
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE JOURNAL OF OCEANIC ENGINEERING 1

Development of a Hybrid Simulator for Underwater
Vehicles With Manipulators

Matteo Razzanelli, Simona Casini, Mario Innocenti, Life Member, IEEE, and Lorenzo Pollini , Member, IEEE

Abstract—This article describes a hybrid simulation approach
meant to facilitate the realization of a simulator for underwater
vehicles with one or more manipulators capable of simulating
the interaction of the vehicle with objects and structures of the
environment. The hybrid simulation approach is first described
and motivated analytically, then an analysis of simulation accu-
racy is proposed, where, in particular, the implications of added
mass simulation are discussed. Then, a possible implementation
of the proposed architecture is shown, where a robotic simulator
of articulated bodies, capable of stable and accurate simulation of
contact forces, although unfit to simulate any serious hydrodynamic
model, is tightly interfaced with a general purpose dynamic systems
simulator that is used to simulate the hydrodynamic forces, the
vehicle guidance, navigation, and control system, and also a man–
machine interface. Software details and the technicalities needed to
interface the two simulators are also briefly presented. Finally, the
results of the simulation of three operational scenarios are proposed
as qualitative assessment of the simulator capabilities.

Index Terms—Remotely operated vehicle, robotic intervention,
simulation, underwater vehicle manipulator systems.

I. INTRODUCTION

R ESEARCHERS have been studying unmanned underwa-
ter vehicles (UUVs) and their applications for decades.

Thanks to a wide range of possible activities that UUVs are able
to perform in subsea environment, significant efforts have been
invested in this field [1], [2], also motivated by diverse potential
applications, such as underwater archaeology, oceanography,
and offshore industries [3], [4]. In particular, remotely operated
vehicles (ROVs) are considered as an essential tool not only for
the oil and gas sector, but also for scientific research and defense,
and constitute an important market sector [5]–[7]. Nowadays,
ROVs in operational use possess a low level of autonomy and
are essentially, as their name suggests, connected via a tether to
a support ship where trained operators remotely operate them.
Depending on the type of operation, the operational cost of a
work-class ROV, which requires about a dozen of people on
24 h, ranges from 100 000 to 300 000 € per day [8]. At the same
time, a paradigm shift is taking place since increasing levels of
autonomy are sought for ROVs involved in intervention tasks:

Manuscript received May 16, 2018; revised March 29, 2019; accepted August
12, 2019. (Corresponding author: Lorenzo Pollini.)

Associate Editor: B. Buckham
The authors are with the Dipartimento di Ingegneria dell’Informazione,

University of Pisa, 56122 Pisa, Italy (e-mail: matteo.razzanelli@ing.unipi.
it; simona.casini89@gmail.com; mario.innocenti@unipi.it; lorenzo.pollini@
unipi.it).

Digital Object Identifier 10.1109/JOE.2019.2935801

ROVs are expected to become more and more autonomous in
terms of duration of the missions and capability to perform
complex tasks without human intervention or with minimal
supervision [9]. Thus, today scientific research is facing new
challenges connected to the realization of new autonomous
functions that will allow the automation of a number of specific
tasks, such as navigation among obstacles, precise positioning
with respect to underwater structures, detection, recognition and
grasping of objects, operations of valves and connectors, and
automatic docking and undocking.

Unfortunately, innovation in the control systems of an ROV
requires extensive experimentation, which is difficult and ex-
tremely expensive to perform, especially when the vehicle to
be used is currently in operation. For this reason, simulation
represents an opportunity to prototype and pre-evaluate algo-
rithms, control schemes, perception systems (such as vision- or
acoustic-based navigation systems), and safety and effectiveness
of the system, using a virtual environment, by avoiding the risks
and the costs involved in real-world experimentation.

Development of the desired autonomous functions for today’s
ROVs requires extensive simulation capabilities that go beyond
simulation of the single vehicle and requires simulation of the
interaction with the complex subsea environment to simulate
situations such as operation of underwater valves with manipu-
lator grippers, grasp and lifting of bodies, and collision with
structures. Clearly, very accurate and reliable simulation of
contact with other bodies of the environment is necessary in all
those intervention scenarios where the UUV must, for example,
operate a valve, dock to a platform, and move bodies (e.g., other
machines), use tools (e.g., a cathodic probe or a drill), or use a
skid equipped with some actuators.

Although the dynamic equations for underwater vehicles,
and underwater vehicles with manipulators, are well known
in the literature, simulation of hydrodynamics and interaction
with the environment is much more complex; researchers tackle
this problem in several ways, usually with solutions customized
to the specific task to be simulated, obtaining different levels
of accuracy. The differences between existing simulators are
mainly due to how environmental forces, that is hydrodynamic
and contact forces, are modeled [10]–[18].

What is proposed in this article is a hybrid simulation architec-
ture for UUVs applications and robotic intervention missions,
where the word “hybrid” indicates that the simulator is build
by two main and different components, tightly interfaced the
one with the other: a robotic simulator of articulated bodies
capable of stable and accurate simulation of contact forces

0364-9059 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE JOURNAL OF OCEANIC ENGINEERING

(although unfit to simulate any serious hydrodynamic model),
and a general purpose dynamic systems simulator (Mathworks’
Simulink in our case) that is used to simulate the hydrody-
namic forces and, additionally, any guidance, navigation, and
control (GNC) system. Furthermore, the simulator graphical
front end can be used to simulate perception processes such
as vision-based navigation and visual servoing. This approach
blends the advantages of two worlds: accurate and efficient
real-time photorealistic simulation of articulated rigid bodies
with multiple simultaneous contacts between bodies of arbitrary
shapes, with the ease of use and flexibility of MATLAB and
Simulink, probably the most widely used tools for simulation
and development of GNC systems in both academia and industry.
Interfacing MATLAB and Simulink with the articulated rigid
body simulator allowed us, in our opinion, the greatest possible
flexibility ever to simulate hydrodynamics effects using the same
tool that is usually used to process experimental data and to
create and validate hydrodynamic models, together with the
possibility to include and prototype, in the same environment,
the simulation of sensors, actuators, and GNC components.

This article is organized as follows: Section II presents the
dynamic equation of an underwater vehicle with one or more
manipulators and proposes the mathematical foundations of our
proposed hybrid approach. Section III, after a brief overview of
articulated rigid body simulators and of the working principles of
the underlying physics engines (PEs), shows how the proposed
hybrid approach can be implemented using two commercial soft-
ware (V-Rep and MATLAB); simulation approximations and
their impacts on simulation fidelity are also discussed. Finally,
Section IV presents a qualitative validation of the proposed
hybrid simulator using three different scenarios. Conclusions
are presented in Section V.

II. UNDERWATER VEHICLE DYNAMICS

This section presents the nonlinear dynamic equations of
motion of an underwater vehicle with one or more manipulators.
Equations are derived using the Newton–Euler formulation, then
the concept of hybrid simulation is introduced and a proof of the
validity of the approach is proposed.

A. Underwater Vehicle Dynamics: Preliminaries

When analyzing the motion of marine vehicles in six degrees
of freedom (DOFs), it is convenient to define at least two
reference frames: the body frame and the inertial frame. Fig. 1
shows the body-fixed coordinate system with the z-axis directed
from top to bottom and the x-axis pointing in the surge direction.
The origin of the reference frame may be chosen to coincide or
not with the center of gravity.

The motion of the body-fixed frame is described relatively
to the inertial reference frame. When simulating slowly moving
marine vehicles, it is usually assumed that the accelerations of
a point on the surface of the earth can be neglected, thus the
inertial frame can be chosen to coincide with a point fixed with
respect to the earth surface. This suggests that the position and
orientation of the vehicle should be described relatively to the
inertial reference frame, while the linear and angular velocities

Fig. 1. Body-fixed reference frame.

of the vehicle should be expressed in the body-fixed coordinate
system.

Equations of the six-DOFs dynamics for translation and rota-
tional motions can be obtained by means of the Newton–Euler
formulation (see also [19]) and are reported here as introduction
and basis for the successive discussion.

Let v0 be the vehicle linear velocity vector (expressed in
body axes), ω the angular velocity vector (expressed in body
axes), and f0 and m0 the applied forces and torques vectors,
respectively (in body axes). Let m be the mass of a vehicle and
rG the position of the center of gravity in the body reference
frame, then it can be easily shown [19] that the following holds:

m (̊v0 + ω × v0 + ω̊ × rG + ω × (ω × rG)) = f0. (1)

Equation (1) clearly represents the translation dynamics of a
rigid body. By using the same notation, the rotational dynamics
can be expressed as follows:

I0ω̊ + ω × (I0ω) +mrG × (̊v0 + ω × v0) = m0 (2)

where I0 is the body’s inertia tensor referred to the body-fixed
frame, thus usually constant. Note that to derive the equations
of motion for an arbitrary origin in a local body-fixed rotating
coordinate system, as in (1) and (2), use of the following identity
is necessary:

ċ = c̊+ ω × c (3)

which relates the time derivatives of an arbitrary vector c in the
inertial (ċ is the time derivative in the earth-fixed frame) and
body reference frames (̊c is the time derivative in the moving
reference frame). Note that also the following identity holds:

ẇ = ẘ + ω × ω = ẘ. (4)

By using the SNAME notation [20] and letting

ν1 � v0, ν2 � ω, τ 1 � f0, τ 2 � m0 (5)



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

RAZZANELLI et al.: DEVELOPMENT OF A HYBRID SIMULATOR FOR UNDERWATER VEHICLES WITH MANIPULATORS 3

then translation and rotational equations can be expressed in a
more compact form as follows:

MRBν̇ + CRB (ν)ν = τRB (6)

where MRB and CRB (ν) are appropriate matrices [19] and the
ν = [ν1, ν2]

T vector encapsulates the linear (ν1) and angular
(ν2) velocity vectors of the body-fixed frame with respect to the
origin of the inertial frame expressed in the body-fixed frame,
and τRB = [τ 1, τ 2]

T is the vector representing forces τ 1 and
moments τ 2 acting on the vehicle expressed in the body-fixed
frame.

Furthermore, it can be shown that, by using suitable Jacobian
matrices J1 (η2) and J2 (η2), it is possible [19, pp. 7–12] to
express the time derivatives of the position of the vehicle (i.e.
the origin of the body frame) with respect to the inertial frame,
η1 and η2; the attitudes of the body reference frame with respect
to the inertial frames (expressed by Euler angles) η̇1 and η̇2 as
a function of linear and angular velocities ν1 and ν2 are given
as follows:

η̇1 = J1 (η2)ν1 η̇2 = J2 (η2)ν2 (7)

with

J1(η2) =

⎡
⎢⎣
cψcθ −sψcφ+ cψsθsφ sψsφ+ cψcφsθ

sψcθ cψcφ+ sφsθsψ −cψsφ+ sθsψcφ

−sθ cθsφ cθcφ

⎤
⎥⎦

and

J2(η2) =

⎡
⎢⎣
1 sφtθ cφtθ

0 cφ −sφ
0 sφ/cθ cφ/cθ

⎤
⎥⎦ (8)

where c (·), s (·), and t (·) are sine, cosine, and tangent of the
Euler angles φ (roll), θ (pitch), and ψ (yaw).

Modeling an underwater vehicle requires to add, to (6), a set
of terms that model the interaction with the fluid: hydrodynamic
potential damping and radiation-induced forces. These latter
forces are applied on the vehicle when it is forced to oscillate
with the waves or current excitation frequency and there are no
incident waves.

Discussing in detail the hydrodynamics effects is outside the
scope of this article; nonetheless, it is necessary to introduce
them here to show how these can be effectively taken apart and
simulated separately from rigid body dynamics.

The radiation-induced forces and moments can be identified
as the sum of three components:

1) added mass due to the inertia of the surrounding fluid that
is accelerated by the vehicle motion when the vehicle itself
accelerates;

2) radiation-induced potential damping due to the energy
carried away by generated surface waves;

3) restoring forces due to the presence of weight and buoy-
ancy forces.

Radiation-induced forces and moments τR ∈ R6 can be
expressed as follows:

τR = −MAν̇ − CA(ν)ν︸ ︷︷ ︸
Added mass

−DP (ν)ν︸ ︷︷ ︸
Potential
damping

−gv(η)︸ ︷︷ ︸
Restoring

forces

. (9)

Hydrodynamic potential damping τD, instead, includes other
damping effects, such as skin friction, wave drift damping, and
damping due to the vortex shedding

τD = −DS(ν)ν︸ ︷︷ ︸
Skin friction

−DW (ν)ν︸ ︷︷ ︸
Wave drift
damping

−DM (ν)ν︸ ︷︷ ︸
Vortex

shedding

. (10)

Considering the whole contribution of (9) and (10), all hydro-
dynamic forces and moments τH can be written as follows:

τH = τR + τD = −MAν̇ − CA(ν)ν −Dv(ν)ν − gv(η)
(11)

with the total hydrodynamic damping matrix D(ν) defined as

Dv(ν) � DP (ν) +DS(ν) +DW (ν) +DM (ν). (12)

The right-hand-side term τRB in (6) represents all the external
forces and moments acting on the vehicle, which can be grouped
as follows:

1) radiation-induced forces and hydrodynamics τH [de-
scribed in (9) and (10)];

2) environmental or other external forces (as ocean currents,
waves, wind, contact forces) as τ ext

v ;
3) propulsion forces, which are thrusters or propellers and

control surfaces or rudder forces, as τ v .
Thus, letting

τRB = τH + τ ext
v + τ v (13)

and since MRB > 0 is a 6× 6 inertia matrix defined by four
3× 3 submatrices, and the fact that the Coriolis and centripetal
terms can be always parameterized such that CRB(ν) is skew-
symmetrical [19], [21], and also thanks to linearity of the skew
operator, the following holds:

Mvν̇ + Cv(ν)ν +Dv(ν)ν + gv(η) = τ v + τ ext
v (14)

with

Mv �MRB +MA; Cv(ν) � CRB(ν) + CA(ν) (15)

where Mv represents the inertia matrix (including the added
mass) of the vehicle, Cv (ν) is the matrix of Coriolis and
centripetal terms, Dv (ν)ν models all damping effects, vector
gv (η) represents the restoring forces and moments due to buoy-
ancy and weight, τ v are propulsion forces and moments acting
on the vehicle, and τ ext

v are all other external forces and moments
acting on the underwater vehicle. The subscript v is used to
indicate that this equation is for the vehicle only. Equations
(7) and (15) together represent the typical underwater vehicle
dynamics model.

B. Underwater Vehicle With One or More Manipulators
Dynamics

When the UUV is equipped with an n-joint manipulator, the
additional degrees of freedom are usually introduced by using



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE JOURNAL OF OCEANIC ENGINEERING

the vector of n joint angles q ∈ Rn and velocities q̇ ∈ Rn as
state variables.

The pose (position and orientation) of the manipulator end
effector does not usually become part of the state vector since
it can be computed by means of direct kinematic given the joint
position vector q; for floating base manipulators, use of the
vehicle configuration η is also required.

A well-known procedure, usually adopted in robotics, the
Denavit–Hartenberg (DH) convention [22], sets the rules for
placing, for an n-link manipulator, n+ 1 frames, i.e., one for
each link plus one for the base frame. Following the procedure
allows to build systematically the homogeneous transformation
matrices between two consecutive frames, to define the joint
variables, thus the joint vector q ∈ Rn. In a manipulator with a
floating base, as when a manipulator is attached to an underwater
vehicle, the zero or base frame, following the DH procedure,
must be attached rigidly to the vehicle. The new state vector
of the vehicle manipulator system (where we are omitting the
position, Euler angles, and joint angles) can be defined as
follows:

ζ =
[
ν1 ν2 q̇

]T ∈ R6+n (16)

where q̇ ∈ Rn is the time derivative of the joint positions, i.e.,
the joint velocities.

Let us define the vector τ q ∈ Rn of joint torques as

τ q =

⎡
⎢⎢⎣
τq,1

...

τq,n

⎤
⎥⎥⎦ (17)

where τq,i is the torque applied at the ith joint by the ith motor.
Thus, the vector of forces and moments acting on the vehicle
and the manipulator becomes τ ∈ R6+n

τ =

[
τ v

τ q

]
. (18)

Thus, it is possible to write the equation of motions of an
underwater vehicle manipulator system in compact matrix form
as [23] follows:

M (q) ζ̇ + C (q, ζ) ζ +D (q, ζ) ζ + g (η, q) = τ + τ ext

(19)
where M (q) ∈ R(6+n)×(6+n) is the inertia matrix including
added mass terms, C (q, ζ) ζ ∈ R6+n is the vector of Coriolis
and centripetal terms, D (q, ζ) ζ ∈ R6+n is the vector of the
dissipative effects, and g (η, q) ∈ R6+n is the vector of gravity
and buoyancy effects. τ ext =

[
τ ext
v , τ

ext
q

] ∈ R6+n are again all
forces and moments acting on the vehicle and the torques acting
on manipulator joints (τ ext

q ).
Fig. 2 depicts a conceptual input/output model of (19).
It can be shown that both M (q) and C (q, ζ) can be split, as

already seen for the vehicle only [see (15)], in a sum of rigid
body only and added masses inertia matrix only

M (q) =MRB (q) +MA (q)

C (q, ζ) = CRB (q, ζ) + CA (q, ζ) . (20)

Fig. 2. Conceptual input/output model of (19).

The proof follows directly from [23, eq. (2.62) and (2.77)].
Note that matrices M (q), C (q, ζ), D (q, ζ), and g (η, q)

depend on manipulator pose q, and they are quite complex to
derive. It is even more complex to computeMRB,MA,CRB, and
CA separately. Note also that, when using this model, all external
forces and moments acting on the manipulator, including all
hydrodynamic effects, must be formulated as n equivalent joint
torques τ qext.

The model in (19) appears compact and extremely mathemat-
ically elegant, but its major drawback is that the computation of
the model matrices can be extremely complex. Furthermore, if
simulation of interaction with other bodies of the environment
is sought (e.g., grasping a body, lifting a load, or simulation of
contact with ground or other structures), it becomes necessary
to transform all interaction forces and moments into forces
and moments acting on the vehicle body (τ v) and equivalent
joint torques (τ q); this latter job can be extremely cumbersome.
The remainder of this article proposes a method to simplify
the modeling efforts without losing simulation accuracy and
fidelity, and adding the capability to manage complex whole
body interactions with parts of the environment.

C. Introduction to Hybrid Simulation

Many different numerical solvers of dynamic equations of
serial (and parallel) chains of rigid bodies exist [24]. These do not
consider the equations of the whole system as in (19), but rather
treat each body independently and manage connections between
them by imposing and guaranteeing numerically all contact
constraints; thus, these can be employed efficiently to solve
iteratively the equations of articulated rigid bodies. Equation
(19), when setting MA (q) = 0, CA (q, ζ) = 0, D (q, ζ) = 0,
and g (η, q) = 0 (at least for its buoyancy component), actually
represents that of an articulated body and could be solved
with one of the aforementioned solvers. The hybrid simulation
approach proposed in this article consists in splitting the sim-
ulator into two parts: one simulating only the articulated body
dynamics, and the other simulating all hydrodynamics effects
and propulsion forces. To apply this approach to simulation of
an underwater robot–manipulator system, it is necessary to split
(19) into two parts: one combining all rigid body components,
and the other all components due to the interaction with the fluid.
This second part has the dimension of an external force in the
rigid body equations.

Let us start this process from the underwater vehicle model
described in (14) with the assumptions (15): Added mass,
hydrodynamic effect, and gravity effect (including buoyancy)
contributions can be separated from rigid body terms (exactly



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

RAZZANELLI et al.: DEVELOPMENT OF A HYBRID SIMULATOR FOR UNDERWATER VEHICLES WITH MANIPULATORS 5

as they were originally introduced) as follows:

MRBν̇ + CRB (ν)ν = −MAν̇ − CA (ν)ν −Dv (ν)ν

− gv (η) + τ v + τ ext. (21)

After this transformation, all right-hand-side terms can be con-
sidered “external” forces that are applied to the rigid body.
However, note that the term containing MA multiplies ν̇, and
this makes (21) a not well-posed differential equation. Clearly,
if the right-hand side of (21) is treated as an external force to be
applied to rigid body dynamics (the left-hand side), the vector ν̇
on the right-hand side cannot be the same as the left-hand-side
one. In other words, during simulation, it is not possible to
compute exactly the external forces and moments that affect rigid
body linear and angular accelerations at the same time of linear
and angular accelerations themselves; this is what is commonly
known as an algebraic loop. A practical approach to solve this
issue is to introduce the approximated acceleration variable ˙̃ν,
and use it to compute the right-hand side of (19) while checking
that excessive simulation errors are not generated obtaining

MRBν̇ + CRB (ν)ν = −MA
˙̃ν − CA (ν)ν −Dv (ν)ν

− gv (η) + τ v + τ ext. (22)

The same technique can be applied to an underwater vehicle
with a manipulator system: From (19), and by considering
(20), all rigid body elements can be separated from all other
contributions

MRB (q) ζ̇ + CRB (q, ζ) ζ

= −MA (q) ζ̇ − CA (q, ζ) ζ

− D (q, ζ) ζ − g (η, q) + τ ext + τ . (23)

Note that, again as in (21), ζ̇ appears also on the right-hand
side of (23). This means that (23) is not a well-posed differential
equation. Again, the introduction of the approximated acceler-

ation ˙̃
ζ variable, as in the previous case, yields the following:

MRB (q) ζ̇ + CRB (q, ζ) ζ

= −MA (q)
˙̃
ζ − CA (q, ζ) ζ

− D (q, ζ) ζ − g (η, q) + τ ext + τ (24)

where the right-hand side can be considered the sum of all
external forces (also due to the hydrodynamics) acting on the
rigid body. Note that, anyway, all terms on the right-hand side
of (24) are quite complex to compute. In addition, while similar
terms in (21) can be easily computed provided that the added
mass matrix is known [see [19, Property 2.5] for computing
CA (ν)], dependency from joint angles vector q of the terms
in (24) makes the mathematical burden very high; as a matter
of fact, those terms embed a conversion of forces and moments
acting on the bodies of each single manipulator link (due to
velocity and acceleration of each single link and interaction with
the fluid) into equivalent joint torques. This can be asserted by
observing that MA (q) ζ̇ is a (6 + n)× 1 vector, whereas each
of the n links has its own 6× 6 added mass matrix.

Fig. 3. Forces and moments interaction between generic linked bodies.

It is quite clear how formulation of the above-mentioned
equations can be extremely complex. Usually, iterative proce-
dures, such as the articulated body or Featherstone’s algorithm
[25], are employed to obtain algorithmically (19) or to compute
the motion of the articulated body numerically. Section II-D
proposes and motivates analytically our modeling approach that
represents an alternative to computing explicitly the right-hand
side of (23).

D. From General Newton–Euler to Fossen Formulation and
Hybrid Simulation

An underwater vehicle with manipulators can be modeled
as a chain of bodies (or links) connected by articulated joints.
Fig. 3 represents a generic chain of bodies showing forces and
moments involved in the following equations. The dynamics of a
multibody system can be obtained by first defining inertia forces
if ∗i and moments in∗i of the ith body or link as applied at the
origin of frame i (each link has its own frame attached), see [24]
for details

if ∗i = −mi

(
iv̇i +

i ω̇i ×i rci +i ωi ×
(
iωi ×i rci

))
︸ ︷︷ ︸

v̇ci

(25)

in∗i = −iIi iω̇i −i ωi ×
(
iIi

iωi
)

(26)

where iv̇i is the linear acceleration of link i (right subscript),
which is of the origin of frame i, expressed in frame i (left
superscript) obtained by differentiating linear velocity ivi in the
inertial reference frame, iω̇i is the angular acceleration of link i
(right subscript) expressed in frame i (left superscript) obtained
by differentiating angular velocity iωi in the inertial reference
frame, irci is the vector connecting the origin of frame i to the
center of mass (CoMi) of link i (subscript ci) expressed in link
i reference frame (left superscript), and iIi is the inertia tensor
of link i (right subscript) expressed in frame i (left superscript).

Then, dynamic equilibrium equations can be written by using
the first and second Euler axioms for link i as follows:

if ∗i +
if i,i−1 − if i+1,i +mi

ig + if ext = 0



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE JOURNAL OF OCEANIC ENGINEERING

in∗i +
i ni,i−1 −i ni+1,i −

(
iri +

i rci
)× if i,i−1 +

i rci

× if i+1,i +
i next = 0 (27)

where if i,i−1, if i+1,i,
ini,i−1, and ini+1,i are forces and pure

moments due to interaction with adjacent links, and iri is the
distance between (i− 1)th and ith reference frames

Just for exemplification, if i,i−1 represents the force that link
i− 1 produces on link i at the joint connecting them; hence,
the term −(iri +i rci)× if i,i−1 is the moment due to contact
force with respect to center of mass for link i. More details can be
found in [24]. Note that, in this formulation, torques produced by
motors mounted on the joints are considered in inext. Equations
(25)–(27), one for each link of the chain, together with position
and attitude kinematics

ṗi = CIi
ivi

ĊiI (φ, θ, ψ) = −[iωi×
]
CiI (φ, θ, ψ) (28)

may be used to simulate an articulated body provided that means
exist for computing the external forces and moments applied to
each single link. The term CiI is the rotation matrix from the
inertial frame (superscript I) to the ith link reference frame; note
that the matrix CIi = Ci TI is the same as that of matrix J1 (η2)
in (8) and can be parameterized with Euler angles or quaternions
for instance. External forces and moments derive, in the general
case, from interaction with the environment, including contact
with other bodies and hydrodynamic effects.

Note that (21) and (24) are based on (1) and (2) that use
derivatives in body frames; Equations (25)–(27), instead, are
written using derivatives in the inertial axis. Luckily, these can
be easily converted to use derivatives in body frame as well using
(3) and (4) obtaining

f ∗i = mi(̊vi+ωi × vi+ω̊i × rci+ωi × (ωi × rci)) (29)

n∗i = Iiω̊i + ωi × (Iiωi) +mrci × (̊vi + ω × vi) . (30)

These equations, together with (27) and (28), are virtually iden-
tical to (6) and (7), provided rci is replaced with rG and the
superscript i (referring to ith link of the multibody system) is
removed.

Multibody numerical simulators solve (25)–(28) using numer-
ical algorithms, such as the Featherstone’s algorithm [25], and
compute contact forces with other bodies of the environment
using a large variety of contact simulation models; hydrody-
namic effects, instead, are usually not considered or are only
roughly approximated. Since “additional” forces and moments
acting on each link of the multibody structures (note that, in
this formulation, the ROV body becomes one of these links)
are modeled by if ext and inext, hydrodynamic effects can be
inserted, for each link separately, using these terms.

The forces if ext and moments inext are forces and moments
acting on the ith link expressed in the ith link reference frame;
thus they are equivalent to the vector τRB in (6), and, conse-
quently, all the terms on the right-hand side of (21) could be
computed outside the multibody simulator, and used as if ext and
inext to add hydrodynamic effects to the multibody simulation.
This approach allows us to define all forces and moments due to

the underwater environment as each single link of the articulated
body (including the ROV body as one of these) is a separate body.
This fact results in a dramatic simplification of nonrigid body
terms, since explicit dependency fromq is vanished. Expressions
for added mass, potential damping, and restoring forces on the
right-hand side of (22) can be used directly instead of computing
the terms on the right-hand side of (24). Thus, the explicit
conversion of external forces acting on the links into equivalent
joint torques needed to build the matrices of the right-hand side
of (24) is not necessary. Note that, as already highlighted before,
this equation presents an approximation issue due to the presence
of ˙̃ν on the right-hand side.

Since the ROV body and the manipulators are treated as links
of the articulated body structure, it is necessary to implement
the calculation of hydrodynamic effects as in (22) for each one
of them; the external forces and moments acting on the ith link
are as follows:
[
if ext
inext

]
= −MA

˙̃νi − CA (νi)νi −Dv (νi)νi − gv (ηi)

+ τ i + τ ext
i (31)

where νi =
[
ivi,

iωi
]
, ηi = [pi, ε] (with ε a parameterization

of the rotation matrix CIi ), ˙̃νi = (d/dt)(ivi), and τ i and τ ext
i

are the vectors of applied forces and moments.
For the ROV body, τ i is actually the propulsion vector τ v , and

τ ext
i can be used to model external disturbances; for the manipu-

lator links instead, τ i should be computed from the joint torques
τ q,j in (17) (note that the jth manipulator link corresponds to
the ith body of the multibody structure) applied by the motor
mounted at the joint, whereasτ ext

i has a similar function as for the
ROV body. Multibody simulators, in general, allow to specify
directly the joint torque, thus the explicit conversion from τ q,j
to τ i is usually not necessary as will be shown in Section III.

In conclusion, the dynamics described by (24) can be im-
plemented by simulating the articulated body dynamics of the
ROV and attached manipulators (with a total of 6 + n degrees of
freedom) using a multibody simulator [that actually implements
the left-hand side of (24)] and adding all hydrodynamic effects
using a set of n+ 1 equations such as (31), one for each link of
the manipulator, plus one for the ROV body. Finally, it is possible
to build the state vector of the ROV plus manipulator system in
(24): [ζ, η, q] directly from the state vector of the multibody
simulator. Fig. 4 depicts the structure of the proposed hybrid
simulator where the two main components are well identified.

Section III describes how to implement this concept using a
commercial multibody simulator software, and discusses the ef-
fects, in terms of simulation accuracy, of using the approximated
acceleration for computing the added mass terms.

III. HYBRID SIMULATOR DEVELOPMENT

Several multibody dynamics simulators exist; they usually
provide a graphic environment where robots, vehicles, etc., can
be assembled: As a matter of fact, such multibody systems are
modeled as articulated open or closed chains of rigid bodies that
are connected together by joints (passive or actuated, linear or



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

RAZZANELLI et al.: DEVELOPMENT OF A HYBRID SIMULATOR FOR UNDERWATER VEHICLES WITH MANIPULATORS 7

Fig. 4. Conceptual input/output scheme showing implementation of (19)
through the use of (24) and (31).

rotary) that block or allow relative motion along specific degrees
of freedom. The entire model is then simulated by an underlying
PE. The PE is essentially the software that solves the differential
equations [in practice (4)–(28)] associated with the model under
study, enforcing the constraints posed by the degrees of freedom
of the joints, and that manages the interaction between the model
and the environment (usually composed of other bodies subject
to the same laws of physics). Interaction with the environment
is achieved by employing contact models [26]–[28] to compute
forces and moments that each body of the model exerts on each
body of the environment and vice versa.

External forces and moments (namely if ext and inext) can be
added at each body, as well as torques or forces acting on the
joints (namely the torques τ q,j).

The scientific literature contains several comparison exercises
between various PEs [29]–[32]; however, comparing features
of various PEs is outside the scope of this article. A brief
overview on how a PE library works is presented in Section III-A,
and a comparison with some existing simulators is presented
in Section III-B with the aim of highlighting the positioning
of the proposed simulation architecture with respect to other
solutions that are usable/used, natively or not, for the underwater
environment.

Section III-C presents, instead, how the proposed hybrid sim-
ulation approach, depicted in Fig. 4 and presented in Section II,
can be effectively implemented using a robotics simulator and a
PE. The simulator selected for this article, V-REP by Coppelia
Robotics, together with few code excerpts using its extension
application programming interfaces (APIs), is used, as an ex-
ample, to highlight how such a hybrid simulation approach can
be easily implemented.

Finally, simulation accuracy issues are discussed in
Section III-D, with particular attention to the approximation
introduced by the proposed hybrid simulation with respect to
the added mass terms (see the non-well-posedness issue of (24)
discussed in Section I).

A. Overview of PE Libraries

A PE is a software that provides an approximate simulation
of certain physical systems, such as chains of rigid bodies, soft
bodies, and, to some extents, even fluids. In general, a robotics
rigid body simulator is just a graphical front end to a PE, which is
employed to graphically build the interconnections between the
bodies and to visualize graphically the output of the simulation,
which is the motion of the bodies. Usually, a simulator may
support several PEs. PEs of relevance for this article are based
on the Newton–Euler equations [namely (4)–(28)]. However,
PEs differ from each other in the way they represent the rigid
body structure and in the method used to compute contact forces
[33], [34]; in addition, sometimes, PEs accuracy with respect to
precise contact simulation is questioned [35], mainly due to the
adoption of the first-order Euler numerical integration. This is
because accurate contact modeling remains an active research
area. Details on active research areas in contact modeling and
rigid body dynamics simulation can be found, for instance, in
[36] and [37].

Nowadays, simulators and PEs that combine efficient recur-
sive algorithms and are considered quite reliable by the scientific
community are available. For the purpose of building a demon-
strator of the hybrid simulator approach presented in this article,
four PEs were considered: Open Dynamics Engine (ODE) [38],
Bullet [39], Newton [40], and Vortex [41], [42].

ODE and Bullet are multipurpose rigid body PEs and open-
source libraries, and are used in several simulation tools. Newton
Dynamics is a cross-platform physics simulation library that
implements a deterministic solver, which is not based on iter-
ative methods, but is considered stable and reaches real-time
performance. Vortex is a commercial software specialized in
simulation of contact dynamics in different operating environ-
ments (e.g., terrain and water).

Several researchers attempted a field comparison of various
PEs, including those considered for this article, in terms of sta-
bility, simulation speed, and physical accuracy (see, for instance,
[29]–[32]). We may summarize here that the general conclusion
is that none of them should be considered better than the others:
The most common conclusion of scientific papers that attempt
to compare them is that, given their respective weaknesses and
points of strength, the best PE depends on the application that
must be developed.

Since, generally speaking, no PE for articulated rigid bodies
turned out to be preferable over the others, a simulator, i.e.,
V-REP, capable of supporting all of them was selected as ex-
terior shell and graphical front end for our hybrid simulator.
Specific motivations for selecting V-REP are also contained in
Section III-B.

B. Possible Comparison With Existing Simulators for
Underwater Vehicles

It is undoubtedly difficult to propose a fairly quantitative com-
parison of different simulators, for the underwater environment
or not, in terms, for instance, of computational time, real-time
performance, or, even worse, accuracy. A recent survey on exist-
ing simulators for the underwater environment [12] compared



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE JOURNAL OF OCEANIC ENGINEERING

several platforms and concluded that, even if there are many
options for simulation of underwater robots, each with its own
strengths and weaknesses, each one of them requires additional
efforts from the user for conscious use and trust in the results.
The authors also added that future development in autonomous
underwater vehicle simulation should seek a higher physical
fidelity in terms of end effector world interaction as well as in
terms of simulated hydrodynamic and environmental forces.

Nonetheless, to better frame the proposed hybrid simulation
approach in the landscape of underwater vehicle simulation, we
provide, in the following, a qualitative comparison with respect
to some well-known and widely used simulation tools.

Several commercial simulators exist, such as the FMC
Schilling Robotics ROV Pilot Simulator [17] and Forum Energy
Technologies VMax [18]. The ROV Pilot Simulator and VMax
are commercial simulators intended for pilot training, and are
not sufficiently open as research tools. They are considered
state-of-the-art simulators and are widely used worldwide by
underwater operations companies; nonetheless, it is difficult to
tell to which extent the designers of such simulators favored a
graphically appealing and stable simulation to a dynamically
accurate one. The ROV Pilot Simulator dynamic simulation is
managed by the Vortex PE, a commercially available PE that is
also usable as a PE in our proposed hybrid simulator.

Several research simulators exist instead that are fully open
and available to the academic community; the most widely used
appear to be UWsim [14] and UUV Sim [13]. UWSim is an open-
source simulator implemented using several software modules
and a midlleware for interprocess communications (i.e., ROS),
and is currently used in the underwater research community.
UWSim implements limited contact and interaction dynamics
by simulating, in parallel to vehicle dynamics simulation (using
Bullet, one of the PEs considered in this article), a collision
model that renders contact forces to be fed back to the vehicle
dynamic simulation. Although this approach may work for very
simple tasks, it is well known to be little reliable and prone to
contact simulation instability (see for instance [43]). Only the
Bullet PE is supported by UWSim, and although Bullet is a
well-reputed PE, this represents a weakness in terms of future
developments. In addition, thruster models are very simple, and
changing them requires programming in C++ language and a cer-
tain knowledge of the OpenSceneGraph simulation framework.

UUVSim [13] is an underwater vehicle simulator based on
Gazebo, a general-purpose robotic simulator. It is written in C++
and requires C++ programming for extending and modifications
of the vehicle model. Gazebo implements simulation of rigid
body dynamics using ODE or BULLET as PE, thus UUVSim
introduces hydrodynamic effects similarly to what is proposed
in our simulation approach, although it does not simulate added
masses, as its designers state, to limit possible simulation insta-
bilities [44]. Thrusters and actuated fins models are implemented
as Gazebo plug-ins and, although this represents a modular
approach to vehicle modeling, with the aim of making realization
of new vehicles easy, it has the drawback of offering very simple
dynamic models for these elements that make simulation fidelity
low. Modification of these components requires knowledge of
the ROS midlleware and programming in C++.

Other robotic simulators have been used to implement sim-
ulations of underwater vehicles; Freefloating-gazebo [44] and
UW MORSE [45] are examples of such efforts. MORSE [46]
is an open-source general-purpose academic robot simulator,
and the underwater vehicles simulator UW MORSE [45] is
built upon it. As UWSim and UUV Sim, it adopts Bullet as PE
library, thus the physical fidelity is considered high. Accuracy
of underwater dynamics simulation is difficult to tell since the
authors do not explicitly describe how simulated underwater
effects are integrated into the PE. Freefloating-gazebo, not much
differently from UUVsim, exploits the PE embedded in Gazebo
to simulate the rigid body dynamics and adds hydrodynam-
ics forces externally. The author explicitly excludes the sim-
ulation of added masses, and only quadratic drag effects are
simulated.

As a final remark, we should state that a comparison in terms
of simulation accuracy or fidelity, meaning the capability of a
simulator to reproduce closely the behavior of a specific real
vehicle, would be inappropriate here: Simulation fidelity de-
pends largely on the knowledge of the actual vehicle parameters
and hydrodynamic effects that are indeed difficult to quantify.
What can be done, instead, is to compare the possibility of a
simulator to simulate correctly the specified dynamics given the
best parameters and hydrodynamics models/maps available.

For what regards accuracy of contact and collision simulation,
most of the solutions analyzed rely on the Bullet PE. Since Bullet
is one of the PEs available through V-REP, the simulator adopted
in this article for the implementation of the proposed hybrid
simulation approach, we may conclude that there should not be
any major difference in terms of collision simulation accuracy
between our proposed solution and other existing simulators.
The fact that V-REP supports several PEs in addition to Bul-
let represents an advantage of our solution in terms of future
upgrade ability and sustainability of our simulator, that is, it is
actually independent of any specific PE.

In addition to this, as will be shown in the following, the
proposed hybrid simulation approach is designed to achieve a
tight integration between the PE and the simulator part com-
puting the necessary additional forces and moments due to the
underwater environment; this guarantees the absence of any
possible midlleware communication delay (that may be present
in modular distributed solutions such as UWSim, UUV Sim, or
UW Morse) or other specific simulator-bound issue. Actually
V-Rep acts only as an exterior graphical shell to the simulation
performed by the hybrid simulator.

Our proposed approach is specifically designed for GNC sys-
tem design needs and allows us to create highly detailed models
of any underwater vehicle component, such as actuators and
sensors, to include detailed hydrodynamic maps for each single
part of the vehicle with great ease directly, as anticipated, in the
MATLAB/Simulink environment, and to include any dynamic
system simulating GNC functionalities.

With the proposed tight integration scheme, the PE exchanges
data at each simulation step with the simulator part implement-
ing all “nonrigid body” dynamics and functionalities (hydrody-
namics, control, etc.) in MATLAB/Simulink, simulating rigid
body dynamics and all other components synchronously with



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

RAZZANELLI et al.: DEVELOPMENT OF A HYBRID SIMULATOR FOR UNDERWATER VEHICLES WITH MANIPULATORS 9

a common simulation time base and absolutely no simulation
delay.

Finally, on the contrary to all other simulators analyzed, sim-
ulation of added masses is not a problem in our simulator, even if
with a minimal simulation error as shown later in Section III-D.

Comparison in terms of computation time with respect to real
time is also difficult to perform since it is largely affected by
the graphical complexity of the rendered scene, and the various
simulators analyzed differ significantly in terms of graphical
output. The portion of computation time due to the execution
of the PE instead should be very similar in all the simulators
analyzed that adopt the same PE. It might appear that, at least
for our proposed hybrid simulator, the simulator part computing
the hydrodynamic forces and GNC components should take
a considerable part of the computing time, since it is imple-
mented in Simulink and not in C++ or other compiled language.
Nonetheless, as it will be explained later, the Simulink scheme
implementing all “nonrigid body” parts of the simulator is com-
piled and transformed into a dynamic link library (DLL), and, in
a reasonably modern desktop computer, all the simulations we
tried ran faster than real time, allowing for interactive simulation.

C. Sample Implementation Using V-REP

V-REP is a highly customizable simulator that supports all
the four PEs that were considered for implementation of the
proposed hybrid simulator.

The capability to inject external forces in the PE at run time,
computed as a function of the vehicle state (i.e., the capability to
simulate the presence of generic externally generated forces in
the rigid body equations), is a fundamental PE requirement for
the implementation of the proposed hybrid simulation approach.
V-REP offers an elaborate API that supports six different pro-
gramming languages, each having particular advantages (and
obviously also disadvantages) over the others, but all six are
mutually compatible (i.e., can be used at the same time, or
even hand in hand). Implementation details will be limited to a
minimum to keep the discussion general enough and applicable
also to other PE–simulator couples; nonetheless, pseudocode
excerpts are provided below to ease implementation of a similar
hybrid simulator by interested research groups.

The simulation algorithm of the PE embedded inside V-REP
may be represented by the following pseudocode:

Require: Simulation algorithm
1: Set initial conditions X ← X0 and T ← T0.
2: while simulation non finished do
3: Tk+1 ← Tk +ΔT
4: compute new PE state : Xk+1 ← f (Xk)
5: end while

where the function f(·) is symbolizing the execution of the PE
for one time step, that is, in our case, the numerical integration
of the left-hand side of (24) with the vector of contact/constraint
forces and moments at the right-hand side.

Simulators such as V-REP allow us to modify the algorithm
flow above by inserting, before computing the new PE state, a

call to external functions that may interact with the PE using
software APIs. This is achieved by creating the so-called child
scripts. To implement our proposed hybrid simulation approach,
any additional forces and moments acting on the parts of ROV,
which do not come from rigid body dynamics (that are unknown
thus to the PE) as hydrodynamic forces, environmental forces,
propulsion forces, etc., namely the terms at the right-hand side
of (24), can be added by means of an appropriate child script
that sets them before letting the PE step forward in time and
compute next system state.

The simulation algorithm then becomes the following:

Require: Simulation algorithm with external forces
1: Set initial conditions X ← X0 and T = T0.
2: while simulation non finished do
3: Tk+1 ← Tk +ΔT
4: child scripts executes→ compute all external forces:

Uk = g(Xk)
5: compute new PE state : Xk+1 ← f (Xk, Uk)
6: end while

where the function g(·) is symbolizing the computation of all
additional forces and momentsUk, excluding those coming from
contacts and constraints, to be applied to the simulation scene
bodies.

As anticipated, APIs and child scripts can be developed in
several languages; in our implementation, a very simple child
script was created in Lua, a scripting language with the only
duty of running an external V-REP plug-in. A plug-in is a shared
library (e.g., a Windows DLL) that is automatically loaded by
V-REP’s main client application at program start up and can be
developed in any language that is able to generate a shared library
and to call exported C-functions (the V-REP APIs). With this
technique, well documented in the V-REP manual, it is possible
to let V-REP execute any code, synchronous with the simulation,
and at any time step, that has the possibility to “interact” with
the bodies managed by the PE.

The plug-in code interacts with the bodies using the APIs;
many different functionalities exist, but, for the purpose of this
article, it is necessary only to read all bodies state (position,
attitude, and angular and linear velocities) and to apply forces
and moments to them. Just for exemplification, the following
code excerpt shows the V-REP C++ API functions that can be
used to read the following vehicle state:

Require: Read body state vector
simGetObjectPosition(Rov,-1,Rovp);
simGetObjectOrientation(Rov,-1,Rovφ, θ,ψ);
simGetObjectVelocity(Rov,Rovv,Rovω);

where Rov is an appropriate C++ object that “points” to the
actual ROV body modeled in V-rep, and Rovp, Rovφ, θ,ψ , Rovv ,
and Rovω are appropriate C++ objects that will be filled, with
current vehicle dynamic state, namely η and ν of (24). Similar
code can be used to obtain dynamic state of any body that is



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE JOURNAL OF OCEANIC ENGINEERING

under control of the PE: manipulator links, thrusters, fixed or
moving objects of the environment, etc. Thus V-REP allows the
plug-in to access all the system state in between two successive
time steps.

Once the system state is known, all forces and moments to
be applied to each single body can be computed by the plug-
in. Actual application of these forces to the rigid bodies of the
scene happens, again, using the APIs. Just as exemplification,
the following code excerpt shows the C++ API function used to
apply these forces (that is actually to tell the PE that these forces
must be included in its next state update step via the function):

Require: Set body forces and moments
simAddForceAndTorque(Rov, Fhydro, Mhydro);

where Fhydro and Mhydro are appropriate C++ objects that must
have been filled, for this example, with if ext and inext computed
by (31). Note that, to implement (31), it is necessary to compute
the approximated acceleration ˙̃νi, which is the approximate
acceleration of the ith link at the current time step; Section III-D
discusses the implications of this approximation.

The V-REP plug-in that acquires the state of each single body
composing the ROV and its manipulators, and computes and ap-
plies if ext and inext could be developed directly in C++; another
option is to use MATLAB and Simulink, to implement (31) and
use the Simulink automatic code generation tool to produce the
plug-in C++ code automatically. This latter option is what we
followed in this article: The code necessary to acquire body state
and to apply forces and moments was embedded into Simulink
blocks, and a Simulink scheme was built for implementing all
the elements of (31). Then, the Simulink scheme was used,
together with Mathworks embedded coder to generate directly
the plug-in DLL that is loaded by the Lua child script. This
approach has the tremendous advantage of allowing the use of
MATLAB and Simulink for implementing those parts of the
simulator (hydrodynamic maps, thruster dynamic models, etc.)
where these tools are a de facto standard. In addition, sensor
models, actuator models, and GNC systems can be included in
this part of the simulator allowing the simulation of a complete
ROV mission including its interaction with other objects of the
environment, such as loads to be lifted, valve panels, etc., and
also to simulate collisions.

Fig. 5 shows a conceptual block diagram of the hybrid sim-
ulator where the blocks indicated with R and S represent the
“read body state vector” and the “set body forces and moments”
functions, respectively. These constitute the actual interface
between V-Rep and Simulink, and thus the entire Simulink
scheme implements the function g(·) introduced above. The
approximate acceleration ˙̃ν, needed for the added mass term,
is computed inside the block “Hydrodynamic model.” The
block diagram also contains the sensor and actuator dynamics
blocks, and the GNC systems for the ROV and the manipulator.
Everything inside the Simulink contour is implemented inside
the Simulink scheme; the block “ROV+Manipulator Articulated
Body Dynamics” is implemented by V-REP and the selected PE.

Fig. 5. Conceptual scheme of the elements composing the hybrid simulation.

D. Simulation Accuracy and Approximations

To understand the effects of using the approximate acceler-
ation ˙̃ν in (31) for the simulation of the ROV dynamics, let us
first consider (14) as follows:

Mvν̇ + Cv (ν)ν +Dv (ν)ν + gv (η) = τ v + τ ext
v . (32)

To integrate it numerically, as in a simulator, let us bring all
terms without ν̇ to the right-hand side

(MRB +MA) ν̇ =Mvν̇ = −Cv (ν)ν −Dv (ν)ν − gv (η)
+ τ v + τ ext

v

= τ ′
(
ν, η, τ v, τ

ext
v

)
(33)

that can be put into the canonical form as

ν̇ = (MRB +MA)
−1 τ ′. (34)

Note that, since all terms in τ ′ (·) do not depend on ν̇, no
approximation is introduced.

All the PEs considered for this article adopt the Euler integra-
tion method, thus (34) is integrated numerically yielding

νk+1 = νk + T (MRB +MA)
−1 τ ′ + ε (35)

where T is the integration time step and ε represents the inte-
gration approximation error. Let us call (35), with a little abuse
since it is affected by the numerical integration error ε, exact
integration to symbolize what should be achieved in a simulation
where simulation of rigid body dynamics and hydrodynamics is
not performed separately.

It is well known that the numerical integration error ε can
be made small by selecting an appropriately small integration
time step T ; nonetheless, an even small ε is unavoidable. For this



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

RAZZANELLI et al.: DEVELOPMENT OF A HYBRID SIMULATOR FOR UNDERWATER VEHICLES WITH MANIPULATORS 11

reason, it is not considered in the following analysis that focuses
instead in the possibly larger simulation error due to simulation
of added masses as external forces as in our hybrid approach.

It could be speculated that the masses and inertia of each
single body in the articulated body simulator could be set so
that the term (MRB +MA) could be actually simulated inside
it. Unfortunately, the structure of the MRB matrix and that of
MA, which is usually obtained by identification, are not com-
patible (see for instance [19]), unless extreme simplifications are
adopted. Thus, there is no possibility to correctly simulate the
added mass effects by simply “modifying” the mass of the body
and its inertia tensor.

When, as described in Section II-C, the added mass term is
brought to the right-hand side and the approximate acceleration
˙̃ν is used, we obtain

MRBν̇ = −MA
˙̃ν + τ ′ (36)

that is, in canonical form

ν̇ =M−1
RB τ

′ −M−1
RBMA

˙̃ν (37)

which can be discretized as

νk+1 = νk + T
(
M−1

RB τ
′ −M−1

RBMA
˙̃νk
)
+ ε (38)

where ˙̃νk is the approximate acceleration at time k.
Equation (38) represents the state update map of the proposed

hybrid simulator. Lemma 1 below proves that if it would be
possible to approximate ˙̃ν using noncausal differentiation, then
the proposed hybrid simulation approach represented by (38)
would be equivalent to the exact integration represented by (35),
that is, no error, except clearly for the numerical integration error
ε, would be actually introduced.

Lemma 1 (Noncausal Derivative): The proposed hybrid
simulation approach, with the added masses introduced as ex-
ternal forces as in (38)

νk+1 = νk + T
(
M−1

RB τ
′ −M−1

RBMA
˙̃νk
)
+ ε

is equivalent to the “exact” added masses simulation as in (35)

νk+1 = νk + T (MRB +MA)
−1 τ ′ + ε

if ˙̃ν is obtained by noncausal numerical derivative.
Proof: Let us define the noncausal derivative ˙̃ν as follows:

˙̃νk � νk+1 − νk
T

. (39)

Then, by substituting (39) into (38), and omitting the numerical
integration error ε from the comparison for simplicity, we obtain

νk+1 = νk + T

(
M−1

RB τ
′ −M−1

RBMA
νk+1 − νk

T

)

= νk + T M−1
RB τ

′ −M−1
RBMA (νk+1 − νk) . (40)

Let us bring all terms with νk+1 to the left-hand side

νk+1 +M−1
RBMAνk+1 =M−1

RB (MRB +MA)νk+1

= νk + T M−1
RB τ

′ +M−1
RBMAνk

(41)

and multiply all terms by (MRB +MA)
−1 to obtain

νk+1 = (MRB +MA)
−1MRBνk + T (MRB +MA)

−1

×MRBM
−1
RB τ

′+(MRB +MA)
−1MRBM

−1
RBMAνk.

(42)

By collecting the terms with νk, we finally obtain

νk+1 = (MRB +MA)
−1 (MRB +MA)νk

+ T (MRB +MA)
−1 τ ′

= νk + T (MRB +MA)
−1 τ ′. (43)

�
Lemma 2 proves, instead, that, if ˙̃ν is approximated by causal

differentiation, a simulation error is introduced by the proposed
hybrid approach. A discussion on the practical effects of this
approximation follows.

Lemma 2 (Causal Derivative): The proposed hybrid simu-
lation approach, with the added masses introduced as external
forces as in (38)

νk+1 = νk + T
(
M−1

RB τ
′ −M−1

RBMA
˙̃νk
)
+ ε

if ˙̃ν is obtained by causal numerical derivative, is equivalent to
the “exact” added masses simulation as in (35) with the addition
of the disturbance force τ dist that is linearly proportional to the
added mass matrix, the integration step, and the trajectory Jerk

νk+1 = νk + T (MRB +MA)
−1 (τ ′ + τ dist) .

Proof: Let us define the causal derivative as follows:

˙̃νk � νk − νk−1
T

. (44)

Then, by substituting (44) into (38), we obtain

νk+1 = νk + T

(
M−1

RB τ
′ −M−1

RBMA
νk − νk−1

T

)

= νk + T M−1
RB τ

′ −M−1
RBMA (νk − νk−1) . (45)

It can be shown, by adding and removing the term
M−1

RBMA (νk+1 − νk) on the right-hand side of (45) and using
a little algebra, that

νk+1 = νk + T (MRB +MA)
−1 τ ′ − (MRB +MA)

−1

× MA (−νk+1 + 2νk − νk−1)

= νk + T (MRB +MA)
−1 τ ′ − T (MRB +MA)

−1

· 1/T ·MA (−νk+1 + 2νk − νk−1)

= νk + T (MRB +MA)
−1 [τ ′ + τ dist] (46)

where τ dist = − 1
TMA (−νk+1 + 2νk − νk−1).

By expanding the term τ dist, we obtain

τ dist = − 1

T
MA (−νk+1 + νk + νk − νk−1)

=MA

(
νk+1 − νk

T
− νk − νk−1

T

)
(47)



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE JOURNAL OF OCEANIC ENGINEERING

where the term in parenthesis can be recognized as the difference
between accelerations at the kth and (k − 1)th instants

τ dist =MA (ak − ak−1) . (48)

Then, by multiplying the above equation by T
T , we obtain

τ dist =MAT

(
ak − ak−1

T

)
=MAT · Jerkk (49)

where

Jerkk � ak − ak−1
T

. (50)

�
Lemma 2 states that the net effect of the hybrid simulation is

equivalent to that of the disturbance force τ dist =MAT Jerkk.
This result indicates that the hybrid simulator should be able
to produce accurate results when the vehicle is near a steady
condition, moving at constant velocity or even posses a constant
acceleration. Smoothness of motion is a usual assumption on
underwater vehicles, thus the value of Jerk should always be
small, yielding accurate simulation results, at least comparable
with those achievable by a “standard” approach. Furthermore,
the presence of the term T in the disturbance force expression
indicates that its effects may be mitigated by choosing smaller
integration steps, and selecting small integration steps is usually
the case when using the Euler integration method to reduce the
integration error ε.

Note also that the disturbance force is independent fromτ ′ (·).
This means that the disturbance force is independent from any
force, drag, and propulsion (or other modeled forces) acting on
the vehicle.

To further investigate the implications of Lemma 2, let us
consider the vehicle in a forced oscillatory motion since, even if
this condition is of little interest in ROV simulation, the added
mass term plays a fundamental role in simulation of a vehicle in
oscillatory motion due to the presence of waves. Let us assume
that, limiting for simplicity this analysis to motion along a single
axis, the position of the vehicle is: pk =W sin (ω t), where ω
is the wave frequency and W is the amplitude of the oscil-
latory motion, and the corresponding Jerk is clearly: Jerkk =
−ω3W cos (ω t). It is not difficult to show, using Lemma 2,
that, in a forced oscillatory motion, the ratio of the equivalent
disturbance force τ dist and the sum of all forces acting on the
vehicle to sustain the oscillatory motion τ̄ is

τ dist

τ̄
=

MA

MRB +MA
Tω (51)

where the ratio MA/(MRB +MA) is always less than 1 on
all degrees of freedom, usually T << 1, and realistic wave
frequencies ω of relevant power are always less than 1 (see, for
instance, [19] and [47]–[49]), making the equivalent disturbance
force due to inclusion of the added mass term as an external force
only a small fraction of the total force involved.

IV. SIMULATION RESULTS

To asses qualitatively the proposed simulator architecture, a
complete ROV simulator including a user station with a display

and a joystick for pilot commands was created. The ROV mass,
moments of inertia, and hydrodynamic model were derived from
a work-class ROV model (weight around 3800 kg) available
from a previous research activity. ROVs are usually connected
with the support ship and the pilot using a power and data cable
called umbilical cable. The umbilical cable may generate strong
disturbance forces on the vehicle, especially in small-sized ones
(see [50] for instance). Accurate umbilical cable simulation was
not in the scope of this article, and the results of this section have
been achieved without simulating the effects of the umbilical
cable and with τ ext = 0. However, thanks to the proposed hybrid
simulation architecture, it could be possible, for instance, to
model the umbilical cable in V-REP with a finite-element-like
approach and to add hydrodynamic forces in Simulink for it,
exactly as it is done for the ROV, otherwise cable dynamics could
be simulated completely in Simulink creating an appropriate
τ ext and including it as an external force. It should be noted,
finally, that the proposed hybrid simulation approach can be used
to simulate not only ROVs but also other types of underwater
vehicles or objects; as a matter of fact, the same approach was
used to simulate the hydrodynamics forces acting on the object
manipulated by the ROV in Scenarios 1 and 2.

The ROV guidance system was modeled as a high-end inte-
grated DVL–USBL–inertial navigation system. A control sys-
tem for regulation of speed references, generated by the pilot
using the joystick, was designed as a Integral Linear Quadratic
Regulator (or Servo LQR) similarly to what is described in [51].
A three-DOFs manipulator was simulated, and a simple control
system was designed using inverse kinematics and closed-loop
joint control allowing the pilot to move its end effector in
Cartesian coordinates [23], [52]. In addition, a very simple
controller for holding position and attitude, which the pilot can
activate with the push of a button, was designed as an outer
loop controller. Everything described above, with the exclusion
of rigid body dynamics, was implemented inside a Simulink
scheme.

Rigid body dynamics is simulated instead by the Bullet PE.
Bullet has an internal fixed sample time of (1/60 s). This means
that, even if we try to increase the frequency at which the
simulator works, this only generates a fictitious upsampling.
Thus, 60 Hz represents, at the current moment, until V-Rep
would allow to change it, a constant of the simulator.

Fig. 6 shows how the ROV environment appears from an
external viewpoint; the ROV operator station shows instead the
view from a camera mounted onboard the ROV.

Three different simulated missions were run with the aim of
highlighting the simulator features and put it to stress: pick and
release of a heavy object, fast manipulation, and sudden release
of a heavy object, crash of the ROV against a fixed structure.
The following describes in more detail the three missions that
were conducted and shows relevant signals that highlight how
the simulator “handles” these situations.

Since the purpose of this article is to show a simulation
approach rather than to present and validate the simulator
of a specific vehicle, a comparison between simulation and
experimental data is not presented in this article. In other words,
assuming valid the underwater vehicle dynamics represented by



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

RAZZANELLI et al.: DEVELOPMENT OF A HYBRID SIMULATOR FOR UNDERWATER VEHICLES WITH MANIPULATORS 13

Fig. 6. ROV simulation environment as seen in V-Rep.

(32), we may state that comparing simulated data with real-world
data will “only” validate the numerical model of the specific
underwater vehicle. As a matter of fact, virtually the entire
scientific literature on underwater vehicle modeling assumes
these equations valid, including many different research papers
where a comparison between real and simulated underwater
vehicles, in scale or not, is performed (see, for instance,
[53]–[55]). This article is intended to validate what we called
a “hybrid” simulator, also by means of the accuracy analysis of
Lemma 2, to show that the reliability of contact and physical
interaction simulation of existing PEs can be joined, without
loss of simulation accuracy, with the flexibility of Simulink for
simulation of many different vehicle features, such as specific
underwater drag models, sensors, actuators, and any kind of
controllers.

A. Scenario 1: Pick and Release

The ROV is started a few meters away from the object to be
picked (a metallic tabular frame; weight: 400 kg; weight in water
around 100 kg). The pilot has to move and orient the ROV to
get the object in reach of the manipulator. Then, the user has to
put the ROV in position hold mode and use the manipulator to
grab it. Finally, the pilot has to lift it by commanding a vertical
velocity for the ROV body.

Fig. 7 shows the time histories of relevant variables for the
sequence described above: depth, vertical force commanded by
the control system, pitch angle, and pitch rate (roll and yaw
angles are less affected than pitch given the position of the ma-
nipulator). Also indicated are the instants at which the operator
closes the manipulator gripper (around time = 12 s) and when
the gripper is opened again letting the object fall (around time
= 22.9 s). Since the grasp of the object is not firm, it oscillates
lightly when the ROV moves and lifts it. These oscillations can
be easily seen in the pitch rate and the vertical force graphs.
Also the increase of the vertical force needed to regulate the
depth can be seen during the lift transient (approximately in
the window t = 12–17 s) and when the depth is kept constant
(the window time = 17–22.9 s). Moreover, the transient in all

variables can be noticed when the object is released (around
t = 23 s).

B. Scenario 2: Fast Manipulation

In the second scenario, the pilot has to grab the same object as
in Scenario 1, then he/she has to activate a predefined sinusoidal
trajectory of the end effector through the push of a button: The
ROV will hold its position, and the manipulator will start a
sinusoidal motion of the end effector of amplitude 40 cm and
with maximum velocity of about 10 cm/s for a total of four
periods. Then, the object is released, and the oscillatory motion
is activated again.

Fig. 8 shows the portion of the mission where the sinusoidal
trajectories of the manipulator are activated. The figure starts
(around time = 40 s) with the object grasped by the manipu-
lator. Note that, even in the first 10 s, the pitch rate, although
small, is not perfectly constant due to the small oscillations of
the object hanging from the gripper and to the simulation of
contact force (between the object and the gripper). Also the
pitch moment M reflects that: In addition, the pitch moment is
sensibly high due to the need to keep the pitch angle constant
while holding the object; and the pitch moment value is, as
expected, approximately equal to the weight in water of the
proposed object times the distance between the gripper and the
ROV center of mass (around 2.5 m in this simulation). It can be
noticed that, due to the presence of the attitude control system,
the oscillatory manipulator motion (from time = 50 s to time
= 80 s) has little effect on the ROV body variables. The torque
τ1 generated by the joint motor at the manipulator shoulder is
also shown. When at time = 88 s, the gripper is opened and the
object grasp is lost, there is a large transient on all variables:
Thanks to the action of the attitude control system, the pitch
moment falls back rapidly to the value it had before grasping the
object, the pitch rate shows a corresponding transient, and also
the end-effector position shows a little transient due to the sudden
change in the joint moments needed to hold the manipulator in
place.

When from time= 91 s to time= 121 s, the sinusoidal motion
is activated again, the joint torque of the manipulator appears
much lower than before since the inertia of its load is greatly
decreased.

C. Scenario 3: Crash Against a Fixed Structure

During ROV operations, collision avoidance is a critical task,
but, from the simulator standpoint, simulating reliably a collision
between the ROV, the manipulator, and fixed structures or the
sea bottom is even a greater challenge. This simulation presents
the ROV simulator behavior when a collision happens against a
fixed unmovable structure.

The ROV is initially moving at 1 m/s along its X body axis
until, around time = 7.5 s, it hits a pillar. The hit point is on
the front left of the ROV body. The ROV control system is
automatically powered off at the hit time to observe the transient
behavior of the ROV after the crash. Fig. 9 shows the ROV surge
velocity, yaw rate, and roll, pitch, and yaw angles.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE JOURNAL OF OCEANIC ENGINEERING

Fig. 7. Sample mission: pick and release of a heavy object.

Fig. 8. Sample mission: fast object manipulation.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

RAZZANELLI et al.: DEVELOPMENT OF A HYBRID SIMULATOR FOR UNDERWATER VEHICLES WITH MANIPULATORS 15

Fig. 9. Sample mission: crash against a fixed structure.

Fig. 10. Crash mission: stroboscopic view of the crash sequence.

The effect of the collision is clearly noticeable as an almost
immediate drop of surge velocity toward 0 m/s. Velocity does not
null immediately because the hit point is not perfectly centered.
As a result, as expected, the yaw rate increases immediately and
the vehicle starts turning to the left. The vehicle then settles to
a constant attitude and zero velocity due to the hydrodynamic
drag. The pitch angle does not settle to zero since the buoyancy
center is little behind the center of mass in the simulated ROV.
Fig. 10 shows a stroboscopic view of the crash sequence.

V. CONCLUSION

This article presented a hybrid simulation approach for un-
derwater vehicles with one or more manipulators to be used
to simulate robotic intervention mission. Mathematical founda-
tions in support of the proposed simulation architecture were

provided together with an analysis of the simulation accuracy
connected with the simulation of added masses, proving that this
can be very small in typical conditions. A sample implementa-
tion was proposed using both free open-source and commercial
simulation softwares showing that the amount of C++ coding
that is necessary is very limited. Finally, simulation of three
operational scenarios was presented to validate qualitatively the
simulator performance.

It is important to emphasize that the validity, applicability, and
the theoretical results on simulation accuracy of the proposed
hybrid simulation approach are independent of the specific
software packages that were used for the development and the
demonstration of the concept. As a matter of fact, the proposed
hybrid simulation approach could have been demonstrated with
a different combination of techniques for multibody dynamics
simulation and the addition of hydrodynamics effects and GNC
components.

REFERENCES

[1] W. E. Landay III, M. LeFever, R. Spicer, R. Levitre, and S. Tomaszeski,
“The navy unmanned undersea vehicle (UUV) master plan,” U.S. Dept.
Navy, Washington, DC, USA, US Navy Rep., 2004. [Online]. Available:
https://www.navy.mil/navydata/technology/uuvmp.pdf

[2] L. Voss, “Unmanned systems face a changing market,” COTS J., vol. 10,
no. 10, pp. 20–27, 2008.

[3] D. Lillo et al., “Advanced ROV autonomy for efficient remote control in
the DexROV project,” Mar. Technol. Soc. J., vol. 50, no. 4, pp. 67–80,
2016.

[4] P. Abreu et al., “Widely scalable mobile underwater sonar technology: An
overview of the H2020 WiMUST project,” Mar. Technol. Soc. J., vol. 50,
no. 4, pp. 42–53, 2016.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

16 IEEE JOURNAL OF OCEANIC ENGINEERING

[5] L. Brun, “ROV/AUV trends: Market and technology,” Mar. Technol. Rep.,
vol. 5, no. 7, pp. 48–51, 2012.

[6] S. Shaker, “Preparing for the future of unmanned undersea surface
vehicles.” 2013. [Online]. Available: http://www.slideshare.net/sshaker/
future-uuv-usv-aug-2013

[7] IndustryARC, “Unmanned underwater vehicles market.” 2015.
[Online]. Available: http://www.slideshare.net/IndustryARC/unmanned-
underwater-vehicles-mark et-20152020

[8] G. Antonelli, “Workshop on marine robotics: Vehicle-manipulator
systems.” 2016. [Online]. Available: http://www.slideshare.net/
GianlucaAntonelli/workshop-on-marine-robotics-vehiclemanipulator-
systems

[9] I. Schjølberg and I. B. Utne, “Towards autonomy in ROV operations,”
IFAC-PapersOnLine, vol. 48, no. 2, pp. 183–188, 2015.

[10] A. L. Alexander, T. Brunyé, J. Sidman, and S. A. Weil, “From gam-
ing to training: A review of studies on fidelity, immersion, pres-
ence, and buy-in and their effects on transfer in PC-based simulations
and games,” DARWARS Training Impact Group, vol. 5, pp. 1–14,
2005.

[11] J. Craighead, R. Murphy, J. Burke, and B. Goldiez, “A survey of com-
mercial & open source unmanned vehicle simulators,” in Proc. IEEE Int.
Conf. Robot. Autom, 2007, pp. 852–857.

[12] D. Cook, A. Vardy, and R. Lewis, “A survey of AUV and robot simulators
for multi-vehicle operations,” in Proc. IEEE/OES Auton. Underwater Veh.,
2014, pp. 1–8.

[13] M. M. M. Manhães, S. A. Scherer, M. Voss, L. R. Douat, and T. Rauschen-
bach, “UUV simulator: A gazebo-based package for underwater inter-
vention and multi-robot simulation,” in Proc. OCEANS 2016 MTS/IEEE
Monterey, 2016, doi: 10.1109/OCEANS.2016.7761080.

[14] M. Prats, J. Pérez, J. J. Fernández, and P. J. Sanz, “An open
source tool for simulation and supervision of underwater intervention
missions,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2012,
pp. 2577–2582.

[15] P. Xie et al., “Aqua-Sim: An NS-2 based simulator for underwater sensor
networks,” in Proc. OCEANS Conf., 2009, pp. 1–7.

[16] S. K. Choi, S. Menor, and J. Yuh, “Distributed virtual environment col-
laborative simulator for underwater robots,” in Proc. IEEE/ RSJ Int. Conf.
Intell. Robots Syst., 2000, vol. 2, pp. 861–866.

[17] CM Labs, “Vortex FMC schilling robotics ROV pilot simulator.”
[Online]. Available: http://www.f-e-t.com/products/drilling-and-subsea/
subsea-technologies/v max-project-simulator-software, Accessed: 2019.

[18] Forum Energy Technologies, “Vmax simulator.” [Online]. Available: http:
//www.f-e-t.com/products/drilling-and-subsea/subsea-technologies/
v max-project-simulator-software, Accessed: 2019.

[19] T. I. Fossen, Guidance and Control of Ocean Vehicles. Hoboken, NJ, USA:
Wiley, 1994.

[20] The Society of Naval Architects and Marine Engineers, Technical and
Research Bulletin No. 1–5, “Nomenclature for treating the motion of
a submerged body through a fluid,” Soc. Nav. Archit. Mar. Eng., Tech.
Res. Bull., pp. 1–5, 1950. [Online]. Available: https://www.itk.ntnu.no/
fag/TTK4190/papers/Sname%201950.PDF

[21] O. Faltinsen, Sea Loads on Ships and Offshore Structures, vol. 1. Cam-
bridge, U.K.: Cambridge Univ. Press, 1993.

[22] R. S. Hartenberg and J. Denavit, “A kinematic notation for lower pair
mechanisms based on matrices,” J. Appl. Mech., vol. 77, no. 2, pp. 215–221,
1955.

[23] G. Antonelli, Underwater Robots, vol. 96. New York, NY, USA: Springer,
2013.

[24] L.-W. Tsai, Robot Analysis: The Mechanics of Serial and Parallel Manip-
ulators. Hoboken, NJ, USA: Wiley, 1999.

[25] R. Featherstone, “The calculation of robot dynamics using articulated-
body inertias,” Int. J. Robot. Res., vol. 2, no. 1, pp. 13–30,
1983.

[26] B. Mirtich and J. Canny, “Impulse-based simulation of rigid bodies,” in
Proc. Symp. Interact. 3D Graph., 1995, pp. 181–188.

[27] G. Gilardi and I. Sharf, “Literature survey of contact dynamics mod-
elling,” Mechanism Mach. Theory, vol. 37, no. 10, pp. 1213–1239,
2002.

[28] P. Song, “Modeling, analysis and simulation of multibody systems with
contact and friction,” Ph.D. dissertation, Mech. Eng. Appl. Mech., Univ.
Pennsylvania, Philadelphia, PA, USA, 2002.

[29] S. Giovanni and K. Yin, “LocoTest: Deploying and evaluating physics-
based locomotion on multiple simulation platforms,” in Proc. Int. Conf.
Motion Games, 2011, pp. 227–241.

[30] T. Erez, Y. Tassa, and E. Todorov, “Simulation tools for model-based
robotics: Comparison of Bullet, Havok, MuJoCo, ODE and PhysX,” in
Proc. IEEE Int. Conf. Robot. Autom., 2015, pp. 4397–4404.

[31] I. Metrikin, A. Borzov, R. Lubbad, and S. Løset, “Numerical simulation
of a floater in a broken-ice field: Part II—Comparative study of physics
engines,” in Proc. ASME 31st Int. Conf. Ocean, Offshore Arctic Eng., 2012,
pp. 477–486.

[32] S. Ivaldi, J. Peters, V. Padois, and F. Nori, “Tools for simulating humanoid
robot dynamics: A survey based on user feedback,” in Proc. IEEE-RAS
Int. Conf. Humanoid Robots, 2014, pp. 842–849.

[33] D. W. Marhefka and D. E. Orin, “Simulation of contact using a nonlinear
damping model,” in Proc. IEEE Int. Conf. Robot. Autom., 1996, vol. 2,
pp. 1662–1668.

[34] D. E. Stewart and J. C. Trinkle, “An implicit time-stepping scheme
for rigid body dynamics with inelastic collisions and coulomb fric-
tion,” Int. J. Numer. Methods Eng., vol. 39, no. 15, pp. 2673–2691,
1996.

[35] A. Boeing and T. Bräunl, “Evaluation of real-time physics simulation
systems,” in Proc. 5th Int. Conf. Comput. Graph. Interact. Techn. Australia
Southeast Asia, 2007, pp. 281–288.

[36] A. Enzenhöfer, S. Andrews, M. Teichmann, and J. Kövecses, “Comparison
of mixed linear complementarity problem solvers for multibody simula-
tions with contact,” in Proc. 14th Workshop Virtual Reality Interact. Phys.
Simul., 2018, pp. 11–20.

[37] C. Lacoursière, M. Linde, Y. Lu, and J. Trinkle, “A framework for data
exchange and benchmarking of frictional contact solvers in multibody
dynamics,” in Proc. ECCOMAS Thematic Conf. Multibody Dyn., 2015,
pp. 2–3.

[38] R. Smith, “Ode: Open dynamics engine.” [Online]. Available: http://www.
ode.org, Accessed: 2019.

[39] E. Coumans, “Bullet physics engine.” [Online]. Available: http://
bulletphysics.org, Accessed: 2019.

[40] J. Jarez and A. Suero, “Newton game dynamics,” Opensource Phys.
Engine, 2008.

[41] CM Labs, “Vortex simulator.” [Online]. Available: http://www.cm-labs.
com/. Accessed: 2019.

[42] I. Desberg, “Vortex simulator,” US Patent App. 29/378 867, 2012.
[43] D. Baraff, “Fast contact force computation for nonpenetrating rigid bod-

ies,” in Proc. SIGGRAPH, 1994, pp. 23–34.
[44] O. Kermorgant, “A dynamic simulator for underwater vehicle-

manipulators,” in Proc. Int. Conf. Simul., Model., Program. Auton. Robots,
2014, pp. 25–36.

[45] E. H. Henriksen, I. Schjlberg, and T. B. Gjersvik, “UW MORSE: The
underwater modular open robot simulation engine,” in Proc. IEEE/OES
Auton. Underwater Veh., 2016, pp. 261–267.

[46] G. Echeverria, N. Lassabe, A. Degroote, and S. Lemaignan, “Modular
open robots simulation engine: MORSE,” in Proc. IEEE Int. Conf. Robot.
Autom., 2011, pp. 46–51.

[47] H. Mitsuyasu et al., “Observation of the power spectrum of ocean waves
using a cloverleaf buoy,” J. Phys. Oceanogr., vol. 10, no. 2, pp. 286–296,
1980.

[48] J. Battjes, T. Zitman, and L. Holthuusen, “A reanalysis of the spectra
observed in JONSWAP,” J. Phys. Oceanogr., vol. 17, no. 8, pp. 1288–1295,
1987.

[49] S. Beji and J. Battjes, “Experimental investigation of wave propagation
over a bar,” Coastal Eng., vol. 19, no. 1/2, pp. 151–162, 1993.

[50] M.-C. Fang, C.-S. Hou, and J.-H. Luo, “On the motions of the underwater
remotely operated vehicle with the umbilical cable effect,” Ocean Eng.,
vol. 34, no. 8/9, pp. 1275–1289, 2007.

[51] S. Rodríguez, M. Peña, and R. Ramírez, “Dynamic control design LQR PI
vectorial of remotely operated underwater vehicle,” in Proc. III Int. Congr.
Eng. Mechatronics Autom., 2014, pp. 1–4.

[52] L. Sciavicco and B. Siciliano, Modelling and Control of Robot Manipula-
tors. New York, NY, USA: Springer, 2012.

[53] N. Q. Hoang and E. Kreuzer, “Adaptive PD-controller for positioning
of a remotely operated vehicle close to an underwater structure: Theory
and experiments,” Control Eng. Pract., vol. 15, no. 4, pp. 411–419,
2007.

[54] H.-H. Chen, “Vision-based tracking with projective mapping for parameter
identification of remotely operated vehicles,” Ocean Eng., vol. 35, no. 10,
pp. 983–994, 2008.

[55] R. B. Ambar, S. Sagara, and K. Imaike, “Experiment on a dual-arm
underwater robot using resolved acceleration control method,” Artif. Life
Robot., vol. 20, no. 1, pp. 34–41, 2015.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

RAZZANELLI et al.: DEVELOPMENT OF A HYBRID SIMULATOR FOR UNDERWATER VEHICLES WITH MANIPULATORS 17

Matteo Razzanelli received the B.Sc. degree in
computer science engineering, the M.Sc. degree in
robotics and automation engineering, and the Ph.D.
degree in information technology from the Univer-
sity of Pisa, Pisa, Italy, in 2011, 2015, and 2019,
respectively.

He was a Research Fellow in a project funded
by SAIPEM SpA in 2014. He was involved in the
European H2020 project WiMUST “Widely Scalable
Mobile Underwater Sonar Technology.” His works
include guidance, navigation, and control of aerial,

terrestrial, and marine unmanned vehicles, visual navigation systems for multi-
rotor vehicles, distributed control algorithms, and model predictive control.

Simona Casini received the B.Sc. degree in mechan-
ical engineering from the University of Genoa, Gen-
ova, Italy, in 2011, and the M.Sc. degree in robotics
and automation engineering from the University Pisa,
Pisa, Italy, in 2015.

She was a Research Fellow for a project funded by
SAIPEM SpA in 2014, and a Robotic Engineer with
the Italian Institute of Technology from 2016 to 2019.
She is currently a Software Developer Engineer for a
CNC machine industrial simulator.

Mario Innocenti received the Laurea degree in aero-
nautical engineering from the University of Pisa, Pisa,
Italy, in 1977, and the Ph.D. degree in aeronautics and
astronautics from Purdue University, West Lafayette,
IN, USA, in 1982.

From 1982 to 1992, he was a faculty member with
the Department of Aerospace Engineering, Auburn
University, Auburn, AL, USA. Since 1993, he has
been with the University of Pisa, where he is cur-
rently a Full Professor in automatic control with the
Department of Information Engineering. He was a

member of various NATO working groups, a Visiting Scientist at several
U.S. laboratories, and has performed sponsored research at the national and
international levels. He has published more than 230 scientific publications and
tutored 19 Ph.D. students. His research interests are in the areas of control
theory, unmanned systems guidance and control, and rendezvous problems in
space under a three-body perturbation.

Prof. Innocenti, for 2008–2009, was a recipient of a senior research associate
fellowship by the U.S. National Research council to perform research at the
Munitions Directorate of Air Force Research Laboratory, Eglin AFB, FL, USA.

Lorenzo Pollini (M’01) received the Laurea degree
in computer engineering (cum laude) and the Ph.D.
degree in robotics and industrial automation from
the University of Pisa, Pisa, Italy, in 1997 and 2000,
respectively.

He is currently an Associate Professor in auto-
matic control with the University of Pisa, Pisa, Italy.
He is the Deputy Director for the Master Degree in
Robotics and Automation with the University of Pisa,
and teaches the courses of guidance and navigation
systems, digital control systems, and control systems

theory. He authored more than 100 scientific publications, including three book
chapters, and he is also the coauthor of a chapter of the Encyclopedia of
Aerospace Engineering (Wiley, 2010). His research interests include guidance
and navigation systems, vision-based control, haptic support systems, fuzzy,
neural, and nonlinear adaptive controls, and real-time dynamic systems simula-
tion with specific application to unmanned systems.

Dr. Pollini is a member of the IEEE Systems Man and Cybernetics Society—
Shared Control Technical Committee and the AIAA Guidance Navigation and
Control Technical Committee. He is currently an Associate Fellow of AIAA.


