1,178 research outputs found

    Development of a Hybrid Simulator for Underwater Vehicles with Manipulators

    Get PDF
    This article describes a hybrid simulation approach meant to facilitate the realization of a simulator for underwater vehicles with one or more manipulators capable of simulating the interaction of the vehicle with objects and structures of the environment. The hybrid simulation approach is first described and motivated analytically, then an analysis of simulation accuracy is proposed, where, in particular, the implications of added mass simulation are discussed. Then, a possible implementation of the proposed architecture is shown, where a robotic simulator of articulated bodies, capable of stable and accurate simulation of contact forces, although unfit to simulate any serious hydrodynamic model, is tightly interfaced with a general purpose dynamic systems simulator that is used to simulate the hydrodynamic forces, the vehicle guidance, navigation, and control system, and also a man-machine interface. Software details and the technicalities needed to interface the two simulators are also briefly presented. Finally, the results of the simulation of three operational scenarios are proposed as qualitative assessment of the simulator capabilities

    A survey on uninhabited underwater vehicles (UUV)

    Get PDF
    ASME Early Career Technical Conference, ASME ECTC, October 2-3, 2009, Tuscaloosa, Alabama, USAThis work presents the initiation of our underwater robotics research which will be focused on underwater vehicle-manipulator systems. Our aim is to build an underwater vehicle with a robotic manipulator which has a robust system and also can compensate itself under the influence of the hydrodynamic effects. In this paper, overview of the existing underwater vehicle systems, thruster designs, their dynamic models and control architectures are given. The purpose and results of the existing methods in underwater robotics are investigated

    Hydrodynamic Modelling for a Transportation System of Two Unmanned Underwater Vehicles: Semi-Empirical, Numerical and Experimental Analyses

    Get PDF
    Underwater transportation is an essential approach for scientific exploration, maritime construction and military operations. Determining the hydrodynamic coefficients for a complex underwater transportation system comprising multiple vehicles is challenging. Here, the suitability of a quick and less costly semi-empirical approach to obtain the hydrodynamic coefficients for a complex transportation system comprising two Unmanned Underwater Vehicles (UUVs) is investigated, where the interaction effects between UUVs are assumed to be negligible. The drag results were verified by Computational Fluid Dynamics (CFD) analysis at the steady state. The semi-empirical results agree with CFD in heave and sway; however, they were overpredicted in surge due to ignoring the wake effects. Furthermore, experiments were performed for the validation of the time-domain motion simulations with semi-empirical and CFD results. The simulations which were performed with the CFD drags were close to the experiments. The semi-empirical approach could be relied on once a correction parameter is included to account for the interactive effect between multiple UUVs. Overall, this work makes a contribution by deriving a semi-empirical approach for the dynamic and controlling system of dual UUVs, with CFD and experiments applied to ascertain its accuracy and potential improvement

    Hovering-mode control of the glider-type unmanned underwater vehicle

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Mechanical Engineering, Izmir, 2011Includes bibliographical references (leaves: 104-107)Text in English; Abstract: Turkish and Englishxiii, 109 leavesResearch on the underwater robotics has attracted the interest of many researchers over the years. The primary reasons are the need to perform underwater intervention tasks that are dangerous for a diver and the need to perform underwater survey tasks that last for longer periods of time. Unmanned underwater vehicles can be divided into two categories. Most of the systems, today, that require a certain level of precision and dexterity are built as Remotely Operated Vehicles (ROV). On the other hand, the systems that perform repetitive tasks are configured as Autonomous Underwater Vehicles (AUV). The objective of the thesis is to design a novel, cost-efficient, and fault-tolerant ROV that can hover and be used for shallow water investigation. In order to reduce the cost, the numbers of thrusters are minimized and internal actuators are used for steering the vehicle and stability in hovering mode. Also, the design is planned to be open for modification for further improvements that will enable the use of the vehicle for intervention tasks and studies. In this work, previously developed unmanned underwater vehicles are reviewed. Following this, the conceptual designs are created for the underwater vehicle and internal actuator designs are developed. Designed mechanisms are modeled in SolidWorks© and transferred to MATLAB© Simulink for hovering-mode control studies. Afterwards, to verify the simulation results, experiments are conducted with a seesaw mechanism by using LabVIEW© programming. Finally, results are given, discussed and future works are addressed

    Task-space dynamic control of underwater robots

    Get PDF
    This thesis is concerned with the control aspects for underwater tasks performed by marine robots. The mathematical models of an underwater vehicle and an underwater vehicle with an onboard manipulator are discussed together with their associated properties. The task-space regulation problem for an underwater vehicle is addressed where the desired target is commonly specified as a point. A new control technique is proposed where the multiple targets are defined as sub-regions. A fuzzy technique is used to handle these multiple sub-region criteria effectively. Due to the unknown gravitational and buoyancy forces, an adaptive term is adopted in the proposed controller. An extension to a region boundary-based control law is then proposed for an underwater vehicle to illustrate the flexibility of the region reaching concept. In this novel controller, a desired target is defined as a boundary instead of a point or region. For a mapping of the uncertain restoring forces, a least-squares estimation algorithm and the inverse Jacobian matrix are utilised in the adaptive control law. To realise a new tracking control concept for a kinematically redundant robot, subregion tracking control schemes with a sub-tasks objective are developed for a UVMS. In this concept, the desired objective is specified as a moving sub-region instead of a trajectory. In addition, due to the system being kinematically redundant, the controller also enables the use of self-motion of the system to perform sub-tasks (drag minimisation, obstacle avoidance, manipulability and avoidance of mechanical joint limits)

    Underwater intervention robotics: An outline of the Italian national project Maris

    Get PDF
    The Italian national project MARIS (Marine Robotics for Interventions) pursues the strategic objective of studying, developing, and integrating technologies and methodologies to enable the development of autonomous underwater robotic systems employable for intervention activities. These activities are becoming progressively more typical for the underwater offshore industry, for search-and-rescue operations, and for underwater scientific missions. Within such an ambitious objective, the project consortium also intends to demonstrate the achievable operational capabilities at a proof-of-concept level by integrating the results with prototype experimental systems

    Underwater Vehicles

    Get PDF
    For the latest twenty to thirty years, a significant number of AUVs has been created for the solving of wide spectrum of scientific and applied tasks of ocean development and research. For the short time period the AUVs have shown the efficiency at performance of complex search and inspection works and opened a number of new important applications. Initially the information about AUVs had mainly review-advertising character but now more attention is paid to practical achievements, problems and systems technologies. AUVs are losing their prototype status and have become a fully operational, reliable and effective tool and modern multi-purpose AUVs represent the new class of underwater robotic objects with inherent tasks and practical applications, particular features of technology, systems structure and functional properties

    Investigation into the Dynamics and Control of an Underwater Vehicle-Manipulator System

    Get PDF
    This study addresses the detailed modeling and simulation of the dynamic coupling between an underwater vehicle and manipulator system. The dynamic coupling effects due to damping, restoring, and inertial effects of an underwater manipulator mounted on an autonomous underwater vehicle (AUV) are analyzed by considering the actuator and sensor characteristics. A model reference control (MRC) scheme is proposed for the underwater vehicle-manipulator system (UVMS). The effectiveness of the proposed control scheme is demonstrated using numerical simulations along with comparative study between conventional proportional-integral-derivative (PID) control. The robustness of the proposed control scheme is also illustrated in the presence of external disturbances and parameter uncertainties
    corecore