.

The last two contribution chapters of the thesis are concerned with threats
against federated learning. Chapter 6 provides an extensive analysis for the
attacks in this field with a critical discussion about the assumptions and evalu-
ation practices. Chapter 7 introduces a novel attack extracting the ground-truth
labels of user data from gradients in federated learning. Finally, we close the
thesis in Chapter 8 with a conclusion and an outlook.

With our approaches and studies in this thesis, we make a considerable step
forward in helping users to take an active role in protecting their privacy in
OSNs and applying analytics collaboratively on their protected data.

1.5 notes on style

In the thesis, we use verbatim copies of text from our publications. These ver-
batim are printed in gray color throughout the thesis. Tables, figures, and algo-
rithms taken from our publications are marked with † in their caption.
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2
C O N C E P T U A L I Z I N G H Y B R I D O N L I N E S O C I A L
N E T W O R K S

This chapter constitutes the first contribution of this thesis. We argued in the
previous chapter for the necessity of innovative approaches to privacy-friendly
OSNs that empower users to control their data. In this chapter, we introduce a
hybrid solution that allows equipping users with means for data control while
maintaining the social experience provided by wide-spread OSNs that users are
subscribed to. Our concept can also pave the way for users to apply collabora-
tive analytics to their data.

2.1 introduction

Despite the recurrent data breaches in Centralized Online Social Networks
(COSNs) (e.g., Cambridge Analytica incident [97]), these networks are still dom-
inant with a huge user base. E.g., Facebook reported 2.89 billion monthly ac-
tive users in 2021 [247], and Twitter had 330 million in 2019 [248]. People use
these platforms not only for online self-presentation and social exchange but
also to run and promote their businesses. For instance, 200 million businesses—
mostly small businesses—use Facebook tools to reach customers [267]. In ad-
dition, more than 48% of Business-to-Business decision-makers use Facebook
for research [189]. This enables these networks to monopolize the OSN market
and impose themselves as unsubstitutable technologies in parts of our societies.
Therefore, there is a need for a novel approach that considers the inevitable
usage of COSNs and at the same time preserves user privacy.

2.1.1 Summary of contributions

In this chapter, we propose the concept of Hybrid Online Social Network (HOSN),
which combines advantages from both COSNs and DOSNs. With HOSNs, users
keep using COSNs, thus, using their user base and functionality, yet with addi-
tional means for privacy control provided by additional concepts inspired from
DOSNs.

As a proof of concept, we introduce Hushtweet, an Android application that
builds on top of Twitter. Users can tweet and like publicly on Twitter as usual.
Additionally, Hushtweet allows users to privately tweet and anonymously like
on a private network. User private data is then encrypted and stored in dis-
tributed databases. Central authorities like Twitter cannot obtain control over
the data. Such tweets and likes are only accessible by the users’ followers, who
also use Hushtweet. Moreover, Hushtweet is based on open-source technolo-
gies; its architecture and source code are open to the public, resulting in high
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transparency for the users. The content of this chapter is based on the following
publication.

publication

Wainakh, A., Grube, T., Daubert, J., Porth, C., & Mühlhäuser, M. (2019, Decem-
ber). Tweet beyond the Cage: A Hybrid Solution for the Privacy Dilemma in
Online Social Networks. In Global Communications Conference (GLOBECOM) (pp.
1-6). IEEE.

Contribution statement
In this work, I led the process of idea generation, realization, and writing.
Tim Grube and Jörg Daubert contributed helpful comments and observa-
tions that inspired my conceptual work and helped to highlight and ad-
dress a number of issues. Carsten Porth, Rohit Gowda, Pavel Azanov, and
Pritish Kumar contributed to the implementation of the prototype applica-
tion through their (Master or Bachelor) theses. Insightful discussions with
Max Mühlhäuser contributed to different aspects of the work.

2.1.2 Outline

The remainder of this chapter is organized as follows. First, we define our threat
model in Section 2.2. Then, we present related social network approaches in
Section 2.3. The concept of HOSN is introduced in Section 2.4, followed by a
description of the proof of concept (Hushtweet) for Twitter in Section 2.5. We
discuss the requirements met by Hushtweet in Section 2.6. Finally, we conclude
in Section 2.7.

2.2 threat model

As mentioned in Chapter 1, the existence of omnipotent COSN providers leads
to several privacy issues. Recent data breaches demonstrate that the providers
cannot be fully trusted to adequately protect user data from external attackers.
Also, the misuse of user data for commercial purposes by providers remains a
major concern. In this work, we consider the threat posed by a curious COSN

provider or an attacker who could penetrate the provider’s system and gain
access to user data. This adversary has read and write access to all data stored
in the COSN system. The adversary has no global view of the network traffic. We
assume that the users’ devices are not compromised. The adversary’s goal is to
gather additional information about the individuals who use HOSN, especially
about their activities on the private network, e.g., the content they share and
their interaction with each other.
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2.3 related work

In this section, we present three categories of related OSN approaches: (1) Ex-
tensions built on top of COSNs for the purpose of privacy, (2) standalone DOSNs,
and (3) DOSNs based on decentralized application (dApp).

2.3.1 Privacy extensions

Twitterize [51] allows users to share content privately via Twitter itself by
encrypting the content and applying concepts for obfuscating the follower-
relation. The approach focuses on anonymity and confidentiality as privacy
requirements in a group communication settings. Twitterize establishes a P2P

overlay “above” Twitter, which allows users to exchange encrypted messages
via tweets. The message is passed from a user to another by retweeting until it
reaches the targeted recipient. This causes a significant tweet overhead and may
violate the terms of use. The restrictions on the Twitter Application Program-
ming Interface (API) (e.g., only 250 direct messages/day are allowed) render the
proposed protocol unpractical. FaceCloak [166] protects personal information
by sending fake data to Facebook while storing the benign content encrypted on
a third-party server. Authorized users can retrieve and decrypt the real content.
The approach was implemented as an extension for the Firefox browser, which
manipulates locally the Facebook webpages to show the real data instead of
the fake ones. Yet, the approach suffers from another potentially failure-prone
central server, and continuous Facebook updates make it hard to keep the ex-
tension working. Further deviations of these solutions can be found in [206];
the majority of these proposals suffer from severe limitations in performance
that impede their usage.

2.3.2 Standalone DOSNs

There are several DOSNs proposed in the research community and market. Di-
aspora [224] is one of the most prominent. It is an open source federated OSN,
with a focus on privacy and the users’ control over their data. Mostly, groups
and organizations host their own servers named pods, which interconnect via
the Diaspora* federation protocol, with some servers being public. Even though
Diaspora multiplied its user base during the Facebook privacy scandals in re-
cent years, Diaspora is still five orders of magnitude behind Facebook. Life-
Social.KOM [93] is a framework for fully P2P-based multimedia-centric social
networking. The structured P2P network stores content and protects it with a
combination of encryption and an access control list. While a prototype exists,
LifeSocial.KOM was never released for public use.

2.3.3 dApp-based DOSNs

Decentralized apps run on P2P networks, avoiding the pitfalls of centralization.
AKASHA.org uses a combination of blockchain technology (Ethereum Rinkeby)
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and a distributed file sharing system, InterPlanetary File System (IPFS). Many of
the typical OSN functionalities are available here. AKASHA is switching to the
Ethereum main blockchain, which will require users to spend tokens (money)
to use the network. Peepeth [207] is a micro-blogging platform that promises
not to repurpose any user data. Like AKASHA, Peepeth uses the Ethereum
blockchain and IPFS. Unlike AKASHA, Peepeth pays the transaction fees (to-
kens) for its users with capital collected from a crowdfunding campaign. How-
ever, as blockchain transactions are signed by the users themselves, a browser
with a wallet extension is required. Furthermore, the platform only updates
once per hour to lower the transaction fees by executing transactions in batches.

In summary, the aforementioned solutions fall short in the real-world mar-
ket due to additional costs or lack of usability and features. Peepeth has only
reached 4, 055 users so far and AKASHA does not disclose statistics about their
user base. Only Diaspora is doing reasonably well with 584, 197 users [257].

2.4 hosn concept

In this section, we first introduce the idea of HOSN. Then, we define its func-
tional and non-functional requirements. We discuss the major challenges to
realize HOSNs. Finally, we present our conceptual layout.

2.4.1 Combining two worlds: COSN and DOSN

OSNs conduce means of digital life to their users, mostly with a focus on com-
munication. Oftentimes, service providers offer their OSN’s functionality with-
out (monetary) costs to their users—they rely on realizing profits from their
users’ data, e.g., by realizing targeted advertisements. Big COSNs have already
attracted a huge number of users. As such, those COSNs dominate the mar-
ket so that emerging OSNs oftentimes are not able to survive the competition
(e.g., Google+). Lacking alternatives, the usage of the dominant COSNs becomes
inevitable. While being inevitable, COSNs show consistently insufficient com-
mitment to the privacy of their users [143, 144, 264]. Their privacy-friendly
alternatives [93, 166, 224], i.e., DOSNs, focus on avoiding the intrusion of their
users’ privacy; however, these systems are not well-adopted by the users due
to several reasons (see Section 2.3).

As mentioned before, the core idea of HOSNs is to combine advantages from
COSNs and DOSNs. That combination enables users to leverage both the mar-
ket penetration of COSNs and the privacy features of DOSNs. HOSN contains a
COSN-like part (underlay COSN) and a DOSN-like part (private network) that is
established “above” (see Figure 2.1). Using the COSN-like part as base network
in HOSN allows users to continue their online social activities smoothly without
negative side effects. As such, they do not need to create new profiles nor re-
find and connect with their friends, which are time-consuming processes and
even depend on the availability of the users’ contacts and willingness. Thus,
continuing to rely on a COSN-like part helps to preserve the users’ experience
of functionality and social connectivity, and enables a gradual transition to-
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Figure 2.1: Illustration of the HOSN concept, where a de-
centralized overlay network is established on top of a cen-
tral network†.

wards the usage of DOSNs. HOSN provides additionally the ability for users to
preserve their privacy by establishing a private network as a complement to the
COSN-like part. Using this network, users can communicate without revealing
their data to the provider of the COSN-like part. Compared to the individual so-
lutions, i.e., COSNs or DOSNs, users can choose between the COSN-like part and
DOSN-like part depending on their current interaction and context.

2.4.2 Functional requirements

We define the essential functional requirements as follows.

• COSN-related functionality: Users can use all the functionality of the underlay
COSN app, e.g., managing their own profiles, viewing contact lists, publishing,
viewing, and interacting (like) with posts. This ensures that HOSN provides
all the functionality with which users are familiar and that no additional
clients/apps are needed.

• DOSN-related functionality:

◦ Users can use the communication functionality (posts) in the DOSN-like
part to communicate with their friends beyond the reach of the COSN-like
part provider.

◦ Only authorized users (friends) can view the content of the private posts
on the DOSN-like part.

◦ Users can like a post anonymously on the DOSN-like part.

• Users can freely decide (control) whether to interact through the COSN-like
part or the DOSN-like part.

• The underlay COSN’s provider can obtain privacy-protected (statistical) in-
formation from the DOSN-like part about the private posts and likes. This
requirement is crucial to maintain the possibility to generate “value” out of
the social network—targeted advertisements—and thus develop and improve
the network.
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2.4.3 Non-functional requirements

Non-functional requirements, such as privacy and usability, outline the main
difference between the HOSN concept and DOSNs/COSNs. In the following, we
explain those requirements.

• Privacy: HOSNs enable the fulfillment of three privacy-related requirements:

◦ Confidentiality: Sensitive communication should be concealed such that
only authorized users can access its content.

◦ Anonymity: Neither unauthorized users nor the provider of the underlay
COSN are able to link sensitive communication of HOSN to its sender and
receivers.

◦ Awareness: Intuitive interfaces should enable users to understand the pri-
vacy implications of their actions and make informed decisions to post to
either part of HOSN.

• Transparency: The technologies used in HOSN should be announced and users
should be able to know how the functionalities of HOSN are realized.

• Usability: Setting up and using HOSN should be as simple as possible. Weak
usability is a major failure reason for many privacy-preserving/secure ap-
plications [111, 290]. All users, especially technically inexperienced users,
should be able to use HOSN with minimal effort. There should be no limi-
tations for users who are willing to use the COSN-like part regularly through
HOSN. The user interfaces should deliver the same experience as in the un-
derlay COSN with additional privacy control elements.

• Cost: As most of the COSNs offer their services free of monetary-charge, HOSN

should be available for users for free, e.g., induced by hosting own servers
and fees of anonymization services.

• Compliance: It is essential that HOSN adheres to the underlay COSN terms of
use and policies, otherwise, legal use is not possible.

• Scalability: The network should be able to handle a huge number of users,
ultimately, the number of users in the underlay COSN. In addition, enough
resources (e.g., storage means) should be mobilized to deal with the growing
content.

• Extensibility: The functionality of HOSNs should be constantly developed re-
sponding to users’ needs.

2.4.4 Major challenges

To realize the DOSN-like part of HOSN, we need to address three technical chal-
lenges: storage, access control, and connectivity.
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storage . In COSNs, the service providers take care of providing storage for
data emerging from users and their communication. Thus, HOSN needs to pro-
vide means of storage in the private network part of their service—three differ-
ent realizations can be used:

• Centralized Server: Using a central storage server, the users’ data will be stored
centrally by one entity in the private network. This solution requires (1) suf-
ficient resources, (2) the server to be trusted by the users, and (3) the need
for offering a business model for the storage provider. This solution would
essentially reproduce the centralization of control problem of the original
COSN with just a “second layer”. Additionally, the server will be a potential
performance bottleneck and single point of failure. A very limited number of
proposals of privacy-friendly OSNs follow this approach, e.g., FaceCloak [167],
where neither scalability (thus resources) nor the business model of the stor-
age provider are considered.

• Hybrid P2P Network: Using a hybrid P2P approach, powerful users (often called
super peers) assume the role of storage providers. While the distribution of
responsibilities eases the establishment of trust, resource allocation and costs
(which underlie the necessity of a business model) are still challenging issues.
Several privacy-friendly OSN solutions are based on this approach, e.g., Vis-
a-Vis [230] and Polaris [292].

• P2P Network: Involving all users in the provision of storage, the costs are min-
imized as every user has to contribute only a little storage. Also, by further
increasing the number of users providing storage, the trust challenge can be
addressed under the assumption of the existence of minor benignity. While
earlier mentioned challenges are addressed, the classical P2P network chal-
lenges emerge: peer discovery, global Internet-based data exchange, and data
availability need to be achieved. Multiple privacy-friendly OSNs have adopted
this approach, e.g., Safebook [47], LifeSocial.KOM [93], and PeerSoN [28].

access control . In COSNs, the provider can implement simple means of
access control by realizing policies, i.e., users can define groups of users that are
able to access a piece of information. HOSN needs to provide similar means of
access control. However, as there is no central entity enforcing access policies,
access control is a challenge. As pointed out by Paul et al. [206], access control
can be realized in DOSNs by access policies, encryption schemes, or a combi-
nation of both. To replace the service provider as an access control-enforcing
entity, a quorum of “special” users can be enabled to manage access control
lists and ensure compliance. These users can be elected by others considering
(among other factors) their trustworthiness. The social graph can be leveraged
as a base of trust. However, this approach puts a significant load onto these
special users resulting in a higher failure probability. A higher failure proba-
bility of this access control-enabling users may impede the scalability of HOSN.
Another approach is basing access control on data encryption. By sharing keys
only with an authorized group of users, users can control the access to their
information.
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Figure 2.2: Illustration of the conceptual layout of HOSN.

connectivity. In COSNs, the service itself provides means of connectivity
between users using the central entity. When the central entity is to be avoided
for privacy reasons, the DOSN-related functionality must still fulfill the well-
known two aspects of connectivity: (1) reachability, i.e., users need to be able to
reach each other by finding a path and (2) discovery and addressing, i.e., users
need to be able to send and receive messages of interest.

In HOSN, connectivity in the DOSN-like part is more challenging. Two possi-
bilities are addressing the challenge of connectivity differently:

• Indirect connections, involving the COSN-like part. Using indirect connections,
users protect their privacy by applying necessary obfuscation schemes (e.g.,
encryption) such that only authorized users are able to read the actual infor-
mation. The message dissemination itself is established using the COSN-like
part; the provider does not learn private information through the obfuscation.
Partial unlinkability against the provider of the COSN-like part is only proba-
bilistically achieved as the provider may be able to derive the receiving end
of the communication. A variant of this approach is used in Twitterize [51]
(see Section 2.3).

• Direct connections, bypassing the COSN-like part. Using direct connections,
users can combine encryption and anonymous communication techniques to
protect their privacy—communication is established by using the DOSN-like
part only, the provider of the COSN-like part is not aware of private communi-
cation. However, this bypassing causes the dissemination of communication
to be challenging w.r.t. user discovery and key exchange.

2.4.5 HOSN conceptual layout

To fulfill the aforemetioned requirements, we design the conceptual layout of
HOSN to contain four components: a COSN-like part, a DOSN-like part, an analyt-
ics component, and a user interface. Next, we describe these components.
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cosn-like part. This part consists of an underlay COSN and an interaction
interface that connects the underlay COSN with HOSN. To offer the COSN’s func-
tionality through HOSN, HOSN needs adequate means of interaction with the
underlay COSN. This interface can be a API or a crawler of the underlay COSN

web pages. Upon choosing the underlay COSN, it is essential to consider the
effectiveness of such an interface, which will allow users to smoothly use the
functionality of the underlay COSN.

dosn-like part. In the DOSN-like part, we need to address the three afore-
mentioned challenges, namely storage, access control, and connectivity. For
storage, we adopted a P2P network to avoid the control of any central author-
ity over user data. By that, all the HOSN’s users equally share responsibilities
and privileges for data storage. Yet, it is important to keep in mind the limited
resources of the users’ devices when it comes to resource allocation.

To realize an access control mechanism, we use end-to-end encryption. The
sender of a post encrypts the post and only the authorized receivers can de-
crypt it. By that, no third parties have access to the content of the private posts.
Users encrypt and decrypt the posts locally on their devices. To ensure efficient
encryption, we employ a combination of symmetric and asymmetric (public-
private keys) encryption schemes (see Section 2.5.4). Upon the usage of HOSN,
each user needs to generate a pair of public and private encryption keys. For
key exchange, we can leverage the COSN-like part as a communication anchor
or use a key server. In both cases, the social graph in the COSN-like part is
considered the base of trust.

Encrypted posts are submitted to the P2P network by the sender, where they
are stored and retrieved later by the receivers. With this posting and retrieving
mechanism, users are interconnected through the P2P network with direct con-
nections that bypass the COSN-like part. The social graph in the COSN-like part
remains the base of these connections.

analytics component. As mentioned before, the provider of COSN-like
part needs information on users’ activity to realize targeted advertisements and
run their business model. This information should be collected in a privacy-
preserving manner. One essential requirement here is that the information
should emerge by aggregating data of multiple users in a way that does not
reveal information about individuals. This component is responsible for collect-
ing this information, which can be of different forms. It can be statistical in-
formation, e.g., average, minimum, maximum, sum, and count. It can contain
the results of data mining algorithms applied on users’ data. Machine learning
models also can be trained on users’ data to be used for different purposes, e.g.,
to build a recommender system.

user interface . The user interface merges the services from both the
COSN-like and DOSN-like parts, such that users are enabled to smoothly switch
between the different services. The users view a combination of posts fetched
from both the COSN-like and DOSN-like parts. The posts on the COSN-like part
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are retrieved directly through the interaction interface. For the DOSN-like part,
the posts are fetched and decrypted by the receivers from the P2P network.

2.5 proof of concept

We realized a proof of the HOSN concept, we call it Hushtweet. This PoC builds
on top of Twitter as an underlay COSN and consists of four main components:
Twitter services, P2P data storage, statistics dashboard, and user interface (see
Figure 2.3). In the following, we introduce these components and the design
decisions underlying the used technologies.

2.5.1 Twitter services

• API. To allow users to interact with the underlay COSN through HOSN, crawl-
ing or APIs can be used. Crawling the web pages of the underlay COSN is
hindered by the rapid changes to the pages structure and the fake requests
detection mechanisms, which prevent the crawlers from adding data. Ad-
ditionally, some COSNs, e.g., Facebook, completely prohibit the use of auto-
mated crawling methods. On the other hand, most of COSNs provide different
kinds of APIs, however, these interfaces vary from COSN to another w.r.t. the
available functions and restrictions, e.g., on the number of requests per time
interval. Since the APIs are more sustainable and comply with the terms of
use of COSNs, we decided to use them as an interaction interface.

• Twitter. To select the underlay COSN, we mainly considered two factors: (1)
the significance of the COSN and (2) the available functionality in its APIs.
Facebook and Twitter are obvious candidates as they are currently among
the most dominant COSNs [73, 266]. However, Facebook restricted its API re-
cently after several data breaches (e.g., Cambridge Analytica [96]), which
renders it very poor and limited. For example, it is not possible to give a like
for a post through this API. Unlike Facebook, Twitter provides a variety of
rich APIs [268], e.g., standard, premium, and enterprise APIs; the latter two are
paid and for high-frequency or mass data access. The APIs are based on HTTP
and JSON, and there are several libraries to simplify their usage, e.g., Twit1

and TwitterKit2 for Android. Considering the previous discussion, we de-
cided to use Twitter, via its standard API, as an underlay COSN for Hushtweet.
Twitter offers through its standard API the widely common functionality of
OSNs, such as managing profiles, sharing content (tweeting), retweeting, and
liking tweets. The relationship among users is “follow”; when user A follows
user B, A is a follower of B. When both users A and B follow each other, A
and B are friends.

1 https://github.com/ttezel/twit
2 https://github.com/twitter/twitter-kit-android
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Figure 2.3: Illustration of the software architecture of Hushtweet. The green bird icons refer
to Hushtweet users, while the blue bird refers to Twitter. All Hushtweet users are connected
through the API with Twitter. For simplicity, only one connection is shown in the figure.

2.5.2 P2P data storage

Hushtweet should allow the users to exchange private data avoiding any cen-
tralized control. As mentioned before, this is achieved through the DOSN-like
part. Next, we present the technologies we used to realize this part.

• IPFS & GUN. As discussed in the previous section, we use a P2P network
as the basis for the DOSN-like part. There are several technologies that can
be used by Hushtweet users to establish a P2P network, such as WebRTC,
Yjs, and Hive2Hive. For our application scenario, these technologies exhibit
various limitations. For instance, WebRTC and Yjs require servers, and the
Hive2Hive library is outdated. In addition, the fact that more than 80% of
users access social networks via their smartphones [117, 246] adds more chal-
lenges; in particular, the limited battery power of smartphones and their fre-
quent mobility impede constructing a reliable P2P network based solely on
Hushtweet users.

As an alternative, using a P2P network with existing storage and computation
capabilities is proposed. For this purpose, three technologies are discussed,
namely blockchain, IPFS, and GUN.

A blockchain is an open distributed ledger. Using blockchains requires the
users to spend tokens (“coins”). Obtaining tokens is either costly or compu-
tationally expensive. Blockchains with free tokens, e.g., Rinkeby at Ethereum,
are only operated on an experimental basis.
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InterPlanetary File System (IPFS)3 is an immutable distributed file sharing
system [17]. The goal of IPFS is to connect all computing devices to the same
file system. The basis for this is a P2P network where the data is distrib-
uted and stored. Unlike other structured P2P networks, IPFS is meant to
replace HTTP, which makes it suitable for sharing web content. A cryp-
tographic hash function generates a hash address (content identifier) for
each file, which can be used to find the file on the P2P network using a
distributed hash table. The maximum size of a file (IPFS object) is 256 KiB;
bigger files are split up into multiple objects. While connecting to IPFS re-
quires a rather heavy-weight JavaScript client, services like Infura4 provide
smartphone/app-compatible access to IPFS. Infura is a cloud hosting service
that can be used for IPFS free of charge. With such a service not every user
has to contribute storage and bandwidth.

GUN5 is a decentralized database written in JavaScript. It is further devel-
oped by the community as an open-source project. Only a browser is re-
quired to hold the P2P database shares. The data is stored in a graph struc-
ture in the local storage of the browser. Peers synchronize the data among
each other over the Internet. For connecting peers, at least one relay server is
required.

To realize the storage means of the DOSN-like part, we chose a combination
of IPFS and GUN. The private user data, in particular, the private tweets and
likes, are stored as files in IPFS. To facilitate access to these files, their hash
addresses (identifiers) are stored in the GUN database.

• Access control. An access control mechanism was implemented based on
the OpenPGP standard6, which is a hybrid encryption scheme, i.e., it is a
combination of public-key and symmetric-key cryptosystems. This hybrid
encryption scheme is particularly efficient in group communication, where
an encrypted tweet is sent simultaneously to multiple receivers through IPFS

(see Section 2.5.4). An OpenPGP server is used to store and exchange the
public keys of the users. Alternatively, users can exchange their public keys
through Twitter directly.

2.5.3 Statistics dashboard

In addition to the app, we developed a dashboard connected to the GUN
database, where trending topics (hashtags) are listed with the number of tweets
for each. This dashboard is the first step towards an analytics component, which
needs further development. In Chapters 4 and 5 of this thesis, we elaborate on
applying analytics algorithms, namely association rule mining and neural net-
works in a distributed privacy-enhanced manner, which can be leveraged to
enrich this component in Hushtweet.

3 https://ipfs.io/
4 https://infura.io/
5 https://gun.eco, https://github.com/amark/gun
6 https://www.openpgp.org/about/standard

24



2.5 proof of concept

Figure 2.4: Hushtweet timeline and tweet actions control.

2.5.4 User interface

We implemented Hushtweet as an Android app using the Ionic framework. The
interfaces of this app enable users to interact simultaneously with the services
of both Twitter and the P2P network. Figure 2.4 shows some of these interfaces,
namely the timeline and tweeting interfaces. In the following, we describe the
workflow of two main operations in the app: tweeting and retrieving tweets.

workflow. Tweeting to Twitter and retrieving the tweets are straightfor-
ward processes using the Twitter API. The process of tweeting to the P2P net-
work is illustrated in Figure 2.5 and described as follows.

1 The user chooses whether to tweet to Twitter or privately to the P2P network.

2 The user writes their tweet and submits.

3 The app creates a JSON file, which contains the tweet and additional meta-
data (e.g., user ID and timestamp).Workflow
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Figure 2.5: Tweeting workflow diagram.
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Figure 2.6: Encryption scheme in Hushtweet.

4 The JSON file is symmetrically encrypted; multiple copies of the symmetric
key are generated and encrypted with the public keys of the followers, as
shown in Figure 2.6.

5 The app posts the encrypted file along with the encrypted copies of the sym-
metric key to IPFS via Infura.

6 IPFS returns a hash address which is stored on GUN with the user ID hashed
by bcrypt (a slow-hashing algorithm) with salt and timestamp. The salt is
encrypted by the followers public keys and stored in GUN. In addition, the
hashtags found in the tweets are stored separately in GUN with timestamps.
These hashtags are used later to provide statistical information to Twitter
about the trending topics in the P2P network.

On the home timeline, the user can see the tweets of the users they follow
chronologically ordered. The tweets are a combination of public ones fetched
from Twitter and private ones fetched from the P2P network. In the following,
we describe the steps with which the home timeline is produced (see Figure 2.7).

1 Hushtweet obtains public tweets from Twitter via the streaming API.

2 For the P2P network, Hushtweet first collects the list of IDs of followed users
via the Twitter API.

3 For each user ID, the hash addresses of new private tweets are fetched from
GUN.

4 For each hash address, the corresponding file is loaded from IPFS via Infura.

Figure 2.7: Retrieving tweets workflow diagram.
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5 For each retrieved file, the app decrypts the symmetric key with the user’s
private key, then, decrypts the JOSN data with the symmetric key.

6 Finally, the tweet is extracted and displayed in the timeline accordingly.

2.6 discussion

In this section, we discuss our hybrid solution w.r.t. the privacy and user expe-
rience requirements.

2.6.1 Privacy

As mentioned in Section 2.2, we consider the curious provider as an adversary;
in the case of Hushtweet, it is the Twitter provider. Next, we discuss a number
of privacy properties in the light of our threat model.

confidentiality. To preserve authorized access to user data, Hushtweet
leverages end-to-end encryption. More precisely, a hybrid encryption scheme
(symmetric and asymmetric) is used to secure the private data stored on the
distributed network, namely IPFS. By that, we ensure that within the DOSN-like
part (1) only authorized users can read private tweets, (2) only authorized users
can link private tweets to the author, and (3) the provider cannot read private
tweets or anonymous likes.

anonymity. In the DOSN-like part of Hushtweet, users communicate with
their followers through private tweets. A private tweet posted by a user is
fetched and decrypted by their followers—one or more users—and thus group
communication scenario is applied. The Twitter provider is aware of the social
graph, i.e., the “follow” relationships linking senders and receivers of a tweet.
Consequently, if the sender anonymity is compromised by the provider, the re-
ceiver anonymity is intuitively violated. Therefore, we focus here on discussing
the sender anonymity.

Using the Twitter API requires registering the Hushtweet app and identify-
ing it by a unique token. Thus, the users of Hushtweet are identifiable by the
provider. As a result, the maximum anonymity set that can be achieved is the
total number of Hushtweet users. Furthermore, Hushtweet users send the to-
ken every time they interact with the API. This allows the provider to identify at
least a subset of the users who are online at a given time. However, the activity
on the DOSN-like part is completely separated from the Twitter API. Assuming
that the Twitter provider has no global view of the Internet (i.e., they cannot
monitor the network traffic generated by users), submitting a private tweet is
unobservable by the passive provider.

Nevertheless, the provider might actively try to detect the senders of private
tweets by monitoring the publicly accessible technologies IPFS and GUN. Ac-
cording to Henningsen et al [110], IPFS contains 309, 404 nodes. Monitoring the
behavior of these nodes to infer information about the sender in Hushtweet is
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very challenging for the provider. Surveying IPFS to retrieve private tweets and
detect their senders is also infeasible since Hushtweet submits encrypted files
with no link to the sender. Moreover, the provider could try to query the GUN
database to infer the sender of a private tweet. However, the records on GUN
contain the sender ID hashed with salt, which is accessible only by the follow-
ers of the sender. The GUN records also contain the timestamps of the private
tweets. Combining this information with the active online users of Hushtweet
can lead to a reduction in the size of the anonymity set. One mitigation for this
issue can be the introduction of a delay in the submission of private tweets.

awareness . The interfaces of Hushtweet were designed to enable the users
to easily distinguish between the functionality of Twitter and the private P2P

network. Thus, users can be aware of the privacy implications of their actions.
We elaborate more in detail on software features to emphasize this property in
Chapter 3.

2.6.2 User experience

lock-in and network effects . Popular OSNs benefit from the so-called
lock-in effect. A large number of users have already joined these networks and
established their social connections. That is, they are dependent on the net-
works to maintain their social experience. This leads to better user acquisition
and retention, and that in turn increases the network effect. This effect refers to
the fact that the value of the network (i.e., the positive benefits that users re-
ceive) grows with more users joining. In contrast, the lack of success of DOSNs

can be attributed to the low user base and, thus, a low incentive for new users
to join—the lack of a network effect. Our HOSN ensures that the network ef-
fect of the COSN is preserved, i.e., Hustweet delivers the functionality and user
experience—including the huge user base and the positive network effect—of
Twitter.

penguin effect. Users often refrain from using a new technology as they
cannot be sure about its safety and whether it works as expected; instead, users
wait for others to join first. A big advantage of our approach in this regard is
that there is only one “discrete” step necessary for users to use Hushtweet,
which is the move to a new client app. This is considered a relatively small
effect since all functionality of their favorite COSN (Twitter) remains the same
at first and no additional setup is required. With that, users can gradually get
used to the additional functionality of Hushtweet; they can start tweeting only
very sensitive content to the private network until they feel comfortable.

usability. The user interfaces of Hushtweet contain the main functional-
ity of Twitter, such as viewing the timeline, tweeting, retweeting, and liking
tweets as shown in Figure 2.4. The additional privacy control elements are
added considering simplicity and clarity for users. Users can choose on a tweet
level whether to make it private. They also can anonymously like tweets. We

28



2.7 conclusion

endeavored to minimize the technical knowledge required form users to use
Hushtweet. Even though Hushtweet employs new components such as IPFS

and GUN, these components are transparent for users.

2.6.3 Limitations

Although the Hushtweet app demonstrates the viability of the HOSN concept,
some limitations still remain: (1) Twitter enforces a 300 tweets/hour limit via
the standard API, usually enforced in 15 min intervals. This prevents excessive
tweeting through Hushtweet. In contrast, the regular Twitter app does not have
this restriction. (2) Using the Infura cloud service to connect with IPFS takes a
considerable overhead off the users’ devices. However, Infura is a centralized
service and can be a single point of failure. (3) GUN requires a relay server,
which is another potential single point of failure regarding the DOSN-like part
availability. While the same applies to Twitter itself, Twitter has proven its ro-
bustness against failures and attacks. (4) Data exchange via GUN requires the
users to be online. The high churn of the users’ devices (smartphones) impedes
a permanent connection.

2.7 conclusion

COSNs dominate the social network market with a large user base despite their
shortcomings w.r.t. user privacy protection. More privacy-friendly OSNs–mainly
DOSNs—fail to attract a sufficient number of users either due to lack of usability
or the lock-in and penguin effects.

In this chapter, we proposed the concept of Hybrid Online Social Network
(HOSN), drawing from a combination of the properties of COSNs and DOSNs.
HOSN enables users to control their data by providing them the ability to store
their sensitive content on a P2P network, and at the same time, enjoy the regular
experience of their favorite COSN. In addition, HOSN contains an analytics com-
ponent, which paves the way for applying analytics to user data in a privacy-
friendly manner. We demonstrated the concept’s viability via Hushtweet, an
Android app that builds on top of Twitter and a distributed file sharing system
(IPFS) and a distributed database (GUN). A primitive realization of the analyt-
ics component was also provided. Our novel concept showed that it is possible
to overcome the lock-in effect of COSNs while enhancing user privacy control
through confidentiality and anonymity. This concept also made it more feasible
for users to conduct effective analytics (i.e., based on a sufficiently large user
population).

Considering the requirements met by HOSN, we argue that the content of this
chapter can provide a potential answer to RQ.1: What OSN approach is better suited
to improve privacy while maintaining a large number of users? However, attracting
users relates to many human factors. Two important factors are addressing their
privacy concerns and gaining their trust. The next chapter further investigates
(among others) these two aspects of HOSN.
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3
I M P R O V I N G T H E T R U S T W O RT H I N E S S O F H Y B R I D
O N L I N E S O C I A L N E T W O R K S

The previous chapter introduced the Hybrid Online Social Network (HOSN)
concept and Hushtweet as a prototype. This concept came to bridge the gap
between centralized and decentralized social networks while focusing on em-
powering users with means of privacy control. Although the technologies used
in implementing Hushtweet fulfill several privacy requirements, gaining user
trust is yet another challenge. In this chapter, we address this challenge by
conceptualizing software features that are designed to mitigate specific privacy
concerns, and consequently, improve the trustworthiness of our application.

3.1 introduction

Despite the extensive efforts and advanced technologies used to build privacy-
friendly OSNs (e.g., Diaspora [224], Twitterize [51]), they usually fall short of
clearly conveying their privacy practices and thus gaining the users’ trust. This
is due to various reasons, such as introducing novel, and sometimes complex
concepts and technologies [273]; users usually hesitate to use a novel technol-
ogy, as they are not sure that it is safe and works as expected (a.k.a. penguin
effect) [42]. Furthermore, since some of these network applications are still un-
der development, their user interfaces are not mature yet, hence they provide a
poor user experience. To overcome the above issues and gain user trust, it is im-
portant to design user interfaces that provide user-friendly functionalities and
insightful explanations of the technologies used to address privacy concerns.

Malhotra et al. [171] found that reducing a set of predefined privacy con-
cerns had a positive effect on users’ trust in online companies. This finding can
contribute to a potential solution to the lack of trust in privacy-friendly OSNs.
Although these networks enhance user privacy through various features, they
may not cover all the relevant privacy concerns mentioned by Malhotra et al.,
which are well established in the research community (see [67, 75, 193]). Thus,
conceptualizing software features that are carefully designed to address the
relevant privacy concerns could lead to improved trust in OSNs. However, the
study of Malhotra et al. was conducted in 2004 [171], even before the existence
of modern OSNs, e.g., Facebook and Twitter. The huge number of new technolo-
gies introduced in the last decade has shaped society and different user groups
more than ever before [61]. Hence, it is likely that various user groups also
differ in their cognitions regarding privacy in OSNs. Investigating this aspect
is essential for building user-centered OSNs, i.e., tailored to the needs of differ-
ent user groups. For the aforementioned reasons, it is important to revisit the
conclusions of [171] for the new context.
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3.1.1 Summary of contributions

In this chapter, we conceptualized trust-related features to address predefined
users’ privacy concerns [171] by applying the software engineering method
Eliciting Trust-Related Software Features (TrustSoFt) [25]. These features mainly
focus on the graphical user interface. Then, we conducted an extensive user
study (with more than 2300 participants) through which:

1 We analyzed, in the context of OSNs, the relationships between the privacy
concerns, trust beliefs, risk beliefs, and the willingness to use. Furthermore, we
investigated how these relationships differ for various user groups w.r.t. de-
mographic and privacy-related variables (see Section 3.2.1).

2 We evaluated the impact of the elicited software features on the privacy con-
cerns and the trustworthiness of a use case privacy-friendly OSN application,
namely Hushtweet (see Chapter 2).

The content of this chapter is based on the two following publications.

publications

• Borchert, A., Wainakh, A., Krämer, N., Mühlhäuser, M., & Heisel, M. (2021,
April). Mitigating Privacy Concerns by Developing Trust-related Software
Features for a Hybrid Social Media Application. In the 16th International Con-
ference on Evaluation of Novel Approaches to Software Engineering (ENASE) (pp.
269-280).

• Borchert, A., Wainakh, A., Krämer, N., Mühlhäuser, M., & Heisel, M. (2022).
Mitigating Privacy Concerns by Developing Trust-related Software Features
for a Hybrid Social Media Application. In Communications in Computer and
Information Science (CCIS). Springer.

Contribution statement
These papers are the result of a collaborative work, where Angela Borchert
and I were the joint first authors and equally contributed the main concepts
of the work. I designed the use case application, conceptualized and incor-
porated the trust-related software features, and developed the user study
procedures. Angela Borchert prepared the user study materials, conducted
the data collection, analysis, and interpretation. The Master student Girish
Sivadanam developed a mockup under my supervision. Nicole Krämer
and Maritta Heisel contributed with helpful comments and revised the
manuscript. Max Mühlhäuser advised me.

3.1.2 Outline

We proceed with the chapter as follows. We start with providing a background
on privacy concerns and the TrustSoFt method in Section 3.2. In Section 3.3, we
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introduce our hypotheses regarding the relationships between the study’s con-
structs. We apply TrustSoFt and report our procedure in Section 3.4. Then, we
present the user study for examining our hypotheses and evaluating the fea-
tures in Section 3.5. The results are reported in Section 3.6, followed by an
analysis and discussion in Section 3.7. Finally, we conclude in Section 3.8.

3.2 background

In this section, we introduce (1) the six privacy concerns defined in [171, 240]
and well adopted in the research community (see [67, 75, 193]) and (2) the
TrustSoFt method to elicit trust-related software features [25].

3.2.1 Privacy concerns

In the last few years, people have been increasingly concerned about their pri-
vacy [139]. Malhotra et al. [171] have identified the most prominent privacy
concerns as follows.

• Lacking awareness: This refers to the degree to which an individual is aware
of the privacy practices taken by the organization.

• Collection: Users are concerned about the amount of their personal data pos-
sessed by the organization. They weigh the cost of disclosing personal data
against the benefit of the received services.

• Insufficient control: This encompasses whether individuals are able to decide
on certain procedures concerning their personal data, e.g., approving, modi-
fying, or opting out.

• Errors: This concern stems from the apprehension that the organization might
make an insufficient effort to minimize the errors in personal data.

• Improper access: This concern focuses on the availability of personal data to
people who are not authorized to view or process it.

• Unauthorized secondary use: Here, users are concerned that personal data is
collected for one purpose but is used for another.

Malhotra et al. [171] examined the relation of privacy concerns with trusting
beliefs, risk beliefs, and behavioral intention to disclose personal information. Trust-
ing beliefs indicate the degree to which people believe that an organization is
reliable to protect their personal information [94]. Risk beliefs are defined as
the expectation of a potential loss of personal information when released to
an organization [63]. The context of the study was e-commerce. They showed
that the greater the privacy concerns, the less people trust online companies,
and the greater the perceived risk of data disclosure is. Furthermore, trusting
beliefs have a positive impact on the behavioral intention to disclose informa-
tion, while risk beliefs affect it negatively. Trusting beliefs and risk beliefs are also
negatively related.
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Figure 3.1: Overview of the
TrustSoFt workflow, which con-
tains six steps [24]†.

Additionally, Malhotra et al. [171] analyzed the effects of demographic and
issue-related variables on the examined constructs. The demographic variables
included gender, age, and education. The other variables were Internet use in
hours per day, the amount of media exposure concerning reports of privacy viola-
tions, frequency of experienced privacy invasion, and occurrence of ID misrepre-
sentation in percentage—meaning how often people provide false identification
information when asked by a marketer. They found negative correlations be-
tween age and behavioral intention, education and trusting beliefs, Internet use and
trusting beliefs, ID misrepresentation and behavioral intention, and media exposure
and trusting beliefs.

3.2.2 Trust-related software features

TrustSoFt is a step-wise iterative method to elicit trust-related software features
for user-centered OSN applications [25]. TrustSoFt can help to improve the trust
of users in (1) the application, (2) the service provider, and (3) other social net-
work users [24]. According to Borchert et al. [24], trust is established when users
evaluate whether these parties possess so-called trustworthiness facets. Trustwor-
thiness facets describe traits by which the trustworthiness of these parties is
assessed. These are, for example, ability, integrity, privacy (in the sense of users’
control over their data), reputation, or performance [24, 173, 183]. Applications
developed with TrustSoFt shall support users in their trustworthiness assessment.
It is assumed that the better a trustworthiness assessment can be carried out,
the more likely it is to reduce risks associated with the application use.

TrustSoFt has six major steps as depicted in Figure 3.1: (1) The users’ con-
cerns are identified. (2) For each concern, software goals need to be determined.
(3) Trustworthiness facets must be specified by considering what quality in-
volved parties should possess so that a concern is reduced. (4) Trustworthiness
facets are then related to a software goal. (5) Afterwards, to achieve the soft-
ware goals and to address the related facets, the software requirements are
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Figure 3.2: Overview of Hy-
potheses H1-H5

†.
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defined. (6) Lastly, software features describe in what way a requirement can
be implemented. Usually, features are specific front- or backend elements.

3.3 hypotheses

Understanding the relationships between privacy concerns, trusting beliefs, and
risk beliefs is crucial to inform the development of privacy-friendly OSN appli-
cations. In this work, we revisit these relationships in the light of the work
of Malhotra et al. [171]. As we propose software features to address privacy
concerns, we focus on analyzing how mitigating the concerns impacts trusting
and risk beliefs. Furthermore, we investigate how these constructs relate to the
willingness to use, which is also an essential ingredient to develop acceptable
applications. This results in the model shown in Figure 3.2 and the following
hypotheses.

• H1: Mitigating privacy concerns (MP) has a positive effect on trusting be-
liefs (T).

• H2: Mitigating privacy concerns (MP) has a negative effect on risk beliefs (R).

• H3: Trusting beliefs (T) have a negative effect on risk beliefs (R).

• H4: Trusting beliefs (T) have a positive effect on the willingness to use (W).

• H5: Risk beliefs (R) have a negative effect on the willingness to use (W).

3.4 applying trustsoft

We applied the TrustSoFt method to elicit software features that mitigate privacy
concerns in the HOSN application, Hushtweet. Our procedure is explained be-
low and illustrated through the concern errors, as an example.

identify user concerns . Considering former research [171, 240], we focus
on privacy concerns (see Section 3.2.1). We elicited features for each concern
separately. As a first step, we revisited the definition of each concern (according
to [171, 240]) and made ourselves aware of their identifiable characteristics and
descriptive keywords. For the errors concern, the keywords are errors in personal
data, deliberate and accidental errors, and minimizing problems.
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set software goals . Based on the concern definition, we derived a set of
software goals that mitigate this concern, thus improving the overall satisfaction
of the end-users. For instance, to address the errors concern, we need to ensure
that the data stored by Hushtweet is accurate and error-free. Therefore, we
identified data accuracy as a goal.

specify trustworthiness facets . In order to support users in their trust-
worthiness assessment, we specified a number of trustworthiness facets, which
are then allocated to goals. We distinguished who exactly is involved in the
concern as stakeholders. Then, we consulted the literature to determine what
characteristics are desired by these stakeholders to avoid or reduce the concern.
For the errors concern, we identified four facets for the Hushtweet application:
data integrity, data reliability, data validity, and failure tolerance [183]. We assigned
the facets to the goal of data accuracy.

set trustworthiness requirements . Next, we defined software require-
ments by describing what the system should do to achieve the software goals
and meet the selected facets. Oftentimes, one requirement might address mul-
tiple facets simultaneously. For example, we defined the requirement: Verifying
the correctness of the data, to meet the facets data integrity, data reliability, and data
validity.

derive software features . Lastly, we specified how to realize the require-
ments through a set of software features. For the evaluation in the later user
study, we focused on features for the user interface of Hushtweet rather than
the backend system. We elicited two features to realize the aforementioned re-
quirement: (1) An alert message on tweeting privately says: “Data is correctly
and safely stored”. (2) Two questions in the FAQ section: “How does Hushtweet
ensure the correctness and integrity of my data?” and “Does Hushtweet modify
my data?”.

Applying TrustSoFt for Hushtweet resulted in a long list of software features.
In Appendix A.1, we list an extract of the identified features, which were im-
plemented in the Hushtweet mockup for the user study.

3.5 user study

To test our hypotheses (see Section 3.3) and study the relationships between the
defined constructs, we conducted an extensive online user study. The structure
of the study is explained below.

3.5.1 Experimental design

mockups . We developed eight mockups of the Hushtweet application using
the online design tool Figma1. First, we created a basic mockup that contains
only the basic functionalities of Hushtweet (see Chapter 2). Then, six mockups

1 https://www.figma.com
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Figure 3.3: Overview of the Hushtweet mockup for the Full-featured group. The red frames
highlight included software features†.

were developed and each one was extended by three software features to ad-
dress one particular privacy concern. We carefully selected the implemented
features to cover all trustworthiness facets identified while applying TrustSoFt.
Finally, we built a full-featured mockup that includes all the elicited features,
which are described in detail in Appendix A.1. An overview of this mockup is
shown in Figure 3.3.

participants . The online user study followed a between-group design with
nine experimental groups of participants, who were recruited through Ama-
zon Mechanical Turk2. The first group was termed Concept, which was intro-
duced only to explanatory materials on the concept and basic functionality of
Hushtweet. Each of the remaining eight groups additionally interacted with
one of the aforementioned mockups. More details on the procedure follow in
Section 3.5.2.

scales . We used six questionnaires listed in Table 3.1; we mainly adopted
the scales found in the work of Malhotra et al. [171], namely General Infor-
mation Privacy Concern (GIPC) [240], Internet Users’ Information Privacy Con-
cerns (IUIPC), trusting and risk beliefs [125]. We also included questions on demo-
graphic (gender, age, and education) and privacy-related variables, namely (1) ID
misrepresentation: how often individuals provide falsified personal identifiable
information online, and (2) privacy invasion: how often the privacy of subjects
has been invaded in the past. Moreover, we developed an eight-questions scale
to measure the willingness to use Hushtweet. For each questionnaire, we used a
7-point Likert scale (1=“strongly disagree” to 7=“strongly agree”).

The questionnaires were adapted in the wording to the Hushtweet context.
As an example, we replaced words like “online companies” and “computer
databases” with “Hushtweet” and “distributed databases”.

2 https://www.mturk.com
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Scale Subscale

General Information Privacy Con-
cern (GIPC) [171, 240]

-

Internet Users’ Information Privacy Con-
cerns (IUIPC) [171]

Collection, insufficient control, lack-
ing awareness, errors, improper access,
unauthorized secondary use

Trusting beliefs [125, 171] -

Risk beliefs [125, 171] -

Willingness to use -

Table 3.1: Overview of the used scales.

The IUIPC scale was used for two purposes: first, to measure the privacy con-
cerns of the Concept group. Second, for the rest of the groups, the scales
were used to measure to what extent the Hushtweet mockup addresses the
privacy concerns. For that, the scales were modified by omitting the expecta-
tional modal verb “should”. All the used questionnaires can be found in Ap-
pendix A.2.

3.5.2 Procedure

The procedure of the study is illustrated in Figure 3.4 and described as follows.

1 Introduction and general concerns: The participants were briefed about the con-
text of the study. Also, they completed the GIPC questionnaire.

2 Hushtweet description: They were introduced to the concept and basic func-
tionalities of Hushtweet.

3 Comprehension test: We checked the participants’ comprehension of the func-
tionality of Hushtweet with six questions. The purpose of this check was to
include only the participants who understood the concept of Hushtweet for
the follow-up analysis. This helped to avoid potentially misleading results
based on a misunderstanding of the concept.

4 Interaction: Each experimental group—except the Concept group—was given
a distinct task to perform using a Hushtweet mockup. The task contained
hints about the features added to address the corresponding privacy concern
in the particular group. Overall, the tasks of the different groups were kept
comparable in terms of complexity and required number of clicks. Each par-
ticipant had a minimum of five minutes to interact with the mockup. To keep
results comparable, the actual interaction time of each participant was con-
sidered in the subsequent analysis; the participants with anomalous timings
were excluded from the final results.

5 Questionnaires: All groups received the remaining scales in the following or-
der: IUIPC, trusting beliefs scale, the scales for risk beliefs and the willingness
to use. Finally, the participants were asked demographic and privacy-related
questions described in Section 3.5.1.
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Figure 3.4: Overview of the study procedure.

3.6 study results

In this section, we report details on our results w.r.t. (1) the population of the
participants, (2) descriptive analysis of the constructs and the relevance of pri-
vacy concerns, (3) our hypotheses, (4) the impact of user variables on the hy-
potheses, and (5) the impact of the developed features on the privacy concerns.

3.6.1 Population

We recruited only experienced Amazon Mechanical Turk users to ensure high-
quality data. Participants were only allowed to take part in one of the exper-
imental groups. Each group contained between 250 and 300 participants. For
further analysis, we considered participants, who absolved the Hushtweet com-
prehension test with more than 50% correct answers. Furthermore, only com-
plete data sets were analyzed. This reduced the various populations by 7% to
19% across different groups. The final population of each experimental group
is shown in Table 3.2 along with demographic information.

Group Filtered
Population

Male% Female% Age (M) Education%
> Bachelor

Concept 245 61.2 38.4 35.4 52.7

Basic 205 68.3 31.2 33.6 84.5

C1: Lacking awareness 222 63.1 36.0 33.5 67.1

C2: Collection 223 63.2 36.3 35.6 66.9

C3: Insufficient control 223 58.3 39.5 37.6 70.8

C4: Error 211 58.7 39.8 32.6 87.7

C5: Improper access 202 58.4 41.6 35.9 72.8

C6: Unauthorized secondary use 216 64.8 35.2 33.8 83.8

Full-featured 233 63.9 35.2 35.6 68.3

Table 3.2: Overview of the experimental groups and their demographics†.
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Construct M SD Subconstruct M SD

GIPC 4.89 0.93 - - -

IUIPC 5.73 0.74

Unauthorized secondary use 6.26 0.93

Lacking awareness 6.16 0.84

Improper access 5.89 1.03

Insufficient control 5.87 0.86

Errors 5.14 1.30

Collection 5.04 1.17

Trusting beliefs 5.14 1.08 - - -

Rrisk beliefs 3.58 0.94 - - -

Table 3.3: Evaluation of the constructs in the Concept group.

The average (across groups) gender distribution of 62.3% males and 32.8% fe-
males resembles a similar distribution to the actual population of Twitter users
in 2021 with 68.5% males and 31.5% females [195]. The age of our participants
varies from 18 to 73 years. More than 44% of them are in the 25-34 range. This is
relatively close to the age distribution of Twitter users, 38% of whom are in this
range [194]. In terms of education level, 33% of Twitter users have a Bachelor’s
degree or higher [197], while this percentage is higher among our participants,
with an average of 72.7%.

3.6.2 Descriptive analysis of the studied constructs

Here, we investigate the relevance of users’ privacy concerns in Hushtweet. For
that, we conducted a descriptive analysis for the results of the Concept group,
as this group did not interact with any mockup and focused only on the prin-
ciples of Hushtweet. The mean (M) and standard deviation (SD) of the studied
constructs are shown in Table 3.3. The general privacy concerns GIPC and pri-
vacy concerns IUIPC are found to be moderately related (r = 0.561, p < 0.001).
The participants rated the importance of the individual concerns in the fol-
lowing order (from highest to lowest): (1) unauthorized secondary use, (2) lacking
awareness, (3) improper access, (4) insufficient control, (5) errors, and (6) collection.

Overall, the participants showed moderated general privacy concerns with
high variance, whereas, they conveyed that Hushtweet should address individ-
ual privacy concerns. The participants trusted Hushtweet and slightly disagree
that it is risky.

3.6.3 Hypotheses H1-H5

We tested Hypotheses H1-H5 using a Structural Equation Model (SEM) (see Fig-
ure 3.2) for the Basic and Full-featured groups, since these groups represent
the two boundary cases, with and without the developed features. Considering
groups where the privacy concerns are only partially addressed might yield
biased results, therefore, we did not include other groups in this analysis. We
omitted the items (questions) that did not contribute to an acceptable internal
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Hypothesis
Basic group Full-featured group

Relationship
Coefficient

Confirmed Relationship
Coefficient

Confirmed

H1: MP +−→ T 0.843∗∗∗ 3 0.862∗∗∗ 3

H2: MP −−→ R 0.042 7 0.092 7

H3: T −−→ R 0.189 7 0.410∗∗ 3

H4: T +−→W 0.756∗∗∗ 3 0.706∗∗∗ 3

H5: R −−→W 0.208∗∗ 7 0.076 7

∗∗∗. Correlation is significant at p 6 0.001, ∗∗. at p 6 0.01, and ∗. at p 6 0.05.

Table 3.4: Results of the relationships between the constructs.

scale consistency of at least α = 0.7. Also, we excluded constructs with factor load-
ings < 0.7. As a result, the privacy concerns collection and errors were excluded
from the models. Furthermore, we checked the model fit of SEMs by calculat-
ing a confirmatory factor analysis [121]. The SEMs are at least acceptable with
a comparative fit index and Tucker-Lewis index > 0.9, a root-mean-square error of
approximation < 0.8 and a normed chi-square (X2/df) < 5.

Our results are summarized in Table 3.4. We found that the mitigation of pri-
vacy concerns positively affects trusting beliefs (H1) in a strong way. Therefore,
Hypothesis H1 is confirmed. The relationship between mitigated privacy con-
cerns and risk beliefs was not statistically significant for any experimental group.
Thus, we cannot confirm Hypothesis H2. Hypothesis H3 is significant only in
the Full-featured group. Therefore, a negative impact from trusting beliefs on risk
beliefs can only be partially supported. Furthermore, the results confirmed H4

where we found that trusting beliefs positively and strongly influence the will-
ingness to use. With regard to H5, Risk beliefs do not significantly influence the
willingness to use in the Full-featured group. However, in the Basic group, the in-
fluence is statistically significant, and it is positive with a weak effect (r = 0.208,
p = 0.001), therefore, Hypothesis H5 can be partly falsified. A discussion of
these results follows in Section 3.7.2.

3.6.4 Moderation analysis for demographic and privacy-related user variables

The different characteristics of users might have a moderation impact on the
relationships between the constructs. Analyzing that impact may result in in-
sights for future Hushtweet development considering specific groups of users.
In this section, we study the impact of (1) demographic variables: gender, age,
and education, and (2) privacy-related variables: ID misrepresentation and privacy
invasion. For that, we conducted an exploratory moderation analysis for the
Full-Featured group, where the participants used a Hushtweet mockup with
all the developed features to address their privacy concerns.

For moderation analysis, we used the PROCESS procedure in the SPSS3 soft-
ware with standardized variables [106]. Dummy coding was used for the cat-

3 https://www.ibm.com/analytics/spss-statistics-software

41



improving the trustworthiness of hybrid online social networks

egorical variables in our analysis [131]. We chose the following reference vari-
ables for the dummy coding method: “Never” for ID misrepresentation, “high-
school” for education. Some categories of ordinal variables could not be consid-
ered representative because of the very small number of associated participants.
Therefore, we excluded “some school, no degree” and “doctoral degree” from
education. To omit extreme outliers, we used boxplots [68]. After the modera-
tion analysis, we conducted simple slope analyses to examine the interaction
effects [4]. Next, we report the results per variable.

As shown in Table 3.5, the age had a moderating effect on the predictions of
(1) mitigated privacy concerns on trusting beliefs, (2) mitigated privacy concerns on
risk beliefs, and (3) trusting beliefs on the willingness to use.

For education, a moderating effect could be observed regarding mitigated pri-
vacy concerns on risk beliefs. The interaction effect was found for people having
a Master’s degree compared to those with a highschool graduation.

ID misrepresentation was found to moderate relationships between constructs
for certain value categories. When it is over 75%, ID misrepresentation moderates
the relationship between mitigated privacy concerns and trusting beliefs. For mit-
igated privacy concerns and risk beliefs, interaction effects with mitigated privacy
concerns were found for the categories 26%-50% and 51%-75%. For the mod-
eration with trusting beliefs and risk beliefs, the interaction effect with trusting
beliefs was significant for the categories 26%-50% and 51%-75%. The last moder-
ation of ID misrepresentation was found for trusting beliefs and the willingness to
use. The categories 26%-50% and over 75% significantly interacted with trusting
beliefs for the prediction of willingness to use.

Hypothesis
with User
Variables

F r2% Categories t β

H1: MP
age
−→ T 133.541 63.73∗∗∗ - 2.40∗ 0.09

H2: MP
age
−→ R 6.176 7.58∗∗∗ - −2.26∗ −0.13

H4: T
age
−→W 53.415 41.27∗∗∗ - −2.63∗∗ −0.13

H2: MP edu−→ R 3.640 13.06∗∗∗ - 2.02∗ 0.144

H1: MP id−→ T 50.684 67.56∗∗∗ > 75% 3.09∗∗ 1.37

H2: MP id−→ R 4.338 15.05∗∗∗ 26− 50% 2.62∗∗ 0.396

51− 75% 3.08∗∗ 0.778

H3: T id−→ R 6.007 19.80∗∗∗ 26− 50% 2.42∗ 0.386

51− 75% 2.09∗ 0.534

H4: T id−→W 20.968 46.29∗∗∗ 26− 50% 2.32∗ 0.302

> 75% −2.04∗ −0.501

H2: MP inv−→ R 23.812 23.86∗∗∗ - 4.83∗∗∗ 0.315

H3: T inv−→ R 29.362 27.87∗∗∗ - 4.42∗∗∗ 0.27

H5: R inv−→W 4.575 5.68∗∗ - 2.27∗ 0.159

∗∗∗. Correlation is significant at p 6 0.001, ∗∗. at p 6 0.01, and ∗. at p 6 0.05.

Table 3.5: User variables in the Full-featured group. Here, four variables are illustrated: age,
education (edu), ID misrepresentation (id), and privacy invasion (inv).
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Figure 3.5: Mean scores of mitigated privacy concerns based on the IUIPC scale for the Basic group
and the groups where each concern is mitigated.

For privacy invasion, we found moderations for: (1) mitigated privacy concerns
and risk beliefs, (2) trusting beliefs and risk beliefs, and (3) risk beliefs and the
willingness to use.

3.6.5 Impact of developed features

As mentioned above, there are six mockups, each of which contains three fea-
tures implemented to mitigate a particular concern. Through the IUIPC scale,
we measured how much each concern was mitigated in all groups and mock-
ups, i.e., the higher the score, the more the participants receive the concern as
mitigated. To evaluate the implications of the developed features on the pri-
vacy concerns, we compare the score of the mitigated privacy concern in the
corresponding group with the Basic group.

The results are shown in Figure 3.5. All the score differences were tested and
found to be statistically significant. We can notice that participants of the miti-
gated groups rated the corresponding concern as more mitigated. However, the
mean differences are very limited ranging between 0.002 and 0.47. Also, we no-
tice the large standard deviations of the scores 0.8 < SD < 1.5, which indicates
that the participants vary in their perception of the concerns mitigation.

Interestingly, we observe also cross-concern impacts of some features. In par-
ticular, the features added to mitigate the lacking awareness concern led to an
increase in the feeling of control from 5.69 in the Basic group to 5.86 in the
lacking awareness group. In contrast, the errors group that was confronted with
simulated errors and the features to handle them felt less in control with a
mean score of 4.82.

3.7 discussion

In this section, we discuss the results of our user study on (1) the relevance
of the privacy concerns, (2) the relationships between the constructs, (3) the
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impact of user variables on these relations, and (4) the impact of the developed
features on privacy concerns. Lastly, we conclude the section by describing the
limitations of this work.

3.7.1 Relevance of privacy concerns

Our results in Table 3.3 show that unauthorized secondary use is the most impor-
tant concern, followed by lacking awareness and improper access, while errors and
collection were the least relevant. These findings are aligned with the results of
Smith et al. [240], where they found that unauthorized secondary use and improper
access affect privacy concerns more than errors and collection. The prominence of
lacking awareness can be due to the recent recurrent data breaches and intrans-
parency of OSNs, which made users more eager to know the privacy practices
allegedly applied by service providers.

3.7.2 Relationships of the constructs

Our results show that addressing privacy concerns by software features does
have a positive impact on the trusting beliefs in Hushtweet. This indicates that
the developed features successfully reflect the benevolent purpose of Hushtweet.
In a broader sense, we conclude that addressing privacy concerns increases
trust in the context of HOSN.

For risk beliefs, we found that addressing privacy concerns does not necessar-
ily reduce the risk beliefs. Olivero et al. [199] pointed out that risk awareness
increases the demand for control, which is one of the mitigated privacy concerns.
However, addressing this concern seems to have a limited impact on the over-
all risk beliefs in our context. A possible explanation for this might be that users
are still aware of the existing risks accompanying their data processing dur-
ing the usage of social networks, especially since the existence of these risks is
highlighted by the implemented software features.

Interestingly, we observe that trusting beliefs reduce risk beliefs only when
users interact with the application where all privacy concerns are addressed.
We conclude that having a mature application that addresses a multitude of
privacy concerns is essential to establish the relationship between trusting and
risk beliefs.

Furthermore, results reveal that trusting beliefs positively impact the willing-
ness to use. This conforms with the conclusions of Malhotra et al. [171]. Another
salient finding is that sometimes users are a bit more willing to use Hushtweet
the higher their risk beliefs are. One explanation can be that users may prefer
risky products under conditions of curiosity, variety seeking, or boredom [62].
These conditions induce users to tolerate more risk and thus promote the will-
ingness to use. However, a positive relation of risk beliefs to willingness to use is
not always confirmed.
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3.7.3 Impact of user variables

We found that the user demographic variables, age, and education, have an im-
pact on the relationships between the studied constructs, while no effect of
gender was observed. Furthermore, the privacy-related variables, ID misrepresen-
tation, and privacy invasion, also moderate these relationships. Next, we discuss
the impact of each variable.

3.7.3.1 Demographics

age . Although older users might be more cautious concerning their privacy,
due to their longer experience with information technology [90], they were
easier to convince by the developed software features to increase their trust-
ing beliefs and reduce risk beliefs. In addition, the negative relationship between
trusting and risk beliefs was found to be more prominent for older users. Among
younger users, on the other hand, the positive effect of trusting beliefs on will-
ingness to use is more strongly maintained than among older users.

education. Users with high-school graduation believed Hushtweet to be less
risky the more their privacy concerns were addressed. This is slightly the oppo-
site for users with a Master’s degree. One explanation could be that users with
a higher level of education are more aware of privacy risks [216], and the im-
plemented software features sensitized them even more to these risks making
them more cautious.

3.7.3.2 Privacy-related variables

identification misrepresentation. Individuals who differed in the fre-
quency of ID misrepresentation showed different expressions concerning the con-
structs studied. With respect to the mitigated privacy concerns and trusting beliefs,
the former positively predicts the latter for both individuals who never misre-
ported their identity and those who misreported it very often.

Users, who never misrepresented their IDs believed Hushtweet to be less risky
the more their privacy concerns were mitigated. This is in contrast to those
who often intentionally disclosed false IDs. With higher mitigated privacy con-
cerns, their risk beliefs slightly increased. We assume that users who more often
misrepresent their personal information have generally a higher risk aware-
ness. As the selected Hushtweet software features emphasized the associated
risks that are aimed to be reduced, these users might be strengthened in their
cautiousness.

Trusting beliefs similarly affected risk beliefs in a negative way. The trusting beliefs
of users who sometimes falsified their IDs had a smaller impact on their risk
beliefs than that of individuals who never misrepresented their IDs.

Lastly, predicting willingness to use based on trusting beliefs is positively main-
tained for all the categories of users w.r.t. ID misrepresentation. However, willing-
ness to use is found to be exceptionally high for users who often misrepresented
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their IDs. We again relate this to our assumption that this set of users are highly
aware of their privacy, and they use ID misrepresentation as a privacy protection
strategy [129]. Therefore, Hushtweet might be especially appealing to them due
to its privacy-friendly characteristics.

privacy invasion. With increasing experiences of privacy invasions, the fol-
lowing impacts became weaker: (1) mitigated privacy concerns on risk beliefs,
(2) trusting beliefs on risk beliefs, and (3) risk beliefs on the willingness to use. That
is expected as users with more privacy invasion experience are more aware of
the social network risks [300]. Therefore, it is more challenging to reduce their
risk beliefs by mitigating privacy concerns or increasing trusting beliefs.

3.7.4 Impact of software features on privacy concerns

Our results showed that the developed features reduced the privacy concerns.
However, this reduction is minor especially for the concerns improper access and
unauthorized secondary use. This can be due to the fact that these two concerns
are partially based on the benevolence of the provider, which is difficult to be
adequately reflected through the user interfaces of the application. Addition-
ally, we notice that the impact of the features relates to how direct a particular
feature addresses a concern. Some features confront users explicitly with the
targeted concern, e.g., we deliberately included an error in the application to
present how the application mitigates the errors concern. This led to a more
prominent impact of the features. In contrast, other features have a smaller im-
pact, which can be due to mitigating the concern without a clear reference to it,
e.g., unauthorized secondary use.

Remarkably, we found that some features that were meant to address a spe-
cific concern affected also other concerns. In particular, the features of the lack-
ing awareness concern are found simultaneously to mitigate the insufficient con-
trol concern. Thus, we conclude that raising the users’ awareness positively
contributes to an enhanced feeling of control. On the other hand, experiencing
errors during the usage of the application led to a reduced feeling of control.
That can be explained by the fact that the errors deviate the application work-
flow from the expectations of the user, and more importantly, hinder the proper
response to the user actions, which makes the user feels less in control.

3.7.5 Limitations

This study contributes to the existing body of knowledge, however, it has sev-
eral limitations.

1 Our study focuses on one approach to privacy-friendly OSNs, namely HOSN,
and considers a single application in particular, Hushtweet. There are several
other OSN approaches (e.g., DOSNs) and applications (e.g., Diaspora) that also
aim to provide privacy-enhanced services.
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2 Although we recruited 2300 participants for the user study, it is challenging to
guarantee that our sample is representative of the Twitter population in terms
of demographic and privacy-related variables. As mentioned in Section 3.6.1,
the education level among our participants is higher than that of Twitter
users. Our participants are mainly from the U.S. and India, the countries
with the most Twitter users in the first and third places [196]. However, we
had no participants from Japan, the country with the second highest number
of Twitter users.

3 Despite our careful selection of the implemented software features, we can-
not ensure that they influenced participants similarly or contributed to the
various concerns in the same way. Further research could be conducted in this
regard, for example, by including interview questions as part of the study to
assess the impact of each feature on different participants.

3.8 conclusion

The users’ privacy concerns in OSNs have increased especially in the last few
years. This is due to the practices of service providers that compromise the
privacy of users, e.g., massive data collection and data exchange with third
parties (e.g., data brokers). Additionally, the recurring data breaches and the
emergence of privacy regulations (e.g., GDPR) helped raise users’ awareness of
privacy risks. Hushtweet provides an alternative solution that allows users to
enjoy the social exchange with additional means of privacy control. However,
as with any novel (privacy-friendly) technology, it is challenging to gain users’
trust and adequately convey the privacy practices through the user interfaces.

In this chapter, we studied, in the context of OSNs, the relationships between
(mitigated) privacy concerns, trusting beliefs, risk beliefs, and willingness to use. We
showed that mitigating privacy concerns with software features in the user in-
terface of Hushtweet increases its trustworthiness. The software features partic-
ularly affected older people and those with less experience regarding privacy-
related issues. Our study also indicated that the more people trust the applica-
tion, the higher is their willingness to use it. Furthermore, it became apparent that
the choice of concern to be dealt with in the application development should be
wisely made because some concerns are notably more important than others.
For instance, we found that the lacking awareness concern is highly relevant for
OSN’s users, and addressing this concerns provides users additionally with a
sense of control.

The previous chapter proposed an approach to privacy-friendly OSNs and
demonstrated its viability through actual implementation. This chapter fur-
thered in that line of work by studying the users’ perception of the proposed
approach from different aspects. In the light of the requirements met by this
approach, we proceed in the next chapter by elaborating on the second research
question RQ2: How to apply distributed analytics in OSNs privately and efficiently?.
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P R I VA C Y- E N H A N C E D A S S O C I AT I O N R U L E M I N I N G

In the last part of the thesis, we presented the concept of Hybrid Online Social
Network (HOSN), which combines benefits from the central and decentralized
variants (COSN and DOSN). HOSN allows users to maintain their data distrib-
uted in a private network beyond the reach of the central service providers.
Under this setting, applying analytics on the user distributed data can be of
a high value for the users. The analytics can be used to customize the social
network services. Moreover, the results of the analytics can be exchanged with
the service providers or third parties in return for additional services or mone-
tary compensation. However, applying analytics on distributed data while pre-
serving user privacy is challenging. In this chapter, we address this challenge
for one particular analytics technique, namely Association Rule Mining (ARM),
which can be used as a basis for various recommendation services.

4.1 introduction

OSNs use recommender systems to improve many of their services by suggest-
ing interesting and new content to individuals, e.g., suggesting songs in Spotify,
or recommending friends on Facebook. Recommender systems are built using a
combination of data mining and machine learning methods [184]. One of the ef-
ficient methods is Association Rule Mining (ARM) [265]. ARM captures relations
between items; these relations can, for example, lead from items of interest to
the user to potentially interesting new items. ARM is simple yet effective and
additionally, it has two privacy-friendly features: (1) it is independent of any
personal user model because the rules naturally create an abstraction from the
users and focus on inherent traits of the items that cause them to be linked
together. (2) Unlike other recommender systems where extensive user- or item-
profile information is needed (e.g., collaborative and content-based filtering sys-
tems), ARM can function in the absence of a rich history of user preferences or
behavior [200].

Previously, several approaches were proposed to apply ARM in a privacy-
preserving manner [57, 83]. In distributed systems, the state-of-the-art privacy-
preserving ARM approaches are cryptography-based and use the Apriori algo-
rithm for mining the rules [36, 256]. However, the number of required crypto-
graphic operations and the Apriori computations restrict the efficient applica-
bility of these approaches to limited-scale applications, rather than large-scale
applications such as OSNs.
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4.1.1 Summary of contributions

In this chapter, we present an approach to achieve very good real-world per-
formance for privacy-enhanced ARM on distributed data. More precisely, our
work focuses on FI mining, which is the most expensive phase of ARM. Our
approach is based on a combination of graph sampling and distributed FI min-
ing. More precisely, we introduce a privacy-enhanced version of the Metropolis-
Hasting Random Walk (MHRW) [250] sampling method for social graphs. The
proposed method derives representative data samples from a limited and ran-
domly selected set of users. For FI mining, we propose using a distributed
FP-Growth algorithm [147], which boosts the efficiency of the mining process
remarkably. Our proposed combination does not only improve the privacy of
users by curtailing the data required for the mining, but also reduces the com-
munication and computational overhead. We evaluate our approach on three
large-scale datasets, collected from real-world social networks. Results show
that we maintain very high precision and recall rates for quite small samples
in well-connected networks while sweeping low communication efforts. The
content of this chapter is based on the following publications.

publications

• Wainakh, A., Grube, T., Daubert, J., & Mühlhäuser, M. (2019, September).
Efficient privacy-preserving recommendations based on social graphs. In the
13th Conference on Recommender Systems (RecSys) (pp. 78-86). ACM.

• Wainakh, A., Strassheim, A., Grube, T., Daubert, J., & Mühlhäuser, M. (2021,
August). Enabling Privacy-Preserving Rule Mining in Decentralized Social
Networks. In the 16th International Conference on Availability, Reliability and
Security (ARES) (pp. 1-11).

Contribution Statement
I was the main author and led the process of idea generation, implemen-
tation, evaluation, and writing. Tim Grube and Jörg Daubert contributed
with helpful discussions and suggested formulations improved the edito-
rial quality. Aleksej Strassheim contributed to a part of the implementation
through his Bachelor’s thesis. Max Mühlhäuser provided helpful mentoring
and critical reviews.

4.1.2 Outline

The remainder of this chapter is organized as follows. First, we present a back-
ground on graph sampling and ARM under our application scenario in Sec-
tion 4.2. Then, we present related work on privacy-preserving and efficient
ARM in Section 4.3. In Section 4.4, we provide a detailed description of our app-
roach, including our sampling and FI mining processes. Section 4.5 discusses
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our simulation study and the results of our experiments. Finally, Section 4.6
summarizes our contributions and draws conclusions.

4.2 background

In this section, we introduce (1) graph sampling and (2) ARM. Then, we formal-
ize our problem setting.

4.2.1 Graph sampling

Graph sampling is a technique to derive a subset of nodes and/or edges from
a larger graph that represents the original population. This technique aims at
preserving the characteristics of the original population of the sample. The most
relevant properties of the sampling process are (1) the selection method and
(2) the sample size. As the related work covers the effect of the size of the
sample extensively, even for ARM [43, 205], our work takes a closer look at
sampling methods for ARM with special consideration of privacy.

There are multiple classes of graph sampling methods, namely node (vertex)
sampling, edge sampling, and traversal-based sampling [120]. In the node and
edge sampling classes, a set of nodes and edges are selected at random. Speak-
ing of OSNs, the nodes would typically represent users and the edges would rep-
resent friendship relations. Applying these sampling methods requires global
knowledge, i.e., requires the knowledge of the population and their connec-
tions, such that valid users or connections can be randomly chosen [146, 217].

In contrast, traversal-based sampling approaches start with a set of users and
grow the sample iteratively based on the users’ connections. One of the most
common approaches in this category is the class of Random Walks (RWs), which
contains a variety of algorithms that sample a graph by walking from users to
their connections and beyond [217, 249]. In RW, the next user is selected from
the neighbors of the current user with uniform probability. One main limitation
of RW is its bias towards highly-connected users, leading to a large deviation
from the desired uniform distribution [151]. MHRW [178] was proposed to mit-
igate this limitation. It was adapted and used for P2P networks and social net-
works [88, 250]. MHRW introduces a proposal function to change the transition
probabilities. More specifically, the proposal function reduces the probability
of visiting users who have a larger number of neighbors F (highly-connected)
compared with the currently visited user uk. That is achieved as follows. After
selecting the next user (candidate) uk+1 , a uniform random p ∈ [0, 1] is gen-
erated. If the inequality (4.1) holds, we say the proposal is accepted and the
walker proceeds to the candidate, otherwise, another neighbor is selected.

|F(uk)|

|F(uk+1)|
> p : 0 6 p 6 1 (4.1)

Another limitation of RW is that it might get stuck, especially in directed
graphs, when it reaches sink users or local dense communities. Sink users are
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users without outgoing connections, thus, sampling walkers can reach them but
cannot proceed to other users afterward. To address this issue, several propos-
als exist, e.g., multiple independent RW [88] and multi-dimensional RW [217].

4.2.2 Association rule mining

ARM captures the relations between items. In OSNs, items refer to a user’s in-
terests. An interest is expressed by the user creating or consuming content,
e.g., liking or adding a post, or joining a group. We refer to a single piece
of content as an item i from the set I = {i1, i2, . . . , im} of all items. Let the set
U = {u1,u2, . . . ,un} comprises all users u. The interested in relation ru,i models
a user’s u interest in an item i. We denote this relation as

ru,i =

1 if u is interested in i

0 otherwise
(4.2)

For each user u ∈ U, let T be the set of interesting items for u such that
T ⊆ I and ∀i ∈ T , ru,i = 1. Subsequently, the dataset D is the set of all users’
interesting items D = {T1, T2, ..., Tn}.

ARM derives Frequent Itemsets (FIs) from the dataset D. The support sD(X) of
an itemset X ⊆ I is the ratio of users for which the set of interesting items T
in D contain X. An itemset X is considered frequent, if its support exceeds
the support threshold θ, i.e., if sD(X) > θ. The set FID summarizes the frequent
itemsets found in the dataset D. Given two distinct itemsets X, Y with X ⊂ I,
Y ⊂ I, and X∩ Y = ∅, an association rule ari is an implication X→ Y. For each
association rule ari, the confidence cD(ari) indicates how often the rule is
found to be true. Association rules ari that exceed the confidence threshold β,
i.e., cD(ari) > β, are considered reliable in D. The problem space of ARM covers
two main challenges: (1) deriving the itemsets FID under θ and (2) establishing
reliable association rules of FID under β. In this work, we focus on the first
challenge as it causes the main communication and computational costs.

To derive the FIs, there exist several algorithms [113]. Two of the most com-
mon algorithms are Apriori [3] and FP-Growth [102]. Apriori is a breadth-first
search methodology, where the main idea is to iteratively generate the candi-
date itemsets of size k+ 1 from only FIs of size k : k > 1. This is based on the
observation that if any itemset of size k is not frequent, then its super-itemset of
size k+ 1 cannot be frequent. With this technique, Apriori reduces the search
space, i.e., the number of the candidate itemsets. However, it is still consid-
ered a costly algorithm for two reasons. First, in the case of a large number
of frequent 1-itemsets, e.g., 106, Apriori generates more than 1011 2-itemsets
candidates. Second, it requires multiple passes over the whole dataset to count
the occurrences of all candidate itemsets in every stage of the algorithm [102].

In contrast, frequent-pattern growth (FP-Growth) does not generate or test
candidate itemsets and requires only two passes over the dataset. In the first
pass, FP-Growth computes the list of frequent 1-itemsets. In the second pass, it
transforms the dataset into an FP-tree structure, where each node of the tree
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Figure 4.1: Example of FP-tree.
Each node indicates an item
and the frequency of the pre-
fix path (itemset).

Figure 4.2: Example of Condi-
tional FP-tree for item e is in
blue. This sub-tree is extracted
from FP-tree by selecting the
prefix paths of item e.

represents an item and each path in the tree represents an itemset, as shown in
Figure 4.1. Then for each item, we build the conditional FP-tree, which consists
of prefix paths in the FP-tree occurring with the item as the lowest node (suffix),
as shown for item e in Figure 4.2. Only paths (itemsets) meeting the threshold
support are considered. Lastly, from the conditional FP-tree, the frequent item-
sets are derived.

4.2.3 Problem setting

We consider a DOSN, where the data is fully distributed among users, i.e., each
user uk ∈ U has their own data (interesting items) Tk. Our goal is to mine FIs

from the distributed user data while meeting the following requirements.

• Privacy: Observing the users’ privacy demands in DOSNs, mining FIs from
users’ items poses the challenge of protecting the items from other users.
As complete obfuscation (unobservability) would defy the very purpose of
a social network, we rely on the relaxed privacy requirement of unlinkability:
No user should be able to link items to an individual user, i.e., determine the
items of any user. We consider users to follow the honest-but-curious adversary
model, i.e., users attempt to use the received information to learn the items
of others without deviating from the protocol.

• Distribution: One of the key techniques of DOSNs to achieve privacy is to
eliminate the full control of central entities. To align with this distribution,
FI mining—originally designed as a single database algorithm—must be
adapted to accept distributed data as well distributed control of the algo-
rithm.

• Efficiency: We refer here to curtailed communications and computations. Most
DOSNs applications are performed on decentralized servers with occasional
inter-server interaction, while traditional FI mining requires the inclusion of
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all users. The sheer scale of social networks renders FI mining in DOSNs one
of the largest applications; consequently, any method applied in such appli-
cations needs to consider efficiency as a high priority requirement.

4.3 related work

In this section, we first present related work on privacy-preserving ARM and
second, on the efficiency of ARM.

4.3.1 Privacy-preserving ARM

Approaches that apply ARM in a privacy-preserving manner can be classified
into two categories: (1) perturbation and (2) cryptography-based approaches.

In perturbation approaches, the data is anonymized before mining the rules
by modifying [57], blocking [83], or sanitizing the sensitive attributes [71]. These
anonymization techniques can—inherently—only maintain partial properties
of the complete dataset. Moreover, unlike our problem setting, most of the
approaches in this category assume a centralized environment.

In contrast, cryptography-based approaches usually assume distributed data.
Multiple parties apply ARM collaboratively without disclosing their data. A
leading approach [256] was proposed by Kantarcioglu et al. [133], where the
rules are mined in two steps. First, local FIs (per user) are collected and com-
bined via a secure union. Next, a secure sum protocol is used to identify FIs

that also meet the global support. The secure union process requires each user
to encrypt the FIs of every other user using RSA encryption to achieve the com-
mutative property. This yields a computational cost of O( t3n2

support), where t is
the number of bits in the encryption key, and n is the total number of users.
In addition, the users need to send O(n2) messages in total. Thus, the compu-
tational and communication loads on each user increase with the number of
users in a second-order polynomial rate. In large-scale applications, with mil-
lions of users, this introduces a substantial overhead on the users’ devices. Some
improvements for the t3-factor exist, e.g., using secure multi-party algorithms
for itemset intersections [256] and using Elliptic-curve cryptography [36]. Col-
lectively, despite some improvements, the computational and communication
costs of these approaches remarkably increase with the number of users, which
limits their suitability to smaller-scale applications than OSNs.

4.3.2 Efficient ARM

We suggest that the efficiency of privacy-preserving ARM protocols can be
improved by using efficient ARM techniques, therefore, we investigate these
techniques. Kotsiantis et al. [138] classified them into four categories: (1) data
sampling, (2) reducing the passes over the dataset, (3) parallelization, and
(4) adding extra constraints on the structure of rules. In this section, we focus
on the first three categories, as we leverage them in our approach.
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For data sampling, some works focus on determining the proper sample size
to achieve a desired accuracy for ARM, e.g., by using progressive sampling [43].
Other works proposed different sampling methods for the items, e.g., multi-
stage sampling [312], and ontology-based sampling [286]. However, the sample
might not contain all itemsets with the same occurrence rate as in the complete
dataset. This phenomenon is known as sampling error [227]. To alleviate this
issue, the support threshold for the sample can be reduced [258] or the negative
border can be used to obtain missed FIs [258]. More sampling techniques can be
found in [37]. All the aforementioned sampling approaches tackle the problem
of efficient ARM for centralized databases, which does not apply to our setting
of distributed data.

To reduce the passes over the dataset, Han et al. [102] proposed the FP-
Growth algorithm, which mines FIs based on a Frequent Pattern Tree (FP-tree)
structure. FP-Growth improves the efficiency of the mining process by: (1) com-
pressing the dataset into a much smaller data structure, (2) most importantly,
reducing dataset scans to only two, (3) avoiding the costly generation of a large
number of candidate sets, and (4) decomposing the mining process into a set
of smaller tasks.

For parallelization, a follow-up work [147] proposed to parallelize the FP-
Growth algorithm by partitioning the process into a set of independent mining
tasks, which can be executed on distributed machines. This work is based on
the MapReduce infrastructure. Similarly, Shi et al. [234] presented a parallel
version of FP-Growth for the Apache Spark framework. Unlike our work, the
previous proposals do not consider the privacy aspect of the mining process.

4.4 distributed privacy-enhanced frequent itemset mining

In this section, we explain our method, which consists of two steps: (1) user
and itemset sampling, and (2) frequent itemset mining. In the sampling phase,
we reduce both the communication and computational costs by restricting the
number of users and itemsets involved in the mining process. A subset of users
then mine the FIs collaboratively in a privacy-enhanced manner.

4.4.1 User and itemset sampling

In centralized ARM, the users’ items are collected by a central server, where they
are processed to derive the rules. In our privacy-enhanced scenario, the items
remain distributed with their users. Applying distributed privacy-enhanced
ARM (e.g., cryptography-based approaches) by all the users is inapplicable, as
it yields massive communication and computational overhead. Therefore, we
propose restricting privacy-enhanced ARM to a very limited number of users;
we call them prime users U ′ ⊂ U with |U ′| � |U|. However, as each prime user
has only their own items in DOSNs, the mining process might result in poor
rules, i.e., the prime users’ items might be insufficient to produce rules that
represent the population. To address this issue, we sample items from a larger
number of users in a privacy-enhanced manner, and pass these samples to the
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Figure 4.3: Overview of the sampling and mining processes†.

prime users, who then apply privacy-enhanced ARM. With this approach, we
address both, efficiency and privacy. Only a few users contribute items and
communicate while preserving almost all frequent itemsets, hence, improving
the efficiency. The low ratio of sampled users and the participation ambiguity
render it impractical to link items to users.

Considering our requirements, privacy, distribution, and efficiency (see Sec-
tion 4.2.3), we chose Metropolis-Hasting Random Walk (MHRW) [178] as our
sampling method. MHRW is non-deterministic, as the users are selected ran-
domly, thus, less predictable and that contributes to the privacy of the visited
users (see Section 4.5.5). MHRW is traversal-based and distributed by nature,
in addition, no global knowledge is required, in contrast to different random
walk variants (e.g., Maximum-Degree RW [14]). Furthermore, MHRW mitigates
the heavy bias of the traditional RW toward highly-connected users during the
walk itself [151], unlike other proposals, which require central post-processing
(e.g., Re-Weighted RW [223]).

privacy. To maintain privacy, i.e., to conceal the relation of users and their
items, we introduce two main changes to MHRW: First, by the nature of ran-
dom walks, no user can tell which users participated in the MHRW beyond
their predecessor and successor. In our approach, we enable the users visited
by the walker instance to decide with a contributing probability pco whether
to contribute their items or not. Hence, with a sufficiently low pco, neither
a MHRW successor nor the prime user can distinguish if the predecessor con-
tributed items or not. Second, to calculate the proposal function in MHRW, the
degrees of the current user uk and the selected successor (candidate) uk+1 are
needed as shown in Eq. (4.1). To privately share the necessary information, we
redefine the proposal function as follows.

|F(uk)|

p
> |F(uk+1)| : 0 < p 6 1 (4.3)

The user uk calculates |F(uk)|/p, sends it to uk+1, and expects a boolean an-
swer. We refer to MHRW with the two aforementioned changes as Metropolis-
Hasting Anonymous Random Walk (MHARW).

sampling workflow. To collect a sample of a desired size |ST |, we employ
a set of walker instances W, each is launched to collect a sub-sample |sST |,
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Algorithm 1: User and Itemset Sampling†

Data: U: set of all users, Sk: sub-sample No. k, Tk: items of user uk, pin:
initializing probability, pco: contributing probability

1 At each user uk ∈ U: uk randomly generates 0 6 p1,p2,p3 6 1;
2 if p1 < pin then
3 uk starts a walk;
4 end
5 if |Sk| < |sST | then
6 if p2 < pco ∧¬contributed then
7 add Tk to Sk at random position;
8 contributed← True;
9 end
10 while ¬terminating_case do
11 uk randomly selects uk+1 ∈ F(uk);
12 uk sends a proposal |F(uk)|/p3 to uk+1;
13 if response = True then
14 if (uk−1 = uk+1)∧ contributed then
15 remove Tk from Sk;
16 end
17 uk sends Sk to uk+1;
18 break;
19 end
20 end
21 end
22 else
23 uk becomes a prime user U ′ ∪ {uk};
24 end

such that |sST | · |W| ≈ |ST |. The complete sampling process goes as follows
(more details in Algorithm 1).

1 Establishing the walks: We establish multiple MHARW walker instances in
parallel as shown in Figure 4.3. The number of walks |W| can be estimated
by an initializing probability pin, with which each user in the DOSN starts a
walk: |W| ≈ |U| · pin.

2 Contributing to the sample: Each walker instance collects a sub-sample of
items. A user visited by a walk determines locally whether to contribute to
the sub-sample based on pco.

3 Passing the sample to a friend: The sub-sample is passed from a user uk to
their successor uk+1, which is selected randomly from the uk’s friends. A
proposal is made by uk and sent to uk+1. If the friend accepts the proposal,
the successor is determined to be uk+1. In case the successor uk+1 and
predecessor uk−1 are the same user, the user uk does not contribute to the
sub-sample to avoid leaking their items.

4 Termination: As soon as the sub-sample size reaches the predefined target
size |sST | or a terminating case, the walk stops. The last user in the walk
becomes a prime user u ′.
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5 Compensating sample offset: To ensure the target sample size |ST | is reached
even when some MHARW instances get stuck, we introduce Algorithm 2:
The prime users establish a network (e.g., through a relay server) to commu-
nicate and share the sizes of their collected sub-samples. Then, each prime
user can locally deduce whether the target sample size |ST | is reached. If not,
the prime users who are unstuck, i.e., reached |sST | successfully, proceed
the walks to compensate the shortage of the sample entries. Consequently,
these resumed walks end up with new prime users.

The main parameters pin,pco, |ST | along with time-stamps for synchronizing
the establishment of the walker instances can be predefined (hard-coded) in
the application of the DOSN.

Algorithm 2: Compensating Sample Offset†

Data: Sk: sub-sample of prime user u ′k, |sST |: target sub-sample size
1 Prime users share their sub-sample sizes with each other;
2 At each prime user u ′k ∈ U

′:
3 if |Sk| = |sST | then
4 Let v be the number of users who are unstuck;
5 for Si ∈ {S1, ..,Sw} do
6 if |Si| = |sST | then
7 v← v+ 1;
8 end
9 end

10 increment =
(∑

j |sST |− |Sj|
)
/v;

11 |sST |← |sST |+ increment;
12 Resume sampling;
13 end

4.4.2 Frequent itemsets mining

Once the sample is collected, the prime users collaboratively mine the FIs. We
proposed to use the FP-Growth algorithm [102], which skips the expensive can-
didate generation of Apriori, and requires only two passes over the dataset
D [102]. As we consider distributed data, we base our approach on the paral-
lelized version of the FP-Growth algorithm, Distributed FP-Growth (DFP) [147].
The DFP algorithm has been used for big data frameworks, MapReduce and
Spark [147, 234]. In this work, we apply DFP under a privacy-friendly setting as
follows.

1 Counting item support: Prime users collaboratively count the support values
of all items by applying the secure sum protocol [133] (extensions of this
protocol can also be applied, e.g., CRDM [269] and k-secure sum [317]). For
that, the prime users form a ring network and select one user to establish the
protocol. The selected prime user u ′1 creates a list of all their items and counts
their supports (see Figure 4.4). To protect this information from other users,
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Figure 4.4: Sequence diagram of distributed FP-Growth†.

user u ′1 takes two measures: (a) adding random integers to the supports, (b)
appending random items (non-existing in their data) with random support
values. The list is passed from a prime user to another through the ring,
where each user adds their items’ supports to the list. The round ends up
at u ′1 who subtracts the random supports. Then, he omits all the infrequent
items i, i.e., items with support sD(i) < θ. The resulting list is called F-list.

2 Grouping items: The user u ′1 divides the items of F-list into a set of groups; the
number of the groups corresponds with the number of prime users |U ′|. The
list of the groups is called G-list. Then, the groups are randomly assigned
to the prime users in a mapping list. Next, all lists, i.e., F-list, G-list, and
mapping list, are shared with all prime users.

3 Partitioning: Every prime user prunes their itemsets (sub-sample) by deleting
the infrequent items. Further, each itemset is sorted in descending order w.r.t.
the support values of the items. Then, each item i ∈ Tk is substituted with
the corresponding group-id. For example, we have after pruning and sorting
the itemset T = {i1, i4, i6, i3}, as shown in Figure 4.5. Substituting the items
with their group-ids yields T = {g1,g2,g2,g1}. For each group-id, say gid,
if it appears in T , locate its right-most appearance, say L, and output the
itemset {T [1]...T [L]}. This itemset is sent to the corresponding prime user. In
our example, for gid = 1, the right-most appearance L = 4, thus, the output
itemset is {i1, i4, i6, i3}. For gid = 2, L = 3, and the output itemset is {i1, i4, i6}.

4 Local FP-Growth: Each prime user receives the itemsets associated with their
group and applies FP-Growth locally. This starts with creating a local FP-
tree, followed by building the conditional sub-trees, and finally deriving the
FIs. More details can be found in [102].
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Figure 4.5: Partitioning phase of DFP.

5 Aggregation: The resulting FIs are then shared with all the prime users and
aggregated to have the complete list of FIs.

By the end of this process, the total FIs are known by all the prime users. FIs

then can be used to build association rules or for further analysis.

4.5 empirical evaluation

In this section, we first explain the setup of our experiments based on real-world
datasets. Second, we evaluate the correctness of the FI mined from the samples,
and the quality of the sampling method. Third, we discuss the efficiency and
privacy aspects of both the sampling and mining approaches.

4.5.1 Experimental setup

We use three datasets collected from real-world social networks [180]: Flickr
(social photo sharing), Orkut (social networking), and Livejournal (blog with
social networking). In all these networks, users can join interest groups and
form friendship connections with each other; the used datasets contain both in-
formation. The interest groups are used as items for FI mining. Table 4.1 shows
statistical information about the datasets. Prior to our experiments, we filtered
out the isolated users, which exist in very limited numbers in the real social
networks; excluding these users is a common practice in the field [283]. All ex-
periments were repeated ten times and the average of the measures is reported.
Throughout the experiments, we use the following parameter settings.

Datasets Flickr Livejournal Orkut

#Users 1,715,255 5,203,764 3,072,441

#Connections 22,613,980 76,937,805 223,534,301

Avg. node degree 13.18 14.78 72.75

#Interest groups 103,648 7,489,073 8,730,859

Avg. groups per user 4.62 21.25 106.44

Table 4.1: Statistics of the datasets†.

62



4.5 empirical evaluation

Sample size pin pco

20% 0.5× 10−2 0.5

1% 2.5× 10−4 0.5

Table 4.2: Values of initializing and con-
tributing probabilities†.

Dataset θ #FIs

Flickr 0.16% 1003

LiveJournal 0.73% 1001

Orkut 1.47% 1001

Table 4.3: Support thresholds†.

• Initializing probability pin: The parameter pin estimates the number of walks
performed to collect the sample. Small pin leads to a few and long walks.
The longer the walks are, the more likely to get stuck. Therefore, we keep
the length of the walks moderated by adapting the pin for different sample
sizes (see Table 4.2).

• Contributing probability pco: Smaller pco increases user privacy, but also in-
creases the communication overhead by leading to longer walks. Thus, this
parameter should be customized to reach a desired balance between privacy
and efficiency. We fix pco = 0.5 in all the experiments. With this probability,
an adversary can only randomly guess whether a visited user is part of the
sample.

• Termination condition. We limit the maximum length of all the walks to 100 ∗
|sST |/pco. For MHARW, we also limit the number of proposals sent by a user
to 1, 000.

• Support threshold θ (dataset): Itemsets are considered frequent, if their sup-
ports exceed the threshold θ. In FI mining, θ is application-specific; it is
usually adjusted interactively until meaningful FIs are discovered. We em-
pirically choose a set of θ values (see Table 4.3) that produce a considerable
number of FIs (> 1, 000).

• Support threshold θS (sample): To reduce the sampling error (see Section 4.2) ,
we set θS 6 θ as suggested in [258]. For the experiments, we use a range of
values for θS and observe the correctness of FIs. We adjust the range of θS
such that the whole spectrum of the precision and recall rates from 0 to 1 is
observed.

4.5.2 Frequent itemsets correctness

We apply the FP-Growth algorithm on a dataset D and the respective sample S.
The FIs found in both D and S are referred to as FID and FIS, respectively. To
evaluate the correctness of FIS, we consider FID as a reference and calculate the
precision and recall rates. We also compute the area under the precision-recall
curve using the average precision score AP.

We compare MHARW with the traditional RW, the Anonymous Random Walk
(ARW) [274], and uniform sampling (UNI) as baselines. Although the uniform
sampling is not applicable in our distributed application scenario (see Sec-
tion 4.2), we consider it since it was used in several approaches to improve the
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efficiency of ARM, e.g., [205, 258]. We treat all the social graphs of our datasets
as undirected; we elaborate more on this decision in Section 4.5.3.1. We discuss
our results in the light of different (1) sample sizes and (2) datasets.

4.5.2.1 Sample size

We conduct experiments with different sample sizes s ∈ {1%, 20%}. In Fig-
ures 4.6 (a-c), we can see that under the sample size s = 20%, all the examined
traversal-based methods achieve high precision and recall rates (AP > 0.95).
For lower sample size s = 1%, i.e., less participating users, we notice that
the precision and recall rates degrade in all the datasets and for all sampling
methods. That is expected as sampling errors increase with smaller sample
sizes [43]. However, interestingly, MHARW shows high resilience to the changes
in the sample size with 0.02 6 ∆AP 6 0.07, compared with RW and ARW where
0.02 6 ∆AP 6 0.3. Consequently, the superiority of MHARW over RW and ARW

becomes more notable in lower sample sizes as shown in Figures 4.6 (d-f).

4.5.2.2 Datasets

Here, we take a look at the impact of the different dataset topologies and data
distributions on the correctness of FIs. In Flickr, the Figure 4.6 (d) shows the
sample size of 1%, where MHARW reaches AP > 0.87, while UNI has low per-
formance with AP 6 0.80 and a recall of 0.7. This can be explained by the fact
that Flickr contains a high number of users with none or a small number of
interest groups (items) [180]. Including these users in the sample reduces the
quality of the FIs. Considering the correlation between degree distribution and
the group count [180], the traversal-based sampling methods, which are biased
towards highly connected users, are less likely to include these users compar-
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(a) Flickr s = 20%
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(b) LiveJournal s = 20%
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(c) Orkut s = 20%

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

RW
ARW
MHARW
UNI

(d) Flickr s = 1%
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(e) LiveJournal s = 1%
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(f) Orkut s = 1%

Figure 4.6: Precision-recall rates of the sample frequent itemsets†.
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Figure 4.7: Reached sample sizes by random walk†.
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ing with UNI. Among the walks, MHARW performs the best. This indicates that
including a moderated number of highly connected users increases the quality
of the sample in this case.

In LiveJournal, MHARW outperforms RW and ARW in both sample sizes. The
difference becomes more notable in sample size s = 1%, where MHARW has
AP = 0.93 while the other walks have AP 6 0.85.

In Orkut, we notice in Figure 4.6 (c,f) that all the walks perform very well and
close to UNI with AP > 0.94. However, our proposed MHARW is consistently
better with AP > 0.96 than the baselines RW and ARW. We reckon that this high
correctness stems from the higher connectivity (average degree 72.75) in Orkut,
which allows the walker instances to smoothly pass through different parts of
the social graph, thereby collecting representative samples.

4.5.3 Sampling quality

We evaluate our sampling method considering two factors: (1) reaching the
target sample size, and (2) replicating the Node Degree Distribution (NDD) of
the population, which is one of the main graph properties [283].

4.5.3.1 Reaching the target size

RW, and inherently ARW and MHARW, get stuck, if they enter local communities
or reach sink users. With this challenge in mind, we analyze in this section
whether RW is able to reach the target sample size in our datasets.

We target sample size s = 20% with pin = 0.5 × 10−2. In Figure 4.7, we
plot the growth of the sample size (y-axis) w.r.t. the target sub-sample size
(x-axis). Increasing the target sub-sample size allows the walks to proceed, if
possible, to reach the target sample size. In Flickr and LiveJournal (directed
graphs), we can see that the RW converges to a constant sample size and does
not reach the target size. This is due to hitting sink users and getting stuck
within local communities. In contrast, Orkut is an undirected graph, thus, there
are no sink users. Therefore, we notice that the sample size increases linearly
with the target sub-sample size.

In a further analysis, the same behavior was observed for both ARW and
MHARW. These methods converge at a lower sample size comparing with RW

because they require longer walks, as only a subset of the visited users con-
tribute their items, which in turn increases the chance of reaching sink users.
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To reach the target sample size, we discuss two approaches. First, we can
increase the number of walks, which leads to shorter walks, thus, less likely
to reach sink users. However, more walks correspond to more prime users.
That causes a remarkable rise in the communication cost for FI mining. We
elaborate more on the correlation between the communication cost and the
number of prime users in Section 4.5.4.3. The second mitigation is to treat the
social graph as an undirected graph as suggested in [282], assuming that users
can communicate bidirectionally in DOSNs. Therefore, sink users no longer exist,
as every link to sink users can also be used again to return to the previous user.
The results of this mitigation reveal that RW, ARW, and MHARW in Flickr and
LiveJournal show linear behavior similar to Orkut.

4.5.3.2 Node degree distribution

In this section, we analyze the NDD of the user samples, which is one of the
important properties of graphs [283]. Related work [180] revealed a correlation
between the degree distribution and the group count in our examined datasets.
Therefore, NDD does not only represent a graph property but can also be con-
sidered as an indicator of the item distribution among users. We treat all graphs
as undirected graphs.

We represent NDD through the complementary cumulative distribution func-
tion ϕ(x) = P(|F(u)| > x), where |F(u)| is the degree of a user u ∈ U [35].
Figure 4.8 shows that the behaviors of RW and ARW are almost congruent on all
datasets. As assumed before, both reveal a bias towards users with higher node
degrees. This is evident from their node degree distribution, which is clearly
skewed towards higher degrees. In contrast, we see that MHARW mitigates the
bias to some extent and behaves closer to the population. Interestingly, MHARW

shows very limited changes in response to a considerable change of sample
sizes. This became apparent when we applied the same experiment on sample
size s = 20%.

4.5.4 Efficiency

In this section, we evaluate the efficiency of our approach w.r.t. the number and
size of messages during the sampling and mining process.
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Figure 4.8: Node degree distribution of sample s = 1% †.
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Figure 4.9: Number of messages for sampling s = 20% †.

4.5.4.1 Number of messages for sampling

Figure 4.9 shows the number of sent messages for RW, ARW, and MHARW, with
a sample size of s = 20% on all datasets. In addition, we count the propos-
als sent by users in MHARW (see Section 4.4.1). In our evaluation on the Flickr
dataset, we can see that MHARW requires fewer messages than ARW and more
than RW. ARW and MHARW utilize a contributing probability pco, such that
not every visited user contributes to the sample. Therefore, it is expected that
both require more messages than RW to reach the same sample size. Since the
MHARW reduces the bias towards highly connected nodes, it is, in contrast to
ARW, less likely to be stuck in local, well-connected communities. These dead
ends are causing the necessity of additional messages in the ARW-based sam-
pling. Nevertheless, MHARW starts showing a steep ascend in messages at larger
sample sizes. This can be an artifact of our proposed Algorithm 2 to compen-
sate the sample offset, where the unstuck prime users proceed with their walks.
Although this technique successfully extends the sample to reach the target
sample size, it makes some walks longer, thus, more likely to be stuck.

In the analysis of the sampling methods on LiveJournal, we observe in Fig-
ure 4.9 (b) a similar behavior but with a smaller spike on larger sample sizes.
On Orkut, the sampling methods do not spike for larger sampling sizes. Fur-
ther, the message counts linearly correlate with the increase of the sample size.
In contrast to Flickr and LiveJournal, Orkut is larger and the users obtain more
connections. As such, the sampling methods have a lower probability of getting
stuck in local communities, i.e., the sampling procedure is smoother. This also
leads to a lower number of proposals for MHARW in Orkut, unlike Flickr and
LiveJournal. However, the bandwidth usage of these proposals is limited as
they are quite small messages. Following our adaptation of the proposal men-
tioned in Section 4.4.1, the current user sends a message with a float number
and the candidate responds with one bit (0/1). Furthermore, the number of
these proposals can be minimized by using a rejection-controlled walk [151],
where the proposal acceptance ratio is increased. However, this leads to a bias
in favor of the highly connected users and thus to a larger deviation of NDD

from the population.
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Figure 4.10: Size of messages for sampling s = 20% †.

4.5.4.2 Size of messages for sampling

Considering the maximum number of interest groups in our datasets (see Ta-
ble 4.1), we assume that at most 3 bytes are required to communicate a group
id. Hence, the size of a message would be the number of groups included in
the message multiplied by a factor of three. However, for simplicity, our results
indicate the size of the messages in terms of the number of included groups.
Figure 4.10 depicts that the size of the messages of MHARW is notably smaller
than RW and ARW in all the datasets. As highly connected users have more in-
terest groups (items) [180], the bias of RW and ARW towards these users tends to
collect samples with a larger number of items, thus, creating larger messages.
The size of the messages is almost linearly growing with the sample size. The
gradient of the message size growth is higher in Orkut compared with Flickr
and LiveJournal. This confirms our assumption as Orkut’s users have the high-
est average number of items (see Table 4.1).

4.5.4.3 Number of messages for FI mining

In this section, we compare our approach with UNIFI-KC [133], one of the state-
of-the-art cryptography-based approaches for privacy-preserving ARM. UNIFI-
KC requires (n2 + 2n− 3)k messages to mine the FIs, where n is the number of
participants in the mining process, and k is the number of iterations, which also
corresponds to the size of the resulting FIs. Meaning, to mine FIs of the size two,
the algorithm goes through two iterations; that is a result of using the Apriori
algorithm for mining. In contrast, our DFP approach requires 2n2 − 1 messages
and does not require multiple iterations. In Figure 4.11, we can see the total
number of messages of our DFP-based approach compared to UNIFI-KC with
k ∈ {1, 2, 3}. We notice that the number of messages required for UNIFI-KC
increases remarkably with the increase of k, while DFP can mine FIs of arbitrary
sizes without generating any extra messages.

4.5.5 Privacy

In this section, we discuss the privacy benefits of our sampling and mining pro-
cesses w.r.t. three aspects, namely data minimization, node degree protection,
and unlinkability between users and items.
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Figure 4.11: Number of messages for frequent item-
set mining by UNIFI-KC and DFP†.
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4.5.5.1 Data minimization

Data minimization is an enforced practice by legal frameworks, e.g., the EU’s
GDPR, to improve the privacy of users. For that, we only consider and process
the data of a random subset of users (i.e., the randomly sampled users) while
the data of the remaining users is hidden and, therefore, remains private. By
adjusting the sample size, we can control the amount of data required (within
the context of our approach) to achieve a desired performance. Experiments
showed that by using the data of only 1% of the user population, our approach
can derive high-quality FIs.

4.5.5.2 Node degree protection

The proposal function of MHARW is adapted in Eq. (4.3) to protect the node
degree (number of friends) of the current visited user |F(uk)|. User uk sends
a proposal |F(uk)|/p to the candidate successor and expects an accept/reject
answer, where p is a random variable 0 < p 6 1. As mentioned in Section 4.2.3,
we assume an honest-but-curious adversary, thus, all users follow the protocol
properly. However, as E[p] = 1/2, the candidate could estimate the node degree
given enough number of proposals. The error in estimating the node degree
decreases with the increase of the number of proposals. Empirical results for
this correlation are shown in Table 4.4. As the candidate is chosen with uniform
probability, the number of proposals |Pr(uk+1)| sent to a particular candidate
uk+1 is correlated with the node degree of the visited user |F(uk)| and the
number of visits to that user uk, |Visits(uk)|/|F(uk)| ≈ |Pr(uk+1)|. The higher
the node degree is, the more likely that less proposals are sent to a particular
candidate. Considering the average node degrees in our datasets (see Table 4.1),
users in Orkut (with average node degree 72.75) are more protected against
this leakage comparing with Flickr and Livejournal, where the average node
degrees are lower, 13.18 and 14.78, respectively. For example, a user in Orkut
with 72 friends can be visited probably 72 times before their node degree is
leaked to one of their friends with an estimation error 6 50%.

Number of proposals 1 5 10 100 1000

Estimation error 50% 20% 14% 4.6% 1.4%

Table 4.4: Node degree estimation error.
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The average number of visits per user can be estimated from the number of
messages in Figure 4.9. Each message represents a step in the walk, i.e., a visit to
one user. In our case, where we have connected and non-bipartite graphs, MHRW

was proven to have a stationary distribution π(u) = 1/n after a considerable
number of steps [89, 250]. In other words, the probability of visiting a user at a
specific walk step converges to 1/n. Thus, we can estimate the average number
of visits per user by dividing the number of messages by the population n.
The resulting averages for the sample size s = 20% per dataset are shown in
Table 4.5. As we can see, the average number of proposals is < 1 for all datasets,
meaning that the risk of disclosing the node degree with estimation error 6 50%
is low. However, these estimations are based on averages and do not represent
special cases, e.g., when the walks are stuck in local communities, where user
can be visited much more frequently, and thus increasing the risk of leaking
their node degree to their candidates. Potential mitigations for this issue can
be:

• Restricting the number of proposals sent to individual candidates. For exam-
ple, to achieve estimation error > 20%, the proposals needs to be limited to
< 5. This leads to a reduction in the number of proposals, thus, improvement
in efficiency. However, it may also restrain the traversability of the walker.

• Adding moderated random noise ε to the degree (|F(uk)|+− ε)/p. The noise
can be adjusted w.r.t. the node degree |F(uk)| and the number of proposals
|Pr(uk+1)|. As mentioned earlier, with one proposal, the candidate has 50%
estimation error, which is sufficiently high. When the number of proposal
increases, the noise can be introduced and increased accordingly to compen-
sate the decreasing estimation error. The final estimation error FE on the node
degree is calculated as follows FE = EEn + EEp + EEn.EEp, where EEn the
error caused by the noise and EEp the error caused by the random variable p
(more details on this equation can be found in Appendix B). For example, in
case of |Pr(uk+1)| = 5, we know that EEp ≈ 0.2 (see Table 4.4). Thus, adding
noise ε = 0.3 ∗ |F(uk)|, i.e., EEn = 0.3 will lead to a final estimation error of
FE ≈ 0.3+ 0.2+ 0.05 ≈ 0.55. Adding noise may slightly change the behavior
of MHARW in regard to the bias towards highly connected users.

• Other verification methods can be considered, such as zero-proof knowl-
edge or order-preserving cryptography. These approaches provide formally
proven guarantees. Nevertheless, the computation overhead of such methods
remains a major drawback.

Datasets Flickr Livejournal Orkut

Avg. node visits 2.8 3.9 0.58

Avg. node degree 13.18 14.78 72.75

Avg. number of proposals 0.21 0.26 0.008

Table 4.5: Estimations of the number of proposals based on the number of visits.
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4.5.5.3 Unlinkability

Here, we discuss the ability of an adversary to link a user with their set of
items. In our approach, the collected data contains only the items of a subset
of users. For the adversary to link a set of items within the collected data with
a particular user, they need to know first whether this user contributed their
data to the sample or not. Given a sample size and user population, an external
adversary can guess if a particular user contributes their data with probabil-
ity equals the sample rate, which can be considerably low as we saw before
(e.g., 1%). For an internal adversary (curious user), the distributed nature of
the traversal-based sampling method MHARW limits their knowledge to local,
i.e, the adversary only knows their direct neighbors (predecessor and successor
in the walk), which are likely trusted since they are considered friends. With
a contributing probability pco = 0.5, a curious user can only randomly guess
whether their predecessor and successor users have participated in the sample.
Furthermore, users can easily detect and avoid risky situations, e.g., predeces-
sor and successor being the same, by not contributing their items as described
in Section 4.4.1.

Assuming the adversary knows that a particular user ui has contributed their
data to the sample, the ability of the adversary to link the user with their items
is inversely correlated with the size of the sample. The smaller the sample, the
better the adversary can guess the items of the user. If the predecessor and
successor of a target user are colluding, they can identify the items of that user.

After sampling, each prime user has a sub-sample, which contains the items
of a set of users. In the DFP approach, we aim to not disclose the complete
sub-sample of a prime user to others. To achieve that in the first phase of the
algorithm, we use the secure sum [133] to calculate the support of all items
(itemsets of size 1). This technique is secure as long as there is no collusion
between the prime users because they cannot distinguish the support values of
each other from the random number. Clearly, if the predecessor and successor
of a victim prime user in the ring are colluding, they can calculate the itemsets
of the victim by subtracting the support values at the successor from those
at the predecessor. This risk can be mitigated by splitting each support value
into several segments and performing the secure sum for each segment with a
permuted order of the prime users [21].

In the partitioning phase (see Figure 4.4), prime users share their sub-sampled
itemsets with each other. However, the itemsets are divided and distributed
among the corresponding users according to the G-list. This distribution pre-
vents the receiver from learning whether the itemset is complete or it is a sub-
set of an itemset. However, the collusion of multiple prime users might enable
them to collect the itemsets of a particular prime user. This can be alleviated
by applying probabilistic forwarding similar to an anonymous communication
technique proposed in [52], where each user sends their sub-sampled itemsets
to a random user with a certain probability, to be forwarded later to the corre-
sponding user.
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4.6 conclusion

ARM is an effective algorithm to provide recommendations for users in OSNs. In
this chapter, we introduced an approach to mine frequent itemsets—the main
phase of ARM—from user distributed data. Our approach is based on a com-
bination of distributed sampling and mining algorithms. First, we proposed a
privacy-enhanced version of Metropolis-Hasting Random Walk sampling me-
thod, which was leveraged to collect samples of user data. Then, we applied
the distributed FP-Growth algorithm under a privacy-aware setting. We evalu-
ated our approach on three large-scale, real-world OSN datasets. Results showed
that users can collaboratively mine very high-quality frequent itemsets while
maintaining the decentralized nature and privacy advantages of their network.
The quality of the frequent itemsets is tightly related to the connectivity of the
network and the data distribution. In well-connected networks, the approach
achieves high average precision scores (> 0.96) for as low as 1% sample size
with a remarkable reduction in communication and computational costs. In
networks with highly sparse data, our approach outperforms the unbiased uni-
form node sampling for small sample sizes. In comparison to other traversal-
based sampling mechanisms, our MHARW approach achieves a better quality
of frequent itemsets while also reducing the size of messages. Our combina-
tion of sampling and privacy-enhanced FIs mining provides a privacy improve-
ment compared to the traditional centralized mining approaches. Compared
to the state-of-the-art distributed privacy-preserving ARM, i.e., cryptography-
based approaches, we have achieved unlinkability with a scalable approach that
incurs a reasonable overhead, making it a suitable solution for the application
at hand, OSNs.

Besides ARM, there are plenty of data mining and machine learning algo-
rithms that are used to generate recommendations. Neural networks are one of
the prominent algorithms in this field. The next chapter elaborates on training
neural networks in a distributed manner.
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5
P R I VA C Y E N H A N C E M E N T S O N F E D E R AT E D L E A R N I N G

The last chapter introduced an approach to mine frequent itemsets from dis-
tributed data while maintaining user privacy. Frequent itemsets are used to im-
prove social network services by generating recommendations. In this chapter,
we move on to one of the main components in the state-of-the-art recommender
systems, namely neural networks [48]. We focus on training neural networks in
a distributed fashion via the emerging technique, Federated Learning (FL). In
particular, we elaborate on improving the privacy aspect of FL by adapting its
underlying architecture to be more distributed. This in turn makes FL more
applicable to user data in DOSNs and HOSNs.

5.1 introduction

In recent years, data breaches that violate the privacy of millions of users of on-
line services have increased dramatically [174]. At the same time, more services
are making use of large amounts of personal data as part of machine learning
implementations to provide value to users. These two factors have contributed
to making users of services increasingly concerned about their privacy. The
concept of FL has been proposed partially to alleviate this issue by allowing
multiple users to build a joint model without sharing their data, under the co-
ordination of a central server [175]. The users train the joint model locally and
share only its updates, while the server collects and aggregates these updates
to obtain the enhanced joint model. However, the distributed training process
in FL, together with its strong dependence on a central server, have increased
the attack surface against users yet again [132]. Fully decentralized learning
based on a P2P topology has been proposed to eliminate the role of the cen-
tral server by putting more control in the hands of users, thus enhancing their
privacy. Additionally, fully decentralized learning copes with performance and
reliability issues associated with having a central server, such as a performance
bottleneck and a single point of failure [255]. However, the convergence time
and robustness against user churn remain open challenges.

A hierarchical architecture lies in between the two extremes, centralized and
fully decentralized architectures, as a solution able to cope with complexity,
scalability, and failure-related issues [124]. Applying FL based on a hierarchical
architecture is referred to as Hierarchical Federated Learning (HFL). HFL natu-
rally matches emerging decentralized infrastructures (e.g., edge and fog com-
puting) and heterogeneous nature of real-world systems [153] (see Section 5.4).
Most importantly, HFL provides a unique capacity for improving privacy.
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5.1.1 Summary of contributions

In this work, we identify privacy-related issues in FL that are aggravated by its
centralized architecture. We then explore and discuss the advantages of using
HFL as a possible remedy for these issues. Our discussion suggests that (1) HFL

can reduce the centralization of power and control in the hands of the central
server, (2) HFL allows flexible placement of defense and verification methods
within the hierarchy and enables these methods to be applied more efficiently
and effectively, and (3) HFL creates the possibility to employ the trust between
users to mitigate a number of threats. The content of this chapter is based on
the following publication.

publication

Wainakh, A., Guinea, A. S., Grube, T., & Mühlhäuser, M. (2020, September).
Enhancing privacy via hierarchical federated learning. In European Symposium
on Security and Privacy Workshops (EuroS&PW) (pp. 344-347). IEEE.

Contribution Statement
In this paper, I was the main author and contributed all the original con-
cepts. Alejandro Sanchez Guinea and Tim Grube contributed helpful men-
toring and comments during the writing process. Max Mühlhäuser pro-
vided helpful observations that helped to point out and address several
issues.

5.1.2 Outline

The rest of this chapter is organized as follows. Section 5.2 provides a back-
ground on neural networks and FL. In Section 5.3, we discuss privacy-related
issues in FL and then the potential implications of HFL on these issues in Sec-
tion 5.4. Finally, we wrap up with a conclusion section.

5.2 background

In this section, we present the fundamentals of Neural Networks and FL.

5.2.1 Neural networks

Neural networks are a subset of machine learning algorithms; a network is com-
prised of layers of nodes (neurons) including an input layer, one or more hidden
layers, and an output layer. The neurons are connected by links associated with
weights W. The model can be used for a variety of tasks, e.g., regression anal-
ysis, classification, and clustering. In the case of classification, for example, the
task of the model f̂ is to approximate the function f(x) = y where y is the class
label of a multidimensional data sample x, e.g., an image—matrix of pixels.
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To fulfill this task, the model is trained by optimizing the weights W using a
loss function l and training data consisting of input data xi : i ∈ [1,N] and
corresponding labels yi in order to solve [85]

min
W

N∑
i=1

lW(xi,yi) . (5.1)

Minimizing the loss function can be achieved by applying an optimization
algorithm suitable for the problem at hand. Gradient descent is one of the basic
optimization algorithms for finding a local minimum of a differentiable func-
tion. This algorithm is based on gradients ∇W, which are the derivative of the
loss function w.r.t. the model weights W. The core idea is to update the weights
through repeated steps t in the opposite direction of the gradient because this
is the direction of steepest descent.

W(t+ 1) = W(t) − η∇W , (5.2)

where η is the learning rate, which defines the step size for the model updates
in the parameter space. An extension of gradient descent, called Minibatch
Stochastic Gradient Descent is widely used for training neural networks. This
algorithm takes a batch of data samples from the training dataset to compute
gradients ∇W and, subsequently, updates the weights. The batch size B is the
number of data samples given to the network for each weight update. The
number of epochs E is the number of times in which the whole training dataset
was passed to the network.

5.2.2 Federated learning

Federated Learning (FL) is a machine learning technique that enables a set of
users U to collaboratively train a joint model under the coordination of a central
server [132]. The training phase consists of several communication rounds. For
each round t, the server selects a subset of users |Kt| � |U| to train the model
locally on their devices using their data. In particular, the selected users opti-
mize the model weights W based on the gradients ∇W. These users can take
one step of gradient descent (FedSGD [175]) or multiple steps (FedAvg [175] as
shown in Algorithm 3) before sharing the weight updates (or gradients ∇W)
with the server. The server collects the updates from all the selected users Kt,
then calculates their weighted average to obtain the updated global model as
follows

Wt+1 =

|Kt|∑
k=1

vk
v
Wk
t+1 , (5.3)

where vk is the number of data samples of user k, and v is total number of
data samples in round t. This process is repeated until the model potentially
converges [175]. This setting mitigates a number of privacy risks that are typ-
ically associated with conventional machine learning, where all training data
should be collected, then used to train a model [132].
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Algorithm 3: FederatedAveraging [175]

Data: vk number of data samples of user k, v total number of data samples in
one round, and η learning rate.

1 Server executes:
2 initialize W0

3 for each communication round t = 1, 2, ... do
4 Kt ← (a random subset of users)
5 for each user k ∈ Kt in parallel do
6 Wk

t+1 ← UserUpdate(k,Wt)

7 end

8 Wt+1 ←
∑|Kt|
k=1

vk
v Wk

t+1

9 end

10 User locally executes UserUpdate:
11 for each local epoch do
12 for each batch do
13 W ←W− η∇W
14 end
15 end
16 return W to the server

5.3 open issues in federated learning

In spite of the various benefits of FL, several privacy-related issues still exist. We
identify three of these issues, which arise primarily from the centralized nature
of FL. Next, we describe the three issues, namely centralized control, limited
verifiability, and constrained defenses.

centralized control . The server in FL plays the role of a central coordi-
nator that performs the following core functions: (1) sampling users, i.e., select-
ing which users participate in the training process, (2) broadcasting the train-
ing algorithm and model, (3) aggregating the model updates, and (4) broad-
casting the updated global model. Although such a setting does not impose a
large management overhead on users, it places all control on a single party, the
server. Thus, the scalability of the system mainly depends on the resources of
the server, which potentially represents a performance bottleneck and a single
point of failure. Furthermore, concentrating such functions on the server leaves
the users with limited or no control over the process. Consequently, the users
have to rely on trusting the server to perform all the functions correctly while
maintaining the best privacy practices to protect their model updates. In this
respect, a malicious server or an adversary who could compromise the server
can be a very powerful attacker. Several important attacks against users have
been published that leverage this powerful server-based attacker, e.g., by recon-
structing users’ training data [288, 316].

limited verifiability. In FL, the server and users perform several com-
putations locally and share the results with each other. The users share their
updates, while the server shares the aggregated model. In order to allow the

76



5.3 open issues in federated learning

server and users to prove to each other that they perform the expected com-
putations correctly and share a legitimate output, the computations need to be
verified. Multiple approaches based on zero-knowledge proofs have been pro-
posed to apply this verification [132]. However, these approaches suffer from
two main limitations. First, the types of proofs provided are limited (e.g., range
proofs [30]). Second, the time required for verification grows typically expo-
nentially with the number of users [31, 296], which renders these approaches
unscalable, and thus unsuitable for large-scale applications. Another technique
to tackle the verification issue is to use a Trusted Execution Environment (TEE)
to perform the computations [132]. However, these environments currently are
not widely available on user devices, especially smartphones. In addition, TEEs

do not protect against users who train the model with invalid data.

constrained defenses . Although FL provides improvements for user pri-
vacy, it opens the door for plenty of attacks, which can be applied by both ma-
licious servers and malicious users. In this work, we focus on privacy attacks,
where the attacker aims at inferring information about users. These attacks oc-
cur in two modes: passive and active.

• Passive attacks: The attacker observes the joint model and periodic updates,
which can be used to infer information about other users. Shokri et al. [237]
introduced a membership inference attack using shadow models, which can be
performed in FL. Melis et al. [177] proposed a property inference attack, lever-
aging snapshots of the global model. Zhou et al. [316] obtained the training
data of a target user from their shared updates (gradients). To mitigate such
attacks, several defense techniques can be applied by the server and users.
The users can perturb their model updates before sharing them by using
one or a combination of the following methods: (1) adding noise (e.g., local
differential privacy [176]), (2) sharing only a fraction of the updates [235],
or (3) while training the model, using regularization techniques such as
dropout [244]. However, these techniques usually lead to a substantial loss
of model accuracy. That is, the trade-off between privacy and accuracy needs
to be considered [134]. On the server side, protecting user privacy requires
breaking the linkability of the individual users with their updates. This can
be achieved by a secure computation, which requires a coordinated decision
of both the server and users. Several techniques for secure computations have
been proposed, e.g, secure aggregation [23] and secure shuffling [20]. Besides
the efficiency issues these techniques suffer from, they hinder the server from
detecting malicious updates, creating by that an attack surface for malicious
users.

• Active attacks: The attacker participates in the training process as a user, who
maliciously modifies their updates to infer information about other users.
Hitaj et al. [115] proposed a reconstruction attack where the attacker pro-
vokes the target user to overfit the model on their training data. Melis et
al. [177] presented a property inference attack based on multi-task learning.
Nasr et al. [186] used gradient ascent to perform a membership inference at-
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tack. To detect and mitigate such attacks, several methods can be considered,
such as anomaly detectors [233], median-based aggregation [304], trimmed
mean [304], and redundancy-based encoding [50]. However, some of these
methods require accessing the individual user updates [233], which is im-
peded by other defense mechanisms, e.g., secure aggregation. In addition,
the heavy computations and uncertainty of model convergence remain main
limitations [40].

5.4 hierarchical federated learning

FL is, by definition, coordinated by a central server [132]. We relax this defini-
tion to apply FL within a hierarchical architecture and refer to it as Hierarchical
Federated Learning (HFL). A restricted version of HFL, considering only three lay-
ers, has been presented in [153, 159, 160]. However, privacy was not considered
a prime goal. In HFL, there is one root server, connected to multiple intermediate
servers, which are organized in a tree structure as shown in Figure 5.1. The low-
est layer of intermediate servers connects to the users, which are clustered in
user groups G. The hierarchy can contain multiple layers of intermediate servers
and can be unbalanced such that different branches vary in their number of
layers. For simplicity, we proceed our explanation assuming a balanced tree.
A selected subset of the users Kgt of each user group g ∈ G (in Layer 0) send
their model updates to a designated intermediate server in the next higher layer
to be aggregated. At each intermediate server in Layer 1 (see Figure 5.1), the
following aggregation is taking place

Wt+1 =

|K
g
t |∑

k=1

vk
v
Wk
t+1 . (5.4)

The aggregation process continues in multiple stages (on each layer) towards
the root server. Each set of intermediate servers S in Layer 1 send their updated
models to the corresponding intermediate server in Layer 2, where the models
are aggregated as follows

Wt+1 =

|S|∑
g=1

hg

h
Wg
t+1 , (5.5)

where hg is the number of data samples in user group g, and h is the total
number of data samples from all groups in S. Every two subsequent layers
can have a different number of communication (aggregating) rounds before
pushing their models to the next higher layer. After aggregation, the global
model is forwarded along the hierarchy downwards to the users.

From an abstract perspective, a hierarchy is a hybrid solution between cen-
tralized and fully decentralized architectures. On the one hand, a hierarchy can
cope with the scalability and single-point-of-failure issues of centralized archi-
tectures. That is evidenced by the existence and active operation of hierarchical
architectures within complex, large-scale systems such as the Internet [251]. On
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Figure 5.1: Example of hierarchical federated learning architecture†.

the other hand, a hierarchy helps to tackle the management challenges encoun-
tered in fully decentralized architectures. We can observe this advantage in the
organizational structure of companies [124].

FL was originally proposed with the intention to be based on a cloud comput-
ing infrastructure [175]. Such centralized infrastructure represents a network
bottleneck, especially with the increase of resource-constrained devices (e.g.,
smartphones and IoT sensors). To alleviate this issue, there is a trend towards
decentralized computing infrastructures (e.g., edge and fog computing) [84],
which are introducing hierarchies in communication and computing architec-
tures. These architectures decrease the burden on the cloud by leveraging edge
devices (e.g., Wifi routers and cellular base stations) to carry out a significant
portion of computation, storage, and communication locally. HFL represents a
natural step in extending FL into such emerging infrastructures.

Online social networks represent yet another application where the system
architecture matches with HFL. Motivated by privacy-related issues, more de-
centralized social networks are emerging [275]. Diaspora1 and Mastodon2 are
two of the most popular, which leverage the concept of local servers. Users
can choose which local server to connect to and where to store their data. This
architecture represents a hierarchy where some functions are delegated to the
higher-layer servers. In contrast, privacy-related functions (e.g., data storage)
are pushed down in the hierarchy to local servers and users. Similarly, HFL

can give lower-layer servers more control over the privacy-related steps in the
training process. However, this will introduce some computational overhead
for these servers.

5.5 privacy implications of hfl

In this section, we discuss the implications of HFL in relation to the privacy-
related issues of Section 5.3.

1 https://diasporafoundation.org
2 https://mastodon.social/
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5.5.1 Centralized control.

In FL, the distribution of functions between the server and users is unbalanced;
the control is concentrated on the server. In contrast, HFL allows different FL

functions to be distributed throughout the hierarchy to the intermediate servers.
Next, we introduce alternative placements for each of the FL functions.

• Sampling users: In FL, the server is supposed to select randomly a subset of
users to participate in each training round [175]. Due to the large user popu-
lation and random selection, it is unlikely that an individual user is selected
in many training rounds in a given time frame. This, in turn, moderates the
amount of data used by that user to train the model, thus improving their
privacy. However, a malicious server could misuse this sampling privilege
and deliberately selects specific users in consecutive rounds. This allows the
server to reconstruct users’ private data by analyzing their periodic updates
or isolating their shared models [288]. HFL allows sampling to be performed
in multiple stages, where a lower layer is sampled by the next higher one, till
the top. Thus, the (root) server does not sample individual users, but inter-
mediate servers, where only the aggregate of updates are preserved not the
updates of individual users. Consequently, applying the aforementioned at-
tacks is much more challenging in the higher layers of the hierarchy. This can
cope with the gap of trust between the users and the server in FL. In HFL, the
lowest layer of the intermediate servers need to perform the user sampling.
We argue that each two subsequent layers in HFL are more likely to have a
better base for trust and accountability. Therefore, it is less likely for users to
be attacked by the lowest layer of the intermediate servers. In fog computing,
users can be sampled by edge devices, which can be, for instance, a router in
the neighborhood. In decentralized social networks, the local server, which is
chosen by the users, can perform sampling.

• Broadcasting the training algorithm and model: Congzheng et al. [242] showed
that malicious training algorithms can leak information about the training
data. In FL, users can either fully trust the server to send a benign algorithm
or inspect the algorithm locally. Detecting that the algorithm is attempting
to leak information about the user data is challenging and introduces ad-
ditional computational overhead on users’ devices. Therefore, this task can
be delegated in HFL to trusted intermediate servers, which can be seen as a
protective layer where the algorithms are inspected and verified before being
pushed to the users.

• Aggregating the model updates: In FL, the server collects the updates from in-
dividual users and aggregate these updates. The update of an individual
user can leak information about them. To protect this update from the server
and external adversaries, secure computation techniques such as secure ag-
gregation [23] are used. The application of these techniques on a large scale
results in additional computing power and communication requirements. As
opposed to FL, in HFL, multiple levels of aggregation occur according to the
number of layers in the hierarchy. Each layer collects and aggregates the up-
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dates from the lower layer. This aggregation scheme implies that only the
lowest layer of intermediate servers receives individual updates from users,
while all the higher layers process only aggregated updates. Consequently,
the need for secure computations in the upper layers is reduced, which can
be interpreted as a performance improvement. In addition, the cascade aggre-
gation process helps to protect the identities of the users from the higher-layer
servers.

• Broadcasting the updated global model: The server distributes directly the global
model to all users. If this model is poisoned, it can easily reach and affect
the users. The model can be poisoned by a malicious server or user. Hitaji et
al. [115] showed that a malicious user can poison the global model so that
certain users (victims) reveal information about themselves by overfitting the
model to their data. The leaked information then is extracted by the mali-
cious user from the updated global model in following training rounds. The
flat topology at the users level in FL allows this type of attack easy access,
while HFL provides the possibility to control the model dissemination more
effectively through the multiple layers. The intermediate servers can be con-
sidered as inspection stations where the model is checked. If the root or a
intermediate server is malicious and distributes a poisoned model, the in-
termediate servers in the lower layers could refrain from pass it further to
the users. The existence of a malicious user poisoning the model for one user
group (a branch of the hierarchy) does not directly affect other groups, unless
the poisoned model was successfully passed up the hierarchy via intermedi-
ate servers and propagated downwards again.

5.5.2 Limited verifiability.

The poor scalability of the verification methods in FL (e.g., [31, 296]) hinders
their deployment in large-scale applications. In HFL, verifying the updates of the
users can be performed by the corresponding intermediate servers. Grouping
users in comparably small groups reduces the computational overhead on the
intermediate servers and makes the deployment of verification methods more
feasible.

5.5.3 Constrained defenses.

Most of the defense methods in FL come with the cost of lower model accu-
racy [235], considerable computational overhead [304], or both [50]. HFL pro-
vides the possibility to apply these methods in a more flexible manner. One
possibility is to apply different methods in different parts of the hierarchy, such
that not all the users suffer from a heavy loss in accuracy nor have to perform
costly computations.

As the upper layers in HFL process only aggregated models, not individual
users’ updates, the necessity of secure aggregation can be reduced or even
eliminated in these layers. This can lead to a performance improvement and
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allows intermediate servers in higher layers to apply anomaly detection meth-
ods (e.g., [233], see Section 5.3) to detect malicious models received from lower
layers. Detecting a malicious model from a specific intermediate server can be
followed by excluding that server from further aggregation rounds while main-
taining the training process functioning normally in the rest of the hierarchy.
Furthermore, the affected server can be notified about its malicious model so
it can take more computational expensive countermeasures (e.g., [304]) in their
local user group.

HFL allows leveraging the trust between users as an additional line of de-
fense. In social networks, grouping users based on trusted graphs [128] can
reduce the probability of attacks within groups, as it is assumed to be more
difficult for malicious users to break into the groups through social engineer-
ing. Consequently, users may relax their local defenses (e.g., reduce the noise
added locally) to achieve a model with higher accuracy. At the same time, the
intermediate servers can take the responsibility of protecting their groups from
attacks across groups by applying specific defense methods (e.g., adding noise
to the aggregated updates).

5.5.4 Summary of advantages

The potential advantages of HFL that we discussed earlier are based on spe-
cific assumptions mainly regarding trust within the hierarchy. In Table 5.1, we
summarize these advantages and the corresponding assumptions.

5.6 conclusion

On the one hand, FL allows users to maintain their data local, which can be seen
as a privacy advantage. On the other hand, FL assigns all the coordination op-
erations to a central server, which must be trustworthy for the users if privacy
shall be ensured. In this chapter, we presented the privacy-related issues stem
from the centralized scheme of FL, namely centralized control, limited verifiabil-
ity, and constrained defenses. Then, we discussed how Hierarchical Federated
Learning (HFL) can potentially alleviate these issues. HFL enables high flexibility
in functionality distribution through the hierarchy. This in turn facilitates the
applications of known defense and verification methods. HFL allows leveraging
the trust between the participating users in different application scenarios to
mitigate several threats. Overall, our work contributed to the research on iden-
tifying the privacy-related issues in FL and highlighted potential mitigations by
applying FL a hierarchical architecture. By that, we ultimately help increase the
robustness of FL against privacy risks.

This and the previous chapter focused on applying two analytics techniques
in a distributed manner. The literature showed that while applying such tech-
niques several attacks might threaten user privacy. The next two chapters fur-
ther investigate threats to distributed analytics, in particular FL.
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Advantage Assumption

Control
Reducing the centralization of control by
delegating functions, namely user sampling
and user updates aggregation to intermedi-
ate servers

Trusted intermediate servers (Layer 1)

Inspecting the training algorithm by inter-
mediate servers before propagating to users

Trusted intermediate servers (Layer 1)

Inspecting the global model by intermediate
servers before propagating to users

Trusted intermediate servers (Layer 1)

Verification Reasonable overhead of applying verifica-
tion methods to user updates by intermedi-
ate servers

User groups are relatively small &&
trusted intermediate servers (Layer 1)

Defense

Flexible application of different defenses on
parts of the hierarchy

-

Isolating malicious/compromised parts of
the hierarchy

-

Reducing the need to the costly secure com-
putations in higher layers

-

Applying anomaly detection methods
against poisoning in higher layers

Trusted intermediate servers

Reducing the need for local obfuscation de-
fenses on user side

Users are trusted within their groups
&& trusted intermediate servers (Layer
1)

Delegating the defense application to inter-
mediate servers (Layer 1) to protect their
user groups

Trusted intermediate servers (Layer 1)

Table 5.1: Overview of HFL advantages and assumptions.
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6
S Y S T E M AT I C A N A LY S I S O F T H R E AT S I N F E D E R AT E D
L E A R N I N G

In the previous chapters, we elaborated on applying analytics in a distributed
setting; in particular, we investigated distributed ARM and Federated Learn-
ing (FL) for neural networks. Although the distributed setting delivers privacy
advantages by granting users more control over their data, the distributed data
processing introduces at the same time novel security and privacy threats. A
comprehensive overview of these threats does not exist yet (in the form neces-
sary), especially for the rapidly emerging technique FL. Therefore, in this chap-
ter, we explore and systematize the attacks presented in the literature against
FL. Additionally, we discuss the applicability of these attacks considering real-
world scenarios.

6.1 introduction

The distributed nature of the training process in FL has created a new attack sur-
face. As we will discuss in more detail in this chapter, threats come, for instance,
from malicious users who actively participate and can adversely affect the train-
ing process. Therefore, they are able to threaten, for instance, the integrity of the
aggregated model (e.g., poisoning attacks [11, 18]), or the confidentiality of the
users’ personal data or personalized models (e.g., model inversion attacks [114,
316]). Recently, researchers have been extensively investigating potential vul-
nerabilities and attacks in FL. This led to an increasing number of publications
on attacks against FL, consequently, raising serious concerns about the robust-
ness and privacy in FL. Some strong claims even exacerbate these concerns by
stating that “federated learning is fundamentally broken” [114], or that some
attacks are reaching 100% accuracy in poisoning the model [11].

Upon taking a closer look, however, the situation may not be as bad as pro-
claimed. A number of these attacks are applicable only under specific condi-
tions and assumptions. For example, some attacks use the batch size of 1 for
training a Neural Network (NN) model (e.g., [313]), or assume a special dis-
tribution of data among users (e.g., [114]). In many cases, such assumptions
do not hold in real-world deployments. Thus, the applicability of such attacks
is questionable. In addition, several attacks are evaluated with limited or im-
practical setups. For instance, some attacks are evaluated using oversimplified
datasets (e.g., [309]) or simplified NN models (e.g., [70]). This in turn affects
the generalizability of the experiments, results, and conclusions. A recent work
by Shejwalkar et al. [231] fueled this discussion by demonstrating that, con-
trary to the common belief, FL is highly robust against several attacks in the
literature under practical considerations—even without applying any defenses.
Considering the aforementioned issues, the severity of the threats posed by the
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attacks discussed in the literature becomes imprecise and debatable. Therefore,
it is essential to closely and systematically investigate such issues. As a result,
a more comprehensive and realistic view of the significance of threats in FL can
be obtained.

6.1.1 Summary of contributions

In this chapter, we conduct a qualitative and quantitative analysis of publica-
tions about attacks against FL via a Systematic Mapping Study (SMS). We first
identify research trends in the field, the properties of the research community
such as affiliations, and targeted publication venues. Then, we provide a struc-
tured overview of the attacks with two classification schemes that are based on:
(1) the properties of the attacks, (2) the choice of experimental setups used to
evaluate the attacks. We analyze the distribution of publications among the de-
fined attack classes and derive the foci and gaps in the research landscape. Next,
we highlight several special assumptions made in some of the works and their
implications on the applicability of the attacks. Finally, we identify common fal-
lacies in the evaluation setups and the impact of these fallacies on the validity
and generalizability of the results. Our work shows that each of the studied
papers at least makes one of the special assumptions or suffers from one fallacy.
Notably, several fallacies affect the majority of the papers. The contributions of
this chapter can be summarized as follows.

• Providing a comprehensive quantitative analysis of all 44 relevant papers on
attacks against FL from 2016 to the first quarter of 2021.

• Identifying four research gaps that put the the reviewed literature into per-
spective regarding the effectiveness of contributed attacks in practice.

• Highlighting three recurring assumptions made in the reviewed papers and
limiting the applicability of the proposed attacks to real-world deployments.
These assumptions are related to the hyper-parameters of the Machine Learn-
ing (ML) model, the fraction of malicious users, and data distribution.

• Identifying six fallacies in the evaluation practices that can cause overestima-
tion of the attacks’ effectiveness. The main fallacies stem from the choice of:
datasets, models, and the size of the user population. In addition, we also
propose a set of recommendations to mitigate these fallacies.

remark

This study does not undermine the importance of the research or the findings
on attacks in FL, rather it is an attempt to help researchers clarify the scope of
these attacks by reflecting on the assumptions and evaluation practices.

The content of this chapter is based on the following paper.
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publication

Wainakh, A., Zimmer, E., Subedi, S., Keim, J., Grube, T., Karuppayah, S.,
Guinea, A. S., & Mühlhäuser, M. (2022). Federated Learning Attacks Revisited:
A Critical Discussion of Gaps, Assumptions, and Evaluation Setups. In IEEE
Access [under review].

Contribution Statement
In this work, I led the process of idea generation, study conduction, results
analysis, and writing. Ephraim Zimmer, Tim Grube, Shankar Karuppayah,
and Alejandro Sanchez Guinea contributed with helpful discussions and
formulations to enhance the editorial quality of the manuscript. Sandeep
Subedi and Jens Keim contributed to the conduct of the study and the anal-
ysis of the results. Insightful discussions with Max Mühlhäuser helped to
improve several aspects of the work.

6.1.2 Outline

The remainder of this chapter is organized as follows. In Section 6.2, we present
a summary of related reviews on the literature. Then, in Section 6.3 we elaborate
on the methodology of our study. In Section 6.4, we present the results of the
mapping process. Subsequently, we further analyze our results and discuss
their implications in Section 6.5.

6.2 related work

Several studies in the literature provide overviews of the privacy and security
issues in FL, either as a part of general analysis of ML systems or as a specific
analysis of the FL setting.

Privacy and Security in ML. Due to the growing recognition of the threats
that ML systems might face, many researchers presented surveys and system-
atization of these threats, such as Papernot et al. [203] Al-Rubaie et al. [219],
De Cristofaro [55], Rigaki et al. [218], and Zhang et al. [308]. These studies
mainly focus on the privacy aspect of centralized training and only address FL

to a limited extent. Other surveys specifically tackle the privacy and security of
deep learning models, namely the works of Mirshghallah et al. [179] and Liu et
al. [161].

Privacy and Security in FL. In our study, we aim to (1) structure all the publi-
cations dealing with privacy and security FL attacks according to classification
schemes, thus providing a structured and comprehensive overview of the research
field, (2) conduct a quantitative analysis of the publications, highlighting ares of
focus and gaps in the literature, and (3) provide a critical discussion of the ap-
plicability of the proposed attacks by taking a closer look at their assumptions
and evaluation setups.
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There are studies in the literature with partially overlapping goals. Enthoven
et al. [69] presented a structured overview about attacks and defense mecha-
nisms in FL, but only for privacy attacks against deep learning models. Lyu
et al. [169] elaborated additionally on security attacks and pointed out weak-
nesses in current countermeasures through a qualitative analysis of the litera-
ture. However, this study neither provides a quantitative analysis nor discusses
the applicability of the attacks. A concise taxonomy of attacks in FL was intro-
duced by Jere et al. [127]. Although the proposed taxonomy is well thought out
and justified, the study considers only a small portion of the attacks available
in the literature without discussing their quantity or applicability. Kairouz et
al. [132] presented an extensive report of open issues and challenges in FL, in-
cluding privacy and security issues. However, the extent to which these issues
are applicable in real-world scenarios is discussed only briefly. Similar but less
comprehensive surveys in terms of the level of detail were also published [5,
150].

The aforementioned studies provide very valuable insights into the privacy
and security in ML and FL by summarizing and systematizing the existing re-
search in this field. However, none of them meet all of our goals, and all of
them have (largely) failed to meet two of our main goals, namely quantitative
analysis and discussion of attack applicability.

6.3 method

Systematic mapping [208, 209] is a secondary study method that establishes
classification schemes and structures in a research field. The analysis of the
study focuses on the frequency of publications in each of the defined categories.
Such analysis provides valuable insights into the progress, foci, and gaps in the
research field. These insights are usually not covered by the commonly used
systematic literature review method, which focuses on surveying primary stud-
ies to collect evidence concerning existing solutions [136], while overlooking
the frequency of publications. In the context of this thesis, an SMS helps us to
direct our further research towards contributions that fill the existing gaps. To
conduct an SMS, the following steps are taken:

1 Define a set of guiding questions to be answered by the analysis of the study.

2 Conduct a search to find the relevant papers.

3 Refine the selection of papers by following inclusion and exclusion criteria.

4 Define classification schemes to structure the papers into categories.

5 Map the papers to the defined categories.

6 Answer the guiding questions by analyzing the frequency of papers appear-
ing in the defined categories.

Petersen et al. [208, 209] proposed a guideline for conducting SMSs, which
serves as a basis for our study outlined in this section.
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Database Papers Search string

Google Scholar 537

(“federated learning” OR “collaborative learning”)
AND (“inference attack” OR “privacy attack” OR
“poisoning attack”)

ACM Digital Library 21

IEEEXplore 81

arXiv 97

Table 6.1: Automatic search results and search strings†.

6.3.1 Objectives and guiding questions

The ultimate goal of our study is to analyze past research and to guide further
research on attacks for FL w.r.t. practical relevance. This concerns, in particular,
the effectiveness of attacks, the question of how realistic the assumptions are,
and fallacies observed. As a basis, we analyzed the attacks proposed in 44

scientific papers identified as pertinent for the SMS (see Sections 6.3.2 and 6.3.3).
In light of the general goals of the study as set forth in Section 6.2, we base our
systematic work on the following three guiding questions.

1 What are the research trends in the domain? For this question, we look at
the development of the number of papers over years, the communities that
conduct the research, and the type of the research.

2 What are the different types of attacks carried out against FL? We identify the
attacks that have been proposed in FL and their properties.

3 Which are the evaluation setups commonly used in the literature? We deter-
mine the common evaluation practices in the field and discuss their implica-
tions.

Answering the aforementioned questions requires two sub-steps: (1) identi-
fying and capturing the research trends, attack types, and evaluation setups
in terms of categories and characteristics, (2) analyzing the literature and map-
ping it according to the newly-established categories and characteristics of the
respective research trends, attack types, and evaluation setups.

6.3.2 Search strategy

To set up the main search process, a brief pilot search (pre1 in Figure 6.1) was
carried out, where an initial set of relevant papers was collected. These papers
allowed us to determine relevant keywords and search terms as well as suitable
venues to target in the main search process, and to identify a set of well-known
authors in this research area. For this pilot search, Google Scholar was used
since it is one of the indexing databases that cover a large number of publishers.
Several search queries were applied using combinations of keywords, which
have shown to be important in the research field at hand, including “federated
learning”, “privacy attack”, and “security attack”. In the following, more details
about the main search phase are elaborated, which consists of two main steps:
automatic and manual search.
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Pilot search

Automatic search Manual search

Combine results

Initial setup

Apply Inc./excl.
criteria

Backward
snowballing

Preliminary

Search

Selection

pre1

src1

src2.2src2.1

src3

sel1

sel2

44 papersSelected papers

Figure 6.1: Search and selection process of our SMS. We start with a pilot search as a preliminary
step. Then, we conduct the main automatic and manual search. Lastly, we select the relevant
papers†.

Type Abbreviation Name
Journal TOPS Transactions on Privacy and Security

TIFS Transactions on Information Forensics and Security
Conference S&P Symposium on Security and Privacy

CCS Conference on Computer and Communications Security

USENIX USENIX Security Symposium

PETS Privacy Enhancing Technologies Symposium

EuroS&P European Symposium on Security and Privacy

NDSS Network and Distributed System Security Symposium

CSF Computer Security Foundations Symposium

ACSAC Annual Computer Security Applications Conference

ESORICS European Symposium on Research in Computer Security

NeurIPS Neural Information Processing Systems

ICML International Conference on Machine Learning

ICLR International Conference on Learning Representations

InfoCom International Conference on Computer Communications

AISTATS Artificial Intelligence and Statistics

Table 6.2: Manual search sources†.

1 Automatic Search (src2.1 in Figure 6.1): We conducted the automatic search
by relying on several popular search engines, namely ACM Digital Library,
IEEEXplore, Google Scholar, and arXiv. ACM Digital Library and IEEEXplore
were considered as they cover the key research communities (i.e., ML and se-
curity communities) and the most cited publications from ACM and IEEE
computer society. In addition, Google Scholar was used to ensure compre-
hensive results and avoid any bias towards specific publishers. Furthermore,
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using arXiv helped to cover the most recent advancements, which are not
yet accepted for publication. The keywords to include FL-related terms were:
“federated learning” and “collaborative learning”. Additionally, precise key-
words related to attacks, namely “inference attack”, “privacy attack”, and
“poisoning attack” were also added to the search. Subsequently, a search
string was composed using the updated keywords. The results of the au-
tomatic search are shown in Table 6.1.

2 Manual Search (src2.2 in Figure 6.1): The titles of the papers published in a
set of selected journals and conferences were manually reviewed. The jour-
nals and conferences were chosen based on the results of the pilot search to
cover all the venues where papers on attacks in FL are published. The com-
plete list of sources is shown in Table 6.2. As a complementary procedure, a
number of well-known researchers in the field (e.g., H. Brendan McMahan)
were identified and their publications (on Google Scholar, private webpages,
and university webpages) were tracked. The manual search resulted in iden-
tifying 20 potentially relevant articles.

The combined total number of papers gathered from the automatic and manual
searches is 756. These papers were found to contain our search strings or to have
relevant titles. However, the focused search still yielded many papers that are
not relevant to our study. Therefore, it was crucial to specify strict criteria to
select the relevant papers among them.

6.3.3 Selection process

As depicted in Figure 6.1, after the search, the selection process was conducted.
This process consists of two steps: (1) applying inclusion and exclusion crite-
ria and (2) performing a complementary forward and backward snowballing
search (see below). The following inclusion and exclusion criteria were applied
to titles and abstracts. In those cases, where the title and abstract do not provide
enough information, the body of the paper was considered.

• Inclusion criteria: (1) Papers discuss attacks in FL. These papers include those
that introduce novel attacks as well as papers that review existing attacks.
(2) Papers published between 2016 (the year of coining the term Federated
Learning by McMahan et al. [175]) and the first quarter of 2021 (the time of
conducting this study).

• Exclusion criteria: (1) Papers about FL that do not cover any attack. (2) Papers
not accessible in full-text. (3) Duplicate papers.

After filtering the papers based on the inclusion and exclusion criteria, for-
ward and backward snowballing techniques were applied. The forward snow-
balling technique identifies papers that have cited the papers found in the
search phase. As the majority of the selected papers after filtering is quite recent
(2019-2020), they have not yet been cited by many other papers. Therefore, the
focus was more on backward snowballing (sel2 in Figure 6.1). In this technique,
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the lists of references in the selected papers were reviewed and the relevant
papers were added to our list. Applying this technique resulted in adding only
a few more new papers, as our automatic and manual searches had already
covered almost all the relevant sources.

The final number of papers considered for our analysis is 44. It is worth
mentioning that after applying the inclusion and exclusion criteria, there was a
remarkable drop in the number of papers. That is due to the fact that there is a
huge number of papers that refer to FL and its attacks, but do not contribute to
this topic.

6.3.4 Information extraction and classification

Each of the final selected papers was examined in detail to extract information
on the research trends, attack types, and evaluation setups. This information
was utilized to (1) propose an initial set of classification schemes and (2) sort
the papers accordingly. Then, we iterated, after a first orientation path, over
these two steps multiple times to refine the classification schemes and remap
the papers to the defined categories. In the following section, three main classi-
fication schemes are presented that correspond to our guiding questions.

6.4 results of the mapping

In this section, we elaborate on the classification schemes and the results of
paper mapping. The frequency of papers in each category is presented as the
exact number of papers and the percentage w.r.t. the total papers number 44.
The results are also provided in detail in Tables 6.4 and 6.5. This section is
structured along with the previously established guiding questions.

6.4.1 Research trends

We investigate the trends in the research field through four aspects, namely
the year of publications, the affiliations of the researchers, the venues they target
to publish their works, and lastly, the type of research conducted according to
Wieringa et al. [291].

year of publication. In Figure 6.2, we see the publication year for the stud-
ied papers. The first attack against FL was published in 2017 by Hitaj et al. [114].
In the following years, the number of attacks is remarkably increased. That re-
flects the growing attention towards FL in general and its privacy and security
issues, in particular. This considerable number of attacks can also be seen, for
an external observer, as an indication of the abundance of FL vulnerabilities.
Overall, FL is a hot topic and the number of its applications is growing, there-
fore, investigating its weaknesses becomes crucial, and this likely will lead to
more studies on attacks in the upcoming years.

author affiliations . Our mapping study illustrates that most of the at-
tacks (38 i.e. 86%) come from academia. This can be due to the fact that re-
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Figure 6.2: Number of papers per year†.

Figure 6.3: Venue types of the selected papers†.

searchers in academia freely explore the possibilities to hack technologies and
then propose mitigation measures, while industry tends to focus on making
their services more robust and secure. That is evident from the substantial
number of papers on defense mechanisms from industry, especially Google [6,
10, 13, 23, 176], whereas a fewer number of attacks (2 i.e. 4%), were proposed
by industry. Joint projects between academia and industry can also be found
in 4 (9%) papers.

venue type . In our study, we took into account peer-reviewed venues (jour-
nals, conferences, and workshops) as shown in Table 6.2, in addition to public
repositories (arXiv). The paper distribution among these venues is depicted in
Figure 6.3. We can see the tendency of the community to push their studies to
public repositories, where 27 (61%) of the papers are found. This can be due
to the fast pace of publications in this field, which urges researchers to share
their ideas and results promptly as preprints. Out of these, 10 (22%) are si-
multaneously published in a peer-reviewed venue, mainly conferences. After
arXiv, the conference papers come first with 21 (47%) papers. The low number
of publications in journals might be a result of the novelty of the FL concept
and the rapid development of its attacks.

research type . To identify the research characteristics in this field, we cate-
gorize the papers based on the type of the conducted research. We adopt the
research types proposed by Wieringa et al. [291].

• Solution: Proposes an approach to solve a problem. The approach can be
novel or an improvement on existing ones. The proposed approach should
be supported by good arguments or by other means.
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Attacks

Mode Observation

Model corruption

Backdoor

Poisoning
17 (39%) 

7 (16%)

13 (29%)

Active

Passive

27 (61%)

24 (54%)

Access point

Membership inf.

Model inversion

Property inf.

Privacy
27 (61%) 

8 (18%)

16 (36%) 

5 (11%)

Purpose

White-box

Black-box

41 (93%)

Server

User

14 (31%)

39 (88%) 

Eavesdropper
10 (23%) 

6 (14%)

Figure 6.4: Attack classification with the paper distribution. The percentage is w.r.t. the total
number of papers 44. Most categories are not exclusive as some papers consider multiple threat
models and discuss different forms of the proposed attack, therefore, the papers might sum up
to more than 44. More details on the individual papers can be found in Table 6.4†.

• Validation: Investigates the validity of a novel approach that has not yet
been “realized”. The validation can be performed through experiments, sim-
ulations, mathematical proofs, etc.

• Evaluation: Studies the properties of an existing approach (analyze, assess,
and evaluate) to achieve a better understanding of its potentials and limita-
tions.

• Philosophical: Provides new insights, a new way of thinking, or a new con-
ceptual view of research.

• Opinion: States the authors’ position towards a specific topic without intro-
ducing any research results.

• Experience: Describes the personal experience of the authors in conducting
“a practice”.

Our mapping shows that the studied papers fall into only two categories,
namely Solution and Evaluation, with 33 (75%) and 11 (25%), respectively.
On the one hand, the novelty of this research field can be a reason for the
abundance of papers within the Solution category, since there are many pri-
vacy and security aspects that need to be addressed. On the other hand, this
novelty may explain the absence of papers from other categories, such as Ex-
perience, which typically requires more time to put the research approaches
into practice and develop experience in the domain.

6.4.2 Attack types

To identify the types and properties of the attacks, we consider several aspects,
namely attack’s purpose, mode, observation, and access point [55, 187]. Next,
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we introduce the common attack categories w.r.t. each of the aspects. The dis-
tribution of publications among these categories is depicted in Figure 6.4.

purpose . The attack’s purposes can be classified into two main categories.

1 Privacy attacks (inference attacks): These attacks extract information about
the training dataset, i.e., user data [55], and fall into three groups based on
the obtained information:

• Membership inference: The adversary aims to determine whether a par-
ticular individual (or a data record) belongs to the training dataset [237].

• Property inference: The adversary aims to infer features of the training
dataset, where these features are not intended to be used for the main
task of the model [81].

• Model inversion (attribute inference): The adversary aims to infer sensi-
tive features used as input to the model [114].

2 Poisoning attacks: The adversary maliciously alters the model to achieve
one of the following goals.

• Model corruption (label-flipping): The adversary corrupts the model to
reduce its overall accuracy in its main task. This attack can target specific
classes or be untargeted [259].

• Backdoor: The adversary implants a backdoor sub-task in the model
while maintaining a good accuracy of the main task. This backdoor is
used later in the production phase to exploit the model, e.g., by forcing
misclassification of a specific input [11].

Our mapping shows in Figure 6.4 that the majority of the papers focus on
privacy attacks with 27 (61%), while 17 (39%) for poisoning attacks. This may
be explained by the fact that FL is mainly promoted as a mitigation for sev-
eral privacy risks [175]. Therefore, many researchers investigate the potentials
and limitations of privacy in FL by crafting various attacks. Among the differ-
ent types of attacks, the ones that dominate the research publications are the
model inversion 16 (36%) and backdoor 13 (29%). Model inversion is one of
the most severe attacks, since the adversary, in some cases, can fully recon-
struct the user data. Backdoors are quite powerful in manipulating the model
performance in the production phase, which might leave a long-term impact
on the systems.

mode . An adversary might act in two different modes.

1 Passive: The adversary attempts to learn from the observed information,
without interrupting or deviating from the regular training process. This
mode is widely common in privacy attacks [309, 316].

2 Active: The adversary acts maliciously in the training process, e.g., they
manipulate the training data or model updates. This mode is needed for
poisoning attacks [11, 18].

Figure 6.4 shows that 27 (61%) attacks are launched in the active mode, while
24 (54%) are in the passive mode. Out of these attacks, 7 (16%) are applied
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in both modes. This distribution can be correlated with the capabilities of the
adversary in the two modes, i.e., in the active mode, the adversary is more
powerful, thus, a wider variety of attacks can be performed.

observation. The adversary’s capability to observe the parameters of the tar-
get model might vary among different attacks. We consider two possibilities.

1 Black-box: The adversary can query the model, thus, knows the inference
result of a particular input. However, they do not observe the model param-
eters [74].

2 White-box: The adversary can observe the model parameters [287]. This
capability typically enables adversaries to carry out more sophisticated at-
tacks.

As the model parameters are typically shared between the server and all the
users in FL, most of the attacks 41 (93%) assume the white-box scenario. The
black-box is considered only in 6 (14%) attacks.

access point. The adversary might exist at different locations with different
roles in the system.

1 Malicious server: In FL, the server coordinates the training process by ini-
tializing the model, disseminates the training algorithm, collects and ag-
gregates the updates from users. The server can be malicious and tries
to analyze the updates of the users to learn extra information about their
data [287].

2 Malicious user: A user can behave adversely during the training to poison
the model [18] or to infer information about other users [187]. In FL, the
model is sent to the users’ devices where the users are typically granted
full access to the model parameters. This access privilege, in turn, amplifies
the malicious users’ capabilities and enables them to perform sophisticated
attacks.

3 External eavesdropper: External adversaries that eavesdrop on the commu-
nication between the server and users, and thus, have access to the shared
gradients, might be able to reconstruct the user data [316].

Figure 6.4 illustrates that 39 (88%) attacks are conducted by users, while only
14 (31%) attacks assume the server to be malicious or curious, and 10 (23%)
papers include attacks that can be carried out by external eavesdroppers. This
reflects a keen interest in the attacks from the user side. The is can be explained
by the fact that users are usually easier to attack and that these attacks are
facilitated mainly by the distributed nature of FL.

6.4.3 Common evaluation setups

The effectiveness of the proposed attacks is mostly demonstrated through an
empirical evaluation. This evaluation needs to be extensive and comprehensive
to provide sufficient evidence for the attack validity under specific settings. In
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Figure 6.5: Target model types used to evaluate the attacks. In most of the papers, the proposed
attacks were evaluated against more than one model. The red bars refer to the NN models, while
the bars in blue show other kinds of models†.

this section, we examine the experimental settings commonly used for evalu-
ating FL attacks by looking into four aspects, namely target models, datasets,
countermeasures, and implementation technologies.

target models . We refer here to the joined ML model that is trained through
the FL process, thus, targeted by the attack. The type of the model can vary,
as FL by definition is not restricted to specific types. The attacks might be
designed to target one or multiple model types, or they can be completely
model-agnostic. On a high level, we can classify the target models in the liter-
ature into NN models and non-NN models.

The mapping results reveal that only 3 (6%) attacks target non-NN models.
As shown in Figure 6.5, these three attacks consider Logistic Regression (LR)
[74, 168], while only one of them targets also Decision Tree (DT), and Random
Forest (RF) [168]. Other attacks mainly focus on NN models, which can have
diverse architectures. Interestingly, we observe that the model type Convolu-
tional Neural Network (CNN) is dominant as a target model in 37 (84%) attacks.
This high attention can be explained by the fact that CNNs are considered the
state of the art for a wide variety of computer vision applications [107]. Other
NN models such as Recurrent Neural Network (RNN) (e.g., Long Short-Term
Memory) and Autoencoder (AE) (e.g., Transformers) were the target of attacks
only twice in the literature. Furthermore, one attack is claimed to be model-
agnostic [170].

datasets . To train the target model, various datasets were used in the litera-
ture. These datasets can be categorized into three groups based on the type of
the data: Text, image, and key-value pairs. In total, 42 distinct datasets were
used in the attack evaluations, and they are:

1 Text: CLiPS Stylometry Investigation [270], Yelp-author [123], Reddit [100],
Amazon Review [192].
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Figure 6.6: Datasets used more than once in the literature to evaluate attacks. In most of the
papers, the proposed attacks were evaluated using more than one dataset. The red bars refer to
the image datasets, while the bars in blue show the key-value datasets†.

2 Image: MNIST [145], Fashion-MNIST [294], LFW [245], CelebA [305], AT&T
[225], CIFAR [140], CH-MNIST [212], ChestX-ray8 [284], EndAD [211], EM-
NIST [45], Fer-2013 [92], HAM10000 [262], ImageNet [58], PIPA [311], SVHN
[188], PubFig [141], Omniglot [142], mini-ImageNet [271], VGG2Face [34],
fMRI [41], CASIA [152], Face [215].

3 Key-value: Purchase [237], BC Wisconsin [64], Adult [64], FourSquare [299],
Human Activity Recognition [7], Landmine[252], Texas-100 [237], UNSW-
Benign [239], Parkinson Data [155], Yelp-health [119], Bank Marketing [185],
Credit Card [87], Drive Diagnosis [64], News Popularity [77], KDDCup99

[112], DIoT [190].

Over 69% of these datasets are used only once in the literature. The more
prominent datasets are shown in Figure 6.6, where MNIST and CIFAR are the
most common ones, used in 25 (56%) and 18 (40%) attacks, respectively. This
conforms also with the common datasets in the ML community [101]. The
popularity of MNIST can be due to several reasons, e.g., its small size, which
enables researchers to train their models quickly and report results. In addi-
tion, MNIST as well as CIFAR are widely supported by many ML frameworks,
thus, they can be easily used [294]. The average number of datasets used per
paper is 2.6, with a maximum of 7 and a minimum of 1.

countermeasures One of the main methods to evaluate the proposed at-
tacks is measuring their effectiveness against the state-of-the-art defense mech-
anisms. We explored the mechanisms used in the examined papers; they can
be classified into three main categories.

1 Perturbation: This mechanism reduces the information leakage about the
users in FL by applying one of the following perturbation techniques.

• Noisy updates: A user may add noise to their data [213] or the updates
before sending them to the server [316]. The noise can also be added on
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Countermeasures

Cryptography Sanitization

Noisy updates

Restricted updates

Regularization
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 13 (29%)   3 (7%)   12 (27%) 
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Homomorphic
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 2 (4%) 

 2 (4%)
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Figure 6.7: Countermeasures classification with the paper distribution. The percentage
is w.r.t. the total number of papers 44. Some categories are not exclusive, therefore,
the papers might sum up to more than 44. More details on the individual papers can
be found in Table 6.5. Only 52% of the attacks are evaluated against countermeasures.
Noisy updates is the most used technique with 25%.

the server side [176]. The amount of noise can be carefully specified to
achieve differential privacy.

• Restricted updates: Before sharing the updates with the server, a user
can limit the number of updates [235], or compress the updates, e.g., by
applying quantization [137].

• Regularization: While training the model locally on the user’s device,
the user can apply regularization techniques such as dropout, or batch
normalization [261].

2 Cryptographic approaches: exposing the updates of an individual user can
lead to severe information leakage about their training data [316]. Several
techniques based on cryptography are proposed to mitigate this risk.

• Homomorphic encryption: Users can encrypt their updates with homo-
morphic encryption before sharing them with the server. Because of the
homomorphic property, the server can compute the aggregation of the
encrypted updates from all users to obtain an updated and encrypted
global model. This model then is shared with the users, who can decrypt
it [8].

• Secret sharing: Users can encrypt their updates with keys derived from
shared secrets. That is, the server needs to aggregate the encrypted up-
dates and thus the shared secrets from a sufficient number of users in
order to be able to decrypt the aggregate [23].

• TEE: The aggregation process on the server can be moved into a TEE, such
that the executed code can be attested and verified to not leak individual
users’ updates [132].

3 Sanitization: This mechanism is proposed to mitigate poisoning attacks. In
this respect, two defense mechanisms have been developed in the literature
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• Robust aggregation: To limit the impact of malicious updates on the
global model, different update aggregation methods (other than the de-
fault weighted averaging [175]) are proposed. For instance, the mean of
the updates can be trimmed, or instead of the mean, the median of the
updates is used as the aggregate to optimize the global model [304].

• Anomaly detection: The malicious updates are usually assumed to be
anomalies. To identify the anomalous updates (outliers), various tech-
niques can be used, such as clustering [233] or measuring similarity with
a reference set of samples [38].

The mapping results are depicted in Figure 6.7, where we see that perturbation
and sanitization are commonly used in 13 (29%) and 12 (27%) of the papers,
respectively. This corresponds with the view of many researchers that pertur-
bation techniques (particularly, differential privacy) are the de facto standard
for privacy-preserving ML [149]. Another reason for the high popularity of
perturbation techniques can be that they have been extensively researched not
only in the FL community, but in the ML community in general. In contrast,
sanitization is specially used only in federated settings. On the other hand,
cryptography-based approaches are considered for the attack evaluation in a
fewer number of papers (3 i.e. 7%). One explanation could be that these ap-
proaches provide formally proven guarantees, so that empirical experiments
are not required to evaluate their impact on the attacks. Therefore, they are
mostly mentioned only briefly in the papers under our review, without a thor-
ough discussion.

implementation technologies . To ease the reproducibility of the eval-
uation results, researchers are encouraged to share appropriate descriptions
of their implementations along with their source code [48]. In order to learn
about the status of the selected papers in this respect, two factors were exam-
ined:

• Technologies description: Here, we checked whether or not the authors
stated clearly which technologies they used to implement their experiments,
such as programming languages and libraries.

• Source code availability: We checked whether the source code is publicly
available or not.

Table 6.3 shows that 25 (57%) papers reveal information about the technologies
used in their implementation. A special notice can be put on the popularity of
Python as a programming language and PyTorch as a specific Python package
in this field. The large share of Python-based implementations can be due to
the fact that Python is easy to use and provides a large number of packages
for ML tasks. PyTorch is user-friendly and suitable to create custom models,
for that and other reasons, it is widely used in the ML research community.
On the other hand, 19 (43%) papers do not report detailed information about
their implementation. Moreover, the mapping shows that the source code of
only 6 (14%) papers is shared publicly.
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Reported Unreported

Python 23 (52%)
-PyTorch 18 (41%)

Public source code 6 (14%)

Total 25 (57%) 19 (43%)

Table 6.3: Paper distribution w.r.t. reporting details on the implementation techniques†.

6.5 discussion

In this section, first, we derive gaps in the research field from the mapping
results in Section 6.4. Second, we highlight several special assumptions made
in the problem settings of some papers that might reduce the applicability of the
attacks in real-world scenarios. Third, we identify fallacies in the evaluation of
the attacks and discuss their implications on the generalizability of the results.

6.5.1 Main research gaps

We base our discussion here on the results of Section 6.4. In addition, we are
looking at how the papers are distributed over pairs of categories by the means
of bubble charts, as shown for example in Figure 6.8, where we show how
attacks with specific purposes are distributed w.r.t. the access point. It is worth
mentioning that the categories in some classification schemes are not disjoint,
therefore, the total number of publications may sum up to more than 44.

gap 1

Little research is conducted about attacks on the server side and by eavesdrop-
pers.

Description. Figure 6.8 illustrates that membership, property inference, model
corruption, and backdoor attacks are rarely studied on the server side or with
an eavesdropper adversary. This might be due to two reasons. First, it is widely
assumed in the literature that FL is coordinated by a trusted server. Second, ap-
proaches that protect against curious servers and eavesdroppers, such as secure
aggregation [23], were proposed and widely used by the research community
because of the firm protection guarantees they achieve. However, applying such
approaches still incurs nonnegligible overhead [241], despite the improvements,
which leaves open questions about their efficiency in real-world applications.

Implications. FL is mainly introduced for privacy protection, meaning that
privacy-critical (personally identifiable) data is supposed not to reach the server,
making server-side attacks seem less relevant (similar for eavesdroppers). Addi-
tionally, servers (service providers) are supposedly better equipped to repel at-
tacks compared with users. However, numerous events in recent years showed
that providers were subjects to many successful attacks, where user data was
breached [174]. In such server-side attacks, the adversaries could access far
more (or more valuable) data than in user-side attacks. Therefore, it is of high
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Figure 6.8: Bubble chart that shows the paper distribution on two dimensions: attack purpose
and access point. Aside from model inversion, we notice low number of attacks for the server
and eavesdropper access point†.

importance to study how attacks by a curious or compromised server can im-
pact the FL process. We argue that attacks on the server side are becoming even
more relevant in FL especially considering the emergence of applying FL in dif-
ferent architectures, such as hierarchies in edge networks [118, 159, 232]. In
such environments, there are multiple entities that play the role of intermediate
servers, i.e., collect and aggregate the updates from users, thus, introducing
more server-type access points.

For eavesdroppers, recent model inversion attacks on gradients were proved
to successfully reconstruct user training data [313, 316]. This opens the door for
more investigations about how gradients or model updates can be exploited to
apply other attack types, especially privacy attacks.

gap 2

Very little effort is devoted to studying attacks on ML functions other than clas-
sification.

Description. ML models can be used to fulfill a variety of functions, such as
classification, regression, ranking, clustering, and generation. However, our SMS

shows that there is a heavy bias towards the classification function with 42 (95%)
of the attacks. Other functions, namely regression, generation, and clustering
were addressed in only 4 (9%), 1 (2%), and 1 (2%) attacks, respectively.

Implications. This gap introduces a lack of knowledge w.r.t. a large spectrum
of models and applications that have different functions than classification.
These functions are of high importance in many domains, e.g., ranking in nat-
ural language processing [303] and recommender systems [202]. It is an open
question how the existing attacks impact these functions. It is worth mention-
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ing that a similar gap was also observed for adversarial attacks in general ML

settings by Papernot et al. [203].

gap 3

There is a lack of research regarding attacks on ML models other than CNNs.

Description. Although FL is not restricted to NN models, we have seen in the
previous section that only 3 (6%) attacks target non-NN models. At a closer look,
we depict in Figure 6.9 the types of models targeted by the different attacks.
We notice that non-NN models were never targeted by membership inference
or backdoor attacks. For NN models, we observe that RNNs were not studied
under any type of privacy attacks or model corruption attacks. Additionally,
no research has been carried out yet on backdoors for DNNs. The AEs also have
received very little attention with only 2 privacy attacks. Overall, this illustrates
the limited diversity in the literature considering the target models.

Implications. NN models are the state of the art in several applications, e.g.,
face recognition [12], however, other ML models are still of high value and usage
in real-world systems, e.g., genome analysis [54], culvert inspection [82], and
autocompletion suggestions filtering [302], to name a few.

Within the NN models, there is a variety of network architectures, and as we
show above, many of these architectures are not well covered in the evaluation
of the attacks, even architectures that are widely used in several applications,
e.g., RNN, which is used in Gboard [104]. Consequently, the evaluations of the
proposed attacks fall short of providing evidence on how the attacks will per-
form against other network architectures.

Overall, we notice very little effort devoted to studying the influence of using
different model architectures on the effectiveness of the proposed attacks. Only
in one paper [85], the authors adequately analyzed the effects of the NN archi-
tecture on the success of their attack. Covering this aspect in the evaluation of
the attacks is essential to improve the generalizability of the findings.

gap 4

Limited investigations are conducted on attacks targeting the ground-truth la-
bels of user data.

Description. In supervised learning, users train models with their data (e.g.,
images) and ground-truth labels (i.e., annotations correctly describe the context
of the data). For example, to train an image recognition model, users would
need images and labels that refer to the objects found in the images, e.g., “per-
son”, “car”, or “animal”. A considerable number of works (10, i.e. 23%) have
shown that the shared gradients in FL can be exploited by adversaries to recon-
struct the user training data, e.g., [8, 85, 288, 315]. On the other hand, only 3

(7%) papers [148, 313, 316] investigated attacks that can disclose the ground-
truth labels of users.

105



systematic analysis of threats in federated learning

M
em

be
rs
hi
p 
In
fe
re

nc
e

M
od

el
 In

ve
rs
io
n

Pr
op

er
ty
 In

fe
re

nc
ePrivacy attacks

1 1

1

1

11

1 13

5 415

253

M
od

el
 C

or
ru

pt
io
n

Ba
ck

do
or

Poisoning Attacks

LR

DT

RF

AE

RNN

DNN

CNN

MLP

Target model type

1

2

2

7 11

21

N
N

s 
M

o
d

e
ls

N
o

n
-N

N
s

Figure 6.9: Bubble chart that shows the paper distribution on two dimensions: attack purpose
and target model. We see very low frequency of all attack types on non-NN models. Also, NN

models as Recurrent Neural Network (RNN) and Autoencoder (AE) receive low attention in vari-
ous attacks†.

Implications. FL can be used in many applications where ground-truth labels
are of highly sensitivity. For instance, medical institutes leverage distributed
learning to build joint ML models for disease diagnosis [79, 130]. In several
cases, medical data is generated on patients’ personal devices [49], e.g., mobile
phones [65], thus, an application of FL could bring potential benefits. In that and
many other scenarios, training models while preserving user privacy would be
essential. Attacks that target the ground-truth labels of user data could lead to
the disclosure of their diseases, which is a serious privacy violation. Therefore,
it is important to further explore this topic and investigate the extent to which
gradients can reveal information about ground-truth labels.

6.5.2 Special assumptions in problem settings

There are a number of attacks that succeed only under special assumptions.
These assumptions do not apply in many real-world scenarios, resulting in
limiting the applicability of these attacks. Here, we highlight the issues of these
assumptions and discuss their implications.
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assumption issue 1

The attacks are effective only under special values of the hyper-parameters of
NN models.

Description. The hyper-parameters of NN models include, among others, batch
size, learning rate, activation function, and loss function. Tuning the hyper-
parameters is crucial to achieve high accuracy in the learning task, especially
when comparing different models. Dacrema et al. [48] showed that the lack
of optimization for the hyper-parameters of the baselines leads to phantom
progress in the field of neural recommender systems. Therefore, the hyper-
parameters need to be carefully and fairly optimized to meet the application
requirements. On the contrary, we found in the studied papers several assump-
tions on special values of hyper-parameters that are not commonly used or
might contradict the application requirements. The reason is that the effective-
ness of some proposed attacks is highly influenced by hyper-parameters, and
these attacks are possible only under such special assumptions.

Examples and Implications. In some model inversion attacks, the gradients are
used to reconstruct the training data. Zhu et al. [316] and Wei et al. [289] showed
that their attacks perform well only when the gradients are generated from a
batch size < 8. Zhao et al. [313] proposed an attack to extract the labels of the
users from gradients. However, the attack works only when the batch size is
1, which is an exceptional and uncommon value. Hitaj et al. [114] also used a
batch size of 1 to evaluate their attack on the At&T dataset.

Using small batches leads to a lack of accurate estimation of the gradient
errors, this in turn causes less stable learning. Additionally, this requires more
computation power to perform a large number of iterations, where gradients
need to be calculated and applied every time to update the weights. While FL

pushes the training to the user device, it is essential to consider the limited
resources of the user devices. Therefore, the efficiency of the local training pro-
cess is an important requirement. That is, the batches of very small sizes < 8

increase the computational overhead and are therefore not preferable for FL

applications.
Although it is insightful to point out the vulnerabilities that some special

hyper-parameters might introduce, it is of high importance to discuss the rele-
vance of these hyper-parameters to real-world problems.

assumption issue 2

The attacks succeed only when a considerable fraction of users are malicious
and participate frequently in the training rounds.

Description. In cross-device FL, a massive number of users (up to 1010) form
the population of the application. Out of these users, the server selects a subset
of users (∼ 100 [302]) randomly for every training round to train the model
locally and share their updates [175]. This random sampling is assumed to be
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uniform (i.e., the probability for a user to participate is 1/user population) to achieve
certain privacy guarantees for users, in particular differential privacy [2]. Under
these conditions, it is rather unlikely for a specific user to participate in a big
number of training rounds (� total number of rounds

user population ) or consecutive ones. However,
this was found as an assumption in a number of papers to enable some privacy
and poisoning attacks. Furthermore, several attacks require a large number of
users to collude and synchronize in order to launch an attack, which also can
be tricky to achieve in some cases.

Examples and Implications. Hitaj et al. [114] assumed that the adversary partici-
pates in more than 50 consecutive training rounds in order to carry out a recon-
struction attack successfully. A stronger assumption was made by [306], namely
to have the adversary participating in all the rounds to poison the model. This
requires the adversary to fulfill the FL training requirements [302] and to trick
the server to be selected frequently, which is a challenge per se considering the
setting described above.

State-of-the-art poisoning attacks in cross-device FL [15, 74] assumed up to
25% of the users to be malicious. Considering that cross-device FL is mainly
intended to be used by a massive number of users, the effective execution of
these attacks would require the compromise of a significant number of devices.
This in turn requires a very high effort and considerable resources, which could
make the attacks impractical at scale [231]. For instance, a real-world FL appli-
cation such as Gboard [104] has more than 1 billion users [53]. This means that
the adversary needs to compromise 250 million user devices to apply these at-
tacks successfully [231]. However, it is worth mentioning that there are many
ML applications (i.e. potential FL applications) in the market that are used by a
smaller user base. Therefore, a smaller number of compromised devices would
be required to apply the aforementioned attacks. Yet, to the best of our knowl-
edge, there is no real-world FL applications that represent this case.

It is true that the distributed nature of FL might enable malicious users to be
part of the system. However, the capabilities of these malicious users to launch
successful attacks need to be carefully discussed in the light of applied FL use
cases. Thus, the risk of these attacks is not overestimated.

assumption issue 3

The attacks can be performed when the data is distributed among users in a
specific way.

Description. FL enables users to keep their data locally on their devices, i.e., the
data remains distributed. This usually introduces two data properties; first, the
data is non-IID, i.e., the data of an individual user is not representative of the
population distribution. Second, the data is unbalanced as different users have
different amounts of data [175]. In an ML classification task, for example, this
may cause that some classes are not equally represented in the dataset. In any
FL setting, it is essential to consider these two properties. While the meaning of
IID and balanced data is clear, non-IID and unbalanced data distribution can
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be achieved in many ways [132]. In a number of papers, we found that specific
distributions are assumed to enable the proposed attacks and to draw general
conclusions.

Examples and Implications. A backdoor attack on a classification model by Bag-
dasaryan et al. [11] was claimed to achieve 100% accuracy on the backdoor
task by one malicious user participating in one training round. However, in
this work, it was assumed that only the adversary has the data of the backdoor
label, which is a strong assumption according to [80, 253]. The massive number
of users in FL suggests that the user data covers all the model classes. Therefore,
it should be considered that at least one honest user will have additional benign
data for the backdoor label.

Another example is found in the model inversion attack of [114], where the
authors assumed that all data of one class belongs to one user, and the adver-
sary is aware of that. Additionally, their attack works only when all the data
of one class is similar (e.g., images of one digit in the MNIST dataset). These
assumptions do not apply to many real-world scenarios, thus, found unreal-
istic by [187]. Moreover, the model corruption attack introduced in [259] was
launched under the setting of IID data, which contradicts the main FL assump-
tions. Similarly, Nasr et al. [187] evaluated their membership inference attack on
a target model trained with balanced data. It is worth mentioning that Jayara-
man et al. [126] showed that most membership inference attacks [163, 222, 237]
for stand-alone learning also focus only on the balanced distribution scenarios.

Overall, the way of implementing non-IID and unbalanced data distribution
needs to be (1) discussed and justified in the light of the application to assure
the setup is as realistic as possible, (2) reflected clearly in the conclusions of the
evaluation.

6.5.3 Fallacies in evaluation setups

Designing a comprehensive and realistic experimental setup is essential to
prove the applicability of the attack and the generalizability of the conclusions.
Although all the studied papers provide insightful evaluations of their pro-
posed attacks, a number of practices were followed that might introduce falla-
cies. In this section, we set out to highlight this issue by identifying six fallacies.
We discuss the implications of each fallacy on the evaluation results. Then, we
propose a set of actionable recommendations to help avoiding it.

fallacy 1

The datasets are oversimplified in terms of data content or data dimensions.

Description. The datasets are used to train and test the FL model, and also to
evaluate the attack. These datasets need to be representative of the population
targeted by the model. As we highlighted in Section 6.4, the majority of attacks
are evaluated on the image classification task. Therefore, here we focus on the
image-based datasets.
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Despite the growing calls for decreasing the usage of simple datasets, in par-
ticular MNIST [294], it is still one of the most common datasets in the deep
learning community [101]. This is due to several reasons such as its small size
and the fact that it can be easily used in deep learning frameworks (e.g., Ten-
sorflow, PyTorch) by means of helper functions [294].

MNIST was introduced by LeCun et al. [145] in 1998 and contains 70,000

gray-scale images of handwritten digits in the size of 28 × 28 pixels. Since
then, substantial advances were made on deep learning algorithms and the
available computational power. Consequently, MNIST became an inappropriate
challenge for our modern toolset [105]. In addition, the complexity of images
increased in modern computer vision tasks. That renders MNIST unrepresenta-
tive of these tasks [19].

Yet, the phenomenon of the wide usage of MNIST is also observed in the ex-
amined papers, where more than 56% of the papers (see Figure 6.6) use MNIST
as the main dataset for evaluating the effectiveness of the proposed attacks. The
second most common dataset is CIFAR, which is more complex in terms of data
content, however, it is a thumbnail dataset, i.e., images with a size of 32× 32
pixels.

It is worth mentioning that in 37 (84%) of the papers the authors evaluated
their attacks on more than one dataset, which is considered good practice. How-
ever, in a considerable number of papers (15 i.e. 34%) the authors used only
datasets that either contain simple or small (thumbnail) images.

Examples and Implications. Using oversimplified datasets can lead to the mis-
estimation of the attack capabilities. For instance, the capabilities of privacy
attacks to retrieve information about the dataset are tightly related to the na-
ture of this dataset. Consequently, the complexity and size of the images in
the dataset impact the attacks’ success rate. It is clear that obtaining complex
and bigger images require higher capabilities. This is evident in the literature
through several examples. Melis et al. [177] introduced a privacy attack that
exploits the updates sent by the users to infer the membership and proper-
ties of data samples. In [316], the authors demonstrated that the proposed
attack of [177] only succeeds on simple images with clean background from
the MNIST dataset. However, the attack’s accuracy degrades notably on the
LFW dataset and fails on CIFAR. In the same context of privacy attacks, Zhu et
al. [316] proposed the model inversion attack DLG, which reconstructs the train-
ing data and labels from gradients. Their experiments showed that DLG can
quickly (within just 50 iterations) reconstruct images from MNIST. However, it
requires more computational power (around 500 iterations) to succeed against
more complex datasets such as CIFAR and LFW. Recently, we demonstrated
in [277] that the accuracy of DLG in retrieving the labels degrades remarkably
on CelebA, which has a bigger image size than the thumbnails datasets, MNIST
and CIFAR.

Recommendations. It is challenging to find a single dataset that provides an ad-
equate evaluation of the attacks, therefore, it is essential to evaluate the attack
on diverse datasets w.r.t. image complexity and dimensions. We encourage re-
searchers to also consider real-life datasets, which pose realistic challenges for
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the models and attacks, e.g., ImageNet [58] (image classification and localiza-
tion), Fer2013 [92] (facial recognition), and HAM10000 [44] (diagnosing skin
cancers).

fallacy 2

The datasets are not user-partitioned, i.e., not distributed by nature.

Description. In FL, data is distributed among the users; each user typically gen-
erates their data by using their own device, therefore, this data has individual
characteristics [175]. The datasets used for evaluating the attacks should exhibit
this property, i.e., generated in a distributed fashion. However, only in 2 (4%)
of the papers, user-partitioned datasets were used, in particular EMNIST [45],
which is collected from 3383 users, thus, appropriate for the FL setting [253].
On the other hand, researchers in the majority of papers (42 i.e. 96%), used pre-
existing datasets that are designed for centralized machine learning [165], thus,
unrealistic for FL [32]. These datasets then are artificially partitioned to simulate
the distributed data in FL. One additional issue with these datasets is that they
are by default balanced, while FL assumes the user data to be unbalanced [175].

Examples and Implications. The poisoning attacks proposed in [11] and [19]
were evaluated on centralized datasets, such as Fashion-MNIST and CIFAR, for
image classification, where the attacks were reported achieving 100% accuracy
in the backdoor task. However, by using EMNIST as a standard FL dataset, Sun
et al. [253] illustrated the limitations of the previous attacks. More precisely,
they showed that the performance of the attacks mainly depends on the ratio
of adversaries to the population. Moreover, the attacks can be easily mitigated
with norm clipping and “weak” differential privacy.

Although this fallacy was discussed in previous works [32, 165], its impli-
cations on the evaluation results need to be investigated further and demon-
strated with empirical evidence.

Recommendations. FL-specific datasets should be used for adequate evaluation
of the attacks. Researchers have recently been devoting more efforts to curating
such datasets. The LEAF framework [32] provides five user-partitioned datasets
of images and text, namely FEMNIST, Sent140, Shakespeare, CelebA, and Red-
dit. Furthermore, Luo et al. [165] created a street dataset of high-quality images,
which is also distributed by nature for FL.

fallacy 3

The attacks are evaluated against simple NN models.

Description. We observe a major focus on attacking NN models in federated
settings. These models can have a variety of architectures. The complexity of
these architectures vary w.r.t. the number of layers (depth), the number of neu-
rons in each layer (width), and the type of connections between neurons. Our
study shows that researchers tend to use simple architectures to evaluate their
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attacks in 30 (68%) papers, e.g., 1-layer CNN [70] or 1-layer MLP [15]. Only
in 14 (32%) papers, the authors considered complex state-of-the-art CNN mod-
els, such as VGG [238], ResNet [109], and DenseNet [122], the winners of the
famous ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [220].

Examples and Implications. It is reasonable to start evaluating novel attacks
on simple models to facilitate the analysis of the initial results. However, this is
insufficient to draw conclusions on the risk posed by these attacks to real-life FL-
based applications for two reasons. First, modern computer vision applications,
e.g., biometrics, use advanced models, mostly with sophisticated architectures,
to solve increasing complex learning objectives [135]. Second, in deployed sys-
tems, a ML model typically interacts with other components, including other
models. This interaction can be of extreme complexity, which might introduce
additional challenges for adversaries [72]. For instance, in the Gboard app [104],
as a user starts typing a search query, a baseline model determines possible
search suggestions. Yang et al. [302] utilized FL to train an additional model
that filters these suggestions in a subsequent step to improve their quality.

Several model inversion attacks reconstruct the training data by exploiting
the shared gradients [70, 279, 289]. In particular, they exploit mathematical
properties of gradients in specific model architectures to infer information about
the input data. For example, Enthoven et al. [70] illustrate that neurons in fully
connected layers can reconstruct the activation of the previous layer. This obser-
vation is employed to disclose the input data in fully connected models with
high accuracy. However, the same attack achieves less success when the model
contains some convolutional layers.

The NN capacity (i.e., number of neurons) also influences the performance of
some attacks, in particular backdoors. It is conjectured that backdoors exploit
the spare capacity in NNs to inject a sub-task [157]. Thus, larger networks might
be more prone to these attacks. However, this interesting factor still needs to
be well investigated [253]. In this regard, it is worth mentioning that increasing
the capacity, e.g., for CNNs, is a common practice to increase the model accu-
racy. However, recent approaches such as EfficientNet [254] call for scaling up
the networks more efficiently, achieving better accuracy with smaller networks.
This development in the CNNs should be also considered in the evaluation of
the attacks.

Recommendations. We highly encourage the researchers to consider the state-
of-the-art model architectures that are widely used in the application, where
they apply their attack. In addition, it would be insightful for a more realistic
security assessment to consider evaluating the proposed attacks on deployed
systems that contain multiple components.

fallacy 4

The attacks are designed for cross-device scenarios (massive user population),
yet evaluated on a small number of users 6 100.

Description. FL can be applied in cross-silo or cross-device settings. In the
cross-silo setting, users are organizations or datacenters (typically 2-100 users
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in total), whereas in the cross-device scenario, users are a very large number
of mobile or IoT devices (massive up to 1010) [132]. For instance, in applied
use cases of FL, Hard et al. [104] reported using 1.5 million users to train the
Coupled Input and Forget Gate language model [95]. Yang et al. [302] trained a
logistic regression model (for the Gboard application) for 4000 training rounds,
where they employed 100 users in each round.

Although many of the studied papers do not explicitly use the term “cross-
device” to describe their scenario, they refer mainly to users as individual users
who have personal data. However, 27 (61%) of the papers provide an evaluation
with a total population of 6 100 users. Moreover, 12 (27%) of the papers did
not report at all the user population in their experiments.

Examples and Implications. The total number of users and the users partici-
pating per round in FL determine the influence of a single user on the global
model. For privacy attacks, this means that each user contributes considerably
to shape the model parameters, thus, the parameters more prominently reflect
the user personal data. Shen et al. [232] demonstrated that increasing the user
population led to a decrease in the accuracy of their property inference attack.
For poisoning attacks, using a small number of users amplifies the impact of
the poison injected by malicious ones. This was shown in the experiments of
[19], where the accuracy of the backdoor task degraded with bigger user popu-
lations.

Recommendations. We recommend researchers to consider a large number of
users to evaluate novel attacks. For that, it is helpful to use the datasets pro-
vided by LEAF [32], which contain more than 1000 users. In case large-scale
evaluation is not feasible, researchers are encouraged to discuss at least the
potential implications of different user populations on their attacks.

fallacy 5

The attacks are not evaluated against existing defense mechanisms.

Description. An attack becomes ineffective, if it requires the adversary to make
a disproportional large effort to overcome a small defense mechanism [72]. Pro-
posed attacks need to be evaluated in this respect with state-of-the-art defenses.
However, we showed in Section 6.4.3, Figure 6.7, that 21 (48%) of the proposed
attacks were not evaluated against any of the defense mechanisms. In most
of these papers, the authors only discussed theoretically potential countermea-
sures to mitigate their attacks.

Examples and Implications. Real-world FL scenarios usually involve the use of
various defense mechanisms. A rigorous and realistic assessment of the effec-
tiveness of the attacks therefore requires evaluation against appropriate state-
of-the-art defense mechanisms. Here, it is important to distinguish between the
different categories of defense mechanisms. On the one hand, cryptography-
based defenses typically offer formally proven properties, so their impact on
attacks can be adequately discussed in some cases without empirical evidence.
In these cases, however, system efficiency remains an issue that should be con-
sidered. On the other hand, the impact of other defense categories, namely
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Figure 6.10: chart that shows the paper distribution on two dimensions: attack purpose and
countermeasures. We see that perturbation and cryptography-based countermeasures are mainly
used for privacy attacks, while sanitization is used for poisoning attacks†.

perturbation and sanitization, against attacks require experimental analysis, as
these defenses usually introduce a loss in model accuracy. Thus, the defenses
need to be customized to balance the trade-off between accuracy and privacy.
An honest discussion if that balance can actually be achieved is also critical—
sufficient privacy may lead to an unbearable accuracy loss. In Figure 6.10, we
see that most of the implemented defenses in the literature are from these two
categories. We see also that perturbation is mainly used for privacy attacks,
which reduces the information leakage about individuals, whereas sanitization
mitigates the impact of malicious updates from adversaries, thus, used against
poisoning attacks.

Recommendations. We highly recommend evaluating novel attacks against a
number of appropriate state-of-the-art defenses. For implementing perturba-
tion approaches, emerging libraries such as Opacus1 and Tensorflow Privacy2

can be used.

1 https://github.com/pytorch/opacus
2 https://github.com/tensorflow/privacy
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fallacy 6

The results of the experimental evaluations are not easily reproducible.

Description. The majority (97%) of the proposed attacks are validated through
empirical experiments. To accurately reproduce the results of these experiments
by other researchers, several practices need to be considered. In our analysis,
we take into account three main practices: (1) using publicly available datasets,
(2) reporting technical details about the implementation, and (3) publishing
the source code. Our study shows in Section 6.4.3 that public datasets were
used in all the examined papers, which is a good practice. However, 19 (43%)
of the papers did not report any details about the technologies used in the
implementation. Furthermore, the authors of 38 (86%) of the papers did not
publish their source code.

Examples and Implications. Dacrema et al. [48] reported that reproducibility
is one of the main factors to assure progress for research, especially with ap-
proaches based on deep learning algorithms. To conduct a proper assessment
of a novel attack, researchers usually compare it with previous attacks as base-
lines. Evaluating the different attacks under different settings and assumptions
hinders this direct comparison. That is, researchers have to re-implement the
respective attacks to reproduce their results under different settings. This be-
comes even more challenging when the authors do not describe their experi-
ment setups and parameters to the extent of full reproducibility.

Recommendations. We encourage all researchers to share their source code and
detailed descriptions of their setups. We also recommend using libraries and
benchmark frameworks that support FL, namely Tensorflow-federated [198],
PySyft [221], LEAF [32], FATE [301], and FedML [108]. This in turn will help
researchers to implement their ideas more easily and improve the consistency
of implementations and experiment settings across different papers.

6.6 conclusion

Despite the privacy advantages of FL, the literature showed that the user data
still can be prone to several threats. In this chapter, we carried out a system-
atic mapping study based on recent publications that address attacks in the FL

setting. For that, we analyzed 44 relevant papers published between 2016 and
the first quarter of 2021. We structured these papers in classification schemes
regarding attack types and evaluation settings.

Our analysis indicated the prevalence of works focusing on the classifica-
tion function and on neural network models, CNN models in particular, which
hardly reflects the diversity of ML algorithms. We additionally examined the as-
sumptions of the proposed attacks to identify those with restricted applicability
in the context of real-world scenarios. These assumptions range from choosing
unorthodox values of hyper-parameters to constructing special kinds of data
distribution among users. We further identified six fallacies in the evaluation
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of the attacks, which affect the validity of the results and lead to overestimat-
ing the effectiveness of the attacks. For instance, the usage of overly simple or
centralized datasets was found in the majority of the publications. Moreover,
close to half of the attacks were proposed without considering the state-of-
the-art defense mechanisms. Notably, there is ambiguity regarding issues on
reproducible research. As a constructive step, we presented several actionable
recommendations to mitigate these identified fallacies by using modern mod-
els, federated learning-specific datasets and frameworks. Overall, our study re-
vealed that each of the examined papers contains at least one of the special
assumptions or is affected by one of the evaluation fallacies. Thus, the effective-
ness of the attacks in real-world scenarios needs to be further investigated and
supported by empirical evidence.

In the context of our thesis, this study provided a structured overview that
helped us to orient our research towards novel contributions that address the
existing gaps. In the next chapter, we tackle one of these gaps, in particular,
we investigate the leakage of ground-truth labels in FL. We demonstrate this
leakage by proposing a new attack. Using our findings on the assumptions is-
sues and evaluation fallacies, we carefully craft our assumptions and evaluation
setting for our attack to avoid the identified issues and fallacies.
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1 Hitaj et al.[114] 2017 C,R A S MV A W U
2 Bagdasaryan et al.[11] 2018 J,R A S BD A W U
3 Bhagoji et al. [18] 2018 W A,I S BD A W U
4 Bhagoji et al. [19] 2019 C,R A,I S BD A W U
5 Wang et al.[287] 2019 C,R A S MV A,P W S
6 Nasr et al.[187] 2019 C,R A S MI A,P W,B U,S
7 Zhu et al.[316] 2019 C,R A S MV P W U,S,E
8 Wang et al.[281] 2019 R A S PI P W U
9 Melis et al.[177] 2019 C,R A S MI,PI A,P W U

10 Mao et al.[172] 2019 C A S MI,MV A W U
11 Liu et al. [158] 2019 C,R A S MI P W U
12 Sun et al.[253] 2019 R I E BD A W U
13 Fang et al.[74] 2019 R A S MC A W,B U
14 Zhang et al.[307] 2019 C A S BD A W U
15 Mahloujifar et al.[170] 2019 C A S BD A W U,S
16 Tomsett et al.[260] 2019 C I S BD A W U
17 Cao et al.[33] 2019 C A E BD A W U
18 Baruch et al.[15] 2019 R A S MC,BD A W U
19 Fung et al.[80] 2019 R A S,E MC,BD A B U
20 Zhao et al.[313] 2020 R A S MV P W U,S,E
21 Wei et al.[289] 2020 R A E MV A W U,S,E
22 Pustozerova et al.[213] 2020 W A E MI P W U
23 Geiping et al.[85] 2020 R A S MV A,P W S,E
24 Sun et al.[252] 2020 R A S MC A W U
25 Nguyen et al.[191] 2020 W A S BD A B U
26 Chen et al.[38] 2020 C,R A S BD A W U
27 Song et al.[243] 2020 J A S MV A,P W S
28 Zhang et al.[309] 2020 C A S MI P W U
29 Zhang et al.[306] 2020 J A S MC,BD A W U
30 Tolpegin et al.[259] 2020 C,R A S MC A W U
31 Luo et al.[168] 2020 R A S PI P W U
32 Zhu et al.[315] 2020 R A S PI P W U,E
33 Mo et al.[182] 2020 R A S MV P W U
34 Wu et al.[293] 2020 C A S MV P W U,S,E
35 Wang et al.[285] 2020 R A,I S MV P W U,S,E
36 Xu et al.[297] 2020 C A E PI A,P W U
37 Chen et al.[39] 2020 C A E MI P W U
38 Lu et al.[164] 2020 R A,I E MI P W E
39 Xu et al.[298] 2020 C A E MV A W U
40 Qian et al.[215] 2020 R A E MV P W U,S,E
41 Xie et al.[295] 2020 C,R A E MC A,P B U
42 Wainakh et al.[277] 2021 C A S MV P B,W U,S,E
43 Shen et al.[232] 2021 J A E MV P W U,S
44 Enthoven et al.[70] 2021 R A S MV P W S

Acronyms | Venue: Conference (C), Public Repository (R), Journal (J), Workshop (W) | Affil-
iation: Academic (A), Industrial (I) | Type of Research: Solution (S), Evaluation (E) | Attack
Purpose: Membership Inference (MI), Model Inversion (MV), Property Inference (PI), Model
Corruption (MC), Backdoor (BD) | Attack Mode: Active (A), Passive (P) | Observation: White
Box (W), Black Box (B) | Access Point: Server (S), User (U), Eavesdropper (E).

Table 6.4: Mapping results for the studied papers w.r.t. meta data and attacks properties†.
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1 Hitaj et al.[114] CNN 2 NU 7 7 t7
3 Bagdasaryan et al.[11] CNN,RNN 2 AD,NU,RA 7 3 pt
3 Bhagoji et al. [18] CNN 1 7 7 ? 7

4 Bhagoji et al. [19] CNN,MLP 2 RA 7 ? 7

5 Wang et al.[287] CNN 2 7 7 ? 7

6 Nasr et al.[187] CNN,MLP 3 7 7 3 pt
7 Zhu et al.[316] CNN,AE 4 NU,RU,SS,HE 3 3 pt
8 Wang et al.[281] CNN,MLP 4 RU,Reg 7 3 pt,sk
9 Melis et al.[177] CNN 7 RU,Reg,NU 7 ? 7

10 Mao et al.[172] CNN,DNN 2 7 7 ? 7

11 Liu et al. [158] CNN,AE 3 7 7 ? 7

12 Sun et al.[253] CNN 1 NU,Reg 3 3 tf,tff
13 Fang et al.[74] LR,CNN,DNN 4 AD 7 ? 7

14 Zhang et al.[307] CNN 2 7 7 3 pt
15 Mahloujifar et al.[170] 7 7 7 7 ? 7

16 Tomsett et al.[260] CNN 1 7 7 3 pt
17 Cao et al.[33] CNN 1 RA 7 ? 7

18 Baruch et al.[15] CNN,MLP 2 AD,RA 7 3 pt
19 Fung et al.[80] CNN 4 AD,RA 7 3 sk
20 Zhao et al.[313] CNN 3 7 3 3 pt
21 Wei et al.[289] CNN,MLP 5 NU,Reg 7 ? 7

22 Pustozerova et al.[213] MLP 1 NU 7 ? 7

23 Geiping et al.[85] CNN 3 7 7 ? 7

24 Sun et al.[252] CNN 4 7 7 ? 7

25 Nguyen et al.[191] RNN 3 NU,AD,Reg 7 3 pt
26 Chen et al.[38] CNN 2 AD 7 ? 7

27 Song et al.[243] CNN 2 HE,RA,RU,TEE 7 3 kr
28 Zhang et al.[309] 7 1 7 7 3 pt,kr,tf,sk
29 Zhang et al.[306] CNN 3 AD 7 3 pt
30 Tolpegin et al.[259] CNN,DNN 2 AD 3 3 pt
31 Luo et al.[168] LR,DT,RF,MLP 4 NU,Reg 7 3 pt,sk
32 Zhu et al.[315] CNN,DNN 2 TEE 3 3 pt
33 Mo et al.[182] CNN,DNN 3 7 3 3 pt,th
34 Wu et al.[293] CNN 3 NU,RU 7 3 tf
35 Wang et al.[285] CNN,DNN 4 7 7 3 pt
36 Xu et al.[297] CNN 2 7 7 ? 7

37 Chen et al.[39] CNN 2 7 7 3 pt,kr,tf
38 Lu et al.[164] MLP 2 7 7 ? 7

39 Xu et al.[298] LR,MLP 2 7 7 3 kr,tf,tff,f
40 Qian et al.[215] CNN,MLP 6 NU 7 ? 7

41 Xie et al.[295] CNN 1 RA 7 ? 7

42 Wainakh et al.[277] CNN 2 7 7 3 pt
43 Shen et al.[232] CNN,MLP 4 7 7 ? 7

44 Enthoven et al.[70] CNN,MLP 2 7 7 ? 7

Acronyms | Target Model: Convolutional Neural Network (CNN), Multilayer Perceptron
(MLP), Deconvolutional Neural Network (DNN), Recurrent Neural Network (RNN), Autoen-
coder (AE), Logistic Regression (LR), Decision Tree (DT), Random Forest (RF) | Countermea-
sures: Noisy update (NU), Restricted Updates (RU), Regularization (Reg), Secret Sharing (SS),
Homomorphic Encryption (HE), Robust Aggregation (RA), Anomaly Detection (AD), Match-
ing Networks (MN) | Libraries: PyTorch (pt), Torch7 (t7), Tensorflow (tf), TensorflowFeder-
ated (tff), Keras (kr), Scikit-learn (sk), Theano (th), Fate (f).

Table 6.5: Mapping results for the studied papers w.r.t. evaluation setups†.
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7
L A B E L L E A K A G E F R O M G R A D I E N T S

In the previous chapter, we presented a thorough study on the attacks against
FL, and we highlighted several gaps in this research field. One of these gaps is
the lack of investigation on threats against the ground-truth labels of user data.
Discovering as-yet-unknown threats is a common scientific practice, as it leads
researchers and practitioners to find remedies (ideally before attackers exploit
the threat), resulting in a very deep understanding of the technologies at hand.
Therefore, in this chapter, we contribute a novel attack that discloses the user
ground-truth labels by exploiting the shared gradients in a federated setting.

7.1 introduction

The general principle of FL is currently believed to reduce the risk and severity
of privacy breaches compared to the classical centralized ML setting. That is
because personal information (in the sense of primary data i.e. data samples
or ground-truth labels) does not leave the user, and sharing learning gradi-
ents does not supposedly reveal information about the user [316]. However, a
considerable number of recent works have shown that gradients can in fact
be exploited to reconstruct the users’ training data [8, 85, 288, 315]. On the
other hand, protecting the users’ ground-truth labels from possible leakage has
received only limited attention [148, 313, 316], mainly focusing on gradients
generated from a small number of data samples (small batches) or binary clas-
sification tasks. Label leakage, however, is a considerable risk for FL. Both, FL as
well as the more superordinate setting of distributed ML are used in many ap-
plications where ground-truth labels can contain highly sensitive information.
For example, in the medical sector, hospitals employ distributed learning to col-
laboratively build ML models for disease diagnosis and prediction [79, 130]. In
some cases, the medical data is collected directly from the patients’ personal de-
vices [49], e.g., mobile phones [65], where an application of FL could introduce
many potential benefits. Building models in that and many other settings, while
maintaining user privacy, would be crucial. Leaking the ground-truth labels of
the users’ data might disclose their diseases, which is a severe violation of pri-
vacy. It is essential to highlight this issue and explore to what extent gradients
can leak information about ground-truth labels. For this purpose, developing
privacy attacks that exploit gradients is of a high importance in order to foster
research and development on the mitigation of respective privacy risks.

7.1.1 Summary of contributions

In this chapter, we propose Label Leakage from Gradients (LLG), a novel attack
to extract ground-truth labels from shared gradients trained with mini-batch
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label leakage from gradients

Stochastic Gradient Descent (SGD) for multi-class classification. The construc-
tion of LLG is based on a combination of mathematical proofs and heuristics
derived empirically. The attack exploits two properties that the gradients of
the last layer of a neural network have: (P1) The direction of these gradients
indicates whether a label is part of the training batch. (P2) The gradient magni-
tude can hint towards the number of occurrences of a label in the batch. Here,
we formalize these properties, provide their mathematical proofs, study an ex-
tended threat model, and conduct an extensive evaluation. The key results of
the evaluation and their contexts are as follows.

• We consider four benchmark datasets, namely MNIST, SVHN, CIFAR-100,
and CelebA. Results show that LLG achieves a high success rate despite the
datasets having different classification targets and complexity levels.

• We consider two FL algorithms, namely FedSGD and FedAvg [175]. Results
show that for untrained models, LLG is more effective under FedSGD, yet
poses a serious threat to expose the ground-truth labels under FedAvg as
well.

• We study LLG considering different capabilities of the adversary. Experi-
ments demonstrate that an adversary with an auxiliary dataset, which is
similar to the training dataset, can adequately extract the ground-truth la-
bels with an accuracy of > 98% at the early stage of the model training
under the FedSGD algorithm.

• We show that the simple LLG attack can outperform one of the state-of-the-
art optimization-based attacks, Deep Leakage from Gradients (DLG) [316],
under several settings. Furthermore, LLG is orders of magnitude faster than
DLG.

• We also investigate the effectiveness of the attack on various model architec-
tures including simple CNN, LeNet [145], and ResNet20 [109]. Results suggest
that LLG is not highly sensitive to the complexity of the model architecture.

• We illustrate the influence of the model convergence status on LLG. Find-
ings reveal that LLG can perform best at the early stages of training and still
demonstrates information leakage in well-trained models.

• Finally, we test LLG against two defense mechanisms: noisy gradients and
gradient compression (pruning). Results show that gradient compression
with > 80% compression ratio can render the attack ineffective.

The content of this chapter is based on the following papers.

publications

• Wainakh, A., Müßig, T., Grube, T., & Mühlhäuser, M. (2021, January). La-
bel leakage from gradients in distributed machine learning. In 18th Annual
Consumer Communications & Networking Conference (CCNC) (pp. 1-4). IEEE.
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• Wainakh, A., Ventola, F., Müßig, T., Keim, J., Cordero, C. G., Zimmer, E.,
Grube, T., Kersting, K., & Mühlhäuser, M. (2022, July). User-Level Label Leak-
age from Gradients in Federated Learning. In Proceedings on Privacy Enhanc-
ing Technologies (PoPETs).

Contribution Statement
I led the process of idea generation, realization, evaluation, and writing.
Fabrizio Ventola contributed insightful discussions that helped improve the
mathematical proofs, the (ML) models analysis, and he also revised the
manuscript. The Bachelor student Till Müßig contributed helpful comments
that inspired the conceptual work. He also implemented the main algorithm
and initial experiments. Jens Keim participated in implementing the exper-
iments. Carlos Garcia Cordero, Ephraim Zimmer, Tim Grube, and Kristian
Kersting contributed fruitful discussions and improvements on the editorial
quality of the manuscript. Max Mühlhäuser provided helpful mentoring to
improve different aspects of the work.

7.1.2 Outline

We proceed as follows. We start off by reviewing our problem setting in Sec-
tion 7.2. Next, in Section 7.3, we present related work on information leakage
from gradients. We elaborate on our findings regarding gradients properties in
Section 7.4. The attack is then explained in Section 7.5. Before concluding, we
present the results of our evaluation in Section 7.6.

7.2 problem setting

We consider a federated setting where a set of users U jointly trains a neural
network model for a supervised task using either FedSGD or FedAvg algo-
rithm [175]. For FedSGD, the users train the model locally for one iteration on
a batch of their data samples and ground-truth labels. In FedAvg, each user
trains the model for several iterations (multiple batches). The ground-truth la-
bels are the annotations generated typically by the user and specify the correct
context of the data w.r.t. the ML task. We assume the users to be honest, i.e.,
they train the model with real data and correct labels. Then, the users share
the gradients resulted from the local training with the server. We assume that
the model consists of L layers and is trained with cross-entropy loss [91] over
one-hot labels for a multi-class classification task. To extract the ground-truth
labels using our attack, it is sufficient to focus on the gradients ∇WL w.r.t. the
last-layer weights WL (between the output layer and the layer before), where
WL ∈ Rn×h: n is the total number of classes and h is the number of neurons
in layer L− 1. The gradient vector ∇Wi

L represents gradients connected to la-
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Figure 7.1: Federated learning overview with three potential adversary access points
(in red). Gradients are generated by individual users and shared with a central server.
An adversary with access to these gradients can exploit them to estimate the presence
and frequency of labels, which can be, e.g., a result of a medical imaging technique for
disease prediction†.

bel i on the output layer. We note gi to refer to the sum of ∇Wi
L elements:

gi = 1T · ∇Wi
L.

7.2.1 Threat model

We assume that an adversary applies the attack against the shared gradients
of one target user. The adversary analyzes the gradients to infer the number
of label occurrences in the user’s input data. In FedSGD, this concerns one
batch, while in FedAvg, the data consists of multiple batches. Thus, the more
information is carried by the gradients on the labels, the higher is the privacy
risk. At the same time, the shared gradients need to reflect the training data
of the users to optimize the joint model, i.e., to achieve the learning objective.
As a result, the learning objective and the depicted privacy risk are mutually
related to the information carried by the gradients. Even though it might seem
as a paradox, our work is an attempt to focus on and mitigate the privacy risk
imposed by gradient sharing without jeopardizing the learning objective of FL

and the model accuracy. Next, we define our threat model w.r.t. three aspects:
adversary access point, mode, and observation.

access point. The distributed nature of FL increases the attack surface as
shown in Figure 7.1. As for a compromised user, an adversary might be able
to access the gradients by compromising the user’s device, since the gradients
are calculated on the user side before being shared with the server. We assume
that the user’s device can be compromised partially, such that the adversary has
no access to the training data or ground-truth labels [289]. Such a scenario can
apply, for example, to several online ML applications, where the training data is
not stored but rather used for training on-the-fly. In these cases, compromising
a device during or after the training phase would not grant the adversary full
access to the training data, while still providing access to the model and pos-
sibly the gradients. Other scenarios might exploit a vulnerability in the imple-
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mentation of the network protocols/interface, such that an adversary accesses
only the I/O data. Furthermore, a curious server also can access the gradients
of an individual user, in case no secure aggregation [23] or other protection
techniques are used. In addition, an external eavesdropper might intercept the
gradients, if the connection between the server and the users is not secure.

mode . We assume the adversary to act in a passive mode. The adversary may
analyze the gradients to infer information about the users, but without hin-
dering or deviating from the regular training protocol. This adversary mode is
widely common in privacy attacks [168, 213, 309, 316], where the focus is on
disclosing information rather than disturbing the system.

observation. The adversary might be capable of observing different amounts
of information to launch their attack. We consider three possibilities.

1 Shared gradients: The adversary has access only to the shared gradients. This
can apply for an external eavesdropper or an adversary with limited access
to the user’s device.

2 White-box model: In addition to the gradients, the adversary is aware of the
model architecture and parameters. In the case of a curious server or com-
promised user, the adversary might have this kind of information.

3 Auxiliary knowledge: The adversary has access to all the aforementioned infor-
mation as well as to an auxiliary dataset. This dataset contains data samples
of the same classes as the original training dataset. This is a common scenario
in real-world cases, given that neural networks need a considerable amount
of labeled data for training to perform accurately. Labeled data is usually
expensive and a typical adopted strategy is to train the model on the pub-
licly available datasets and, eventually, fine-tuning the model on ad-hoc data.
Therefore, it is often easy to have access to a big part of the training data.

7.3 related work

Although the training data is not disclosed to other parties in FL, several works
in the literature showed that the data and ground-truth labels can be recon-
structed by exploiting the shared gradients. Next, we present existing (1) data
reconstruction attacks and (2) label extraction attacks.

data reconstruction. Aono et al. [8, 9] were the first to discuss reconstruct-
ing data from gradients on simple neural networks with a training batch of one
sample. Wang et al. [288] moved on to generative attacks, leveraging a Gener-
ative Adversarial Network (GAN) to reconstruct the input data in a CNN. In
contrast, Zhu et al. [316] introduced an optimization-based attack; the attacker
generates dummy input data and output labels, then optimizes them using
L-BFGS [156] to generate dummy gradients that match the shared ones. As
an improvement, Geiping et al. [85] proposed using cosine similarity and the
Adam optimization algorithm. Wei et al. [289] provided a framework for eval-
uating the optimization-based attacks considering multiple factors, e.g., opti-
mizer, activation, and loss functions. Qian et al. [214] theoretically analyzed the
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limits of [316] considering fully-connected neural networks and vanilla CNNs.
They also proposed a new initialization mechanism to speed up the attack
convergence. Unlike previous approaches, Enthoven et al. [70] introduced an
analytical attack that exploits fully-connected layers to reconstruct the input
data on the server side, and they extended this exploitation to CNNs. Recently,
Zhu et al. [315] proposed a recursive closed-form attack. They demonstrated
that one can reconstruct data from gradients by recursively solving a sequence
of systems of linear equations. Overall, all the aforementioned attacks, except
for [316] (discussed in the next section), only focus on reconstructing the input
training data while overlooking the leakage of ground-truth labels, which can
be of a high sensitivity. In our research, inspired by the mathematical founda-
tions used in these attacks, we shed more light on the potential vulnerability of
label leakage in FL and distributed learning.

label extraction. While the data reconstruction attacks attracted consider-
able attention in the research community, a very limited number of approaches
were proposed on the label leakage. As part of the optimization approach of
Zhu et al. [316], the ground-truth labels are extracted. However, the approach re-
quires a learning phase where the model is sensitive to the weight initialization
and can be hard to converge. Moreover, it was found to extract wrong labels fre-
quently [313] and it is effective only for gradients aggregated from a batch size
< 8 [182]. Zhao et al. [313] proposed a more reliable analytical approach, which
exploits the observation that gradients of classification (cross-entropy loss) w.r.t.
the last layer weights have negative values for the correct labels. However, their
approach is limited to a one-sample batch, which is uncommon in real-world
applications of FL. Li et al. [148] proposed also an analytical approach based on
the observation that the gradient norms of a particular class are generally larger
than the others. However, their approach is tailored only for a binary classifica-
tion task in vertical split learning. Overall, the existing approaches are not well
generalized to arbitrary batch sizes nor number of classes. Also, the influence
of different model architectures on these approaches is yet to be investigated.

7.4 gradient analysis

In gradient descent optimization, the values of gradient determine how the pa-
rameters of a model need to be adjusted to minimize the loss function. Through
an empirical analysis, we carefully derive two properties for the sign and mag-
nitude of the gradients that indicate the ground-truth labels. In this section, we
formalize these properties, and next, in Section 7.5, we use them as a base for
our attack.

property 1 . For label i and last layer L in a neural network model with a non-
negative activation function, when ∇Wi

L < 0, label i is present in the training batch
on which gradient descent was applied1.

1 This property is a generalization of the main observation in [313].
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Label Leakage from Gradients
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Figure 7.2: Graphical representation of a basic NN model and the gradients ∇Wi
L of the last

layer L. For simplicity, the input layer is represented by a single neuron†.

Proof. We consider an NN model for a classification task. The model is trained
using the cross-entropy loss over labels encoded with a one-hot encoding. This
loss function l is defined as l(x, c) = − ln eyc∑

j e
yj , where x is a multidimensional

input instance and c represents the ground-truth label of x. While the output
vector of the model is y = [y1,y2, ...,yn], where each yi ∈ y is the score pre-
dicted for the ith class, yc is the score assigned to the ground-truth label, and n
is the total number of classes. A graphical representation of a simple NN model
and its gradients of the last layer is depicted in Figure 7.2.

Given a batch size B, we have a set X of B samples and the set of their ground-
truth labels C. Thus, we can define a training batch as a set composed of the
pairs {(x1, c1), . . . , (xB, cB)}. Therefore, we can redefine the loss function as the
loss l(x, c) averaged over a batch of B labeled samples

l(X,C) = −
1

B

B∑
k=1

ln
eyc(k)∑
j e
yj(k)

, (7.1)

where c(k) is the ground-truth label for the kth sample in the batch, and yc(k)
is the corresponding output score when xk is given as an input to the model.
We note that the gradient di of the loss w.r.t. an output yi is

di =
∂l(X,C)
∂yi

= −
1

B

B∑
k=1

(
∂ ln eyc(k)

∂yi
−
∂ ln

∑
j e
yj(k)

∂yi

)
(7.2)

= −
1

B

B∑
k=1

(
1(i = c(k)) −

eyi(k)∑
j e
yj(k)

)
, (7.3)

where 1(α = β) = 1 if α = β, 1(α = β) = 0 otherwise.

di = −
1

B

B∑
k=1

1(i = c(k)) +
1

B

B∑
k=1

eyi(k)∑
j e
yj(k)

(7.4)

= −
λi
B

+
1

B

B∑
k=1

eyi(k)∑
j e
yj(k)

, (7.5)

where λi is the number of occurrences (frequency) of samples with label i in the
training batch. When i /∈ C, λi = 0, and eyi∑

j e
yj ∈ (0, 1), thus, di ∈ (0, 1). Instead,
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when i ∈ C, we have −λiB 6 di 6 1−
λi
B . Hence, if the gradient di is negative,

we can conclude that label i ∈ C. Of course, the di value moves in this range
accordingly to the status of the network weights optimization, e.g. if i ∈ C and
the network performs poorly, then, di will be closer to −λiB . However, the gra-
dients d w.r.t. the outputs y are usually not calculated or shared in FL, but only
∇W, the gradients w.r.t. the model weights W. We write the gradient vector
∇Wi

L w.r.t. the weights Wi
L connected to the ith output representing the ith

class confidence in the output layer as follows

∇Wi
L =

∂l(X,C)
∂Wi

L

=
∂l(X,C)
∂yi

· ∂yi
∂Wi

L

(7.6)

= di ·
∂(Wi

L

T
aL−1 + b

i
L)

∂Wi
L

(7.7)

= di ·aL−1 , (7.8)

where y = aL is the activation function of the output layer, biL is the bias, and
yi = Wi

L

T
aL−1 + b

i
L. When non-negative activation functions (e.g. Sigmoid or

ReLU) are used, aL−1 is non-negative. Consequently, ∇Wi
L and di have the

same sign. Considering Eq. (7.5), we conclude that negative ∇Wi
L indicates

that the label i is present in the ground-truth labels set C of the training batch.
However, a present label can have a positive gradient according to the value of
di as discussed earlier.

property 2 . In untrained models, the magnitude of the gradient gi = 1T · ∇Wi
L is

approximately proportional to the number of occurrences λi of label i in the training
batch.

Proof. Based on Eq. (7.8), we have

gi = 1T · ∇Wi
L = di

(
1T ·aL−1

)
. (7.9)

We substitute di with its expression from Eq. (7.5) as follows

gi =

(
−
λi
B

+
1

B

B∑
k=1

eyi(k)∑
j e
yj(k)

)(
1T ·aL−1

)
. (7.10)

When
∑B
k=1

e
yi(k)∑
j e
yj(k)

is close to zero, we can write

gi ≈ −
λi
B

(
1T ·aL−1

)
, (7.11)

thus, gi is proportional to λi. We denote m to be

m = −
1T ·aL−1

B
, (7.12)

therefore, gi ≈ λim. We define the parameter impact m as the change of the
gradient value caused by a single occurrence of a label in the training batch. This
value is negative and constant across labels, thus, label-agnostic.
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Figure 7.3: Distribution of gradients obtained from a randomly initialized CNN on a batch of
samples of MNIST varying the batch size in {2, 8, 32, 128}: (a) the distribution shows the corre-
lation between the gradients and the label occurrences, (b) heatmap shows that the majority of
the gradients have negative values when the corresponding label is present in the batch, (c) gra-
dients after calibration exhibit a more prominent correlation with label occurrences. Given this
strong correlation, it is possible to accurately estimate the label occurrences in the training batch
basing on the gradient values†.

However, for an untrained model, the value of
∑B
k=1

e
yi(k)∑
j e
yj(k)

strongly de-

pends on the model weight initialization. The predication score yi can be ran-
domly distributed around a uniform random guess P = 1/n. The more classes
exist in the dataset, the lower is the value of P, thus, the aforementioned sum-
mation goes closer to zero. In some cases, yi might be notably high, although
the label i is not present in the training batch. This comes as a result of misclas-
sification and leads to a positive shift in the gradient values. We call this shift
offset s, and based on Eq. (7.10), we can write

si =

(
1

B

B∑
k=1

eyi(k)∑
j e
yj(k)

)(
1T ·aL−1

)
. (7.13)

The offset value varies from one label to another, hence it is a label-specific
value. Using our defined parameters impactm and offset si, we can reformulate
Eq. (7.10) as follows gi = λim+ si. From this equation, it follows easily that the
number of occurrences λi of label i can be derived from the parameters m, si,
and gi.

To demonstrate the two gradient properties, we randomly initialized the
weights of a CNN composed of three convolutional layers. Then, we check the
gradients gi by evaluating the network on a batch of samples taken from the
MNIST dataset [145], which contains 10 classes. We repeat the experiment 1, 000
times with different batch sizes B ∈ {2, 8, 32, 128}. Figure 7.3 (a) depicts the dis-
tribution of the resulting gradients, where each data point represents the gradi-
ent value of one label in one experiment. The y-axis shows the gradient values
and the x-axis represents the number of occurrences for a label i : ∀i ∈ [1,n].

We can see that there are no negative gradients at λi = 0 (framed in red),
in other words, the negative gradients always correspond to an existing label
in the batch λi > 0, which confirms Property 1. For all the batch sizes, we
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notice that the values of the gradients decrease consistently with the increase
of the occurrences. This, in turn, confirms Property 2 and our definition of the
impact parameter. We also observe that the decrease of the gradient values is
roughly constant regardless of the label. This confirms the impact being label-
agnostic, as we described earlier. Furthermore, we notice that the magnitude
of the impact is negatively correlated with the batch size. Meaning, the more
samples are present in a batch, the smaller are the changes of the gradients
for a different number of occurrences. This is also clear from the definition
of impact in Eq. (7.12). We also can see that there are positive gradients that
correspond to λi > 0. The positive value of these gradients is mainly caused by
the offset si defined in Eq. (7.13). To illustrate their ratio, we depict a heatmap in
Figure 7.3 (b). We observe that only a subset of the gradients (18%) are positive,
i.e., shifted by the offset, while the majority of the gradients have negative
values when the corresponding labels are present in the batch. In Section 7.5.1,
we describe our methods to estimate the offset and elaborate on Figure 7.3 (c).

7.5 label extraction

In this section, we present our attack, Label Leakage from Gradients (LLG),
to extract the ground-truth labels from shared gradients. We first introduce
different methods to estimate our attack parameters, impact and offset. Then,
we explain the attack.

7.5.1 Attacking parameters estimation

In the light of the three different threat models outlined in Section 7.2.1, we
empirically developed several heuristic methods to estimate the impact and
offset.

shared gradients . In this scenario, the adversary has access only to the
shared gradients. As mentioned earlier, the impact refers to the change in the
value of the gradients corresponding to one occurrence of a label. Our intuition
is that a good estimation for the impact is obtained by averaging the gradients
over the number of data samples |D| used by a user in a training round. For
FedSGD, |D| = B the batch size, while for FedAvg, |D| = γ.B, where γ is the
number of local iterations (batches). Based on Property 1, we know that all
negative gradients are indeed indicating existing labels in the training samples.
Therefore, we average only the gradients with negative values. Consequently,
this average is an underestimation since some gradients may be positive be-
cause they are shifted with an offset. We empirically observed that multiplying
by a factor that depends on the total number of classes n is a good additive
correction, precisely, we multiply by (1+ 1/n). Thus, we estimate the impact m
as follows

m =
1

|D|

n∑
i:gi<0

(gi)

(
1+

1

n

)
. (7.14)
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7.5 label extraction

For this threat model, we could not estimate the offset si and therefore it is
considered to be zero in the attack.

white-box model . When the adversary additionally has access to the model
architecture and parameters, they can use it to generate more gradients and
gain more insights about the behavior of the gradients in this model. Con-
sequently, better estimations for the impact and offset can be achieved. The
approximation in Eq. (7.11) indicates that the impact m can be estimated if
the gradient gi and number of occurrences λi are known, regardless of the
quality of the input data. Thus, dummy data samples, e.g., dummy images of
zeros (black), ones (white), or random pixels, can be used to generate gi under
known λi. More precisely, we form a collection of dummy batches, each batch
contains data samples assigned to one label i. For impact estimation, we pass
these batches to a shadow model (a copy of the original model), one at a time,
and calculate the average ḡi for all the batches corresponding to each label
i ∈ [1,n]. Then, we average over all classes n and the batch size B as follows

m =
1

nB

n∑
i=1

(ḡi)

(
1+

1

n

)
. (7.15)

As mentioned earlier, we assume the offset si to be an approximation of misclas-
sification penalties, when the model mistakenly predicts i to be ground-truth.
These penalties are mainly related to the status of the model weights, which
can be biased to specific classes. Based on this intuition, we estimate the offset
si by passing batches full of other labels ∀j ∈ [1,n] : j 6= i, each batch full of one
label, one batch per run. We repeat this for various batch sizes, in total of z
runs. In these runs, the gradients of label i reflect to some extent the misclassi-
fication penalties. Therefore, we calculate the mean of these gradients to be our
estimated offset, thus, we have

si =
1

z

z∑
k=1

(gik) . (7.16)

auxiliary knowledge . In this scenario, the adversary is able to access the
shared gradients, model, and auxiliary data that contains the same classes as
the training dataset. Here, the adversary can follow the same methods as for
the white-box scenario, however, using real input data instead of dummy data.
This in turn is expected to yield better estimations for the impact and offset. The
goodness of the auxiliary data, i.e., the similarity of the content and class distri-
bution to the original dataset, might play a role in the quality of the estimations.
This aspect can be investigated in further research.

To demonstrate the quality of our offset estimation, we calibrate the gradi-
ents of Figure 7.3 (a) by subtracting the estimated offset and plot the results
in Figure 7.3 (c). We can see how the gradients become mainly negative and
strongly correlated with the label occurrences. To measure the correlation, we
use the Pearson correlation coefficient −1 6 ρ 6 1 [16], which yields, for all the
studied batch sizes, values of |ρ| > 0.99. The calibration process mitigates the
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Algorithm 4: Label Leakage from Gradients (LLG)†

Data: G = [g1, ..,gn]: vector of gradients, m: impact, S = [s1, .., sn]: vector of
offsets, D: data samples used to generate G.

Result: E: list for extracted labels.
1 for gi ∈ G do
2 if gi < 0 then
3 append i to E;
4 gi ← gi −m;
5 end
6 end

7 G← G−S;
8 while |E| < |D| do
9 Select gi : gi = min(G);

10 append i to E;
11 gi ← gi −m;
12 end

effect of the offset and makes the gradient values more consistent, thus, easier
to be used for extracting the labels.

7.5.2 Label leakage from gradients attack

LLG extracts the ground-truth labels from gradients by exploiting Property 1

and 2 unfolded in the beginning of Section 7.4. The attack consists of three
main steps summarized in Algorithm 4.

1 We start with extracting the labels based on the negative values of the gra-
dients (Property 1). Thus, the corresponding label of each negative gradient
is added to the list of the extracted labels E. As Property 1 holds firm in our
problem setting, we can guarantee 100% correctness of the extracted labels
in this step. In preparation for the next step, every time we add a label to E,
we subtract the impact from the corresponding gradient following Property 2

(Lines 1-5).

2 We calibrate the gradients by subtracting the offsets. In case the offsets (ele-
ments of vector S) are not estimated, they are considered to be zeros. This step
increases the correlation between the gradient values and label occurrences,
which facilitates better label extraction based on these values (Line 7).

3 After calibration, the minimum gradient value (negative with maximum mag-
nitude) is more likely to correspond to a label occurred in the batch (see Fig-
ure 7.3 (c)). Therefore, we select the minimum and add the corresponding
label to the extracted labels. Each of the data samples used to generate the
gradients has a ground-truth label, which we aim to extract. Thus, we repeat
Step (3) until the size of the extracted labels list |E| matches the number of
the data samples |D|. Assuming that |D| is known or can be guessed by the
adversary (Lines 8-11).

Finally, the output of the LLG attack is the list of extracted labels E, precisely,
the labels existing in the batch and how many times they occur.

7.6 empirical evaluation
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7.6 empirical evaluation

We evaluated the effectiveness of LLG with varying settings including: different
FL algorithms, threat models, model architectures, and model convergence sta-
tuses. We also tested the robustness of LLG against two defense mechanisms,
namely noisy and compressed gradients. For the sake of simplicity, we refer to
gi = 1T · ∇Wi

L as the gradient of label i in the rest of this section. Next, we
describe the experimental setting, then we discuss our results. The source code
of the experiments can be found on GitHub2.

7.6.1 Experimental setup

default model . We used a CNN model with three convolutional layers (see
Appendix C) as our default model for a classification task. The activation func-
tion is Sigmoid, and we used SGD as an optimizer with a learning rate 0.1 and
cross-entropy as a loss function. We used batches of varying sizes B = 2k :

k ∈ [0, 7]. When applying the attack for FedSGD, we fed the model with one
batch, and we used 10 batches for FedAvg. The label distribution in a batch
can be balanced or unbalanced. For balanced data, the samples of the batch were
selected randomly from the dataset. For unbalanced data, we selected 50% of
the batch samples from one random label i and 25% from another label j. The
remaining 25% of the batch was chosen randomly. We initialized the model
with random weights and repeated each experiment 100 times, then reported
the mean values for analysis and discussion.

datasets . We conducted our experiments on four widely used benchmark
datasets: MNIST [145] consists of 70,000 grey-scale images for handwritten
digits, with 10 classes in total. SVHN [188] has 99,289 color images of house
numbers with 10 classes. CIFAR-100 [140] contains 60,000 color images with
100 classes. And CelebA [162] is a facial attributes dataset with 202,599 images.
In our experiments, we consider only the hair color attribute with 5 classes.

threat model . We assumed the users to train the model on real data and cor-
rect labels. The adversary has access to the shared gradients of only one target
user. We considered three different scenarios for the observation capabilities of
the adversary (see Section 7.2). Based on these scenarios, the estimation of the
impact and offset parameters differs (see Section 7.5.1), while the same attack
applies for all. We refer to the application of the attack under these different
scenarios as follows:

1 LLG for accessing only the shared gradients scenario.

2 LLG* for the white-box model, where we employed various dummy images
to estimate the impact and offset. Empirically, we observed the dummy im-
ages with which the attack achieves better performance on each dataset. This
resulted in using zeros (black) images for MNIST, random pixels for SVHN,
ones (white) for CIFAR, and zeros (black) for CelebA.

3 LLG+ for auxiliary knowledge, where it is assumed that the adversary has
access to auxiliary data that contains 10 batches of images from each class.

2 https://github.com/tklab-tud/LLG
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metrics . To measure the attack effectiveness, we used the Attack Success Rate
(ASR) metric [289], which is expressed as the ratio of the correctly extracted
labels over the total number of the extracted labels. We also employed the
Hellinger distance [46] to measure the distance between the distribution of the
extracted labels E = {e1, ..., en} and the ground-truth Q = {q1, ...,qn}, where ei
is the ratio of extracted labels as class i to the total number of extracted labels.
Similarly, we consider qi for the ground truth labels. The Hellinger distance is
measured as follows

H(E,Q) =
1√
2

√√√√ n∑
i=1

(
√
ei −

√
qi)

2 . (7.17)

However, during our experiments, we observed that both aforementioned met-
rics yielded very similar measurements, therefore, we present our results only
with the ASR metric.

baselines . We compared LLG with two baselines. First, the DLG attack [316],
which aims to reconstruct the training data and labels using an optimization
approach. For our experiments, we ran DLG for 100 iterations and focus only on
the label reconstruction results. We used the DLG implementation provided by
Zhao et al. [313]3. Second, we considered a uniform distribution-based random
guess as a baseline. An adversary without any shared gradients might par-
tially succeed in guessing the existing labels frequency. This can be achieved
by assuming that the labels distribute uniformly, especially in the case of large
balanced batches. The random guess serves as a risk assessment curve. If any
attack performs better than the random guess, this means that there is informa-
tion leakage.

7.6.2 Attack success rate

We ran our experiments under two FL algorithms, namely FedSGD and Fe-
dAvg [175]. For FedSGD, we passed one batch to the model and attacked the
generated gradients, while for FedAvg, we fed the model with 10 batches and
attack the aggregated gradients, i.e., the sum of the gradients over 10 iterations.
During our experiments, we observed a very limited difference in the ASR of
the LLG attacks for balanced and unbalanced batches, therefore, and because the
unbalanced data is closer to real-world scenarios [175], we focus on presenting
the results of the unbalanced data case.

fedsgd. Figures 7.4 (a-d) illustrate the ASR scores (y-axis) with batches of dif-
ferent sizes (x-axis). We can see that all LLG variants show some level of ASR

degradation when the batch size is increased. However, it appears to be stabi-
lized to some extent for bigger batches, e.g., 64 and 128. That is due to the fact
that the first step of the algorithm (see Section 7.5.2) is based on Property 1 and
yields 100% correct labels. This step extracts a maximum of n labels. Thus, its

3 https://github.com/PatrickZH/Improved-Deep-Leakage-from-Gradients
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(g) CIFAR-100 - FA
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(h) CelebA - FA

Figure 7.4: Attack success rate of (1) LLG with shared gradients, (2) LLG* with white-box
model, (3) LLG+ with auxiliary knowledge, (4) DLG [316], and (5) random guess on MNIST,
SVHN, CIFAR-100, and CelebA. Label extraction is based on gradients generated from passing
(1) one batch for FedSGD (FS) (first row), and (2) 10 batches for FedAvg (FA) (second row), to a
randomly initialized CNN. DLG runs for 100 iterations. LLG methods outperform the baselines
in most of the cases†.

results are dominant when B 6 n. Where as if B > n, the second and third
steps, which are based on heuristic estimations, contribute more to the final
extracted labels. As a result, we notice a degradation of the ASR. However, the
different batch sizes do not seem to massively affect the correctness of the re-
sults of these steps. This might be explained by the fact that the batch size B
is always considered as a parameter in the heuristic estimations of the impact
and offset.

Overall, LLG+ outperforms all the other LLG variants and DLG. The LLG and
LLG* scores range from 100% to a minimum of 77% across the different datasets,
whereas LLG+ remarkably exhibits a high level of stability for various batch
sizes and numbers of classes (in datasets) with an ASR > 98%. This mainly
reflects the quality of our estimation methods for impact and offset.

In contrast, DLG achieves varying accuracy scores. However, no clear behavior
can be concluded w.r.t. the changes in the batch sizes. This might be due to
the fact that DLG requires a training phase, which is highly sensitive to model
initialization, i.e., it might fail to converge for some randomly initialized models
or it might require different periods of time for reaching a specific accuracy.
Unlike LLG, which yields more deterministic results, while at the same time
being orders of magnitude faster. For example, the execution time of those
experiments illustrated in Figure 7.4 (a) is as follows: LLG 54s, LLG* 32.2m, LLG+
14.6m, DLG 17.4h, and Random 50s, using a Tesla GPU V100-SXM3-32GB. It is
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worth mentioning that LLG* requires more time than LLG+ due to the dummy
images generation.

The ASR of each LLG attack is similar to some extent on MNIST and SVHN
respectively. This can be explained by the fact that both datasets have the same
number of classes, i.e. 10. On CIFAR-100 (100 classes), interestingly, we notice
that LLG performs quite closely to LLG+ (both have ASR > 96%), as shown in
Figure 7.4 (c), while it drops to around 75% on CelebA (5 classes). This obser-
vation suggests that LLG performs better for datasets with a bigger number of
classes. This can be explained by the fact that LLG solely depends on the quality
of the impact parameter, which is derived from Eq. (7.11) under the assumption
that the untrained model performs poorly. This assumption is more valid when
the number of classes is bigger, as we explained earlier in the proof of Prop-
erty 2, Section 7.4. Therefore, the estimation of the impact yields better results
leading to higher ASR.

LLG*, with its dummy data for the parameter estimation, shows a notable
drop on CIFAR-100. It is known that the complexity of CIFAR-100 images is
higher than the one of MNIST and SVHN. Therefore, we can conclude that the
complexity of the dataset might influence LLG* in a negative way, while it has
no observable effect on LLG and LLG+. For DLG, we notice in Figure 7.4 (d) a
remarkable decrease in accuracy on CelebA. This can be due to the fact that the
images are of higher dimensions (178× 218), unlike the other datasets. Thus,
the convergence of the attack is much more difficult.

fedavg . In Figures 7.4 (e-h), we can see that the ASRs of all the LLG variants
considerably decrease compared to FedSGD, ranging between 55% and 90%.
This is expected as the shared gradients are generated from multiple iterations
(10 batches). Thus, the correlation between the gradient values and label occur-
rences is less prominent. In other words, the gradients are accumulated several
times over iterations, such that the correlation (demonstrated through Prop-
erty 1 and 2) becomes more difficult to detect and exploit. However, the LLG

attacks achieve higher ASRs than the random guess on all the datasets, thus,
they are still posing a serious threat. The superiority of LLG+ is maintained
on CIFAR-100 and CelebA, while on MNIST and SVHN, LLG* performs better.
This observation raises a question about the influence of the quality of the data
(images) used for parameter estimation. Although it would be expected that
using images similar to the original dataset (in LLG+) would lead to better esti-
mates than using dummy images (in LLG*), this result shows the opposite. This
could be related to the process of image selection for LLG+. Finally, we notice
that on SVHN, DLG outperforms the LLG variants. In some cases, the random
initialization could allow the model in DLG to converge quicker so that the at-
tack performs better. These cases could be the reason for this result. However,
further investigation is needed to find a concrete explanation.
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Figure 7.5: Attack success rate of LLG+ and DLG on unbalanced batches of different sizes
from MNIST with different model architectures: CNN, LeNet, ResNet20. For FedSGD (FS), LLG+
achieves around 100% accuracy on CNN and LeNet while its accuracy slightly decreases on
ResNet20. DLG achieves > 80% for most batch sizes on CNN, while it drops remarkably on the
more complex architectures, LeNet and ResNet20. For FedAvg (FA), the ASR of LLG+ is slightly
different form architecture to another, while DLG shows higher sensitivity to the architectures†.

7.6.3 Model architecture

Here, we study the influence of the model architecture on the studied attacks;
for that, we considered two models besides our default CNN: (1) LeNet [145], a
basic CNN that contains 3 convolutional layers with 2 maximum pooling layers
as shown in Appendix C. (2) ResNet20 [109], a successful residual architecture
with convolutions, which introduces the concept of “identity shortcut connec-
tion” that skips one or more layers to avoid the problem of vanishing gradients
in deep neural architectures. ResNet20 contains 20 layers in total: 9 convolu-
tional layers, 9 batch normalization, and 2 linear layers. Both aforementioned
architectures, alongside their principal components, namely convolutions and
residual blocks, have achieved and contributed to the state-of-the-art results on
several classification tasks.

The two main conditions for Property 1 to hold are: (1) using the cross-en-
tropy loss and (2) having a non-negative activation function in the last layer
before the output. Thus, we assumed that the labels extracted in the first step
of the attack (see Algorithm 4, Line 1-5) based on this property are correct re-
gardless of the rest of the model architecture. On contrast, the next steps of
LLG are based on the impact, offset, and their estimations, which might be of
different accuracy from one model architecture to another. To run our analysis,
we used MNIST with varying batch sizes and measured the ASR of LLG+ and
DLG.

fedsgd. As we can see in Figure 7.5 (a), LLG+ performs best on CNN and LeNet,
achieving approximately 100% of success rate, while a degradation starts from
batches with size > 2 for ResNet20. This might be due to the residual blocks
in the ResNet20 architecture that prevents the vanishing gradients problem in
deep neural networks. In other words, ResNet20 implicitly alters and controls
the range of the gradient values in order to not let them vanish (gradients tend-
ing towards zero) or explode (gradients tending towards infinity) during train-
ing. This conflicts with our definitions of the impact and offset parameters in
Eq. (7.12) and (7.13) and thus has direct implications on the attack performance.
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Figure 7.6: Influence of model convergence status on ASR of LLG, LLG*, LLG+, DLG, and ran-
dom guess for CNN with unbalanced batches from MNIST dataset. On the left y-axis it is plotted
the attack success rate, while on the right y-axis, it is plotted the model test accuracy. The num-
ber of training iterations (×103) is on the x-axis. All different LLG methods achieve remarkable
success rates even if the models are well-trained and gradients become less informative†.

On the other hand, DLG shows much higher sensitivity towards the model
architecture. As we can see, it achieves > 80% for most batch sizes on CNN,
while it drops remarkably on the more complex models, LeNet and ResNet20.
A strong influence of the model architecture complexity on DLG is highly likely
since DLG includes an optimization phase, where optimizing complex models
typically requires many more iterations.

fedavg . In Figure 7.5 (b), we observe that under small batch sizes B 6 16, the
ASR of LLG+ is higher for CNN. While for bigger batches, LLG+ only slightly
differs from one model to another. This supports the (grounded) hypothesis
that the model architecture has limited effect on LLG+. In contrast, DLG shows
again higher sensitivity with bigger variance of the ASR over the different archi-
tectures.

7.6.4 Model convergence status

The gradients guide the model towards a local minimum of the loss function.
As the model converges to this minimum, the information included in the gra-
dients becomes less prominent. Therefore, we expect the convergence status of
the model to have a strong influence on the attack effectiveness. All the previ-
ous experiments are conducted in one communication round, i.e., the gradients
are generated and shared with the server only once. In this section, we went
further with training the model and observed the implications on the attack.

We trained the model in a federated setting, where the data of MNIST was
distributed among 750 users, each having 80 unbalanced data samples. The
server randomly selected 100 users for every communication round to train the
global model locally and share their gradients. The CNN model was trained
with batches of size 8 for 103 iterations. We chose the batch size 8 to be able to
apply the DLG attack in its most effective setting B 6 8 [316]. In every communi-
cation round, we attacked the shared gradients of one target user (victim) with
DLG and LLG variants, where the impact and offset were estimated dynamically.
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Figures 7.6 (a,b) depict the attacks ASR (on the left y-axis) versus the model
accuracy at testing time (on the right y-axis), while the x-axis represents the
number of training iterations.

fedsgd. We can see in Figure 7.6 (a) that the growth of the model accuracy
incurs a notable decrease of the ASR for all LLGs. However, although the model
converges to close to 90% accuracy, LLG and LLG+ keep achieving ASR > 60%,
considerably higher than the random guess which is around 32%. Meaning, the
attacks are still able to take advantage of the reduced information in gradients
over the course of the whole training process. Similarly, DLG shows degradation
in accuracy, yet it remains effective for well-trained models.

fedavg . Figure 7.6 (b) shows more stability of ASR over the training process, es-
pecially for LLG and DLG. Even in the early stages of the training, the multiple
local iterations in FedAvg improve the model accuracy making the accumu-
lative gradients less informative. Therefore, the attacks start with lower ASR

compared to FedSGD. However, this leads also to mitigating the notable degra-
dation of ASR observed in Figure 7.6 (a). LLG* and LLG+ exhibit volatile behavior
in the early iterations, where they have an increasing success rate between iter-
ation 100 and 300. Then, they decrease again from 80% to close to 70% and 60%,
respectively. Interestingly, DLG maintains a high success rate (around 80%) out-
performing the LLG variants in most parts of the training process. This shows
that DLG is less sensitive to convergence status under FedAvg and thus can cope
with the decreasing amount of information in the gradients. Overall, the attacks
stay effective with ASR > 40%, which is the random guess success rate.

7.6.5 Defense mechanisms

As LLG is mainly based on the gradients, thus, sensitive to changes in their
values, obfuscating them can be a direct mitigation mechanism. In this section,
we used two obfuscation techniques: noisy gradients and gradients compres-
sion. We applied these techniques on the user side before sharing the gradients
with the server and thus, protecting against external eavesdroppers and curi-
ous servers. Then, we attacked the gradients of one target user in one commu-
nication round for a randomly initialized CNN model (untrained). In general,
applying obfuscation techniques incurs a loss in the model accuracy. To cover
this aspect, we trained the model to convergence under conditions similar to
those in Section 7.6.4 while applying the defenses, and reported its accuracy.

7.6.5.1 Noisy gradients

Many researchers consider adding noise to gradients as the de facto standard
for privacy-preserving ML [149]. In this experiment, we evaluated LLG+ against
two techniques of noise addition: (1) Pure noise: we added noise to gradients
before sharing, similar to [289, 316], where no formal privacy properties are
guaranteed. (2) Differential privacy: following differentially private FL [86], we
clipped the gradients to bound their sensitivity, then, we added noise to them.
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Figure 7.7: Effectiveness of different defenses against LLG+ on an unbalanced batch from MNIST
with a randomly initialized CNN: (a) defense by adding Gaussian distributed noise to gradients
with variances σ ∈ {0.01, 0.1, 1}, (b) defense by user-side differential privacy with σ = 0.1 and
clipping bound β ∈ {1, 5, 10}, (c) defense by pruning gradients with varying compression ratios
θ ∈ {20%, 40%, 80%}. Pure noise is not successful in eliminating the risk completely, since LLG+
maintains a higher ASR than the random guess. While, differential privacy mitigates the attack
with β = 1 for FedAvg, and for FedSGD when batch size B > 16. Gradient compression is
effective in FedSGD when a high compression ratio (> 80%) is used with B > 4. For FedAvg,
even the compression ratio 40% with B > 8 is an effective defense†.

The clipping is defined as ∇W ← ∇W/max
(
1, ‖∇W‖2

β

)
, where β is the gra-

dient norm bound. In both noise addition techniques, we used the Gaussian
noise distribution. For pure noise, the standard deviation of the noise distribu-
tion is σ ∈ {0.01, 0.1, 1} with central 0. For differential privacy, we used σ = 0.1
and varying norm bound β ∈ {1, 5, 10}. We tracked the privacy loss for the
model trained with differential privacy using the moments accountant [2]. For
100 communication rounds and δ = 10−5, the privacy budget is estimated to
be ε ≈ 11.5.

fedsgd. In Figure 7.7 (a), we can see that the higher the magnitude of the
noise the less accurate the attack. This is expected as the attack partially uses
the magnitude of the gradients to infer the ground-truth labels following Prop-
erty 2. Interestingly, we observed that the noise has less effect on the attack
when the batch size is increasing. We investigated this observation further by
inspecting the values of the gradients before and after noise addition. Our em-
pirical analysis showed earlier in Figure 7.3 (a, b) that the majority of gradients
gi have values close to zero when they correspond to labels not present in the
batch. Adding noise to such small gradient values might lead to flipping their
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sign, and consequently, disrupting Property 1, which is one of the basis of the
attack. The signs of the gradients can be flipped more often by the noise when
the batches are of smaller sizes B < n (n is the number of classes) since not all
the labels will be present in the batch. Therefore, a clear influence of the noise
on the success rate of the attack can be seen. In bigger batches B > n, it is more
likely to have more differing labels, thus, their gradients values are not close to
zero. As a result, adding a small amount of noise does not lead to sign flipping.
This also explains the stability of ASR values when B > n. Overall, adding noise
does not eliminate the risk completely while reducing the model accuracy (see
Table 7.1). As we can see, LLG+ maintains higher ASRs than the random guess
for all the test noise variances.

Figure 7.7 (b) shows that adding noise of σ = 0.1 with clipping bound β = 1

is an effective defense against LLG+ for batch sizes B > 16, where the ASR

drops beyond the random guess. However, this leads to a significant drop in
the model accuracy (52.4%) as shown in Table 7.1.

fedavg . Unlike in FedSGD, the magnitude of the pure noise does not have
a clear effect on ASR for FedAvg as shown in Figure 7.7 (d). That is due to
the fact that the shared gradients are generated from 10 batches. Thus, the
gradient values reflect 10× B labels, which is always greater or equal to n for
MNIST, where n = 10. Therefore, it is likely that most of the labels appear in
one of the batches at least, consequently, no gradient values will be close to
zero. As a result, the pure noise does not impact the ASR remarkably, and LLG+
remains effective. In Figure 7.7 (e), we notice that noise σ = 0.1 with bound
of β = 1 is able to mitigate LLG+, reducing its success rate to close to 20% for
bigger batch sizes. However, the model accuracy degrades remarkably to 52.5%.
Additionally, other differential privacy approaches, e.g., DP-SGD [2] can also be
applied and investigated as a defense.

7.6.5.2 Gradient compression

One of the main motivations for FL is reducing the communication cost by
maintaining the user data local and sharing only the gradients. However, some
models might contain hundreds of millions of parameters, and sending the
gradients of these parameters introduces again a very significant communica-
tion overhead. Gradient compression is one proposal to mitigate this issue [154,
263], where mainly gradients with small magnitudes are pruned to zero, while
further measures are taken to avoid information loss, thus, ensuring to reach
the potential model accuracy.

Pruning some gradients reduces the information that the attack exploits to
extract the labels. In this set of experiments, we evaluated LLG+ under various
gradient compression ratios θ ∈ {20%, 40%, 80%}, i.e., θ denotes the percentage
of the gradients to be discarded in each communication round with the server.
We used the sparsification approach proposed in [154], where users send only
the prominent gradients, i.e., with a magnitude larger than a specific threshold.
The threshold was calculated dynamically based on the desired compression
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FedSGD (Acc. = 93.3%) FedAvg (Acc. = 94.5%)

PN (σ) 0.01 0.1 1 0.01 0.1 1

Acc. (%) 93.4 89.9 6 10.1 94.6 91.4 6 13.5

DP (β) 10 5 1 10 5 1

Acc. (%) 89 86.1 6 52.4 91.2 90.5 52.5

GC (θ%) 20 40 80 20 40 80

Acc. (%) 93.4 93.7 91.9 92.8 91.6 89.3

Table 7.1: Model accuracy while applying the defense mechanisms. PN: pure noise,
DP: differential privacy, GC: gradient compression†.

ratio. The small gradients were accumulated across multiple communication
rounds and sent only when they are large enough.

fedsgd. Figure 7.7 (c) illustrates that when the compression ratio is 6 20%,
there is only a slight effect on the success rate of the attack. When the ratio is
80%, we notice that LLG+ becomes completely ineffective for B > 4, dropping
beyond the random guess. Notably, the model accuracy is maintained high
at 91.9% in this case. Consequently, gradient compression with θ > 80% can
practically defend against the attack while producing accurate models.

fedavg . Similar to FedSGD, we observe a limited effect of the ratio θ 6 20%
in Figure 7.7 (f), whereas the ratio of θ = 40% with B > 8 can mitigate the
risk of LLG+, as well as θ > 80% for any batch size. Under both compression
ratios, the model converges at high accuracy scores, 91.6% and 89.3%, respec-
tively. Additional improvements on the accuracy can be achieved by applying
error compensation techniques, such as momentum correction and local gradi-
ent clipping, which are proposed in [154].

7.6.5.3 Concluding considerations

Results show that adding moderated amounts of noise to gradients alone can-
not protect against our attack LLG+, while applying differentially private FL

mitigates the attack, but at the cost of a remarkable loss in model accuracy. In
contrast, gradient compression with high compression ratios can reduce the
success rate of the attack beyond the random guess, rendering it ineffective
while maintaining high model accuracy. This demonstrates the importance of
gradient compression not only as an approach to efficient communication, but
also as a defense mechanism against our label leakage attack.

We want to explicitly stress the fact that in addition to the aforementioned
defenses, cryptography-based approaches exist [8, 22, 103, 314], which can pro-
tect gradients from external eavesdroppers and even curious servers. However,
besides the computation and communication overhead introduced by these ap-
proaches, they prevent the server from evaluating the benignity of users’ up-
dates (see Section 5.3).
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7.7 conclusion

As discussed in the beginning of this chapter, the users’ ground-truth labels can
contain sensitive information, e.g., a patient’s disease. Therefore, investigating
the information leakage threats to the ground-truth labels is of a high impor-
tance. In this chapter, we identified and formalized two properties of the gradi-
ents of the last layer in deep neural network models trained with cross-entropy
loss for a classification task. These properties reveal a correlation between gra-
dients and label occurrences in the training batch. We proposed Label Leakage
from Gradients (LLG), a novel attack that exploits this correlation and extracts
the ground-truth labels from shared gradients in the FedSGD and FedAvg algo-
rithms. We demonstrated the validity of LLG through mathematical proofs and
empirical analysis.

Results demonstrated the scalability of LLG to arbitrary batch sizes and num-
bers of classes. Moreover, we showed the success rate of LLG on various model
architectures and in different stages of training. The effectiveness of noisy gra-
dients and gradient compression as defenses was also investigated. Findings
suggested the gradient compression to be an efficient technique to prevent the
attack while maintaining relatively high model accuracy. With this work, we
hope to raise the awareness of the privacy risks associated with gradients shar-
ing schemes, encouraging the community and service providers to give careful
consideration to security and privacy measures in this context.

In this and the previous chapters, we elaborated on threats in FL as one
of the emerging techniques for distributed machine learning. Similar threats
can also be found in other distributed machine learning techniques, e.g., label
leakage in split learning [148]. We discussed also several defense mechanisms
against these threats, e.g., differential privacy, which is not limited to FL, but
used widely in many other analytics techniques, e.g., decision trees [310]. Thus,
although we focused on FL in our last two chapters, relevant aspects of privacy
risks in distributed analytics in general were covered.
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8
C O N C L U S I O N

This chapter recapitulates the work of this thesis. Section 8.1 summarizes the
main contributions and findings. Then, Section 8.2 discusses the future research
directions.

8.1 summary of contributions

This thesis tackled the challenge of applying privacy-enhanced distributed an-
alytics in Online Social Networks (OSNs). First, we contributed a novel approach
to privacy-friendly OSNs. Second, we presented two approaches to rendering
prominent analytics techniques privacy-friendly. Third, we investigated threats
against one of the most emerging distributed analytics techniques. Next, we
summarize our contributions in these three research areas.

Chapter 2 provided the Hybrid Online Social Network (HOSN) approach, which
combines the user experience and inevitable network effects of wide-spread
Centralized Online Social Networks (COSNs) with the privacy-related benefits
of Decentralized Online Social Networks (DOSNs). HOSN allows users to store
sensitive data in a distributed fashion beyond the reach of service providers.
That is achieved by leveraging P2P networks and an access control mechanism
applied by the users themselves. We proved the viability of the approach via
Hushtweeht, an Android prototype app building on top of Twitter and using
available distributed storing systems. Hushtweet enables users to store their
private tweets and anonymous likes on a private network, which only their
followers can access. Simultaneously, Hushtweet allows users to enjoy the reg-
ular Twitter experience. With this approach, we showed that it is possible to
overcome the lock-in effect of COSNs and still enhance user privacy in several
aspects.

To ensure wide acceptance and efficient development of our HOSN concept
and thus the Hushtweet application, understanding the privacy concerns of
users and how these concerns influence their conceptions is essential. Chapter 3

studied, in the context of OSNs, the relationships between privacy concerns,
trusting beliefs, risk beliefs, and willingness to use. We showed in this chapter
that mitigating privacy concerns with software features in the user interface of
Hushtweet made a positive impact on the trustworthiness of the application.
Furthermore, we studied the effect of the user variables on these relationships.
We found that the software features particularly affected older people and those
with less experience regarding privacy-related issues. Interestingly, we found
that the lack of awareness of privacy practices is one of the top concerns of
users. Also, we showed that addressing this concern can lead to users having
a better sense of control. Our detailed study showed that to alleviate users’
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concerns and gain their trust, it requires software features that are carefully
designed to clearly demonstrate the privacy practices of the OSN applications.

After establishing the HOSN approach, which allows users to keep their data
distributed, we moved on to applying analytics on this data. In particular, Chap-
ter 4 introduced an approach to enable users to collaboratively mine frequent
itemsets in a distributed and privacy-enhanced manner. This approach is based
on a combination of distributed sampling and mining algorithms. First, we
minimize the data collected from users by sampling using a privacy-enhanced
version of the Metropolis-Hasting Random Walk method. Then, we applied
the distributed FP-Growth algorithm under a privacy-aware setting. We evalu-
ated our approach on three large-scale real-world datasets. Results showed that
users can mine very high-quality frequent itemsets, especially in well-connected
networks, while maintaining the decentralized nature and privacy advantages
of their social network. In comparison to other traversal-based sampling mech-
anisms, our Metropolis-Hasting Anonymous Random Walk approach achieves
a better quality of frequent itemsets while also reducing the communication
overhead. Our approach showed that it is possible for users to co-create one
of the most important components of many recommender systems, frequent
itemsets, based on distributed data while maintaining a good level of privacy.

The second analytics technique we studied in this thesis is based on neural
networks. More precisely, we elaborated on the emerging technique for training
the models in a distributed manner, Federated Learning (FL). FL allows users
to train a joint model collaboratively without sharing their data with other
parties. Instead, users train the model locally and share only the model up-
dates with a central server, which coordinates the training process. Chapter 5

discussed a number of privacy issues that are exacerbated by the centralized
coordination, such as centralization of control and constrained defenses. We
emphasized a furthering of the FL approach towards hierarchical architectures
(coined Hierarchical Federated Learning (HFL)) that was recently discussed and
investigated in a few publications. We contributed to HFL in several ways, par-
ticularly by investigating various measures for improved and more targeted pri-
vacy protection. HFL allows flexible distribution of the FL functionality across
the hierarchy, such that other nodes (users or group servers) in the network can
also participate in coordinating the training process besides the central server.
Furthermore, the hierarchy facilitates applying known defense and verification
methods more effectively and efficiently by placing them in certain parts of
the hierarchy when needed. Finally, with HFL, users can leverage their trust in
each other to mitigate several threats in different application scenarios. With
this contribution, we ultimately contributed to the application of FL in a more
distributed fashion that better matches emerging technologies such as fog com-
puting. Also, we showed the implications of the underlay architecture of FL on
privacy issues.

Despite the privacy advantages brought by FL, its distributed nature enables
a novel set of attacks and threats to user data. Chapter 6 presented a systematic
mapping study on recent publications that address attacks in FL. This chapter
structured the publications according to multiple classification schemes regard-
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ing the attacks’ properties and evaluation setups. The study showed that the
majority of works focus on the classification function and on neural network
models, Convolutional Neural Network models in particular, while overlook-
ing other machine learning algorithms. We identified several issues in the as-
sumptions made in several papers, which lead to the restricted applicability of
the proposed attacks in real-world scenarios. For example, some attacks are ef-
fective only under specific uncommon values of hyper-parameters. Our study
also identified multiple fallacies in the evaluation of the attacks. We argued
that these fallacies can affect the validity and generalizability of the results.
For instance, the usage of oversimplified models or datasets was found in the
majority of the publications. To alleviate these fallacies, we contributed several
actionable recommendations, such as using modern models and FL-oriented
datasets. Overall, this contribution helps illustrate the big picture of attacks in
FL and shed light on the suboptimal evidence we have in the literature on their
effectiveness in real-world scenarios.

Our study on attacks identified several gaps in the research field. One of these
gaps is the lack of investigations about the risk of leaking the ground-truth la-
bels of users’ data. The ground-truth labels are the annotations generated on the
user side that specify the correct context of the data w.r.t. the machine learning
task. Chapter 7 contributed Label Leakage from Gradients (LLG), a novel attack
that lies in this gap. LLG exploits two properties of gradients of the last layer in
a neural network model to extract the label occurrences in the training batches.
We demonstrated the severity of the attack on a variety of datasets, models, and
two FL algorithms. Results showed that LLG is effective for arbitrary batch sizes
and numbers of classes. LLG maintained a high success rate on various model
architectures and in different stages of training. As mitigations, we tested noisy
gradients and gradient compression. Findings indicated that gradient compres-
sion can be an effective technique to prevent the attack while preserving the
model accuracy. With this contribution, we identified and demonstrated the ex-
istence of a vulnerability in FL and that can help researchers and practitioners
better assess the risk of FL. We also showed the importance of applying partic-
ular defense mechanisms to reduce this risk. Ultimately, this work contributes
to the application of FL in a more privacy-enhanced manner.

8.2 outlook

Several research directions can complement the work in this thesis. We showed
in Chapter 2 that HOSN still partially counts on the infrastructure of the under-
lying COSN to connect users. A satisfactory compensation for this usage should
be offered to the service provider of COSN. In this thesis, we discussed offering
limited statistics on trends and also elaborated on building data models from
distributed data. Yet, further research is needed on how to incorporate these
statistics and models effectively in the business model of the service provider.

For improving the trustworthiness of HOSN (Chapter 3), more investigations
on how the software features need to be chosen to maximize their impact on
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the privacy concerns and trust beliefs. Additional variables can be considered to
better understand the users’ perceptions of HOSN, such as users’ risk awareness.

With regard to user sampling and Association Rule Mining (ARM) (Chapter 4),
our analysis of the sample sizes and the quality of the frequent itemsets can be
a base for advancement in progressive sampling methods for ARM, e.g., [43].
More variants of random walks can also be incorporated in this research to
test their impact on the sample quality, e.g., rejection-controlled Metropolis-
Hastings [151].

We discussed in Chapter 5 potential privacy advantages of HFL. Future work
can investigate this direction by implementing and evaluate our proposals re-
garding functionality and defenses distribution across the hierarchy. In addi-
tion, it is important to study the impact of this architecture, in particular, the
multiple aggregations across the layers, on the model accuracy under different
sizes and shapes of the hierarchy. These multiple aggregations also highlight
the importance of improvements to the standard aggregation method (weighted
average in FedAvg), which can be suboptimal in some real-world scenarios.

On the anti-privacy research side (Chapter 7), further improvements to the
LLG attack under the FedAvg algorithm and against trained models can be in-
vestigated. Also, extending the attack to other than the classification tasks and
other loss functions can be a promising research direction. Another interesting
direction is investigating the implications of combining LLG with the DLG at-
tack on the overall accuracy of the data reconstruction. Interestingly, several
researchers from different universities have contacted us, expressing their inter-
est in developing the attack and continuing this line of research.

Overall, our thesis contributes a considerable step towards empowering users
with more privacy-enhanced OSNs and the ability to take an active role in ap-
plying analytics on their data without sacrificing their privacy.
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A
A P P E N D I X O F C H A P T E R 3

a.1 software features

In this section, we present the software features that were implemented in
the Hushtweet mockups. For each privacy concern, three features were imple-
mented as shown in Tables A.1, A.2, A.3, A.4, and A.5, A.6.

a.2 survey questionnaire

The questions were adopted mainly from Malhotra et al. [171] and adjusted for
the Hushtweet application. Instead of measuring the privacy concerns, we mea-
sured the mitigation of privacy concerns. Thus, the questions were modified to
suggest that Hushtweet is actively mitigating the privacy concerns.

Privacy Concerns

Control

1 Privacy is really a matter of the right of Hushtweet users to exercise control
and autonomy over decisions about how their information is collected, used,
and shared.

2 In Hushtweet, user control of personal information lies at the heart of user
privacy.

3 My online privacy is invaded when control is lost or unwillingly reduced as
a result of sharing personal information with Hushtweet.

Awareness

1 Hushtweet discloses the way data are collected, processed and used.

2 Hushtweets’ privacy policy has a clear and conspicuous disclosure.

3 I am aware and knowledegable about how my personal information is used
by Hushtweet.

Collection

1 Hushtweet asks me for personal information.

2 When Hushtweet asks me for personal information, I sometimes think twice
before providing it.

3 I would give personal information to Hushtweet.
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Goal Facet Requirement Feature

Clarity of
privacy prac-
tices

Transparency Providing an overview of
the privacy practices

FAQ: “How does Hushtweet
protect my privacy?”

Clarity of
privacy prac-
tices

Transparency Informing users on the pri-
vacy practice for private
tweets

Alert messages on tweeting
(1) privately: “This tweet will
be encrypted”, and (2) pub-
licly: “Twitter has access to
this data”

Clarity of
privacy prac-
tices

Transparency,
Provider
integrity

Informing users on the
legally binding commit-
ments of Hushtweet re-
garding privacy

“Privacy Policy” page that in-
forms users on data collection
and its purpose.

Table A.1: Features for lacking awareness†.

Goal Facet Requirement Feature

Fairness Completeness,
Transparency,
Provider
integrity

Showing users the statisti-
cal information that they
are part of. Clarifying
their gain from the collec-
tion of this information.

“My data” page that contains:
(1) description of the statisti-
cal information and its pur-
pose, and (2) a list of the sta-
tistical information that the
user is part of.

Awareness Transparency,
Provider
integrity,
Provider
predictability

Informing users on their
data usage by Twitter and
Hushtweet, and the ser-
vices they receive in re-
turn

FAQ: “How does Hushtweet
and Twitter use my data?”
FAQ: “What is my benefit
from Hushtweet services in
comparison to Twitter ser-
vices?”

Awareness Transparency,
Provider
integrity

Informing users on their
data usage by Twitter and
Hushtweet

Alert messages on tweeting
(1) privately: “Twitter can’t
use contained data for tar-
geted ads”, and (2) publicly:
“Twitter might use contained
data for targeted ads”

Table A.2: Features for collection†.

4 Hushtweet is collecting too much personal information about me.

Errors

1 All the personal information in the distributed databases used by Hushtweet
are double-checked for accuracy – no matter how much this costs.

2 Hushtweet makes sure that the personal information in their files is accurate.

3 Hushtweet has procedures to correct errors in personal information.

4 Hushtweet devotes time and effort to verifying the accuracy of the personal
information in the distributed databases.

Unauthorized secondary use

1 Hushtweet does not use personal information for any purpose unless it has
been authorized by the individuals who provided information.
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Goal Facet Requirement Feature

Data control Privacy (con-
trol)

Allowing users to decide
how their data is shared

A toggle button to change the
user’s posted tweet status be-
tween private and public at
any time.

Data control Privacy (con-
trol)

Allowing users to delete
all their data

FAQ: “How can I delete my
data?” “My data” page that
contains a button for deleting
all user data (private tweets
and anonymous likes)

Procedure
control

Privacy (con-
trol)

Allowing users to decide
what data is used for sta-
tistical information

“My data” page that contains:
(1) a list of the statistical in-
formation that the user is part
of, and (2) a toggle button for
each item of this information
with which the user can opt-
in/-out of collection.

Table A.3: Features for insufficient control†.

Goal Facet Requirement Feature

Data accu-
racy

Data in-
tegrity, Data
reliability,
Data validity

Verifying the correctness
of the data

An alert message on tweeting
privately: “Data is correctly
and safely stored”.

Data accu-
racy

Data in-
tegrity, Data
reliability,
Datav valid-
ity

Verifying the correctness
of the data

FAQ: “How does Hushtweet
ensure the correctness and in-
tegrity of my data?” FAQ:
“Does Hushtweet modify my
data?”

Data accu-
racy

Failure toler-
ance

Maintaining the data accu-
racy on network discon-
nection

On tweeting while the net-
work is disconnected, the
tweet is stored locally and
can be posted when the net-
work is connected again. In-
forming the user with an alert
message: “Don’t worry, your
tweet is saved locally. Just
retry when your network con-
nection is back”

Table A.4: Features for errors†.

2 When people give personal information to Hushtweet for some reason, Hushtweet
does not use the information for any other reason.

3 Hushtweet does not sell the personal information in the distributed databases
to other companies.

4 Hushtweet does not share personal information with other companies unless
it has been authorized by the individuals who provided the information.

Improper access

1 Hushtweet devotes time and effort to preventing unauthorizing access to the
personal information.
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Goal Facet Requirement Feature

Technical
access control

Confidentiality Protecting user data from
unauthorized users or
parties

An alert message on tweet-
ing privately: “Data is cor-
rectly and safely stored”.

Technical
access control

Traceability,
Transparency

Showing users who had
access to their data

“Access History” page that
displays time of (1) user lo-
gin, (2) data access for calcu-
lating statistical information
by Hushtweet, and (3) pro-
file view by other users

Organizational
access control

Provider
integrity

Clarifying the Hushtweet
policy in regard to the re-
stricted access of develop-
ers to user data

FAQ: “How does Hushtweet
protect my data from im-
proper access?”

Table A.5: Features for improper access†.

Goal Facet Requirement Feature

Authorization Transparency Informing users on their
data usage by Hushtweet.
Requesting authorization
for data access and usage.

“Authorization” page that
contains: (1) description of
data access and usage by
Hushtweet, and (2) authoriza-
tion button with which users
authorize Hushtweet to ac-
cess their data on Twitter and
calculate statistical informa-
tion.

Clarity of in-
tent

Provider
integrity,
Provider
benevolence

Informing users on the in-
tent of Hushtweet as a re-
search project

“About us” page that informs
users on the purpose of the re-
search project of Hushtweet,
which is protecting users’ pri-
vacy, and also listing the in-
volved universities and re-
searchers

Clarity of
data use
purpose

Transparency,
Provider
integrity

Informing users on how
hustweet uses the statisti-
cal information and which
parties have access to it

FAQ: “For what purpose is
my data used?” FAQ: “Is my
data shared with third par-
ties?”

Table A.6: Features for unauthorized secondary use†.

2 Distributed databases that contain personal information are protected from
unauthorized access by Hushtweet – no matter what it costs.

3 Hushtweet makes sure that unauthorized people cannot access personal in-
formation in the distributed databases.

Global Information Privacy concern

1 All things considered, the Internet would cause serious privacy problems.

2 Compared to others, I am more sensitive about the way online companies
handle my personal information.
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3 To me, it is the most important thing to keep my privacy intact from online
companies.

4 I believe other people are too much concerned with online privacy issues.

5 Compared with other subjects on my mind, personal privacy is very impor-
tant.

6 I am concerned about threats to my personal privacy today.

Trust beliefs

1 Hushtweet is trustworthy in handling personal information.

2 Hushtweet tells the truth and fullfill promises related to personal information
provided by me.

3 I trust that Hushtweet keeps my best interests in mind when dealing with
personal information.

4 Hushtweet is in general predictable and consistent regarding the usage of
personal information.

5 Hushtweet is always honest with customers when it comes to using personal
information that I provide.

Risk beliefs

1 In general, it is risky to give personal information to HushTweet.

2 There is high potential for loss associated with giving personal information
to HushTweet.

3 There is too much uncertainty associated with giving personal information
to HushTweet.

4 Providing HushTweet with personal information involves many unexpected
problems.

5 I feel safe giving personal information to HushTweet.

Willingness to use the app

1 I am interested in using Hushtweet.

2 I am willing to use Hushtweets’ private tweeting functionality.

3 I would rather use Hushtweets’ anonymous like than liking publicly on Twit-
ter.

4 I prefer Hushtweet over Twitter.
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5 I would download Hushtweet.

6 I am willing to use Hushtweet anonymous liking functionality.

7 I would tell my friends about Hushtweet.

8 I would rather use Hushtweets’ private tweet than tweeting publicly on Twit-
ter.
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As mentioned in Section 4.4.1, a user uk sends |F(uk)|
p to a candidate uk+1.

Having an estimation error of β in p, i.e., p ′ = p+− βp, leads to the same error
in |F(uk)|, i.e., |F(uk)| ′ = |F(uk)|+− β|F(uk)|. In case of adding noise to |F(uk)|,
the estimation error will be a combination of the error comes from the noise α
and the error comes from the random variable β. In the following, we calculate
the final error based on α and β. For simplicity, we denote x = |F(uk)| and
y = p.

z = x ′′/y ′

z = x ′′/(y+βy)

z = x ′ + (βx ′)/(y+βy)

x ′ = x+αx

z =
(x+αx) +β(x+αx)

y+βy

x ′′ = x+ (α+β+αβ)x

Thus, α+β+αβ is the final estimation error.
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The model architectures used in the experiments are as shown in Tables C.1
and C.2.

Layer Size Activation function

(input) - -

Conv 2D channels x 12 Sigmoid

Conv 2D 12 x 12 Sigmoid

Conv 2D 12 x 12 Sigmoid

Table C.1: Architecture of CNN, the default model in the experimental setting†.

Layer Size Activation function

(input) - -

Conv 2D 1 x 6 ReLU

Maxpool 2 x 2 -

Conv 2D 6 x 16 ReLU

Maxpool 2 -

Linear 16 x 6 ReLU

Linear 120 x 84 ReLU

Linear 84 x 10 ReLU

Table C.2: Architecture of LeNet network, a very common architecture adopted in computer
vision†.
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