33 research outputs found

    Low-power high-efficiency video decoding using general purpose processors

    Get PDF
    In this article, we investigate how code optimization techniques and low-power states of general-purpose processors improve the power efficiency of HEVC decoding. The power and performance efficiency of the use of SIMD instructions, multicore architectures, and low-power active and idle states are analyzed in detail for offline video decoding. In addition, the power efficiency of techniques such as “race to idle” and “exploiting slack” with DVFS are evaluated for real-time video decoding. Results show that “exploiting slack” is more power efficient than “race to idle” for all evaluated platforms representing smartphone, tablet, laptop, and desktop computing systems

    Parallel HEVC Decoding on Multi- and Many-core Architectures : A Power and Performance Analysis

    Get PDF
    The Joint Collaborative Team on Video Decoding is developing a new standard named High Efficiency Video Coding (HEVC) that aims at reducing the bitrate of H.264/AVC by another 50 %. In order to fulfill the computational demands of the new standard, in particular for high resolutions and at low power budgets, exploiting parallelism is no longer an option but a requirement. Therefore, HEVC includes several coding tools that allows to divide each picture into several partitions that can be processed in parallel, without degrading the quality nor the bitrate. In this paper we adapt one of these approaches, the Wavefront Parallel Processing (WPP) coding, and show how it can be implemented on multi- and many-core processors. Our approach, named Overlapped Wavefront (OWF), processes several partitions as well as several pictures in parallel. This has the advantage that the amount of (thread-level) parallelism stays constant during execution. In addition, performance and power results are provided for three platforms: a server Intel CPU with 8 cores, a laptop Intel CPU with 4 cores, and a TILE-Gx36 with 36 cores from Tilera. The results show that our parallel HEVC decoder is capable of achieving an average frame rate of 116 fps for 4k resolution on a standard multicore CPU. The results also demonstrate that exploiting more parallelism by increasing the number of cores can improve the energy efficiency measured in terms of Joules per frame substantially

    A Decoding-Complexity and Rate-Controlled Video-Coding Algorithm for HEVC

    Get PDF
    Video playback on mobile consumer electronic (CE) devices is plagued by fluctuations in the network bandwidth and by limitations in processing and energy availability at the individual devices. Seen as a potential solution, the state-of-the-art adaptive streaming mechanisms address the first aspect, yet the efficient control of the decoding-complexity and the energy use when decoding the video remain unaddressed. The quality of experience (QoE) of the end-users’ experiences, however, depends on the capability to adapt the bit streams to both these constraints (i.e., network bandwidth and device’s energy availability). As a solution, this paper proposes an encoding framework that is capable of generating video bit streams with arbitrary bit rates and decoding-complexity levels using a decoding-complexity–rate–distortion model. The proposed algorithm allocates rate and decoding-complexity levels across frames and coding tree units (CTUs) and adaptively derives the CTU-level coding parameters to achieve their imposed targets with minimal distortion. The experimental results reveal that the proposed algorithm can achieve the target bit rate and the decoding-complexity with 0.4% and 1.78% average errors, respectively, for multiple bit rate and decoding-complexity levels. The proposed algorithm also demonstrates a stable frame-wise rate and decoding-complexity control capability when achieving a decoding-complexity reduction of 10.11 (%/dB). The resultant decoding-complexity reduction translates into an overall energy-consumption reduction of up to 10.52 (%/dB) for a 1 dB peak signal-to-noise ratio (PSNR) quality loss compared to the HM 16.0 encoded bit streams

    Extended Signaling Methods for Reduced Video Decoder Power Consumption Using Green Metadata

    Full text link
    In this paper, we discuss one aspect of the latest MPEG standard edition on energy-efficient media consumption, also known as Green Metadata (ISO/IEC 232001-11), which is the interactive signaling for remote decoder-power reduction for peer-to-peer video conferencing. In this scenario, the receiver of a video, e.g., a battery-driven portable device, can send a dedicated request to the sender which asks for a video bitstream representation that is less complex to decode and process. Consequently, the receiver saves energy and extends operating times. We provide an overview on latest studies from the literature dealing with energy-saving aspects, which motivate the extension of the legacy Green Metadata standard. Furthermore, we explain the newly introduced syntax elements and verify their effectiveness by performing dedicated experiments. We show that the integration of these syntax elements can lead to dynamic energy savings of up to 90% for software video decoding and 80% for hardware video decoding, respectively.Comment: 5 pages, 2 figure

    Optimisation énergétique de processus de traitement du signal et ses applications au décodage vidéo

    Get PDF
    Consumer electronics offer today more and more features (video, audio, GPS, Internet) and connectivity means (multi-radio systems with WiFi, Bluetooth, UMTS, HSPA, LTE-advanced ... ). The power demand of these devices is growing for the digital part especially for the processing chip. To support this ever increasing computing demand, processor architectures have evolved with multicore processors, graphics processors (GPU) and ether dedicated hardware accelerators. However, the evolution of battery technology is itself slower. Therefore, the autonomy of embedded systems is now under a great pressure. Among the new functionalities supported by mobile devices, video services take a prominent place. lndeed, recent analyzes show that they will represent 70% of mobile Internet traffic by 2016. Accompanying this growth, new technologies are emerging for new services and applications. Among them HEVC (High Efficiency Video Coding) can double the data compression while maintaining a subjective quality equivalent to its predecessor, the H.264 standard. ln a digital circuit, the total power consumption is made of static power and dynamic power. Most of modern hardware architectures implement means to control the power consumption of the system. Dynamic Voltage and Frequency Scaling (DVFS) mainly reduces the dynamic power of the circuit. This technique aims to adapt the power of the processor (and therefore its consumption) to the actual load needed by the application. To control the static power, Dynamic Power Management (DPM or sleep modes) aims to stop the voltage supplies associated with specific areas of the chip. ln this thesis, we first present a model of the energy consumed by the circuit integrating DPM and DVFS modes. This model is generalized to multi-core integrated circuits and to a rapid prototyping tool. Thus, the optimal operating point of a circuit, i.e. the operating frequency and the number of active cores, is identified. Secondly, the HEVC application is integrated to a multicore architecture coupled with a sophisticated DVFS mechanism. We show that this application can be implemented efficiently on general purpose processors (GPP) while minimizing the power consumption. Finally, and to get further energy gain, we propose a modified HEVC decoder that is capable to tune its energy gains together with a decoding quality trade-off.Aujourd'hui, les appareils électroniques offrent de plus en plus de fonctionnalités (vidéo, audio, GPS, internet) et des connectivités variées (multi-systèmes de radio avec WiFi, Bluetooth, UMTS, HSPA, LTE-advanced ... ). La demande en puissance de ces appareils est donc grandissante pour la partie numérique et notamment le processeur de calcul. Pour répondre à ce besoin sans cesse croissant de nouvelles fonctionnalités et donc de puissance de calcul, les architectures des processeurs ont beaucoup évolué : processeurs multi-coeurs, processeurs graphiques (GPU) et autres accélérateurs matériels dédiés. Cependant, alors que de nouvelles architectures matérielles peinent à répondre aux exigences de performance, l'évolution de la technologie des batteries est quant à elle encore plus lente. En conséquence, l'autonomie des systèmes embarqués est aujourd'hui sous pression. Parmi les nouveaux services supportés par les terminaux mobiles, la vidéo prend une place prépondérante. En effet, des analyses récentes de tendance montrent qu'elle représentera 70 % du trafic internet mobile dès 2016. Accompagnant cette croissance, de nouvelles technologies émergent permettant de nouveaux services et applications. Parmi elles, HEVC (High Efficiency Video Coding) permet de doubler la compression de données tout en garantissant une qualité subjective équivalente à son prédécesseur, la norme H.264. Dans un circuit numérique, la consommation provient de deux éléments: la puissance statique et la puissance dynamique. La plupart des architectures matérielles récentes mettent en oeuvre des procédés permettant de contrôler la puissance du système. Le changement dynamique du couple tension/fréquence appelé Dynamic Voltage and Frequency Scaling (DVFS) agit principalement sur la puissance dynamique du circuit. Cette technique permet d'adapter la puissance du processeur (et donc sa consommation) à la charge réelle nécessaire pour une application. Pour contrôler la puissance statique, le Dynamic Power Management (DPM, ou modes de veille) consistant à arrêter les alimentations associées à des zones spécifiques de la puce. Dans cette thèse, nous présentons d'abord une modélisation de l'énergie consommée par le circuit intégrant les modes DVFS et DPM. Cette modélisation est généralisée au circuit multi-coeurs et intégrée à un outil de prototypage rapide. Ainsi le point de fonctionnement optimal d'un circuit, la fréquence de fonctionnement et le nombre de coeurs actifs, est identifié. Dans un second temps, l'application HEVC est intégrée à une architecture multi-coeurs avec une adaptation dynamique de la fréquence de développement. Nous montrons que cette application peut être implémentée efficacement sur des processeurs généralistes (GPP) tout en minimisant la puissance consommée. Enfin, et pour aller plus loin dans les gains en énergie, nous proposons une modification du décodeur HEVC qui permet à un décodeur de baisser encore plus sa consommation en fonction du budget énergétique disponible localement

    LOW POWER SOFTWARE HEVC DECODER DEMO FOR MOBILE DEVICES

    Get PDF
    Demo sessionInternational audienc

    Power-Aware HEVC Decoding with Tunable Image Quality

    Get PDF
    International audienceA high pressure is put on mobile devices to support increasingly advanced applications requiring more processing capabilities. Among those, the emerging High Efficiency Video Coding (HEVC) provides a better video quality for the same bit rate than the previous H.264 standard. A limitation in the usability of a mobile video playing device is the lack of support for guaranteeing stand-by time and up time for battery driven devices. The Green Metadata initiative within the MPEG standard was launched to address the power saving issues of the decoder and defines the technology requirements. In this paper, we propose a HEVC decoder with tunable decoding quality levels for maximum power savings as suggested in the scope of the Green Metadata initiative. Our experiments reveal that the modified HEVC video decoder can save up to 28 % of power consumption in real-world platforms while keeping better quality than decoding with H.264

    Highly parallel HEVC decoding for heterogeneous systems with CPU and GPU

    Get PDF
    The High Efficiency Video Coding HEVC standard provides a higher compression efficiency than other video coding standards but at the cost of an increased computational load, which makes hard to achieve real-time encoding/decoding for ultra high-resolution and high-quality video sequences. Graphics Processing Units GPU are known to provide massive processing capability for highly parallel and regular computing kernels, but not all HEVC decoding procedures are suited for GPU execution. Furthermore, if HEVC decoding is accelerated by GPUs, energy efficiency is another concern for heterogeneous CPU+GPU decoding. In this paper, a highly parallel HEVC decoder for heterogeneous CPU+GPU system is proposed. It exploits available parallelism in HEVC decoding on the CPU, GPU, and between the CPU and GPU devices simultaneously. On top of that, different workload balancing schemes can be selected according to the devoted CPU and GPU computing resources. Furthermore, an energy optimized solution is proposed by tuning GPU clock rates. Results show that the proposed decoder achieves better performance than the state-of-the-art CPU decoder, and the best performance among the workload balancing schemes depends on the available CPU and GPU computing resources. In particular, with an NVIDIA Titan X Maxwell GPU and an Intel Xeon E5-2699v3 CPU, the proposed decoder delivers 167 frames per second (fps) for Ultra HD 4K videos, when four CPU cores are used. Compared to the state-of-the-art CPU decoder using four CPU cores, the proposed decoder gains a speedup factor of . When decoding performance is bounded by the CPU, a system wise energy reduction up to 36% is achieved by using fixed (and lower) GPU clocks, compared to the default dynamic clock settings on the GPU.EC/H2020/688759/EU/Low-Power Parallel Computing on GPUs 2/LPGPU
    corecore