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Abstract The Joint Collaborative Team on Video De-

coding is developing a new standard named High Effi-

ciency Video Coding (HEVC) that aims at reducing the

bitrate of H.264/AVC by another 50%. In order to ful-

fill the computational demands of the new standard, in

particular for high resolutions and at low power bud-

gets, exploiting parallelism is no longer an option but

a requirement. Therefore, HEVC includes several cod-

ing tools that allows to divide each picture into several

partitions that can be processed in parallel, without

degrading the quality nor the bitrate. In this paper we

adapt one of these approaches, the Wavefront Paral-

lel Processing (WPP) coding, and show how it can be

implemented on multi- and many-core processors. Our

approach, named Overlapped Wavefront (OWF), pro-

cesses several partitions as well as several pictures in

parallel. This has the advantage that the amount of

(thread-level) parallelism stays constant during execu-

tion. In addition, performance and power results are

provided for three platforms: a server Intel CPU with

8 cores, a laptop Intel CPU with 4 cores, and a TILE-

Gx36 with 36 cores from Tilera. The results show that

our parallel HEVC decoder is capable of achieving an
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average frame rate of 116 fps for 4k resolution on a

standard multicore CPU. The results also demonstrate

that exploiting more parallelism by increasing the num-

ber of cores can improve the energy efficiency measured

in terms of Joules per frame substantially.

Keywords HEVC · Video coding · Parallel process-

ing · Power analysis · Real-time 4k · UHD

1 Introduction

Recent increasing demands to support higher resolu-

tions such as 4k or UHD in consumer video devices have

driven the video codec development towards higher com-

pression rates. To meet these demands the Joint Col-

laborative Team on Video Coding (JCT-VC) of ITU-T
and ISO/IEC MPEG has started a project to develop a

new video coding standard aiming to reduce the bitrate

of the H.264/AVC High Profile [13] by another 50%.

The target application is, besides 4k resolution, to also

the support native HD on mobile devices. Future exten-

sions of the standard also aims to support high quality

color depth of up to 14 bit, and higher chrominance fi-

delity with 4:2:2 and 4:4:4 chroma subsampling. Some

of the application use cases, which have been selected

for the first test model evaluation, are random access,

such as used in Video-on-Demand or Broadcast appli-

cations and low delay for conversational applications.

The HEVC project started in 2010, it has been pub-

lished in July 2012 as a Draft International Standard

and is scheduled for finalization in early 2013 [22]. The

HEVC project uses the HEVC test Model (HM), which

is the reference software, to integrate and evaluate new

coding tools for standardization.

To support 4k resolution in real-time at frame rates

of 50 and higher, HEVC includes several so-called cod-
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ing tools that partition each picture into several parti-

tions that can be processed in parallel, without degrad-

ing the quality nor the bitrate. For lower resolutions the

provided parallelism can be exploited to improve power

efficiency of computer systems, which we will show in

this paper. Improvements to power efficiency is of key

importance in the increasingly mobile market, because

power is not scaling down at the same rate as feature

size, the so-called power wall.

To investigate if contemporary multi-/many-cores

are able to decode 4k HEVC video sequences in real-

time with limited power budgets, we perform a perfor-

mance and power analysis of (parallel) HEVC decoding.

In particular, our contributions can be summarized as

follows:

– We improve the single-threaded performance com-

pared to the HEVC test Model (HM) 8.0 by an av-

erage of 4.1× using both architectural independent

and more architectural specific optimizations.

– We show that by using the novel overlapped wave-

front approach (OWF) on top of the optimized single-

threads baseline, high speedups can be obtained re-

sulting in much higher than real-time performance

(up to 186 fps) for 4k sequences.

– Performance, power, and energy efficiency results

are provided for three platforms: a server Intel CPU

with 8 cores, a laptop Intel CPU with 4 cores, and

a TILE-Gx36 with 36 cores from Tilera.

This paper is organized as follows: first, in Section 2,

we present a brief overview of the HEVC standard.

Then, in Section 3 we describe the tools for parallel

processing that have been included in HEVC. In Sec-

tion 4 we present the details of the implementation of an

optimized parallel HEVC decoder. Section 5 describes

the experimental setup, followed by experimental re-

sult in Section 6. Finally we summarize and conclude

the paper in Section 7.

2 Overview of the HEVC Codec

HEVC is based on the same structure as prior hybrid

block-based video codecs such as H.264/AVC, but with

enhancements and generalizations in each coding stage.

Figure 1 depicts a general diagram of the HEVC de-

coder and its coding stages [23].

In HEVC the motion compensation uses the same

quarter pixel motion resolution, but the derivation of

interpolated pixels is generalized using a larger 8-tap

interpolation filter for luma and 4-tap interpolation fil-

ter for chroma. Intra prediction is generalized as well

by parametrizing the prediction angle, allowing 33 dif-

ferent angles. The transform is still an integer trans-

form but allows more block sizes, ranging from 4× 4 to

32 × 32, and has higher internal processing precision.

CABAC is the only entropy coding algorithm available

in HEVC with improvements to coefficient scan pat-

terns and context grouping to improve implementation

efficiency. As in H.264/AVC, an in-loop deblocking fil-

ter is applied to reduce blocking artifacts. The HEVC

deblocking filter is only applied to edges on a 8 × 8

grid creating opportunities to filter edges in parallel.

In HEVC also an additional in-loop filter is included:

the sample adaptive offset (SAO) filter [11]. The SAO

filter can be activated on a CTB basis by transmitting

offset values or using the offset values of the top or left

neighboring CTB. These offsets can either correspond

to the intensity bands of pixel values (band offset mode)

or the difference compared to neighboring pixels (edge

offset mode).

HEVC also defines a more efficient block structure,

called Coding Tree Blocks (CTBs). The sequence is

coded using a CTB size is of 16×16, 32×32, or 64×64

pixels. Each CTB can be recursively subdivided using

a quad-tree segmentation in coding units (CUs), which

can in turn be further subdivided in prediction units

(PUs) and transform units (TUs) [14]. Each CTB can

be split structure. Coding units can be subdivided down

to a minimum CU size of 8× 8. The minimum predic-

tion units size is 4×8 and 8×4, and minimum TU size

is 4× 4 pixels.

3 Parallel Video Decoding with HEVC

Previous video codecs, in particular H.264/AVC, have

been parallelized using mainly slice-level or macroblock-

level parallelism [17,21]. In H.264/AVC, as well as in

HEVC, a picture can be partitioned in multiple ar-

bitrarily sized slices for independent processing. Hav-

ing multiple slices in a picture, however, degrades ob-

jective and subjective quality due to additional slice

header overhead and slice boundary discontinuities [18].

In H.264/AVC independent macroblocks inside a frame

can be reconstructed in parallel using a wavefront ap-

proach [24]. Furthermore, macroblocks from different

frames can be processed in parallel provided the de-

pendencies due to motion compensation are handled

correctly [18]. Entropy decoding, however, can only be

parallelized at the frame (slice) level and therefore it

has to be decoupled from macroblock reconstruction.

Although this approach can scale to a many-core archi-

tecture it increases the memory usage [9].

In order to solve the above mentioned problems in

HEVC two tools aiming at facilitating high level parallel
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Fig. 1 Block diagram of the HEVC decoder

processing have been included (draft) standard: Wave-

front Parallel Processing (WPP) [15] and Tiles [12].

These tools allow to subdivide each picture into multi-

ple partitions that can be processed in parallel. Tiles

allow to divide the picture in rectangular groups of

CTBs separated by vertical and horizontal boundaries.

Tiles boundaries, similarly to slice boundaries, break all

the dependencies and because of that have high coding

losses and can generate boundary artifacts.

WPP defines one picture partition per CTB row,

but does not require special handling of line borders

preserving the entropy, prediction or filtering dependen-

cies. The header overhead is small as it only requires the

partition entry point offsets to be signaled additionally.

As a result the rate-distortion loss of a WPP bitstream

is small compared to a non-parallel bitstream, while

enabling a decent amount of parallelism that increases

with the picture resolution.

Before WPP was completely defined another tool

called entropy slices was considered in HEVC [19]. En-

tropy slices break entropy dependencies but maintain

the prediction dependencies. When using one entropy

slice per CTB row it is possible to exploit wavefront par-

allelism in a similar way to WPP. An implementation

of a parallel HEVC decoder using wavefront processing

with entropy slices on a multicore system with 12 cores

showed a speedup of 7.3 for 4K resolution [2].

The scalability of wavefront processing is limited by

the reduced number of independent blocks (CTBs or

macroblocks) at the beginning and at the end of each

frame. To solve this limitation, and increase the paral-

lel scalability of WPP, a technique called Overlapped

Wavefront (OWF) has been proposed [8]. With OWF

multiple pictures can be decoded simultaneously result-

ing in a more constant parallelism during execution. An

implementation of OWF on a multicore system consist-

ing of 12 cores has shown average speedups of 10X for

4K resolution. An in-depth analysis of the paralleliza-

tion tools included in HEVC has shown that when WPP

is combined with the OWF algorithm it has a better

scalability than Tiles [7].
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Fig. 2 Frames can be overlapped with a restricted motion
vector size, because the reference area is fully decoded.

4 Optimized Parallel HEVC Decoder

Implementation

To be able to provide representative power and perfor-

mance results an optimized parallel HEVC decoder is

developed. The developed decoder is compatible with

the coding tools described in the HEVC 8.0 draft stan-

dard [5]. We first discuss the employed parallelization

strategy followed by a concise overview of the steps

involved in decoding the Coding Tree Blocks (CTBs)
in our implementation. Thereafter, we present the im-

provements in the single-threaded performance over the

HEVC test Model (HM) reference code and briefly dis-

cuss where the main improvements originate from.

4.1 Overlapped Wavefront

As mentioned in Section 3, by using the WPP coding

tool in HEVC one thread for each CTB row can be

used to decode each picture in parallel. When the WPP

coding tool is used, the bitstream contains an entry

point offset for each CTB row. These offsets allows up to

a number threads equal to the number of CTB rows to

start decoding in parallel, with a small coding efficiency

cost of around 1 percent [15]. In previous work it has

been found that a high parallelization efficiency can be

achieved when WPP is combined with the overlapped

execution of consecutive frames [8]. Figure 2 illustrates

the overlapped wavefront (OWF) approach.
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Instead of waiting for the entire picture to finish

threads can already start decoding the next frame to

mitigate the parallelism ramping inefficiencies of reg-

ular wavefront execution. As the figure illustrates, to

overlap consecutive pictures, a restriction on the size of

the vertical component of the motion vectors is required

to ensure that the reference area is available. The max-

imum number of parallel CTB rows using OWF, can be

derived using,

PAROWF = b(HPic −MMV − 8)/HCTBc (1)

where HPic is the picture height in pixels, HCTB is the

CTB height in pixels, MMV denotes the maximum size

of the vertical motion vector component. Eight pixels

are additionally subtracted to take the delay of filters

(deblocking filter and SAO) and additional pixel rows

required by the interpolation filter into account, which

will be clarified in the next section. Because currently

the HEVC draft does not define the MMV, we instead

assume the same the MMV as H.264 of 512 pixels for

1080p and doubled this to 1024 for 2160p. This restric-

tion allows up to 8 threads to be used for 1080p and up

to 17 threads for 2160p resolution sequences.

Figure 3 depicts the decoder organization used for

the implementation of OWF. The decoder consists of

two “control” threads (parse and output) and N “worker”

threads. The parse thread acquires a free picture buffer

from the display picture buffer (DPB) for every new pic-

ture and pushes a task to the shared worker queue for

each WPP partition it encounters. The worker threads

pop tasks from the queue in order and the wavefront

dependencies are maintained among themselves. The

worker thread that decodes the last CTB of a picture

notifies the output thread of completion by pushing the

completed picture. The output thread reorders the de-

coded pictures in presentation order and releases the

pictures after they are displayed/outputted.

The parse thread is also is responsible of releasing no

longer used reference pictures. In HEVC the reference

(a) Reconstruction (b) Vertical edges

(c) Horizontal edges (d) SAO

Fig. 4 Order and translation of filtering steps to allow CTB
based execution.

pictures that need to be kept in the DPB are signaled

for every slice, which is a departure from H.264 where

the reference picture that need to be released after de-

coding the slice are signaled instead. For overlapped

execution this is problematic, as in case the current pic-

ture uses a reference picture that is not used in the next

picture, a reference picture can be released to early.

A solution is, to instead of releasing reference pic-

tures directly when they are not present in the reference

picture set (RPS), to release the reference picture when

it is not present in the RPS of two consecutive pictures.

This delays the release of the reference pictures by one

picture. In addition for this scheme to work, it must be

ensured that at any time a maximum of two pictures

are in-flight. This is implemented by having the parse

thread wait until the output threads notifies the com-

pletion of a picture if already two pictures are in-flight.

4.2 Coding Tree Block Decoding

A requirement for OWF execution is that all the decod-

ing steps for one CTB are performed before continuing

with the next CTB to ensure that the required reference

area is available for the threads processing the consec-

utive picture. In addition, performing all the decoding

steps on a CTB basis also improves overall implemen-

tation efficiency compared to performing the decoding

steps on a slice or picture basis due to increased data

locality. The two in-loop filters, deblocking and SAO

filter, use and could alter the pixels from surrounding

CTBs, which are not all available at the time of decod-

ing the CTB. To process these filters on a CTB basis,

therefore, requires delaying them as illustrated in Fig-

ure 4.

Figure 4 shows the sequence of filters that are ap-

plied after parsing and reconstruction (prediction and

transform) of a CTB. In this example the CTB split

depth is 2 for each leaf CU and no further prediction

and transform subdivision is assumed. First the vertical
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Fig. 5 Subdivision of a CTB in coding units, prediction
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edges of the CTB are deblocked followed by the horizon-

tal edges. The deblocking of the horizontal edges must

be delayed horizontally 4 pixels, because HEVC speci-

fies that the horizontal edges must be deblocked using

the vertically deblocked pixels as input. These 4 pixels

have not been vertically deblocked yet as the last edge

belongs to the next CTB. In turn the SAO filter is also

delayed because it uses the horizontally filtered pixels

as input, and would require a minimum translation of 4

pixels upwards and 1 pixel to the left. Delaying the filter

1 pixel to the left, however, would introduce that the

SAO application window would cross 4 CTBs, which

all might have different SAO filter types. We decided

to delay the SAO filter one entire CTB horizontally to

reduce this control overhead.

The parsing and reconstruction follows the quadtree

CTB structure illustrated in Figure 5. Each CTB can

be split into four CUs which can be further split in

smaller CUs given a minimum CU size of 8×8 pixels.

Each leaf CU can be intra or inter predicted and has

one of the prediction unit (PU) shapes. In case of intra

CUs only the first two PU shapes are available, while for

inter CUs all the PU shapes are possible. For each PU

a different intra-prediction mode or motion vector and

reference index pair can be derived. Inter PUs can di-

rectly be motion compensated after deriving the motion

vectors and reference indices. Intra prediction, however,

has to be performed for each transform unit (TU) fol-

lowing the residual quadtree (RQT) block structure.

For each CU a RQT containing TUs can be trans-

mitted in the bitstream. Like the CTB quadtree the

RQT can also be split further, but instead has a mini-

mum size of 4×4 pixels. In our implementation the co-

efficient parsing and inverse transform follow each other

directly for optimal locality. Also adding the residual to

the prediction and clipping is merged with the inverse

transform.

4.3 Single-threaded Performance Improvements

In addition to the parallelization, also single-threaded

performance has been significantly improved compared

to the reference HM code. The performance improve-

ments do not result from a few concentrated changes,

but instead originate from many small improvements

over the entire codec which include both architecture

independent and architecture specific changes. Some of

the more prominent architecture independent changes

are a much simplified neighbor context derivation (for

parsing, prediction, and filtering), fusing many kernel

loops (transform-add-clip, interpolation-weighting, in-

verse quantization and coefficient parsing), skipping zero

block transform, implementing branchless CABAC, re-

moving redundantly stored syntax elements, use of a

scratchpad for better TLB locality, switching from CTB

to CU based reconstruction, CTB-based filtering, using

reference pictures with 8-bit pixel depth when possible,

internal bit depth of 8-bit, improved Annex B parser

and emulation prevention, etc.

For the architecture specific improvements the per-

formance improvements originate mostly from SIMD

optimizations, which are applied to accelerate several

time consuming kernels such as the 8-tap interpolation

filter, inverse transform with block sizes up to 32×32,

and the SAO filter. Also attention was paid to prefetch-

ing reference blocks in the interpolation filter and write-

combine store operation when writing back the final

reconstructed picture to the memory. For the Tilera

architecture also the scratchpad memory allocated for

each thread is locally homed, which improves the cache

utilization by having no redundant cache line copies

present as long as the decoding thread remain pinned

to the same core.

It should be noted that additional improvements

can be achieved by applying SIMD optimizations to

the deblocking filter and intra-prediction. For the de-

blocking filter, the performance gains with SIMD will be

smaller compared to inverse transform or interpolation

filters mainly because of the branches introduced by the

filter adaptation. Although intra-prediction can benefit

from SIMD optmization it consumes a small fraction of

the total execution time.

5 Experimental Setup

5.1 Platforms

Our experimental setup consists of three different plat-

forms with different number of cores, microarchitec-

tures and performance levels. Table1 presents a sum-

mary of the main properties of the three platforms.
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System Intel X86-LP Intel X86-HP Tilera TILE-Gx

Processor Core i7-2760qm Xeon E5 2687W TILE-Gx8036
µarchitecture Sandy Bridge Sandy Bridge TILE-Gx
Num. cores 4 8 36
SMT 2-way 2-way no
Frequency [GHz] 0.8-2.4 1.2-3.1 1.0
Voltage [V] 0.76-1.06 0.84-1.20 0.96
LLC Cache [MB] 6 20 9
Memory 2-ch. DDR3 1600 MHz 4-ch. DDR3 1600 MHz 2-ch. DDR3 1333 MHz
Process [nm] 32 32 40

Operating system Kubuntu 12.04 Kubuntu 12.04 Tilera MDE-4.0.3.145127
Linux kernel 3.2.0-25 3.2.0-29 2.6.38.8
Compiler GCC 4.6.3 GCC 4.6.3 GCC 4.6.3
Compiler flags -O3, AVX enabled -O3, AVX enabled -O2

Table 1 Properties of the three different systems used in the experiments.

To test a high performance multicore platform we

selected a server with a Xeon E5 2687W processor that

consists of 8 Intel X86 64 cores running at 3.1 GHz.

We will refer to this system as X86-HP. As a power-

optimized multicore platform we used a laptop with a

Core i7-2760qm processor that has 4 Intel X86 64 cores

running at up to 2.4 GHz. We will refer to it as X86-LP.

To evaluate a many core processor we used a TILE-

Gx8036 processor on a TILEncore-Gx36 card which is

connected via PCIe to a host system. The TILE-Gx8036

has 36 cores running at 1.0 GHz, where each core is a 64-

bit VLIW processor. All the cores are connected with

a mesh on-chip interconnect network [3]. The chip in-

cludes other peripherals such as the cryptographic unit

(MICA) and 4 network interfaces (mPIPE) wich are

not used in the experiments reported in this paper, ex-

cept for one of the Ethernet interfaces and the power

sensors. In the rest of the paper we will refer to this

system as TILE-Gx.

5.2 Power measurement

To measure the power on the Intel platforms we used

the Running Average Power Limit (RAPL) feature in-

troduced with the Sandy Bridge microarchitecture [10].

RAPL uses a architectural power predictor, that is also

exposed to software, to implement power capping of the

chip and implement more consistent turbo clocking be-

havior. The architectural power predictor updates the

model-specific register (MSR) once every millisecond,

and provides high accuracy and correlation with actual

power consumption [20]. RAPL exposes the energy con-

sumed by the complete package (complete CPU die),

and only the cores and their caches. Additionally, de-

pending on the model RAPL exposes the power of the

integrated graphics processing unit or the DRAM con-

trollers. To verify the accuracy we have compared the

power reported by RAPL for the two Intel platforms

with the power measured for the entire system at dif-

ferent voltage and frequency points, and we observed

very good correlation at all operating points. For our

power measurements we access the RAPL MSR for the

complete package power via PAPI [6].

We measure the power of the TILE-Gx8036 CPU

core using the INA219 power monitor chip. This chip

measures power by measuring voltage and current by

the voltage drop over a shunt resistor. The INA219

contains the required signal condition circuits, a 12-Bit

ADC and an I2C bus interface. The measurement er-

ror of the INA219 is lower than 0.5%, while the used

shunt resistors provide better than 1% accuracy. Over-

all the error of the measurements should thus be within

±1.5%.

The Tilera TILEncore-Gx36 PCIe card contains mul-

tiple power monitors, measuring the different voltage

rails on the board. The rails are measured behind the

power conversion and therefore do not include the losses

of the power conversion circuits. For comparability with

the Intel RAPL counters we only record the power con-

sumed by the core voltage rail.

The power monitors can be queried using the Tilera

provided board test kit (BTK). We used this capability

to sample the core power at a approximately 10 Hz rate

and save power and timestamps to a data file. When we

run applications on the board we record start and end

time stamps and average all power samples collected

during this time interval to calculate average power for

the application. Energy was then calculated by multi-

plying runtime by average power.

5.3 Test Sequences and HEVC Encoding

Because parallelism is mainly required at HD resolu-

tions, we selected videos for 1080p (1920×1080) and
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Options Value

Max. CU size 64×64
Max. partition depth 4
Transform size: Min.-Max. 4-32
Period of I-frames 256
Number of B-frames (GOP Size) 8
Number of reference frames 4
Motion estimation algorithm EPZS [25]
Search range 48
Asymmetrical Motion Partition Enabled
Internal bit depth 8
Sample Adaptive Offset (SAO) Enabled
Wavefront Parallel Processing (WPP) Enabled
Quantization Parameter (QP) 22, 26, 30, 34

Table 2 Coding options.

2160p (4096×2160) resolutions. 1080p is representative

for current high definition systems, while 2160p is repre-

sentative for the next generation of high quality video.

For 1080p we used the 5 test sequences described in the

HEVC “common conditions” [4]. For 2160p resolution

we use four videos from the EBU (European Broad-

casting Union) 4K testset [16]. 1080p sequences have

8 bit per sample and 2160p sequences have 10-bit per

sample. 1080p sequences are in YUV 4:2:0 format, and

2160p sequences were originally in 4:2:2 format but were

converted to 4:2:0 format (because currently the HEVC

reference encoder can not handle formats different than

4:2:0)

All the test sequences have been encoded with the

HEVC HM reference encoder version 8.0 (svn revision

r2738) [5]. Encoding options are based on main HEVC

main profile using the random access configuration [4].

Table 2 shows the main configuration parameters of the
encoder. In order to enable parallel processing WPP

has been enabled. In addition, for supporting OWF,

the maximum length of the vertical motion vectors has

been constrained to 512 pixels for 1080p and 1024 for

2160p. As a result a maximum of 8 and 17 threads can

be used for 1080p and 2160p respectively. Table 3 shows

the resulting bitrate and weighted PNSR (0.75×U +

0.125×U + 0.125×V) for all the videos under consider-

ation.

6 Experimental Results

For the experiments that do not use frequency and volt-

age scaling the x86 platforms are configured at their

highest rated frequency and DVFS and Turbo Boost

are disabled in the OS and BIOS, respectively. For im-

proved reproducibility and reduced effect of the OS

thread scheduling policies, threads are pinned to cores.

In the X86 platforms the decodings include runnings
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with and without simultaneous multithreading (SMT)

enabled.

6.1 Single-threaded Optimizations

In Section 4.3 we described the single-threaded opti-

mizations applied to the HEVC decoder. Figure 6 shows

the normalized execution of the architecture indepen-

dent (scalar) and architecture dependent (simd+) op-

timizations compared to the reference decoder (com-

piled with autovectorization disabled). For the X86-HP

platform the scalar optimizations give a reduction of

48% in execution time compared to the baseline, and

the simd++ optimizations give an additional 32% re-

duction. For the TILE-Gx architecture the results are

similar: a 51% reduction in execution time due to scalar
optimizations and an additional 27% reduction due to

simd+ optimizations. The optimized decoder that in-

cludes all the optimizations will be used as baseline for

the parallel executions that will be presented in the next

sections.

6.2 Performance

We executed the optimized parallel decoder on the three

platforms under study for all the videos at different QP

values and measured the execution time. Based on it we

computed the performance, expressed in frames per sec-

ond. Tables 4 and 5 show the performance for 1080p and

2160p resolutions respectively. They include results for

experiments using one thread and the maximum thread

count.

The X86-HP platform achieves the highest perfor-

mance, with up to 414 fps for 1080p and up to 185 fps

for 2160p. When using 8 threads it is possible to decode
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video resolution frames
QP22 QP26 QP30 QP34

bitrate
[Kb/s]

YUV-
PSNR

bitrate
[Kb/s]

YUV-
PSNR

bitrate
[Kb/s]

YUV-
PSNR

bitrate
[Kb/s]

YUV-
PSNR

BasketballDrive 1080p50 500 16595 40.44 6889 39.09 3651 37.74 2091 36.25
BQTerrace 1080p60 600 38394 38.83 8866 37.21 2823 36.22 1236 34.92
Cactus 1080p50 500 16588 39.30 6030 38.07 3148 36.74 1776 35.21
Kimono 1080p24 241 4422 42.25 2326 40.79 1302 39.19 732 37.48
ParkScene 1080p24 240 6401 40.71 3093 38.70 1600 36.81 829 34.92

DancerPillar 2160p50 500 21071 41.60 3042 41.05 1573 40.36 928 39.46
DancerWater 2160p50 500 35657 43.22 18966 41.96 10104 40.54 5302 39.00
FountainPan 2160p50 500 105154 41.02 52612 39.20 26369 37.46 12791 35.81
LupoPuppet 2160p50 500 56928 40.80 21889 39.94 11554 39.00 6236 37.95

Table 3 Bitrate (in Kb/s) and weighted PSNR (in dB) for all the encoded video sequences.

all the 2160p sequences with more than 50 fps, even the

most difficult ones. The X86-LP platform achieves be-

tween 76 and 230 fps when using 4 cores for the 1080p

sequences and between 23 to 86 fps for the 2160p se-

quences.

On the TILE-Gx platform, real-time is achieved for

most 1080p sequences, except those that require 60 fps

at low QPs (smaller than 26). For the 2160p sequences

the performance, at the maximum core count, is be-

tween 16 and 51 fps. For most of the sequences it is not

possible to reach the real-time performance. The main

limitation is the the single threaded performance, which

is significantly lower compared to the other architec-

tures because of the frequency and microarchitectural

disadvantages. Although there are more cores available,

we can not use more threads because of the maximum

limit of the OWF algorithm has been reached.

The results show that the performance depends heav-

ily on the video content and the bitrate. On the one

hand, for sequences with complex or fast motion, such

as LupoPuppet, there are less skip blocks and more

motion compensation operations need to be applied

per frame. On the other hand, when the bitrate in-

creases (and the QP decreases) the number of coeffi-

cients that needs to be parsed increases as well, result-

ing in more CABAC operations. Due to its sequential

behavior CABAC has a low IPC and cannot be opti-

mized with SIMD instructions.

6.3 Speedup

Figure 7 shows the average speedup achieved using mul-

tiple cores compared to the optimized code as baseline

for each of the three test platforms. The figure shows

that the scaling for the X86 platforms is high, and be-

cause of the higher parallelism 2160p scales better for

higher core counts than 1080p. Also SMT shows up

to 25% performance improvement at low core count

and around 12% performance improvement at high core

count.

For the TILE-Gx platform similar speedup results

are observed up to 8-cores, with a speedup of 6.8× and

7.6× for 1080p and 2160p respectively. At 17 cores,

however, a moderate speedup of 14× is achieved which

is partly caused by the thread stalls resulting from main-

taining the wavefront dependencies. As will be shown in

the next section the contention on the TileGx36 mem-

ory subsystem reduces scalability at high core counts

as well.

6.4 Power and Energy

Figure 8 shows the power in Watts (W) for each plat-

form using different number of cores. The power num-

bers indicate that a high amount of power is associated

with the high performance of the X86-HP platform,

with over 100 W of power at the highest core count.

The X86-LP and TILE-Gx platforms fare much better

in this aspect with a maximum of 31.6 W when using

4 cores with SMT and 20 W at 17 cores, respectively.

Also it can be observed that the TILE-Gx platform has

a relatively high idle to load power ratio. This can be

explained due to the larger amount of power manage-

ment options available on the X86 platforms. On the

TILE-Gx platform the OS does not implement DVFS

and no clock or power gating is available/performed.

In contrast the X86 platforms implements DVFS (al-

though disabled for this experiment), and many power

states for different parts of the chip.

Despite the usage of fine-grained power gating on

the X86 platforms, the power consumption for 1 core is

higher than the maximum power consumption divided

by the number of cores on the chip. This is caused by the

parts of the chip that are always on, such as the PCI-e

controller and QPI interfaces, and because parts of the

chip cannot be power gated when at least one thread
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Video QP
X86-LP X86-HP Tilera

1 thread 4 threads 1 thread 8 threads 1 thread 8 threads

BasketballDrive

22 28.8 107.0 35.6 219.7 5.9 36.3
26 39.8 148.3 48.6 302.3 7.9 49.2
30 48.0 179.2 57.9 368.2 9.3 60.0
34 54.9 204.8 65.9 424.4 10.4 67.6

BQTerrace

22 20.0 76.3 25.1 172.6 4.2 28.5
26 41.3 151.1 50.4 318.8 8.2 50.8
30 58.4 211.3 70.2 431.0 11.0 69.2
34 68.0 246.7 81.0 501.7 12.4 78.2

Cactus

22 31.9 116.9 39.4 247.3 6.6 40.6
26 51.3 186.4 62.2 363.9 10.2 59.3
30 63.9 230.6 76.4 449.6 12.2 72.1
34 74.6 267.7 88.6 529.7 13.8 83.8

Kimono1

22 34.8 131.1 42.7 283.0 7.0 45.5
26 43.0 161.1 52.2 346.8 8.4 56.0
30 50.4 187.5 60.9 398.7 9.6 63.5
34 57.5 210.9 68.8 433.2 10.7 70.1

ParkScene

22 29.4 110.6 36.2 235.8 6.1 38.3
26 39.1 146.3 47.8 305.3 7.9 49.6
30 48.0 178.8 58.0 369.2 9.3 60.1
34 56.8 208.7 68.3 425.5 10.7 69.0

Average 47.0 173.1 56.8 356.3 9.1 57.4

Table 4 Performance in frames per second for 1080p videos at different bitrates for three different platforms.

Video QP
X86-LP X86-HP Tilera

1 thread 4 threads 1 thread 8 threads 1 thread 17 threads

DancerPillar

22 11.7 44.8 14.0 101.3 2.2 27.3
26 18.0 68.4 20.6 151.3 3.2 41.8
30 21.0 79.2 23.6 171.6 3.7 46.9
34 23.1 86.8 25.8 185.6 4.0 51.0

DancerWater

22 9.9 38.3 11.8 84.4 1.9 21.6
26 12.3 47.0 14.4 103.4 2.3 26.1
30 14.7 55.9 17.1 121.5 2.7 31.5
34 16.8 64.0 19.3 137.9 3.0 37.0

FountainPan

22 6.1 23.8 7.5 56.2 1.3 16.4
26 8.2 31.9 10.0 74.3 1.6 21.1
30 10.4 40.1 12.6 90.5 2.0 26.1
34 12.6 48.3 14.9 109.9 2.3 30.6

LupoPuppet

22 8.7 33.8 10.7 79.7 1.7 22.0
26 12.6 48.9 15.0 112.4 2.3 31.3
30 14.6 56.6 17.1 128.6 2.6 36.5
34 16.4 62.9 18.9 142.2 2.9 40.5

Average 13.6 51.9 15.8 115.7 2.5 31.7

Table 5 Performance in frames per second for 2160p videos at different bitrates for three different platforms.

is actively using it, such as the memory controllers and

L3 cache partitions.

The power efficiency of the chip depends both on

the performance and the power [1]. Figure 9 shows the

power efficiency expressed in Joules per frame for the

different platforms at different core counts. The com-

mon trend for all platforms is that using more cores im-

proves power efficiency. While the power increases with

the core count, the performance increases to a greater

extent. This especially holds for the TILE-Gx platform

due to the relatively high idle power. On the X86 plat-

forms SMT improves power efficiency at low counts,

but loses its effectiveness at higher core counts. At their

most efficient points the X86-LP platform achieves the

lowest energy per frame (179 mJ/F and 614 mJ/F for

1080p and 2160p), followed by the TILE-Gx (334 mJ/F

and 696 mJ/F for 1080p and 2160p), and finally the

X86-HP (298 mJ/F and 995 mJ/F for 1080p and 2160p).
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Fig. 8 Power for X86-HP, X86-LP and Tilera
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Fig. 9 Energy per frame for X86-HP, X86-LP and Tilera

6.5 Frequency and Voltage Scaling on Intel

SandyBridge

In many practical applications of a HEVC decoder, de-

coding at highest possible speed is not desired. Instead

the decoder needs to meet a certain frame rate for real-

time performance. To measure the power efficiency for

these use cases, we have conducted additional experi-

ments in the X86-LP platform in which we limited the

decoding speed to 50 fps at different voltage/frequency

operating points. These include six static configura-

tion points with frequencies ranging from 800 MHz to

2.4 GHz, and three dynamic configurations: “On De-

mand” (OD), “On Demand with Turbo” (OD+T) and

“Perf+T” (Performance with Turbo”). With OD the

processor runs at the lowest possible frequency and in-

creases to maximum when CPU usage reaches 100%.

OD+T adds the Turbo Boost feature that allows the

processor to dynamically increase the speed above its

nominal operating frequency [20]. Finally, in Perf+T

the processor is set to its maximum frequency with

Turbo Boost enabled.

For these experiments the Cactus 1080p50 sequence

encoded with QP 26 and 30 is used for which decoding

speed is close to the average. Figure 10 shows the power
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Fig. 10 Power at different Frequency/Voltage configurations
for Cactus 1080p50 sequence at two different QP encodings
with real-time decoding for the Intel X86-LP system.

consumption for the different core count/frequency points

that achieve 50 fps. The voltage and frequency scale

linearly with respect to each other following the range

reported in Table 1.

The results show that it is not possible to achieve

real-time decoding with only one core, even at the max-

imum nominal frequency. This is only possible when

Turbo Boost is enabled, but with Turbo Boost the de-

coder uses 2.4 times more power compared to the most

efficient setting. With two cores it is possible to decode

in real-time at 1.6 GHz with around 50% of the power

used with one core. Using four cores at 800 MHz is the

most efficient setting for this experiment using just 8.0

and 7.3 W (or 159 mJ/frame and 145 mJ/frame) for

QP 26 and QP 30 respectively.

Our results also show that the standard DVFS strat-

egy (OD) is producing suboptimal results. DVFS is only

slightly more efficient than always running at stock 2.4

GHz clock speed when Turbo Boost is disabled. When

decoding using four cores DVFS is using between 33%

and 46% extra power compared to running at a fixed

800 MHz clock speed. Also enabling Turbo Boost re-

sults in poor power efficiency due to operating at a

higher voltage and frequency (3.2-3.4 GHz). These re-

sults show that with playback type of workloads the

default configurations on many systems, in which both

Turbo Boost and DVFS are enabled, produces a much

lower power efficiency than the system is able to.

6.6 Increasing the workload on TILE-Gx

On the TILE-Gx system we have more cores available

than we are able to use with one bitstream. Combined

with the high idle power this impacts the power ef-

ficiency negatively. For that reason we measured the

performance and energy per frame while decoding two

2160p bitstreams or four 1080p bitstreams at the same

time. This way we are able to use most of the cores. The

results of these experiments can be seen in Figure 11.

The figure shows that the energy used per frame de-

creased by using more cores.

Compared to using only 8 cores for one 1080p bit-

stream, using four 1080p bitstreams at a time decreases

the energy per frame from 0.333 J/F to 0.136 J/F. Sim-

ilarly for 2160p the energy per frame decreases from 696

mJ/F to 477 mJ/F. The TILE-Gx processor is able

to achieve better energy efficiency, when most cores

are used, compared to both Intel platforms, despite its

process technology disadvantage (40nm vs. 32nm). The

lowest energy per frame achieved by X86-HP platform

is 299 mJ/F for 1080p and 968 mJ/F for 2160p, and

for X86-LP platform this is 177 mJ/F for 1080p and

601 mJ/F for 2160p. The power efficiency results are

even slightly pessimistic as part of the idle power is

consumed the on-chip accelerators for high-speed net-

working (mPIPE) and cryptography (MiCa). In our test

setup network is required in order to start executions

remotely from the host machine, but is not strictly re-

quired for the decoding process. Disabling these accel-

erators lowered the power by 2.0 Watts both in idle and

full load, leading to approximately 9% lower mJ/F.

While the aggregated performance using multiple

streams is much higher than a single one, the speedup,

however, is not linear and especially nearing the end of

the curve starts to saturate. When scaling to the num-

ber of cores that the TILE-Gx offers, the effects of con-

tention on shared resources become more visible. More

optimizations targeting the memory hierarchy, such as

improved data prefetching, could improve the results to

a greater extend than the Intel platforms which have

less cores and relatively more cache memory.
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Fig. 11 Aggregated frames per second and energy per frame
for Tilera when increasing the total load: 4 times for 1080p
(1080p-4X) and 2 times for 2160p (2160p-2X)

7 Conclusions

In this paper we have presented a power and perfor-

mance analysis of an optimized parallel HEVC decoder.

The parallelization strategy, called Overlapped Wave-

front (WPP), which is an extension of the Wavefront

Paralllel Processing (WPP) tool, allows to process mul-

tiple picture partitions as well as multiple pictures in

parallel with minimal compression losses.

The parallel decoder has been evaluated on three

different architectures: a high performance 8-core In-

tel server processor, a 4-core Intel mobile processor and

a 36 core low power Tilera processor. In addition to

performance results we have measured power and com-

puted energy efficiency in term of Joules per frame.

Our parallel HEVC decoder is the first to achieve a

frame rate of more than 100 fps at 4k resolution using

a standard multi-core CPU. With the 8 core Intel pro-

cessor we achieved a speedup of 6.3 for 1080p and 7.3

for 2160p. In the Tilera processor a maximum speedup

of 12.8 with 17 cores is achieved but result only in an

average of 31.7 fps for 2160p. Our parallelization ap-

proach enables up to 17 threads for 4k and up to 8

for 2k which is not sufficient to fully utilize the Tilera

many-core. Therefore, we have also conducted exper-

iment with decoding four 1080p sequences in parallel

and two 4k sequences. In these cases the aggregate per-

formance is 186 fps and 55.6 fps, respectively. For these

configurations the Tilera processor obtains a better en-

ergy efficiency compared to the server and laptop Intel

CPUs.

The results show that in general using more of the

available processors improves the energy efficiency in

terms of energy per frame, in particular for a small

number of cores. For example, for 4k resolution, on the

server CPU going from 1 to 2 cores improves the energy

per frame from 743 mJ/frame to 471 mJ/frame, and go-

ing to 3 cores improves it further to 384 mJ/frame. Go-

ing beyond 4 cores still improves the energy efficiency,

but to a lesser extend.

Because the obtained performance, in some cases,

is beyond the requirements of real-time video decoding,

the additional parallelism in the application can be used

to improve power efficiency. For example, on the Intel

mobile CPU, we found that 1080p real-time decoding

at 50 fps requires 1 core at maximum frequency and

Turbo Boost that consume 19.2 W. Alternatively, the

same performance can be achieved with 4 cores running

at 800 MHz consuming only 8 W. It has been observed,

however, that current dynamic voltage and frequency

scaling approaches (DVFS) are not able to reach the

optimal power point.
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