117 research outputs found

    Efficient Storage of Pareto Points in Biobjective Mixed Integer Programming

    Get PDF
    In biobjective mixed integer linear programs (BOMILPs), two linear objectives are minimized over a polyhedron while restricting some of the variables to be integer. Since many of the techniques for finding or approximating the Pareto set of a BOMILP use and update a subset of nondominated solutions, it is highly desirable to efficiently store this subset. We present a new data structure, a variant of a binary tree that takes as input points and line segments in R2\R^2 and stores the nondominated subset of this input. When used within an exact solution procedure, such as branch-and-bound (BB), at termination this structure contains the set of Pareto optimal solutions. We compare the efficiency of our structure in storing solutions to that of a dynamic list which updates via pairwise comparison. Then we use our data structure in two biobjective BB techniques available in the literature and solve three classes of instances of BOMILP, one of which is generated by us. The first experiment shows that our data structure handles up to 10710^7 points or segments much more efficiently than a dynamic list. The second experiment shows that our data structure handles points and segments much more efficiently than a list when used in a BB

    Branch-and-bound for biobjective mixed-integer linear programming

    Get PDF
    We present a generic branch-and-bound method for finding all the Pareto solutions of a biobjective mixed integer program. Our main contribution is new algorithms for obtaining dual bounds at a node, for checking node fathoming, presolve and duality gap measurement. Our various procedures are implemented and empirically validated on instances from literature and a new set of hard instances. We also perform comparisons against the triangle splitting method of Boland et al. [\emph{INFORMS Journal on Computing}, \textbf{27} (4), 2015], which is a objective space search algorithm as opposed to our variable space search algorithm. On each of the literature instances, our branch-and-bound is able to compute the entire Pareto set in significantly lesser time. Most of the instances of the harder problem set were not solved by either algorithm in a reasonable time limit, but our algorithm performs better on average on the instances that were solved.Comment: 35 pages, 12 figures. Original preprint at Optimization Online, October 201

    An Algorithm for Biobjective Mixed Integer Quadratic Programs

    Get PDF
    Multiobjective quadratic programs (MOQPs) are appealing since convex quadratic programs have elegant mathematical properties and model important applications. Adding mixed-integer variables extends their applicability while the resulting programs become global optimization problems. Thus, in this work, we develop a branch and bound (BB) algorithm for solving biobjective mixed-integer quadratic programs (BOMIQPs). An algorithm of this type does not exist in the literature. The algorithm relies on five fundamental components of the BB scheme: calculating an initial set of efficient solutions with associated Pareto points, solving node problems, fathoming, branching, and set dominance. Considering the properties of the Pareto set of BOMIQPs, two new fathoming rules are proposed. An extended branching module is suggested to cooperate with the node problem solver. A procedure to make the dominance decision between two Pareto sets with limited information is proposed. This set dominance procedure can eliminate the dominated points and eventually produce the Pareto set of the BOMIQP. Numerical examples are provided. Solving multiobjective quadratic programs (MOQPs) is fundamental to our research. Therefore, we examine the algorithms for this class of problems with different perspectives. The scalarization techniques for (strictly) convex MOPs are reviewed and the available algorithms for computing efficient solutions for MOQPs are discussed. These algorithms are compared with respect to four properties of MOQPs. In addition, methods for solving parametric multiobjective quadratic programs are studied. Computational studies are provided with synthetic instances, and examples in statistics and portfolio optimization. The real-life context reveals the interplay between the scalarizations and provides an additional insight into the obtained parametric solution sets

    Optimization Models for Sustainable Design and Management of Biopower Supply Chains

    Get PDF
    This dissertation presents optimization models to aid with the sustainable design and management of biopower (biomass cofiring) supply chains. We address three main challenges associated with today’s biopower projects: i) high cost of biomass collection, storage and delivery, ii) inefficiency of the mechanisms used to incentivize biomass usage for generating electricity, and iii) lack of clear understanding about the trade-offs between economic and environmental impacts of biopower supply chains. In order to address the high cost of delivering biomass, we present a novel mixed integer nonlinear program that integrates production and transportation decisions at power plants. Proposed model captures the loss in process efficiencies from using biomass, in-vestment and operational costs associated with cofiring, and savings due to production tax credit (PTC), a major governmental incentive to support biopower. We develop a La-grangian relaxation approach to provide upper bounds, and two linear approximations to provide lower bounds for the problem. An important finding is that the one-size-fits-all approach of PTC is not effective in motivating plants to utilize biomass and there is a need for sophisticated incentive schemes. In order to address the second issue, we propose alter-natives for the existing PTC incentive. The proposed flexible alternatives are functions of plant capacity and biomass cofiring ratio. We use a resource allocation framework to model and analyze the profit-earning potentials and fairness of the proposed incentive schemes. Finally, in order to address the last challenge, we propose a stochastic biobjective optimiza-tion model to analyze the economic and environmental impacts of biopower supply chains. The economic objective function maximizes the potential profits in the supply chain and the environmental objective function minimizes the life cycle greenhouse gasses (GHG). We use a life cycle assessment (LCA) approach to derive the emission factors for this objective function. We capture uncertainties of biomass quality and supply via the use of chance constraints. The results of this dissertation work are useful for electric utility companies and policy makers. Utility companies can use the proposed models to identify ways to improve biopower production, have better environmental performance, and make use of the existing incentives. Policy makers would gain insights on designing incentive schemes for a more efficient utilization of biomass and a fairer distribution of tax-payers money

    Solution Techniques for Classes of Biobjective and Parametric Programs

    Get PDF
    Mathematical optimization, or mathematical programming, has been studied for several decades. Researchers are constantly searching for optimization techniques which allow one to de-termine the ideal course of action in extremely complex situations. This line of scientific inquiry motivates the primary focus of this dissertation — nontraditional optimization problems having either multiple objective functions or parametric input. Utilizing multiple objective functions al-lows one to account for the fact that the decision process in many real-life problems in engineering, business, and management is often driven by several conflicting criteria such as cost, performance, reliability, safety, and productivity. Additionally, incorporating parametric input allows one to ac-count for uncertainty in models’ data, which can arise for a number of reasons, including a changing availability of resources, estimation or measurement errors, or implementation errors caused by stor-ing data in a fixed precision format. However, when a decision problem has either parametric input or multiple objectives, one cannot hope to find a single, satisfactory solution. Thus, in this work we develop techniques which can be used to determine sets of desirable solutions. The two main problems we consider in this work are the biobjective mixed integer linear program (BOMILP) and the multiparametric linear complementarity problem (mpLCP). BOMILPs are optimization problems in which two linear objectives are optimized over a polyhedron while restricting some of the decision variables to be integer. We present a new data structure in the form of a modified binary tree that can be used to store the solution set of BOMILP. Empirical evidence is provided showing that this structure is able to store these solution sets more efficiently than other data structures that are typically used for this purpose. We also develop a branch-and-bound (BB) procedure that can be used to compute the solution set of BOMILP. Computational experiments are conducted in order to compare the performance of the new BB procedure with current state-of-the-art methods for determining the solution set of BOMILP. The results provide strong evidence of the utility of the proposed BB method. We also present new procedures for solving two variants of the mpLCP. Each of these proce-dures consists of two phases. In the first phase an initial feasible solution to mpLCP which satisfies certain criteria is determined. This contribution alone is significant because the question of how such an initial solution could be generated was previously unanswered. In the second phase the set of fea-sible parameters is partitioned into regions such that the solution of the mpLCP, as a function of the parameters, is invariant over each region. For the first variant of mpLCP, the worst-case complex-ity of the presented procedure matches that of current state-of-the-art methods for nondegenerate problems and is lower than that of current state-of-the-art methods for degenerate problems. Addi-tionally, computational results show that the proposed procedure significantly outperforms current state-of-the-art methods in practice. The second variant of mpLCP we consider was previously un-solved. In order to develop a solution strategy, we first study the structure of the problem in detail. This study relies on the integration of several key concepts from algebraic geometry and topology into the field of operations research. Using these tools we build the theoretical foundation necessary to solve the mpLCP and propose a strategy for doing so. Experimental results indicate that the presented solution method also performs well in practice

    Exact And Representative Algorithms For Multi Objective Optimization

    Get PDF
    In most real-life problems, the decision alternatives are evaluated with multiple conflicting criteria. The entire set of non-dominated solutions for practical problems is impossible to obtain with reasonable computational effort. Decision maker generally needs only a representative set of solutions from the actual Pareto front. First algorithm we present is for efficiently generating a well dispersed non-dominated solution set representative of the Pareto front which can be used for general multi objective optimization problem. The algorithm first partitions the criteria space into grids to generate reference points and then searches for non-dominated solutions in each grid. This grid-based search utilizes achievement scalarization function and guarantees Pareto optimality. The results of our experimental results demonstrate that the proposed method is very competitive with other algorithms in literature when representativeness quality is considered; and advantageous from the computational efficiency point of view. Although generating the whole Pareto front does not seem very practical for many real life cases, sometimes it is required for verification purposes or where DM wants to run his decision making structures on the full set of Pareto solutions. For this purpose we present another novel algorithm. This algorithm attempts to adapt the standard branch and bound approach to the multi objective context by proposing to branch on solution points on objective space. This algorithm is proposed for multi objective integer optimization type of problems. Various properties of branch and bound concept has been investigated and explained within the multi objective optimization context such as fathoming, node selection, heuristics, as well as some multi objective optimization specific concepts like filtering, non-domination probability, running in parallel. Potential of this approach for being used both as a full Pareto generation or an approximation approach has been shown with experimental studies
    corecore