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Abstract

Mathematical optimization, or mathematical programming, has been studied for several

decades. Researchers are constantly searching for optimization techniques which allow one to de-

termine the ideal course of action in extremely complex situations. This line of scientific inquiry

motivates the primary focus of this dissertation — nontraditional optimization problems having

either multiple objective functions or parametric input. Utilizing multiple objective functions al-

lows one to account for the fact that the decision process in many real-life problems in engineering,

business, and management is often driven by several conflicting criteria such as cost, performance,

reliability, safety, and productivity. Additionally, incorporating parametric input allows one to ac-

count for uncertainty in models’ data, which can arise for a number of reasons, including a changing

availability of resources, estimation or measurement errors, or implementation errors caused by stor-

ing data in a fixed precision format. However, when a decision problem has either parametric input

or multiple objectives, one cannot hope to find a single, satisfactory solution. Thus, in this work

we develop techniques which can be used to determine sets of desirable solutions. The two main

problems we consider in this work are the biobjective mixed integer linear program (BOMILP) and

the multiparametric linear complementarity problem (mpLCP).

BOMILPs are optimization problems in which two linear objectives are optimized over a

polyhedron while restricting some of the decision variables to be integer. We present a new data

structure in the form of a modified binary tree that can be used to store the solution set of BOMILP.

Empirical evidence is provided showing that this structure is able to store these solution sets more

efficiently than other data structures that are typically used for this purpose. We also develop

a branch-and-bound (BB) procedure that can be used to compute the solution set of BOMILP.

Computational experiments are conducted in order to compare the performance of the new BB
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procedure with current state-of-the-art methods for determining the solution set of BOMILP. The

results provide strong evidence of the utility of the proposed BB method.

We also present new procedures for solving two variants of the mpLCP. Each of these proce-

dures consists of two phases. In the first phase an initial feasible solution to mpLCP which satisfies

certain criteria is determined. This contribution alone is significant because the question of how such

an initial solution could be generated was previously unanswered. In the second phase the set of fea-

sible parameters is partitioned into regions such that the solution of the mpLCP, as a function of the

parameters, is invariant over each region. For the first variant of mpLCP, the worst-case complex-

ity of the presented procedure matches that of current state-of-the-art methods for nondegenerate

problems and is lower than that of current state-of-the-art methods for degenerate problems. Addi-

tionally, computational results show that the proposed procedure significantly outperforms current

state-of-the-art methods in practice. The second variant of mpLCP we consider was previously un-

solved. In order to develop a solution strategy, we first study the structure of the problem in detail.

This study relies on the integration of several key concepts from algebraic geometry and topology

into the field of operations research. Using these tools we build the theoretical foundation necessary

to solve the mpLCP and propose a strategy for doing so. Experimental results indicate that the

presented solution method also performs well in practice.
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Chapter 1

Introduction

Multiobjective programs (MOP) are optimization problems in which several objective func-

tions are considered. Decision makers are constantly confronted with scenarios in which they are

forced to consider multiple, conflicting objectives. When purchasing a vehicle, a person’s choice is

not often motivated by cost alone, but also by factors such as fuel economy, comfort, and safety.

When building a stock portfolio, one is interested in achieving a high return without making many

high risk investments. These are just a few examples of decision problems which can be formulated

as multiobjective programs. Important applications of MOP arise in a variety of disciplines, includ-

ing engineering, economics, logistics, and health care. When attempting to solve a MOP, conflict in

the objectives typically prevents one from finding a single solution which simultaneously optimizes

every objective. For this reason, it is generally accepted that to solve a MOP one must identify the

set of so-called efficient solutions which offer the “best” compromises between the objectives. This

is a significantly challenging problem, and there are many areas of multiobjective programming in

which substantial improvements can still be made. Although many of the topics discussed in this

dissertation offer contributions that extend well beyond the scope of MOP, the study of MOP has

served as the primary motivation for the entirety of the work presented here. We now provide a

brief overview of multiobjective optimization in which we introduce several of the key concepts that

will be used throughout this work.

1



1.1 Overview of Multiobjective Optimization

In general, MOPs have the form

min
x

g(x) := [g1(x), . . . , g`(x)]

s.t. x ∈ X
(1.1)

where g1(·), . . . , g`(·) are functions of x, and X ⊆ Rk is a feasible set. For each MOP, we also define

Ψ := {ψ ∈ R` : ψ = g(x), x ∈ X}, (1.2)

the set of all points in R` which can be formed using the objective function values of feasible solutions

to (1.1). We refer to the space R` containing Ψ as the objective space.

Unlike single-objective programs, in general, a single solution to a multiobjective program

which optimizes all objectives simultaneously does not exist. This is due to the fact that in most

cases these objectives arise from conflicting criteria such as cost, performance, reliability, safety, and

productivity. B a single optimal solution cannot be found, a set of efficient solutions which offer

an acceptable compromise between the objectives is sought. In order to determine what types of

solutions are “acceptable,” we introduce several definitions and propositions.

Definition 1.1. Given distinct x, x′ ∈ X , we say that g(x) dominates g(x′) if g(x) ≤ g(x′). This

dominance is strong if g(x) < g(x′) and weak if g(x) = g(x′).

Since it is generally unlikely that Ψ is known in its entirety, it is often of interest to consider

particular subsets of Ψ.

Definition 1.2. Given Ψ′ ⊆ Ψ we say that ψ′ ∈ Ψ′ is nondominated in Ψ′ if there does not exist

ψ′′ ∈ Ψ′ such that ψ′′ dominates ψ′.

Definition 1.3. A point x ∈ X is (weakly) efficient if there does not exist x′ ∈ X such that g(x′)

(strongly) dominates g(x).

The set of all efficient solutions to a given problem is denoted by attaching a subscript E

to the symbol denoting the feasible set of the problem. Thus, the sets of efficient points for (1.1) is

denoted XE .

Definition 1.4. A point ψ = g(x) is called Pareto optimal if x ∈ XE .
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Problem (1.1) is considered solved when XE is found along with the corresponding set of

Pareto optimal points

ΨP := {ψ ∈ R` : ψ = g(x), x ∈ XE}. (1.3)

Definition 1.5. Given an instance of MOP, the weighted sum problem is the single objective program

min
x

h(x) :=
∑̀
i=1

λigi(x)

s.t. x ∈ X

(1.4)

where λi > 0 for all i ∈ {1, . . . , `} and
∑̀
i=1

λi = 1.

For each λ ∈ R` such that λi > 0 for all i ∈ {1, . . . , `} and
∑̀
i=1

λi = 1, we denote the optimal

solution to (1.4) as x∗λ.

Proposition 1.6. For each λ ∈ R` such that λi > 0 for all i ∈ {1, . . . , `} and
∑̀
i=1

λi = 1, the solution

x∗λ is efficient for (1.1).

The claim of Proposition 1.6 is a well known result and its proof can be found, for example,

in [27].

Definition 1.7. An efficient solution x̂ ∈ XE for (1.1) is said to be supported if there exists λ ∈ R`

such that λi > 0 for all i ∈ {1, . . . , `},
∑̀
i=1

λi = 1 and x̂ = x∗λ. Otherwise it is unsupported.

The definitions and propositions we have now introduced will serve as a sufficient foundation

for the concepts we discuss throughout the rest of this work. We now move forward and consider

specific subclasses of (1.1) in which integer decision variables are present.

1.2 Multiobjective Optimization Problems Involving Integer

Decision Variables

It is often the case that in order to appropriately model a real-world scenario, a certain

subset of the model’s decision variables needs to be described using discrete quantities. This leads

to two classes of problems which are quite worth studying and are the focus of the majority of this

work: (i) multiobjective integer programs (MOIP), in which all decision variables take on discrete
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values, and (ii) multiobjective mixed-integer programs (MOMIP), in which a subset of the decision

variables takes on discrete values. Most of the literature concerning these types of problems focuses

on MOIP rather than MOMIP. For this reason there is still much research to be done in the area of

MOMIP. Therefore, for the remainder of this work we consider two subclasses of MOMIP:

1. Multiobjective mixed-integer linear programs (MOMILP), i.e., MOMIPs of the form:

min
x,y

[
f1(x, y) = c>1 x+ d>1 y, . . . , f`(x, y) = c>` x+ d>` y

]
s.t. Ax+By ≤ b

x ∈ Rm
y ∈ Zn

(1.5)

where A ∈ Rk×m, B ∈ Rk×n, b ∈ Rk and ci ∈ Rm and di ∈ Rn for each i ∈ {1, . . . , `}.

2. Multiobjective mixed-integer quadratic programs (MOMIQP), i.e., MOMIPs of the form:

min
x,y

[
f1(x, y) =

1

2

[
x

y

]>
Q1

[
x

y

]
+ p>1

[
x

y

]
, . . . , f`(x, y) =

1

2

[
x

y

]>
Q`

[
x

y

]
+ p>`

[
x

y

]]
s.t. Ax+By ≤ b

x ∈ Rm
y ∈ Zn

(1.6)

where A ∈ Rk×m, B ∈ Rk×n, b ∈ Rk and Qi ∈ R(m+n)×(m+n) and pi ∈ Rm+n for each

i ∈ {1, . . . , `}.

We define the following sets which we use alongside both MOMILP and MOMIQP:

1. X := {(x, y) ∈ Rm × Zn : Ax+By ≤ b}

2. Ψ := {ψ ∈ R` : ψ = f(x, y) for (x, y) ∈ X}

Notice that X, which we assume to be bounded, is the feasible set of (1.5) and (1.6), while Ψ is

the collection of all points in R` which can be formed using the objective function values of feasible

solutions to either (1.5) or (1.6), whichever is appropriate.

When studying problems (1.5) and (1.6), one quickly finds that these problems are signifi-

cantly challenging even in the presence of only two objectives, i.e., ` = 2. As a result, in this work

we consider the biobjective versions of (1.5) and (1.6), which we refer to as biobjective mixed-integer

linear programs (BOMILP) and biobjective mixed-integer quadratic programs (BOMIQP), respec-

tively. The next two sections focus, respectively, on BOMILP and BOMIQP. For each we discuss the
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state of the art in the literature, the places in which we found room for improvement, and provide

a brief summary of our contributions.

1.3 Biobjective Mixed-integer Linear Programs

There are two main techniques found in the literature for solving BOMILPs with general

integers. One is a variation of the branch-and-bound (BB) technique that is widely used for solving

single-objective mixed-integer linear programs (MILP). Such a BB technique is proposed by Belotti

et al. [10]. Note that all other BB techniques for BOMILP that we know of are designed for instances

of BOMILP having only binary variables. The second method for solving BOMILPs is an iterative

search method in the objective space, referred to as the “triangle-splitting” (TS) method, proposed

by Boland et al. [16]. When employing TS, the objective space is iteratively partitioned into smaller

and smaller search regions, each of which is either rectangular or triangular in shape, and various

scalarization techniques for solving biobjective linear programs are used to search each region for

solutions which are Pareto optimal. Additionally, Özpeynirci and Köksalan [68] give an exact method

for finding supported solutions of BOMILP.

Other solution techniques in the literature are BB techniques that have been devoted to

specific cases. Vincent et al. [101] improved upon the method of Mavrotas and Diakoulaki [63] for

mixed 0-1 problems. Stidsen et al. [90] propose a method for solving mixed 0-1 problems in which

only one of the objectives contains continuous variables. Kariwala and Cao [50] proposed methods

for solving control structure design problems. The pure integer case has been studied for binary

variables by Kiziltan and Yucaoğlu [53], general integers by Ralphs et al. [80] and specific classes of

biobjective combinatorial problems by Jozefowiez et al. [48], Przybylski et al. [78] and Sourd and

Spanjaard [85].

Although there is certainly merit in studying and developing objective space search methods

for solving BOMILP, there is still much work that can be done to improve BB techniques for BOMILP

and therefore we focus on BB methods for BOMILP in this work. In the following section we discuss

the details of these techniques.
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1.3.1 Overview of State-of-the-Art Methodology

In this section we discuss the methodology available in the literature for solving BOMILP

using BB based procedures. We begin with a brief review of traditional BB methods.

Most modern BB procedures consist of two phases, which we refer to as the Initialization

Phase and the Main Step. Given an instance of MILP (or BOMILP), the Initialization Phase is

used to accomplish two tasks prior to beginning the Main Step: (i) reduce the size and complexity

of a given instance, and (ii) determine an initial set of integer feasible solutions. It has been shown

in the literature that both of these procedures have significant impact on the overall performance of

BB. The Main Step of BB is then an iterative procedure consisting of two key procedures: (i) node

processing, and (ii) branching. We describe these procedures in more detail during the following

discussion.

During an iteration of a typical BB procedure for MILP (and by extension for BOMILP),

one solves an LP subproblem at a node η selected from a list L of open subproblems in the BB

enumeration tree. Then if some yi takes a fractional value γi in the LP optimal solution, a process

referred to as branching is performed. During branching two new subproblems are created by

adding the constraints yi ≥ dγie and yi ≤ bγic, respectively, to the LP subproblem at η. These two

subproblems are then added to L and a new iteration is begun by selecting a new node η′ ∈ L to

explore and subdivide, if necessary. By continually selecting subproblems to explore and subdivide,

a BB tree of subproblems is formed. In the single objective case, a fractional solution to the LP

at node η provides a valid lower bound for all subproblems of η, while the objective function value

associated with any integer feasible solution is an upper bound for every subproblem of the BB tree.

In general, BB methods are effective because by comparing this global upper bound with the lower

bound of a particular subtree, one is often able to prove that the subtree cannot provide a better

integer feasible solution. Once this has been done, it is said that this subtree has been pruned or

fathomed. Thus, in most cases the entire BB tree does not need to be explored and the best integer

feasible solution can be found relatively quickly.

In the biobjective case, the bounds used for fathoming are no longer singletons in R. Instead,

they are subsets of R2 formed by taking unions of finitely many continuous convex piecewise linear

functions [28]. For this reason, we refer to these bounds as bound sets throughout the remainder of

this work. During each iteration s of BB, a node ηs of the BB tree is considered. The set of Pareto
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solutions to the LP relaxation of (2.1) associated with ηs provides a lower bound set Ls. The upper

bound set UG, on the other hand, is globally valid to all nodes of the BB tree, although it is generally

not known in its entirety until completion of BB. Therefore, at each iteration s of BB, since UG is

unknown and cannot be used for fathoming, the set Us = ϑ(Ns) is used instead. Here Ns ⊂ Ψ is

the nondominated subset of the set of integer feasible solutions discovered prior to iteration s of BB

and ϑ(·) is a mapping which we describe in more detail after presenting a few new definitions. For

use in these definitions, let S be a subset of R2.

Definition 1.8. A point (κ1, κ2) := κ ∈ S is said to be isolated in S if there exists ε > 0 for which

Bε(κ) := {κ̂ ∈ S \ {κ} : ‖κ− κ̂‖2 < ε} is empty.

Definition 1.9. Given distinct κ, κ′ ∈ S such that κ1 < κ′1 and κ2 > κ′2, the point κn = (κ′1, κ2) is

called the local nadir point with respect to κ and κ′.

Definition 1.10. Any line segment containing points in S is referred to as a local nadir set.

We now describe the mapping ϑ(·), which can be used to construct Us given Ns. Notice

that if a line segment contains no dominated points, then it must have a negative slope. We use the

notation [κnw, κse] to denote any such segment, where κnw := (κnw1 , κnw2 ) and κse := (κse1 , κ
se
2 ) are

the segment’s north-west and south-east endpoints, respectively. Now, since at any iteration s of BB

Ns ⊂ Ψ contains no dominated points, each of its elements must be either an isolated point or a line

segment with a negative slope. For each point κ = (κ1, κ2) ∈ Ns consider κ1, and for each segment

[κnw, κse] ∈ N consider κnw1 . Arrange the elements of Ns in increasing order of these values. Then

for each pair of adjacent elements (ε1, ε2) ∈ Ns, if the south-east-most point of ε1 is not equal to the

north-west-most point of ε2, calculate the local nadir point with respect to these two points and add

it to a set N ′s. Note that if εi for i ∈ {1, 2} is a point and not a segment, then its north-west-most

and south-west-most points are simply εi itself. Now let N ′′s be the set of local nadir sets in Ns.

Then ϑ(Ns) := N ′s ∪N ′′s and thus Us = N ′s ∪N ′′s . Figure 1.1 illustrates the relationship between Ns

and Us.

One of the fathoming rules presented by Belotti et al. [10] states that at iteration s of BB

a node ηs can be fathomed if Ls is separable from Us, i.e., Ls ∩ (Us − R2
+) = ∅. This is essentially

the extension of the well known “fathoming by bound dominance” rule for single-objective problems

to the biobjective case. Figure 1.2 shows examples of lower bound sets Ls1 and Ls2 . Notice that

the locations of these sets show that node ηs1 cannot be fathomed but ηs2 can. Clearly, efficient
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Figure 1.1: Examples of Ns and Us Figure 1.2: Ls1 is not separable from Us, but Ls2 is.

fathoming depends on the choice of Ns used to construct Us since good approximations of UG at

each iteration of BB can help to fathom a large number of nodes.

Recognize that calculating Ns at iteration of BB can be quite cumbersome. Until now, two

approaches have been used for this purpose. In the first approach, each time a point or segment

ψ ∈ Ψ is found is is stored in a list. Then dominated points and segments are removed from the list

by performing a pairwise comparison between all stored solutions. After completion of the pairwise

comparison, the stored data is precisely Ns, and Us can be constructed as ϑ(Ns) [63, 101]. The

second approach avoids updating throughout the BB procedure. Instead, a preprocessing phase is

used to create a set N ⊂ ΨP before beginning BB. Then at every iteration s of BB, N is used in

place of Ns. Therefore a single set U = ϑ(N ) is used for fathoming throughout the BB [10].

1.3.2 Scope for Improvement

When studying BB techniques for BOMILP, we first discovered that there is still a significant

need for the development and implementation of a BB procedure for instances of BOMILP containing

general integer variables. We found, however, that in order to develop and implement a BB procedure

capable a performing comparably with the state of the art Triangle Splitting method, improvements

were needed in the following areas.

1. Methods for storing and dynamically updating Ns: As discussed in the previous section, at

iteration s of BB populating Ns is a non-trivial task, and both of the mentioned approaches

lack each in their own way. Although storing each ψ ∈ Ψ as it is discovered is beneficial,

updating the list of these points via pairwise comparison is computationally expensive. On

the other hand, pre-populating a set N with an appropriately chosen number of points from
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Ψ and using N for fathoming at every iteration of BB can avoid this computational expense,

but the strength of fathoming is sacrificed.

2. Procedures for presolving an instance of BOMILP: For single objective BB it is well known

that performing sophisticated techniques to reduce the size of an instance of MILP or generate

a “strong” set of feasible solutions for an instance of MILP prior to beginning the Main Step

of BB can significantly reduce the computational effort needed to solve the instance. To date,

there has been no work done to test the effectiveness of similar techniques in the biobjective

setting.

We also point out that while studying solution methods for BOMILP we discovered that

current methods have only been applied to relatively small instances of BOMILP, all of which have

been randomly generated. Hence, there is still a need to test these techniques on larger, more

realistic instances.

1.3.3 Contribution

We present a new data structure in the form of a modified binary tree that can be used to

efficiently store, update, search and return the set of currently known nondominated solutions at

any time during a BB procedure for solving BOMILP. This structure takes points and line segments

in R2 as input and stores the nondominated subset of this input. We note that although the

primary motivation for developing this structure was for its usefulness alongside BB algorithms,

it is quite likely that the structure is also very useful when used alongside objective space search

methods for solving BOMILP, such as the triangle splitting method, and also heuristics designed for

approximating the Pareto set of BOMILP. We also note that when used alongside any exact solution

procedure, such as a BB algorithm, at termination the data stored in the structure is precisely the

set of Pareto optimal solutions. We perform three computational experiments. The first is designed

to compare the utility of our structure for storing nondominated data to that of a dynamic list which

updates via pairwise comparison. The results of our first experiment suggest that the data structure

performs reasonably well in handling input of up to 107 points or segments and is much more efficient

than a dynamic list. In the second and third experiments, we use our data structure alongside the

biobjective BB techniques available in the literature and solve specific instances of BOMILP. We

observe that the BB running times improve significantly when our structure is utilized.
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Additionally, we present a generic BB method for finding all the Pareto solutions for

BOMILP. We provide new algorithms for obtaining dual bounds at a node, for checking node

fathoming, presolve and duality gap measurement. Our various procedures are implemented and

empirically validated on instances from the literature. The results show that our BB technique

performs extremely well, even better that the current state-of-the-art triangle splitting method. We

then propose a new set of hard instances which we obtain by adding secondary objectives to single

objective MIP instance from the MIPlib 2010 library. The majority of the problems in the MIPlib

2010 library come from real world problems and are considered to be challenging. We perform a

final set of computational experiments using these instances. The results show that even for large,

challenging instances our BB algorithm is competitive with the state-of-the-art triangle splitting

method.

1.4 Biobjective Mixed-Integer Quadratic Programs

Currently there exist no techniques for solving BOMIQPs. One way in which such a tech-

nique can be constructed is by extending each of the key aspects of the BB technique we present

for BOMILP to the context of BOMIQP. However, there is one major tool which is available for

BOMILP that plays a crucial role in BB techniques for BOMILP, but which currently does not have

a suitable counterpart available for BOMIQP. This tool is an algorithm known as the Parametric

Simplex Algorithm (PSA).

The PSA is a parametric algorithm which uses a modified form of the weighted sum problem

given in (1.4) and the result of Proposition 1.6 to find the set of all Pareto optimal solutions to the

BOLP. The specific problem considered by the PSA is as follows:

min
x

h̃(x) := λg1(x) + (1− λ)g2(x)

s.t. (x) ∈ X
(1.7)

Recognize that solutions to (1.7) satisfy the conditions of Proposition 1.6 whenever λ ∈ (0, 1). The

PSA begins by solving (1.7) for λ = 1 and then uses the reduced costs of each nonbasic variable

with respect to each of the objective functions in order to determine the range of values λ ∈ [λ′, 1]

for which the current basis is optimal. The algorithm then returns a nonbasic variable and a basic

variable which need to enter and leave the basis, respectively, in order to create an alternative basis
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that will be optimal for λ = λ′. The algorithm then repeats iteratively until an optimal basis is

discovered for all λ ∈ (0, 1).

Hirschberger et al. [44], Romanko [82] and Steuer et al. [89] present methods which perform

similarly to the PSA but are designed for the subclass of BOQP in which one objective contains only

linear terms. Goh and Yang [36] present an algorithm for general BOQP that performs similarly to

the PSA, but it requires the computation of several matrix inverses and depends on other calculations

that are unnecessarily ambiguous. Arora et al. [4], Ehrgott et al. [29], Goh and Yang [37], Ohsawa

[66], Peng et al. [73] provide algorithms for specialized subclasses of BOQP. Beato-Moreno et al. [9]

give a technique for solving unconstrained BOQP with strictly convex objective functions.

In order to develop an improved analogue for the PSA for general BOQP, we first develop

the theory and methodology necessary to describe the properties of the solution sets of parametric

and multiparametric single objective QPs. Recognize that due to the result of Proposition 1.6,

developing a tool for solving multiparametric QP is enough in order to establish a counterpart to

the PSA for BOQP. Due to the complicated nature of general multiparametric QP, our analysis

is divided into two sections. The first covers the cases in which parameters are present in the

linear terms of the objective function as well as the right hand sides of the constraints. The second

extends the concepts developed in the previously mentioned restricted case to the general case in

which parameters are permitted in any location within the QP.

1.4.1 Overview of State-of-the-Art Methodology for Parametric QP

Single objective QPs containing a single parameter are referred to as parametric QPs (pQP).

These problems have been widely studied. In fact, one of the earliest studies of pQP was conducted

in 1962 and is due to Ritter [81]. More recently, QPs containing two parameters, referred to as bi-

parametric QP (bpQP), and more than two parameters, referred to as multiparametric QP (mpQP),

have been studied.

There are a variety of goals that one may have when solving a parametric program. Ghaffari-

Hadigheh et al. [34] categorize these goals into three types of sensitivity analysis, which they refer

to as Type I, Type II, and Type III. Suppose that θ ∈ Rd is the vector of parameters associated

with a given parametric or multiparametric QP, denoted QP (θ). It is assumed that θ ∈ Sθ ⊂ Rd,

where Sθ is a convex polyhedron. The goal of each type of sensitivity analysis is then to partition

Sθ into regions with the following properties:
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• Type I - For all θ within a given region, QP (θ) has a solution with the same optimal basis.

• Type II - For all θ within a given region, QP (θ) has an optimal solution with the same set of

active constraints.

• Type III - For all θ within a given region, QP (θ) has an optimal solution with the same

representation of the primal and dual variables as functions of θ.

In the literature these regions have been given a variety of names, such as invariancy regions, critical

regions, and validity sets. We will refer to them as invariancy regions. Also, note that Type I

sensitivity analysis performs poorly in the presence of degeneracy and multiple optima and therefore

has not been widely used for parametric QP.

Ghaffari-Hadigheh et al. [34, 35] and Romanko [82] perform Type III analyses on bpQPs

in which one parameter is contained in the linear term of the objective function, and the other

is in the right hand side of the constraints. In these methods Sθ is split into an explored region

and an unexplored region. An interior point is calculated within the unexplored region, and then

a single-parametric technique is used to find all edges and vertices bounding the invariancy region

containing the generated interior point. This process is then repeated until the unexplored region is

empty.

Baotić [5], Bemporad et al. [12] and Tøndel et al. [94] perform Type II analyses on mpQPs

in which all parameters are in the right hand side of the constraints. These methods split Sθ into

an explored region and one or more unexplored regions. Interior points are calculated for each

unexplored region and then the set of active constraints at the optimal solution associated with each

interior point is used to determine a polyhedral representation of the invariancy region containing

the interior point. This process is then repeated until all unexplored regions are empty. Note that

the polyhedral representations of the invariancy regions often contain many redundant and therefore

unnecessary inequalities. It is mentioned that these redundant inequalities should be discarded, but

no discussion is given as to the process of classifying each inequality as redundant or not. Also note

that the methods of Baotić [5] and Bemporad et al. [12] require that the set of active constraints

associated with every optimal solution be linearly independent. Tøndel et al. [94] discuss a method

for selecting the interior points of each unexplored region in such a way that the linear independence

requirement is not needed.
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Spjøtvold et al. [87] and Tøndel et al. [95] perform type II analyses on mpQP containing

parameters in both the linear term of the objective as well as the right hand side of the constraints.

These methods are very similar to that of Tøndel et al. [94]. Gupta et al. [40] also consider these

problems, but they use an enumeration technique to explore all possible sets of active constraints.

They also employ “pruning” techniques to show that certain sets of active constraints will not provide

any new invariancy regions. We note that Grancharova and Johansen [39] provide an extensive

summary of the works pertaining to mpQP.

It is common for researchers studying mathematical optimization to consider problems of

interest in a variety of equivalent formulations. Hence, as we continue our study of QP and mpQP,

it is important to note that there exists a problem, known as the Linear Complementarity Problem

(LCP), which arises naturally when studying duality theory in the context of QP. Furthermore,

under certain assumptions, it can be shown that LCP and QP are equivalent. Consider the following

definition and two related propositions.

Definition 1.11. Given M ∈ Rn×n and q ∈ Rn, the Linear Complementarity Problem (LCP) is

the problem of finding vectors w, z ∈ Rn which satisfy:

w −Mz = q

w>z = 0

w, z ≥ 0

(1.8)

We now provide two definitions which play a crucial role throughout this work. For use in

these definitions we denote the LCP in (1.8) as LCP(q,M).

Definition 1.12. A matrix M ∈ Rn×n is column sufficient if the following implication is satisfied:

(xi(Mx)i ≤ 0 for all i) ⇒ (xi(Mx)i = 0 for all i) (1.9)

M is said to be row sufficient if M> is column sufficient. If M is both column and row sufficient, it

is then called sufficient.

Definition 1.13. A matrix M ∈ Rn×n is said to be a Q0 matrix if the set

K(M) = {q ∈ Rn : LCP(q,M) has at least one solution}

is a convex cone.
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Proposition 1.14. Every QP can be reformulated as an LCP.

Proof. Consider a general QP of the form

min
x

f(x) =
1

2
x>Qx+ p>x

s.t. Ax ≤ b
x ∈ Rt

(1.10)

Assume without loss of generality that the variables of (1.10) are restricted to be nonnegative (if not,

this property can be achieved using a simple reformulation). Convert all inequality constraints of

(1.10) to equality constraints by adding slack variables s. It is well known that a necessary condition

for the optimality of a feasible solution (x̂, ŝ) to this problem is that there exist Lagrange multipliers,

or dual variables, û and r̂, associated with the constraints Ax ≤ b and x ≥ 0, respectively, which

satisfy the following Karush-Kuhn-Tucker First Order Necessary Conditions (KKT FONCs):

−Qx̂−A>û+ r̂ = p

Ax̂+ ŝ = b

û>ŝ = 0

r̂>x̂ = 0

x̂, ŝ, û, r̂ ≥ 0

(1.11)

Let M =

[
0 −A
A> Q

]
, q =

[
b

p

]
, w =

[
ŝ

r̂

]
and z =

[
û

x̂

]
and notice that substituting into (1.11) gives

a system identical to (1.8).

Proposition 1.15. Consider a QP as in (1.10). If Q is positive semi-definite (PSD) then a solution

to the LCP reformulation of the QP is guaranteed to provide an optimal solution to the QP.

Proof. It is well known that if Q is PSD, the KKT FONCs are sufficient for optimality. The result

follows.

It is also important to note that when an instance of QP for which Q is PSD is reformulated

to obtain LCP(q,M), the matrix M will also be PSD. Furthermore, since the class of PSD matrices

is a subset of the class of sufficient matrices, M is also sufficient.

The LCP is a well known problem in the literature and has been studied extensively by

researchers such as Cottle et al. [22], Kostreva [55], Lemke [56] and Murty and Yu [65]. The results

of Proposition 1.14 and 1.15 are also well known and their proofs can be found, for example, in [65].
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Due to the results of Propositions 1.14 and 1.15, it is also necessary to mention works

which consider parametric LCP. As with single parametric QP, single parametric LCP (pLCP) has

been studied for quite some time. One of the earlies works was published in 1971 and is due to

Murty [64]. Multiparametric LCP (mpLCP), however, has been studied more recently. Note that

in solving the LCP associated with a given QP, one will find optimal values for both the primal and

dual variables of the QP. Thus, by performing a Type I sensitivity analysis on an LCP (the idea

of a basis for an LCP will be introduced later), one is performing a Type III sensitivity analysis

on the associated QP. Columbano et al. [18], Gailly et al. [32], Herceg et al. [42], Jones and Morari

[46] and Li and Ierapetritou [57] consider mpLCP with parameters in the vector q. The method of

Gailly et al. [32] is theoretically sound but it lacks any practical discussion as to how the theory

should be implemented. Although the authors of [18, 42, 46, 57] do provide practical details as to

how to implement their methods, there is still significant room for improvement in each method.

The techniques of Columbano et al. [18] and Jones and Morari [46] work well in the absence of

degeneracy, but when degeneracy is present they depend on an ε-perturbation of the vector q and

require postprocessing in order to obtain the solution for the original problem from its ε-perturbed

counterpart. The method of Li and Ierapetritou [57] is quite computationally costly since it requires

reformulating the mpLCP as a multiparametric bilinear mixed integer program. Herceg et al. [42]

propose an enumerative approach which extends the method of Gupta et al. [40] for mpQP to the

context of mpLCP.

Chakraborty et al. [17], Tammer [93], Väliaho [98] and Xiao [103] consider mpLCP with

parameters in M . However, the works of Tammer [93] and Xiao [103] do not discuss finding invari-

ancy regions, but instead discuss interesting properties of the solutions under various assumptions.

Although the works of Chakraborty et al. [17] and Väliaho [98] do present methodology for solving

parametric LCP, the work of Chakraborty et al. [17] imposes very strict limitations on the structure

of the matrix M and the work of Väliaho [98] is only applicable for the single parametric case, i.e.,

k = 1.

1.4.2 Scope for Improvement

For QP, the case in which a single parameter is present either in the linear term of the

objective or the right hand side of the constraints has been studied extensively, as discussed in the

previous section. Thus, we focus on cases in which at least one of the following conditions is met:
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(i) one or more parameters exist in the quadratic term of the objective, (ii) at least two parameters

exist in the linear term of the objective and/or the right hand side of the constraints. For LCP, the

case in which a single parameter is present in q has been studied extensively, as also discussed in

the previous section. Thus, we focus on cases in which at least one of the following conditions is

met: (i) one or more parameters exist in M , (ii) at least two parameters exist in q. We note that

mpQP with two or more parameters in Q and mpLCP with two or more parameters in M have not

yet been solved in the literature.

Recall from the previous subsection that most of the methods for solving mpQPs depend on

the computation of an interior point which is used to determine a representation for each invariancy

region. As it is difficult to ensure that a point is selected which falls outside of all previously explored

invariancy regions, methods depending on such a calculation are often inefficient. The methods for

mpLCP, however, do not have this issue. Currently the best methods for solving mpLCP are those

of Columbano et al. [18] and Jones and Morari [46]. As mentioned before, though, these techniques

lack a straightforward implementation in the case of degeneracy.

We also point out the following two very important questions that are yet unanswered in

the areas of mpQP and mpLCP:

1. Given an instance of mpQP or mpLCP, how does one determine an initial full dimensional

invariancy region?

2. How does one solve an instance of mpQP with parameters in the quadratic term of the objec-

tive, or mpLCP with parameters in M?

1.4.3 Contribution

We present two new algorithms, each consisting of two phases, designed for solving mpLCP.

The first of these algorithms is designed for the case in which the matrix M is a real-valued sufficient

matrix (we define sufficiency shortly). This algorithm improves on the methods of Jones and Morari

[46] and Columbano et al. [18], but never relies on an ε-perturbation, functioning the same whether

or not degeneracy is present. Furthermore, the worst-case complexity of the algorithm matches that

of Columbano et al. [18] for nondegenerate problems and is lower than that Columbano et al. [18] for

degenerate problems. A computational study also shows that the proposed algorithm significantly

outperforms the current state of the art implementation for solving mpLCP, the Multi-Parametric
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Toolbox [41] available for MATLAB, which implements the algorithms presented in Jones and Morari

[46].

The second algorithm we present is an extension of the first, and is designed for solving

mpLCP when parameters are present in both the vector q and the matrix M , which we assume to

be sufficient at every “attainable” value of the parameters. The reason we present these algorithms

separately is that the theoretical arguments needed in order to prove the correctness of the second

algorithm are significantly more challenging. In fact, these arguments require a thorough knowledge

of many concepts from algebraic geometry and algebraic topology in addition to mathematical

optimization and operations research.

Role of Sufficient Matrices in mpLCP: We now discuss the important role that suffi-

ciency plays throughout this work. The following important property of column sufficient matrices

is shown in [22]: If M is column sufficient, the set K(M) is partitioned by a set of complementary

cones (both Chapters 4 and 5 contain explicit definitions of complementary cones). Together, this

property of column sufficient matrices and the property of Q0 matrices given in Definition 1.13

ensure that the set of “attainable” parameters for mpLCP can be partitioned into a set of invari-

ancy regions such that the representation of the mpLCP solution vectors w and z as functions of

the parameters is invariant over each region (more details and a justification of this statement are

provided in Chapters 4 and 5). As a result, the algorithms we propose in Chapters 4 and 5 for

solving mpLCP are designed for instances of mpLCP in which M is both Q0 and column sufficient.

As the largest class of matrices known to be a subset of both the classes of Q0 and column sufficient

matrices is the class of sufficient matrices (see [21]), we therefore assume that M is sufficient.

It is also important to note that in the first phase of each of the proposed algorithms, we

provide an answer to the following previously unanswered question: Given an instance of mpLCP,

how does one determine an initial full dimensional invariancy region?

1.5 Organization of the Dissertation

The remaining chapters of this dissertation, with the exception of Chapter 6, are slightly

modified versions of individual papers that have been, or will soon be, submitted to various opti-

mization and operations research journals. The journal of submission will be indicated at the start
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of each chapter. Note that due tothe independence of each of these chapters, appropriate notation

and definitions will be presented within each, and may occasionally overlap.

In Chapter 2 we present the data structure discussed in Section 1.3.3. We provide all

details necessary for the implementation of this data structure and present the results of various

computational experiments showing the utility of the structure.

Chapter 3 contains a proposed BB algorithm for solving BOMILP. We inspect each of the

key aspects of traditional BB algorithms for single objective mixed integer programs, and for each

develop an analogue for BOMILP. We then perform a variety of computational tests, each of which

highlights an important aspect of our algorithm. Finally, we propose a new set of challenging

instances of BOMILP and test the performance of our algorithm on this set.

Chapters 4 and 5 contain the algorithms we propose for solving mpLCP with (i) parameters

only in the vector q, and (ii) parameters present both in q and the matrix M , respectively. Each

chapter contains a significant amount of theory which serves as the necessary foundation for the

development of the presented algorithms. In Chapter 4 we provide the results of a computational

test which shows that our algorithm convincingly outperforms other current methods for solving

mpLCP with parameters in q. A similar comparison cannot be given in Chapter 5, however, because

the problem we consider had previously been unsolved.

We conclude the dissertation with Chapter 6 in which we discuss possible directions for

future research.
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Chapter 2

Efficient storage of Pareto points

in BOMILP

[The contents of this chapter include material from a paper entitled “Efficient storage of

Pareto points in biobjective mixed integer programming,” which was submitted to the INFORMS

Journal on Computing in September of 2014; the authors are N. Adelgren, P. Belotti and A. Gupte.

The paper is currently undergoing a second round of review.]

2.1 Introduction

Biobjective mixed integer linear programs (BOMILP) have the following form,

minx,y f(x, y) :=
[
f1(x, y) := c>1 x+ d>1 y, f2(x, y) := c>2 x+ d>2 y

]
s.t. (x, y) ∈ PI := {(x, y) ∈ Rm × Zn : Ax+By ≤ b} (2.1)

where PI is a bounded set. Thus BOMILP encompasses both biobjective linear programs (BOLP)

and biobjective integer programs (BOIP). Define Ψ := {ψ ∈ R2 : ψ = f(x, y) ∀(x, y) ∈ PI} to be

the collection of all points in R2 that can be obtained using the objective function values of feasible

solutions to (2.1). We refer to the space R2 containing Ψ as the objective space.

Unlike single-objective programs, one cannot expect to find a single optimal solution to

biobjective programs since the objective functions are oftentimes conflicting. Instead, a set of ef-

ficient solutions which offer an acceptable compromise between the objectives is sought. In order
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to determine what types of solutions are “acceptable,” we provide several notations and defini-

tions. For any two vectors v1, v2 ∈ R2 we use the following notation: v1 5 v2 if v1
i ≤ v2

i for

i = 1, 2; v1 ≤ v2 if v1 5 v2 and v1 6= v2; and v1 < v2 if v1
i < v2

i for i = 1, 2. Given distinct

(x, y), (x′, y′) ∈ PI , we say that f(x, y) dominates f(x′, y′) if f(x, y) ≤ f(x′, y′). This dominance

is strong if f(x, y) < f(x′, y′); otherwise it is weak. A point (x, y) ∈ PI is (weakly) efficient if

@ (x′, y′) ∈ PI such that f(x′, y′) (strongly) dominates f(x, y). The set of all efficient solutions in

PI is denoted by XE . A point ψ = f(x, y) is called Pareto optimal if (x, y) ∈ XE . Given Ψ′ ⊆ Ψ we

say that ψ′ ∈ Ψ′ is nondominated in Ψ′ if @ ψ′′ ∈ Ψ′ such that ψ′′ dominates ψ′. Note that Pareto

optimal points are nondominated in PI . A BOMILP is considered solved when the set of Pareto

optimal points ΨP := {ψ ∈ R2 : ψ = f(x, y) ∀(x, y) ∈ XE} is found. Note that the definitions given

here extend to problems with more than two objectives, but we give them for biobjective problems

since that is our focus in this chapter.

It is well-known [cf. 27] that a BOLP can be solved by taking convex combinations of

f1(·) and f2(·) and solving a finite number of LPs. Thus for BOLP, the set of Pareto points can be

characterized as ΩP = {(ξ1, ξ2) ∈ R2 : ξ2 = ψ(ξ1)} where ψ(·) is a continuous convex piecewise linear

function obtained using extreme points of the dual feasible region. Similarly, for BOIP it is known

that ΩP is a finite set of discrete points in R2. Now consider the case of BOMILP. Let Y = Projy PI

be the set of integer feasible subvectors to (2.1). Since PI is bounded, we have Y = {y1, . . . , yk} for

some finite k. Then for each yi ∈ Y there is an associated BOLP, referred to as a slice problem and

denoted P(yi), obtained by fixing y = yi in (2.1),

P(yi) minx {f1(x) = c>1 x+ d>1 y
i, f2(x) = c>2 x+ d>2 y

i}
s.t. Ax ≤ b−Byi (2.2)

Problem P(yi) has a set of Pareto solutions Si := {(ξ1, ξ2) ∈ R2 : ξ2 = ψi(ξ1)}, where ψi(·)

is a continuous convex piecewise linear function as explained before. Then ΩP ⊆ ∪ki=1 Si and this

inclusion is strict in general. In particular, we have:

ΩP =
k
∪
i=1

(
Si \ ∪

j 6=i

(
Sj + R2

+ \ {0}
))

(2.3)

Such a union of sets is not, in general, represented by a convex piecewise linear function. Figure 2.1

shows an example with k = 4.
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(a) ∪4
i=1Si (b) ΩP

Figure 2.1: Relationship between Pareto sets of slice problems and original BOMILP

It should be noted that finding ΩP is not a trivial task in general. In the worst case, ΩP =

∪ki=1Si and one may have to solve every slice problem to termination, which can have exponential

complexity. For multiobjective IP’s (i.e. m = 0), De Loera et al. [25] prove that ΩP can be

enumerated in polynomial-time for fixed n, which extends the well known result that single-objective

IP’s can be solved in polynomial-time for fixed n. We are unaware of any similar results for BOMILP.

Not many exact procedures have been presented for solving BOMILP with general integers.

The works of Belotti et al. [10] and Boland et al. [15] are the only ones we know of, though Özpeynirci

and Köksalan [68] give an exact method for finding supported solutions of BOMILP. Most other

techniques in the literature have been devoted to specific cases. Vincent et al. [101] improved upon

the method of Mavrotas and Diakoulaki [63] for mixed 0-1 problems. Stidsen et al. [90] propose

a method for solving mixed 0-1 problems in which only one of the objectives contains continuous

variables. We point out that the works of Belotti et al. [10], Mavrotas and Diakoulaki [63], Stidsen

et al. [90] and Vincent et al. [101] are based on biobjective branch-and-bound (BB) procedures in

which the Pareto set is determined by solving several BOLPs, while the works of Boland et al. [15]

an Özpeynirci and Köksalan [68] utilize other techniques in which the Pareto set is determined by

solving several MIPs. We also note that the pure integer case has been studied for binary variables

[53], general integers [80] and specific classes of biobjective combinatorial problems [48, 77, 85].

Given a set of feasible solutions to a BOMILP, the data structure we present in this chapter

efficiently stores the nondominated subset of these feasible solutions. This structure is useful along-

side exact solution procedures as well as heuristics aimed at approximating the Pareto set. Our
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structure is a modified version of a quad-tree. Although quad-trees (see, for example, Samet [83] for

background and details) have been used extensively for storing Pareto points in the past [91, 92],

they have been used only in the pure integer case. Sun and Steuer [92] stored nondominated solu-

tions using both quad-trees and dynamic lists which were updated via pairwise comparison. They

showed that for pure integer biobjective (and also multiobjective) problems, quad-trees were able

to store nondominated solutions more efficiently than dynamic lists. In the pure integer case all

nondominated solutions are singletons while in the mixed integer case nondominated solutions can

consist of line segments as well as singletons. Our quad-tree is organized in such a way that it

can be easily searched to find a desired subset of stored line segments and singletons; the need to

do so arises, for example, when using branch-and-bound type methods to solve a BOMILP. The

algorithms we use to implement this tree force it to remain balanced, which is significant because

having a balanced tree reduces the time complexity required to access an individual node.

Section 2.2 describes our structure, provides the algorithms necessary for its implementation,

and discusses the complexity and correctness of each of these algorithms. Section 2.3 provides an

example of utilizing the structure to determine the nondominated subset of a particular set of

solutions. In Section 2.4 we present the results of three experiments. The results of the first

experiment show that in the mixed integer case our data structure is able to store nondominated

solutions more efficiently than a dynamic list and, in most cases, can handle up to 107 inserted

solutions in reasonable time. In the second and third experiments we utilize our structure alongside

the BB procedures of Belotti et al. [10] and Adelgren and Gupte [1], respectively, to solve specific

instances of BOMILP. The results show that the use of our structure leads to faster solution times

for the majority of the solved instances of BOMILP.

2.2 Tree data structure

We begin this section by presenting the high-level idea of our data structure. Next we give a

detailed description of the data structure and the algorithms we used to implement it. We finish by

discussing some theoretical results including the complexity of each algorithm, and thus the overall

structure. Throughout this discussion, when we refer to storing solutions we are referring to points

in the objective space. Recall that we will be storing the nondominated subset of the union of several
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(a) Generated points and segments (b) Nondominated subset

Figure 2.2: Example of solutions generated when solving an instance of BOMILP.

Pareto sets. One convenient way to store this subset is to store each of the individual points and

line segments in R2 that it comprises.

2.2.1 Purpose and principle

Figure 2.2a shows an example of solutions that might be generated when solving an instance

of BOMILP. We would like to store the nondominated portion of these points and segments, as shown

in Figure 2.2b. Our goal is to have a data structure S which can take points and line segments as

input, and store only the nondominated subset of the solutions regardless of the order in which they

are inserted. Therefore, when a new solution is added to S, it needs to not only recognize whether

or not the new solution is dominated by solutions already in S, but it must also be able to determine

whether or not the new solution dominates any currently stored solutions. Once these checks have

been made, S must be able to update itself and store only nondominated solutions. Consider the

set of solutions depicted in Figures 2.2a and 2.2b and suppose that the segments connecting (1,17),

(2,15), (4,14), and (9,13) are currently stored in S. When inserting the point (5,11) into S, it must

recognize that the point dominates a portion of the segment connecting (4,14) and (9,13), and thus

this portion of the segment must be removed from S before the point is added to S. Similarly,

when the segment connecting (6,16) and (7,10) is inserted, it must recognize that a portion of this

segment is dominated by (5,11) and therefore only allow the nondominated portion of the segment

to be added. The data structure we use is a modified version of a quad-tree in which each node

represents either a singleton or a line segment associated with a Pareto point or set of Pareto points

of (2.1). Note that a quad-tree is a data structure specifically designed for storing data in Rp, with
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p ∈ N. For the remainder of this work, though, we restrict our discussion of quad-trees to their

application in R2. In this case, each node π in a quad-tree has at most four children, one for each

quadrant of the Cartesian plane. The four children of π must lie within π+R++, π+R−+, π+R−−

and π + R+−, respectively, where, for example, R++ := {x ∈ R2 : x1 ≥ 0, x2 ≥ 0}.

2.2.2 Operations and details

Due to the fact that dominated solutions are not stored in our structure, our modified quad-

tree actually reduces to a modified binary tree. Let Π be the set of nodes in the tree. For a given

π ∈ Π, notice that if solutions are present in π + R++, they are dominated by π and should not be

stored in the tree. Similarly, if solutions are present in π + R−−, they dominate π and π should be

removed from the tree. Thus, for any node π̂ ∈ Π the children of π̂ associated with π̂ + R++ and

π̂ + R−− are unnecessary. Hence, each π̂ ∈ Π has only two children, and thus the tree reduces to a

binary tree.

In order to present our structure in a clear, understandable manner, we define the following

terms for each π ∈ Π:

1. π.type - Sgmt for π representing line segment, and Pnt for π representing a singleton.

2. π.x1, π.x2, π.y1 and π.y2 - π is identified by:

(i) Point (π.x1, π.y1) if π.type = Pnt.

(ii) Extreme points (π.x1, π.y1) and (π.x2, π.y2) if π.type = Sgmt.

Note that if π.type = Pnt, we assume (π.x1, π.y1) = (π.x2, π.y2).

3. π.p - parent node of π.

4. π.l - left child node of π.

5. π.r - right child node of π.

6. π.size = total # of nodes contained in the sub-tree rooted at π.

7. π.ideal left = (πnw.x1, π.y1) where πnw is the north-west-most node in the subtree rooted

at π.

8. π.ideal right = (π.x2, π
se.y2) where πse is the south-east-most node in the subtree rooted

at π.
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(a) Local ideal points.
(b) Partition of R2 if

π.type = Pnt.
(c) Partition of R2 if
π.type = Sgmt.

π1

π

π2

(d) Weak domination.

Figure 2.3: Visuals for π.ideal right, π.ideal left, the partitioning of R2 relative to π, and
weak domination.

We say that π is the root node if π.p = ∅ and π is instead a leaf node if π.l = π.r = ∅. See

Figure 2.3a for the details of π.ideal left and π.ideal right.

Now, in order to further simplify the descriptions of the algorithms we use in implementing

our data structure, we partition R2 into 4 regions relative to any node π. Figures 2.3b and 2.3c

show the details of this partition for each type of node. We denote these regions by Rα(π) where

α ∈ {1, 2, 3, 4} represents the number of the region as shown in Figures 2.3b and 2.3c. Given distinct

nodes π and π∗, we use the notation π∗ ∩ Rα(π) to denote any portion of the point or segment

associated with node π∗ that lies in region Rα(π). If no such portion exists, we say π∗ ∩Rα(π) = ∅.

In order to ensure that these regions are disjoint let us assume that each region contains its lower

and left boundaries, but not its upper or right boundaries. Also assume that π itself is contained in

R2(π) and not Ri(π) for i ∈ {1, 3, 4}. Note that this convention is taken so that weakly dominated

points will not be included in our structure. This convention is convenient since we are working with

minimization problems, but if working with maximization problems one should include upper and

right boundaries in each region and include π in R3(π) rather than R2(π). Now, for an example,

suppose π ∈ Π is defined by the segment between (2,5) and (3,3). Further suppose that π1 is the

point (1,5), π2 is the point (2,6) and both π1 and π2 are inserted into our structure. Observe Figure

2.3d. The point associated with node π1 weakly dominates the left-most point of the segment

associated with π and thus π1 should be stored. However, the point associated with node π2 is

weakly dominated by the segment associated with π and so π2 should not be stored. Situations like

this motivate our decision to include lower and left boundaries with a given region, but not upper

or right boundaries. Such a convention further simplifies the descriptions of the algorithms we use

in implementing our data structure.
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This data structure has three main purposes: (i) it should be able to handle the insertion

of several thousands (or even millions) of points and segments and update itself efficiently, (ii) the

structure must be organized so that it can easily be searched and a desired subset can be obtained,

and (iii) it must be able to return the current set of nondominated solutions. So, the main algorithms

needed for the utilization of this data structure are functions for insertion of new solutions, deletion

of dominated solutions, and rebalancing of the tree. We describe these algorithms next.

2.2.2.1 Insertion.

Recall that ΩP ⊆
k
∪
i=1

Si and is hence a collection of points and segments. Thus only points

or segments will be inserted into the structure. For this purpose we define the Insert function

which takes two inputs: a node π∗ which is being inserted and a node π which is the root of the

tree or subtree where π∗ is inserted. The point or segment associated with π∗ is compared against

π. Consider the following four situations:

1. If π∗ ⊆ R2(π) then π 5 π∗ and thus π∗ is discarded.

2. If π 65 π∗ but π∗ ∩R2(π) 6= ∅ then a portion of π∗ is either dominated by π or is a repetition

of a solution stored in π. We denote this situation by π 5p π∗. In this case π∗ ∩ R2(π) is

discarded.

3. If π∗ 5 π then π is removed from the tree.

4. If π∗ 65 π but π ∩R2(π∗) 6= ∅ then π is reduced to π \R2(π∗).

Note that the second possibility above may result in π∗ being split into two pieces. Similarly, the

final possibility may result in π being split into two nodes. If none of the above four scenarios occur,

then neither π nor π∗ dominates the other and they can therefore coexist in the tree.

If π∗ is not discarded while being compared with π, then if π∗ ∩ R1(π) 6= ∅, π∗ ∩ R1(π)

will need to be inserted at π.l. Similarly, if π∗ ∩ R4(π) 6= ∅, π∗ ∩ R4(π) will need to be inserted at

π.r. For this reason, the Insert function is recursive. Notice that it may be the case that π.l = ∅

or π.r = ∅. A node π∗ is added to the tree if and only if it is inserted at an empty node. Thus,

the typical use of the Insert function is to insert a new node π∗ at the root node, π0. Then π∗ is

either discarded or π∗ ∩R1(π) and π∗ ∩R4(π) are inserted at π.l and π.r, respectively. This process

repeats recursively until either (i) π∗ has been fully discarded, or (ii) all nondominated portions of
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π∗ have been added to the tree as new nodes. Throughout the remainder of this chapter we will use

the notation Replace(π′, π̃) to denote the process of replacing the point or segment associated with

π′ ∈ Π with the point or segment associated with π̃ ∈ Π and leaving the tree structure otherwise

unchanged. We use the notation π′ ← π̃ to denote the process of replacing π′ and its entire subtree

with π̃ and its entire subtree. Algorithm 2.1 describes the Insert procedure.

Algorithm 2.1 Inserting a new point or segment, π∗, into the data structure at node π

1: function Insert(π∗, π)
2: if π∗ = ∅ then Return
3: if π = π0 & π0 6= ∅ then Rebalance(π) . π0 represents the root node
4: if π = ∅ then Replace(π, π∗), π.size← 1, Update(π)
5: else Replace(π, π \ cl (R2(π∗)))
6: if π = ∅ then
7: if π.ideal left ∩R2(π∗) 6= ∅ then π.l← ∅
8: if π.ideal right ∩R2(π∗) 6= ∅ then π.r ← ∅
9: RemoveNode(π)

10: Insert(π∗, π)
11: else
12: if ∃π1, π2 s.t. π = π1 ∪ π2 & cl(π1) ∩ cl(π2) = ∅ then
13: π1.l← π.l, π2.r ← π.r
14: π ← π1, π.r ← π2

15: Update(π)
16: Insert(π∗ ∩R1(π), π.l)
17: Insert(π∗ ∩R4(π), π.r)

In Algorithm 2.1, the functions RemoveNode and Rebalance refer to the processes of

deleting nodes from the tree and rebalancing the tree, respectively. These algorithms will be dis-

cussed further in Sections 2.2.2.2 and 2.2.2.3, respectively. The recursive Update function has a

node π as input and traverses up the tree from π until reaching the root node. Update then per-

forms two actions: (i) ensures that π.size = (π.l).size+ (π.r).size+ 1 where (π′).size = 0 if and

only if π′ = ∅, and (ii) ensures that π.ideal left and π.ideal right are updated appropriately.

After this has been done, if π.p 6= ∅ then Update(π.p) is called.

We now introduce a property that is maintained throughout all operations on the tree as

described in the remainder of the paper.

Property 2.1. Given an arbitrary node in the tree π, all nodes in the subtree of π.l are located

completely within R1(π) and all nodes in the subtree of π.r are located completely within R4(π).
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2.2.2.2 Deletion.

Removing a dominated node from the tree is the next task that frequently needs to be

performed. Notice that when a node is deleted, in order for the tree structure to be retained, another

node must replace it. This is precisely where the difficulty lies. Usually, when a node is deleted

from a quad-tree structure, all nodes contained in the subtree of the deleted node are reinserted in

order to maintain proper organization of the tree [91, 92]. Since our quad-tree simplifies to a binary

tree, however, we propose something much simpler. Notice that in order for our tree to maintain

the appropriate structure, Property 2.1 must be met. For any node π that needs to be removed

and replaced, there are precisely two nodes that may replace it and satisfy Property 2.1. They are

the right-most node in the subtree of π.l and left-most node in the subtree of π.r. Algorithm 2.2

describes RemoveNode.

Algorithm 2.2 Remove a node that has been shown to be dominated.

1: function RemoveNode(π)
2: if π.size = 1 then π → ∅
3: else Define π̃ = ∅
4: if (π.l).size > (π.r).size then π̃ →FindRightmostNode(π.l)
5: else π̃ →FindLeftmostNode(π.r)
6: Replace(π, π̃)
7: RemoveNode(π̃)
8: if π.p 6= ∅ then Update(π.p)

2.2.2.3 Rebalancing.

The final task to perform in maintaining our structure is rebalancing. To maintain balance

we use the following strategy of Overmars and Van Leeuwen [67]: for each non-leaf node π, the

subtrees of π.l and π.r must contain no more than
1

2− δ
k nodes, where k is the number of nodes in

π’s subtree and δ is a pre-selected value in the open interval (0, 1). Enforcing this requirement causes

the depth of the tree to be at most log2−δ t where t is the number of nodes in the tree. Now, based on

this requirement we develop two rebalancing methods, RebalanceLeft1 and RebalanceLeft2

(and similarly RebalanceRight1 and RebalanceRight2) each of which take a node π as input.

In RebalanceLeft2, the left-most node of the subtree of π.r is found and is used to replace π.

Then π is moved to right-most position of the subtree of π.l. Notice that RebalanceLeft2 moves

a single node from one side of a tree to the other. In certain situations it may be more beneficial to

move several nodes from one side of the tree to the other in a single operation. RebalanceLeft1
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is designed for this purpose. In RebalanceLeft1, the nodes of the tree are shifted in the following

fashion: (i) π.r and its right subtree shift up and left to take the place of π and its right subtree,

(ii) π and its left subtree shift down and left to become the new left subtree of π.r, and (iii) the

original left subtree of π.r is then placed as the new right subtree of π. RebalanceLeft1 and

RebalanceLeft2 are illustrated in Figure 2.4.

(a) Original Tree (b) RebalanceLeft1 (c) RebalanceLeft2

Figure 2.4: Examples of applying rebalancing procedures.

Algorithm 2.3 is used to determine which rebalancing procedure to apply in order to balance

the tree. Its correctness is shown in Proposition 5, which is presented in the next section.

Algorithm 2.3 Check to ensure that the balance criterion is met at each node.

1: function Rebalance(π)
2: if (π.l).size > 2 then Rebalance(π.l)
3: if (π.r).size > 2 then Rebalance(π.r)
4: if (π.l).size > π.size

2−δ then

5: if (π.l.l).size ≥ (1−δ)π.size
2−δ − 1 then RebalanceRight1(π)

6: else repeat RebalanceRight2(π) until (π.l).size = π.size
2−δ

7: else if (π.r).size > π.size
2−δ then

8: if (π.r.r).size ≥ (1−δ)π.size
2−δ − 1 then RebalanceLeft1(π)

9: else repeat RebalanceLeft2(π) until (π.r).size = π.size
2−δ

2.2.3 Performance Guarantees

We now present results about the correctness and complexity of the insertion, deletion, and

rebalancing procedures. In this section we will use the notation π ∈ Subtree(π̂) to denote the case

in which π is a node contained in the subtree of Π which is rooted at π̂. We assume π ∈ Subtree(π).

Proposition 2.2. Insert removes any portion of a currently stored node π which is dominated by

an inserted node π∗.
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Proof. Assume π∗ 5p π ∈ Π. Since the case in which π = π0 is trivial, we assume π 6= π0. Assume

WLOG that π ∈ Subtree(π0.l) and consider the insertion of π∗ at π0. Notice that if π∗ 5 π0 then

in line 5 of Algorithm 2.1, π is replaced by π \ cl(R2(π∗)) = ∅. Thus, one of the following occurs:

(i) π∗ 5 π0.ideal left (i.e., π.ideal left ∩ R2(π∗) 6= ∅) and all nodes contained in Subtree(π0.l)

are removed from Π, or (ii) π∗ 65 π0.ideal left and so RemoveNode replaces π0 with a node

π̃ ∈ Subtree(π0) and the insert procedure recurses. Let π′ = π∗ ∩ R3(π) which is the portion of π∗

that dominates π. Notice that if π∗ 65 π0 then π∗∩ cl(R1(π0)), which contains π′, is inserted at π0.l.

The above arguments can be repeated to show that for every π̂ ∈ Π such that π ∈ Subtree(π̂),

either: (i) all nodes in Subtree(π̂) are removed from Π, or (ii) a portion of π∗ containing π′ is inserted

at π̂. Note that if a node π′′ containing π′ is inserted at π, π will be reduced to π\cl(R2(π′′)) = ∅.

Proposition 2.3. Insert adds a portion of an inserted node π∗ to the tree if and only if it is not

dominated by any node currently stored in the tree.

Proof. Notice that the reverse direction is trivial because if π̃ is a portion of π∗ not dominated by

any π ∈ Π, then π̃ will be inserted at one of the children of every node it is compared against. Thus,

since there are a finite number of nodes in the tree, π̃ must eventually be inserted at an empty node

and added to the tree.

The forward direction is by contraposition. Suppose there is π ∈ Π such that π 5p π∗.

Let π′ = π∗ ∩ cl (R2(π)), (i.e., the portion of π∗ that is dominated by π). Assume WLOG that

π ∈ Subtree(π0.l) and consider the insertion of π∗ at π0. Notice that by Property 2.1, π′ ⊂ R1(π0)∪

R2(π0). If π′ ⊂ R2(π0) then π′ will not be added to the tree since only π∗ ∩ R1(π) and π∗ ∩ R3(π)

are inserted to the children of π0. On the other hand, if π′ 6⊂ R2(π0) then π′∩R1(π0) ⊂ π∗∩R1(π0)

and the latter is inserted at π0.l.

The above arguments can be repeated to show that for every π̂ ∈ Π such that π ∈ Subtree(π̂),

either: (i) π′ is thrown out when inserted at a parent or grandparent of π̂, or (ii) a portion of π∗

containing a subset of π′ is inserted at π̂. Notice that if a node π′′ containing a subset of π′ is

inserted at π, neither π′′ ∩R1(π) nor π′′ ∩R3(π) will contain any portion of π′. Thus, no portion of

π′ can be added to the tree.

Proposition 2.4. Use of the RemoveNode procedure does not violate Property 1.

Proof. Suppose π ∈ Π is dominated and must be removed from Π. The case in which π is a leaf

node is trivial, so assume that π has at least one child. By Property 1, if π.l 6= ∅ then π ⊂ R4(π.l)
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and if π.r 6= ∅ then π ⊂ R1(π.r). Thus, if π.l 6= ∅ and π′ is the right-most node in Subtree(π.l), then

π′ is the unique node in Subtree(π.l) such that π̂ ⊂ R1(π′) for all π̂ ∈ Subtree(π.l) \ π′. Similarly,

if π.r 6= ∅ and π′′ is the left-most node in Subtree(π.r), then π′′ is the unique node in Subtree(π.r)

such that π̂ ⊂ R4(π′′) for all π̂ ∈ Subtree(π.r) \ π′′. Hence, replacing π with either the right-most

node in Subtree(π.l) or the left-most node in Subtree(π.r) satisfies Property 1.

Proposition 2.5. Use of the Rebalance procedure does not violate Property 1.

Proof. We must show that neither RebalanceLeft1 nor RebalanceLeft2 violates Property 1.

First consider RebalanceLeft1(π). Note that after this procedure is carried out, π.r becomes

the root node of the subtree that was once rooted at π. All nodes that were in the subtree of π.r.l

remain in their original positions relative to π.r. Now notice that π becomes the left child of π.r,

which does not violate Property 1 since π is completely within R1(π.r). Finally, the entire subtree

of π.r.l becomes the right subtree of π. Since π is now the left child of π.r, all of these nodes are

still located in the left subtree of π.r. Furthermore, since these nodes were originally located in π’s

right subtree, Property 1 is still satisfied.

Now consider RebalanceLeft2(π). In this procedure π is replaced by the left-most node

in the subtree of π.r. We proved that this would not violate Property 1 in the proof of Proposition

4. After this, π is placed as the right child of the node that was previously the right-most node in

the subtree of π.l. We can see that this placement also does not violate Property 1 since all nodes

originally within the subtree of π.l are completely within R1(π).

Proposition 2.6. One call of Rebalance(π) satisfies the balance criterion at π.

Proof. WLOG assume that (π.r).size > π.size
2−δ . Now, if (π.r.r).size < (1−δ)π.size

2−δ − 1 then the

proposition is trivially satisfied since in this case RebalanceLeft2 is repeated until (π.r).size =

π.size
2−δ . Thus, we focus on the case in which (π.r.r).size ≥ (1−δ)π.size

2−δ − 1. Notice that by the

construction of the Rebalance procedure, the subtrees of π.l and π.r are balanced before that of

π. Thus (π.r.r).size ≤ π.size
2−δ because otherwise (π.r.r).size > π.size

2−δ > (π.r).size
2−δ which contradicts

the fact that the subtree of π.r is balanced. Now, suppose that after calling RebalanceLeft1(π),

π′ is the new root node of the subtree orignally rooted at π. Then the subtree of π′.r will be the

original subtree of π.r.r. Thus, since (π.r.r).size ≤ π.size
2−δ , the balance criterion will be satisfied for
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π′.r. Also notice that RebalanceLeft1(π) is only called if (π.r.r).size ≥ (1−δ)π.size
2−δ − 1. This

implies that

(π.r.r).size ≥ (1− δ)π.size + π.size− π.size
2− δ

− 1

⇒ π.size

2− δ
≥ π.size− (π.r.r).size− 1.

After the procedure is completed, it will be the case that (π′.l).size = π.size − (π.r.r).size − 1

where π.size is the size of the original subtree rooted at π. Thus, the balance criterion will be

satisfied for π′.l.

Proposition 2.7. If t is the number of nodes stored in the tree, the worst case complexities of

Insert, RemoveNode and Rebalance are O(t), O(log t) and O(t2 log t), respectively.

Proof. Insert: It is clear that for any comparison between an inserted node π∗ and some π ∈ Π, it

is possible that π∗ ∩ R1(π) 6= ∅ and π∗ ∩ R3(π) 6= ∅. Thus it is possible for a portion of π∗ to be

compared with every node in a subtree, implying O(t) complexity.

RemoveNode: Here we assume that the tree is balanced prior to calling RemoveNode.

Recall that when a node π is removed it is replaced with either the left-most node in the subtree of

π.r or the right-most node in the subtree of π.l. Since the tree is balanced, finding such a node is

clearly an O(log t) process. If π′ is the node replacing π and π′ is not a leaf node, then its original

position must then be filled using the same process. Note though that in finding the replacement for

π′ a path through the tree is traversed which begins precisely where the path traversed in finding

the replacement for π ended. Thus, even though multiple nodes may need replaced in order for π

to be removed, the overall process must result in the traversal of only one path through the tree,

resulting in an O(log t) procedure.

Rebalance: This requires checking the balance criterion at every node of the tree. Ensuring

that the criterion is met at one of these nodes could require repeating the strategy RebalanceLeft2

up to t
2 times. Thus, since RebalanceLeft2 calls FindLeftmostNode, FindRightmostNode,

and Update, which are O(log t) procedures, the complexity of rebalancing is O(t2 log t).
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2.3 Illustrative example

Recall the points and segments specified in Figure 2.2a. We use these points and segments

as input to our data structure and show a few of the nontrivial steps of developing our tree. Assume

that the solutions shown in the figure are obtained from five separate slice problems and that the

Pareto sets of these slice problems, listed in respective order, are: (i) the singleton (1,19), (ii) the

piecewise linear curve connecting (1,17) and (9,13), (iii) the piecewise linear curve connecting (6,16)

and (11,4), (iv) the singleton (5,11), and (v) the piecewise linear curve connecting (8,7) and (17,2).

The points and segments which define these Pareto sets will be inserted into our structure in the

order of (iii), (iv), (ii), (v), (i). Piecewise linear curves will be inserted as individual line segments

from left to right.

The reader is encouraged to review the pseudocode given previously (particularly Algorithm

2.1). To begin we let π∗ ← (6, 16) to (7, 10) and call Insert(π∗, π0). Since π0 = ∅ we replace π0

with π∗. Clearly the current tree structure is now a single node. Next we let π∗ ← (7, 10) to (10, 5)

and call Insert(π∗, π0). Notice that π∗ ⊂ R4(π0) and should be inserted at π0.r. Since π0.r = ∅ this

insertion results in π∗ being added to the tree. Therefore the tree now contains the root node which

has one child to its right. The insertion of the segment connecting (10, 5) to (11, 4) is analogous.

π0

π∗

R2(π0)R1(π0)

R3(π0) R4(π0)

(a) Inserting (5,11).

π0

π∗

R2(π∗)

R1(π∗)

R3(π∗) R4(π∗)

(b) Inserting (8, 7)-(14, 3).

Figure 2.5: Inserted Segments.

Next consider Pareto set (iv). Let π∗ ← (5, 11) and call Insert(π∗, π0). Observe Figure

2.5a. Clearly we can see that π∗ 5p π0 and thus we remove the dominated portion of π0 by letting

π0 = π0 \ R2(π∗). After this has been done, notice that π∗ ⊂ R1(π0). Therefore, since π0.l = ∅, π∗

becomes the left child of π0. Figure 2.6a shows the tree structure after π∗ has been inserted. We

leave it to the reader to consider Pareto set (ii). Note, though, that after processing this set the

subtree rooted at π0.l needs to be rebalanced. The resulting tree is shown in Figure 2.6b.
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(a) Tree after inserting (5,11). (b) Tree after rebalancing. (c) Final tree.

Figure 2.6: Tree Structure.

Next we consider the insertion of Pareto set (v). Let π∗ ← (8, 7) to (14, 3) and call In-

sert(π∗, π0). Clearly π∗ ⊂ R4(π0) and will therefore be inserted to π0.r. Observe from Figure 2.5b

that π∗ 5p π0.r. This time, though, the portion of π0.r which is dominated is the center section of

the segment. This means that π0.r must be split into two nodes π1 and π2. Node π1 takes the place

in the tree where π0.r originally was, and the left subtree of π0.r becomes the left subtree of π1.

Node π2 becomes the right child of π1 and the right subtree of π0.r becomes the right subtree of π2.

Now, after this process has been completed, observe that π∗ ⊂ R4(π1) and thus π∗ will be inserted

to π2 (which is now π0.r.r). Notice that π0.r.r 5p π∗ and that it is the center portion of π∗ that is

dominated. Thus the calls to Insert(π∗ ∩R1(π0.r.r), π0.r.r.l) and Insert(π∗ ∩R4(π0.r.r), π0.r.r.r)

will each cause a portion of π∗ to be inserted at π0.r.r.l and π0.r.r.r respectively. Since π0.r.r.l = ∅,

π∗ ∩ R4(π0.r.r) will become π.r.r.l. Since π0.r.r.r is the segment (10,5) to (11,4), it is clear that

another portion of π∗ will need to be removed, and then the remainder of π∗ will become π0.r.r.r.r.

We end our example now because the remaining insertions result in scenarios which are

analogous to those that we have now observed. Note that if we were to continue, one more rebalance

would be required and the final tree structure would be that found in in Figure 2.6c. Note that this

tree structure is dependent on the order of insertion.

2.4 Computational Experiments

We implemented our data structure in the C programming language and performed three

tests. The first was designed to test the number of solutions our structure can effectively store and

how quickly these solutions can be processed. The second and third were designed to test the utility

of our data structure when used alongside the BB algorithms of Belotti et al. [10] and Adelgren and

Gupte [1], respectively. All tests were run using Clemson University’s Palmetto Cluster. Specifically,
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an HP SL250s server node with a single Intel E5-2665 CPU core with 16GB of RAM running Scientific

Linux 6.4 was used.

In all of these experiments we compare the performance of our structure with that of a

dynamic list (L). Like our structure, this list also takes points and segments in R2 as input and stores

only the nondominated subset of all input. When a point or segment is inserted, it is compared

with every other stored point or segment. Then, during each comparison dominated solutions are

discarded. Such lists have been used for storing nondominated solutions in both the pure integer

[92] and mixed-integer cases [63, 101].

2.4.1 Implementation of Rebalance

Recall from Proposition 6 that maintaining a balanced tree is the most costly of the three

operations needed to create our structure. It is also the one operation that is unnecessary in order

to ensure that we store the correct solutions. For this reason we decided to further consider the

rebalancing operations in hopes of finding an alternative implementation that is less computationally

costly, but still performs well in practice.

Note that Overmars and Van Leeuwen [67] suggest rebalancing by traversing the path trav-

elled by an inserted solution in the reverse order and checking whether or not the balance criterion

is satisfied at each of these nodes. This saves one from having to check the balance criterion at every

node in the tree since the only places where it could have been altered are at nodes along this path.

In our case, though, when a line segment is inserted into our structure, it often does not remain

intact, but is separated into many smaller segments, each traversing its own path through the tree

before finally being added. For this reason, rearranging the tree after the insertion of a segment into

the tree is troublesome. Hence, we propose a few alternative approaches:

A0 - No rebalancing is used.

A1 - Before allowing a point or segment to be inserted at the root node, check the balance criterion

at every node in the tree and rebalance where necessary. Using this approach one is able to

guarantee that the balance of the tree is maintained, but its complexity is clearly very high.

(Notice that this approach is the implementation used as presented in Algorithms 1 – 5.)

A2 - Periodically check the balance criterion at every node in the tree and rebalance where nec-

essary. For example, we could determine to check the entire tree for balance every time 100
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new solutions are added to the tree. This approach significantly decreases the complexity of

rebalancing, but eliminates the balance guarantee.

A3 - Another approach could be to check the balance criterion at any node that is currently being

inserted at. This approach has a much lower complexity, and would cause balance to be

maintained at the root node, and along any frequently travelled paths in the tree. However,

again the guarantee of balance is lost.

A4 - A final approach is to combine A2 and A3. Employing A3 alongside A2 may allow one to

obtain a well balanced tree by applying A2 far less frequently than when using A2 alone.

Clearly the complexity of this approach is higher than that of A3, but it is likely significantly

less than that of A2.

We implemented each of these approaches in our first experiment, described in Section 4.2.

We utilize approach A2 when performing our other experiments, which are described in Sections 4.3

and 4.4, because for most of our tests A2 performed comparably to A0 in terms of CPU time, but

always maintained a more balanced tree.

2.4.2 Experiment 1 – Random Data

2.4.2.1 Setup.

This test has two main purposes:

1. We compare the efficiency of our data structure with that of a dynamic list (which updates

via pairwise comparison) when storing nondominated solutions.

2. We determine the number of solutions our structure can take as input and process in a rea-

sonable amount of time.

The test consists of repeating the following procedure until N insertions have been made into our

structure or the dynamic list. First, generate a random integer i ∈ [1, 6] and a random number

r1 ∈ (0, 10). Then, if i > 1, for each j ∈ {2, . . . , i} a random number cj ∈ (0, 1) is generated

and we define rj = r1 +

j∑
`=2

c`. Next, for each j ∈ {1, . . . , i} the following are computed: (i)

yj =
(10.5− rj)2

5
− k, and (ii) xj = rj + (5 − k). Here k is a dynamic value which is defined

as 1 at the start of the test and increases by
µ

N
each time the above process is repeated. Here
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µ ∈ R is a parameter that allows us to determine how much the solutions should “improve” over

the course of the test. If i = 1, the singleton (x1, y1) is inserted into the structure, otherwise the

points (x1, y1), ..., (xi, yi) are arranged in order of increasing x values and then the line segments

connecting each adjacent pair of points are inserted into the structure. We performed this test 100

times for each combination of the values N = 104, 105, 106 and 107 and µ = 0, 0.001, 0.01, 0.1, 1 and

10. We used various values for δ and found that the results were quite similar, but determined to

use a value of δ = 0.3. For each test we recorded the time it took to insert all solutions into our

structure, the time it took to insert all solutions into the dynamic list, the final depth of our tree,

the final number of nodes stored in our tree, and the final number of nodes stored in the dynamic

list.

We now explain the significance of µ. Many procedures for determining or approximating

the Pareto set of a BOMILP are iterative procedures which attempt to use solutions generated during

early iterations to generate better solutions (i.e., solutions which are closer to being Pareto optimal)

in later iterations. Such procedures include BB and most heuristic algorithms. Selecting values for

µ which are close to zero is intended to replicate generating solutions during one of these procedures

in which there is little or no separation between early generated solutions and later generated ones,

and thus both early and later generated solutions are likely to be Pareto. Alternatively, selecting

large values of µ is intended to replicate generating solutions during one of these procedures in which

there is significant separation between early generated solutions and later generated ones, and in

which solutions generated later are much more likely to be Pareto than those generated early. We

expect to find that our structure performs better for large values of µ since there should be more

domination of solutions, therefore requiring less storage. As a visual aid, we include Figure 2.7 which

shows an example of solutions generated during this experiment for µ = 0.1, 1 and 10 with N = 100.

The red solutions are those that are stored by our structure at the end of the test.

2.4.2.2 Implementation Details.

First, recall that as presented, the implementation of our structure performs a check in

order to determine whether or not an entire subtree is dominated. If a subtree is found to be

dominated, the entire subtree is removed. We found that in practice, however, this implementation

does not outperform the implementation in which no check for dominated subtrees is performed,

rather dominated nodes are removed one at a time. We feel that there are two drawbacks to the
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(a) µ = 0.1 (b) µ = 1 (c) µ = 10

Figure 2.7: Example of solutions generated in Experiment 1 with N = 100.

former implementation which are most likely the reasons for this: (i) more information (i.e., an ideal

point for each subtree) is stored in each node, and (ii) when new solutions are added to the tree,

the Update function must ensure that these ideal points are updated appropriately, which can be

a costly procedure. Also notice that the worst case complexity of RemoveNode remains the same

for both implementations. For this reason, we used the latter implementation when performing our

tests.

2.4.2.3 Numerical Results.

We present the results obtained from our randomized tests when implementing the five

rebalancing approaches discussed in section 4.1.2. When using approach A2, we chose to perform an

initial rebalance after 100 new solutions had been added to the structure and then again each time

there was a 101% increase in the number of stored solutions. When using approach A4 we again

performed an initial rebalance after 100 new solutions had been added to the structure, but this

time we did not rebalance again until the number of solutions increased by 800%. The minimum,

maximum, and average elapsed times and final depths of the tree resulting from running experiment

1 can be found in Table 2.6 in Section 2.A, though the data for rebalance approaches A0 and A2 are

also given in Table 2.1. The performance of the various rebalancing approaches, in terms of CPU

time as well as total depth of the tree, is summarized in the performance profiles depicted in Figure

2.8. Note, however, that because the list implementation and rebalancing approach A1 performed

so poorly in terms of CPU time when compared to the other approaches, the data associated with

both the the list and A1 are omitted from the performance profiles. The average number of nodes

stored while running these tests are given in Table 2.2. All averages are reported as geometric
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(a) Time: All instances (b) Time: Instances for µ = 0

(c) Time: Instances for µ = 10 (d) Depth: All instances

Figure 2.8: Performance Profiles for CPU time and tree depth for Experiment 1.

means in Tables 2.1, 2.2 and 2.6. The symbols T and L indicate runs in which our tree structure

and the dynamic list were used for storing solutions, respectively. Also, entries in Tables 2.2 and

2.6 which contain dashes are those for which no results are available due to the fact that individual

runs took over 12 hours to complete and were therefore terminated. The symbol ~, on the other

hand, indicates results for which, due to the large amount of time taken for each individual run, we

were unable to perform the test 100 times. For these results, each test was instead run 5 times.

Table 2.1: Time and depth of the tree for Experiment 1 (Approaches A0 and A2)

Rebal Time (s) Depth Rebal Time (s) Depth

µ N Type Min Avg Max Min Avg Max µ N Type Min Avg Max Min Avg Max

0 104 A0 0.22 0.25 0.33 36 43.8 55 0.001 104 A0 0.06 0.06 0.08 24 31.1 42
A2 0.28 0.35 0.68 16 17.7 20 A2 0.08 0.09 0.12 12 13.8 17

105 A0 11.8 13.1 16.3 36 43.8 55 105 A0 1.41 1.65 2.13 26 33.7 44
A2 13 18.7 63.5 20 21.4 24 A2 1.56 1.77 2.34 14 17 21

106 A0 374 385 393 57 61 65 106 A0 36.5 38.6 50.9 35 35.2 54
A2 351 403 680 22 24.8 27 A2 34.9 36.8 46.4 16 21.5 25

107 A0 7316 7781 9920 66 93 96 107 A0 908 1016 1500 33 43.3 55
A2 5804 6644 8444 24 28.3 44 A2 866 935 1500 21 27 33

0.01 104 A0 0.03 0.03 0.04 14 19.9 37 0.1 104 A0 0.02 0.02 0.02 11 12.7 17
A2 0.04 0.05 0.05 10 11.9 14 A2 0.01 0.01 0.03 8 10.3 13

105 A0 0.66 0.69 0.77 18 22.4 34 105 A0 0.36 0.36 0.38 13 15.3 18
A2 0.74 0.75 0.88 12 15.8 20 A2 0.41 0.41 0.43 11 14.3 18

106 A0 14 15.7 23.6 21 25.3 37 106 A0 6.43 6.81 8.55 16 18.1 23
A2 14.4 15.5 19.5 15 20.1 24 A2 6.75 7.03 8.2 14 17.8 21

107 A0 334 352 403 24 28.1 37 107 A0 139 140 144 20 20.9 22
A2 332 342 382 20 24.1 30 A2 140 141 144 18 21.2 26

1 104 A0 0.02 0.02 0.02 9 11.1 15 10 104 A0 0.01 0.01 0.02 8 9.9 13
A2 0.02 0.02 0.02 8 9.2 13 A2 0.01 0.02 0.02 7 8.7 13

105 A0 0.24 0.24 0.25 11 12.7 16 105 A0 0.21 0.22 0.25 9 10.8 14
A2 0.26 0.26 0.27 8 12.2 15 A2 0.22 0.23 0.26 8 10.5 13

106 A0 3.63 3.96 4.32 13 15.3 20 106 A0 2.46 2.58 2.91 11 12.6 15
A2 3.77 4.09 4.44 12 15 18 A2 2.52 2.66 2.94 10 12.5 16

107 A0 64.2 65.1 77.7 17 17.9 20 107 A0 36.2 36.6 42.8 13 15.1 18
A2 65.7 66.8 78.2 16 18.2 22 A2 37.2 37.6 43.1 13 15.1 19

All averages are reported as geometric averages.
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Table 2.2: Average number of nodes stored in the data structure in Experiment 1.

Avg # of Nodes Avg # of Nodes Avg # of Nodes

µ N T L µ N T L µ N T L

0 104 25,737 25,170 0.01 104 767 766 1 104 188 188
105 198,544 – 105 2,369 2,365 105 283 283
106 864,145 – 106 7,210 7,171 106 761 761
107 2,154,322 – 107 22,397 – 107 2,371 2,368

0.001 104 2,368 2,364 0.1 104 285 285 10 104 133 133
105 7,239 7,200 105 766 765 105 189 189
106 22,358 ~ 21,849 106 2,366 2,363 106 284 284
107 74,165 – 107 7,211 ~ 7,166 107 764 764

Each row is an arithmetic average over all rebalancing approaches.

There are several things to notice from Figure 2.8 and Tables 2.1, 2.2 and 2.6. First, notice

that in all cases our data structure is able to process inserted solutions much more quickly than

the dynamic list. Next, notice that for fixed values of N and µ, A0 typically performs the best in

terms of running time, followed by A2 and then A3 and A4. We point out that although Figure 2.8

seems to indicate that A0 significantly outperforms A2 in most cases, one can observe from Table

2.1 that this is not the case. Although A0 does perform better in most cases, there are only a small

number of occasions in which the CPU times of A0 and A2 differ by more than a couple of seconds.

Furthermore, when these CPU times do differ significantly, A2 often performs better. In terms of

maintaining a tree of minimum depth, on the other hand, A3 and A4 typically perform the best.

Also notice that for each fixed value of N , the time taken to process inserted solutions decreases as

the value of µ increases. Additionally, the larger the value of µ, the closer the time needed for the

dynamic list to process the input solutions becomes to the time needed for our tree to process the

solutions. By comparing Tables 2.1, 2.2 and 2.6 it is easy to see the correlation between the time

taken to process solutions and the number of nodes stored, for both our structure and the dynamic

list.

From these results we can see that our data structure can handle the insertion of large sets

of solutions, thus we suspect that it can do so without posing a significant overhead on a solution

procedure such as BB or a heuristic method.

2.4.3 Experiment 2 – Fathoming in BB of Belotti et al. [10]

In this experiment we solved a variety of BOMILP instances using the BB algorithm of

Belotti et al. [10]. We first provide a background on BB procedures for biobjective problems.
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The bound sets used for fathoming are not singletons in R as they are in the single objective case.

Instead they are subsets of R2 formed by taking unions of finitely many continuous convex piecewise

linear functions [28]. During each iteration s of BB, a node ηs of the BB tree is considered. The set

of Pareto solutions to the LP relaxation of (2.1) associated with ηs provides a lower bound set Ls.

The upper bound set UG, on the other hand, is globally valid to all nodes of the BB tree, although

it is generally not known in its entirety until completion of the BB. Therefore, at each iteration

s of BB, since UG is unknown and cannot be used for fathoming, another set Us = ϑ(Ns) is used

instead, where Ns ⊂ Ω is a set containing no dominated points at iteration s. Now, in order to

describe the mapping ϑ(·), we introduce several definitions. A point (κ1, κ2) := κ ∈ S ⊂ R2 is said

to be isolated in S if ∃ ε > 0 for which Bε(κ) := {κ̂ ∈ S : ‖κ − κ̂‖2 < ε} is empty. Given distinct

κ, κ′ ∈ S such that κ1 < κ′1 and κ2 > κ′2, the point κn = (κ′1, κ2) is called the local nadir point with

respect to κ and κ′ (note that the above inequalities are strict so that κn 6= κ′ and κn 6= κ). Given

a line segment containing points in S, the segment itself is referred to as a local nadir set. We now

describe the mapping ϑ(·), which can be used to construct Us given Ns. Notice that if a line segment

contains no dominated points, then it must have a negative slope. We use the notation [κnw, κse] to

denote any such segment, where κnw and κse are the segment’s north-west and south-east endpoints,

respectively. Now, since at any iteration s of BB Ns ⊂ Ω contains no dominated points, each of its

elements must be either an isolated point or a line segment with a negative slope. For each point

κ ∈ Ns consider κ1, and for each segment [κnw, κse] ∈ N consider κnw1 . Arrange the elements of

Ns in increasing order of these values. Then for each pair of adjacent elements (ε1, ε2) ∈ Ns, if the

south-east-most point of ε1 is not equal to the north-west-most point of ε2, calculate the local nadir

point with respect to these two points and add it to a set N ′s. Note that if εi for i ∈ {1, 2} is a point

and not a segment, then its north-west-most and south-west-most points are simply εi itself. Now

let N ′′s be the set of local nadir sets in Ns. Then ϑ(Ns) := N ′s ∪N ′′s and thus Us = N ′s ∪N ′′s . Figure

2.9a illustrates the relationship between Ns and Us.

One of the fathoming rules presented by Belotti et al. [10] states that at iteration s of BB a

node ηs can be fathomed if Ls is separable from Us, i.e., Ls ∩ (Us −R2
+) = ∅. This is essentially the

extension of the well known “fathoming by bound dominance” rule for single-objective problems to

the biobjective case. Figure 2.9b shows examples of lower bound sets Ls1 and Ls2 . Notice that the

locations of these sets show that ηs1 cannot be fathomed but ηs2 can. Clearly, efficient fathoming
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(a) Examples of Ns and Us. (b) η1 cannot be fathomed, but η2 can.

Figure 2.9: Examples of bound sets and fathoming rules.

depends on the choice of Ns used to construct Us since good approximations of UG at each iteration

of BB can aid in fathoming a large number of nodes.

At iteration s of BB, let Fs be the set of all ψ ∈ Ω discovered during iterations 1, . . . , s− 1

of BB. Then at iteration s, the best choice for Ns is the nondominated subset of Fs. Finding this

set can be cumbersome though. Until now, there seem to have been only two approaches used:

Dynamic List: Each time ψ ∈ Ω is found, store it in a list and then remove dominated points and

segments by performing a pairwise comparison between all stored solutions. After completion

of the pairwise comparison the set of stored solutions is precisely Ns and Us can be constructed

as ϑ(Ns). Such lists have been used by Mavrotas and Diakoulaki [63], Vincent et al. [101].

Predetermined subset of ΩP : Before beginning BB, a preprocessing phase is used to generate a

set N ⊂ ΩP and this N is used as the set Ns at every iteration s of BB. Therefore a single set

U = ϑ(N ) is used for fathoming throughout the entire BB. Note that one way to generate N

is to use the ε-constraint method [cf. 27], i.e., solve the MILP

min
x,y

{
c>1 x+ d>1 y : c>2 x+ d>2 y ≤ ε, (x, y) ∈ PI

}
for various values of ε. For each value of ε such that this MILP is feasible, its solution (xε, yε)

belongs to XE and thus corresponds to a point in ΩP . Then N is the union of all Pareto

points found this way. Although this option eliminates the need for updating via pairwise

comparison, its effectiveness is highly dependent on the number of initial points generated

and the ability to solve single objective MILPs very fast. Therefore, there is a clear tradeoff

between computational time versus quality of the upper bound set. This method was used by

Belotti et al. [10].
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2.4.3.1 Setup.

We experimented on the instances from Belotti et al. [10] and Boland et al. [15] and present

results on all instances that took between 10 seconds and 8 hours to solve. The Boland et al. [15]

instances are divided into two types of problems, but during preliminary tests the BB code ran

into numerical issues with the second type and so we did not experiment with them. Each instance

was solved three times – once using our structure in order to generate the upper bound set at each

iteration of the BB, once using a dynamic list in order to generate these sets, and once using a

predetermined subset of ΩP to generate a single upper bound set which was used for fathoming

throughout the BB.

2.4.3.2 Implementation Details.

First we point out that when utilizing the predetermined subset of ΩP , the ε-constraint

method was used to generate M ≤ M∗ points from ΩP before beginning the BB, where M∗ is a

user-selected upper bound on the number of these points that are generated. Notice, though, that

these M points can still be useful in the cases when either our structure or a dynamic list is being

used alongside the BB. By inserting these points into either structure at the start of the BB, the

procedure can be “warm-started,” increasing the frequency and efficiency of fathoming.

Initially we solved several instances using our structure both with and without warm-

starting. However, the results we obtained without warm-starting were very poor, and are therefore

not reported. Notice that warm-starting allows solutions which are “far” from the set of Pareto-

optimal solutions to be discarded early in the BB, and therefore fewer nodes of the BB tree are

explored. As a visual aid, observe Figure 2.10 which shows solutions generated during the BB

procedure when warm-starting is and is not used.

Notice that warm-starting provides M points which are in most cases well dispersed through-

out ΩP . Therefore we attempted an implementation in which these points M were inserted into

our data structure in such a way that BB begins with a perfectly balanced tree. We felt that this

may allow us to turn off the rebalancing procedures and in turn solve each instance more quickly.

However, the results obtained from this implementation did not provide any increased efficiency and

so we report results from the original implementation that uses rebalancing A2.
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(a) Using warm-start with M∗ = 100 (b) Not using warm-start

Figure 2.10: An instance from [10] with 80 variables and 80 constraints.

We solved each instance using various values for M∗, ranging from 10 on small instances to

3000 on large ones. “Good” choices for the value of M∗ seem to be highly dependent on the size

and difficulty of the instance being solved.

2.4.3.3 Numerical Results.

Tables 2.3 and 2.4 present the results of this experiment. The problem sizes in these tables

are reported as the number of variables, which in all cases also equalled the number of constraints.

We use P, T, and L to represent the implementations of the predetermined set of ΩP , our tree

structure, and the dynamic list, respectively. When we refer to a “tree” in these results, we mean

our data structure, not the BB tree. There are 30 instances for each of the two problem sizes in

Belotti et al. [10] and we report geometric averages for them in Table 2.3. For the type I instances

in Boland et al. [15], there are 5 instances available for each problem size. Individual results for each

solved instance are provided in Table 2.4 with geometric averages over the 5 instances displayed in

bold. We were unable to solve the size 320 instances using this BB within 8 hours.

While conducting this experiment we found that the CPU time utilized by each data struc-

ture was significantly less than the total CPU time used during BB. For this reason we decided to

employ the profiler gprof [38] to measure the percentage of total BB time which was spent executing

functions associated with each data structure. These percentages are also presented in Tables 2.3

and 2.4. Note, however, that when averaging these percentages we used the arithmetic average since

some values were measured as zero.
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Table 2.3: Results of Experiment 2 for instances from Belotti et al. [10].

% Time # of BB Nodes # of Final # of Final
Time (s) In Structure Fathomed Inserts Nodes Stored Depth

Size M P T L T L P T L T L T L of Tree

60 10 25.6 17.1 16.8 0.04 0.07 516 342 342 2,191 2,190 75.0 76.3 12.8
25 15.3 13.4 13.2 0.04 0.06 309 271 271 1,421 1,421 75.8 78.4 13.4
50 14.6 13.5 13.4 0.03 0.09 273 254 254 1,246 1,246 76.0 79.6 13.4

80 10 65.8 43.9 43.2 0.01 0.03 705 492 492 2,743 2,743 89.0 90.1 9.6
25 44.1 38.0 37.6 0.01 0.03 488 428 428 2,102 2,102 89.5 91.6 10.1
50 41.2 38.5 38.0 0.01 0.03 430 403 403 1,869 1,869 89.6 93.3 9.7

Each row is an average over 30 instances. Geometric averages are used for all columns except % time in structure.

As it is difficult to know ahead of time what value of M∗ is most appropriate for solving a

given BOMILP, we ran each of these instances for a large number of values for M∗, but for the sake

of space only report results for 3 of these values – small, medium and large.

Table 2.4: Results of Experiment 2 for instances from Boland et al. [15].

% Time # of BB Nodes # of Inserts Final # of Final

Time (s) In Structure Fathomed (×102) (×103) Nodes Stored Depth

Size M P T L T L P T L T L T L of Tree

80 50 163 98 100 0.16 1.86 53 18 18 67 69 1,062 1,061 19
130 86 86 0.15 1.31 27 13 13 120 117 673 694 12
169 113 116 0.14 2.28 54 21 21 64 64 933 954 11
134 97 99 0.22 2.43 40 13 13 58 58 928 947 11
86 76 76 0.06 0.63 36 20 20 47 54 746 759 13

133 93 94 0.14 1.70 41 17 17 68 70 856 872 12

200 41 40 40 0.08 1.12 13 10 10 37 37 1,052 1,104 15
33 33 33 0.18 0.84 9 7 7 38 38 676 720 17
50 51 52 0.13 1.39 16 12 12 27 26 916 992 12
44 42 43 0.13 2.02 13 8 8 36 36 930 990 15
42 41 41 0.04 0.44 17 13 13 30 30 757 799 14

41 41 42 0.11 1.16 13 10 10 34 33 855 909 14

300 34 34 36 0.05 1.44 11 9 9 34 35 1,058 1,132 16
31 32 32 0.15 0.87 8 7 7 42 42 676 718 12
45 44 45 0.00 1.44 14 11 11 24 24 927 1,031 13
41 41 41 0.08 2.32 11 8 8 35 35 938 1,012 13
36 35 36 0.05 0.56 14 12 12 28 28 758 823 11

37 37 38 0.06 1.32 11 9 9 32 32 860 930 12

160 500 8,541 9,663 9,651 0.04 0.32 743 616 616 3,274 3,277 2,794 2,922 52
12,533 14,731 14,651 0.02 0.14 1,541 1,193 1,193 2,806 2,816 2,976 3,079 39
8,188 8,593 8,522 0.03 0.20 1,053 935 936 1,857 1,864 2,725 2,859 17
4,759 5,357 5,327 0.04 0.47 437 363 363 1,319 1,344 6,156 6,310 26
1,723 1,787 1,779 0.03 0.22 196 168 168 572 575 3,043 3,130 23

5,906 6,512 6,480 0.03 0.27 635 530 531 1,667 1,678 3,354 3,476 29

2,000 5,640 6,214 6,164 0.03 0.74 533 509 510 2,484 2,486 2,802 3,280 28
8,146 9,031 9,013 0.02 0.59 1,008 947 947 2,156 2,165 2,994 3,354 30
6,413 6,613 6,569 0.03 0.32 888 861 864 1,449 1,475 2,765 3,214 33
3,238 3,444 3,471 0.04 1.65 341 320 322 958 1,006 6,159 6,783 18
1,326 1,355 1,360 0.03 0.70 149 141 141 461 462 3,083 3,410 13

4,173 4,444 4,439 0.03 0.80 475 451 452 1,279 1,298 3378 3824 23

3,000 5,527 5,989 6,013 0.04 1.14 516 500 500 2,417 2,418 2,796 3,510 24
7,650 8,496 8,540 0.03 0.96 967 921 922 2,090 2,118 2,982 3,519 24
6,191 6,424 6,386 0.03 0.48 870 849 851 1,396 1,423 2,757 3,432 24
3,167 3,345 3,414 0.05 2.39 332 315 316 916 941 6,179 7,110 22
1,298 1,325 1,330 0.04 1.05 144 138 138 449 451 3,089 3,560 28

4,040 4,288 4,311 0.03 1.20 461 443 443 1,238 1,254 3,376 4,038 24

Each row in the table is for a single instance. Times reported in column P do not include the extra time

that is required to find the Pareto set upon termination of a BB using a predetermined subset of ΩP .

As can be seen in Tables 2.3 and 2.4, for low values of M∗ computation time is significantly

reduced when using our structure or the dynamic list in place of the predetermined subset of ΨP .

As M∗ increases, though, the computation time resulting from using the predetermined subset of

ΨP approaches the time resulting from using our tree or the list. In some cases, when M∗ is high

enough or instances are sufficiently large and challenging, the computation time resulting from using

the predetermined subset of ΨP is actually less than the time resulting from using our tree or the
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list. There are two main reasons for this. First, larger values of M∗ result in initial bound sets

which more closely approximate the Pareto set of a given instance. Thus, the additions made to

this set throughout BB by our tree or the list do not aid in fathoming as much as they do for low

values of M∗. The second reason why the computation time when using the predetermined subset

of ΨP is occasionally less than that of our tree or the list is that the difficulty of fathoming in the

BB of Belotti et al. [10] increases significantly as the number of stored integer solutions increases.

Hence, for larger instances more time is spent processing each BB node. We point out, however,

that the Pareto set is not readily available upon termination when BB is implemented using the

predetermined subset of ΩP . Instead, the set of all integer feasible solutions is stored and a post-

processing phase is needed in order to determine the Pareto set. The implementations using our

tree and the list data structure, on the other hand, do have the Pareto set readily available upon

termination. The times reported in column P in Table 2.4 do not include the extra time that is

required to compute the Pareto set upon termination of BB and this additional time can be quite

significant. Thus the marginal advantage in CPU time that a predetermined subset may yield is

effectively neutralized when comparing the total time required to solve a BOMILP instance and

compute its entire Pareto set. Finally, we also note that the number of nodes fathomed from the BB

tree is generally lower when using our structure or the dynamic list as opposed to the predetermined

subset of ΩP . This is because nodes of the BB are being fathomed earlier, or higher, in the tree,

therefore causing fewer nodes to be explored.

When comparing the results of this experiment to those of our first experiment one may

wonder why our tree structure does not significantly outperform the list in all cases. On inspecting

the number of solutions inserted to our structure versus the final number stored, we found that a

value of µ ≈ 100 (see Section 2.4.2.1 and Figure 2.7) could be associated with most of the solved

instances. This value of µ indicates that there is a high level of separation amongst the solutions

generated during BB and therefore a large fraction of generated solutions ends up being dominated

and hence not stored. Thus for BB experiments, there is not a significant difference between our

structure and the list in terms of the time needed to process the data, at least for the sizes of

instances considered in this experiment. Support for this can be found by observing the percentages

of CPU time spent in each data structure as reported in Tables 2.3 and 2.4.
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2.4.4 Experiment 3 – Fathoming in BB of Adelgren and Gupte [1]

To further test the utility of our proposed data structure alongside BB, we performed another

set of tests in which BOMILP instances of BOMILP were solved using the BB algorithm of Adelgren

and Gupte [1]. We chose this BB algorithm mainly because it utilizes a dynamic data structure,

such as a list or our tree, not only for storing found solutions, but also to check for domination of

bound sets and hence, for fathoming a node in the BB tree. Thus this BB algorithm exploits the

data structure proposed in this chapter to the fullest possible extent. In contrast, the BB of Belotti

et al. [10] employs a different set of fathoming rules. A secondary motivation for testing with this

new BB is that, as reported in Adelgren and Gupte [1], it is able to solve larger instances in under

8 hours, including the type 2 instances from Boland et al. [15].

2.4.4.1 Setup.

Each instance was solved twice, once using our structure in order to generate the upper

bound set at each iteration of BB, and once using a dynamic list in order to generate these sets. As

with Experiment 2, the BOMILP instances were taken from Belotti et al. [10] and Boland et al. [15]

and both problem types are included for the latter. The BB of Adelgren and Gupte [1] uses warm

starting by default. However, the user does not need to specify a value for M∗. Instead, an iterative

procedure is used to generate solutions in ΩP . This procedure is terminated when the number of

new solutions in ΩP generated in a given iteration falls below a specified threshold.

2.4.4.2 Numerical Results.

Table 2.5 presents the results of this experiment. The first two rows report averages as

was done in Table 2.3 whereas individual results are given for the Boland et al. [15] instances with

averages reported in bold. Note that all averages in Table 2.5 are reported as geometric means with

the exception of arithmetic means being used for the % time spent in data structure since some of

these values were very close to zero.

There are a few pieces of key information that are important to notice in Table 2.5. First,

recognize that for almost every instance displayed (and especially for large challenging instances)

the percentage of total BB time which was spent maintaining our tree structure is significantly lower

than the percentage of total BB time spent maintaining the list. Note that this is the same pattern
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Table 2.5: Results of Experiment 3.

% Time BB Nodes # of Final # of Final
Instances Time (s) In Structure Explored Insertions Nodes Stored Depth

From Size T L T L T L T L T L of Tree

† 60 5 5 0.01 0.08 46 45 203 204 82 76 6
(averaged) 80 12 12 0.01 0.03 54 53 242 245 103 95 6

‡ 80 10 10 0.33 3.41 187 187 5,168 4,674 1,321 1,160 13
(Type 1) 9 8 0.44 1.67 145 145 3,751 4,150 820 745 10

18 17 0.12 4.91 423 424 7,686 7,776 1,181 1,048 12
9 9 0.36 4.50 173 171 4,536 4,822 1,252 1,041 11
5 5 0.38 1.69 173 171 2,997 2,935 907 826 11

9 9 0.32 3.23 194 195 4,584 4,633 1,077 951 11

160 116 123 0.16 4.13 745 745 18,024 17,779 3,698 3,208 13
174 195 0.11 4.85 720 748 27,340 26,470 4,445 3,915 14
87 92 0.12 4.21 476 486 17,354 17,611 3,044 2,645 13

290 349 0.12 10.21 1,504 1,514 52,384 54,194 7,777 6,696 14
74 78 0.13 3.63 430 431 12,679 13,456 3,252 2,754 13

131 143 0.12 5.40 697 707 22,438 22,712 4,173 3,609 13

320 3,588 4,251 0.05 6.93 3,214 3,464 188,292 198,860 18,128 15,724 16
6,994 9,361 0.04 11.46 5,263 5,405 284,914 286,246 27,848 24,026 17
6,512 8,217 0.04 7.37 5,154 5,703 251,172 219,755 18,531 9,560 16
7,012 8,152 0.04 6.09 5,774 5,981 274,737 281,625 21,643 18,873 27
3,505 4,400 0.06 6.53 3,678 3,874 180,288 187,390 17,968 15,662 25

5,257 6,514 0.04 7.67 4,503 4,771 231,675 231,168 20,519 16,057 19

‡ 800 2 2 0.27 0.00 41 41 314 340 87 79 7
(Type 2) 2 3 0.00 0.00 38 40 355 382 89 95 7

6 5 0.00 0.20 79 79 597 537 136 115 7
8 8 0.13 0.37 122 121 715 756 167 174 8

4 4 0.10 0.14 62 62 467 479 115 110 7

1250 10 10 0.21 0.41 126 125 786 824 201 195 8
26 29 0.04 0.11 301 305 1,893 1,956 237 264 8
26 26 0.12 0.24 252 259 1,569 1,731 319 319 9
39 37 0.03 0.44 290 281 1,887 1,698 399 360 10

23 23 0.10 0.30 229 229 1,448 1,475 279 277 8

2500 179 186 0.04 0.31 615 607 2,006 2,086 452 474 10
364 415 0.02 0.22 1,004 1,036 2,754 2,800 548 536 10
593 664 0.02 0.26 1,279 1,361 3,482 3,457 634 636 12

1,335 1,270 0.01 0.25 2,315 2,377 4,516 4,372 652 678 10

477 505 0.02 0.26 1,162 1,194 3,052 3,065 565 575 10

† – Belotti et al. [10], ‡ – Boland et al. [15].

we observed in experiment 2, and it clearly indicates that as instance size and difficulty increases,

the impact each data structure has on total CPU time will also increase. This is also supported by

the data in Table 2.5. Observe the significant difference in total BB time for the largest instances,

particularly Type 1 instances of size 320 from Boland et al. [15]. For these instances we see that

the tree provides a decrease in total running time of between 10 and 25 percent. Note that there

is one Type 2 instance of size 2500 from Boland et al. [15] in which the list outperformed our tree.

However, even for this group of instances our tree performed better on average. Also note that the

% of BB time used by our tree decreases as the problem size increases whereas the opposite is true

for the list. This indicates that the absolute amount of time used by our tree is far more consistent

than that used by the list. In all, the results of experiment 3 clearly indicate that using our tree

alongside BB is advantageous. Furthermore, the results also indicate that as BB techniques for

BOMILP improve and larger instances are able to be solved, the advantage of using our tree will

continue to grow.
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2.5 Conclusion

In this work we have introduced a new data structure, in the form of a modified binary

tree, that is able to efficiently store sets of nondominated solutions of BOMILPs. Until now similar

structures have only been used in the pure integer case. We provide an extension for the more

difficult mixed-integer case. We showed this structure performs with a worst case guarantee of

O(t2 log t) where t is the number of stored nodes. We tested the practical value of our data structure

with three experiments. The results show that our structure provides a more efficient method for

storing solutions to BOMILP than other prevalent techniques. They also show that our structure is

a very useful tool when used alongside branch-and-bound methods for solving BOMILPs.

Generalizing the ideas proposed in this chapter to the multiobjective mixed integer case

is one line of future research, although we remark that this extension is not immediate because

of the difficulty of doing comparisons and bound dominance in dimensions greater than two. We

also recognize that within the scope of biobjective programming, there may be ways to increase

the efficiency of our data structure, as explained next. Recall that each node of our structure may

store either a point or a line segment. It is possible that in certain cases our structure stores several

segments that all belong to a single piecewise linear curve. Therefore it may be beneficial to extend

the functionality of our structure so that entire piecewise linear curves can be stored in a single

node. Notice that in some cases this may allow for a significant reduction of the size of the tree and

thus allow the structure to be populated and maintained more quickly. The reason that we did not

implement our structure in this fashion is that for the BOMILP solution techniques we are familiar

with, segments are generated one at a time and in general connecting segments are not generated

sequentially. Also, for the specific instances we solved, it was not often that a significant number of

connected line segments generated from the same slice problem were Pareto optimal. Implementing

such refinements to the proposed data structure remains an avenue of future work.
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2.A Appendix A: Detailed results for Experiment 1

Table 2.6: Time and depth of the tree for Experiment 1.

Rebal Time (s) Depth

µ N Type Min Avg Max Min Avg Max

0 104 A0 0.22 0.25 0.33 36 43.8 55
A1 1.77 2.14 3.54 16 16.4 17
A2 0.28 0.35 0.68 16 17.7 20
A3 0.27 0.34 0.60 16 17.1 18
A4 0.27 0.34 0.61 16 17.1 18

L 252 309 438 – – –
105 A0 11.8 13.1 16.3 36 43.8 55

A1 489 623 1,010 19 20.1 21
A2 13.0 18.7 63.5 20 21.4 24
A3 13.1 19.6 70.8 20 20.7 22
A4 13.2 19.6 79.7 20 20.7 22

L – – – – – –
106 A0 374 385 393 57 61.0 65

A1 – – – – – –
A2 351 403 680 22 24.8 27
A3 381 432 698 22 23.0 23
A4 385 435 678 22 23.0 24

L – – – – – –
107 A0 7,316 7,781 9,920 66 93.0 96

A1 – – – – – –
A2 5,804 6,644 8,444 24 28.3 44
A3 6,312 7,322 9,326 24 24.6 26
A4 6,400 7,424 38,709 24 24.6 25

L – – – – – –

0.001 104 A0 0.06 0.06 0.08 24 31.1 42
A1 0.33 0.34 0.40 12 12.2 13
A2 0.08 0.09 0.12 12 13.8 17
A3 0.08 0.09 0.14 12 13.1 14
A4 0.08 0.09 0.14 12 13.1 14

L 2.72 2.83 2.94 – – –
105 A0 1.41 1.65 2.13 26 33.7 44

A1 9.8 11.6 17.9 13 14.0 15
A2 1.56 1.77 2.34 14 17.0 21
A3 1.69 1.97 2.87 14 14.9 16
A4 1.68 1.97 2.89 14 15.0 16

L 205 309 824 – – –
106 A0 36.5 38.6 50.9 35 35.2 54

A1 291 343 641 15 15.9 17
A2 34.9 36.8 46.4 16 21.5 25
A3 38.3 40.5 51.6 16 16.8 18
A4 38.3 40.2 52.0 16 16.8 18

L – – – – – –
107 A0 908 1,016 1,5000 33 43.3 55

A1~ 24,166 25,245 27,624 17 17.7 18
A2 866 935 1,500 21 27.0 33
A3 963 1,031 1,646 18 18.7 20
A4 967 1,038 1,595 18 18.7 20

L – – – – – –
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Table 2.7: (Continuation of Table 2.6.)

Rebal Time (s) Depth

µ N Type Min Avg Max Min Avg Max

0.01 104 A0 0.03 0.03 0.04 14 19.9 37
A1 0.13 0.13 0.14 10 10.3 12
A2 0.04 0.05 0.05 10 11.9 14
A3 0.05 0.05 0.05 11 11.2 12
A4 0.04 0.04 0.05 11 11.2 12

L 0.49 0.50 0.53 – – –
105 A0 0.66 0.69 0.77 18 22.4 34

A1 3.54 3.60 3.86 12 12.1 14
A2 0.74 0.75 0.88 12 15.8 20
A3 0.85 0.88 0.93 12 13.1 14
A4 0.85 0.88 0.93 13 13.1 14

L 30.1 30.7 33.1 – – –
106 A0 14.0 15.7 23.6 21 25.3 37

A1 99.6 117 217 13 14.0 15
A2 14.4 15.5 19.5 15 20.1 24
A3 16.8 18.2 24.9 14 14.9 16
A4 16.8 18.3 24.8 14 14.9 16

L 2,079 2,926 6,602 – – –
107 A0 334 352 403 24 28.1 37

A1 2,935 3,109 3,607 15 15.5 17
A2 332 342 382 20 24.1 30
A3 373 384 438 16 16.5 17
A4 377 386 451 16 16.5 18

L – – – – – –

0.1 104 A0 0.02 0.02 0.02 11 12.7 17
A1 0.06 0.06 0.06 8 8.7 10
A2 0.01 0.01 0.03 8 10.3 13
A3 0.02 0.02 0.02 9 9.4 10
A4 0.01 0.01 0.02 9 9.4 10

L 0.13 0.14 0.15 – – –
105 A0 0.36 0.36 0.38 13 15.3 18

A1 1.38 1.39 1.45 10 10.2 11
A2 0.41 0.41 0.43 11 14.3 18
A3 0.51 0.52 0.53 10 11.2 12
A4 0.51 0.51 0.53 10 11.2 12

L 5.22 5.28 5.37 – – –
106 A0 6.43 6.81 8.55 16 18.1 23

A1 35.7 38.5 54.1 12 12.1 14
A2 6.75 7.03 8.20 14 17.8 21
A3 8.59 8.98 10.7 12 13.1 14
A4 8.56 8.68 10.7 12 13.1 14

L 306 360 856 – – –
107 A0 139 140 144 20 20.9 22

A1 997 1,012 1,086 13 14.0 15
A2 140 141 144 18 21.2 26
A3 168 169 178 14 14.9 16
A4 168 170 176 14 15.0 16
L~ 20,903 24,326 29,097 – – –
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Table 2.8: (Second continuation of Table 2.6.)

Rebal Time (s) Depth

µ N Type Min Avg Max Min Avg Max

1 104 A0 0.02 0.02 0.02 9 11.1 15
A1 0.04 0.04 0.04 7 8.0 9
A2 0.02 0.02 0.02 8 9.2 13
A3 0.02 0.02 0.02 8 8.6 10
A4 0.02 0.02 0.02 8 8.6 10

L 0.09 0.09 0.10 – – –
105 A0 0.24 0.24 0.25 11 12.7 16

A1 0.63 0.63 0.65 8 8.7 10
A2 0.26 0.26 0.27 8 12.2 15
A3 0.33 0.33 0.34 9 9.4 10
A4 0.32 0.32 0.34 9 9.4 10

L 1.42 1.44 1.57 – – –
106 A0 3.63 3.96 4.32 13 15.3 20

A1 13.8 15.7 17.7 10 10.3 12
A2 3.77 4.09 4.44 12 15.0 18
A3 5.21 5.70 6.23 10 11.2 12
A4 5.18 5.72 6.31 10 11.2 12

L 52.7 65.9 81.7 – – –
107 A0 64.2 65.1 77.7 17 17.9 20

A1 357 365 494 12 12.1 14
A2 65.7 66.8 78.2 16 18.2 22
A3 86.1 87.7 104 13 13.1 14
A4 85.7 87.3 106 13 13.1 14

L 1,481 3,229 6,211 – – –

10 104 A0 0.01 0.01 0.02 8 9.9 13
A1 0.03 0.03 0.03 7 7.3 8
A2 0.01 0.02 0.02 7 8.7 13
A3 0.02 0.02 0.02 7 8.0 9
A4 0.02 0.02 0.02 7 8.0 9

L 0.06 0.06 0.07 – – –
105 A0 0.21 0.22 0.25 9 10.8 14

A1 0.40 0.45 0.57 8 8.1 9
A2 0.22 0.23 0.26 8 10.5 13
A3 0.26 0.27 0.31 8 8.8 10
A4 0.25 0.28 0.31 8 8.8 10

L 0.92 1.03 1.17 – – –
106 A0 2.46 2.58 2.91 11 12.6 15

A1 6.39 6.78 8.02 8 8.7 10
A2 2.52 2.66 2.94 10 12.5 16
A3 3.37 3.52 3.93 9 9.5 11
A4 3.31 3.48 3.97 9 9.5 11

L 14.3 15.9 20.0 – – –
107 A0 36.2 36.6 42.8 13 15.1 18

A1 139 141 177 10 10.2 12
A2 37.2 37.6 43.1 13 15.1 19
A3 52.2 52.9 61.7 10 11.1 12
A4 51.7 52.2 62.3 10 11.1 12

L 528 531 561 – – –
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Chapter 3

A Branch-and-Bound Algorithm

for BOMILP

[The contents of this chapter include material from a paper entitled “A branch-and-bound

method for biobjective mixed integer linear programs,” which will be submitted to the journal

Mathematical Programming Computation in August of 2016; the authors are N. Adelgren and A.

Gupte.]

3.1 Introduction

Biobjective mixed integer linear programs (BOMIP) have the following form,

min
x

{
f1(x) := (c1)>x

f2(x) := (c2)>x

}
s.t. x ∈ XI :=

{
x ∈ Rm+ × Zn+ : Ax ≤ b, li ≤ xi ≤ ui

}
.

A BOMIP is considered solved when the set of so-called Pareto optimal points has been discovered;

see [27] for details. Applications of multiobjective programming can be found in a variety of disci-

plines, including engineering, business, and management. Many problems require the use of discrete

quantities, and thus BOMIP is an important class of problems. Exact algorithms for BOMIP are

proposed in [11, 16]; the former is an extension of the standard branch-and-bound (BB) algorithm

for MIPs whereas the latter is a search method in the (f1, f2)-space that recursively solves MIPs.

Additional BB techniques for subclasses of BOMIP are proposed in [71, 90].
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In this work we introduce a branch-and-bound framework for general BOMIP. Our main

body of work is in developing new node processing techniques that account for the challenges of

biobjective problems. We are also first to discuss the extension of a variety of dual presolve techniques

to the multiobjective setting and we provide empirical evidence of the utility of these methods.

Additionally, we show that one of these presolve techniques, probing on integer variables, can also

be used alongside branching in order to develop tighter bounds and reduce the computational effort

needed for BB. Through the use of locally valid cutting planes and the solution of single objective

MIPs, we are able to propose methods for developing tighter dual bounds than have previously been

proposed. We also introduce a new, challenging set of test instances which we develop from classical

single objective instances available in the MIPlib 2010 library. As many of these instances are quite

challenging, we propose the first technique for measuring a “duality gap” for multiobjective BB

which relies on the computation of an approximated version of the well-known Hausdorff distance

between two subsets of R2.

3.2 Preliminaries

3.2.1 Definitions and Notation

The idea of optimality for single objective optimization is replaced with the idea of efficiency

in multiobjective problems. Given distinct x′, x′′ ∈ XI , we say that y′ = f(x′) dominates y′′ = f(x′′)

if f(x′) ≤ f(x′′). We denote this relationship as y′ � y′′. We then say that x ∈ XI is efficient if

there is no x′ ∈ XI such that f(x′) � f(x). The set of efficient solutions is denoted by XE . Let

YI = {y = f(x) ∈ Rp : x ∈ XI}. Then y ∈ YI is called Pareto optimal if its preimage is efficient. YN

denotes the set of Pareto optimal points.

For each k ∈ {1, 2} we also define the set

Y kI := {y ∈ YI : yk = min
x∈XI

{fk(x) : fi(x) ≤ fi(x̂) for all i 6= k, x̂ ∈ XI}} (3.1)

and let ykI denote an arbitrary element of Y kI . Note that for either XI , YI , or Y kI , if we drop the “I”

subscript we are indicating the continuous relaxation of the given set. Also, if we add a subscript

“s”, then it means that the set is associated with node s of the BB tree. We use OS to denote
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the objective space, the smallest rectangle in R2 containing Y . Given S ⊆ OS ⊆ R2, the ideal

point of S, denoted Sideal, is the point y ∈ R2 for which yk = miny∈S{yk} for each k ∈ {1, 2}.

Additionally, we denote the nondominated subset of S as Snd. Throughout this work we also utilize

the set R2
≥ = {y ∈ R2 : y1 ≥ 0, y2 ≥ 0}.

We assume background in branch-and-cut algorithms for single objective problems; see [60]

for a survey. One of the key differences and challenging aspects of BOMIP versus MIP is the concept

of primal and dual bound sets, which we explain next.

3.2.2 Bound sets for BOMIP

In biobjective BB, unlike the single objective case, primal and dual bounds are not scalars

but rather subsets of R2. These bound sets were introduced by [28]. We treat the dual bound set as

a single polyhedron in R2 and the primal bound set as a finite union of polyhedra in R2. Note that

this deviates from the traditional view of bound sets which defines them in terms of the boundary

of these polyhedra. However it is straightforward to see that equivalent fathoming rules exist for

each definition.

Consider any arbitrary node s of the BB tree. We use Ls to denote the locally valid dual

bound set generated from Pareto solutions of the BOLP relaxation at this node; this dual bound

can be calculated as Ls = Ys +R2
≥. Let Ns denote the current nondominated set of solutions in OS

that correspond to some feasible integer solutions in XI ; this set Ns is the nondominated subset of

∪s′∈Ns
(Ys′)I , where Ns is the set of nodes processed prior to s. The globally valid primal bound

generated from the solutions in Ns is Us := Ns + R2
≥. Using these sets, the most basic idea of

fathoming for BOMIP is: node s can be fathomed if Ls ⊆ Us. Figure 3.1 shows an example of these

bound sets. Notice that node s2 can be fathomed but we cannot say anything about fathoming node

s1 since Ls1 * Us.

Recognize that, similar to the single objective case, correct fathoming rules are essential

for any BB algorithm to solve BOMIP to Pareto optimality. However, as can be imagined from

Figure 3.1, fathoming is even more crucial and computationally intensive for BOMIPs since it involves

checking inclusion and intersection of polyhedral sets as opposed to comparing scalar values in the

MIP case. Thus, the majority of the computational effort in multiobjective BB is spent processing

a node s of the BB tree, in particular checking various fathoming rules.
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3.3 Node processing

Processing a node consists of three basic steps: (i) Generate a valid dual bound; (ii) Check a

fathoming rule to determine whether or not s can be eliminated from the search tree; (iii) Optionally,

if s is not fathomed in (ii), generate a tighter dual bound and repeat (ii). Figure 3.2 provides a visual

example of how one might carry out these three steps. Most of the fathoming rules for biobjective BB

are designed to check whether or not Us dominates (Ys)I by exploiting the transitivity of dominance.

First, a set T is generated such that T � (Ys)I . Then if Us � T , Us � (Ys)I and s can be fathomed.

Otherwise, a tighter bound on (Ys)I is needed. The first bound we use is a set of two ideal points

which we obtain by solving three single objective LPs; one for each fk and an one with a weighted

sum objective fλ in which the weights, denoted λs, are given by the normal vector of the line segment

Hs passing through y1
s and y2

s . We begin with these points because it is straightforward to determine

whether or not Us dominates a singleton. In Figure 3.2 these points are labelled “LP ideal points.”

Notice that they are not dominated. Consider the intersection of (Ys)
ideal + R2

≥ and the line with

normal vector λs passing through yλs . Recognize that this intersection, which we denote Hλ
s , is also

a valid dual bound. In Figure 3.2 the resulting line segment is labelled “LP ideal segment,” but is

not dominated. A tighter bound can next be found by explicitly generating Ls. In Figure 3.2 this is

the set indicated by the red points, which is again not dominated. After generating Ls, one cannot

hope to find a tighter bound on (Ys)I resulting from LP solutions. Instead, one can solve single

objective MIPs to generate elements of (Ys)I and use these elements to form a valid dual bound. We

first generate ideal points in the same way as before, but use single objective MIPs rather than LPs.
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In Figure 3.2 these points are labelled “MIP ideal points.” Yet again they are not dominated. We

can then consider the intersection of ((Ys)I)
ideal + R2

≥ and the line with normal vector λs passing

through (yλs )I , which we denote H̃λ
s . This intersection forms another valid dual bound. In Figure

3.2 the resulting line segment is labelled “MIP ideal segment” and is dominated. Hence, s can be

fathomed in this example.

We now formally introduce a proposition outlining the fathoming rules we employ in this

work. For use in this proposition, we introduce some additional notation. For each k ∈ {1, 2}, define

Pks :=
(
∪i6=kỹis

)
∪ ỹλs . (3.2)

Then let

Ps := (P1
s )ideal ∪ (P2

s )ideal. (3.3)

Additionally, given any I ⊂ {1, 2, λ}, define

DIs := ∪2
k=1

((
Pks \ {∪i∈I yis}

)
∪ {∪i∈I\{k} (yis)I}

)ideal
. (3.4)

Recognize that Ps represents the sets of ideal points obtained from LP solutions, while and DIs

represents a set of ideal points obtained from a mixture of LP and MIP solutions.

Proposition 3.1 (Fathoming Rules). Node s can be fathomed if:

0. Ls ⊂ (Ys)I

1a. (Us � Ps)

2a.
(
Us � Hλ

s

)
1b. (Us � DIs for some I ⊂ {1, 2, λ})

2b. (Us � H̃λ
s ).

3. Ls ⊆ Us

Proof.

Rule 0: The result is trivial since Ls is integer feasible.

Rule 1a: The result is trivial since by construction Ps � Ls and so Us � Ls.

Rule 2a: The result is trivial since by construction H̃λ
s � Ls and so Us � Ls.
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Rule 1b: By construction, for any I ⊂ {1, 2, λ}, DIs dominates every (ys)I ∈ (Ys)I and thus DIs is

a valid dual bound at node s. The desired result follows.

Rule 2b: By construction Hλ
s dominates every (ys)I ∈ (Ys)I and thus Hλ

s is a valid dual bound at

node s. The desired result follows.

Rule 3: The result is trivial.

Proposition 3.1 outlines five fathoming rules. Rule 0 expresses the idea of fathoming due to

optimality, while the remainder of the rules indicate situations in which s can be fathomed due to

bound dominance.

Before we outline the process we use for processing a node s, we briefly discuss another

important task that ought to be carried out while processing node s: Updating Ns. We do this in

two ways: (i) add each integer-feasible line segment discovered while checking Fathoming Rule 0 to

Ns, and (ii) for each discovered x∗ ∈ XI , generate the nondominated subset of

Y(x∗) := {y = f(x) : x ∈ X,xi = x∗i for all i ∈ {m+ 1, . . . ,m+ n}} (3.5)

and add each defining line segment of this set to Ns. Consider the latter of these strategies. Observe

that the feasible set of Y(x∗) can be interpreted as a leaf node of the BB tree, which we denote

s(x∗). Hence, the Y(x∗)+R2
≥ = Ls(x∗). This leads to a need for generating the nondominated subset

of Ls, i.e. Lnds . Typical techniques for generating Lnds include the multiobjective simplex method

and the parametric simplex algorithm (PSA) [27]. However, the multiobjective simplex method is

far more robust than is necessary for biobjective problems. Also, we found in practice that using

the PSA often resulted in many basis changes yielding the same extreme point of Ls in OS. Since

much work is done during the PSA to determine the entering and exiting variables, we found that

generating Lnds using the PSA required a significant amount of computational effort. We decided to

use an alternative method for generating Lnds which relies on sensitivity analysis. We first solve the

single objective LP using objective f2 to obtain y2
s . Next we create the LP

Ps(α) := min{f1(x) + αf2(x) : x ∈ Xs} (3.6)

and then carry out the procedure outlined in Algorithm 3.1.

In lines 3 and 4 of Algorithm 3.1 we compute the south-east and north-west most extreme

points of Lnds , respectively. The while loop beginning on line 5 is then used to sequentially compute
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Algorithm 3.1 Generate Lnds
Input: Node s.

Output: A set B containing all defining line segments of Lnds .

1: function GenerateDualBd(s)
2: Set B = ∅.
3: Solve the LP min{f2(x) : x ∈ Xs} to obtain y2

s .
4: Solve Ps(0) to obtain solution x∗ and set y = f(x∗).
5: while y 6= y2

s do
6: Use sensitivity analysis to obtain an interval [α′, α′′] such that x∗ is optimal to Ps(α) for

all α ∈ [α′, α′′].
7: Set x∗ = argmin{Ps(α

′′ + ε)} for sufficiently small ε > 0.
8: if f(x∗) 6= y then
9: Add the line segment connecting f(x∗) and y to B. Update y to be f(x∗).

10: Return B.

adjacent extreme points of Lnds in a west to east pattern, until the south-east most extreme point is

rediscovered. Each line segment joining a pair of adjacent extreme points of Lnds is stored and the

set of all computed segments is returned at the end of the procedure.

Recognize from Proposition 3.1 that Fathoming Rules 0 and 3 each impose a condition on

Ls and therefore require knowledge of Lnds in order to be employed. We note, however, that for

each of these rules it is often unnecessary to generate Lnds entirely. In particular, the generation

of Lnds should cease if: (i) one is checking Fathoming Rule 0 and a defining line segment of Lnds is

generated that is not integer feasible, or (ii) one is checking Fathoming Rule 3 and a defining line

segment of Lnds is generated that is not contained in Us. Hence, the procedures in Algorithm 3.1 can

be modified in order to develop strategies for checking Fathoming Rules 0 and 3. These strategies

are outlined in Algorithms 3.2 and 3.3, respectively.

Algorithm 3.2 follows almost the same procedure as Algorithm 3.1, except it terminates

prematurely on line 10 if a line segment is computed that is not integer feasible. Algorithm 3.3 also

follows almost the same procedure as Algorithm 3.1. However, this procedure terminates prematurely

on line 5 or 12 if a point or line segment is computed that is not dominated by Us. We have now

built the tools necessary to present our proposed procedure for processing a node s. We do so in

Algorithm 3.4.

Line 2 of Algorithm 3.4 is an optional procedure in which we can generate locally valid

cutting planes to strengthen the representation of Xs if so desired. We then compute y1
s and y2

s

on line 3. We then check to see if either of these solutions are integer feasible, and if they are, we

generate the dual bound associated with the integer solution in order to update Ns. Furthermore,

59



Algorithm 3.2 Fathoming Rule 0
Input: Node s and solutions y1

s and y2
s .

Output: 1 if node s should be fathomed, 0 otherwise.

1: function FR 0(s, y1
s , y

2
s)

2: y1
s is the solution to Ps(0). Let x∗ represent the preimage of y1

s . Set y = y1
s .

3: if y = y2
s then return 1

4: else
5: while y 6= y2

s do
6: Use sensitivity analysis to obtain an interval [α′, α′′] such that x∗ is optimal to Ps(α)

for all α ∈ [α′, α′′].
7: Update x∗ to be the solution of Ps(α

′′ + ε) for an arbitrarily small ε > 0.
8: if f(x∗) 6= y then
9: Let S represent the line segment connecting f(x∗) and y.

10: if S 6⊂ (Ys)I then return 0
11: else Update y to be f(x∗).

12: return 1

Algorithm 3.3 Fathoming Rule 3
Input: Node s and solutions y1

s and y2
s .

Output: 1 if node s should be fathomed, 0 otherwise.

1: function FR 3(s, y1
s , y

2
s)

2: y1
s is the solution to Ps(0). Let x∗ represent the preimage of y1

s . Set y = y1
s .

3: if y = y2
s then

4: if Us � y then return 1
5: else return 0
6: else
7: while y 6= y2

s do
8: Use sensitivity analysis to obtain an interval [α′, α′′] such that x∗ is optimal to Ps(α)

for all α ∈ [α′, α′′].
9: Update x∗ to be the solution of Ps(α

′′ + ε) for an arbitrarily small ε > 0.
10: if f(x∗) 6= y then
11: Let S represent the line segment connecting f(x∗) and y.
12: if Us 6� S then return 0
13: else Update y to be f(x∗).

14: return 1

if both solutions are integer feasible, we check Fathoming Rule 0 on line 6. On line 7 we compute

the value λs, the value of the weights on the objectives so that the level curves of fλ have the same

slope as the line segment joining y1
s and y2

s . We then solve the LP associated with fλ. If the solution

is integer feasible, we again update Ns as before. On line 9 we check whether or not y1
s , y

2
s and yλs

are dominated by Us. If they are, we proceed to check Fathoming Rules 1a, 2a, and 3. Otherwise,

we solve the MIP associated with fλ and fk for each k ∈ {1, 2} such that the ideal point (Pks )ideal

is not dominated by Us. On lines 21 and 22 we utilize the solutions of each MIP to (optionally) add

local cuts to Xs and update Ns. Finally, we check Fathoming Rules 1b and 2b.
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Algorithm 3.4 Process node s

1: function ProcessNode(s)
2: Compute valid cutting planes for (Xs)I and add them to the description of Xs.
3: for k ∈ {1, 2} do Solve min{fk(x) : x ∈ Xs} to find optimal solution x̄k and generate
yks ∈ Y ks .

4: if yks ∈ (Ys)I then let N = GenerateDualBd(s(x̄k)) and set Ns = (Ns ∪N)nd.

5: if y1
s , y

2
s ∈ (Ys)I then

6: if FR 0(s, y1
s , y

2
s) = 1 then Fathom s, STOP! (Fathoming Rule 0)

7: Calculate Hs and λs using y1
s and y2

s . Solve min{fλ(x) : x ∈ Xs} to find optimal solution x̄λ

and generate yλs ∈ Y λs .
8: if yλs ∈ (Ys)I then let N = GenerateDualBd(s(x̄λ)) and set Ns = (Ns ∪N)nd.

9: if Us � y1
s , Us � y2

s and Us � yλs then
10: if Us � Ps then Fathom s, STOP! (Fathoming Rule 1a)
11: else
12: Calculate H̃λ

s .
13: if Us � H̃λ

s then Fathom s, STOP! (Fathoming Rule 2a)
14: else
15: if FR 3(s, y1

s , y
2
s) = 1 then Fathom s, STOP! (Fathoming Rule 3)

16: else
17: Define the set I = ∅.
18: for k ∈ {1, 2} do
19: if Us 6� (Pks )ideal then add ({1, 2} \ {k}) ∪ {λ} to I
20: for each k ∈ I do solve the MIP min{fk(x) : x ∈ (Xs)I} to find optimal solution x̂k and

obtain (yks )I ∈ (Y ks )I .
21: Add a local cut to Xs which lies on the level curve of fk associated with the best

found dual solution.
22: Let N = GenerateDualBd(s(x̂k)) and set Ns = (Ns ∪N)nd.

23: if Us � DIs then Fathom s, STOP! (Fathoming Rule 1b)
24: else if λ ∈ I then
25: Calculate Hλ

s .
26: if Us � Hλ

s then Fathom s, STOP! (Fathoming Rule 2b)

We now proceed to Section 3.4 in which we discuss the extension of the remaining major

aspects of single objective BB to the biobjective setting.

3.4 Biobjective BB

In this section we discuss the specifics of how the different components of single objective BB

– presolve/preprocessing, node processing, and branching, can each be extended to the biobjective

setting. We then briefly discuss optional additions to our basic biobjective BB procedure.
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3.4.1 Presolve/Preprocessing

It has been shown in a variety of works that examining the structure of an instance of single

objective MIP prior to solving it, and utilizing information found during this examination to simplify

the structure of the instance often has a significant impact on the time and effort needed to solve

that instance. It has also been shown that knowledge of feasible solutions for an instance of MIP

can have quite an impact on solution time. Hence, it makes sense to extend the techniques used in

these procedures to the biobjective case. For the discussion that follows we distinguish the idea of

simplifying an instance of BOMIP based on its problem structure from the idea of determining a set

of initial integer-feasible solutions. We refer to the first as presolve and the latter as preprocessing.

We propose a procedure which is carried out in three phases: (i) Presolve phase 1, (ii) Preprocessing

and (iii) Probing on variables.

3.4.1.1 Presolve Phase 1

When presolve techniques are utilized for single objective MIP, both primal and dual in-

formation is used. Fortunately, the primal information of a BOMIP instance is no different than

its single objective counterpart and thus primal presolve techniques can be applied directly to it.

However, due to the presence of an additional objectives, one must take more care in order to utilize

dual information when employing a biobjective presolve strategy.

We extend a few single objective presolve techniques to the multiobjective case (though

we implement them for the biobjective case); in particular, we discuss duality fixing [60] and the

exploitation of singleton and dominating columns [33]. The ideas are straightforward generalizations

of what is already known for MIPs. In the following discussion the element of matrix A in row r

and column j is denoted by arj .

Proposition 3.2 (Duality fixing). Suppose there exists a column j with ckj ≥ 0 and aij ≥ 0 for all

k, i. If `j > −∞, then XE ⊆ {x : xj = `j}. Similarly, if there exists a column j with ckj ≤ 0 and

aij ≤ 0 for all k, i, then XE ⊆ {x : xj = uj} assuming uj <∞.

Proof. It is well known (see Theorem 4.5 of [27]) that x∗ is efficient for the given BOMIP if and only

if there exists ε such that x∗ is optimal to the problem:

min
x
{f1(x)} s.t. {x ∈ XI : fk(x) ≤ εk for all k 6= 1} (3.7)
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Hence, every efficient solution to the given BOMIP can be obtained by solving (3.7) for some ε.

Recognize that if the conditions given in this proposition hold, then single objective duality fixing

can be applied to (3.7). This shows that every efficient solution to the given BOMIP can be obtained

by solving the modified version of (3.7) in which variable fixing has been performed.

Proposition 3.3 (Singleton Columns). For every row r in the system Ax ≤ b, define J(r) := {j ∈

{1, . . . ,m} : arj > 0, ckj < 0 ∀k, aij = 0 ∀i 6= r} and Ur :=
∑
j∈J(r) arj`j +

∑
j 6∈J(r),arj>0 arjuj +∑

j 6∈J(r),arj<0 arj`j . Suppose there exists some s ∈ J(r) such that cks/ars ≤ ckγ/arγ for all γ ∈

J(r) \ {s}. If ars(us − `s) ≤ br − Ur then XE ⊆ {x : xs = us}.

Proof. Note that much of this proof is taken directly from the proof of Theorem 1 in [33]. Let x be

an efficient solution with xs < us. If xj = `j for all j ∈ J(r)\{s}, then a new solution x′ constructed

from x by setting x′s to us is feasible because

∑
j

arjx
′
j =

∑
j 6=s

arjx
′
j + arsus ≤ Ũr + ars(us − `s) ≤ br.

Additionally, the value of every objective function improves because cks < 0 for all k. This contradicts

our assumption of x being efficient. Hence, there exists a j ∈ J(r) \ {s} with xj > `j . In this case

we can construct a new solution x∗ from x by decreasing the value of xj to x′j while at the same

time increasing the value of xs so that Ar•x
∗ = Ar•x. In particular, ars(x

∗
s − xs) = arj(xj − x∗j )

holds. The change of objective k can be estimated by

cksx
∗
s + ckjx

∗
j = cksxs + ckjxj + cks(x∗s − xs)− ckj (xj − x∗j )

= cksxs + ckjxj + cks
ars
ars

(x∗s − xs)− ckj
arj
arj

(xj − x∗j )

≤ cksxs + ckjxj + cks
ars
ars

(x∗s − xs)− cks
arj
ars

(xj − x∗j )

= cksxs + ckjxj +
cks
ars

(
ars(x

∗
s − xs)− arj(xj − x∗j )

)
= cksxs + ckjxj .

If x∗s = us, the result of the proposition holds. Otherwise, x∗j = `j holds. Applying this

argument iteratively results in an optimal solution with x∗s = us or x∗j = j for all j ∈ J(r) \ {s}.

But as shown before, the latter case contradicts the efficiency of x∗.
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Note that a similar procedure can be followed for the case in which arj < 0 and ckj > 0 for

all k. Now, given two variables xi and xj , either both integer or both continuous, we say that xj

dominates xi if (i) ckj ≤ cki for all k, and (ii) arj ≤ ari for every r. Note that this variable domination

has no relationship with the idea of domination between bound sets. Observe the following lemma,

which is an obvious extension from Lemma 1 of [33].

Lemma 3.4. Let x be a feasible solution for an instance of BOMIP and xj � xi. Given 0 < α ∈ R,

we define x∗ so that

x∗γ =


xγ + α γ = i

xγ − α γ = j

xγ otherwise.

If x∗j = xj + α ≤ uj and x∗i = xi − α ≥ `i, then x∗ is feasible and fk(x∗) ≤ fk(x) for all k.

Proposition 3.5 (Dominating columns). Suppose that xj dominates xi in the BOMIP. Then XE ⊆

{x : xj = uj} ∪ {x : xi = li}.

Proof. Again, much of this proof is taken directly from [33]. Let x be an efficient solution such that

xj < uj and xi > `i. We construct a feasible solution x∗ by defining α = min{xi − `i, uj − xj}

and applying Lemma 3.4. Since x is efficient and fk(x∗) ≤ fk(x) for all k, x∗ is also efficient. By

definition of α, we also have x∗j = uj or x∗i = `i.

Note that one may use the disjunction resulting from Proposition 3.5 to generate valid

cutting planes for XI prior to the start of BB. Additionally, there are also ways to further utilize the

structure of dominating columns in order to strengthen variable bounds as described in [33, Theorem

3, Corollary 1 and 2]. These methods for strengthening bounds also extend to the multiobjective

case. However, we did not find these methods to be advantageous in practice. Thus, since the

description of these additional strategies is quite lengthy, we omit them from this work.

3.4.1.2 Preprocessing

As in the single objective case, the efficiency of BB can be significantly improved if quality

solutions can be generated prior to the start of BB. For biobjective problems, this can be accom-

plished by either (i) using a heuristic method such as that of Soylu [86], or (ii) solving a series of

single objective MIPs obtained through the use of a scalarizing technique such as the weighted-sum

or ε-constraint method [27].
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We utilize two different Preprocessing techiniques. Both techniques solve single objective

MIPs, subject to a certain time limitation; the first using the ε-constraint method, and the second

using the weighted-sum approach. We now discuss the various benefits and drawbacks of using either

the ε-constraint or weighted-sum approaches.

ε-constraint: It is well known that for a BOMIP every y ∈ YN can be obtained using the ε-

constraint method. Unfortunately though, when a MIP formulated using the ε-constraint method is

not solved to optimality, there are two major drawbacks: (i) each y ∈ YI discovered while processing

the MIP must lie within a restricted region of OS, and (ii) the information associated with the best

dual bound cannot be utilized.

weighted-sum: The major drawback of the weighted sum method is that when a MIP is formu-

lated using this method, only supported Pareto solutions can be found, i.e., those lying on the convex

hull of YN . There are, however, the following two benefits: (i) y ∈ YI discovered during the MIP

solve are not restricted to any particular region of OS, and (ii) the best dual bound is valid for all

y ∈ YI and can therefore be used to create a cutting plane in OS.

As can be seen, there is a certain level of trade-off present between the ε-constraint method

and the weighted sum method. The pros and cons of each technique are illustrated in Figures 3.3a

and 3.3b. For each of these figures, we have the following: (i) YN , which we assume to be unknown,

is shown in grey, (ii) the optimal solution, which we assume is not known at termination of the MIP

solve, is depicted as a yellow star, (iii) the best known solution at termination is shown as a blue

square, and (iv) the level curve associated with the best known dual bound at termination is shown

as a dotted red line. Note that for Figure 3.3a, we assume that ε is defined so that the feasible region

is restricted to the light blue box.

We now present Algorithms 3.5 and 3.6 in which we describe our proposed ε-constraint

and weighted sum based preprocessing procedures. On line 3 of Algorithm 3.5 we solve the MIP

associated with fλ. Recall that λ is computed so that the level curves of fλ have the same slope as the

line segment joining y1
I and y2

I . On line 5 we then use the solution of this MIP to compute horizontal

and vertical step sizes, h1 and h2. These step sizes are then used to sequentially increase the values

of ε1 and ε2 which are used on line 7 to construct new MIPs, using the ε-constraint problem, which

may yield new, undiscovered Pareto solutions. On lines 8 and 9 we modify the step sizes h1 and

h2. If the MIP solved on line 7 yields a new, previously undiscovered Pareto solution, we decrease
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(a) ε-constraint method (b) Weighted sum method

Figure 3.3: Bound information when a single objective MIP terminates early

Algorithm 3.5 Preprocessing based on the ε-constraint method.
Input: y1

I , y2
I and a nonnegative value for parameter ρ.

Output: An initialized set of Pareto solutions N0 ⊆ YN .

1: function PreprocessingMethod1(y1
I , y

2
I , ρ)

2: Let N0 = ∅.
3: Solve the MIP min{fλ(x) : x ∈ XI} to obtain yλI ∈ YI .
4: Add a cutting plane to X which lies on the level curve of fλ associated with the best found

dual solution.
5: Set h1 =

(y2
I )1−(yλI )1

60 , ε1 = (yλI )1 + h1, h2 =
(y1
I )2−(yλI )2

60 and ε2 = (yλI )2 + h2.
6: for k ∈ {1, 2} do
7: while εk > (ykI )k do solve the MIP Pk(εk) := min{f{1,2}\{k}(x) : x ∈ XI , fk(x) ≤ εk} to

obtain y∗ ∈ YN .
8: if N0 6� y∗ then set hk = hk

1+ρ .

9: else set hk = max(5− ρ, 1)hk.

10: for each x ∈ XI found while solving Pk(εk) do let N = GenerateDualBd(s(x))
and set N0 = (N0 ∪N)nd.

11: Set εk = εk + hk.

12: Return N0.

the step size. Otherwise we increase it. This allows us the continue searching for additional new

solutions in locations of OS which are near previously discovered solutions, and to cease searching

in areas in which new solutions are not being generated. Note that the amount in which the step

sizes are increased or decreased depends on the value of the parameter ρ. Also note that each time

we solve a MIP, we utilize its solution to update Ns.

In Algorithm 3.6 we compute several sets of weights which we utilize in the weighted-sum

approach to generate Pareto solutions. We initialize the set of weights Λ on line 3 with the weight

λ for which the level curves of fλ have the same slope as the line segment joining y1
I and y2

I . We

use σ to represent the number of weights for which MIPs will be solved in a given iteration. We

deem an iteration successful if at least a fifth of the solved MIPs reveal previously undiscovered

66



Algorithm 3.6 Preprocessing based on the weighted-sum method.
Input: A nonnegative value for parameter ρ.
Output: An initialized set of Pareto solutions N0 ⊆ YN .

1: function PreprocessingMethod2(ρ)
2: Let N0 = ∅.
3: Set Λ = {λ}, Λ′ = {0, 1} and t = 0.
4: while t ≤ ρ do
5: Set τ = 0 and σ = |Λ|.
6: for λ′ ∈ Λ do remove λ′ from Λ and add it to Λ′. (Assume Λ′ is always sorted in

increasing order.)
7: Solve the MIP P (λ′) := min{fλ′(x) : x ∈ XI} to obtain yλ

′ ∈ YI .
8: Add a cutting plane to X which lies on the level curve of fλ′ associated with the best

found dual solution.
9: if N0 6� yλ

′
then set τ = τ + 1.

10: for each x ∈ XI found while solving P (λ′) do let N = GenerateDualBd(s(x)) and
set N0 = (N0 ∪N)nd.

11: for each adjacent pair (λ1, λ2) ∈ Λ′ do add λ1+λ2

2 to Λ.

12: if τ < σ
5 then set t = t+ 1.

13: Return N0.

Pareto solutions. We use τ to count the number of unsuccessful iterations. On line 11 we increase

the number of weights that will be used in the next iteration by computing the next set of weights

so that it contains the midpoint of each pair of adjacent weights in the set Λ′, which is the set of

previously used weights together with 0 and 1. The process then terminates when the number of

unsuccessful iterations exceeds the value of the parameter ρ. As we did with Algorithm 3.5, we also

utilize the solution of each MIP we solve in this procedure to update Ns.

3.4.1.3 Probing

After Preprocessing, a probing technique can be used to strengthen the bounds on each

integer variable, as stated below.

Proposition 3.6 (Probing on xi). Let xi be an integer variable. Fix xi = li and solve the BOLP

relaxation. Let Lli be the Pareto set of this MOLP. If U0 � Lli then XE ⊆ {x : xi ≥ li + 1}.

Proof. Recognize that Lli dominates every yI ∈ YI for which yI = f(x) and xi = li. The desired

result follows since U0 � Lli .

This procedure can be repeated multiple times for a given integer xi and then iterated over

each additional integer variable xj . Furthermore, a similar procedure to that of Proposition 3.6 exists
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for tightening the upper bound. We point out that there are likely many more tasks that could be

performed during Presolve and/or Preprocessing that could further impact the performance of BB.

However, our goal here is not to develop extensive procedures for these tasks, but to put together

an initial implementation that highlights some of what can be done.

3.4.2 Additional Notes on Node processing

Recall that we discussed the major aspects of node processing in Section 3.3. Here we

discuss a few additional, though non-essential, tasks that we perform while processing a node.

3.4.2.1 Objective Space Fathoming

After processing a node, we perform an additional type of fathoming which we refer to as

objective-space fathoming. After updating Ns, we impose bounds on f1 and f2 which “cut off”

portions of OS in which we have found that Us � (Ys)I . In some cases the remaining subset of OS

consists of disjoint regions. When this occurs, we implement objective-space fathoming by branching

on f1 and f2 bounds which generate the desired disjunctions in OS. In these cases, objective-space

fathoming resembles the “Pareto branching” of [90] and “objective branching” of [71].

3.4.2.2 Bound Tightening

In order to increase the likelihood of fathoming, we utilize a few different strategies for

tightening the bound Ls. The first strategy we use is the generation of locally valid cutting planes.

We do this in two ways: (i) we generate discjuntive cuts based on disjunctions observed in OS when

performing OS fathoming, and (ii) we convert the BOLP relaxation associated with s to a BOMIP,

allow CPLEX to process its root node, and add all cuts generated by CPLEX for this BOMIP to s

as local cuts.

It is widely accepted that for single objective MIPs, locally valid cutting planes are not

particularly helpful for improving the performance of BB. However, locally valid cutting planes can

have a significantly greater impact on BOMIPs. To see this, observe Figure 3.4. Assume that

Figure 3.4a displays an instance of BOMIP for which the (f1, f2)-space and the X-space are one and

the same, i.e., this instance contains only two variables y1 and y2, both integer, and f1 = y1 and

f2 = y2. The constraints of this instance yield the blue polytope, and the integer lattice is indicated

by the black dots. The red dots represent the Pareto-optimal solutions. Suppose that branching is
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performed as shown in Figure 3.4b. Notice that all Pareto optimal solutions in the left branch can

be revealed by a single locally valid cutting plane, as shown by the red dashed line in Figure 3.4c.

Also notice that this could never be accomplished through the use of globally valid cuts.

(a) Example instance of BOMIP (b) After branching (c) Locally valid cut

Figure 3.4: An example showing the usefulness of locally valid cuts for BOMIP

3.4.3 Branching

In general, any rule for selecting a branching variable is permissible. However, it should

be noted that for BOMIP several y ∈ Y , and consequently several x ∈ X, may be discovered

while processing a node s. In fact, our implementation requires solving at least three LPs at each

node. Since the variables may take on different values at each solution, it is possible that an integer

variable takes a fractional value at some of these solutions and not at others. Because of this, we

use a scoring scheme for branching in which each integer variable is given a score. Of the variables

with the highest score, the one with the highest index is selected for branching. The score of xi is

increased if: (i) xi is fractional at the LP solution associated with objective fk, k ∈ {1, 2, λs}, (ii) xi

changes value at a pivoting step of Algorithm 3.2, or (iii) multiple single objective MIPs are solved

to optimality at s and xi takes different values for at least two of the MIP solutions.

After a branching decision has been made we utilize probing, as introduced in Proposition

3.6, to strengthen bounds on each variable for both of the resulting subproblems. We do this for

several reasons: (i) we may find during this process that our branching decision results in an infeasible

subproblem, in which case we can discard the infeasible subproblem, enforce that the variable bounds

associated with the feasible subproblem be satisfied at any child node of s, and choose a new

branching variable; (ii) because much work in biobjective BB is dedicated to fathoming, we want

to generate the strongest dual bound possible, which probing helps us to do; (iii) since processing
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a node in biobjective BB is an expensive operation, we seek to limit the number of nodes explored

and probing aids in this endeavor by reducing the number of possible future branching decisions.

We found during testing that this probing scheme at each node was extremely powerful, both in

reducing the number of nodes processed during BB as well as overall running time. See Table 3.1

in Section 3.5 for evidence of this.

3.4.4 Additional Improvements

3.4.4.1 Exploiting gaps in OS

Due to the noncontinuous, nonconvex nature of the Pareto set of a BOMIP, there are

occasionally large gaps between Pareto solutions in OS. If this occurs, the likelihood that Ls ⊆ Us

is significantly decreased for each node. Hence, this can result in an extreme amount of computational

effort which yields no additional Pareto solutions. One way to combat this issue is to observe the

solutions obtained during Preprocessing and record locations in OS where large gaps exist between

discovered solutions. One can then split OS into a series of subregions based on the locations of these

gaps and solve single objective MIPs (using objectives f1 and f2) within each subregion in order

to remove locations containing no Pareto solutions. Afterwards BB can be run in each subregion

rather than over the entire OS. To aid in understanding this idea, observe Figure 3.5. Here Pareto

solutions are shown in blue and subregions in OS are indicated by green dashed lines.

(a) Gaps (b) Slitting OS (c) Reducing the subregions

Figure 3.5: Large gaps between solutions in OS

3.4.4.2 Measuring Performance

In single objective BB one can terminate the procedure at any time and obtain a measure

of the quality of the best known solution in terms of the gap between this solution and the best
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known dual bound. We propose a similar scheme for biobjective BB. Let Os∗ represent the set

of open nodes after a node s∗ has been processed. After processing s∗ the global dual bound,

denoted DBs∗ , is the nondominated subset of (∪s∈Os∗Ls). Therefore, if BB is terminated after s∗ is

processed, the performance of BB can be quantified by measuring the distance between DBs∗ and

Us∗ . A natural metric to use for measuring this distance is the Hausdorff metric: dH(DBs∗ ,Us∗) :=

max{supi∈DBs∗ infj∈Us∗ d(i, j), supj∈Us∗ infi∈DBs∗ d(i, j)}. Unfortunately the nonconvex nature of

Us makes the Hausdorff metric difficult to use since it cannot be computed using a linear program.

In our implementation Us∗ is stored as the individual line segments and singletons comprising Ns∗

using the data structure of [3]. DBs∗ is computed by generating the points and line segments

comprising its nondominated subset, which are also stored using the data structure of [3]. Thus,

rather than explicitly computing dH(DBs∗ ,Us∗), we instead compute

Gs∗ := max{dH(DBs∗ ,S + R2
≥) : S ∈ Ns∗} (3.8)

via pairwise comparison of the points and line segments comprising DBs∗ and Ns∗ . Note, though,

that Gs∗ is a clear upper bound on dH(DBs∗ ,Us∗). Recognize, though, that Gs∗ is an absolute

measurement and so it is difficult to use to compare the performance of BB on multiple instances

of BOMIP. Thus, in practice we use a percentage calculated as

Gs∗ := 100

∣∣max{y2
1 − y1

1 , y
1
2 − y2

2} − Gs∗
∣∣

max{y2
1 − y1

1 , y
1
2 − y2

2}
. (3.9)

3.4.5 The BB Algorithm for BOMIP

We now provide Algorithm 3.7 which contains an outline of the BB procedure we propose

for BOMIP. In the next section we conduct a set of computational experiments designed to test the

practical performance of the presented BB scheme.

3.5 Experimental Results

We implemented our BB scheme using the C programming language and the CPLEX op-

timization package (version 12.6 [45]). Boland et al. [16] graciously shared their code with us and

so we were able to compare the performance of our BB with the triangle splitting method, which
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Algorithm 3.7 Perform BB to obtain the Pareto set of an instance of BOMIP.
Input: An instance I of BOMIP.
Output: The Pareto set of instance I.

1: function BBsolve(I)
2: Set L = ∅.
3: Simplify I by performing standard primal presolve and biobjective duality fixing and ex-

ploitation of singleton and dominating columns.
4: for k ∈ {1, 2} do solve the MIP min{fk(x) : x ∈ XI} to obtain ykI ∈ YI .
5: Select ρ ≥ 0 and run either PreprocessingMethod1(y1

I , y
2
I , ρ) or Preprocessing-

Method2(y1
I , y

2
I , ρ) to return N0.

6: Perform probing to further simplify the structure of I.
7: Add the continuous relaxation of I to L .
8: while L 6= ∅ do select s from L .
9: Run ProcessNode(s).

10: if s is not fathomed then perform OS fathoming.
11: if the remaining nondominated portion ofOS consists of disjoint regions then perform

Pareto branching on an OS disjunction. Add the resulting subproblems to L .
12: else select the variable with highest score for branching.
13: Perform probing to simplify the structure of each of the subproblems resulting

from the current branching decision.
14: if probing reveals an infeasible subproblem then impose the restrictions of the

feasible subproblem and select the variable with the next highest score for branching. Repeat
Line 13.

15: else branch on the selected variable. Add the resulting subproblems to L .

16: Return Ns∗ , where s∗ is the last node for which ProcessNode was called.

we recall is a search method in the objective space. In preliminary tests we also compared with the

BB method of [11]. However, their implementation was not complete and so the results we obtained

were not comparable. All testing was conducted using the Clemson University Palmetto Cluster.

Specifically, we used an HP SL250s server node with a single Intel E5-2665 CPU core with 32GB of

RAM running Scientific Linux 6.4.

Our initial test set consisted of the instances examined in [11, 16]. The instances from

[11] contained either 60 variables and 60 constraints, or 80 variables and 80 constraints. From

here we refer to these instances as “Belotti60” and “Belotti80.” We label the instances from [16]

in a similar way. This instances they consider in the journal version of their paper are labelled

“Boland80,” “Boland160,” and “Boland320” (we do not solve instances with less than 60 constraints

or variables). We also utilize instances that were considered in a previous version of this paper [15].

To maintain constancy with the way these instances were labelled in [15], we refer to these instances

as “Boland16,” “Boland25,” and “Boland50,” although the respective total number of variables and

constraints for each of these instance sets is approximately 800, 1250 and 2500. Due to our success on
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Table 3.1: Experiment 1 – Measuring the impact of presolve techniques.

All Duality Singleton Dominating
Off Fixing On Columns On Columns On

Instance # Time Nodes Gs∗ Time Nodes Gs∗ Time Nodes Gs∗ Time Nodes Gs∗

Belotti60 30 7 76 54 7 76 54 7 76 54 7 76 54
Belotti80 30 16 87 56 17 87 56 17 87 56 16 87 56

Boland80 5 26 541 38 24 493 33 26 541 38 28 541 38
Boland160 5 899 2,873 17 808 2,801 15 893 2,873 17 895 2,873 17
Boland320~ 5 31,822 14,262 9 32,897 17,628 41 31,841 14,262 9 31,589 14,262 9
Boland16 4 9 97 18 8 96 18 9 97 18 9 97 18
Boland25 4 61 327 15 54 338 15 60 327 15 61 327 15
Boland50 4 2,343 2,531 19 1,461 2,084 19 2,395 2,531 19 2,323 2,531 19

~ – Only 4 of 5 instances completed.

these instances we felt the need to create a more difficult test set. Hence we also tested on biobjective

variants of some instances from MIPlib 2010 [54] – we chose only those instances that were marked

easy, are mixed-integer and not pure integer and were relatively small in size (up to approximately

200 integer variables). For each instance, we generated six secondary objective functions using a

mix of randomized and deterministic procedures with the hope that there was some conflict in the

two objectives. We discarded instances for which: (i) the Pareto set was a singleton, or (ii) the

second objective was unbounded, or (iii) the MIP associated with either f1 or f2 took over 12 hours

to solve. We set a maximum solution time of 12 hours for all instances.

We began our tests by turning off all nonessential features of our BB procedure, and then

sequentially turning on various features to test their impact on the overall procedure. If a particular

feature of our BB procedure was deemed effective in reducing the overall effort required to solve

instances of BOMILP, this feature was left on for the remainder of the tests, otherwise it was turned

back off. We first test the utility of the various presolve procedures discussed in Section 3.4.1.

3.5.1 Presolve Techniques

Table 3.1 contains the results of our first computational experiment. We report the average

computation time in seconds to solve instances of each type, the average number of nodes explored,

and the average duality gap percentage computed after processing the root node. Note that in for

this test we utilized ProprocesingMethod2 with ρ set to zero.

Notice from Table 3.1 that the results for duality fixing show the opposite pattern for the

Boland320 instances than for all other instances. This is because, for an unknown reason, fixing

several variables during presolve had a negative impact on preprocessing. This caused fewer solutions

to be discovered during preprocessing and thus had an overall negative impact on the rest of the

BB procedure. We felt, though, that the positive impact duality fixing had on other instance sets
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warranted leaving this feature on for the remainder of our tests. Also observe from Table 3.1 that

the exploitation of neither singleton nor dominating columns had an impact on the overall BB

procedure. This was primarily due to the fact that there were very few occurrences of either of these

types of columns. We opted to turn off the exploitation of singleton columns for the remainder of

our tests, but we left on the exploitation of dominating columns. Our reasoning was that singleton

columns have no impact on BB that extends beyond presolve, while dominating columns result in

disjunctions from which we can generate global cutting planes. Hence, we left on the exploitation

of dominating columns in order to test the impact of generating these cuts in later tests.

3.5.2 Preprocessing

In our next test we examined the impact of the two preprocessing techniques discussed

in Section 3.4.1, as well as a hybrid method we derived as a combination of the two presented

procedures. In our initial implementation of this test we used each of these three methods with rho

assigned each integer value in [0, 5]. Recognize from Algorithms 3.5 and 3.6 that each of the proposed

preprocessing procedures are designed so that the total number of Pareto solutions computed should

have a positive correlation with the value of ρ. We determined that ProprocesingMethod1

performed poorly for ρ ≤ 1 and ProprocesingMethod2 performed poorly for ρ ≥ 2. We also

discovered that the impact of ρ on overall solution time varied with the size of the instance solved.

As a result, we also implemented modified preprocessing procedures in which the value of ρ is

automatically computed as a function of the size of an instance. Figures 3.6 and 3.7 respectively

contain performance profiles of CPU time for instances of size 80 and smaller, and size greater

than 80. We note that in the legends for these profiles we use “e,” “w,” and “hy” to denote

ProprocessingMethod1 (based on the ε-constraint method), PreprocessingMethod2 (based

on the weighted sum approach), and the hybrid method. The subsequent numbers indicate the value

of ρ. Additionally, the “term” vary indicates that ρ was automatically computed as a function of

instance size.

Observe from Figures 3.6 and 3.7 that the hybrid preprocessing approach did not perform

well compared to the other approaches. Now consider ProprocessingMethod2. Although vari-

ants of this procedure performed well for smaller instances, the same is not true for larger instances.

PreprocessingMethod1, on the other hand, performed quite well on all instances. Notice, though,

that values of ρ near two performed quite well for small instances while values near five performed
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Figure 3.6: Performance profile of CPU time for instances of size 80 and less.

Figure 3.7: Performance profile of CPU time for instances of size greater than 80.

extremely poorly. However, for larger instances values of ρ near five seem to outperform almost every

other procedure. Due to the consistent performance of the variant of PreprocessingMethod1 in

which the value of ρ was computed automatically as a function of instance size, we opted to use this

approach for the remainder of our tests.

3.5.3 Probing and Pareto Branching

The next test we performed was designed to examine the utility of the variable probing

procedure discussed in Section 3.4.1, both used directly after preprocessing and at each node prior
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to branching, and the Pareto branching that we perform when OS fathoming, described in Section

3.4.2, results in disjoint feasible regions of OS. The results of this experiment are given in Table 3.2.

Table 3.2: Experiment 3 – Measuring the impact of probing and Pareto branching.

All Initial Probing During Pareto
Total Off Probing On Branching On Branching On

Instance Num Time Nodes Gs∗ Time Nodes Gs∗ Time Nodes Time Nodes

Belotti60 30 7 73 54 8 78 54 5 47 7 72
Belotti80 30 21 95 46 21 92 45 13 60 18 86

Boland80 5 19 390 20 19 397 20 10 217 18 407
Boland160 5 667 2,497 25 679 2,506 25 244 978 534 2,569
Boland320 5 19,902 10,209 6 19,160 9,971 6 6,865 3,720 14,348 9,583
Boland16 4 10 83 10 10 84 10 8 62 11 101
Boland25 4 52 394 52 56 427 52 34 290 50 381
Boland50 4 1,204 1,706 16 1,556 2,008 16 987 1,426 1,136 2,174

Observe from Table 3.2 that when utilizing probing directly after preprocessing, in most

cases the total CPU time and number of nodes processed increased. However, performing the same

probing procedure prior to branching at each node had an extremely positive impact on the overall

performance of BB, significantly lowering total CPU time and the number of explored nodes. We also

found that Pareto branching had an overall positive impact on BB performance. For the remainder

of our tests we opted to cease probing directly after preprocessing, but to still employ probing during

branching and Pareto branching.

3.5.4 Local Cuts

The next test we performed was designed to test the utility of various cut generation proce-

dures that we employed. We divided this test into two parts, (a) and (b). In part (a) we examined

the performance of BB while applying the local cut generation procedure we discussed in Section

3.4.2, the generation of globally valid cutting planes from disjunctions implied by pairs of dominat-

ing columns, and the generation of locally valid cuts from OS space disjunctions discovered during

OS fathoming. For part (b) of the experiment we decided to test the utility of a new procedure

for generating globally valid cuts after preprocessing, but prior to processing the root node. In this

procedure we preselect a number of of values of λ, evenly distributed in (0, 1), and pass the MIP

min{λf1(x) + (1− λ)f2(x) : x ∈ XI} to CPLEX. We allow CPLEX to process the root node of this

MIP, afterwards we extract the cutting planes discovered by CPLEX and add them to our original

BOMIP as global cuts. The motivation behind this approach is that, because the implementation

of our biobjective BB procedure is an adaptation of standard CPLEX single objective BB, modified

through the use of callbacks, the standard cut generation procedure of CPLEX will only generate
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cuts based on the objective associated with the single objective problem we pass to CPLEX. This

means that the cuts generated by the default CPLEX cut generation procedure are only useful in

closing the duality gap in a small subregion of OS. We designed our procedure to combat this issue.

The results of parts (a) and (b) of this experiment are given in Tables 3.3 and 3.4, respectively.

Table 3.3: Experiment 4, part (a) – Measuring the impact of cut generation procedures.

Local Cut Global Cuts From Local Cuts
All Generation Dominating Column From OS

Total Off On Disjunctions On Disjunctions On

Instance Num Time Nodes Gs∗ Time Nodes Gs∗ Time Nodes Gs∗ Time Nodes

Belotti60 30 5 52 44 7 52 44 5 52 44 5 52
Belotti80 30 13 61 45 16 57 45 13 61 45 13 61

Boland80 5 8 219 20 8 215 20 8 219 20 8 219
Boland160 5 189 1,015 21 198 1,050 21 188 1,015 21 190 1,007
Boland320 5 4,417 4,042 5 5,005 4,087 5 4,545 4,103 5 4,471 4,100
Boland16 4 7 60 10 7 60 10 7 60 10 8 61
Boland25 4 29 272 46 29 265 46 29 272 46 32 273
Boland50 4 658 1,437 16 693 1,407 16 644 1,495 16 709 1,528

Observe from Table 3.3 that utilizing each of the displayed methods for cut generation had

a negative impact on the CPU time used during BB. A couple of these methods did aid in reducing

the number of nodes explored during BB, but not substantially. As a result, we opted to turn off

all of these cut generation schemes for the remainder of our tests. There are a couple of important

notes to be made concerning cut generation, though. First, it is important to recognize that the

potential impact of generating locally valid cuts for BOMIP is likely not properly displayed by

the results of this experiment. The primary reason for this is that CPLEX does not allow for the

addition of locally valid cutting planes except during the execution of a user-cut-callback. However,

such a callback is only employed intermittently and quite rarely once a certain depth of the BB has

been reached. This is unfortunate, since it seems that locally valid cuts may have an increasingly

significant impact on the reduction of the duality gap as the depth of the BB tree increases. Another

important thing to note concerning these cut generation schemes is that are two ways in which we

can pass globally valid cuts to CPLEX, and each is limited in its own way. First, we can pass a

global cut to CPLEX specifically as a cut. However, when doing so, CPLEX will only utilize this

cut if it detects a solution at which this cut is violated. This is unfortunate though, since as we

have discussed, CPLEX is only aware of solutions generated from a single objective. Many of the

solutions generated during BB are generated by us, during a callback, and not by CPLEX. Thus,

even though solutions may be generated which violate a cut we have passed to CPLEX, the cut still

never be utilized. The second way we could pass a cut to CPLEX is by explicitly adding it to the
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BOMIP model as an additional row. This forces the utilization of this cut, but adding too many

cuts in this way causes CPLEX to need to perform a significant amount of additional book-keeping

and therefore typically has an overall negative impact on BB.

Table 3.4: Experiment 4, part (b) – Measuring the impact of cut generation procedures.

Add Extra Global Cuts Using Various λ’s Prior to Start of BB

Off # of λ’s: 2 3 5

Instance # Time Nodes Gs∗ Time Nodes Gs∗ Time Nodes Gs∗ Time Nodes Gs∗
Belotti60 30 5 52 48 6 52 49 6 54 48 6 53 43
Belotti80 30 13 61 46 14 62 46 14 62 46 15 60 45

Boland80 5 8 219 20 8 219 20 8 218 14 8 219 9
Boland160 5 185 1,015 25 185 1,015 23 185 1,015 20 185 1,011 20
Boland320 5 4,347 4,028 6 4,274 3,986 6 4,257 3,976 6 4,343 3,984 6
Boland16 4 7 60 10 7 60 10 7 60 10 7 60 10
Boland25 4 29 272 52 28 272 52 29 277 52 26 241 52
Boland50 4 639 1,470 16 646 1,494 16 655 1,487 16 666 1,505 16

# of λ’s: 9 17

Time Nodes Gs∗ Time Nodes Gs∗
Belotti60 30 7 54 42 9 54 42
Belotti80 30 17 61 45 21 61 45

Boland80 5 8 223 6 7 219 6
Boland160 5 181 979 20 181 985 20
Boland320 5 4,316 3,946 6 4,216 3,870 6
Boland16 4 7 60 10 7 60 10
Boland25 4 26 237 52 23 221 52
Boland50 4 707 1,544 16 587 1,342 16

Observe from Table 3.4 that there is no set of instances which displays an overall decrease

in CPU time as the number of utilized values of λ increases. We note that for the instances from

[11] there is an overall increase in running time, while the instances from [16] display a haphazard

pattern, increasing on some occasions and decreasing on others. The reason for the pattern displayed

by the instances from [11] is that, although several cutting planes were generated for each used value

of λ, as we described in our dicussion of Table 3.3, in order for these cuts to be utilized by CPLEX

we were forced to add them as rows to the BOMIP model, which caused a significant increase in the

computational overhead. The reason for the pattern displayed by the instances from [16] is that for

the majority of these instances the single objective MIP associated with each value of λ was solved

by CPLEX before any cutting planes were generated. Thus, there were rarely cuts to be extracted

and copied. The variation in running times and number of nodes processed seems to be due to a

difference in the order in which CPLEX processed nodes during the biobjective BB procedure. As

this procedure of generating additional cutting planes did not result in a decrease in CPU time spent

in BB, we opted to turn off this procedure for the remainder of our tests.
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3.5.5 Additional Improvements

For our next experiment we decided to test potential simplifications to Fathoming Rule

3 and the generation of Lnds . We now describe these two improvements, beginning with that of

Fathoming Rule 3. Recognize from Algorithm 3.3 that if we have a node s for which Us � Ls, but

Fathoming Rules 1a and 2a fail, Fathoming Rule 3 does not cease until every defining line segment

of Lnds is generated. To attempt to reduce the time spent executing Fathoming Rule 3 on these

occasions, we implemented the following procedure:

1. Select α ∈ Z+.

2. After α lines segments have been generated during the execution of Algorithm 3.3, for each

newly generated line segment dominated by Us, extend the line segment so that the first

component of its left-most point is (y1
s)1. If this extended line segment is dominated by Us,

then Ls is also dominated so fathom node s.

An example of this procedure is depicted in Figure 3.8. In Figure 3.8 Ns is shown in blue and Lnds

Figure 3.8: Simplification of Fathoming Rule 3.

is shown in red. We assume the two right-most segments of Lnds have already been generated and

shown to be dominated by Us. Hence, we can see that the node being considered can be fathomed

after the generation of the “extended segment” without needing to generate the final segment of Lnds .

We now consider the simplification of the generation of Lnds . In order to simplify this procedure we

cease generating segments in Lnds if any segment in generated which is dominated by Us. The results

we obtained from this experiment are shown in Table 3.5.

Note that in Table 3.5 we do not report the number of nodes processed when the simplified

version of Fathoming Rule 3 is employed because there is no change in the number of nodes pro-

cessed using this method and the original implementation. Unfortunately, neither of our proposed
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Table 3.5: Experiment 5 – Improvements to Fathoming Rule 3 and the generation of Lnds .

Check For Early Termination Check For Early
Both of Fathoming Rule 3 Termination of

Total Off α =0 5 10 15 20 25 Lnds Generation

Instance Num Time Nodes Time Time Time Time Time Time Time Nodes

Belotti60 30 5 52 5 5 5 5 5 5 5 52
Belotti80 30 13 61 13 13 13 13 13 13 13 60

Boland80 5 8 218 8 8 8 8 8 8 8 218
Boland160 5 196 1,015 195 194 192 194 196 194 199 1,045
Boland320 5 4,384 4,094 4,487 4,383 4,382 4,469 4,395 4,399 4,380 4,117
Boland16 4 7 60 7 7 7 7 7 7 7 61
Boland25 4 28 272 28 28 28 28 28 28 28 261
Boland50 4 651 1,477 645 678 673 638 654 629 638 1,468

simplifications resulted in improved CPU times for BB, so we turned off these simplifications for the

remainder of our tests.

3.5.6 Exploiting OS Gaps and Comparing with Triangle Splitting

We have now presented the results of all experiments designed to study the impact of the

various aspects of our BB procedure. We now present the results of an experiment designed to test

the performance of our BB against that of the triangle splitting method of [16]. For this experiment

we solved all the same instances we used in our previous tests and employed two variants of our BB

procedure, one in which we utilized the OS splitting procedure we discussed in Section 3.4.4.1 and

one in which we utilized our standard implementation. We compared our results with that of the

triangle splitting method of [16]. The results of this test are given in Table 3.6.

Table 3.6: Experiment 6 – Comparison with the triangle splitting method.

BB with
Standard Exploiting Triangle

Total BB OS Gaps Splitting

Time

Instance Num Time Nodes Total Parallel† Nodes Time

Belotti60 30 5 52 6 3 33 16
Belotti80 30 13 61 15 7 42 37

Boland80 5 8 218 7 6 203 68
Boland160 5 185 1,015 167 162 954 661
Boland320 5 4,433 4,107 4,501 4,501 4,200 8,620
Boland16 4 7 60 7 7 60 14
Boland25 4 28 272 26 26 284 68
Boland50 4 664 1,488 623 440 1,354 631

† – Presolve/Preprocessing time plus maximum of BB times over OS splits.

Observe from Table 3.6 that our standard BB procedure outperformed the triangle splitting

method on all but one set of instances, while our OS splitting procedure outperformed the triangle
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splitting method on all sets of instances. Also recognize that the total CPU times associated with

our OS splitting procedure are always comparable with those of our standard procedure. We point

out that there were many more substantial gaps between solutions to exploit after preprocessing for

the instances from [11] than for the instances from [16]. This is the reason that there is a drastic

reduction in total number of nodes processed when using OS splitting on the instances from [11] but

not the instances from [16]. We also note that the reported approximate CPU times for a parallel

implementation of the OS splitting procedure indicate that even better results can be obtained once

we are able to develop a parallel implementation.

3.5.7 MIPlib Instances

Due to the successful results we obtained using our BB procedure on instances from the

literature, we designed our final set of tests to measure the performance of our procedure on a more

realistic set of instances. For this we utilized a set of 39 single objective MIP instances available from

the MIPlib 2010 library [54]. We chose only instances that were marked easy, were mixed-integer

and not pure integer, and were relatively small in size (up to approximately 200 integer variables).

For each instance, we generated six secondary objective functions according to the following rules:

(o) For each i ∈ {1, . . . ,m + n} the coefficient c2i is randomly generated from the closed interval[
−|c1i |, |c1i |

]
.

(a) We solved the LP relaxation associated with f1 to obtain optimal solution x∗. Then for each

nonbasic variable at this solution, we set c2i = −c1i if: (i) c1i > 0 and x∗i was not at its lower

bound, or (ii) c1i < 0 and x∗i was not at its upper bound. Otherwise we set c2i = c1i .

(b) We set c2i =
1

c1i
.

(c) Objective 2 is the sum of the continuous variables.

(d) Objective 2 is the sum of the integer variables, plus one continuous variable.

(e) We solved the LP relaxation associated with f1 as well as the corresponding MIP. We then

repeated strategy (a) for integer variables having the same value at the LP solution as at the

MIP solution.
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After generation of these instances we did some preliminary testing and discarded instances

for which: (i) the Pareto set was a singleton, or (ii) the second objective was unbounded, or (iii)

the MIP associated with either f1 or f2 took over 12 hours to solve. We then opted to test the

performance of the various preprocessing procedures we tested in Section 3.5.2, each set to a maxi-

mum execution time of either 5, 10 or 30 minutes. We then calculated the duality gap percentages

after exiting preprocessing. The results of this test are displayed in the performance profile found

in Figure 3.9. Here “ev” represents the implementation of PreprocessingMethod1 in which ρ

is calculated as a function of instance size, “w0” indicates PreprocessingMethod2 with ρ set

to zero, and “hy0” indicates the hybrid preprocessing procedure with ρ set to zero. The numbers

following each of these represent the limits on execution time.

Figure 3.9: Performance profile of duality gap percentage for preprocessing procedures on instances
from MIPlib.

Observe from Figure 3.9 that PreprocessingMethod1 with an execution time of 30 min-

utes performed the best. Hence, we utilized this procedure for our final test. In this test we used our

original BB procedure, the BB procedure in which we exploit OS gaps, and the triangle splitting

method on each of the instances generated from MIPlib. We set a maximum time limit of 12 hours

for each procedure. Additionally, we set a time limit of 60 seconds for all single objective MIPs

solved during the course of our BB procedures, except for: (i) solving the initial MIPs associated

with f1 and f2, and (ii) solving the MIPs necessary to appropriately reduce subregions of OS when

employing our OS splitting procedure. We also note that we do not keep track of a duality gap

measurement during the course of BB because doing causes a significant reduction in performance,
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especially when there are a large number of open nodes. Instead, we calculate this gap after termi-

nation of BB, but we only allow an additional 12 hours for this task. The results of this experiment

are provided in detail in Table 3.7 and summarized by the performance profile in Figure 3.10. Note

that when constructing this profile we only included data for instances which were solved by at least

one of the three methods for solving BOMILP. Hence, the maximum height of each curve is bounded

by the fraction of instances solved in under twelve hours by at least one of the solution procedures.

Table 3.7: Experiment 8 – Comparing with the triangle splitting method for instance from MIPlib.

Original BB BB with Gap Splitting T.S.

Instance Time Nodes Gs∗ Time † Nodes Gs∗ Time

aflow40b o – 901 * 2,181 2,181 2 – 28,552
a – 1,577 * – – 1,658 – –
d 2,230 1 – 12,099 12,095 166 – 7,234
e – 1,943 * – – 1,259 * –

beasleyC3 o – – – 751 749 3 – –
a – 888 14 – – 9,076 18 –
b – 697 24 – – 533 100 –
e – 6,466 * – – 12,250 13 –

berlin 5 8 0 1 0 0 0 – – – – –
bienst2 o 1,596 35 – 1,012 1,011 8 – 2,174
binkar10 1 o – 4,586 * – – 5,461 * –

a 3,229 921 – 3,129 3,129 938 – –
b 7,634 4,812 – 7,555 7,555 4,433 – 5,949
c 5,527 2,065 – 8,587 3,238 8,587 – –
d 6,892 1,313 – 363 362 2 – 2,360
e 4,684 286 – 5,393 2,867 522 – 25,293

csched007 o – 564 31 – – 596 31 –
c – 2,347 2 – – 2,631 2 –

csched010 o – 488 35 – – 395 33 –
a – 515 16 – – 683 16 –
c – 1,044 2 15,205 15,205 1 – –
d – 589 100 4,803 4,803 9 – 32,811

danoint o 42,299 538 – 7,091 7,086 6 – 41,880
dfn-gwin-UUM o – 859 67 – – 1,953 100 25,434
gmu-35-40 o – 1,527 68 – – 5,759 69 25,714

a 2,072 1 – – – 2,220 44 –
d – 559 2 – – 719 4 9,973
e 2,148 1 – – – 2,715 44 –

gmu-35-50 o 2,804 1 – 10,218 7,715 1,489 – –
a – 1,234 36 – – 1,085 49 –
e – 907 41 – – – – –

ic97 potential o – 391 71 – – 446 72 –
a – – – – – 17,248 1 23,911
b – 547 70 – – 1,386 99 –
d – 297 97 – – 340 93 –

k16x240 o – 17,648 2 – – 14,740 2 –
a – 42,960 6 – – 23,837 * –
b – 1,022 32 – – 187,846 86 –
c – 2,418 * – – 2,479 * –
d – 2,264 * – – 3,542 * –
e – 17,251 8 – – 19,401 – –

markshare 5 0 o – 3,905 20 – – 4,173 13 32,476
c – 117,984 2 – – 166,057 2 14,270
d – 3,937 15 5,002 5,002 5 – –

† – Approximated parallel time
* – duality gap calculation exceeded 12 hours
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Table 3.8: (Continuation of Table 3.7.)

Original BB BB with Gap Splitting T.S.

Instance Time Nodes Gs∗ Time † Nodes Gs∗ Time

mc11 o – 620 77 – – 539 * –

a – 950 * – – 6,071 13 –

c – 760 36 – – 275 * –

e – 2,041 * – – 918 * –

mcsched a – 14,578 * – – 29,378 20 –

c – 14,040 0 – – 19,954 3 –

d – – – – – 9,588 0 –

mik-250-1-100-1 o – 9,882 6 404 404 3 – –

a – 17,814 12 – – 21,299 64 –

c – 14,170 0 – – 14,217 * 32,204

d – 11,972 * – – 8,889 * –

e – 1,434 21 – – 1,116 59 –

neos-1112787 a 1,931 0 – 1,891 1,890 3 – –

c – 1,881 * – – 1,681 * –

neos-1171737 o 2,112 1 – 2,210 2,210 1 – –

d – 677 33 – – 673 81 –

neos-1225589 b – 410 * – – 486 * –

c – 1,260 * – – 1,291 * –

d – 16,214 * – – 44,389 – –

neos13 o – 1,779 16 – – 3,466 100 12,383

a – 488 * – – 464 * 25,263

c 496 10 – 574 559 11 – 1,054

d – 12,625 36 – – 170 28 –

neos-1396125 a 824 50 – 825 825 534 – 535

b 5,648 53 – 3,713 3,590 28 – 3,480

d – 613 * 2,111 2,103 4 – 22,695

neos-1426635 d – 2,761 30 1,203 1,203 2 – 15,155

neos-1426662 d 3,689 1 – – – 651 27 –

neos-1440460 d – 999 35 1,903 1,903 1 – –

neos-1442657 d – 576 15 13,097 13,097 1 – –

neos15 a – 15,811 34 – – 18,583 34 –

b – 2,911 * – – 2,911 42 –

neos-693347 o – 221 * – – 2,670 56 11,480

c 674 1 – 673 673 1 – 566

d 722 1 – 718 718 1 – 566

neos-916792 o – 757 51 – – 794 49 3,662

a 985 1 – – – 5,257 0 426

c – 3,874 2 – – 3,465 11 6,657

d – 672 70 – – 666 79 –

† – Approximated parallel time

* – duality gap calculation exceeded 12 hours
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Table 3.9: (Second continuation of Table 3.7.)

Original BB BB with Gap Splitting T.S.

Instance Time Nodes Gs∗ Time † Nodes Gs∗ Time

neos-942830 o – 1,655 31 – – 5,606 64 –

a 8,690 321 – 9,952 9,952 271 – 5,858

c 3,711 1 – 3,980 3,980 1 – 5,344

d 4,359 3 – 3,057 3,057 3 – –

noswot o 7,491 30,903 – 736 732 3,141 – 1,069

a – – – 754 753 10 – –

c 32,355 5,699 – – – 254,933 54 42,748

d 1,942 1,092 – 713 712 6 – 878

ns1830653 o 23,349 665 – 19,053 19,053 458 – 25,302

a 19,242 210 – 18,110 18,110 195 – 10,363

p80x400b o – 7,024 6 – – 7,778 6 –

a – 16,439 15 – – 21,374 17 –

b – 641 58 – – 62,581 70 –

c – 881 * – – 2,205 0 –

d – 1,589 * – – 2,505 9 –

e – 6,803 17 – – 4,306 24 –

pigeon-10 o 1,940 562 – 1,656 1,656 1 – 1,670

pigeon-11 o 20,436 30 – 20,266 20,266 11 – 20,672

qiu o 1,665 326 – 1,445 1,445 280 – 4,100

a 2,726 2,367 – 1,911 873 686 – 1,274

b 19,706 2,969 – 1,888 1,886 5 – 5,853

c – 956 43 1,885 1,864 5 – 4,146

d – 41,745 3 1,815 1,815 3 – –

e 4,809 541 – 5,642 5,523 4,284 – 834

ran14x18 o – 2,610 8 – – 4,424 8 –

a – 40,881 11 – – 56,981 12 –

b – 875 33 3,074 3,073 4 – –

e – 46,951 14 – – 40,132 12 38,624

ran14x18-disj-8 o – 6,826 10 – – 9,769 8 –

a – 45,528 27 – – 68,137 28 26,029

b – 922 30 – – 648 1 –

e – 10,727 9 – – 15,977 11 –

ran16x16 o – 12,180 6 – – 12,175 6 –

a – 23,189 * – – 25,738 * –

e – 19,916 11 – – 9,477 * –

timtab1 o – 1,136 50 – – 1,167 100 –

a – 513 100 – – 535 100 –

b – 575 100 – – 477 100 –

d – 789 63 – – 798 48 –

† – Approximated parallel time

* – duality gap calculation exceeded 12 hours
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There are a couple of important pieces of information to recognize from Tables 3.7–3.9.

First, notice that of the 115 instance considered, 34 were solved in under 12 hours by the original

BB implementation, 43 by the OS splitting BB variant, and 40 by the traingle splitting method.

Additionally, there were 17 instances which were solved in under 12 hours by one version of BB,

but not by the triangle splitting method, and 10 instances solved in under 12 hours by the triangle

splitting method, but not by a BB procedure. In all, the results display comparable performance

between the BB approaches and the triangle splitting method. This pattern is also supported by

the profile in Figure 3.10. We also point out that there are a small number of instances for which

one of the BB procedures terminated after processing a very small number of nodes. There are

two situations in which this occurred: (i) when all Pareto solutions on a BOMILP instance lie on

a single line segment in OS, and (ii) when there are an extremely low number of Pareto points or

line segments. The former case seems to happen far less frequently than the latter, but it should

be noted that in this case numerical issues can cause BB to terminate before all Pareto solutions

are found if a cutting plane is generated which lies on the same segment in OS on which all Pareto

solutions lie.

Figure 3.10: Performance profile of relative CPU time for MIPlib instances.
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3.6 Conclusion

In this work we have introduced a new BB scheme for solving BOMILP with general inte-

gers. We have studied each of the key components of single objective BB and presented a strategy for

extending each component to a biobjective framework. We have also conducted a number of compu-

tational experiments. The first several experiments provide insight into the usefulness of each of the

tools we have presented. The final few experiments compare the performance of our BB procedure

and the triangle splitting method [16]. Our BB procedure outperforms the triangle splitting method

on small instances which were previously considered in the literature, and performs comparably to

the triangle splitting method on a new set of large, challenging instances which we developed using

instances of single objective MIP from MIPlib 2010 [54].
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Chapter 4

A Two-phase Algorithm for

mpLCP with Parameters in the q

Vector

[The contents of this chapter include material from a paper entitled “A two-phase algorithm

for the multiparametric linear complementarity problem,” which was submitted to the European

Journal on Operational Research in January of 2015; the authors are N. Adelgren and M. M. Wiecek.

The paper was accepted for publication in April of 2016.]

4.1 Introduction

We consider a parametric form of the Linear Complementarity Problem (LCP) in which

the right hand side vector is dependent on a vector of parameters θ ∈ Sθ ⊆ Rk, where Sθ is a

bounded convex polytope defining the set of “attainable” values for θ. This problem, referred to as

the multiparametric Linear Complementarity Problem (mpLCP), is as follows:

Given M ∈ Rh×h, q ∈ Rh and 4Q ∈ Rh×k (k ≤ h), for each θ ∈ Sθ find vectors w(θ)

and z(θ) in Rh that satisfy the following system:

w −Mz = q +4Qθ
w>z = 0

w, z ≥ 0

(4.1)
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If such a solution exists for a given θ ∈ Sθ, mpLCP is said to be feasible at θ, otherwise it

is infeasible at θ. Similarly, mpLCP is said to be feasible if there exists a θ̂ ∈ Sθ at which mpLCP is

feasible, otherwise mpLCP is infeasible. As finding a solution to (4.1) for each θ ∈ Sθ individually is

intractable, the goal of mpLCP is to partition the space Sθ into regions such that the representation

of the solution vectors w and z as functions of θ is invariant over each region. In the literature these

regions have been given a variety of names, such as invariancy regions, critical regions, and validity

sets. We refer to them as invariancy regions and discuss them in more detail in the next section.

LCP, and by extension mpLCP, has numerous applications in the fields of engineering and

economics. For an extensive list we suggest [22, 65]. It is well known that Linear Programs (LPs)

Quadratic Programs (QPs) with convex objective functions and linear constraints can be reformu-

lated as LCPs. Thus, mpLCP encompasses multiparametric LPs (mpLPs) and multiparametric QPs

(mpQPs) containing parameters in the linear term of the objective function and in the right hand

sides of the constraints. Recently mpQPs of this form have received much attention in the literature

for their application to model predictive control [5, 12, 39, 40, 72, 74, 87, 88, 94, 95].

Another important class of problems that has received considerable attention in recent

years and can also be formulated as a mpQP is multiobjective optimization problems with a single

psuedoconvex objective and any number of linear objectives. These types of problems are particularly

relevant in the areas of economics and finance. Examples of works considering these types of problems

include [44, 76, 84, 104, 105] and the references therein.

In general LCP is NP-hard, though polynomial time algorithms exist for certain classes of

the matrix M . Thus, much work has been done in order to identify various classes of matrices

M which impact one’s ability to solve an instance of LCP. Solution techniques for LCP are often

designed for specific classes of M . For a concise list of important matrix classes see [21]. For a

detailed discussion on these classes and their impact on LCP see [22, 65]. We will refer to many of

the matrix classes discussed in these works throughout this chapter. As the method we proposed

requires that M be a sufficient matrix, we provide the following definition, as found in [22].

Definition 4.1. A matrix M ∈ Rh×h is column sufficient if the following implication is satisfied:

{xi(Mx)i ≤ 0 for all i} ⇒ {xi(Mx)i = 0 for all i} (4.2)

M is said to be row sufficient if M> is column sufficient. If M is both column and row sufficient, it

is then called sufficient.
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Parametric LCP with a single parameter (i.e., k = 1) has been studied quite extensively.

Some of the works considering this problem include Cottle [20], Danao [24], Pang [69] and Pang

et al. [70]. Columbano et al. [18], Gailly et al. [32], Jones and Morari [46] and Li and Ierapetritou

[57] consider mpLCP as in (4.1) (i.e., k > 1). The method of Gailly et al. [32] is designed for

the case in which M is copositive-plus. The method is theoretically sound but lacks a practical

discussion as to how the theory should be implemented. Jones and Morari [46] propose a method

for the case in which M is positive semi-definite. Their method is an extension of techniques that

are used for solving single parametric LCP, but depends on a lexicographic ε-perturbation in order

to handle degeneracy. Columbano et al. [18] developed a technique for instances in which M is a

sufficient matrix. When certain conditions are not satisfied, however, their method depends on an

ε-perturbation technique in which an auxiliary multiobjective program must be solved. The method

of Li and Ierapetritou [57] works for general M , but is computationally expensive since it requires

reformulating the mpLCP as a multiparametric bilinear mixed integer program. Recently, Herceg

et al. [42] proposed a technique designed for general M which extends the enumerative approach of

[40] for solving mpQP to the context of mpLCP.

Significant improvements can still be made on solution techniques for mpLCP. In this chapter

we propose a two-phase technique for solving instances of mpLCP in which M is sufficient. Phase

1 is used for initialization and only terminates when: (i) an instance of mpLCP has been shown to

be infeasible, or (ii) an initial feasible solution and the corresponding invariancy region have been

discovered. In the latter case, Phase 2 is then used to partition Sθ. Phase 2 is inspired by the

work of Columbano et al. [18], but does not rely on an ε-perturbation technique and therefore has

an improved worst-case complexity. We point out that in our consideration of Phase 1 we answer

a very important question that no other work we are aware of has considered, the question of how

one can determine an initial feasible solution for a (multi)parametric LCP problem. In all works we

know of, it is simply assumed that such a solution is available.

As mentioned, the method for solving mpLCP which we present in this work is a two-phase

method. We will show that the problem solved in the first phase of this method is a special case

of the problem solved during the second phase. For this reason we discuss Phase 2 prior to Phase

1. Hence, the remainder of this chapter is organized as follows. Background information on LCP

problems and their geometrical structure is contained in Section 4.2. The theory and methodology

for Phase 2 of the proposed method for solving mpLCP are presented in Section 4.3. In Section 4.3
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we present the theory and methodology for Phase 1. We discuss the complexity of each algorithm

and present numerical results for applying the proposed two-phase method to a collection of mpQP

instances in Section 4.5. In Section 4.6 we provide concluding remarks and a discussion on proposed

future work. In Section 4.A we offer an illustrative example, showing explicitly how the Phase 1 and

2 algorithms are used to solve an instance of mpLCP. Section 4.B contains detailed results from our

computational experiments as well as a couple of supporting images.

4.2 Background on mpLCP

This section is divided into two subsections. In the first we present preliminary notations

and definitions and in the second we provide a discussion on the geometry of mpLCP and provide

some preliminary results.

4.2.1 Preliminaries

We begin this subsection by introducing definitions and notation necessary for the remainder

of this work. Assume that we are given an mpLCP of the form (4.1) and define the matrix G :=[
I −M

]
and the vector ν :=

[
w

z

]
, where G ∈ Rh×2h and ν ∈ R2h. We use the notation Gi • to

represent the ith row of G and G•j to represent the jth column of G. Also, given a set I ⊆ {1, . . . , h}

we use GI• to denote the matrix formed by the rows of G indexed by I. Similarly, given a set

J ⊆ {1, . . . , 2h} we use G•J to denote the matrix formed by the columns of G indexed by J .

Furthermore, given I ⊆ {1, . . . , h} and J ⊆ {1, . . . , 2h}, we use GIJ to represent the submatrix of

G consisting of the elements of the rows indexed by I which are in the columns indexed by J , i.e.,

GIJ = (GI•)•J . Let E denote the index set {1, . . . , 2h} for (4.1).

Definition 4.2. A basis is a set B ⊂ E such that |B | = h and rank(G•B) = h. The set N := E \B

is called the complement of B .

Definition 4.3. The sets of variables νB := {νi : i ∈ B} and νN := {νi : i ∈ N} are referred to as

the sets of basic and nonbasic variables, respectively.

Definition 4.4. Given a basis B , for every θ ∈ Sθ, νB(θ) = G−1
•B (q +4Qθ), νN (θ) = 0 is a solution

to the linear system: Gν = q +4Qθ. For each θ ∈ Sθ, the solution (νB(θ), νN (θ)) is called a basic

solution.
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Definition 4.5. A basis B is called complementary if |{i, i+ h} ∩ B | = 1 for each i ∈ {1, . . . , h}.

We have now built the tools necessary for providing the definition of an invariancy re-

gion. Consider a complementary basis B and suppose there exists θ ∈ Sθ such that: (i) νB(θ) =

G−1
•B (q +4Qθ) ≥ 0 and, (ii) νN (θ) = 0. Then since ν =

[
w

z

]
, for all θ ∈ Sθ satisfying (i) and (ii)

above, the basic solution (νB(θ), νN (θ)) satisfies (4.1) and therefore defines solution vectors w(θ) and

z(θ) for mpLCP. Note that one set of solution vectors of this form may exist for each complementary

basis.

Definition 4.6. The invariancy region IRB of a complementary basis B is the set:

IRB :=
{
θ ∈ Sθ : G−1

•B (q +4Qθ) ≥ 0
}

(4.3)

Hence, there may exist one invariancy region for each complementary basis.

Definition 4.7. A complementary basis B is called feasible to (4.1) if IRB 6= ∅.

Every invariancy region is a convex polytope contained within Sθ. For every feasible comple-

mentary basis B , the affine function defined by νB(θ) = G−1
•B (q +4Qθ), νN (θ) = 0 is a solution to

(4.1) for all θ ∈ IRB . Therefore in this work we propose a method for determining a piecewise affine

solution to (4.1) by partitioning Sθ into a set of invariancy regions with disjoint relative interiors.

Definition 4.8. For an arbitrary set S, the relative interior of S is the set relint(S) := {s ∈ S :

∃ε > 0, Bε(s) ∩ aff(S) ⊆ S}, where Bε(s) is the ball of radius ε centered at s and aff(S) is the

affine hull of S, i.e., the intersection of all affine sets containing S.

Definition 4.9. Given a feasible complementary basis B , the invariancy region IRB is called full-

dimensional if dim (IRB) = k.

Definition 4.10. Given distinct feasible complementary bases B and B ′, the invariancy regions

IRB and IRB′ are called adjacent if dim (IRB ∩ IRB′) = k − 1.

4.2.2 Geometry of the mpLCP

We divide this subsection in two. First we discuss some properties of the mpLCP problem

that we will need in order to establish an algorithm for partitioning Sθ. After this discussion we

provide theoretical justification for some of the assumptions made.
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4.2.2.1 The relationship between invariancy regions and complementary cones

We now give several definitions and properties needed for this discussion.

Definition 4.11. For an index i ∈ E the complementary index of i is ı := (i+ h) mod 2h.

Similarly, given a set I ⊆ E , the set I is defined as the set of all complementary indices of

elements in I.

Definition 4.12. A set J ⊂ E is called complementary if |{i, i+ h} ∩ J | = 1 ∀i ∈ {1, . . . , h}, i.e.,

if i ∈ J ⇒ ı /∈ J .

Given an arbitrary matrix P , we use the notation span(P ) to represent the set of all linear

combinations of the columns of P . Similarly, we use the notation cone(P ) to represent the set

of all nonnegative combinations of the columns of P . Hence, the dimension of cone(P ), denoted

dim(cone(P )), is the number of linearly independent columns of P .

Definition 4.13. For any complementary set J , the set C (J ) := cone (G•J ) is called a complemen-

tary cone with respect to the matrix M . The union of all such cones is called the complementary

range of M and is denoted K(M).

Definition 4.14. A complementary cone C (J ) is called full-dimensional if dim (C (J )) = h, i.e., if

rank (G•J ) = h.

Proposition 4.15. A complementary cone C (J ) is full-dimensional if and only if J is a comple-

mentary basis.

Proof. (⇒): Since C (J ) is a complementary cone, J is complementary and thus |J | = h. Since

C (J ) is full-dimensional, rank (G•J ) = h.

(⇐): Since J is a complementary basis, rank (G•J ) = h and so dim (C (J )) = h.

Definition 4.16. For distinct complementary bases B1 and B2, the complementary cones C (B1)

and C (B2) are called adjacent if dim (C (B1) ∩ C (B2)) = h − 1. In this case the bases B1 and B2

are also called adjacent.

For any complementary basis B , the associated complementary cone is:

C (B) =
{
τ ∈ Rh : G−1

•B τ ≥ 0
}

(4.4)
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Thus C (B) defines the set of all vectors q+4Qθ for which the basis B is feasible and K(M) defines

the set of all vectors q +4Qθ for which any basis is feasible. Note the close relationship between

IRB and C (B). In order to understand this relationship further, we now consider the specifics of

the affine subspace:

AS := {q +4Qθ : θ ∈ Sθ} (4.5)

When considering AS we make the assumption that 4Q is of full column rank. In their

work, Columbano et al. [18] also make this assumption, but do not provide any justification. We

proceed with this discussion and utilize this assumption, but theoretical justification is provided in

Section 4.2.2.2.

Definition 4.17. Given a complementary basis B , the invariant domain of B , denoted IDB , is the

intersection of the affine subspace AS with the complementary cone C(B). Thus IDB := C(B)∩AS ={
τ : G−1

•B τ ≥ 0, τ = q +4Qθ, θ ∈ Sθ
}

.

Since we have assumed that4Q is of full column rank, we can view the function θ → q+4Qθ

as a bijective function. As a result, we make the following two observations:

Observation 4.18. For a given basis B , we have IDB = q +4Q (IRB).

Observation 4.19. For each i ∈ E , the inequality
(
G−1
•B
)
i •
τ ≥ 0 is redundant in IDB if and only

if
(
G−1
•B
)
i •

(q +4Q) ≥ 0 is redundant in IRB .

Notice that these observations show explicitly the relationship existing between invariancy

regions and complementary cones.

It is well known that given an instance of LCP, and by extension mpLCP, the properties

of the matrix M have a significant impact on the structure of the complementary cones, and hence

also the invariancy regions in the case of mpLCP. Of particular importance for this discussion are

column sufficient matrices, which we defined previously, and Q0 matrices, for which we quote the

definition from [65].

Definition 4.20. The square matrix M is said to be a Q0 matrix if K(M) is a convex cone.

Recognize from Definition 4.20 that since each complementary cone is convex, if K(M) is

convex then AS ∩ K(M) is also convex. Thus, every nonempty invariant domain has an adjacent

nonempty invariant domain. We now recall the following important property of column sufficient
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matrices, shown in [22]: if M is column sufficient, all complementary cones have disjoint relative

interiors. The benefit of this property is that if the relative interiors of all complementary cones

are disjoint, then Sθ can be partitioned since no two invariant domains can have an intersection

of dimension larger than h − 1. Thus, the algorithms we present in Section 4.5 are designed for

instances of mpLCP in which M which is both Q0 and column sufficient. Note that the largest class

of matrices known to be a subset of both the classes of Q0 and column sufficient matrices is the class

of sufficient matrices.

4.2.2.2 Theoretical justification for the assumption that 4Q is of full column rank

We point out to the reader that although the following discussion is theoretically important,

it is not necessary for understanding the algorithms presented in Section 4.5 and can therefore be

passed over if so desired.

We will show that in the case when 4Q is not full column rank, there exists a “reduced”

mpLCP, which we denote mpLCP′, which can be solved in place of the original mpLCP. Furthermore,

we show that the solution of mpLCP can be fully recovered from the solution of mpLCP′.

Consider the matrix 4Q ∈ Rh×k and suppose rank(4Q) = ` < k. Let L ⊂ {1, . . . , h} be

an index set such that |L| = ` and the columns of (4Q)•L are linearly independent. We obtain

mpLCP′ from (4.1) by substituting (4Q)•L ϕ for 4Qθ:

w −Mz = q + (4Q)•L ϕ

w>z = 0

w, z ≥ 0

(4.6)

Here ϕ ∈ Sϕ ⊂ R` is a new set of parameters. We now discuss the relationship between

solutions to (4.1) and (4.6) and how a solution for one can be obtained from a solution to the other.

First consider the set of linear equations

(4Q)•L ϕ = 4Qθ (4.7)

Here ϕ and θ can be treated as variables. Each can be fixed and the other solved for. Since (4Q)•L
is of full column rank, it has a left inverse, so from (4.7), we obtain

ϕ =
(

(4Q)
>
•L (4Q)•L

)−1

(4Q)
>
•L4Qθ. (4.8)
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Thus, every θ ∈ Sθ maps to a ϕ ∈ R`. We define this mapping explicitly as:

T (·) : Rk → R` such that T (θ) :=
(

(4Q)
>
•L (4Q)•L

)−1

(4Q)
>
•L4Qθ (4.9)

Hence, for each θ ∈ Sθ we have ϕθ := T (θ), and also Sϕ := T (Sθ). Let Λ = {1, . . . , h}\L. By

rearranging the columns of4Q and the corresponding rows of θ, we have4Qθ =
[
4Q•L 4Q•Λ

] [θL•
θΛ•

]
.

By replacing4Qθ with
[
4Q•L 4Q•Λ

] [θL•
θΛ•

]
in (4.9), we obtain the following alternate form of T (θ):

T (θ) = θL• + Q̃θΛ• (4.10)

where Q̃ =
(

(4Q)
>
•L (4Q)•L

)−1

(4Q)
>
•L4Q•Λ.

Although each θ ∈ Sθ maps to a unique ϕ ∈ Sϕ, the converse does not hold. For each

ϕ ∈ Sϕ consider the set:

Uϕ :=
{
θ ∈ Rk : ϕ and θ satisfy (4Q)•L ϕ = 4Qθ

}
(4.11)

Recall that Sθ ⊂ Rk. Since Sϕ = T (Sθ), for each ϕ ∈ Sϕ there is at least one θ ∈ Sθ satisfying

(4.7). Furthermore, since one such θ exists and rank (4Q) = ` < k, for each ϕ ∈ Sϕ there exist an

infinite number of values of θ which satisfy (4.7). Thus, for a given ϕ̂ ∈ Sϕ, a θ̂ ∈ Uϕ can be found

by selecting arbitrary values for k − ` elements of θ̂ and solving for the remaining elements using

the equations in (4.7). Without loss of generality, we select the elements of θ̂ whose indices are in

Λ to be the arbitrarily selected values. Letting θ̂Λ• = χ̂ ∈ Rk−l and solving (4.7) for the remaining

elements of θ̂ gives:

θ̂L• = ϕ̂− Q̃χ̂ (4.12)

It is easy to verify that these values satisfy the system (4Q)•L ϕ̂ = 4Qθ̂. Thus, every pair (χ, ϕ) ∈

Rk−` × Sϕ maps to a θ ∈ Uϕ by letting

[
θL•
θΛ•

]
=

[
ϕ− Q̃χ

χ

]
. This shows that

Uϕ =
{
θ ∈ Rk : θL• = ϕ− Q̃χ and θΛ• = χ for any χ ∈ Rk−`

}
. (4.13)

Now that we have discussed the relationships between θ ∈ Sθ and ϕ ∈ Sϕ, we are ready

to show that the solution of mpLCP can be fully recovered from the solution of mpLCP′. Notice
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that for every complementary feasible basis B and invariancy region IRB of mpLCP, there is a

corresponding invariancy region

IR′B :=
{
ϕ ∈ Sϕ ⊆ R` : G−1

•B (q + (4Q)•L ϕ) ≥ 0
}

(4.14)

of mpLCP′. Thus, a partition of Sθ can be derived from a partition of Sϕ if the following hold:

• An invariancy region IRB is full dimensional if and only if IR′B is also full dimensional.

• Two invariancy regions IRB1
and IRB2

are adjacent if and only if IR′B1
and IR′B2

are

adjacent.

Consider the following lemmas and the subsequent propositions.

Lemma 4.21. If ϕ̂ = T (θ̂) lies on the boundary of Sϕ then θ̂ lies on the boundary of Sθ.

Proof. We prove the contrapositive. Notice that the following hold:

(i) Since θ̂ does not lie on the boundary of Sθ, for all vectors θi in Sθ, there exists εi > 0 such that

θ̂ + εiθ
i ∈ Sθ.

(ii) Since Sϕ = T (Sθ), for all vectors ϕi in Sϕ there must exist θi ∈ Sθ and δi > 0 such that

ϕi = δiT (θi).

Now, (i) implies that T (θ̂ + εiθ
i) = ϕ̂ + εiT (θi) ∈ Sϕ for all vectors θi ∈ Sθ. From this result and

(ii) we conclude that ϕ̂+
εi
δi
ϕi ∈ Sϕ for all vectors ϕi ∈ Sϕ. Therefore ϕ̂ cannot lie on the boundary

of Sϕ.

Lemma 4.22. If ϕ̂ lies in the relative interior of Sϕ then there exists θ̂ in the relative interior of Sθ

such that ϕ̂ = T (θ̂).

Proof. We again prove the contrapositive. Assume that there does not exist θ̂ ∈ relint(Sθ) such

that T (θ̂) = ϕ̂. We do not consider the case in which there does not exist θ ∈ Sθ such that T (θ) = ϕ̂

since it is trivial. Thus, assume that every θi ∈ Sθ such that T (θi) = ϕ̂ is on the boundary of Sθ.

In this case, all θi such that T (θi) = ϕ̂ must lie on a single k − 1 dimensional facet F of Sθ. To see

this, suppose there exist θ1, θ2 ∈ Sθ such that T (θ1) = T (θ2) = ϕ̌ and notice that for all λ ∈ (0, 1),

T (λθ1 +(1−λ)θ2) = λϕ̌+(1−λ)ϕ̌ = ϕ̌. Hence, if θ1 and θ2 did not both lie on F , there would exist

a λ ∈ (0, 1) such that (λθ1 + (1− λ)θ2) ∈ relint(Sθ), which contradicts the original assumption.
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Now, recognize from (4.11) that for each ϕ ∈ Sϕ, Uϕ is a k−h dimensional hyperplane. Then

from our previous arguments we can conclude that Uϕ̌ ∩ Sθ ⊂ F . Let H∗ be the k − 1 dimensional

hyperplane containing F , θ′ be a point in F for which T (θ′) = ϕ̂, and θ̃ be a vector in Sθ which is

normal to F and oriented so that it points away from the interior of Sθ. Then, as a direct corollary

to the Separating Hyperplane Theorem (Thm 2.4.4, pp. 53 [8]), for all ε > 0, H∗ separates UT (θ′+εθ̃)

from Sθ (since for distinct ϕ1, ϕ2 ∈ Sϕ, Uϕ1 and Uϕ2 are parallel), i.e., UT (θ′+εθ̃) ∩ Sθ = ∅. This

implies that for all ε > 0, T (θ′ + εθ̃) = ϕ̂ + εT (θ̃) /∈ Sϕ. Therefore there cannot exist ε > 0 such

that Bε(ϕ̂) ⊆ Sϕ. Hence ϕ̂ /∈ relint(Sϕ).

Proposition 4.23. An invariancy region IRB is full dimensional if and only if IR′B is also full

dimensional.

Proof. (⇐): Since IR′B ⊂ R` is full dimensional it must contain ` + 1 affinely independent points,

ϕ1, . . . , ϕ`+1. There must also exist vectors χ1, . . . , χk−` ∈ Rk−` which are linearly independent. We

show that ϕ1, . . . , ϕ`+1 and χ1, . . . , χk−` ∈ Rk−` can be used to construct k+ 1 affinely independent

points θ1, . . . , θk+1 in IRB ⊂ Sθ ⊆ Rk. We first construct these points and then show the affine

independence.

Let ϕ∗ ∈ relint
(
IR′B

)
. By Lemmas 3.1 and 3.2, there must exist χ∗ ∈ Rk−` such that

θ∗ defined as

[
θ∗L•
θ∗Λ•

]
=

[
ϕ∗ − Q̃χ∗

χ∗

]
∈ relint(Sθ). We now show the construction of each θi by first

considering i ∈ {1, . . . , `+ 1} and then i ∈ {`+ 2, . . . , k + 1}.

Case 1: i ∈ {1, . . . , `+ 1}

Since ϕ∗ ∈ relint
(
IR′B

)
, for each i ∈ {1, . . . , ` + 1} there exists an εi > 0 such that(

ϕ∗ + δiϕ
i
)
∈ IR′B for all δi ∈ [0, εi]. Also, since θ∗ ∈ relint(Sθ), for each i ∈ {1, . . . , ` + 1} there

must exist an ε̂i > 0 such that

[
θ∗L•
θ∗Λ•

]
+ δ̂i

[
ϕi

0

]
∈ Sθ for all δ̂i ∈ [0, ε̂i]. For each i ∈ {1, . . . , ` + 1},

define θi so that [
θiL•
θiΛ•

]
=

[
ϕ∗ + ε∗iϕ

i − Q̃χ∗
χ∗

]
(4.15)

where ε∗i := min{εi, ε̂i}. Then for all i ∈ {1, . . . , `+ 1},
(
ϕ∗ + ε∗iϕ

i
)
∈ IR′B and

[
θiL•
θiΛ•

]
∈ Sθ.

We now show that for each i ∈ {1, . . . , ` + 1}, θi ∈ IRB . Let j be an arbitrary ele-

ment of {1, . . . , ` + 1}. It is clear that the pair
(
ϕ∗ + ε∗jϕ

j , θj
)

satisfies (4.7). Recall (4.3) and

(4.14). Since
(
ϕ∗ + ε∗jϕ

j
)
∈ IR′B we have G−1

•B
(
q + (4Q)•L

(
ϕ∗ + ε∗jϕ

j
))
≥ 0. This implies that

G−1
•B
(
q +4Qθj

)
≥ 0 and thus θj ∈ IRB .
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Case 2: i ∈ {`+ 2, . . . , k + 1}

Since θ∗ ∈ relint(Sθ), for each i ∈ {` + 2, . . . , k + 1} there exists a ε̃i > 0 such that[
θ∗L•
θ∗Λ•

]
+ δ̃i

[
−Q̃χi−`−1

χi−`−1

]
∈ Sθ for all δ̃i ∈ [0, ε̃i]. Thus, for each i ∈ {`+ 2, . . . , k + 1}, define θi as:

θi =

[
θiL•
θiΛ•

]
=

[
ϕ∗ − Q̃

(
χ∗ + ε̃iχ

i−`−1
)

χ∗ + ε̃jχ
i−`−1

]
(4.16)

We now show that for each i ∈ {` + 2, . . . , k + 1}, θi ∈ IRB . Notice that the pair
(
ϕ∗, θj

)
satis-

fies (4.7) for all i ∈ {` + 2, . . . , k + 1}. Recall (4.3) and (4.14). Since ϕ∗ ∈ IR′B it is clear that

G−1
•B (q + (4Q)•L ϕ

∗) ≥ 0. Therefore, for all i ∈ {` + 2, . . . , k + 1}, G−1
•B
(
q +4Qθi

)
≥ 0 and thus

θi ∈ IRB .

Cases 1 and 2 have now been completed. We next show the affine independence of θ1, . . . , θk+1.

To accomplish this we show that the vectors θ2 − θ1, . . . , θk+1 − θ1 are linearly independent. From

(4.15) and (4.16) observe:

[
θiL• − θ1

L•

θiΛ• − θ1
Λ•

]
=


[
ε∗iϕ

i − ε∗1ϕ1

0

]
for i ∈ {2, . . . , `+ 1}[

−Q̃ε̃iχi−`−1 − ε∗iϕ1

ε̃iχ
i−`−1

]
for i ∈ {`+ 2, . . . , k + 1}

(4.17)

Since ϕ1, . . . , ϕ`+1 are affinely independent, the vectors ϕ2−ϕ1, . . . , ϕ`+1−ϕ1 are linearly indepen-

dent (and thus are nonzero). Furthermore, since ε∗i > 0 for all i ∈ {1, . . . , ` + 1}, ε∗iϕi − ε∗1ϕ1 6= 0

for all i ∈ {2, . . . , ` + 1}. This shows that θi − θ1 6= 0 for all i ∈ {2, . . . , ` + 1}. Also notice that

θi − θ1 6= 0 for all i ∈ {` + 2, . . . , k + 1} since χ1, . . . , χk−` are linearly independent (and are thus

nonzero).

Now, for each pair of distinct i, j ∈ {2, . . . , ` + 1} it is clear from (4.17) that θi − θ1 is

linearly independent from θj − θ1 since ϕ1, . . . , ϕ`+1 are affinely independent. It is also clear for

each pair of distinct i, j ∈ {`+ 2, . . . , k + 1} that θi − θ1 is linearly independent from θj − θ1 since

χ1, . . . , χk−` are linearly independent. Finally, for each pair (i, j) such that i ∈ {2, . . . , ` + 1} and

j ∈ {`+ 2, . . . , k+ 1}, it is clear that θi − θ1 is linearly independent from θj − θ1 since χ1, . . . , χk−`

are linearly independent (and are thus nonzero). Thus, the points θ1, . . . , θk+1 ∈ IRB are affinely

independent, and hence, IRB is full dimensional.

(⇒): We proceed with this direction of the proof by proving the contrapositive. As discussed

previously, for any θ ∈ IRB , there exists ϕ ∈ IR′B and χ ∈ Rk−` such that

[
θL•
θΛ•

]
=

[
ϕ− Q̃χ

χ

]
. The
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maximum number of linearly independent vectors that can be found in IRB is bounded above by

the sum of the maximum number of linearly independent vectors in IR′B and the maximum number

of linearly independent vectors in Rk−`. Since the maximum number of linearly independent vectors

in Rk−` is clearly k − `, we observe that if the maximum number of linearly independent vectors

in IR′B is less than `, the maximum number of linearly independent vectors in IRB is less than

k − `+ ` = k. Consequently, IRB cannot be full dimensional unless IR′B is full dimensional.

Proposition 4.24. Two invariancy regions IRB1
and IRB2

are adjacent if and only if IR′B1
and

IR′B2
are adjacent.

Proof. The same arguments used to prove Proposition 3.3 can be used to show that dim(IRB1
∩

IRB2
) = k − 1 if and only if dim

(
IR′B1

∩ IR′B2

)
= `− 1. The desired result follows.

Together, Propositions 3.3 and 3.4 show that if one desires to solve an mpLCP in which

4Q is not of full column rank, one can instead solve mpLCP′. The resulting partition of Sϕ can be

directly used to obtain the desired partition of Sθ. Thus, we assume throughout this work that 4Q

is of full column rank.

4.3 Phase 2: Partitioning the parameter space

In this section we introduce the theory necessary for developing an algorithm that can be

used to partition Sθ, given an initial basis B0 such that dim (IRB0
) ≥ k − 1. We present the

algorithm for partitioning Sθ in Section 4.5.

To solve an instance of mpLCP we first need a method so that given a complementary feasible

basis B , we can determine a complementary feasible basis B ′ which is adjacent to B . Observe the

following proposition.

Proposition 4.25. [18] If M ∈ Rh×h is column sufficient and two bases B1 and B2 are adjacent,

then |B1 ∩ B2| ≥ h− 2.

Proof. Proposition 4.25 is proved in [18] (Lemma 3.8, pp. 6).

The result of Proposition 4.25 is quite powerful as it implies that given any basis B , all

complementary bases which are adjacent to B can be obtained by replacing either 1 or 2 elements

of B with their complements.
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Definition 4.26. Replacing a single element of a basis with its complement is referred to as a

diagonal pivot.

Definition 4.27. Replacing two elements of a basis with their complements is referred to as an

exchange pivot.

These terms arise from techniques for solving LCP which consider the LCP in a tableau

format and rely on principal pivoting to find feasible solutions. For a given basis B , the corresponding

tableau is the augmented matrix

TB :=
[
G−1
•B G G−1

•B (q +4Qθ)
]

(4.18)

where the right hand side (RHS) is precisely νB(θ).

It is important to note that given a basis B , not every diagonal or exchange pivot results in

a new basis. To see this, suppose that in a particular diagonal or exchange pivot J ⊂ B is the set of

indices replaced with their complements. If rank
(
G
•((B\J)∪J)

)
6= h then

(
(B \ J) ∪ J

)
cannot be

a basis. Additionally, even if a pivot on B does result in a new basis B ′, the bases B and B ′ may

not be adjacent. Due to these facts, we next need to determine conditions under which pivots will

yield new adjacent feasible bases. Such conditions can be developed using the tableau TB .

We first consider diagonal pivots. Since principal pivoting has been studied extensively in

the context of LCP, the following result is well known in the literature.

Observation 4.28. Given a complementary feasible basis B and any index i ∈ B , the set (B \ {i})∪

{ı} is a basis if and only if (TB)i,ı 6= 0.

The following proposition and its corollary are slightly modified from [18].

Proposition 4.29. Given a complementary feasible basis B , suppose that for some index i ∈ B the

set B ′ = (B \ {i}) ∪ {ı} is a basis. Then B and B ′ are adjacent.

Proof. The proposition is implied by the facts that C(B) ∩ C(B ′) = cone
(
G• (B\{i})

)
and

dim
(
cone

(
G• (B\{i})

))
= h− 1. Therefore, by Definition 3.23, the bases B and B ′ are adjacent.

Corollary 4.30. Given a complementary feasible basis B , suppose that for some index i ∈ B the

set B ′ = (B \ {i})∪{ı} is a basis. If M is column sufficient then C(B ′) is the unique complementary

cone adjacent to C(B) along the facet cone
(
G• (B\{i})

)
.
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Proof. The Corollary is implied by the fact that for column sufficient matrices the relative interiors

of all complementary cones are disjoint.

Together Observation 4.28 and Proposition 4.29 provide conditions under which an adjacent

complementary feasible basis B ′ can be derived from a given complementary feasible basis B by using

a single diagonal pivot.

We now move our attention to exchange pivots and present the following two new proposi-

tions.

Proposition 4.31. For a given complementary basis B , suppose there exist distinct i, j ∈ B such

that B ′ = (B \ {i, j}) ∪ {ı, } is a complementary basis which is adjacent to B . Then if M is column

sufficient, either (TB)i,ı = 0 or (TB)j, = 0.

Proof. Assume without loss of generality that (TB)i,ı 6= 0. Then B̂ = (B \ {i}) ∪ {ı} is a comple-

mentary basis and C(B)∩C(B̂) = cone
(
G• (B\{i})

)
. Furthermore, by Corollary 4.30, B̂ is the unique

basis whose complementary cone intersects C(B) along this facet. Therefore, since B ′ is also adjacent

to B , it must be that C(B) ∩ C(B ′) ⊆ cone
(
G• (B\{j})

)
. Hence, there must exist J ′ ⊂ B ′ such that

|J ′| = h− 1 and dim
(
cone

(
G• (B\{j})

)
∩ cone (G• J′)

)
= h− 1. Note that since |J ′| = h− 1, either ı

or  must be a member of J ′. Consider the following two cases:

Case 1: ı ∈ J ′

Since dim
(
cone

(
G• (B\{j})

)
∩ cone (G• J′)

)
= h − 1, we have G• ı ∈ span

(
G• (B\{j})

)
. Now,

suppose that G• ı /∈ cone
(
G• (B\{j})

)
. Then C(B) and C(B ′) can only be adjacent along the facet

cone
(
G• (B\{j})

)
if C(B) = cone (G•B) ⊂ cone

(
G
• ((B\{i})∪{ı})

)
= C(B̂), but this contradicts the fact

that M is column sufficient since in this case C(B̂) and C(B) do not have disjoint relative interiors.

Suppose instead that G• ı ∈ cone
(
G• (B\{j})

)
. This implies that C(B̂) = cone

(
G
• ((B\{i})∪{ı})

)
⊆

cone (G•B) = C(B), which means that one of the following must hold: (i) C(B̂) is not full dimen-

sional, or (ii) C(B̂) and C(B) do not have disjoint relative interiors. Notice, however, that the first

of these contradicts the fact that B̂ is a basis, and the latter contradicts the fact that M is column

sufficient.

Case 2:  ∈ J ′

Since dim
(
cone

(
G• (B\{j})

)
∩ cone (G• J′)

)
= h − 1, we have G•  ∈ span

(
G• (B\{j})

)
. Since

TB =
[
G−1
•B G G−1

•B (q +4Qθ)
]
, we have (TB)j,γ = 0 for all γ ∈ (B \ {j}). Thus, since G•  is a

linear combination of the columns of G• (B\{j}), it must be that (TB)j, = 0.
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Cases 1 and 2 are now complete. The contradictions found in Case 1 show that either ı /∈ J ′

or (TB)i,ı = 0. Clearly, if (TB)i,ı = 0 the thesis of the proposition holds. If, on the other hand,

ı /∈ J ′ then  ∈ J ′ which, as is shown in Case 2, implies that (TB)j, = 0. Thus, the claim of the

proposition holds in all cases.

Although the claim of the following proposition is different from those of Columbano et al.

[18], aspects of one of the proofs in their work are used in our proof.

Proposition 4.32. Let a complementary basis B and distinct i, j ∈ B be given. The set B ′ =

(B \ {i, j}) ∪ {ı, } is a complementary basis such that C(B) is adjacent to C(B ′) along the facet

cone
(
G−1
•(B\{i})

)
if and only if (TB)i,ı = 0, (TB)j,ı > 0, and (TB)i, 6= 0.

Proof. (⇐): We first show that B ′ is a basis and then show that C(B) is adjacent to C(B ′) along

the facet cone
(
G−1
•(B\{i})

)
. Since TB =

[
G−1
•B G G−1

•B (q +4Qθ)
]
, we have (TB)i,γ = 0 for all

γ ∈ B \ {i} and (TB)j,ξ = 0 for all ξ ∈ B \ {j}. Thus, since (TB)j,ı > 0, G• ı cannot be a linear

combination of the columns of G•(B\{i,j}). Furthermore, since (TB)i,ı = 0 and (TB)i, 6= 0, G•  cannot

be a linear combination of the columns of G•((B\{i,j})∪{ı}). Thus, the columns of G•B′ are linearly

independent, showing that B ′ is a basis.

We now show that C(B) is adjacent to C(B ′) along the facet cone
(
G−1
•(B\{i})

)
. Notice that

for any set J ⊂ E , q +4Qθ lies in the relative interior of cone (G• J) if and only if q +4Qθ is a

strictly positive combination of the columns of G•J , i.e., for each γ ∈ J there exists βγ > 0 such that

q +4Qθ =
∑
γ∈J

βγG•γ . Thus, consider

W (β) : =
∑

γ∈(B\{i})

βγG•γ

= βjG•j +
∑

γ∈(B\{i,j})

βγG•γ (4.19)

Recall that (TB)•ı = G−1
•B G•ı, which implies:

G•ı = G•B(TB)•ı

=
∑
γ∈B

G•γ(TB)γı

=
∑

γ∈(B\{i})

G•γ(TB)γı
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= G•j(TB)j,ı +
∑

γ∈(B\{i,j})

G•γ(TB)γı (4.20)

Since (TB)j,ı > 0, (4.20) gives G•j =
1

(TB)j,ı
G•ı −

∑
γ∈(B\{i,j})

G•γ
(TB)γı
(TB)j,ı

. Using this result

and substituting into (4.19) yields

W (β) = βj

 1

(TB)j,ı
G•ı −

∑
γ∈(B\{i,j})

G•γ
(TB)γı
(TB)j,ı

+
∑

γ∈(B\{i,j})

βγG•γ

=
βj

(TB)j,ı
G•ı −

∑
γ∈(B\{i,j})

(
βγ − βj

(TB)γı
(TB)j,ı

)
G•γ

(4.21)

From (4.19) and (4.21) we observe that by selecting β̃ so that: (i) β̃γ > 0 for all γ ∈ (B \ {i}), and

(ii) β̃γ > β̃j
(TB)γı
(TB)j,ı

for all γ ∈ (B \ {i, j}), we have that W (β̃) is in the relative interior of both

cone
(
G• (B\{i})

)
and cone

(
G• (B′\{})

)
. This shows that dim

(
cone

(
G• (B\{i})

)
∩ cone

(
G• (B′\{})

))
=

h− 1 and therefore B and B ′ are adjacent.

(⇒): We prove this direction by contradiction. Consider the following 3 cases:

Case 1: (TB)i,ı 6= 0

By Corollary 4.30, B̂ = (B \{i})∪{ı} is the unique basis such that C(B̂) is adjacent to C(B)

along the facet cone
(
G−1
•(B\{i})

)
. This is a contradiction.

Case 2: (TB)j,ı ≤ 0

Since B ′ is a basis, the unique way to represent W (β) as a linear combination of the

columns of G•B′ is (4.21). Therefore, in this case there does not exist β such that W (β) lies in both

the relative interiors of cone
(
G−1
•(B\{i})

)
and C(B ′). Hence, C(B) cannot be adjacent to C(B ′) along

cone
(
G−1
•(B\{i})

)
, which is a contradiction.

Case 3: (TB)i, = 0

Since (TB)i,ı = 0, the matrix G−1
•B G•B′ has a row of all zeros. Thus G−1

•B G•B′ is not invertible,

which is a contradiction since both B and B ′ are bases.

Finding a contradiction in each of the cases above shows that we must have (TB)i,ı = 0,

(TB)j,ı > 0, and (TB)i, 6= 0.
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IDB1

IDB3

Figure 4.1: Consider the four complementary cones C(B1), C(B2), C(B3) and C(B4) and the two
invariant domains IDB1

and IDB3
. The invariant domains IDB1

and IDB3
map to adjacent

invariancy regions IRB1
and IRB3

even though the complementary cones C(B1) and C(B3) are
not adjacent.

By combining the results of Propositions 4.25, 4.29, 4.31 and 4.32 as well as Observation 4.28

and Corollary 4.30, we are now able to develop the following strategy for finding all complementary

bases which are adjacent to a given basis B :

1. Calculate the tableau TB associated with basis B .

2. For any i ∈ B such that (TB)i,ı 6= 0, the set (B \ {i}) ∪ {ı} is a complementary basis adjacent

to B .

3. For any distinct i, j ∈ B such that (TB)i,ı = 0, (TB)j,ı > 0 and (TB)i, 6= 0, the set (B \ {i, j})∪

{ı, } is a feasible complementary basis adjacent to B .

Recall, however, that our goal is to partition Sθ. Although there is a strong relationship be-

tween complementary cones and invariancy regions, it is not always the case that adjacent invariancy

regions result from adjacent complementary cones. To see this, observe Figure 4.1.

It has been proved by Columbano et al. [18] (Thm 5.10 pp. 21), though, that for any pair

of adjacent full dimensional invariancy regions IRBi and IRBj with i < j, there always exists

a sequence of invariancy regions {IRB`}
j−1
`=i+1 such that C(Bγ) and C(Bγ+1) are adjacent for all

γ ∈ {i, . . . , j−1} and dim (C(Bγ) ∩ AS) = k−1 for all γ ∈ {i+1, . . . , j−1}. In general, the method

for finding one of these sequences introduced by Columbano et al. [18] relies on an ε-perturbation of

the affine subspace AS . In order to obtain a lower worst-case complexity, we derive an alternative

method in which we determine the sequences directly. We first present a brief outline of this method

and then provide the details necessary for its implementation.
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Outline 4.33:

Preliminaries: Let R represent a set of invariancy regions for which adjacent regions need to

be found. Let K represent the set of feasible bases discovered.

Phase 1 –

Initialization: Find an initial full dimensional invariancy region IRB0
and add it to R . Add

B0 to K .

Phase 2 –

Main Step: 1. Select IRB ∈ R and remove it from R .

2. Determine the set of feasible bases which have invariancy regions that are:

(i) adjacent to IRB , and (ii) at least (k − 1)–dimensional.

3. For each basis B̂ found in step 2, if B̂ /∈ K , add IRB̂ to R and B̂ to K .

4. If R = ∅, STOP. Otherwise, go back to step 1.

Note that in Outline 4.33 the main step serves as a basis for Algorithm 4.1, while the

initialization phase serves as a basis for Algorithm 4.2. Both of these algorithms are presented in

Section 4.5. We now discuss the details necessary to implement the main steps of the procedure

above. The details of the initialization step, i.e., determining an initial feasible basis B0 such that

dim (IRB0
) ≥ k − 1, are given in Section 4.4. For any feasible complementary basis B and index

i ∈ B , we define the following sets which will be useful during the remainder of this discussion:

ZB :=
{
j ∈ B :

(
G−1

•B
)
j •

(q +4Qθ) = 0 ∀ θ ∈ Sθ
}

(4.22)

Hi
B :=

{
j ∈ B \ {i} : ∃β 6= 0 s.t.

((
G−1

•B
)
j •
− β

(
G−1

•B
)
i •

)
(q +4Qθ) = 0 ∀ θ ∈ Sθ

}
(4.23)

Here ZB is the set of indices in B for which the RHS of TB is zero. For a given θ ∈ Sθ

these RHS values can be interpreted as the multipliers on the columns of G•B needed to represent

q+4Qθ as a linear combination of the columns of G. Thus, if the RHS value is zero for some index

i, this indicates that the column G• i is unnecessary in the representation of q +4Qθ. There is also

another interpretation. Notice from (4.3) that for each i ∈ B ,
(
G−1
•B
)
i •

(q +4Qθ) ≥ 0 is a defining

inequality of IRB . Thus if there is some i ∈ B for which the RHS of TB is zero, the associated

defining inequality of IRB is 0 ≥ 0, which is trivially satisfied. Now consider Hi
B . Given an index

i ∈ B , the set Hi
B is the set of indices in B \{i} for which the RHS of TB is a constant multiple of the
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RHS of TB associated with index i. Thus, for all j ∈ Hi
B , the defining constraints of IRB associated

with i and j are implied by the same hyperplane. For an index i ∈ B , we use h iB to denote the

hyperplane which forms the defining constraint of IRB associated with i. Thus, we have:

h iB :=
{
θ ∈ Rk :

(
G−1
•B
)
i •

(q +4Qθ) = 0
}
. (4.24)

We now introduce several propositions whose results allow us to perform the steps of Outline

4.33. Each of these propositions introduces a linear program (LP) that can be solved in order to

determine, for example, if a given invariancy region is full dimensional. We note that these LPs

do not need to be solved to optimality, but rather a feasible solution must be found which has an

associated objective function value which is strictly positive. To aid in understanding of the details

presented throughout the following discussion, we provide here two instances of mpLCP. As we de-

velop the theory necessary for partitioning Sθ, we also show directly how this theory can be applied

to each instance. Observe the following examples:

Example 1

w −

1 0 0

0 1 1

0 1 1

 z =

 6

−1

1

+

1 0

0 −1

1 −3

 θ
w>z = 0

w, z ≥ 0

Sθ = [−2, 2]2

Example 2

w −

 5 4 0

4 5 0

−1 0 1

 z =

−3

1

0

+

 1 1

−1 3

0 0

 θ
w>z = 0

w, z ≥ 0

Sθ = [−2, 2]2

For the sake of clarity, when discussing the examples above we use variable names to describe

the elements of each basis rather than their corresponding indices. We now provide the solution to

each example. How these solutions are determined is shown during the discussion that follows.

Solution 1

θ1

θ2

IRB0

IRB1

IRB2

Figure 4.2: Partition of Sθ - Example 1

Solution 2

θ1

θ2 IRB0

IRB2

IRB3
IRB4

Figure 4.3: Partition of Sθ - Example 2
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Invariancy regions for Example 1

IRB0
=

θ ∈ Sθ :

w1 = θ1 + 6 ≥ 0

w2 = −θ2 − 1 ≥ 0

w3 = θ1 − 3θ2 + 1 ≥ 0

, IRB1
=

θ ∈ Sθ :

w1 = θ1 + 6 ≥ 0

z2 = θ2 + 1 ≥ 0

w3 = θ1 − 2θ2 + 2 ≥ 0


IRB2

=

θ ∈ Sθ :

w1 = θ1 + 6 ≥ 0

w2 = −θ1 + 2θ2 − 2 ≥ 0

z3 = −θ1 + 3θ2 − 1 ≥ 0


Invariancy regions for Example 2

IRB0
=

θ ∈ Sθ :

w1 = θ1 + θ2 − 3 ≥ 0

w2 = −θ1 + 3θ2 + 1 ≥ 0

w3 = 0

, IRB2
=

θ ∈ Sθ :

z1 = − 1
5
θ1 − 1

5
θ2 + 3

5
≥ 0

w2 = − 9
5
θ1 + 11

5
θ2 + 17

5
≥ 0

z3 = − 1
5
θ1 − 1

5
θ2 + 3

5
≥ 0


IRB3

=

θ ∈ Sθ :

z1 = −θ1 + 7
9
θ2 + 19

9
≥ 0

z2 = θ1 − 11
9
θ2 − 17

9
≥ 0

z3 = −θ1 + 7
9
θ2 + 19

9
≥ 0

, IRB4
=

θ ∈ Sθ :

w1 = 9
5
θ1 − 7

5
θ2 − 19

5
≥ 0

z2 = 1
5
θ1 − 3

5
θ2 − 1

5
≥ 0

z3 = 0


For each of the above examples we claim that an initial basis B0 = {w1, w2, w3} is feasible.

A discussion on obtaining initial bases is provided in Section 4.4. The following proposition provides

the tools necessary for determining whether or not the invariancy region associated with a given

basis is full dimensional.

Proposition 4.34. For a given feasible complementary basis B , IRB is full dimensional if and only

if |ZB | ≤ h − k and there exists θ̂ ∈ Sθ such that
(
G−1
•B
)
i •

(q +4Qθ̂) > 0 for all i ∈ B \ ZB , i.e., if

the following LP has a strictly positive optimal value:

LPD(B) := max
λ,θ

λ

s.t.
(
G−1
•B
)
i •

(4Qθ)− λ1 ≥ −
(
G−1
•B
)
i •
q ∀ i ∈ B \ ZB

θ ∈ Sθ

(4.25)

Proof. (⇐): Suppose (λ∗, θ∗) is a solution to LPD(B) and λ∗ > 0. Then since(
G−1
•B
)
i •

(4Qθ∗) − λ∗1 ≥ −
(
G−1
•B
)
i •
q for all i ∈ B \ ZB , we have that AS intersects the relative

interior of cone
(
G•(B\ZB )

)
. Thus, since dim(AS) = k, dim (AS ∩ C(B)) = min {k, h− |ZB |}, which

shows that dim(IRB) = k since |ZB | ≤ h− k.

(⇒): We prove this direction using contradiction. Consider the following cases:

Case 1: |ZB | > h− k

Notice that for each i ∈ ZB , the column G• i is unnecessary for the description of AS ∩C(B).

Therefore (AS ∩ C(B)) ⊆ cone
(
G•(B\ZB )

)
. However, since |ZB | > h − k, dim

(
cone

(
G•(B\ZB )

))
< k

and thus IRB cannot be full dimensional, which is a contradiction.
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Case 2: There does not exist a solution (λ∗, θ∗) to LPD(B) such that λ∗ > 0.

If LPD(B) is infeasible, IRB is empty, which is a contradiction. On the other hand, suppose

that for all solutions (λ∗, θ∗) to LPD(B), λ∗ ≤ 0. If this is the case then there does not exist θ ∈ Sθ

which lies in the relative interior of IRB . Therefore IRB cannot be full dimensional, which is a

contradiction.

Finding contradictions in both cases above shows that there must exist a solution (λ∗, θ∗)

to LPD(B) such that λ∗ > 0 and that |ZB | ≤ h− k.

As a result of Proposition 4.34, LPD(B̂) can be used to determine whether or not IRB̂ is

full dimensional. We note here that due to the fact that Sθ is assumed to be a bounded polytope,

LPD will always have a bounded feasible region. Moreover, Sθ being bounded guarantees that every

LP we introduce in this section will also have a bounded feasible region. Now, observe the initial

tableaux for each of the examples:

Initial Tableau - Example 1

w1 w2 w3 z1 z2 z3

w1 1 0 0 -1 0 0 θ1 + 6

w2 0 1 0 0 -1 -1 −θ2 − 1

w3 0 0 1 0 -1 -1 θ1−3θ2+1

Initial Tableau - Example 2

w1 w2 w3 z1 z2 z3

w1 1 0 0 -5 -4 0 θ1 + θ2 − 3

w2 0 1 0 -4 -5 0 −θ1+3θ2+1 (4.26)

w3 0 0 1 1 0 -1 0

From these tableaux and (4.25) we obtain LPD(B0) for each example:

max
λ,θ

λ

s.t. θ1 − λ ≥ −6

−θ2 − λ ≥ 1

θ1 − 3θ2 − λ ≥ −1

θ ∈ [−2, 2]2

max
λ,θ

λ

s.t. θ1 + θ2 − λ ≥ 3

−θ1 + 3θ2 − λ ≥ −1

θ ∈ [−2, 2]2

Notice from (4.22) that there are only two inequalities present in the LP for Example 2

because w3 ∈ ZB0
. The respective optimal solutions of each LP are (λ∗, θ∗1 , θ

∗
2) = (1, 0,−2) and

(λ∗∗, θ∗∗1 , θ∗∗2 ) = (1, 2, 2). Hence, by Proposition 4.34, IRB0
is full dimensional for both examples.

Thus, Proposition 4.34, together with the procedures of Section 4.4, allows for the completion of

the intialization phase of Outline 4.33. The next task we address is that of step 2: “Determine the

set of feasible bases which have invariancy regions that are: (i) adjacent to IRB , and (ii) at least

(k − 1)–dimensional.”
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This can be done by finding the set of all facets of IRB and then, for each facet, determining

all bases which have invariancy regions that are adjacent to IRB along that facet. Consider the

following propositions, observations, and definitions.

Proposition 4.35. For a given complementary basis B , if there exists i ∈ B and θ̂ ∈ Sθ such that(
G−1
•B
)
j •

(q +4Qθ̂) > 0 for all j ∈
(
B \

(
ZB ∪Hi

B ∪ {i}
))

and
(
G−1
•B
)
i •

(q +4Qθ̂) = 0, then h iB is a

facet of IRB . Hence, if the following LP has a strictly positive optimal value, h iB is a facet of IRB .

LPF (B , i) := max
λ,θ

λ

s.t.
(
G−1
•B
)
j •

(4Qθ)− λ1 ≥ −
(
G−1
•B
)
j •
q ∀ j ∈

(
B \

(
ZB ∪Hi

B ∪ {i}
))

(
G−1
•B
)
i •

(4Qθ) = −
(
G−1
•B
)
i •
q

θ ∈ Sθ

(4.27)

Proof. Suppose (λ∗, θ∗) is a solution to LPF (B , i) and λ∗ > 0. We first show that θ∗ lies on the

hyperplane h iB . Next we show that θ∗ ∈ IRB (4.3). Finally we show that any of the defining

constraints of IRB which are formed by h iB cannot be removed without adding new points to IRB ,

i.e., h iB forms a facet of IRB .

From (4.23) notice that for each ` ∈ Hi
B , h iB = h`B . So, since

(
G−1
•B
)
i •

(4Qθ∗) = −
(
G−1
•B
)
i •
q,

it is clear that
(
G−1
•B
)
` •

(q +4Qθ∗) = 0 for all ` ∈ Hi
B . This also shows that θ∗ lies on h iB . Next,

recall from (4.22) that for all j ∈ ZB ,
(
G−1
•B
)
j •

(q + 4Qθ) = 0 for all θ ∈ Sθ. Therefore for each

j ∈ ZB , the satisfaction of
(
G−1
•B
)
j •

(q +4Qθ) ≥ 0 is trivial for all θ ∈ IRB . Thus, since θ∗ satisfies

the constraints of LPF (B , i), θ∗ ∈ IRB . Furthermore, since λ∗ > 0, there must exist ε > 0 such that

all θ in the ball of radius ε centered at θ∗ satisfy
(
G−1
•B
)
j •

(q+4Qθ) ≥ 0 for all j ∈
(
B \

(
Hi

B ∪ {i}
))

.

Hence, since θ∗ lies on h iB , this ε-ball must contain a θ̂ satisfying all the defining inequalities of

IRB except those which form h iB . Thus, the inqualities which form h iB cannot be removed from the

description of IRB without altering the polytope and therefore h iB must be a facet.

Observation 4.36. The converse of Proposition 4.35 also holds if IRB is full dimensional.

Observe LPF (B0, w1) for each of the two examples:

max
λ,θ

λ

s.t. θ1 = −6

−θ2 − λ ≥ 1

θ1 − 3θ2 − λ ≥ −1

θ ∈ [−2, 2]2

max
λ,θ

λ

s.t. θ1 + θ2 = 3

−θ1 + 3θ2 − λ ≥ −1

θ ∈ [−2, 2]2
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For Example 1, this LP is infeasible. For Example 2, the LP has an optimal solution of

(λ∗∗, θ∗∗1 , θ∗∗2 ) = (6, 1, 2). Thus, by Proposition 4.35, hw1

B0
is a facet of IRB0

for Example 2, but

not for Example 1, where hw1

B0
=

{
{θ ∈ Sθ : θ1 = −6} for Example 1

{θ ∈ Sθ : θ1 + θ2 = 3} for Example 2
. By following the same

procedure for w2 and w3, we find that hw2

B0
is the only facet of IRB0

for Example 1 and hw1

B0
is

the only facet of IRB0
for Example 2. Here hw2

B0
=

{
{θ ∈ Sθ : θ2 = −1} for Example 1

{θ ∈ Sθ : −θ1 + 3θ2 = −1} for Example 2
.

To see that the correct conclusions have been made about which hyperplanes form facets of IRB0
,

observe Figures 4.4 and 4.5.

We now continue our discussion and develop the tools necessary for determining bases having

invariancy regions which are adjacent to a given invariancy region across a particular facet. Consider

the following definition and subsequent proposition.

Definition 4.37. Given a complementary basis B , the associated tableau TB , and distinct indices

i ∈ B and j ∈ E , a pivot on (TB)i,j is the process of creating a new matrix T ∗ by performing

elementary row operations on TB so that T ∗i,j = 1 and T ∗γ,j = 0 for all γ ∈ (B \ {i}).

θ1

θ2

IRB0

Sθ

hw1

B0

hw2

B0

hw3

B0

Figure 4.4: Example 1 - Only hw2

B0
forms

a facet of IRB0

θ1

θ2

IRB0

Sθ

hw1

B0

hw2

B0

Figure 4.5: Example 2 - Only hw1

B0
forms

a facet of IRB0

Proposition 4.38. Let B be a feasible basis such that IRB is full dimensional and let h iB be a

facet of IRB . For any complementary set B ′ 6= B such that |B ∩ B ′| ≥ h − 2, IRB and IRB′ are

adjacent along h iB if and only if one of the following conditions holds.

1. (TB)i,ı 6= 0.

2. (TB)i,ı = 0, and there exists j ∈ B such that (TB)j,ı > 0, (TB)i, 6= 0, and the following LP has
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a strictly positive optimal value:

LPA(B, i, j) :=

max
λ,θ

λ

s.t.
(
G−1

•B
)
γ •

(4Qθ)− λ1 ≥ −
(
G−1

•B
)
γ •
q ∀ γ ∈

(
B \

(
ZB ∪Hi

B ∪ {i}
))

(
G−1

•B
)
i •

(4Qθ) = −
(
G−1

•B
)
i •
q

Y ξB (θ)− λ ≥ 0 ∀ ξ ∈
(
B \

(
(ZB )′ ∪ (Hi

B )′ ∪ {i, j}
))

θ ∈ Sθ

(4.28)

where:

Y ξB (θ) :=

((
G−1

•B
)
ξ •
−

(TB )
ξ,ı

(TB )j,ı

(
G−1

•B
)
j •
−
(

(TB )
ξ,

(TB )i,
−

(TB )
ξ,ı(TB )j,

(TB )i,(TB )j,ı

)(
G−1

•B
)
i •

)
(q +4Qθ) (4.29)

(ZB )′ :=
{
ξ ∈ B \ {i, j} : Y ξB (θ) = 0 ∀ θ ∈ Sθ

}
(4.30)

(Hi
B )′ :=

{
ξ ∈ B \ {i, j} : ∃β 6= 0 s.t. Y ξB (θ) = β

(
G−1

•B
)
i •

(q +4Qθ) ∀ θ ∈ Sθ
}

(4.31)

(Note the similarity in notations between (4.22) and (4.30) as well as (4.23) and (4.31). The

reasons for this similarity are shown in the following proof.)

Proof. (⇐): Consider the two conditions:

Condition 1: (TB)i,ı 6= 0

By Observation 4.28, B ′ = (B \ {i}) ∪ {ı} is a basis. The adjacency of IRB and IRB′ along h iB

comes from the following facts:

(i)
(

AS ∩ cone
(
G−1
•(B\{i})

))
forms a facet of both IDB and IDB′ , and

(ii) IDB and IDB′ share this facet if and only if h iB is a facet of both IRB and IRB′ .

Condition 2: (TB)i,ı = 0, and there exists j ∈ B such that (TB)j,ı > 0, (TB)i, 6= 0, and LPA(B , i, j)

has a nonpositive optimal value.

By Proposition 4.31, B ′ = (B \ {i, j}) ∪ {ı, } is a basis. We will show that if there exists a solution

(λ∗, θ∗) to LPA(B , i, j) such that λ∗ > 0, then h iB forms a facet of IRB′ =
{
θ ∈ Sθ ⊆ Rk : G−1

•B′ (q +4Qθ) ≥ 0
}

.

Now, since (TB)i,ı = 0, (TB)j,ı > 0 and (TB)i, 6= 0, the tableau TB′ can be obtained from the tableau

TB in two steps: (i) create matrix T ∗ from TB by performing a pivot on (TB)j,ı, and (ii) obtain TB′

from T ∗ by performing a pivot on (T ∗)i,. Consider the following subset of TB :
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i j ı 

i 1 0 0 (TB)i,
(
G−1
•B
)
i •

(q +4Qθ)

γ 0 0 (TB)γ,ı (TB)γ,
(
G−1
•B
)
γ •

(q +4Qθ)

j 0 1 (TB)j,ı (TB)j,
(
G−1
•B
)
j •

(q +4Qθ)

where γ represents any element of B \ {i, j}. Then, by pivoting on (TB)j,ı, we obtain the

following corresponding subset of T ∗:

i j ı 

i 1 0 0 (TB )i,

(
G−1
•B

)
i •

(q +4Qθ)

γ 0 −
(TB )γ,ı

(TB )j,ı
0 (TB )γ, − (TB )γ,ı

(TB )j,

(TB )j,ı

((
G−1
•B

)
γ •
−

(TB )γ,ı

(TB )j,ı

(
G−1
•B

)
j •

)
(q +4Qθ)

ı 0
1

(TB )j,ı
1

(TB )j,

(TB )j,ı

(
G−1
•B

)
j •

(q +4Qθ)

(TB )j,ı

Finally, by pivoting on (T ∗)i, we obtain the following corresponding subset of TB′ (for the

sake of space, we only show the RHS):



(
G−1
•B
)
i •

(q +4Qθ)
(TB)i,

γ Y γ
B(θ)

ı
1

(TB)j,ı

((
G−1
•B
)
j •
−

(TB)j,
(TB)i,

(
G−1
•B
)
i •

)
(q +4Qθ)

This subset of tableau TB′ provides us with the following information:

(
G−1

•B′
)
 •

(q +4Qθ) =

(
G−1

•B
)
i •

(q +4Qθ)
(TB )i,

for all θ ∈ Sθ, (4.32)

(
G−1

•B′
)
ı •

(q +4Qθ) =
1

(TB )j,ı

((
G−1

•B
)
j •
−

(TB )j,
(TB )i,

(
G−1

•B
)
i •

)
(q +4Qθ) for all θ ∈ Sθ, (4.33)

and (
G−1

•B′
)
γ •

(q +4Qθ) = Y γ

B (θ) for all γ ∈ B ′ \ {ı, } and θ ∈ Sθ. (4.34)

From (4.32) we have h B′ = h iB . Therefore, by Proposition 4.35, if the following conditions hold,

(
G−1
•B′
)
γ •

(q +4Qθ∗) > 0 for all γ ∈
(

B ′ \
(

ZB′ ∪H
B′ ∪ {}

))
(4.35)

and (
G−1
•B′
)
 •

(q +4Qθ∗) = 0, (4.36)

then h iB is a facet of IRB′ .
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Now, since (λ∗, θ∗) satisfies (4.28) and λ∗ > 0, we have:

(
G−1
•B
)
γ •

(q +4Qθ∗) > 0 for all γ ∈
(
B \

(
ZB ∪Hi

B ∪ {i}
))
, (4.37)

(
G−1
•B
)
i •

(q +4Qθ∗) = 0, (4.38)

and

Y ξB(θ) > 0 for all ξ ∈
(
B \

(
(ZB)′ ∪ (Hi

B)′ ∪ {i, j}
))
. (4.39)

From (4.32) we observe that (4.36) is given by (4.38), so we focus on (4.35). To show that

(4.35) is satisfied, we need to show: (i) if ı ∈
(

B ′ \
(

ZB′ ∪H
B′
))

then
(
G−1
•B′
)
ı •

(q+4Qθ∗) > 0, and

(ii) for all γ ∈ B ′ \ {ı, }, if γ ∈
(

B ′ \
(

ZB′ ∪H
B′
))

then
(
G−1
•B′
)
γ •

(q +4Qθ∗) > 0.

Recall that j 6= i and and notice the following:

• If j ∈
(
B \

(
ZB ∪Hi

B
))

, then (4.33), (4.37) and (4.38) imply
(
G−1
•B′
)
ı •

(q + 4Qθ∗) > 0 since

(TB)j,ı > 0.

• If j ∈
(
ZB ∪Hi

B
)
, then from (4.32), (4.33) and the definitions of ZB and Hi

B ((4.22) and (4.23)),

we have ı ∈
(

ZB′ ∪H
B′
)

.

Thus, since j must be a member of either
(
B \

(
ZB ∪Hi

B
))

or
(
ZB ∪Hi

B
)
, it is clear that if

ı ∈
(

B ′ \
(

ZB′ ∪H
B′
))

, then
(
G−1
•B′
)
ı •

(q +4Qθ∗) > 0.

Now consider γ ∈ B ′ \{ı, }. Notice that from (4.32), (4.34) and the definitions of ZB , (ZB)′,

Hi
B , and (Hi

B)′ ((4.22),(4.23),(4.30) and (4.31)) we have:

γ ∈ (ZB)′ ⇔ γ ∈ ZB′ (4.40)

and

γ ∈ (Hi
B)′ ⇔ γ ∈ H

B′ (4.41)

From these facts and (4.39) we conclude that if γ ∈
(

B ′ \
(

ZB′ ∪H
B′ ∪ {ı, }

))
, then

γ ∈
(
B \

(
(ZB)′ ∪ (Hi

B)′ ∪ {i, j}
))

and thus
(
G−1
•B′
)
γ •

(q +4Qθ∗) > 0.

We have now shown that both (4.35) and (4.36) are satisfied and thus h iB forms a facet of

IRB′ .
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(⇒): Since B ′ is a complementary set such that B ′ 6= B , |B ∩ B ′| ≥ h− 2, and IRB and IRB′ are

adjacent along h iB , we must have one of the following two cases:

Case 1: |B ∩ B ′| = h− 1

In this case IRB and IRB′ are adjacent along h iB if and only if B ′ = (B \ {i}) ∪ {ı} is a

basis. Additionally, B ′ = (B \ {i}) ∪ {ı} is a basis if and only if (TB)i,ı 6= 0. Hence, in this case

Condition 1 is satisfied.

Case 2: |B ∩ B ′| = h− 2

In this case, the fact that IRB and IRB′ are adjacent along h iB implies that there exists

j ∈ B such that B ′ = (B \ {i, j}) ∪ {ı, } is a basis and C(B) is adjacent to C(B ′) along the facet

cone
(
G−1
•(B\{i})

)
. Then by Proposition 4.32, (TB)i,ı = 0, (TB)j,ı > 0, and (TB)i, 6= 0. Furthermore,

the work done in the proof of Proposition 4.32 shows that C(B) and C(B ′) are adjacent along

cone
(
G−1
•(B′\{})

)
, i.e., h iB = h B′ . Therefore, the fact that IRB and IRB′ are adjacent along h iB also

implies that there exists θ∗ ∈ IRB which is also in IRB′ and lies in the relative interiors of both

the facet of IRB formed by h iB and the facet of IRB′ formed by h B′ . Recognize that this can only

be true if all of the following hold:

(
G−1
•B
)
γ •

(q +4Qθ∗) > 0 for all γ ∈
(
B \

(
ZB ∪Hi

B ∪ {i}
))
, (4.42)

(
G−1
•B
)
i •

(q +4Qθ∗) = 0, (4.43)

(
G−1
•B′
)
γ •

(q +4Qθ∗) > 0 for all γ ∈
(

B ′ \
(

ZB′ ∪H
B′ ∪ {}

))
, (4.44)

and (
G−1
•B′
)
 •

(q +4Qθ∗) = 0. (4.45)

Furthermore, notice that from (4.32), (4.40) and (4.41), the four conditions above imply that there

must exist λ∗ > 0 such that (λ∗, θ∗) is a solution to (4.28). Hence, in this case Condition 2 is

satisfied.

Consider again the two examples. Recall from (4.26) that for Example 1, (TB0
)w2,z2 = −1

and for Example 2, (TB0
)w1,z1 = 1. By condition 1 of Proposition 4.38, performing pivots on these
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elements of the respective tableaux provides new bases Bex1
1 = {w1, z2, w3} and Bex2

1 = {z1, w2, w3}

which have invariancy regions which are adjacent to IRB0
for their respective examples.

At this point let us discuss each example separately in order to highlight certain key qualities

present in each. We begin with Example 1. Using LPF (Bex1
1 , w1), LPF (Bex1

1 , z2) and LPF (Bex1
1 , w3)

we can determine that hz2Bex1
1

= {θ ∈ Sθ : θ2 = −1} and hw3

Bex1
1

= {θ ∈ Sθ : θ1 − 2θ2 = −2} form the

facets of IRBex1
1

. Since we can conclude from Corollary 4.30 that IRB0
is the only invariancy region

adjacent to IRBex1
1

across hz2Bex1
1

, we need only look for adjacent regions across hw3

Bex1
1

. Observe TBex1
1

:

w1 w2 w3 z1 z2 z3

w1 1 0 0 -1 0 0 θ1 + 6

z2 0 -1 0 0 1 1 θ2 + 1 (4.46)

w3 0 -1 1 0 0 0 θ1 − 2θ2 + 2

Here (TBex1
1

)w3,z3 = 0 and thus condition 1 of Proposition 4.38 does not apply and we

must use condition 2. Recognize that (TBex1
1

)z2,z3 = 1 is the only positive element of the column

of TBex1
1

associated with z3. Since (TBex1
1

)w3,w2
= −1, condition 2 is satisfied if the optimal so-

lution to LPA(Bex1
1 , w3, z2) is strictly positive. Using (4.28), (4.29), (4.30) and (4.31) we obtain

LPA(Bex1
1 , w3, z2):

max
λ,θ

λ

s.t. θ1 − λ ≥ −6

θ2 − λ ≥ −1

θ1 − 2θ2 = −2

θ ∈ [−2, 2]2

The optimal solution to this LP is (λ∗, θ∗1 , θ
∗
2) = (3, 2, 2), which shows that condition 2 is

satisfied and consequently that the invariancy region associated with basis Bex1
2 = {w1, w2, z3} is

adjacent to IRBex1
1

across hw3

Bex1
1

. Using LPF (Bex1
2 , w1), LPF (Bex1

2 , w2) and LPF (Bex1
2 , z3) we find

that hz3Bex1
2

= {θ ∈ Sθ : −θ1 + 2θ2 = 2} forms the only facet of IRBex1
2

. From Corollary 4.30 we

know that IRBex1
1

is the only invariancy region adjacent to IRBex1
2

across this facet. Thus, we have

completed the partition of Sθ for Example 1.
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Let us now return our focus to Example 2. Observe TBex2
1

:

w1 w2 w3 z1 z2 z3

z1 - 1
5 0 0 1 4

5 0 − 1
5θ1 − 1

5θ2 + 3
5

w2 - 4
5 1 0 0 - 9

5 0 − 9
5θ1 + 11

5 3θ2 + 17
5 (4.47)

w3
1
5 0 1 0 - 4

5 -1 1
5θ1 + 1

5θ2 − 3
5

Using LPF (Bex2
1 , z1), LPF (Bex2

1 , w2) and LPF (Bex2
1 , w3) we can determine that

hz1Bex2
1

=
{
θ ∈ Sθ : − 1

5θ1 − 1
5θ2 = − 3

5

}
and hw3

Bex2
1

= {θ ∈ Sθ : 1
5θ1 + 1

5θ2 = 3
5} form the facets of

IRBex2
1

. However, from (4.23) recognize that w3 ∈ Hz1
Bex2

1
and thus hz1Bex2

1
= hw3

Bex2
1

. Furthermore,

since the RHS of TBex2
1

associated with z1 is a negative multiple of the RHS of TBex2
1

associated with

w3, the defining inequalities of IRBex2
1

associated with these variables define opposite half-spaces.

Hence, IRBex2
1

cannot be full dimensional. The following Corollaries provide the theory necessary

for determining when a given invariancy region is not full dimensional and ensuring that only in-

variancy regions of dimension at least k − 1 are discovered.

Corollary 4.39. Let distinct feasible complementary bases B ′ and B be given which satisfy: (i)

dim(IRB) = k, (ii) |B ′∩B | ≥ h−2, and (iii) IRB is adjacent to IRB′ along h iB . Then dim (IRB′) ≥

k − 1. Furthermore, dim (IRB′) = k − 1 if and only if the set

LiB,B′ :=
{
` ∈ B′ : ∃β` > 0 s.t.

((
G−1
•B′
)
` •
− β`

(
G−1
•B
)
i •

)
(q +4Qθ) = 0

}
(4.48)

is nonempty.

Proof. First notice that dim (IRB′) ≥ k − 1 since h iB forms a k − 1 dimensional facet of both IRB

and IRB′ , as shown in the proof of Proposition 4.38. We now prove that dim (IRB′) = k− 1 if and

only if there exists ` ∈ B ′ and β` > 0 such that
((
G−1
•B′
)
` •
− β`

(
G−1
•B
)
i •

)
(q +4Qθ) = 0.

(⇒): IRB and IRB′ share a k − 1 dimensional facet, which is formed by h iB . Notice that there

cannot exist γ ∈ B ′ such that hγB intersects the relative interior of the facet of IRB′ formed by h iB

unless hγB = h iB . Therefore, since dim (IRB′) ≥ k − 1, there must exist ` ∈ B ′ such that h`B = h iB

and the half-space
((
G−1
•B′
)
` •

)
(q +4Qθ) ≥ 0 contains IRB , i.e., there must exist β` > 0 such that((

G−1
•B′
)
` •
− β`

(
G−1
•B
)
i •

)
(q +4Qθ) = 0.
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(⇐): Since there exists ` ∈ B ′ and β` > 0 such that
((
G−1
•B′
)
` •
− β`

(
G−1
•B
)
i •

)
(q +4Qθ) = 0, the

half-space
((
G−1
•B′
)
` •

)
(q +4Qθ) ≥ 0 contains IRB . Thus, since complementary cones are disjoint

in their relative interiors, and since IRB and IRB′ share a k − 1 dimensional facet, IRB′ must be

k − 1 dimensional.

Proposition 4.38 provides a strategy for determining the invariancy regions which are adja-

cent to a given full dimensional invariancy region. Corollary 4.39 provides a strategy for determining

when an invariancy region is k − 1 dimensional. Now, given a k − 1 dimensional invariancy region

we need to be able to determine adjacent invariancy regions which have dimension at least k − 1.

For this purpose we introduce the following corollary which is quite similar to Proposition 4.38.

Corollary 4.40. Suppose that B and B ′ are two complementary bases such that |B ∩B ′| ≥ h− 2,

IRB and IRB′ are adjacent along h iB , and dim (IRB′) = k−1. For a complementary basis B ′′ such

that |B ′ ∩ B ′′| ≥ h − 2, IRB′ and IRB′′ are adjacent along h iB if and only if one of the following

conditions holds.

1. There exists ` ∈ LiB,B′ ∪
(⋃

j∈LiB,B′
Hj

B′

)
such that (TB′)`,` = 0.

2. There exists ` ∈ LiB,B′ ∪
(⋃

j∈LiB,B′
Hj

B′

)
such that (TB′)`,` 6= 0 and there exists j ∈ B ′ \ {`}

such that (TB)j,` > 0, (TB)`, 6= 0, and the following LP has a strictly positive optimal value:

LPA2(B , `, j) :=

max
λ,θ

λ

s.t.
(
G−1
•B′
)
γ •

(4Qθ)− λ1 ≥ −
(
G−1
•B′
)
γ •
q ∀ γ ∈

(
B ′ \

(
ZB′ ∪H`

B′ ∪ {`}
))

(
G−1
•B′
)
` •

(4Qθ) = −
(
G−1
•B′
)
` •
q

Y ξB′(θ)− λ ≥ 0 ∀ ξ ∈
(
B ′ \

(
(ZB)′′ ∪ (Hi

B)′′ ∪ {`, j}
))

θ ∈ Sθ

(4.49)

Proof. Notice that for all j ∈ LiB,B′ we have hjB′ = h iB . Thus, from (4.23) it is clear that h`B′ = h iB

if and only if ` ∈ LiB,B′ ∪
(⋃

j∈LiB,B′
Hj

B′

)
. The remainder of the proof is analogous to the proof of

Proposition 4.38.

Observation 4.41. As a result of Corollary 4.40, the statement of Corollary 4.39 can be relaxed

to the following: Let distinct feasible complementary bases B ′ and B be given which satisfy: (i)
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dim(IRB) ≥ k − 1, (ii) |B ′ ∩ B | ≥ h − 2, and (iii) IRB is adjacent to IRB′ along h iB . Then

dim (IRB′) ≥ k − 1. Furthermore, dim (IRB′) = k − 1 if and only if LiB,B′ is nonempty.

We return to our consideration of Example 2. Observe from (4.26), (4.47) and (4.48) that

w3 ∈ Lw1

B0,Bex2
1

. Hence, by Corollary 4.39 we know that dim
(
IRBex2

1

)
= k − 1 = 1 and therefore

we need to use the results of Corollary 4.40 to find other invariancy regions adjacent to IRBex2
1

(as well as IRB0
). Recognize from (4.47) that

(
TBex2

1

)
w3,z3

= −1. Thus, condition 1 of Corollary

4.40 is satisfied. By pivoting on this element we obtain a new basis Bex2
2 = {z1, w2, z3}. It is easy

to generate TBex2
1

and verify that IRBex2
2

is full dimensional. We omit the rest of the details of

Example 2 as they are analogous to those already presented. We return to these examples in Section

4.4 where we discuss determining an initial feasible basis.

Recall that replacing a single element of a complementary basis with its complement is a

diagonal pivot, while replacing two elements with their complements is an exchange pivot. Thus,

Proposition 4.38 and Corollary 4.40 provide conditions under which diagonal and exchange pivots

from a given complementary basis B will yield new complementary bases whose associated invariancy

regions are: (i) adjacent to IRB , and (ii) at least (k − 1)–dimensional.

Proposition 4.42. Let distinct bases Bi and Bj for which IRBi and IRBj are both full dimensional

be given. Then IRBi is adjacent to IRBj if and only if Bj can be obtained from Bi by a sequence

of pivots as described in Proposition 4.38 and Corollary 4.40.

Proof. As the reverse direction of the proposition is clear, we prove the forward direction. We

will prove the contrapositive. By Proposition 4.25, for any basis B , all bases adjacent to B whose

complementary cones have at least a k − 1 dimensional intersection with AS can be found by a

pivot as described in either Proposition 4.38 or Corollary 4.40. Therefore, if there does not exist a

sequence of these pivots by which Bj can be obtained from Bi, then there cannot exist a sequence of

invariancy regions {IRB`}
j−1
`=i+1 such that C(Bγ) and C(Bγ+1) are adjacent for all γ ∈ {i, . . . , j − 1}

and dim (C(Bγ) ∩ AS) = k − 1 for all γ ∈ {i + 1, . . . , j − 1}. Thus, by Theorem 5.10 of [18], IRBi

cannot be adjacent to IRBj .

At this point we have developed the theory necessary for partitioning Sθ, given an initial

basis B0 such that dim (IRB0
) ≥ k− 1. The algorithm is presented as Algorithm 4.1 in Section 4.5.
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4.4 Phase 1: Determining an initial feasible solution

In this section we develop a method for determining an initial feasible solution to the mpLCP

(4.1) which provides a starting point when partitioning the parameter space Sθ. Thus, we seek a

basis B0 such that dim (IRB0
) ≥ k − 1. We present the algorithm for finding B0 in Section 4.5.

We now discuss the techniques we use to obtain an initial basis B0 such that dim(IRB0
) ≥

k − 1. We assume throughout this discussion that 0 ∈ Sθ. Recognize that this assumption is not

restrictive because it can be achieved by a simple translation when necessary. Define the augmented

phase 1 multiparametric LCP, mpLCPph1:

w −Mz = q +4Qθ + rφ

w>z = 0

w, z ≥ 0

(4.50)

where φ ∈ R is an additional parameter and r ∈ Rh is defined so that

ri =

{
|qi|+ 1 if qi ≤ 0

0 otherwise
for each i ∈ {1, . . . , h}. (4.51)

Notice that mpLPCph1 (4.50) is a variant of mpLCP (4.1) in which k is replaced by k + 1.

Therefore, all definitions and theory presented for mpLCP directly apply to mpLPCph1. Through-

out the following discussion we will use the notation IRph1
B and (h iB)ph1 to denote the respective

analogues of IRB and h iB for mpLPCph1.

Recognize that we impose no lower or upper bound on the value of φ. As a result, the phase

1 counterpart to any LP presented for phase 2 can yield an unbounded solution. We note that this

is not a problem since an unbounded maximization (minimization) problem still yields a strictly

positive (negative) optimal value, which is the condition that must be verified for the majority of

the LPs we have introduced.

Proposition 4.43. The complementary basis B∗ := {1, . . . , h} is feasible to mpLCPph1 (4.50) and

IRph1
B∗ is full dimensional.

Proof. Since G•B∗ = I, IRph1
B∗ = {(θ, φ) ∈ Sθ × R : q +4Qθ + rφ ≥ 0}. Observe from this and

(4.51) that (θ, φ) = (0, 1) ∈ IRph1
B∗ . Thus IRph1

B∗ 6= ∅ and therefore B∗ is feasible to mpLCPph1.

Furthermore, since the system of inequalities q+4Qθ+ rφ ≥ 0 is satisfied strictly at (θ, φ) = (0, 1),

there must exist ε > 0 such that Bε ((0, 1)) ⊂ IRph1
B∗ . Hence, IRph1

B∗ is full dimensional.
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Proposition 4.43 shows that a full dimensional invariancy region for mpLCPph1 is immedi-

ately available. Thus, a very simple strategy for determining an initial basis B0 is to determine the

facets of IRph1
B∗ , determine the bases whose phase 1 invariancy regions are adjacent to IRph1

B∗ across

each facet, and then repeat this procedure for each newly discovered invariancy region. Each time

a new basis B is discovered, LPD(B) (4.25) can be solved to determine whether or not IRB is full

dimensional. We then continue partitioning Sθ × R in the same way that we discussed partitioning

Sθ in Section 3, and stop once a basis with a full dimensional invariancy region is discovered. If no

such basis is discovered throughout the procedure, we can conclude that no such basis exists. Note

that if no basis exists which has a full dimensional invariancy region, then there is no need to search

for bases whose invariancy regions are (k−1)–dimensional. Although this procedure is a brute force

method, it serves as a good foundation for the procedure we will ultimately use.

Recognize that for any phase 1 invariancy region IRph1
B , the phase 2 invariancy region IRB

is precisely the intersection of IRph1
B with the hyperplane φ = 0. Thus, in order to improve the

technique discussed above, we would like to determine the facets of an invariancy region IRph1
B across

which we are most likely to find an adjacent invariancy region IRph1
B′ such that the intersection of

IRph1
B′ with the hyperplane φ = 0 has a dimension of at least k− 1. With this in mind, consider the

following LP:

LPS(B) := min
θ,φ

φ

s.t. G−1
•B (4Qθ + rφ) ≥ −G−1

•B q

θ ∈ Sθ

(4.52)

This LP gives rise to the following proposition.

Proposition 4.44. If M is a Q0 matrix, then the mpLCP (4.1) is feasible if and only if there exists

a complementary basis B for which LPS(B) (4.52) has a nonpositive optimal value.

Proof. (⇒): If mpLCP (4.1) is feasible then there is a basis B ′ and some θ̂ ∈ Sθ such that

G−1
•B′(4Qθ̂) ≥ −G

−1
•B′q. Clearly in this case (θ, φ) = (θ̂, 0) is feasible to LPS(B ′) and thus the

optimal value must be nonpositive.

(⇐): Recall that LPS(B∗) has a feasible solution in which φ = 1. Thus, since mpLCP (4.1) is

equivalent to mpLCPph1 with φ fixed to 0, if there exists a basis B ′ such that LPS(B ′) is feasible

for some φ̂ ≤ 0 then, since K(M) is convex when M is Q0, there must exist a basis B ′′ such that

LPS(B ′′) is feasible at φ = 0. Therefore mpLCP must be feasible.
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For a given complementary basis B , let (θ∗B , φ
∗
B) denote the optimal solution of LPS(B) and

define

EQB :=
{
i ∈ B : G−1

•B (4Qθ∗B + rφ∗B) = −G−1
•B q
}

(4.53)

which is the set of indices in B whose corresponding defining constraints of IRph1
B are binding at

(θ∗B , φ
∗
B).

Proposition 4.45. Assume that M is a Q0 matrix. Let a complementary basis B be given and

let (θ∗B , φ
∗
B) represent the optimal solution of LPS(B) (4.52). Suppose that there does not exist an

i ∈ EQB such that a diagonal or exchange pivot can be made from B which involves index i. Then

the following hold:

• If φ∗B > 0, then mpLCP is infeasible.

• If φ∗B = 0 and dim (IRB) < k, then there does not exist a feasible complementary basis B ′

such that dim (IRB′) = k.

Proof. If no diagonal or exchange pivots are possible which involve a particular index i ∈ B , this

indicates that the facet cone
(
G• (B\{i})

)
of the complementary cone C(B) forms a boundary of K(M).

Thus, since K(M) is convex when M is a Q0 matrix, all phase 1 invariancy regions lie in the same

half-space defined by the hyperplane (h iB)ph1 that IRph1
B lies in. Since this is true for all indices in

EQB , we have the following:

1. If the optimal value of LPS(B) is strictly positive, no phase 1 invariancy region exists which

intersects the hyperplane φ = 0.

2. If the optimal value of LPS(B) is zero, no phase 1 invariancy region other than IRph1
B can

have a nonempty intersection with the hyperplane φ = 0.

Since any invariancy region IRB for mpLCP (4.1) is precisely the intersection of the hyperplane

φ = 0 and IRph1
B , the claim of the proposition follows.

Observe that Proposition 4.45 provides the following two simplifications of the brute force

method: (i) it identifies a subset of the facets of an invariancy region which need to be checked for

adjacent invariancy regions, and (ii) it provides a stopping criterion under which one may conclude
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that either the mpLCP (4.1) is infeasible or there do not exist any full dimensional invariancy regions

for mpLCP.

We now develop stopping criteria under which we can conclude that an initial basis with an

invariancy region whose dimension is at least k− 1 has been obtained. One such criterion is readily

available. Suppose that for some complementary basis B , the optimal value of LPS(B) is nonpositive

and the optimal value of LPD(B) is strictly positive, then clearly dim (IRB) = k. Another criterion

is provided in the following proposition.

Proposition 4.46. Let a complementary basis B be given such that dim
(
IRph1

B

)
≥ k and the

optimal value of LPS(B) is nonnegative. Suppose that a new basis B ′ is obtained by either a diagonal

or exchange pivot from B and that: (i) IRph1
B and IRph1

B′ are adjacent, and (ii) the optimal value

of LPS(B ′) is strictly negative. Then dim (IRB′) ≥ k − 1.

Proof. Since dim
(
IRph1

B

)
≥ k we know from the results of Corollaries 4.39 and 4.40 (and the fact

that mpLCPph1 is a special case of mpLCP in which k = k+ 1) that dim
(
IRph1

B′
)
≥ k. Also, since

IRph1
B and IRph1

B′ are adjacent, there exists (θ̂, φ̂) ∈ IRph1
B′ such that φ̂ > 0. Since the optimal value

of LPS(B ′) is strictly negative, there also exists (θ′, φ′) ∈ IRph1
B′ such that φ′ < 0. This shows that

the hyperplane φ = 0 intersects IRph1
B′ in its relative interior. Thus, since the hyperplane φ = 0 is

k-dimensional and IRph1
B′ is at least k-dimensional, their intersection, which is precisely IRB′ , is at

least (k − 1)–dimensional.

We are now able to use the results presented in this section to develop a more sophisticated

strategy for obtaining the initial basis B0 such that dim (IRB0
) ≥ k − 1. This strategy is outlined

in Algorithm 4.2, which is presented in Section 4.5.

Before proceeding to Section 4.5, we return to the examples presented in Section 4.3 and

briefly discuss how the theory presented here can be used to obtain initial bases. Observe LPS(B0)

for each example:

min
θ,φ

φ

s.t. θ1 ≥ −6

−θ2 + 2φ ≥ 1

θ1 − 3θ2 ≥ −1

θ ∈ [−2, 2]2

min
θ,φ

φ

s.t. θ1 + θ2 + 4φ ≥ 3

−θ1 + 3θ2 ≥ −1

φ ≥ 0

θ ∈ [−2, 2]2

The optimal solutions of these LPs are (φ∗, θ∗1 , θ
∗
2) = (− 1

2 , 0,−2) and (φ∗∗, θ∗∗1 , θ∗∗2 ) =

(0, 3
2 ,

3
2 ), respectively. Hence, Proposition 4.44 implies that both instances of mpLCP are feasible,
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and as verified in Section 4.3, IRB0
is full dimensional for both instances. In these cases, finding an

initial feasible basis with invariancy regions of dimension at least k − 1 = 1 is quite easy. However,

consider Example 2 and make the following simple modification. Assume that Sθ = [−2, 1]2 rather

than Sθ = [−2, 2]2. It can be easily verified that in this case the optimal solution to LPS(B0)

is (φ∗∗, θ∗∗1 , θ∗∗2 ) = ( 1
4 , 1, 1). This shows that IRph1

B0
does not intersect the hyperplane φ = 0 and

thus B0 is infeasible for mpLCP. From (4.53) we find that EQB0
= {w1}. Hence, w1 is the can-

didate for pivoting out of basis B0 which is most likely to reveal a new basis with an invariancy

region that intersects the hyperplane φ = 0. We know from Section 4.3 that this pivot will reveal

Bex2
1 = {z1, w2, w3}. Consider LPS

(
Bex2

1

)
:

min
θ,φ

φ

s.t. − 1
5θ1 − 1

5θ2 − 4
5φ ≥ −

3
5

− 9
5θ1 + 11

5 θ2 − 16
5 φ ≥ −

17
5

1
5θ1 + 1

5θ2 + 9
5φ ≥

3
5

θ ∈ [−2, 1]2

This LP has solution (φ∗∗, θ∗∗1 , θ∗∗2 ) = (1
9 , 1, 1), which shows that EQBex2

1
= {w3}. Again,

from Section 4.3, we know that pivoting on w3 results in Bex2
2 = {z1, w2, z3}. Consider LPS

(
Bex2

2

)
:

min
θ,φ

φ

s.t. − 1
5θ1 − 1

5θ2 − 4
5φ ≥ −

3
5

− 9
5θ1 + 11

5 θ2 − 16
5 φ ≥ −

17
5

− 1
5θ1 − 1

5θ2 − 9
5φ ≥ −

3
5

θ ∈ [−2, 1]2

This LP unbounded and thus, by Proposition 4.46, Bex2
2 serves as the initial basis for Example 2.

We have now shown how the theory from this section can be applied to an instance of

mpLCP. A detailed algorithm showing explicilty how these steps should be applied, and in what

order, is provided in Section 4.5.

4.5 The Algorithms and their Performance

This section consists of two subsections. In the first, we present Algorithms 4.1 and 4.2

which are designed for partitioning the parameter space Sθ and obtaining an initial feasible basis

B0 such that dim (IRB0
) ≥ k − 1, respectively. In the second subsection we discuss the complexity

and performance of Algorithms 4.1 and 4.2.
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4.5.1 Presentation of the Algorithms

In these algorithms we use the notation:

• LCP (θ̂) – the nonparametric LCP resulting from fixing θ to θ̂ ∈ Sθ in (4.1).

• R – the set of invariancy regions for which adjacent regions need to be found.

• K – the set of feasible bases discovered.

• FB – for a given basis B , the set of i ∈ B for which h iB has been shown to form a facet of IRB .

• PB – the subset of FB which contains all i ∈ B for which the facet of IRB formed by h iB is

known to also form a facet of IRB′ for one and only one B ′ ∈ K .

• LB – for a given basis B , the set of indices in B which cause IRB to be k− 1 dimensional. In

general, LB = LiB′,B ∪
(⋃

j∈LiB′,B
Hj

B

)
, where B ′ is the basis from which a pivot was made in

order to discover basis B for the first time and i ∈ B ′ is the index such that IRB′ and IRB

are adjacent along h iB′ . Notice that if LiB′,B = ∅ then LB = ∅ as well.

• DB :=
{
i ∈ B : (TB)i,ı 6= 0

}
(i.e., for basis B , the set of indices in B which are candidates for

a diagonal pivot.)

• EB :=
{

(i, j) ∈ B : i 6= j, (TB)j,ı > 0, (TB)i, 6= 0
}

(i.e., for basis B , the set of pairs of indices

in B which are candidates for an exchange pivot.)

Note that for that phase 1 problem, when appropriate, we will attach a superscript of ph1

to the above notations. We now present the algorithms, each followed by a brief description.

In Algorithm 4.1 we consider discovered invariancy regions one at a time. Full dimensional

regions are processed in lines 3-15, while (k − 1)–dimensional regions are processed in lines 16-23.

For a full dimensional region we first need to determine its facets. This is done in lines 4-8. We

construct sets of already known facets in lines 4-6 and determine any unknown facets in lines 7-8.

We next determine bases which yield adjacent invariancy regions across each facet of interest. For

full dimensional regions, this is done in lines 9-15, and for (k − 1)–dimensional regions it is done in

lines 17-23. Note that diagonal pivots are considered in lines 10-12 and 18-20, and exchange pivots

are considered in lines 13-15 and 21-23.

A strategy for obtaining an initial basis B0 such that dim (IRB0
) ≥ k − 1 is given in

Algorithm 4.2. Note that Algorithm 4.2 is organized in a similar fashion to Algorithm 4.1 with
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Algorithm 4.1 Partition Sθ.
Input: Sets R and K as well as an initial basis B0 and the corresponding sets FB0

, PB0
and LB0

.
Output: Sets R and K . Upon termination, the invariancy regions contained in R partition Sθ.

1: while R 6= ∅ do
2: Remove an invariancy region IRB from R .
3: if LB = ∅ then . i.e., dim (IRB ) = k
4: for i ∈ FB do
5: Set FB = FB ∪Hi

B .

6: if i ∈ PB then set PB = PB ∪Hi
B .

7: for i ∈ (B \ FB ) do
8: if LPF (B, i) has strictly positive optimal value then set FB = FB ∪

(
{i} ∪Hi

B
)
.

9: for i ∈ FB \ PB do
10: if (TB )i,ı 6= 0 then

11: if B ′ = (B \ {i}) ∪ {ı} /∈ K then add IRB′ to R , B ′ to K , and ı to FB′ and PB′ . Set

LB′ = LiB,B′ ∪
(⋃

j∈LiB,B′
Hj

B′

)
.

12: else if IRB′ ∈ R then add ı to PB′ .
13: else
14: for j ∈ B such that (i, j) ∈ EB and B ′′ = (B \ {i, j}) ∪ {ı, } /∈ K do
15: if LPA(B, i, j) has strictly positive optimal value then add IRB′′ to R , B ′′ to K , and

ı to FB′′ . Set LB′′ = LiB,B′′ ∪
(⋃

ξ∈LiB,B′′
HξB′′

)
.

16: else
17: for ` ∈ LB do
18: if (TB )`,` 6= 0 then

19: if B ′ = (B \ {`}) ∪ {`} /∈ K then add IRB′ to R , B ′ to K , and ` to FB′ and PB′ . Set

LB′ = L`B,B′ ∪
(⋃

j∈L`B,B′
Hj

B′

)
.

20: else if IRB′ ∈ R then add ` to PB′ .
21: else
22: for j ∈ B such that (`, j) ∈ EB and B ′′ = (B \ {`, j}) ∪ {`, } /∈ K do
23: if LPA2(B, `, j) has strictly negative optimal value then add IRB′′ to R , B ′′ to K ,

and ` to FB′′ . Set LB′′ = L`B,B′′ ∪
(⋃

ξ∈L`B,B′′
HξB′′

)
.

a few major exceptions. Lines 2 and 5-7 provide stopping criteria under which we can conclude

that either mpLCP has no full dimensional invariancy region (and thus partitioning Sθ is futile), or

that an initial basis has been found, respectively. In line 4 LPS (4.52) is solved which serves two

purposes: (i) the solution to LPS is used to check the stopping criteria of lines 5-7, and (ii) if the

stopping criteria are not satisfied, the solution to LPS is used to determine the facets of a phase 1

invariancy region across which adjacent phase 1 invariancy regions may exist that have the potential

to intersect the hyperplane φ = 0. Full dimensional phase 1 regions are then processed in lines

10-16, while k–dimensional phase 1 regions are processed in lines 18-23. For full dimensional phase

1 regions we determine its facets which contain the point (θ∗, φ∗), the solution to LPS . This is done

in lines 10-11. We next determine bases which yield adjacent invariancy regions across each facet

of interest. For full dimensional phase 1 regions, this is done in lines 12-16, and for k–dimensional
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Algorithm 4.2 Find initial feasible complementary basis B0 with dim (IRB0
) = k.

Input: An augmented parametric LCP problem LCP (θ, φ) as in (4.50), defined by matrices M and
4Q and vector q. A stack S of bases, initialized as S =

{
B∗ = {1, . . . , h}

}
. An empty set B0 = ∅.

Output: Initialized sets R and K and an initial basis B0 along with the set LB0
.

1: while B0 = ∅ do
2: if S = ∅ then STOP. No full dimensional invariancy region exists for mpLCP (4.1).
3: else Pop B from S.

4: Solve LPS(B) and obtain solution (θ∗B , φ
∗
B ).

5: if φ∗B < 0 then set B0 = B, R = {IRB0
}, and LB0

= LB . STOP, an initial basis has been found.
6: else if φ∗B = 0 then

7: if LPD(B) has a strictly positive optimal value then set B0 = B, R = {IRB0
}, and LB0

= LB . STOP,
an initial basis has been found.

8: else
9: if LB = ∅ then

10: for i ∈ EQB do

11: if LP ph1
F (B) has a strictly positive optimal value then

12: if (T ph1

B )i,ı 6= 0 then

13: if B ′ = (B \ {i})∪ {ı} /∈ K then add B ′ to S and K . Set LB′ = LiB,B′ ∪
(⋃

j∈LiB,B′
HjB′

)
.

14: else
15: for j ∈ B such that (i, j) ∈ EB and B ′′ = (B \ {i, j}) ∪ {ı, } /∈ K do

16: if LP ph1
A (B, i, j) has strictly positive optimal value then add B ′′ to S and K . Set

LB′′ = LiB,B′′ ∪
(⋃

ξ∈LiB,B′′
HξB′′

)
.

17: else
18: for i ∈

(
LB ∩ EQB

)
do

19: if (T ph1

B )i,ı 6= 0 then

20: if B ′ = (B \ {i}) ∪ {ı} /∈ K then add B ′ to S and K . Set LB′ = L`B,B′ ∪
(⋃

j∈L`B,B′
HjB′

)
.

21: else
22: for j ∈ B such that (i, j) ∈ EB and B ′′ = (B \ {i, j}) ∪ {ı, } /∈ K do

23: if LP ph1
A2 (B, i, j) has strictly positive optimal value then add B ′′ to S and K . Set LB′′ =

LiB,B′′ ∪
(⋃

ξ∈LiB,B′′
HξB′′

)
.

phase 1 regions it is done in lines 19-23. Note that diagonal pivots are considered in lines 12-13 and

19-20, and exchange pivots are considered in lines 14-16 and 21-23.

4.5.2 Complexity and Performance

We now examine the complexity and performance of Algorithms 4.1 and 4.2. We first

point out that the correctness of these algorithms is implied by the proofs of the propositions and

corollaries presented in Sections 4.3 and 4.4. Also, both algorithms are finite since there is always a

finite number of complementary bases for any LCP.
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4.5.2.1 Complexity

We first consider the complexity of Algorithm 4.1. Since the number of possible comple-

mentary bases is exponential in h, there cannot exist a polynomial algorithm for partioning Sθ.

Thus, given an invariancy region, we consider the complexity of determining its facets and finding

all adjacent invariancy regions. For the sake of comparison, we use the following notation of Colum-

bano et al. [18]: TLP (var, eq) represents the time to solve an LP in standard form with var and eq

denoting the number of variables and equations, respectively. Consider the following proposition.

Proposition 4.47. If M is sufficient then for any complementary basis B , the time needed to

determine the facets of IRB and find all invariancy regions adjacent to IRB is at most:

hTLP (h, k + 1) +
2h2 − 3h+ 1

2
TLP (2h− 2, k + 1) (4.54)

Furthermore, in the case in which the affine space AS lies in general position with respect

to each complementary cone, the above expression reduces to:

hTLP (h, k + 1) +
h2 − h

2
TLP (2h− 2, k + 1) (4.55)

Proof. Recognize that the majority of the computation in Algorithm 4.1 occurs on lines 8, 15, and

23. In line 8, LPF (4.27) is considered. If the dual of this LP is solved, the problem has h variables

and k + 1 constraints. From line 7 it is clear that for each basis this LP is solved at most h times.

Next consider the LPs LPA (4.28) and LPA2 (4.49) on lines 15 and 23, respectively. Again, if the

dual problems of each are solved, the problems will have 2h − 2 variables and k + 1 constraints.

Since adjacent bases can differ by at most two elements, LPA will be called at most
h2 − h

2
times.

Notice that LPA2 is only called if LB 6= ∅ (i.e, IRB is k − 1 dimensional). From (4.23) and lines

11, 15, 19, and 23 recognize that LB can contain at most h elements. Notice, however, that if LB

contains exactly h elements, then IRB contains an entire (k− 1)–dimensional hyperplane. This can

only happen in the trivial case in which AS is completely contained in one complementary cone, i.e.,

there is only one invariancy region and it is full dimensional. Thus, we assume that this is not the

case and that LB contains at most h − 1 elements. Next notice that LPA2 may be called at most

h−1 times for each element of LB . Thus, LPA2 is called at most
(h− 1)2

2
times for each basis B . In

all, this shows that the time needed to determine the facets of IRB and find all invariancy regions

adjacent to IRB is at most (4.54).
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If the affine space AS lies in general position with respect to each complementary cone then

no invariancy region will be k−1 dimensional and thus LPA2 is never called. Therefore, in this case,

(4.54) reduces to (4.55).

The result shown in Proposition 4.47 matches the result from [18] for the case in which

AS lies in general position, but improves upon the reported complexity of (h2 + h)TLP (h, k + 1) +

h3 − h
2

TLP (2h, k + 1) for the case in which AS does not lie in general position.

We now consider the performance of Algorithm 4.2. In [18] an initial basis and corresponding

full-dimensional invariancy region are assumed to be given as input to their algorithm, but discussion

is not provided as to how such an initial basis should be discovered. In this work, Algorithm 4.2 is

used for this purpose. In the worst case this algorithm may explore every complementary basis. Thus,

since the number of possible complementary bases is exponential in h, the worst-case complexity

of the algorithm cannot be polynomial. Hence, given a phase 1 invariancy region, we consider the

complexity of determining a desired subset of its facets and finding all adjacent invariancy regions

across these facets.

Proposition 4.48. If M is sufficient then for any complementary basis B , the time needed to

determine a desired subset of the facets of IRph1
B and find all invariancy regions adjacent to IRph1

B

across these facets is at most:

TLP (h, k + 1) + hTLP (h, k + 2) +
2h2 − 3h+ 1

2
TLP (2h− 2, k + 2)

Furthermore, in the case in which the affine space ASph1 := {q +4Qθ + rφ : (θ, φ) ∈ Sθ × R}

lies in general position with respect to each complementary cone, the above expression reduces to:

TLP (h, k + 1) + hTLP (h, k + 2) +
h2 − h

2
TLP (2h− 2, k + 2)

Proof. Algorithm 4.2 is a special case of Algorithm 4.1 with two major exceptions: (i) there is one

additional parameter, and (ii) an extra LP is solved for each basis. The given complexities are

computed as extensions of those presented in Proposition 4.47 by: (i) replacing k + 1 with k + 2,

and (ii) adding the term TLP (h, k + 1) to account for solving LPS on line 4.
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4.5.2.2 Performance - Experimental Results

We now present the results of a computational experiment we conducted in order to test

the practical performance of the proposed algorithms. We also include a few brief notes on our

implementation.

We implemented the proposed two-phase algorithm using the C programming language and

used the CPLEX optimization package to solve all auxiliary LPs. As we have already proved that

the complexity of the proposed technique is lower than that of Columbano et al. [18], we chose to

compare with the multiparametric toolbox (MPT) software package [41], available for MATLAB.

Note that the MPT utilizes an implementation of the mpLCP solver proposed in [46], and although

the package is run using MATLAB, the underlying implementation of the mpLCP method is written

in the C programming language. We also used CPLEX as the default solver for LPs and QPs within

the MPT (all other settings and parameters were left at their default values). All tests were run

using MATLAB R2013b [61], MPT 3.0.20, and CPLEX 12.6 [45] on a machine running Linux Mint

16 with two 2.4GHz processors, each with 4GB of RAM.

For our experiment we utilized 49 QP instances made available by [59] and 11 QP instances

from [79]. Each instance used is a convex QP, although some of the instances from [79] contained in-

teger variables. In these cases we relaxed the integrality constraints. All instances were reformulated

as LCPs and were then each converted to two distinct mpLCPs by randomly generating two matrices

4Q, one for k = 2 and one for k = 3. All randomly generated elements were taken from the closed

interval [0,10]. Additionally, we set Sθ = [−2, 2]k for each instance. (The data associated with these

instances is available at http://mthsc.clemson.edu/files/adelgren-instances.zip.) We then

solved each instance using our proposed method as well as the MPT. A summary of the results is

given in Table 4.1. A complete version of the results is available in Tables 4.2 and 4.3, which can be

found in Section 4.B. Recognize that in Table 4.1 we display the average time per discovered region

(in seconds) rather than average overall time. There are two primary reasons for this: (i) we only

allowed the MPT and the proposed method to work on an instance for a maximum of one hour (and

report the number of regions computed in this time), and (ii) even for completely solved instances,

the number of invariancy regions discovered by the MPT and the proposed method occasionally var-

ied significantly. There are two main reasons for this variation: (i) numerical inconsistency arising

from the fact that invariancy regions can be arbitrarily small (for visual evidence of this, observe
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Table 4.1: Experimental Results - MPT results are displayed in standard font; results from the
proposed method are in bold.

Num. Num. Avg. Avg. Num. Avg. Ph1 Avg. Ph2
k h Instances Failed < 1 hr. ≥ 1 hr. Time/Rgn (s) Rgns Iter Iter

2 (0, 50) 14 0 0 14 14 0 0 0.195 0.002 24 29 2 30
[50, 250) 12 3 3 9 9 0 0 1.09 0.02 2,047 8,687 1 9,035
[250, 500) 12 2 0 10 10 0 2 1.59 0.07 944 7,349 156 9,385
[500, 1000) 17 7 1 5 8 5 4 5.34 0.26 3,104 10,575 52 11,282
[1000, 1500) 5 0 0 1 2 4 3 30.02 0.62 373 3,848 41 4,945

3 (0, 50) 14 0 0 14 14 0 0 0.304 0.002 113 116 2 116
[50, 250) 12 5 3 4 5 3 4 1.37 0.04 3,980 37,467 2 38,401
[250, 500) 12 6 0 4 6 2 6 1.71 0.17 528 16,491 122 18,242
[500, 1000) 17 5 1 1 3 11 13 9.20 0.63 1,798 8,248 31 8,893
[1000, 1500) 5 0 0 0 0 5 5 34.14 1.13 54 3,300 14 4,138

Figure 4.8 in Appendix B), and (ii) on a small number of instances the MPT terminated early re-

vealing a nonconvex, and thus incorrect, union of invariancy regions. In addition to this, there were

six instances for k = 2 and two instances for k = 3 which the MPT claimed to be infeasible even

though all instances were feasible by construction.

There are a few key pieces of information to observe from Table 4.1. First, the proposed

algorithm fails on fewer of these instances than does the MPT. Second, the proposed algorithm is

able to solve more instances in under an hour than the MPT. Finally, the average time per region

is significantly lower for the proposed algorithm than the MPT.

We now discuss a few details of our implementation. First, we point out that our imple-

mentation is purely serial in nature, we even set the number of threads available to CPLEX to be

one. We do not know, however, the number of threads used by the MPT or CPLEX when used

from within MATLAB. We also point out that in our implementation we set the CPLEX feasibility

tolerance to 10−7, we used a tolerance of 10−5 when testing equality of values, and when solving

auxiliary LPs we assumed that the variable λ was acceptably large when it exceeded a value of

10−6. Additionally, in our implementation we explicitly compute the tableau associated with each

discovered basis and thus the overall performance could likely be improved by instead using matrix

factorization techniques. We also note that during testing we discovered that although phase 1

of the proposed algorithm is correct and finite, it can occasionally require a significant number of

iterations. We found that this frequently occurred when a basis B was discovered for which the

optimal solution to LPs(B) was zero, but dim(IRB) 6= k. Oftentimes, if this occurred, a significant

number of subsequent bases would be discovered which had the same property. We believe that

this phenomena takes place primarily in the case in which the affine subspace AS contains the point

q = 0 and hence intersects the common origin point of every complementary cone. In this situation,

phase 1 can take significant time to discover a cone having a k-dimensional intersection with AS
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because adjacent bases are not explored in any particular order. To counter this, we propose the

following improvement to phase 1, which we found to work quite well empirically. For each facet of

a given phase 1 invariancy region which contains the optimal solution to LPs, compute the normal-

ized normal vector and then consider these facets on lines 10 and 18 of Algorithm 4.2 in ascending

order of the φ component of these normalized vectors. This ensures that the last bases placed on

stack S (and thus also the first bases taken off the stack) are those that have phase 1 invariancy

regions containing a facet with a relatively large φ component of their normalized normal vectors.

In this way phase 1 can more rapidly discover a phase 1 invariancy region containing a facet whose

normalized φ component is equal to one, or has a k-dimensional intersection with the hyperplane

φ = 0.

4.6 Conclusion

In this work we have introduced a new two-phase method for solving mpLCP (4.1) in which

M is a sufficient matrix. Phase 1 answers the previously unanswered question of how one can de-

termine an initial full dimensional invariancy region which can be used as a starting point in the

process of partitioning the parameter space Sθ. The partition of Sθ is carried out in Phase 2, which

is inspired by the method introduced by Columbano et al. [18]. The worst-case complexity of the

proposed two-phase method is O
(
h2TLP (h, k)

)
, which improves upon the worst-case complexity of

O
(
h3TLP (h, k)

)
reported in [18]. Here TLP (var, eq) represents the time to solve an LP in standard

form with var and eq denoting the number of variables and equality constraints, respectively. Ex-

perimental results are provided which give strong evidence of the utility of the proposed methods.

In Appendix A we provide a detailed example, showing the utilization of the proposed method.

In the future we aim to extend this method and develop a technique for solving mpLCP with

parameters in general locations. Developing such a tool would have a variety of benefits, expanding

well beyond the scope of LCP.
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4.A Appendix A: An Example

Here we provide a detailed example of solving an instance of mpLCP and partitioning Sθ

using Algorithms 4.1 and 4.2. Consider the following mpLCP:

w −


0 0 0 2 −1

0 0 0 −2 −4

0 0 0 0 −1

−2 2 0 4 1

1 4 1 −1 2

 z =


4

16

4

4

−8

+


0 −1

0 1

0 − 1
2

−2 0
1
2 0

 θ
w>z = 0

w, z ≥ 0

(4.56)

Assume that Sθ = [−4, 3]× [−2, 2].

We now show how to partition Sθ. For the sake of clarity, throughout this example we use

variable names to describe the elements of each basis rather than the corresponding indices. We

begin with Phase 1.

Phase 1: Initialization:

To begin, we create mpLCPph1:

w −


0 0 0 2 −1

0 0 0 −2 −4

0 0 0 0 −1

−2 2 0 4 1

1 4 1 −1 2

 z =


4

16

4

4

−8

+


0 −1

0 1

0 − 1
2

−2 0
1
2 0

 θ +


0

0

0

0

9

φ
w>z = 0

w, z ≥ 0

(4.57)

By construction, basis B∗ = {1, 2, 3, 4, 5} is feasible and so we initialize the stack of bases

S as S = {B∗}. Observe from (4.57) that:

(
G−1
•B∗
)

(q +4Qθ) =


4− θ2

16 + θ2

4− 1
2θ2

4− 2θ1

−8 + 1
2θ1 + 9φ

 (4.58)

We proceed by removing B∗ from S and solving LPS(B∗):
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min
θ,φ

φ

s.t. 4− θ2 ≥ 0

16 + θ2 ≥ 0

4− 1
2θ2 ≥ 0

4− 2θ1 ≥ 0

−8 + 1
2θ1 + 9φ ≥ 0

−4 ≤ θ1 ≤ 3

−2 ≤ θ2 ≤ 2

The optimal solution of this LP is (θ∗1 , θ
∗
2 , φ
∗) =

(
2, 0, 7

9

)
, which shows that EQB∗ =

{w4, w5}. Since the optimal value of LPS(B∗) is strictly positive and LB∗ = ∅, we consider each

element of EQB∗ individually. To determine whether or not the hyperplanes (hw4

B∗)
ph1 and (hw5

B∗)
ph1

form facets of IRph1
B∗ we solve LP ph1

F (B , w4) and LP ph1
F (B , w5) (4.27). Observe these LPs:

LP ph1
F (B , w4) :

max
λ,θ,φ

λ

s.t. 4− θ2 − λ ≥ 0

16 + θ2 − λ ≥ 0

4− 1
2θ2 − λ ≥ 0

4− 2θ1 = 0

−8 + 1
2θ1 + 9φ− λ ≥ 0

−4 ≤ θ1 ≤ 3

−2 ≤ θ2 ≤ 2

LP ph1
F (B , w5) :

max
λ,θ,φ

λ

s.t. 4− θ2 − λ ≥ 0

16 + θ2 − λ ≥ 0

4− 1
2θ2 − λ ≥ 0

4− 2θ1 − λ ≥ 0

−8 + 1
2θ1 + 9φ = 0

−4 ≤ θ1 ≤ 3

−2 ≤ θ2 ≤ 2

The optimal solution of LP ph1
F (B , w4) is (θ∗1 , θ

∗
2 , φ
∗, λ∗) =

(
2,−2, 4

3 , 5
)

and the optimal

solution of LP ph1
F (B , w5) is (θ∗∗1 , θ∗∗2 , φ∗∗, λ∗∗) =

(
− 1

2 ,−2, 11
12 , 5

)
. This shows that the optimal values

of both LPs are strictly positive. Therefore we are interested in determining pivots from basis B∗

which involve either w4 or w5. Without explicitly writing down T ph1
B∗ (4.18), one can observe from

(4.57) that (T ph1
B∗ )w4,z4 = −4 and (T ph1

B∗ )w5,z5 = −2. Since these values are nonzero, we can perform

diagonal pivots on these elements. Doing so provides two new bases, B ′ = {w1, w2, w3, z4, w5} and

B ′′ = {w1, w2, w3, w4, z5}. Observe their tableaux, in respective order:
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w1 w2 w3 w4 w5 z1 z2 z3 z4 z5

w1 1 0 0 - 1
2 0 -1 1 0 0 3

2 θ1 − θ2 + 2

w2 0 1 0 1
2 0 1 -1 0 0 7

2 −θ1 + θ2 + 18

w3 0 0 1 0 0 0 0 0 0 1 − 1
2θ2 + 4 (4.59)

z4 0 0 0 - 1
4 0 - 1

2
1
2 0 1 1

4
1
2θ1 − 1

w5 0 0 0 - 1
4 1 - 3

2 - 7
2 -1 0 - 7

4 θ1 + 9φ− 9

w1 w2 w3 w4 w5 z1 z2 z3 z4 z5

w1 1 0 0 0 1
2 - 1

2 -2 - 1
2 - 5

2 0 1
4θ1 − θ2 + 9

2φ

w2 0 1 0 0 2 -2 -8 -2 0 0 θ1 + θ2 + 18φ

w3 0 0 1 0 1
2 - 1

2 -2 - 1
2 - 1

2 0 1
4θ1 − 1

2θ2 + 9
2φ (4.60)

w4 0 0 0 1 - 1
2

5
2 0 1

2 - 7
2 0 − 9

48θ1 − 9
2φ+ 8

z5 0 0 0 0 - 1
2

1
2 2 1

2
1
2 1 − 1

4θ1 − 9
2φ+ 4

Since neither B ′ nor B ′′ is in K , we add each to both S and K . Also, observe from (4.59)

and (4.60) that Lw4

B∗,B′ = ∅ and Lw5

B∗,B′′ = ∅. Thus, we set both LB′ and LB′′ equal to the empty set.

We have now completed one iteration through the while loop of Algorithm 4.2 and are ready

to begin a second iteration. We must select a basis from S to consider next. Since S is a stack, we

use a last in, first out strategy for this selection. Thus, we now consider basis B ′′ and solve LPS(B ′′)

(4.52):

min
θ,φ

φ

s.t. 1
4θ1 − θ2 + 9

2φ ≥ 0

θ1 + θ2 + 18φ ≥ 0
1
4θ1 − 1

2θ2 + 9
2φ ≥ 0

− 9
48θ1 − 9

2φ+ 8 ≥ 0

− 1
4θ1 − 9

2φ+ 4 ≥ 0

−4 ≤ θ1 ≤ 3

−2 ≤ θ2 ≤ 2

The optimal solution of this LP is (θ∗1 , θ
∗
2 , φ
∗) =

(
3, 0,− 1

6

)
. Since the optimal value is strictly

negative we conclude that we have found an initial basis. Since LB′′ = ∅ we also know that IRB′′

is full dimensional. We now set B0 = B ′′, R = {IRB0
} and LB0

= LB′′ and exit Phase 1. For a

visualization of the invariancy regions discovered during Phase 1, see Figure 4.6. Recall that IRB0

is precisely the intersection of IRφ1
B0

and the plane φ = 0.
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θ1 θ2

φ

Figure 4.6: IRph1
B∗ is shown in red and IRph1

B′′ is shown in yellow.

Phase 2:

Iteration 1: Remove IRB0
from R , resulting in R = ∅. Also, we currently have FB0

= PB0
= ∅.

Notice that TB0
is the same as the tableau shown in (4.60) with the exception that φ = 0. Now,

since LB0
= ∅ we consider each element of B0.

w1 - Since w1 /∈ FB0
we will solve LPF (B0, w1) (4.27). Notice from (4.60) that ZB0

= Hw1

B0
= ∅.

Thus, LPF (B0, w1) (4.27) has the form:

max
λ,θ

λ

s.t. 1
4θ1 − θ2 = 0

θ1 + θ2 − λ ≥ 0
1
4θ1 − 1

2θ2 − λ ≥ 0

− 9
48θ1 − λ ≥ −8

− 1
4θ1 − λ ≥ −4

−4 ≤ θ1 ≤ 3

−2 ≤ θ2 ≤ 2

The solution of this LP is (θ∗1 , θ
∗
2 , λ
∗) = (3, 3

4 ,
3
8 ). Since the optimal value is positive, hw1

B0
forms

a facet of IRB0
. Therefore, we set FB0

= {w1}.

w2 - Since w2 /∈ FB0
we solve LPF (B0, w2). The solution is (θ∗1 , θ

∗
2 , λ
∗) = (2,−2, 3

2 ), showing that

the optimal value is positive. Thus, hw2

B0
forms a facet of IRB0

and so we set FB0
= FB0

∪{w2}.

w3 - Since w3 /∈ FB0
we solve LPF (B0, w3). The solution is (θ∗1 , θ

∗
2 , λ
∗) = (0, 0, 0). Since the optimal

value of LPF (B0, w3) is not strictly positive, hw3

B0
does not form a facet of IRB0

.

z4 - Since w4 /∈ FB0
we solve LPF (B0, w4). This LP is infeasible, though, and thus hw4

B0
does not

form a facet of IRB0
.
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z5 - Since z5 /∈ FB0
we solve LPF (B0, z5). However, this LP is also infeasible and so hz5B0

does not

form a facet of IRB0
.

To see that the correct conclusions have been made about which hyperplanes form facets of IRB0
,

observe Figure 4.7a.

Since we have now determined the facets of IRB0
, we next need to determine all invariancy

regions which are adjacent to IRB0
along each facet. Thus, we consider each element of FB0

=

{w1, w2}.

w1 - Notice from (4.60) that (TB0
)w1,z1

= − 1
2 6= 0. Since (B0 \ {w1}) ∪ {z1} /∈ K , we let B1 =

(B0 \ {w1}) ∪ {z1}, R = R ∪ IRB1
, K = K ∪ B1, FB1

= FB1
∪ {z1}, and PB1

= PB1
∪ {z1}.

Notice that TB1
can be obtained from TB0

by performing a pivot on (TB0
)w1,z1

:

w1 w2 w3 w4 w5 z1 z2 z3 z4 z5

z1 -2 0 0 0 -1 1 4 1 5 0 − 1
2θ1 + 2θ2

w2 -4 1 0 0 0 0 0 0 10 0 5θ2

w3 -1 0 1 0 0 0 0 0 2 0 1
2θ2 (4.61)

w4 5 0 0 1 2 0 -10 -2 -16 0 −θ1 − 5θ2 + 8

z5 1 0 0 0 0 0 0 0 -2 1 −θ2 + 4

Recognize from (4.61) and (4.48) that Lw1

B0,B1
= ∅. Thus, we set LB1

= ∅.

w2 - Notice from (4.60) that (TB0
)w2,z2

= −8 6= 0. Since (B0 \ {w2}) ∪ {z2} /∈ K , we let B2 =

(B0 \ {w2}) ∪ {z2}, R = R ∪ IRB2
, K = K ∪ B2, FB2

= FB2
∪ {z2}, and PB2

= PB2
∪ {z2}.

Notice that TB2
can be obtained from TB0

by performing a pivot on (TB0
)w2,z2

:

w1 w2 w3 w4 w5 z1 z2 z3 z4 z5

w1 1 -1
4 0 0 0 0 0 0 - 5

2 0 − 5
4θ2

z2 0 -1
8 0 0 - 1

4
1
4 1 1

4 0 0 − 1
8θ1 − 1

8θ2

w3 0 -1
4 1 0 0 0 0 0 - 1

2 0 − 3
4θ2 (4.62)

w4 0 0 0 1 - 1
2

5
2 0 1

2 - 7
2 0 − 9

4θ1 + 8

z5 0 1
4 0 0 0 0 0 0 1

2 1 1
4θ2 + 4

Recognize from (4.63) that Lw2

B0,B2
= ∅. Thus, we set LB2

= ∅.

This completes iteration 1.
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Iteration 2: Remove IRB1
from R , resulting in R = {IRB2

}. The tableau for B1 is shown in (4.61).

Since LB1
= ∅ we consider each element of B1 \ FB1

in order to determine the unknown facets of

IRB1
. Since the work here is analogous to work done during iteration 1, the details are omitted.

We find that, in addition to hz1B1
, the facets of IRB1

are formed by hw2

B1
, hw3

B1
and hw4

B1
. Note that

hw2

B1
= hw3

B1
.

w2 - Notice from (4.61) that (TB1
)w2,z2

= 0. Thus, a diagonal pivot cannot be performed on

(TB1
)w2,z2 . Instead, we look for possible exchange pivots. The only possible exchange pivot

involves z1 and w2. However, since (B1 \{z1, w2})∪{w1, z2} = B2, we do not make this pivot.

w3 - Since (TB1
)w3,z3

= 0, a diagonal pivot cannot be performed on (TB1
)w3,z3 . The only possible

exchange pivot involving w3 also involves z1. Since (B1 \ {z1, w3}) ∪ {w1, z3} /∈ K , we solve

LPA(B1, w3, z1) to determine whether or not the exchange pivot involving w3 and z1 will

yield an adjacent invariancy region. In order to set up LPA(B1, w3, z1) (4.28), we must first

compute Y ξB1
(θ) for each ξ ∈ {w2, w4, z5}. Using (4.29) we compute: (i) Y w2

B1
(θ) = 3θ2, (ii)

Y w4

B1
(θ) = −2θ1 − 1

2θ2 + 8, and (iii) Y z5
B1

(θ) = − 1
2θ2 + 4. Notice from (4.31) that w2 ∈ (Hw3

B1
)′.

Thus, LPA(B1, w3, z1) (4.28) is:

max
λ,θ

λ

s.t. − 1
2θ1 + 2θ2 − λ ≥ 0

−θ1 − 5θ2 − λ ≥ −8

−θ2 − λ ≥ −4
1
2θ2 = 0

−2θ1 − 1
2θ2 − λ ≥ −8

− 1
2θ2 − λ ≥ −4

−4 ≤ θ1 ≤ 3

−2 ≤ θ2 ≤ 2

The solution of this LP is (θ∗1 , θ
∗
2 , λ
∗) = (−4, 0, 2). Since the optimal value is positive, the

exchange pivot involving w3 and z1 will yield an adjacent invariancy region. Thus, we let

B3 = (B1 \ {z1, w3}) ∪ {w1, z3}, R = R ∪ IRB3
, K = K ∪ B3 and FB3

= FB3
∪ {w3}. The

tableau for B3 is:

138



w1 w2 w3 w4 w5 z1 z2 z3 z4 z5

z3 0 0 -2 0 -1 1 4 1 1 0 − 1
2θ1 + θ2

w2 0 1 -4 0 0 0 0 0 2 0 3θ2

w1 1 0 -1 0 0 0 0 0 -2 0 − 1
2θ2 (4.63)

w4 0 0 1 1 0 2 -2 0 -4 0 −2θ1 − 1
2θ2 + 8

z5 0 0 1 0 0 0 0 0 0 1 − 1
2θ2 + 4

Recognize from (4.63) and (4.48) that Lw3

B1,B3
= {w2}. Thus, we set LB3

= {w1, w2}.

w4 - Since (TB1
)w4,z4

6= 0, a diagonal pivot can be made. Since (B1 \ {w4}) ∪ {z4} /∈ K , we let

B4 = (B1 \{w4})∪{z4}, R = R ∪IRB4
, K = K ∪B4, FB4

= FB4
∪{z4} and PB4

= PB4
∪{z4}.

The tableau for B4 is:

w1 w2 w3 w4 w5 z1 z2 z3 z4 z5

z1 - 7
16 0 0 5

16 - 3
8 1 7

8
3
8 0 0 − 13

16θ1 + 7
16θ2 + 5

2

w2 - 7
8 1 0 5

8
5
4 0 - 25

4 - 5
4 0 0 − 5

8θ1 + 15
8 θ2 + 5

w3 - 3
8 0 1 1

8
1
4 0 - 5

4 - 1
4 0 0 − 1

8θ1 − 1
8θ2 + 1 (4.64)

z4 - 5
16 0 0 - 1

16 - 1
8 0 5

8
1
8 1 0 1

16θ1 + 5
16θ2 − 1

2

z5
3
8 0 0 - 1

8 - 1
4 0 5

4
1
4 0 1 1

8θ1 − 3
8θ2 + 3

Recognize from (4.64) that Lw4

B1,B4
= ∅. Thus, we set LB4

= ∅.

This completes iteration 2.

Iteration 3: (Here IRB2
is considered. The details are omitted as they are analogous to those found

in Iteration 2. A new basis B5 = {z1, z2, w3, z4, z5} is discovered.)

Iteration 4: Remove IRB3
from R , resulting in R = {IRB4

, IRB5
}. The tableau for B3 is shown

in (4.63). Since LB3
6= ∅ we consider each of its elements.

w1 - Notice from (4.63) that (TB3
)w1,z1

= 0 and therefore a diagonal pivot cannot be made on this

element. Exchange pivots involving z3 and w4 are possible, though. Since (B3 \ {w1, z3}) ∪

{z1, w3} = B1 we do not perform this pivot. However, (B3 \ {w1, w4}) ∪ {z1, z4} /∈ K so we

solve LPA2(B3, w1, w4) (4.49). The solution of this LP is (θ∗1 , θ
∗
2 , λ
∗) = (3, 0,−2.5). Since the

optimal value is negative, the exchange pivot involving w1 and w4 will not yield an adjacent

invariancy region.
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w2 - Since (TB3
)w2,z2

= 0, a diagonal pivot cannot be made. The only exchange pivot that is

possible involves z3. Since (B3 \ {w2, z3}) ∪ {z2, w3} = B2 we do not perform this pivot.

This completes iteration 4.

Iterations 5 and 6: (In these iterations IRB4
and IRB5

are considered. The details are omitted

since they are analogous to work previously done, and no new feasible complementary bases are

obtained.)

At the end of iteration 6 we have R = ∅, and thus the algorithm terminates, having revealed

full-dimensional invariancy regions:

• IRB0
= {θ ∈ Sθ : θ1 − 4θ2 ≥ 0, θ1 + θ2 ≥ 0}

• IRB1
= {θ ∈ Sθ : −θ1 + 4θ2 ≥ 0, θ2 ≥ 0,−θ1 − 5θ2 + 8 ≥ 0}

• IRB2
= {θ ∈ Sθ : −θ2 ≥ 0,−θ1 − θ2 ≥ 0}

• IRB4
= {θ ∈ Sθ : θ1 + 5θ2 − 8 ≥ 0}

To see that these invariancy regions do in fact partition Sθ, observe Figure 4.7b.

θ1

θ2

Sθ

hw4

B0

hz5B0

hw1

B0

hw2

B0

hw3

B0

IRB0

(a) hw1

B0
and hw2

B0
form facets of

IRB0

θ1

θ2

IRB0

IRB1

IRB2

IRB4

(b) Partition of Sθ

Figure 4.7: Example Visual Aids
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Notice that this partition of Sθ provides the following solution to the mpLCP:

θ ∈ IRB0
IRB1

IRB2
IRB4

w =



1
4θ1 − θ2

θ1 + θ2

1
4θ1 − 1

2θ2

− 9
48θ1 + 8

0





0

5θ2

1
2θ2

−θ1 − 5θ2 + 8

0





− 5
4θ1

0

− 3
4θ2

0

− 9
4θ1 + 8





0

− 5
8θ1 + 15

8 θ2 + 5

− 1
8θ1 − 1

8θ2 + 1

0

0



z =



0

0

0

0

− 1
4θ1 + 4





− 1
2θ1 + 2θ2

0

0

0

−θ2 + 4





0

− 1
8θ1 − 1

8θ2

0

0

1
4θ2 + 4





− 13
16θ1 + 7

16θ2 + 5
2

0

0

1
16θ1 + 5

16θ2 − 1
2

1
8θ1 − 3

8θ2 + 3


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4.B Appendix B: Complete Experimental Results

Table 4.2: Complete Results for k = 2 – MPT results in standard font; proposed method in bold.

Instance h Total time (s) Number of Regions Ph1 Iter. Ph2 Iter.

TAME 4 1.17 0.03 5 5 1 6
HS35 4 1.38 0.03 10 10 2 10
QPTEST 5 1.48 0.03 7 7 1 7
HS35mod 5 1.91 0.04 14 14 2 14
ZECEVIC2 6 1.16 0.02 6 6 1 6
HS21 7 2.91 0.03 13 13 1 13
HS76 7 4.45 0.03 26 26 1 26
HS268 15 0.16 0.04 ‡ 18 4 18
S268 15 0.13 0.03 ‡ 15 4 15
HS51 16 6.68 0.05 35 35 1 43
HS52 16 6.46 0.05 34 34 1 40
HS53 26 8.58 0.08 45 45 2 45
LOTSCHD 26 2.41 0.05 12 12 18 12
GENHS28 36 24.04 0.34 91 167 1 177
QAFIRO 67 0.17 2.18 ‡ 436 2 519
Qplib 3550 105 140.97 0.37 411 37 1 83
DUAL4 152 fail fail – – – –
QADLITTL 168 250.83 fail 961 – – –
DUAL1 172 898.64 87.03 4191 4165 1 4169
QSHARE2B 188 fail 2652.22 – 62924 3 74671
DUAL2 194 990.68 100.70 4349 4292 1 4293
QPCBLEND 200 fail fail – – – –
DUAL3 224 1746.10 200.83 6348 6223 1 6223
DUALC1 234 73.62 0.78 30 31 1 33
PRIMALC2 240 125.13 1.34 61 50 1 151
DUALC2 244 93.21 0.72 32 29 1 35
CVXQP2S 250 275.18 35.31 1023 1023 9 1097
PRIMALC1 254 439.99 3.99 142 128 1 191
DUALC5 295 62.39 0.86 24 24 1 26
CVXQP1S 300 1085.30 221.00 4177 4667 6 4729
PRIMALC5 304 401.77 6.90 179 168 1 226
QISRAEL 316 0.57 † ‡ 33743 164 48955
QSCAGR7 353 22.14 41.30 16 405 1061 425
Qplib 2883 374 fail 140.38 – 1631 27 2398
DPKLO1 420 fail † – 31910 10 37076
QSHARE1B 431 70.73 1593.50 62 12122 588 13265
QRECIPE 433 2.76 106.22 ‡ 1186 3 1908
QSC205 499 3479.40 139.96 1930 1186 1 2328
DUALC8 520 262.43 fail 56 – – –
QE226 538 † 185.19 1583 1249 4 3012
PRIMALC8 545 248.88 18.85 212 212 1 222
Qplib 3965 566 † † 10075 23655 9 23655
Qplib 3970 566 † 3389.96 9349 21126 51 21126
Qplib 3975 566 fail † – 23398 39 23429
Qplib 3977 566 fail 3110.91 – 21025 49 21025
Qplib 3839 574 fail 125.67 – 867 1 1894
QBEACONF 575 1119.80 45.58 311 318 99 380
QBRANDY 635 fail 758.77 – 2046 43 3681
Qplib 3897 722 fail † – 16451 80 16451
Qplib 3907 722 fail † – 15600 67 15600
Qplib 3908 722 † † 6048 14736 74 14736
PRIMAL1 734 fail † – 13234 1 15123
QGROW7 861 24.85 † ‡ 5298 3 7535
QSCTAP1 900 † 2083.78 189 4373 38 5944
QSCFXM1 974 1854.10 † 116 5624 279 6712
QSCORPIO 1026 † † 175 7696 1 9796
KSIP 1041 2394.80 524.69 1238 1322 7 1347
QBANDM 1082 † 931.61 282 1547 53 2896
Qplib 2461 1269 † † 133 3959 147 4999
PRIMAL2 1393 † † 41 4717 1 5690

† – Time limit of one hour reached. ‡ – Reported as infeasible.
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Table 4.3: Complete Results for k = 3 – MPT results in standard font; proposed method in bold.

Instance k Total time (s) Number of Regions Ph1 Iter. Ph2 Iter.

TAME 4 2.02 0.03 9 9 1 9
HS35 4 2.86 0.03 15 15 1 15
QPTEST 5 2.75 0.03 12 12 1 12
HS35mod 5 3.23 0.03 18 18 1 18
ZECEVIC2 6 3.45 0.03 13 13 1 13
HS21 7 5.40 0.03 24 24 1 24
HS76 7 12.70 0.04 62 62 1 62
HS268 15 0.52 0.05 1 27 4 27
S268 15 7.46 0.05 23 23 8 23
HS51 16 32.49 0.12 111 111 1 111
HS52 16 45.49 0.18 169 169 1 169
HS53 26 166.59 1.31 423 424 1 424
LOTSCHD 26 18.63 0.21 52 52 12 52
GENHS28 36 384.25 2.32 663 666 1 667
QAFIRO 67 352.43 53.04 501 5994 3 6110
Qplib 3550 105 † 117.21 5631 6503 1 6618
DUAL4 152 fail fail – – – –
QADLITTL 168 fail fail – – – –
DUAL1 172 † 2744.41 10862 106593 1 106593
QSHARE2B 188 fail † – 19392 9 27447
DUAL2 194 fail † – 111742 1 111742
QPCBLEND 200 † fail 9106 – – –
DUAL3 224 fail † – 85731 1 85731
DUALC1 234 404.57 4.11 121 121 1 124
PRIMALC2 240 1753.70 29.78 1546 959 1 1035
DUALC2 244 303.93 5.75 98 172 1 209
CVXQP2S 250 fail 2727.38 – 53810 1 53810
PRIMALC1 254 fail 60.58 – 1911 1 1989
DUALC5 295 170.96 3.41 75 76 1 79
CVXQP1S 300 fail † – 58436 4 58477
PRIMALC5 304 1286.20 41.29 932 841 1 1399
QISRAEL 316 0.69 † ‡ 20271 109 22873
QSCAGR7 353 fail 469.20 – 5149 888 5353
Qplib 2883 374 fail † – 7082 15 9133
DPKLO1 420 † † 6218 13365 7 19997
QSHARE1B 431 † 38.52 1379 101 442 103
QRECIPE 433 3.97 † ‡ 20457 2 21259
QSC205 499 fail † – 16401 1 24438
DUALC8 520 fail fail – – – –
QE226 538 † † 423 9145 7 12419
PRIMALC8 545 fail 605.36 – 2754 1 2812
Qplib 3965 566 fail † – 12683 2 12683
Qplib 3970 566 † † 3681 13177 47 13177
Qplib 3975 566 fail † – 13538 11 13538
Qplib 3977 566 † † 4629 13588 1 13588
Qplib 3839 574 fail † – 14205 1 14745
QBEACONF 575 † 1613.43 616 5913 127 8599
QBRANDY 635 † 2566.00 601 738 16 2652
Qplib 3897 722 † † 3417 8805 1 8902
Qplib 3907 722 † † 3624 9212 1 9212
Qplib 3908 722 † † 2533 8243 49 8243
PRIMAL1 734 † † 1788 8018 1 9040
QGROW7 861 † † 96 3566 1 4048
QSCTAP1 900 † † 96 4610 12 4843
QSCFXM1 974 610.12 † 78 3787 228 3794
QSCORPIO 1026 † † 95 4146 1 5246
KSIP 1041 † † 555 4111 2 4136
QBANDM 1082 † † 91 2970 63 5592
Qplib 2461 1269 † † 54 2748 4 2868
PRIMAL2 1393 † † 179 2526 1 2851

† – Time limit of one hour reached. ‡ – Reported as infeasible.

143



(a) 2x Zoom (b) 100x Zoom

(c) 1000x Zoom

Figure 4.8: Three scaled images of invariancy regions for instance DUAL1 with k = 2.
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Chapter 5

A Two-phase Algorithm for

mpLCP with Parameters in

General Locations

[The contents of this chapter include material from a paper entitled “On the multiparametric

linear complementarity problem with parameters in general locations,” which will be submitted to

the journal Mathematics of Operations Research in August of 2016; the author is N. Adelgren.]

5.1 Introduction

In this work we consider the multiparametric form of the Linear Complementarity Problem

(LCP) in which all input data is permitted to be dependent on a vector of parameters θ ∈ Sθ ⊆ Rk,

where Sθ is a bounded convex polytope defining the set of “attainable” values for θ. This problem is

referred to as the multiparametric Linear Complementarity Problem (mpLCP). Let Θ = {α>θ+ β :

α ∈ Rk, β ∈ R}, the set of affine functions of θ. Then mpLCP is as follows:

Given M(θ) ∈ Θh×h, q(θ) ∈ Θh, for each θ ∈ Sθ find vectors w(θ) and z(θ) that satisfy

the following system:
w −M(θ)z = q(θ)

w>z = 0

w, z ≥ 0

(5.1)
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If such a solution exists for a given θ ∈ Sθ, mpLCP is said to be feasible at θ, otherwise it

is infeasible at θ. Similarly, mpLCP is said to be feasible if there exists a θ̂ ∈ Sθ at which mpLCP is

feasible, otherwise mpLCP is infeasible. As finding a solution to (5.1) for each θ ∈ Sθ individually is

intractable, the goal of mpLCP is to partition the space Sθ into regions such that the representation

of the solution vectors w and z as functions of θ is invariant over each region. In the literature these

regions have been given a variety of names, such as invariancy regions, critical regions, and validity

sets. We refer to them as invariancy regions. A detailed discussion on invariancy regions and their

properties is provided in Section 5.2.

Note that the nonparametric version of LCP has the same form as (5.1) with the exception

that M(θ) and q(θ) are replaced by M ∈ Rh×h and q ∈ Rh, respectively. LCP is a well known

problem in the literature and has been studied extensively by researchers such as Kostreva [55],

Lemke [56], Murty and Yu [65] and Cottle et al. [22]. Though LCP is NP-hard in general, polynomial

time algorithms exist for certain classes of the matrix M . Thus, much work has been done in order

to identify various classes of matrices M which impact one’s ability to solve an instance of LCP.

Solution techniques for LCP are often designed for specific classes of M . For a concise list of

important matrix classes see [21]. For a detailed discussion on these classes and their impact on

LCP see [22, 65]. We will refer to many of the matrix classes discussed in these works throughout

this chapter.

Single parametric LCP (pLCP) with a parameter present only in the q(θ) vector (i.e., k = 1

and M(θ) = M ∈ Rh×h) was first proposed as a result of the work done by Maier [58] and has

been studied extensively since. Columbano et al. [18], Gailly et al. [32], Li and Ierapetritou [57] and

Adelgren and Wiecek [2] consider (5.1) with k > 1 and M(θ) = M ∈ Rh×h. The method of Gailly

et al. [32] is designed for the case in which M is a copositive-plus matrix, the methods of Columbano

et al. [18] and Adelgren and Wiecek [2] are designed for instances in which M is a sufficient matrix,

and the method of Li and Ierapetritou [57] works for general M , but is computationally expensive

since it requires reformulating the mpLCP as a multiparametric bilinear mixed integer program.

Parametric and multiparametric LCP in which M(θ) 6= M ∈ Rh×h (i.e., the matrix M(θ) cannot

be represented as a real valued matrix, as it depends on θ) has received little attention though.

Interesting properties of the case in which M(θ) 6= M ∈ Rh×h are discussed by Tammer [93]. Xiao

[103] and Chakraborty et al. [17] present solution techniques for the case when M(θ) 6= M ∈ Rh×h,

but restrict that M(θ) be a P-matrix for all θ ∈ Sθ.
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The method we propose in this chapter extends the works of Väliaho [98], who considered

(5.1) for k = 1, and Adelgren and Wiecek [2], who considered (5.1) for M(θ) = M ∈ Rh×h and

k > 1, and solves (5.1) whenever it is feasible and M(θ) is a sufficient matrix for each θ ∈ Sθ. Since

we require that M(θ) be sufficient, we provide the following definition, as found in [22].

Definition 5.1. A matrix M ∈ Rh×h is column sufficient if the following implication is satisfied:

(xi(Mx)i ≤ 0 for all i) ⇒ (xi(Mx)i = 0 for all i) (5.2)

M is said to be row sufficient if M> is column sufficient. If M is both column and row sufficient, it

is then called sufficient.

Assumption 5.2. We assume that M(θ) is a sufficient matrix for all θ ∈ Sθ.

We note that although there exist finite time algorithms capable of determining whether

or not a given matrix is sufficient (see, for example, [100]), in general, determining whether or not

M(θ) is sufficient for all θ ∈ Sθ is not a trivial task. To see this, consider the following results.

Lemma 5.3. (Theorem 4.6 of Väliaho [99]) The matrix A =

[
0 B

C 0

]
∈ Rn×n where the zero

blocks are square, is sufficient if and only if all the corresponding minors of B and −C> have the

same sign.

Proposition 5.4. The set of sufficient matrices is not closed under convex combinations.

Proof. Consider the matrices A1 =

[
0 2

−1 0

]
and A2 =

[
0 −1

2 0

]
. It is easy to see that both A1

and A2 satisfy the conditions of Lemma 5.3 and are therefore sufficient. For each α ∈ [0, 1] consider

the following

αA1 + (1− α)A2 =

[
0 2α

−α 0

]
+

[
0 α− 1

2− 2α 0

]
=

[
0 3α− 1

2− 3α 0

]

It is clear that for all α ∈ ( 1
3 ,

2
3 ) the above matrix does not satisfy the conditions of Lemma 5.3.

Thus, the above matrix is not sufficient for any α ∈ ( 1
3 ,

2
3 ). This clearly shows that the set of

sufficient matrices is not closed under convex combinations.
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The result of Proposition 5.4 also shows that the set of sufficient matrices cannot be closed

under conic or linear combinations. Thus, even in the case in which Sθ is translated into the

nonnegative orthant and there exist sufficient matrices M0,M1, . . . ,Mk ∈ Rh×h such that M(θ) =

M0 +

k∑
i=1

M iθi, one is not guaranteed that M(θ) is sufficient for all θ ∈ Sθ. This serves as evidence

that the problem of determining whether or not M(θ) is sufficient for all θ ∈ Sθ is not trivial,

in general. Although we acknowledge the difficulty of this problem, solving it is not the focus of

this work. We note that, in practice, satisfaction of the stronger condition that M(θ) be positive

semi-definite for all θ ∈ Sθ is easier to verify. Even under this condition, though, the procedures we

present still allow one to solve several important parametric problems for which there was previously

no available solution technique. We discuss a variety of such problems in the next several paragraphs,

and we note that for each of these problems M(θ) will always be positive semi-definite for all θ ∈ Sθ.

Since mpLCP as in (5.1) has not yet been studied for k > 1, we briefly discuss some of the

problems this method allows one to solve. It is well known that both linear programs (LPs) and

convex quadratic programs (QPs) can be reformulated as LCPs. Thus, (5.1) encompasses two very

important classes of problems:

(i) Multiparametric LP (mpLP):

min
x

c(θ)>x

s.t. A(θ)x ≤ b(θ)
(5.3)

(ii) Multiparametric (convex) QP (mpQP):

min
x

1
2x
>Q(θ)x+ c(θ)>x

s.t. A(θ)x ≤ b(θ)
(5.4)

Parametric LP with A(θ) = A and parametric QP with A(θ) = A and Q(θ) = Q have been

studied extensively. Pistikopoulos et al. [75] provide an excellent survey of the literature for the case

in which k > 1. Parametric LP with A(θ) 6= A has also been studied for quite some time. Perhaps

the earliest work is due to Courtillot [23]. Solution techniques for various special cases of parametric

LP with k = 1 and A(θ) 6= A are presented in works such as Barnett [6], Dent et al. [26], Finkelstein

and Gumenok [31], Kim [52], Willner [102] and Filar et al. [30]. The works of Väliaho [96] and

Khalilpour and Karimi [51] introduce methods for solving (5.3) with k = 1 and A(θ) 6= A. We are

unaware of any work that provides a method for solving (5.3) with k > 1 and A(θ) 6= A. However,

the method we present is capable of solving this problem.
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In addition to the works cited in Pistikopoulos et al. [75], parametric QP with A(θ) = A

and Q(θ) = Q is considered in Ghaffari-Hadigheh et al. [34] and Ghaffari-Hadigheh et al. [35],

particularly for the case in which k = 2. Solution techniques are presented for (5.4) with k = 1,

A(θ) 6= A and Q(θ) 6= Q in Ritter [81], Väliaho [97] and Jonker et al. [47]. As with mpLP, we are

unaware of any work that provides a method for solving (5.4) with k > 1, A(θ) 6= A and Q(θ) 6= Q.

Again, the method we present is capable of solving this problem.

Another class of problems that can be reformulated and solved using (5.1) is multiobjective

programming problems having linear and/or convex quadratic objective functions and linear con-

straints. This is due to the common method of solving multiobjective problems using scalarization

techniques which transform the problem into a single objective problem by introducing one or more

parameters. For a detailed discussion on multiobjective programming and the various scalarization

techniques available, see Ehrgott [27]. Multiobjective programs in which all objective functions are

linear have been widely studied and can be solved efficiently using the multiobjective simplex method

(Ehrgott [27]). Efficient methods have also been proposed for problems with one convex quadratic

objective and one or more linear objectives, see, for example Hirschberger et al. [44], Steuer et al.

[89] and Hirschberger et al. [43]. Goh and Yang [36] present a method for solving multiobjective

problems with two or more convex quadratic objectives, though they impose a few minor restrictions.

The work we present here serves as an alternative method for solving multiobjective programs with

any number of linear and/or convex quadratic objectives, without restriction.

The method for solving mpLCP (5.1) which we present in this work is a two-phase method.

We will show that the problem solved in the first phase of this method is simply a special case of the

problem solved during the second phase. For this reason we discuss Phase 2 prior to Phase 1. Hence,

the remainder of this chapter is organized as follows. Background information on LCP problems and

their geometrical structure is contained in Section 5.2. In Section 5.3 we discuss algebraic properties

of invariancy regions. The theory and methodology for Phase 2 of the proposed method for solving

mpLCP are presented in Section 5.4. In Section 5.5 we present the theory and methodology for

Phase 1. We discuss the uniqueness of partitions of Sθ in Section 5.6. In Section 5.7 we present the

results of an experiment and discuss the performance of the proposed algorithms. Finally, in Section

5.8 we provide concluding remarks and a discussion on proposed future work. We also include two

appendices in Sections 5.A and 5.B in which we provide tables that are important for the examples

we discuss in Sections 5.4–5.6.
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5.2 Background on mpLCP

This section is divided into four subsections. In the first we present preliminary notations

and definitions. In the second we provide a detailed discussion on invariancy regions and the prop-

erties of these sets. In the third subsection we discuss the geometry of mpLCP and provide some

preliminary results. Finally, in the last subsection we delve deeper into the details of invariancy

regions and develop the theory which shows that Sθ can, in fact, be partitioned. As many of the

concepts we introduce throughout this work are new and rather difficult, we introduce here two ex-

amples of small instances of mpLCP (5.1) which we will refer back to at various locations throughout

this chapter.

Example 5.5.

w −


0 0 1 3 −5

0 0 2 2 2

−1 −2 2θ1 − θ2 + 4 θ1 − 2θ2 + 3 3θ1 + 4θ2 − 2

−3 −2 θ1 − 2θ2 + 3 −θ1 + θ2 + 4 3θ1 + 4θ2 − 3

5 −2 3θ1 + 4θ2 − 2 3θ1 + 4θ2 − 3 −θ2 + 3

 z =


3

−θ1 − 2

0

0

0


w>z = 0

w, z ≥ 0

(5.5)

Notice here that h = 5 and k = 2. Assume that Sθ = {θ ∈ R2 : θ ≥ 0, θ1 + θ2 ≤ 1}. It is

easy to verify for this example that M(θ) is sufficient for all θ ∈ Sθ since M(θ) is actually positive

semi-definite for each θ ∈ Sθ.

Example 5.6.

w −


0 0 −2 −1

0 0 −5 θ1 + 7

1 3 0 0

1 −θ1 − 5 0 0

 z =


−θ2 − 1

θ1 − θ2 − 1

−18θ2 − 34

−9θ2 − 17


w>z = 0

w, z ≥ 0

(5.6)

For this example h = 4 and k = 2. Assume that Sθ = [−3, 1]2. It can be verified that M(θ)

is sufficient for all θ ∈ Sθ by using Lemma 5.3.

5.2.1 Preliminaries

We begin this subsection by introducing definitions and notation necessary for the remainder

of this work. Many of these definitions slight modifications of traditional definitions for LCP. Assume
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that we are given an mpLCP of the form (5.1) and define the matrix G(θ) :=
[
I −M(θ)

]
and the

vector ν :=

[
w

z

]
, where G(θ) ∈ Rh×h ×Θh×h and ν ∈ R2h. We use the notation G(θ)i • to represent

the ith row of G(θ) and G(θ)•j to represent the jth column of G(θ). Also, given a set I ⊆ {1, . . . , h}

we use G(θ)I• to denote the matrix formed by the rows of G(θ) indexed by I. Similarly, given a set

J ⊆ {1, . . . , 2h} we use G(θ)•J to denote the matrix formed by the columns of G(θ) indexed by J .

Furthermore, given I ⊆ {1, . . . , h} and J ⊆ {1, . . . , 2h}, we use G(θ)IJ to represent the submatrix

of G(θ) consisting of the elements of the rows indexed by I which are in the columns indexed by J ,

i.e., G(θ)IJ = (G(θ)I•)•J . Let E denote the index set {1, . . . , 2h} for (5.1).

Definition 5.7. Given a set I ⊂ E , θ ∈ Sθ is called rank preserving over I if rank (G(θ)•I) = |I|.

We then let

P(I) := {θ ∈ Sθ : rank (G(θ)•I) = |I|} (5.7)

be the set of all rank preserving θ ∈ Sθ for I ⊂ E .

Definition 5.8. A basis is a set B ⊂ E such that |B | = h and P(B) 6= ∅. The set N := E \ B is

called the complement of B .

Definition 5.9. The sets of variables νB := {νi : i ∈ B} and νN := {νi : i ∈ N } are referred to as

the sets of basic and nonbasic variables, respectively.

Definition 5.10. Given a basis B , for every θ ∈ P(B), νB(θ) = G(θ)−1
•B q(θ), νN (θ) = 0 is a solution

to the linear system

G(θ)ν = q(θ).

For each θ ∈ P(B), the solution
(
νB(θ), νN (θ)

)
is called a basic solution.

Definition 5.11. A basis B is called complementary if |{i, i+ h} ∩ B | = 1 for each i ∈ {1, . . . , h}.

We have now built the tools necessary for providing the definition of an invariancy region.

Although, we do provide the definition here, we note that Section 5.2.2 is devoted to a more detailed

discussion on these sets.

Consider a complementary basis B and suppose there exists θ ∈ P(B) ⊆ Sθ such that: (i)

νB(θ) = G(θ)−1
•B q(θ) ≥ 0 and, (ii) νN (θ) = 0. Then since ν =

[
w

z

]
, for all θ ∈ P(B) satisfying (i)

and (ii) above, the basic solution
(
νB(θ), νN (θ)

)
satisfies (5.1) and therefore defines solution vectors

w(θ) and z(θ) for mpLCP. Note that one set of solution vectors of this form may exist for each

complementary basis. Hence, there may exist one invariancy region for each complementary basis.
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Definition 5.12. The invariancy region IRB of a complementary basis B is the set:

IRB :=
{
θ ∈ P(B) : G(θ)−1

•B q(θ) ≥ 0
}

(5.8)

Definition 5.13. A complementary basis B is called feasible to (5.1) if IRB 6= ∅.

Every invariancy region is a possibly non-convex subset of Sθ. For every feasible comple-

mentary basis B , the function νB(θ) = G(θ)−1
•B q(θ), νN (θ) = 0 is a solution to (5.1) for all θ ∈ IRB .

Furthermore, as will be discussed in more detail in Section 5.2.3, when M(θ) is sufficient for each

θ ∈ Sθ there is an onto correspondence between solutions to mpLCP and complementary bases, i.e.,

for each θ ∈ Sθ there exists a complementary basis B for which (νB , νN ) solves mpLCP at θ. There-

fore in this work we propose a method for determining a piecewise solution to (5.1) by partitioning

Sθ into a set of invariancy regions with disjoint interiors, where each invariancy region is associated

with a unique feasible complementary basis.

5.2.2 Invariancy Regions

In order to gain a deeper understanding of invariancy regions, we return to Examples

5.5 and 5.6. For Example 5.5 it is not difficult to verify that for θ =

[
1
5
2
5

]
, the basis B5.5

0 =

{w1, z2, z3, z4, z5} is feasible (see Table 5.11 in Section 5.A). Similarly, for Example 5.6, the basis

B5.6
0 = {w1, w2, w3, w4} is feasible for θ =

[
−2

−2

]
(see Table 5.14 in Section 5.B). Note that for

ease of understanding we are representing B5.5
0 and B5.6

0 as the sets of variables given by the indices

in each basis, rather than the sets of indices themselves. We will often represent bases this way

throughout this work. Observe the invariancy regions for B5.5
0 and B5.6

0 :

IRB5.5
0

=



θ ∈ P(B5.5
0 ) :

3θ3
1 + 18θ2

1θ2 − 49θ2
1 − 75θ1θ2

2 + 148θ1θ2 + 68θ1 + 96θ2
2 − 16θ2 − 76

2(−3θ2
1 + 8θ1θ2 + 19θ1 + 41θ2

2 − 24θ2 − 22)
≥ 0

−(θ1 + 2)(9θ3
1 − 9θ2

1θ2 − 33θ2
1 − 87θ1θ2

2 + 21θ1θ2 + 22θ1 − 59θ3
2 + 13θ2

2 + 50θ2 + 5)

4(−3θ2
1 + 8θ1θ2 + 19θ1 + 41θ2

2 − 24θ2 − 22)
≥ 0

(θ1 + 2)(−6θ2
1 − θ1θ2 + 11θ1 + 15θ2

2 − 16θ2 + 1)

2(−3θ2
1 + 8θ1θ2 + 19θ1 + 41θ2

2 − 24θ2 − 22)
≥ 0

(θ1 + 2)(3θ2
1 + 8θ1θ2 − θ1 + 5θ2

2 + 5θ2 − 11)

2(−3θ2
1 + 8θ1θ2 + 19θ1 + 41θ2

2 − 24θ2 − 22)
≥ 0

(θ1 + 2)(9θ1 − 13θ2 + θ1θ2 + 21θ2
2 − 12)

2(−3θ2
1 + 8θ1θ2 + 19θ1 + 41θ2

2 − 24θ2 − 22)
≥ 0


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IRB5.6
0

=

θ ∈ P(B5.6
0 ) :

−θ2 − 1 ≥ 0

θ1 − θ2 − 1 ≥ 0

−18θ2 − 34 ≥ 0

−9θ2 − 17 ≥ 0


The following propositions arise from conclusions one may draw from observing an invariancy

region such as those above.

Proposition 5.14. Given a feasible complementary basis B , the invariancy region IRB is defined

by a set of rational inequalities, all having the same denominator.

Proof. Recognize that G(θ)−1
•B =

Adj (G(θ)•B)

det (G(θ)•B)
, where Adj(·) and det(·) represent the matrix adjoint

and determinant, respectively. Thus, the result follows from (5.8).

Proposition 5.14 shows that invariancy regions have a relatively nice structure. However,

this structure is actually better than it seems. This is shown in the following lemma and the

subsequent proposition.

Lemma 5.15. Given a feasible complementary basis B , one of the following must hold:

1. det (G(θ)•B) ≥ 0 for all θ ∈ Sθ

2. det (G(θ)•B) ≤ 0 for all θ ∈ Sθ

Proof. Recall that we assume that M(θ) is sufficient for each θ ∈ Sθ. It is well known that sufficient

matrices are also P0 matrices, i.e., their principal minors are all nonnegative (see, for example, Cottle

et al. [19] or Väliaho [99]). Hence, recognize that for any n ∈ {1, . . . , h}, the nth order principal

minors of −M(θ) are each: (i) nonnegative for all θ ∈ Sθ if n is even, or (ii) nonpositive for all

θ ∈ Sθ if n is odd. Notice that there exists J ⊆ {0, . . . , k} such that G(θ)•B is obtained from −M(θ)

by replacing column (−M(θ))• j with I• j for each j ∈ J . Thus, if |J | = h, det (G(θ)•B) = det(I) = 1

and if |J | 6= h, det (G(θ)•B) is equal to a (h − |J |)th order principal minor of −M(θ). Therefore, if

(h− |J |) is even, condition (1) holds, and if (h− |J |) is odd, condition (2) holds.

Proposition 5.16. For every feasible complementary basis B , the invariancy region IRB is defined

by a set of polynomial inqualities.

Proof. From Proposition 5.14 we know that all defining inequalities of IRB are given by ratio-

nal functions whose denominators equal det (G(θ)•B). By Lemma 5.15 we know that either: (1)
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det (G(θ)•B) ≥ 0 for all θ ∈ Sθ or, (2) det (G(θ)•B) ≤ 0 for all θ ∈ Sθ. Therefore, since for all

θ ∈ P(B) we have det (G(θ)•B) 6= 0, under condition (1), an equivalent formulation for any in-

variancy region can be given by ensuring that the numerator of each defining rational inequality is

nonnegative. Similarly, under condition (2), an equivalent formulation for any invariancy region can

be given by ensuring that the numerator of each defining rational inequality is nonpositive.

As a consequence of Lemma 5.15, for each complementary basis B we define the following:

g(B) :=

{
1 if det (G(θ)•B) ≥ 0 for all θ ∈ Sθ
−1 if det (G(θ)•B) ≤ 0 for all θ ∈ Sθ

(5.9)

Then for each complementary basis B the associated invariancy region can be expressed

with polynomial defining inequalities as

IRB := {θ ∈ P(B) : g(B)Adj (G(θ)•B) q(θ) ≥ 0} . (5.10)

We now recall the following definition from [14].

Definition 5.17. A semi-algebraic subset of Rn is a subset of the form

s⋃
i=1

ri⋂
j=1

{x ∈ Rn : fi,j(x) ?i,j 0} (5.11)

where, for each i ∈ {1, . . . , s} and j ∈ {1, . . . , ri}, fi,j is a polynomial function on Rn and ?i,j

represents either “=” or “<.”

Hence, from Proposition 5.16 we are able to make the following observation.

Observation 5.18. Every invariancy region is a semi-algebraic subset of Sθ.

Return to Examples 5.5 and 5.6 and observe the invariancy regions for B5.5
0 and B5.6

0 ex-

pressed as semi-algebraic sets:

IRB5.5
0

=θ ∈ P(B5.5
0 ) :

3θ3
1 + 18θ2

1θ2 − 49θ2
1 − 75θ1θ2

2 + 148θ1θ2 + 68θ1 + 96θ2
2 − 16θ2 − 76 ≤ 0

−(θ1 + 2)(9θ3
1 − 9θ2

1θ2 − 33θ2
1 − 87θ1θ2

2 + 21θ1θ2 + 22θ1 − 59θ3
2 + 13θ2

2 + 50θ2 + 5) ≤ 0

(θ1 + 2)(−6θ2
1 − θ1θ2 + 11θ1 + 15θ2

2 − 16θ2 + 1) ≤ 0

(θ1 + 2)(3θ2
1 + 8θ1θ2 − θ1 + 5θ2

2 + 5θ2 − 11) ≤ 0

(θ1 + 2)(9θ1 − 13θ2 + θ1θ2 + 21θ2
2 − 12) ≤ 0

 (5.12)

IRB5.6
0

=

θ ∈ P(B5.6
0 ) :

−θ2 − 1 ≥ 0

θ1 − θ2 − 1 ≥ 0

−18θ2 − 34 ≥ 0

−9θ2 − 17 ≥ 0

 (5.13)
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5.2.3 Geometry of the mpLCP

In this subsection we discuss some of the properties of the (mp)LCP problem that we will

need in order to establish an algorithm for partitioning Sθ. We now give several more definitions

and properties needed for this discussion.

Definition 5.19. For an index i ∈ E the complementary index of i is ı := (i+ h) mod 2h.

Similarly, given I ⊆ E , the set of all complementary indices of elements in I is denoted I.

Definition 5.20. A set J ⊂ E is called complementary if |{i, i+ h} ∩ J | = 1 ∀i ∈ {1, . . . , h}, i.e.,

if i ∈ J ⇒ ı /∈ J .

Given an arbitrary matrix Q, we use the notation cone(Q) to represent the set of all non-

negative combinations of the columns of Q.

Definition 5.21. For any complementary set J and any θ ∈ Sθ, the set C (θ,J ) := cone (G(θ)•J )

is called a parametric complementary cone with respect to the matrix M(θ).

Definition 5.22. A parametric complementary cone C (θ,J ) is full-dimensional if dim(C(θ,J )) =

h, i.e., if rank (G(θ)•J ) = h.

Proposition 5.23. A parametric complementary cone C (θ,J ) is full-dimensional if and only if J

is a complementary basis and θ ∈ P(J ).

Proof. (⇒): Since C (θ,J ) is a parametric complementary cone, J is complementary and thus

|J | = h. Since C (θ,J ) is full-dimensional, rank (G(θ)•J ) = h and thus θ ∈ P(J ).

(⇐): Since J is a complementary basis and θ ∈ P(J ), we have rank (G(θ)•J ) = h. Thus,

dim (C (θ,J )) = h.

Definition 5.24. For distinct complementary bases B1 and B2 and fixed θ ∈ Sθ, the parametric

complementary cones C (θ,B1) and C (θ,B2) are called adjacent if dim (C (θ,B1) ∩ C (θ,B2)) = h−1.

In this case the bases B1 and B2 are also called adjacent.

For a complementary basis B and θ ∈ Sθ, the associated parametric complementary cone is:

C (θ,B) =
{
τ ∈ Rh : G(θ)−1

•B τ ≥ 0
}

(5.14)
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Thus, given some θ ∈ Sθ, C (θ,B) defines the set of all vectors for which the basis B is feasible.

Similarly, K(M(θ)) := ∪feasible bases B C (θ,B) defines the set of all vectors for which any basis is

feasible. We now introduce another definition.

Definition 5.25. Given a feasible complementary basis B , the B-complementary subspace of Rh is

the set

CS(B) =
⋃
θ∈Sθ

C(θ,B) =
{
τ ∈ Rh : ∃ θ ∈ Sθ s.t. G(θ)−1

•B τ ≥ 0
}
. (5.15)

Note the close relationship between IRB and CS (B). In order to understand this relation-

ship further, we now consider the specifics of the following set:

AS :=
{
τ ∈ Rh : ∃ θ ∈ Sθ s.t. τ = q(θ)

}
. (5.16)

Since every element of the vector q(θ) is an affine function of θ, there exists a vector q ∈ Rh

and a matrix 4Q ∈ Rh×k such that q(θ) = q+4Qθ. When considering AS we make the assumption

that4Q is of full column rank. In the case when4Q is not full column rank, there exists a “reduced”

mpLCP which can be solved in place of the original mpLCP. Details on this reduced mpLCP can

be found in Section 4.2.2.2.

We continue our study of AS by introducing another definition.

Definition 5.26. Given a complementary basis B , the invariant domain of B , denoted IDB , is

the intersection of the subspace AS with the B-complementary subspace CS(B). Thus IDB :=

CS(B) ∩ AS =
{
τ : G−1

•B τ ≥ 0, τ = q(θ), θ ∈ Sθ
}

.

Since we have assumed that 4Q is of full column rank, we can view q(θ) as a bijective

function with inverse q−1(·). As a result, we make the following two observations:

Observation 5.27. For a given basis B , we have IDB = q (IRB) and IRB = q−1(IDB).

Observation 5.28. For each i ∈ E , the inequality
(
G(θ)−1

•B
)
i •
τ ≥ 0 is redundant in IDB if and

only if
(
G(θ)−1

•B
)
i •
q(θ) ≥ 0 is redundant in IRB .

Notice that, given a basis B , these observations show explicitly the relationship existing

between the associated invariancy region and the B-complementary subspace.
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Observe the following definition which we employ when dealing with convex sets.

Definition 5.29. For an arbitrary convex set S, the relative interior of S is the set relint(S) :=

{s ∈ S : ∃ε > 0, Bε(s) ∩ aff(S) ⊆ S}, where Bε(s) is the ball of radius ε centered at s and aff(S)

is the affine hull of S, i.e., the intersection of all affine sets containing S.

Briefly consider non-parametric LCP. In this context we use the notations M and K(M) to

denote the non-parametric counterparts of M(θ) and K(M(θ)) and the term complementary cone

to refer to the non-parametric counterpart of a parametric complementary cone. It is well known

that given an instance of LCP, and by extension mpLCP, the properties of the matrix M have

a significant impact on the structure of the complementary cones, and hence also the parametric

complementary cones and invariancy regions in the case of mpLCP. Of particular importance in this

work are column sufficient matrices, which we defined in Definition 5.1, and Q0 matrices, for which

we quote the definition from [65].

Definition 5.30. The square matrix M is said to be a Q0 matrix if K(M) is a convex cone.

We now recall the following important property of column sufficient matrices, shown in

[22]: if M is column sufficient, all complementary cones have disjoint relative interiors, i.e., the

complementary cones partition K(M). The theory we develop throughout the rest of this work and

the algorithms we present in Sections 5.4 and 5.5 rely heavily on these properties of column sufficient

and Q0 matrices. As a result, the algorithms we propose are designed for instances of mpLCP in

which M(θ) is both Q0 and column sufficient for all θ ∈ Sθ. Note that the largest class of matrices

known to be a subset of both the classes of Q0 and column sufficient matrices is the class of sufficient

matrices.

We now further consider invariancy regions and establish properties of these regions which

allow us to show that a partition of Sθ exists and has a particular structure.

5.3 Algebraic Properties of Invariancy Regions

In this section we merge several concepts from the fields of Algebraic Geometry, Algebraic

Topology and Operations Research. We point out that although the details presented here are

theoretically important and provide the necessary foundation for the development of the algorithms
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presented in Sections 5.4 and 5.5, they are not necessary for the understanding of later sections and

may be skipped by the uninterested reader.

5.3.1 Decomposition of the Parameter Space

We continue our discussion of invariancy regions by examining the properties of various

subsets of invariancy regions as well as Sθ and the subspace AS . Consider an arbitrary ele-

ment M(θ)ij of the matrix M(θ). Recognize that since this element is an affine function of θ,

it can be represented as M(θ)ij =

k∑
n=1

αijnθn + βij . Define the following index sets: (i) U =

{n ∈ {1, . . . , k} : αijn 6= 0 for some i, j ∈ {1, . . . , h}}, and (ii) V = {i, . . . , k} \ U . Using these index

sets we define φ := θU and σ := θV . Then φ is the subvector of θ such that every element of φ is

present in some element of M(θ) and σ is the subvector of θ such that no element of σ is present in

any element of M(θ). We let p represent the dimension of φ, and consequently the dimension of σ

is k − p. Note that we allow for the case in which p = k. We do assume, however, that p 6= 0, since

this is precisely the case dealt with in Adelgren and Wiecek [2]. We now define

Sφ(σ) = {φ∗ ∈ Rp : θ∗ = (φ∗, σ) ∈ Sθ} (5.17)

and

Sσ(φ) = {σ∗ ∈ Rk−p : θ∗ = (φ, σ∗) ∈ Sθ}. (5.18)

Sφ(σ) can be interpreted as the set of attainable values of φ given a fixed σ and similarly, Sσ(φ) can

be interpreted as the set of attainable values of σ given a fixed φ. From these sets we can also define

Sφ = {φ ∈ Rp : Sσ(φ) 6= ∅ for some σ ∈ Rk−p}
= Projφ Sθ (5.19)

and

Sσ = {σ ∈ Rk−p : Sφ(σ) 6= ∅ for some φ ∈ Rp}
= Projσ Sθ. (5.20)

Now, given a basis B and some θ = (φ, σ) ∈ P(B), we can use these sets to define the

following subsets of the invariancy region IRB :

IRφB(σ) = {φ∗ ∈ Rp : θ∗ = (φ∗, σ) ∈ IRB} (5.21)
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IRσB(φ) = {σ∗ ∈ Rk−p : θ∗ = (φ, σ∗) ∈ IRB} (5.22)

IRφB = {φ ∈ Rp : IRσB(φ) 6= ∅ for some σ ∈ Rk−p}
= Projφ IRB (5.23)

IRσB = {σ ∈ Rk−p : IRφB(σ) 6= ∅ for some φ ∈ Rp}
= Projσ IRB (5.24)

Recognize that IRφB(σ) and IRσB(φ) can be interpreted as “cross-sections” of IRB associated

with fixing a particular σ ∈ Sσ or φ ∈ Sφ, respectively. Additionally, IRφB and IRσB represent the

projections of IRB onto Sφ and Sσ, respectively. As a result, we make the following observations.

Observation 5.31. The sets IRφB and IRσB are semi-algebraic.

Observation 5.32. For each σ ∈ IRσB , the set IRφB(σ) is semi-algebraic.

Observation 5.33. For each φ ∈ IRφB , the set IRσB(φ) is polyhedral.

Having now defined the subvectors φ and σ, recognize that since M(θ) contains no elements

of σ, we can write M(θ) as M(φ) and G(θ) as G(φ). Similarly, for any basis B we can write C(θ,B)

as C(φ,B). Next consider the vector q(θ). Recall from our discussion in Section 5.2.3 that it can be

represented as q(θ) = q +4Qθ. Using the notation introduced above, we can also represent q(θ) as

q(φ, σ) = q+4Q•Uφ+4Q•V σ. Finally, for a fixed φ ∈ Sφ we introduce the following subset of the

subspace AS :

AS(φ) := {τ ∈ Rh : τ = q(φ, σ), σ ∈ Sσ}. (5.25)

Consider the following results.

Definition 5.34. (Definition 2.2.5 of [14]) Let A ∈ Rn and B ∈ Rm be two semi-algebraic sets. A

mapping f : A→ B is semi-algebraic if its graph is semi-algebraic in Rm+n.

Lemma 5.35. (Theorem 2.8.8 of [14]) Let A be a semi-algebraic set and f : A → Rn a semi-

algebraic mapping. Then dim(A) ≥ dim(f(A)). If f is a bijection from A onto f(A), then dim(A) =

dim(f(A)).
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Proposition 5.36. The following hold for each φ ∈ Sφ:

1. dim(AS(φ)) = dim(Sσ)

2. dim(AS(φ) ∩ C(φ,B)) = dim(IRσB(φ))

Proof. Recall that in this work we make the assumption that 4Q is of full column rank. Hence,

4Q•V must also be of full column rank. As a result, for each fixed φ ∈ Sφ, q(φ, σ) can be viewed as

a bijective function of σ. Furthermore, for each fixed φ ∈ Sφ, q(φ, σ) is also semi-algebraic since its

graph is the set {(σ, q′) : σ ∈ Sσ, q′ = q +4Q•Uφ +4Q•V σ}, which is clearly semi-algebraic since

Sσ is polyhedral. Thus, by Lemma 5.35, the above hold.

Using the sets and notations introduced so far in this section, together with (5.9), for

each feasible complementary basis B we provide the following alternate forms of the definitions of

invariancy regions and invariant domains:

IRB := {(φ, σ) ∈ P(B) : g(B)Adj (G(φ)•B) q(φ, σ) ≥ 0} (5.26)

IDB =
⋃
φ∈Sφ

(C(φ,B) ∩ AS(φ)) (5.27)

Recognize that the definition of an invariancy region in (5.26), together with the results

of Propositions 5.14, ??, 5.16 and Lemma 5.15 and the facts that the elements of M(φ) are affine

functions of φ and the elements of q(φ, σ) are affine functions of φ and σ, leads to the following

observation.

Observation 5.37. For each feasible complementary basis B , the defining inequalities of the in-

variancy region IRB are polynomial in φ and linear in σ.

Throughout the remainder of this section we develop theoretical results that allow us to

exploit the property of invariancy regions described in Observation 5.37. Although this property

was discovered in the context of invariancy regions, it is of interest to study in general. For this

reason we establish the following property.

Property 5.38. Given a subset S′ of Sθ, we say S′ satisfies Property 5.38 if the following hold:

• S′ is defined by a set of inequalities fi(φ, σ) ≤ 0, i ∈ {1, . . . , n} for some n ∈ N.

• For each i ∈ {1, . . . , n}, fi is polynomial in φ and linear in σ.
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In the following subsection we consider general sets satisfying Property 5.38, develop inter-

esting theoretical consequences of this properties, and use these results to make important conclu-

sions about invariancy regions.

5.3.2 Exploiting the Algebraic Structure of an Invariancy Region

Perhaps the most important aspect of invariancy regions for us to study is their dimension.

In order to establish the existence of a partition of Sθ we must develop necessary and sufficient

conditions for an invariancy region to be of dimension k or k − 1. To do this, however, we must

first establish many more properties of invariancy regions or, more generally, subsets of Sθ having

Property 5.38. In the following discussion we use Ω to denote an arbitrary subset of Sθ having

Property 5.38. We introduce several new definitions and notations as well as many new propositions

which we develop by exploiting this property.

Definition 5.39. (Kalajdzievski [49]) Two subsets A and B of a space Y are ambient isotopic within

Y if there is a continuous mapping H : Y × [0, 1]→ Y such that the mappings Ht : Y → Y, t ∈ [0, 1],

satisfy the following two conditions:

(i) Ht is a homeomorphism for every t ∈ [0, 1].

(ii) H0 = idY (the identity map) and H1(A) = B.

Definition 5.40. (Definition 2.4.2 of Bochnak et al. [14]) A semi-algebraic subset A of Rn is semi-

algebraically connected if for every pair of semi-algebraic sets F1 and F2 in A, disjoint and satisfying

F1 ∪ F2 = A, one has F1 = A or F2 = A.

Definition 5.41. (Definition 2.5.12 of Bochnak et al. [14]) A semi-algebraic subset A of Rn is semi-

algebraically path connected if, for every x, y ∈ A, there exists a continuous semi-algebraic mapping

ψ : [0, 1]→ A such that ψ(0) = x and ψ(1) = y.

Proposition 5.42. (Proposition 2.8.5 of Bochnak et al. [14])

1. Let A =
⋃n
i=1Ai be a finite union of semi-algebraic sets. Then

dim(A) = max (dim(A1), . . . , dim(An)).

2. Let A and B be two semi-algebraic sets. Then dim(A×B) = dim(A) + dim(B).
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We now introduce new notation that we will use to show that for any Ω ⊂ Sθ having

Property 5.38, the dimension of Ω can be expressed in terms of the dimensions of certain subsets of

Ω which arise due to the decomposition of θ into the subvectors φ and σ. In a similar fashion to the

definitions given in (5.21), (5.22), (5.23) and (5.24) we introduce the following sets.

Ωφ(σ) = {φ ∈ Rp : θ = (φ, σ) ∈ Ω} (5.28)

Ωσ(φ) = {σ ∈ Rk−p : θ = (φ, σ) ∈ Ω} (5.29)

Ωφ = {φ ∈ Rp : Ωσ(φ) 6= ∅ for some σ ∈ Rk−p}
= Projφ Ω (5.30)

Ωσ = {σ ∈ Rk−p : Ωφ(σ) 6= ∅ for some φ ∈ Rp}
= Projσ Ω (5.31)

We now define the following sets which play an important role throughout this section.

Φ
(d)
Ω := {φ ∈ Ωφ : dim(Ωσ(φ)) = d} (5.32)

DΩ := The set of defining inequalities of Ω. (5.33)

DΩ := The set of subsets of DΩ. (5.34)

Then for each S ∈ DΩ, let

ΦΩ,S := {φ ∈ Ωφ : The set of redundant inequalities of Ωσ(φ) is DΩ \ S}. (5.35)

For each d ∈ N and S ∈ DΩ, let

Φ
(d)
Ω,S := Φ

(d)
Ω ∩ ΦΩ,S (5.36)

and

T
(d)

Ω,S := {(φ, σ) ∈ Ω : φ ∈ Φ
(d)
Ω,S , σ ∈ Ωσ(φ)}. (5.37)
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From (5.8), (5.22) and (5.37) we make the following observation.

Observation 5.43. For any set Ω ⊂ Sθ having Property 5.38, we have Ω =
⋃

d∈N,S∈DΩ

T
(d)

Ω,S .

We now introduce several theoretical results which provide us with a strategy for determining

the dimension of an invariancy region and moreover, establishing necessary and sufficient conditions

for an invariancy region to have dimension k or k − 1.

Proposition 5.44. Given Ω ⊂ Sθ having Property 5.38, the set Φ
(d)
Ω is semi-algebraic for any d ∈ N.

Proof. We proceed by showing that the set Φ
(≥d)
Ω := {φ ∈ Ωφ : dim(Ωσ(φ)) ≥ d} is semi-algebraic

for each d ∈ N. This clearly implies that Φ
(d)
Ω is semi-algebraic since Φ

(d)
Ω = Φ

(≥d)
Ω \ Φ

(≥d+1)
Ω and

intersections and complements of semi-algebraic sets are also semi-algebraic.

We now construct a set X dΩ such that Φ
(≥d)
Ω is the projection of X dΩ onto Sφ. We then

show that X dΩ is semi-algebraic. This is enough to show that Φ
(≥d)
Ω is semi-algebraic since projec-

tions of semi-algebraic sets are also semi-algebraic. We define X dΩ to be the set of (d + 2)-tuples

(φ, σ1, . . . , σd+1) which satisfy the following conditions:

1. For each i ∈ {1, . . . , d+ 1}, (φ, σi) ∈ Ω.

2. The matrix Kσ1,...,σd+1 is of full rank, where Kσ1,...,σd+1 ∈ R(k−p)×d is defined so that for each

i ∈ {1, . . . , d}, Kσ1,...,σd+1

• i = σi − σd+1.

Recognize that condition (1) is enforced by a set of polynomial constraints since Ω is semi-algebraic.

Also recognize that condition (2) is satisfied if and only if there exists a d× d minor of Kσ1,...,σd+1

whose determinant is nonzero. Denote the d × d minors of Kσ1,...,σd+1 as D1, . . . , Dn (clearly n

is finite). Then condition (2) is satisfied if and only if at least one of D1, . . . , Dn has a nonzero

determinant. Recognize, though, that at least one of D1, . . . , Dn has a nonzero determinant if and

only if there exists a y ∈ R such that the following system has a solution:

y > 0

y (det (Di))
2
< 1 for each i ∈ {1, . . . , n}

n∏
i=1

(
1− y (det (Di))

2
)
< 1.

Since the determinant of a matrix can be expressed as a polynomial function of its elements, this

shows that condition (2) is also enforced by a set of polynomial constraints. Hence, X dΩ is semi-

algebraic. Further notice that conditions (1) and (2) ensure that a (d+ 2)-tuple (φ, σ1, . . . , σd+1) is
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in X dΩ if and only if: (i) φ ∈ Ωφ, (ii) each σi ∈ Ωσ(φ), and (iii) σ1, . . . , σd+1 are affinely independent.

Thus, the projection of X dΩ onto Sφ is the set of all φ in Ωφ such that the dimension of Ωσ(φ) is at

least d, which is precisely Φ
(≥d)
Ω .

Proposition 5.45. Given Ω ⊂ Sθ having Property 5.38, the set ΦΩ,S is semi-algebraic for any

S ∈ DΩ.

Proof. Consider ΦΩ,S := {φ ∈ Ωφ : The inequalities of S are not redundant in Ωσ(φ)}. We proceed

by showing that ΦΩ,S is semi-algebraic for each S ∈ DΩ. This clearly implies that ΦΩ,S is semi-

algebraic since ΦΩ,S = ΦΩ,S \
(
∪E∈DΩ:E⊃S ΦΩ,E

)
and unions, intersections and complements of semi-

algebraic sets are also semi-algebraic.

We now construct a set ZΩ,S such that ΦΩ,S is the projection of ZΩ,S onto Sφ. We then show

that ZΩ,S is semi-algebraic. This is enough to show that ΦΩ,S is semi-algebraic since projections of

semi-algebraic sets are also semi-algebraic. Given S ∈ DΩ, we define ZΩ,S to be the set of (|S |+ 1)-

tuples (φ, σ1, . . . , σ|S|) which satisfy the following conditions:

1. For each i ∈ {1, . . . , |S |}, (φ, σi) ∈ Ω.

2. For each inequality Si ∈ S , (φ, σi) satisfies Si at equality and satisfies each inequality in DΩ \ Si

strictly.

As it is clear that conditions (1) and (2) are each enforced by sets of polynomial inequalities, ZΩ,S

is semi-algebraic. Furthermore, recognize that condition (2) is satisfied if and only if S contains no

constraints which are redundant in Ω. Hence, the projection of ZΩ,S onto Sφ is exactly ΦΩ,S .

Corollary 5.46. If Ω ⊂ Sθ satisfies Property 5.38, the set Φ
(d)
Ω,S is semi-algebraic for any S ∈ DΩ

and d ∈ N.

Proof. The result follows directly from the proofs of Propositions 5.44 and 5.45 and the fact that

intersections of semi-algebraic sets are also semi-algebraic.

Proposition 5.47. If Ω ⊂ Sθ satisfies Property 5.38, for any φ∗ ∈ Φ
(d)
Ω,S , the set T

(d)
Ω,S is ambient

isotopic to

U
(d)

Ω,S (φ∗) := {(φ, σ) ∈ Ω : φ ∈ Φ
(d)
Ω,S , σ ∈ Ωσ(φ∗)}. (5.38)

Proof. Recognize from (5.36), (5.35) and (5.32) that Φ
(d)
Ω,S is the set of φ ∈ Ωφ such that Ωσ(φ) is

invariant with respect to dimension and the set of defining inequalities. By Corollary 5.46, the set
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Φ
(d)
Ω,S is semi-algebraic and is therefore composed of a finite number of semi-algebraically connected

subsets. For the remainder of this discussion we assume without loss of generality that Φ
(d)
Ω,S is a

single semi-algebraically connected set. If not, the arguments that follow can be applied iteratively

to each of its semi-algebraically connected subsets.

We proceed with the proof by: (i) establishing the concepts which are used to define a

mapping H (·) which we use to show that T
(d)

Ω,S is ambient isotopic to U
(d)

Ω,S (φ∗), (ii) explicitly defining

the mapping H (·), and (iii) arguing that H (·) satisfies the properties outlined in Definition 5.39.

Since Ω satisfies Property 5.38, recognize that Ωσ(φ) is a d-dimensional polyhedron for

every φ ∈ Φ
(d)
Ω,S . Therefore Ωσ(φ) must have a finite number of extreme points for each φ ∈ Φ

(d)
Ω,S .

Furthermore, since the set of non-redundant inequalities of Ωσ(φ) is invariant for all φ ∈ Φ
(d)
Ω,S , given

a φ′ ∈ Φ
(d)
Ω,S , a subset S ′ of d inequalities in S intersect at an extreme point of IRσΩ(φ′) if and only if

the inequalities in S ′ intersect at an extreme point of IRσΩ(φ) for all φ ∈ Φ
(d)
Ω,S . In this case we refer

to the set S ′ ⊂ S as an extreme point defining set for each φ ∈ Φ
(d)
Ω,S . For each S ∈ DΩ define the set

ES := {S ′ ⊂ S : |S ′| = d, S ′ is an extreme point defining set for each φ ∈ Φ
(d)
Ω,S}. (5.39)

Recognize that for each S ∈ DΩ, |ES | is finite. Hence, assume |ES | = ` and enumerate

the elements of ES as S ′1, . . . , S ′`. Further recognize that the number of extreme points of Ωσ(φ)

is ` for each φ ∈ Φ
(d)
Ω,S . Then for each φ ∈ Φ

(d)
Ω,S and j ∈ {1, . . . , `} denote the extreme point

of Ωσ(φ) defined by S ′j ∈ ES as σjφ. We now show that for all φ ∈ Φ
(d)
Ω,S , each σ ∈ Ωσ(φ) can be

uniquely represented in terms of the extreme points of Ωσ(φ). Notice that since dim(Ωσ(φ)) = d and

Ωσ(φ) = conv({σ1
φ, . . . , σ

`
φ}), where conv(·) represents the convex hull, we have ` ≥ d+1. If ` = d+1

then conv({σ1
φ, . . . , σ

`
φ}) is a simplex and each σ ∈ Ωσ(φ) has a unique representation as a convex

combination of σ1
φ, . . . , σ

`
φ. On the other hand, if ` > d+1, there is no such unique representation, in

general, but we can construct a unique representation using a properly defined subset of σ1
φ, . . . , σ

`
φ.

Recognize from Lemma 2.3 of [7] that for each φ ∈ Φ
(d)
Ω,S , Ωσ(φ) can be partitioned into a finite set

of simplices ∆1(φ), . . . ,∆n(φ) such that:

1. For each φ ∈ Φ
(d)
Ω,S and each i ∈ {1, . . . , n}, the vertices of ∆i(φ) are d+ 1 affinely independent

points from {σ1
φ, . . . , σ

`
φ}.

2. For each φ ∈ Φ
(d)
Ω,S and distinct i, j ∈ {1, . . . , n}, if the intersection ∆i(φ)∩∆j(φ) is not empty,

then it is a proper common face of both ∆i(φ) and ∆j(φ).
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Given φ ∈ Φ
(d)
Ω,S , σ ∈ Ωσ(φ) and i ∈ {1, . . . , n} define the set of coefficients which can be used to

represent σ as a convex combination of the elements of ∆i(φ):

Υ(φ, σ, i) :=

µ ∈ R` : σ =
∑̀
j=1

µjσ
j
φ, σ ∈ ∆i(φ)

 . (5.40)

Recognize that for each φ ∈ Φ
(d)
Ω,S and σ ∈ Ωσ(φ) there exists at least one i ∈ {1, . . . , n} such that

Υ(φ, σ, i) 6= ∅. Thus, for each φ ∈ Φ
(d)
Ω,S and σ ∈ Ωσ(φ) we define

Υ(φ, σ) :=
{
µ ∈ R` : µ ∈ Υ(φ, σ, i), i = min{j : Υ(φ, σ, j) 6= ∅}

}
. (5.41)

Further recognize that for each φ ∈ Φ
(d)
Ω,S , σ ∈ Ωσ(φ), and i ∈ {1, . . . , n} either Υ(φ, σ, i) = ∅ or

|Υ(φ, σ, i)| = 1. Hence, for all φ ∈ Φ
(d)
Ω,S and σ ∈ Ωσ(φ), |Υ(φ, σ)| = 1. For each φ ∈ Φ

(d)
Ω,S and

σ ∈ Ωσ(φ) we denote the single element of Υ(φ, σ) as µφ,σ. Note that we use this designation even

when ` = d+ 1 because in this case the arguments and definitions above still hold with n = 1.

Before we introduce the mapping H , note that since Φ
(d)
Ω,S is semi-algebraically connected,

by Proposition 2.5.13 of [14], it is also semi-algebraically path connected. For each φ ∈ Φ
(d)
Ω,S let

ψφ(·) : [0, 1]→ Φ
(d)
Ω,S denote a continuous semi-algebraic mapping with ψφ(0) = φ and ψφ(1) = φ∗ as

outlined in Definition 5.41.

We now define the mapping H which we use to show that T
(d)

Ω,S and U
(d)

Ω,S (φ∗) are ambient

isotopic. Let Λ := Φ
(d)
Ω,S ×

(
∪
φ∈Φ

(d)
Ω,S

Ωσ(φ)
)

and consider

H (·, ·) : Λ× [0, 1]→ Λ such that H (θ, t) = H (φ, σ, t)

= H

φ,∑̀
j=1

µφ,σj σjφ, t


=

φ,∑̀
j=1

µφ,σj σjψφ(t)


We show that H satisfies the conditions outlined in Definition 5.39. We explore these conditions

one at a time, in the following order:

(i) H is continuous.

(ii) For each fixed t ∈ [0, 1], H (·, t) is a homeomorphism, i.e. the following hold:
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– H (·, t) is continuous.

– H (·, t) is a bijection.

– H (·, t) has a continuous inverse.

(iii) H (T
(d)

Ω,S , 0) = T
(d)

Ω,S .

(iv) H (T
(d)

Ω,S , 1) = U
(d)

Ω,S (φ∗).

H is continuous: Throughout this discussion we utilize the so-called infinity norm, also

known as the uniform norm. For every p ∈ N, given a vector v ∈ Rp, we denote the infinity norm of

v as ‖v‖. Recall the following useful property of the infinity norm:

Given v ∈ Rp and ε > 0, ‖v‖ ≤ ε⇔ ‖u‖ ≤ ε for all subvectors u of v. (5.42)

We will show that H is continuous by showing that for any ε > 0 there exists δ(ε) > 0 such that,

if
∥∥(θ1, t1)− (θ2, t2)

∥∥ < δ(ε) then
∥∥H (θ1, t1)−H (θ2, t2)

∥∥ < ε. In order to construct δ(ε), though,

we first need to establish several other concepts. We begin by examining σjφ for each j ∈ {1, . . . , `}

and φ ∈ Φ
(d)
Ω,S . Recognize that for each j ∈ {1, . . . , `} and φ ∈ Φ

(d)
Ω,S , σjφ is formed as the intersection

of d linearly independent equalities. Also, recall from Property 5.38 that the defining inequalities of

Ω are polynomial in φ and linear in σ. Hence, for each j ∈ {1, . . . , `} there is a system of equations

of the form Aj(φ)σ = bj(φ) for which: (i) the elements of Aj(φ) and bj(φ) are polynomial in φ, (ii)

Aj(φ) is invertible for all φ ∈ Φ
(d)
Ω,S , and (iii) for each φ ∈ Φ

(d)
Ω,S , the solution to the system is σjφ.

This shows that for each j ∈ {1, . . . , `}, σjφ can be viewed as a continuous function of φ. Explicitly,

we have:

σj(·) : Φ
(d)
Ω,S → Ωσ such that σjφ = (Aj(φ))

−1
bj(φ). (5.43)

This implies that for all j ∈ {1, . . . , `} and ε > 0 there exists ηjε > 0 such that, if
∥∥φ1 − φ2

∥∥ ≤ ηjε

then
∥∥∥σjφ1 − σjφ2

∥∥∥ ≤ ε. For each ε > 0 define δ1(ε) := min
{
δ : δ = ηjε , j ∈ {1, . . . , `}

}
. Then we have:

For all ε > 0, if
∥∥φ1 − φ2

∥∥ ≤ δ1(ε) then
∥∥∥σjφ1 − σjφ2

∥∥∥ ≤ ε for all j ∈ {1, . . . , `}. (5.44)

Now consider the mapping ψφ(·) for each φ ∈ Φ
(d)
Ω,S . Since ψφ is continuous for each φ ∈ Φ

(d)
Ω,S

we have that for all ε > 0 and φ ∈ Φ
(d)
Ω,S there exists βφε > 0 such that, if ‖t1 − t2‖ ≤ βφε then
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‖ψφ(t1)− ψφ(t2)‖ ≤ ε. For each ε > 0 define δ2(ε) := min
{
δ : δ = βφε for some φ ∈ Φ

(d)
Ω,S

}
. Then we

have that:

For all ε > 0, if ‖t1 − t2‖ ≤ δ2(ε) then ‖ψφ(t1)− ψφ(t2)‖ ≤ ε for all φ ∈ Φ
(d)
Ω,S . (5.45)

Next, recognize that the mapping ψφ(·) can be defined in so that, for all ε > 0 there exists

δ3(ε) such that, if
∥∥φ1 − φ2

∥∥ ≤ δ3(ε) then
∥∥ψφ1(t)− ψφ2(t)

∥∥ ≤ ε for all t ∈ [0, 1]. To see this, given

ε > 0 and distinct φ′, φ′′ ∈ Φ
(d)
Ω,S , define

γφ
′,φ′′

ε := max
{
γ : γ≤ε, φ′′ ∈ Bγ(φ′), Bγ(φ′) ∩ Φ

(d)
Ω,S is semi-algebraically connected

}
.

Then for each pair (φ1, φ2) ∈ Φ
(d)
Ω,S define the mapping ωφ1,φ2(·) : [0, 1] →

(
B
γφ

1,φ2
ε

(φ1) ∩ Φ
(d)
Ω,S

)
which denotes the continuous semi-algebraic mapping with ω(0) = φ1 and ω(1) = φ2, as outlined

in Definition 5.41. Now select any ζ ∈ (0, 1) and recognize that given any pair (φ1, φ2) ∈ Φ
(d)
Ω,S

for which
∥∥φ1 − φ2

∥∥ ≤ γφ
1,φ2

ε , we can define ψ∗φ1(t) :=

{
φ1 if t < ζ

ψφ1

(
t−ζ
1−ζ

)
otherwise

and ψ∗φ2(t) := ωφ1,φ2

(
t
ζ

)
if t < ζ

ψφ1

(
t−ζ
1−ζ

)
otherwise

. Recognize that each of these mappings satisfy the requirements of

Definition 5.41 and moreover, they ensure that
∥∥∥ψ∗φ1(t)− ψ∗φ2(t)

∥∥∥ ≤ ε for all t ∈ [0, 1]. Hence, if for

every ε > 0 we define

δ3(ε) := min
{
δ : δ = γφ

′,φ′′

ε for some φ′ ∈ Φ
(d)
Ω,S and φ′′ ∈ Φ

(d)
Ω,S

}
,

we obtain the desired result:

For all ε > 0, if
∥∥φ1 − φ2

∥∥ ≤ δ3(ε) then
∥∥ψφ1(t)− ψφ2(t)

∥∥ ≤ ε for all t ∈ [0, 1]. (5.46)

We now show that for any ε > 0 there exists δ4(ε) such that if
∥∥(φ1, σ1)− (φ2, σ2)

∥∥ < δ4(ε)

then
∣∣∣µφ1,σ1

j − µφ
2,σ2

j

∣∣∣ < ε for all j ∈ {1, . . . , `}. Recognize that
∥∥(φ1, σ1)− (φ2, σ2)

∥∥ < δ4(ε) implies

∥∥φ1 − φ2
∥∥ < δ4(ε) (5.47)

and ∥∥σ1 − σ2
∥∥ < δ4(ε). (5.48)
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We select δ4(ε) so that the following hold:

δ4(ε) <
ε

2n`
(5.49)

δ4(ε) < δ1
( ε

2n`

)
(5.50)

Thus, from (5.44) we have
∥∥∥σjφ1 − σjφ2

∥∥∥ ≤ ε
2n` for all j ∈ {1, . . . , `}. This shows that there exists a

vector α ∈ Rk−p such that σjφ2 = σjφ1 +α and |αi| < ε
2n` for all i ∈ {1, . . . , k− p}. Then from (5.48)

we have:

δ4(ε) >
∥∥σ1 − σ2

∥∥
=

∥∥∥∥∥∥
∑̀
j=1

µφ
1,σ1

j σjφ1 −
∑̀
j=1

µφ
2,σ2

j σjφ2

∥∥∥∥∥∥
=

∥∥∥∥∥∥
∑̀
j=1

µφ
1,σ1

j σjφ1 −
∑̀
j=1

µφ
2,σ2

j

(
σjφ1 + α

)∥∥∥∥∥∥
=

∥∥∥∥∥∥
∑̀
j=1

(
µφ

1,σ1

j − µφ
2,σ2

j

)
σjφ1 −

∑̀
j=1

µφ
2,σ2

j α

∥∥∥∥∥∥
≥

∥∥∥∥∥∥
∑̀
j=1

(
µφ

1,σ1

j − µφ
2,σ2

j

)
σjφ1

∥∥∥∥∥∥−
∥∥∥∥∥∥
∑̀
j=1

µφ
2,σ2

j α

∥∥∥∥∥∥

⇒

∥∥∥∥∥∥
∑̀
j=1

(
µφ

1,σ1

j − µφ
2,σ2

j

)
σjφ1

∥∥∥∥∥∥ < δ4(ε) +

∥∥∥∥∥∥
∑̀
j=1

µφ
2,σ2

j α

∥∥∥∥∥∥
≤ δ4(ε) +

∑̀
j=1

∥∥∥µφ2,σ2

j α
∥∥∥

= δ4(ε) +
∑̀
j=1

∣∣∣µφ2,σ2

j

∣∣∣ ‖α‖
= δ4(ε) + ‖α‖

∑̀
j=1

µφ
2,σ2

j

≤ δ4(ε) + ‖α‖
< δ4(ε) +

ε

2n`
<

ε

n`
(5.51)
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Let σ∗ =
∑̀
j=1

µφ
2,σ2

j σjφ1 and recognize that σ1, σ∗ ∈ Ωσ(φ1) and furthermore,

µφ
1,σ∗

j = µφ
2,σ2

j for each j ∈ {1, . . . , `} (5.52)

since, by construction, the multipliers µφ,σ are unique for each (φ, σ) ∈ Λ. Also recognize that we

have now shown that ∥∥σ1 − σ2
∥∥ < δ4(ε)⇒

∥∥σ1 − σ∗
∥∥ < ε

n`
. (5.53)

We now consider arbitrary σ′, σ′′ such that: (i) there exists φ ∈ Φ
(d)
Ω,S for which σ′, σ′′ ∈

Ωσ(φ), and (ii) ‖σ′ − σ′′‖ < ε
n` . Consider the following two cases: (i) σ′ and σ′′ lie within the same

simplex of Ωσ(φ), i.e., there exists i ∈ {1, . . . , n} such that σ′, σ′′ ∈ ∆i(φ), or (ii) σ′ and σ′′ lie within

different simplices of Ωσ(φ), i.e., there is no i ∈ {1, . . . , n} for which σ′ and σ′′ are both contained

in ∆i(φ). We begin with the former case. Without loss of generality, assume the simplex containing

both σ′ and σ′′ is generated using the first d+ 1 of the ` extreme points of Ωσ(φ). Hence, we have

µφ,σ
′

j = µφ,σ
′′

j = 0 for all j ∈ {d+ 2, . . . , `} (5.54)

and thus ∥∥∥∥∥∥
d+1∑
j=1

(
µφ,σ

′

j − µφ,σ
′′

j

)
σjφ

∥∥∥∥∥∥ < ε

n`
. (5.55)

Now recognize that because σ1
φ, . . . , σ

d+1
φ are affinely independent, we can assume without loss of

generality that σd+1
φ is the zero vector and for each j ∈ {1, . . . , d}, σjφ contains all zeros, except

for a one in the jth position. If this was not the case, it could be achieved by a substitution of

parameters, which we now explain. Let E ∈ R(k−p)×d be the matrix whose columns are given by

σ1
φ−σ

d+1
φ , . . . , σdφ−σ

d+1
φ . Recognize that, by construction, the columns of E are linearly independent,

and thus, there exists an invertible matrix Ẽ formed as the product of elementary matrices and

permutation matrices, for which the product ẼE is in reduced row echelon form, i.e., ẼE =

[
I

0

]
.

Hence, we can obtain an equivalent mpLCP with the property that σd+1
φ is the zero vector and for

each j ∈ {1, . . . , d}, σjφ contains all zeros, except for a one in the jth position, by replacing σ with

Ẽ
(
σ − σd+1

φ

)
. Now, under the assumption that σd+1

φ1 is the zero vector and for each j ∈ {1, . . . , d},
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σjφ contains all zeros, except for a one in the jth position, (5.54) and (5.55) show that for each

j ∈ {1, . . . , d, d+ 2, . . . , `} we have

∣∣∣µφ,σ′j − µφ,σ
′′

j

∣∣∣ < ε

n`
. (5.56)

Also recognize that we have

∣∣∣µφ,σ′d+1 − µ
φ,σ′′

d+1

∣∣∣ =

∣∣∣∣∣∣
1−

∑
j 6=d+1

µφ,σ
′

j

−
1−

∑
j 6=d+1

µφ,σ
′′

j

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
j 6=d+1

(
µφ,σ

′′

j − µφ,σ
′

j

)∣∣∣∣∣∣
≤
∑
j 6=d+1

∣∣∣(µφ,σ′′j − µφ,σ
′

j

)∣∣∣
< `

ε

n`

=
ε

n
. (5.57)

This shows that the following result holds:

Given φ ∈ Φ
(d)
Ω,S and σ′, σ′′ ∈ Ωσ(φ) such that ‖σ′ − σ′′‖ < ε

n`
, if there exists

i ∈ {1, . . . , n} such that σ′, σ′′ ∈ ∆i(φ) then
∣∣∣µφ,σ′j − µφ,σ

′′

j

∣∣∣ < ε

n
for all j ∈ {1, . . . , `}. (5.58)

Now, suppose that σ′ and σ′′ do not lie within the same simplex of Ωσ(φ). Consider the mapping

ξ(·) : [0, 1]→ Ωσ(φ) such that ξ(t) = (1− t)σ′ + tσ′′ (5.59)

and the corresponding set

M := {σ : ∃t ∈ [0, 1] s.t. σ = ξ(t)}. (5.60)

For each i ∈ {1, . . . , n}, consider the set

Ai :=

 argmax
σ∈(∆i(φ)∩M )

‖σ′ − σ‖ if ∆i(φ) ∩M 6= ∅

∅ otherwise
. (5.61)
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We then define

A :=
⋃

i∈{1,...,n}

Ai. (5.62)

Assume |A | = m and recognize from (5.61) and (5.62) that A contains at most one element for

each i ∈ {1, . . . , n}. Thus, we have m ≤ n. Further assume that the elements of A are ordered

as σ(1), . . . , σ(m), where σ(i) = ξ(ti) for all i ∈ {1, . . . ,m} and t1 ≤ · · · ≤ tm. Recognize that by

construction σ(m) = σ′′. Further recognize that because ξ(·) is continuous, for each i ∈ {1, . . . ,m−1}

there must exist j ∈ {1, . . . , n} such that σ(i), σ(i+1) ∈ ∆j(φ). Additionally, there must exist

j ∈ {1, . . . , n} such that σ′ ∈ ∆j(φ) and σ(1) ∈ ∆j(φ). Moreover, by construction, the graph of ξ(·)

is a line segment, and therefore for any pair (σi, σj) of elements in {σ′, σ′′, σ(1), . . . , σ(m)} we have∥∥σi − σj∥∥ ≤ ‖σ′ − σ′′‖ < ε
n` . Thus, from (5.58), for each j ∈ {1, . . . , `} we obtain

∣∣∣µφ,σ′j − µφ,σ
′′

j

∣∣∣ =
∣∣∣µφ,σ′j − µφ,σ

(m)

j

∣∣∣
=

∣∣∣∣∣µφ,σ′j +

m−1∑
i=1

(
−µφ,σ

(i)

j + µφ,σ
(i)

j

)
− µφ,σ

(m)

j

∣∣∣∣∣
≤
∣∣∣µφ,σ′j − µφ,σ

(1)

j

∣∣∣+

m−1∑
i=1

∣∣∣µφ,σ(i)

j − µφ,σ
(i+1)

j

∣∣∣
< m

ε

n
≤ ε. (5.63)

From the results of these two cases, (5.58) when σ′ and σ′′ lie within the same simplex of

Ωσ(φ) and (5.63) when σ′ and σ′′ do not lie within the same simplex of Ωσ(φ), we make the following

conclusion:

Given φ ∈ Φ
(d)
Ω,S and σ′, σ′′ ∈ Ωσ(φ) such that ‖σ′ − σ′′‖ < ε

n`
,∣∣∣µφ,σ′j − µφ,σ
′′

j

∣∣∣ < ε for all j ∈ {1, . . . , `}. (5.64)

Recognize that the following holds:

∥∥(φ1, σ1)− (φ2 − σ2)
∥∥ < δ4(ε)⇒

∥∥σ1 − σ2
∥∥ < δ4(ε) (From (5.48))

⇒
∥∥σ1 − σ∗

∥∥ < ε

n`
(From (5.53))
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⇒
∣∣∣µφ1,σ1

j − µφ
1,σ∗

j

∣∣∣ < ε for all j ∈ {1, . . . , `} (From (5.64))

⇒
∣∣∣µφ1,σ1

j − µφ
2,σ2

j

∣∣∣ < ε for all j ∈ {1, . . . , `} (From (5.52))

Hence, we have now shown the following:

For all ε > 0, if
∥∥(φ1, σ1)− (φ2, σ2)

∥∥ < δ4(ε) then
∣∣∣µφ1,σ1

j − µφ
2,σ2

j

∣∣∣ < ε for all j ∈ {1, . . . , `}. (5.65)

For each ε > 0 we now define

δ(ε) := min

ε, δ2
(
δ1
( ε

3`

))
, δ3
(
δ1
( ε

3`

))
, δ4

 ε

3`maxj

{∥∥∥σjψφ2 (t2)

∥∥∥}
 , (5.66)

which we use to establish the continuity of H . Recognize in (5.66) that maxj

{∥∥∥σjψφ2 (t2)

∥∥∥} exists

because Sθ is bounded. Let pairs (θ1, t1) and (θ2, t2) be given such that θ1, θ2 ∈ Λ, t1, t2 ∈ [0, 1], and∥∥(θ1, t1)− (θ2, t2)
∥∥ ≤ δ(ε). Recall from (5.42) that

∥∥(θ1, t1)− (θ2, t2)
∥∥ ≤ δ(ε) if and only if there

exist φ1, φ2 ∈ Φ
(d)
Ω,S , σ1 ∈ Ωσ(φ1), and σ2 ∈ Ωσ(φ2) such that θ1 = (φ1, σ1) and θ2 = (φ2, σ2) and

the following also hold: ∥∥φ1 − φ2
∥∥ ≤ δ(ε) (5.67)

∥∥σ1 − σ2
∥∥ ≤ δ(ε) (5.68)

and

‖t1 − t2‖ ≤ δ(ε). (5.69)

Notice that (5.66), (5.69), (5.45) and (5.44) imply that

∥∥∥σjψφ1 (t1) − σ
j
ψφ1 (t2)

∥∥∥ ≤ ε

3`
for all j ∈ {1, . . . , `}, (5.70)

and (5.66), (5.67), (5.46) and (5.44) imply that

∥∥∥σjψφ1 (t2) − σ
j
ψφ2 (t2)

∥∥∥ ≤ ε

3`
for all j ∈ {1, . . . , `}. (5.71)
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Now recognize that

∥∥H (θ1, t1)−H (θ2, t2)
∥∥ =

∥∥∥∥∥∥
φ1,

∑̀
j=1

µφ
1,σ1

j σjψφ1 (t1)

−
φ2,

∑̀
j=1

µφ
2,σ2

j σjψφ2 (t2)

∥∥∥∥∥∥
= max

∥∥φ1 − φ2
∥∥ ,
∥∥∥∥∥∥
∑̀
j=1

µφ
1,σ1

j σjψφ1 (t1) −
∑̀
j=1

µφ
2,σ2

j σjψφ2 (t2)

∥∥∥∥∥∥
 (5.72)

Finally, observe the following:

∥∥∥∥∥∥
∑̀
j=1

µφ
1,σ1

j σjψφ1 (t1) −
∑̀
j=1

µφ
2,σ2

j σjψφ2 (t2)

∥∥∥∥∥∥
=

∥∥∥∥∥∥
∑̀
j=1

µφ
1,σ1

j σjψφ1 (t1) −
∑̀
j=1

µφ
1,σ1

j σjψφ1 (t2) +
∑̀
j=1

µφ
1,σ1

j σjψφ1 (t2) −
∑̀
j=1

µφ
2,σ2

j σjψφ2 (t2)

∥∥∥∥∥∥
≤

∥∥∥∥∥∥
∑̀
j=1

µφ
1,σ1

j σjψφ1 (t1) −
∑̀
j=1

µφ
1,σ1

j σjψφ1 (t2)

∥∥∥∥∥∥+

∥∥∥∥∥∥
∑̀
j=1

µφ
1,σ1

j σjψφ1 (t2) −
∑̀
j=1

µφ
2,σ2

j σjψφ2 (t2)

∥∥∥∥∥∥
=

∥∥∥∥∥∥
∑̀
j=1

µφ
1,σ1

j

(
σjψφ1 (t1) − σ

j
ψφ1 (t2)

)∥∥∥∥∥∥+

∥∥∥∥∥∥
∑̀
j=1

µφ
1,σ1

j σjψφ1 (t2) −
∑̀
j=1

µφ
2,σ2

j σjψφ2 (t2)

∥∥∥∥∥∥
≤
∑̀
j=1

(∣∣∣µφ1,σ1

j

∣∣∣ ∥∥∥σjψφ1 (t1) − σ
j
ψφ1 (t2)

∥∥∥)+

∥∥∥∥∥∥
∑̀
j=1

µφ
1,σ1

j σjψφ1 (t2) −
∑̀
j=1

µφ
2,σ2

j σjψφ2 (t2)

∥∥∥∥∥∥
≤
∑̀
j=1

∥∥∥σjψφ1 (t1) − σ
j
ψφ1 (t2)

∥∥∥+

∥∥∥∥∥∥
∑̀
j=1

µφ
1,σ1

j σjψφ1 (t2) −
∑̀
j=1

µφ
2,σ2

j σjψφ2 (t2)

∥∥∥∥∥∥ (5.73)

From (5.66) and (5.70), (5.73) implies:

∥∥∥∥∥∥
∑̀
j=1

µφ
1,σ1

j σjψφ1 (t1) −
∑̀
j=1

µφ
2,σ2

j σjψφ2 (t2)

∥∥∥∥∥∥
< `

ε

3`
+

∥∥∥∥∥∥
∑̀
j=1

µφ
1,σ1

j σjψφ1 (t2) −
∑̀
j=1

µφ
2,σ2

j σjψφ2 (t2)

∥∥∥∥∥∥
=
ε

3
+

∥∥∥∥∥∥
∑̀
j=1

µφ
1,σ1

j σjψφ1 (t2) −
∑̀
j=1

µφ
1,σ1

j σjψφ2 (t2) +
∑̀
j=1

µφ
1,σ1

j σjψφ2 (t2) −
∑̀
j=1

µφ
2,σ2

j σjψφ2 (t2)

∥∥∥∥∥∥
≤ ε

3
+

∥∥∥∥∥∥
∑̀
j=1

µφ
1,σ1

j σjψφ1 (t2) −
∑̀
j=1

µφ
1,σ1

j σjψφ2 (t2)

∥∥∥∥∥∥+

∥∥∥∥∥∥
∑̀
j=1

µφ
1,σ1

j σjψφ2 (t2) −
∑̀
j=1

µφ
2,σ2

j σjψφ2 (t2)

∥∥∥∥∥∥
=
ε

3
+

∥∥∥∥∥∥
∑̀
j=1

µφ
1,σ1

j

(
σjψφ1 (t2) − σ

j
ψφ2 (t2)

)∥∥∥∥∥∥+

∥∥∥∥∥∥
∑̀
j=1

µφ
1,σ1

j σjψφ2 (t2) −
∑̀
j=1

µφ
2,σ2

j σjψφ2 (t2)

∥∥∥∥∥∥
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≤ ε

3
+
∑̀
j=1

(∣∣∣µφ1,σ1

j

∣∣∣ ∥∥∥σjψφ1 (t2) − σ
j
ψφ2 (t2)

∥∥∥)+

∥∥∥∥∥∥
∑̀
j=1

µφ
1,σ1

j σjψφ2 (t2) −
∑̀
j=1

µφ
2,σ2

j σjψφ2 (t2)

∥∥∥∥∥∥
≤ ε

3
+
∑̀
j=1

∥∥∥σjψφ1 (t2) − σ
j
ψφ2 (t2)

∥∥∥+

∥∥∥∥∥∥
∑̀
j=1

µφ
1,σ1

j σjψφ2 (t2) −
∑̀
j=1

µφ
2,σ2

j σjψφ2 (t2)

∥∥∥∥∥∥ (5.74)

Now, from (5.66) and (5.71), (5.74) gives:

∥∥∥∥∥∥
∑̀
j=1

µφ
1,σ1

j σjψφ1 (t1) −
∑̀
j=1

µφ
2,σ2

j σjψφ2 (t2)

∥∥∥∥∥∥ < ε

3
+ `

ε

3`
+

∥∥∥∥∥∥
∑̀
j=1

µφ
1,σ1

j σjψφ2 (t2) −
∑̀
j=1

µφ
2,σ2

j σjψφ2 (t2)

∥∥∥∥∥∥
=

2ε

3
+

∥∥∥∥∥∥
∑̀
j=1

(
µφ

1,σ1

j − µφ
2,σ2

j

)
σjψφ2 (t2)

∥∥∥∥∥∥
≤ 2ε

3
+
∑̀
j=1

(∣∣∣µφ1,σ1

j − µφ
2,σ2

j

∣∣∣ ∥∥∥σjψφ2 (t2)

∥∥∥)

≤ 2ε

3
+ max

j

∥∥∥σjψφ2 (t2)

∥∥∥
∑̀
j=1

∣∣∣µφ1,σ1

j − µφ
2,σ2

j

∣∣∣
 (5.75)

From (5.65) and (5.66), we now see that (5.75) implies:

∥∥∥∥∥∥
∑̀
j=1

µφ
1,σ1

j σjψφ1 (t1) −
∑̀
j=1

µφ
2,σ2

j σjψφ2 (t2)

∥∥∥∥∥∥ < 2ε

3
+ `max

j

∥∥∥σjψφ2 (t2)

∥∥∥ ε

3`maxj

∥∥∥σjψφ2 (t2)

∥∥∥
=

2ε

3
+
ε

3
= ε (5.76)

Recognize that (5.66) and (5.67) show that
∥∥φ1 − φ2

∥∥ < ε. Therefore, from this, (5.76) and (5.72)

we conclude that
∥∥H (θ1, t1)−H (θ2, t2)

∥∥ < ε and thus, we have now shown that H is continuous.

H (·, t) is a homeomorphism for each fixed t ∈ [0, 1]: Assume for the arguments that

follow that t is fixed. Clearly, H (·, t) is continuous since H is continuous. Recognize that H (·, t)

maps each φ ∈ Φ
(d)
Ω,S to itself and each σ ∈ Ωσ(φ) to a unique element of Ωσ(ψφ(t)) (due to the method

used for selecting µφ,σ). Moreover, since Ωσ(ψφ(t)) is partitioned in the same fashion as Ωσ(φ), every

element of Ωσ(ψφ(t)) is mapped to by a unique σ ∈ Ωσ(φ) under H (·, t). Hence, H (·, t) is bijective.

The final property we must show in order to establish that H (·, t) is a homeomorphism, is that
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H (·, t) has a continuous inverse. We denote this inverse as H −1
t (·). Explicitly, the inverse can be

computed as:

H −1
t (θ) = H −1

t (φ, σ)

= H −1
t

φ,∑̀
j=1

µφ,σj σjψφ(t)


=

φ,∑̀
j=1

µφ,σj σjφ


Clearly the structure of H −1

t (·) is analogous to that of H (·, t) and thus, analogous arguments to

those used to show the continuity of H can be used to show the continuity of H −1
t (·). Hence, we

have that H (·, t) is a homeomorphism.

H (T
(d)

Ω,S , 0) = T
(d)

Ω,S : This is clear from (5.37) and the fact that ψφ(0) = φ.

H (T
(d)

Ω,S , 1) = U
(d)

Ω,S (φ∗): This is established from (5.38) and the facts that ψφ(1) = φ∗ and

for a given t ∈ [0, 1], H (T
(d)

Ω,S , t) maps every φ to itself and every possible convex combination of the

extreme points of Ωσ(φ) to every possible convex combination of the extreme points of Ωσ(ψφ(t)).

As we have now shown that H satisfies all properties of Definition 5.39, we have that T
(d)

Ω,S

is ambient isotopic to U
(d)

Ω,S (φ∗).

Proposition 5.48. Given Ω ⊂ Sθ having Property 5.38, dim(Ω) = max
d∈N,S∈DΩ

{
dim(Φ

(d)
Ω,S ) + d

}
.

Proof. Recognize that for every d ∈ N and every S ∈ DΩ, T
(d)

Ω,S is a semi-algebraic subset of Ω.

Hence, for all d ∈ N and S ∈ DΩ we have:

dim(Ω) ≥ dim(T
(d)

Ω,S )

= dim(U
(d)

Ω,S (φ)) for any φ ∈ Φ
(d)
Ω,S (By Proposition 5.47)

Notice from (5.38) that for every φ ∈ Φ
(d)
Ω,S , U

(d)
Ω,S (φ) = Φ

(d)
Ω,S × Ωσ(φ) and thus for each d ∈ N and

S ∈ DΩ we have:

dim(Ω) ≥ dim(Φ
(d)
Ω,S × Ωσ(φ)) for all φ ∈ Φ

(d)
Ω,S

= dim(Φ
(d)
Ω,S ) + dim(Ωσ(φ)) for all φ ∈ Φ

(d)
Ω,S

= dim(Φ
(d)
Ω,S ) + d
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Since Ω is a bounded set in Sθ, there must be a d ∈ N and S ∈ DΩ for which dim(Φ
(d)
Ω,S )+d is maximal.

Furthermore, we see from Observation 5.43 that dim(Ω) must equal max
d∈N,S∈DΩ

{
dim(Φ

(d)
Ω,S ) + d

}
.

We have now developed the theory which will allow us to establish necessary and sufficient

conditions for any set satisfying Property 5.38 to have dimension k or k− 1. Consider the following

two propositions.

Proposition 5.49. Let Ω ⊂ Sθ satisfying Property 5.38 be given. Then Ω is k-dimensional if and

only if there exists Φ ⊆ Ωφ such that dim(Φ) = p and dim (Ωσ(φ)) = k − p for all φ ∈ Φ.

Proof.

(⇒): Recognize from Proposition 5.48 that since Ω is full dimensional, there must exist d ∈ N and

S ∈ DΩ such that k = dim(Φ
(d)
Ω,S ) + d. Further recognize that since for every d ∈ N and S ∈ DΩ

we have dim(Φ
(d)
Ω,S ) ≤ p, the following must hold: (i) d = k − p, and (ii) dim(Φ

(k−p)
Ω,S ) = p. Let

Φ = Φ
(k−p)
Ω,S . Then clearly Φ ⊆ Ωφ and dim(Φ) = p. Furthermore, from (5.32) and (5.36) we have

that for each φ ∈ Φ, dim(Ωσ(φ)) = k − p.

(⇐): Observe from (5.32) that because dim(Ωσ(φ)) = k − p for all φ ∈ Φ, we have Φ ⊆ Φ
(k−p)
Ω .

Thus, since dim(Φ) = p, we have dim(Φ
(k−p)
Ω ) ≥ p. However, since Φ

(k−p)
Ω ⊆ Rp we also have that

dim(Φ
(k−p)
Ω ) ≤ p, which shows that dim(Φ

(k−p)
Ω ) = p. Now recognize the following:

• Φ
(k−p)
Ω = ∪S∈DΩ

Φ
(k−p)
Ω,S . – By (5.32), (5.35) and (5.36).

• DΩ is a finite set. – By (5.34).

• For each S ∈ DΩ we have that Φ
(k−p)
Ω,S is semi-algebraic. – By Corollary 5.46.

These three facts, together with Proposition 5.42, show that there must exist S ′ ∈ DΩ for which

dim(Φ
(k−p)
Ω,S ′ ) = dim(Φ

(k−p)
Ω ). Therefore, by Proposition 5.48, we have dim(Ω) ≥ dim(Φ

(k−p)
Ω,S ′ ) + k −

p = p+ k − p = k. However, this clearly implies that dim(Ω) = k since Ω ⊆ Rk.

Proposition 5.50. Let Ω ⊂ Sθ satisfying Property 5.38 be given for which dim(Ω) 6= k. Then

dim(Ω) = k − 1 if and only if there exists Φ ⊆ Ωφ for which one of the following two conditions

holds:

1. dim(Φ) = p and for each φ ∈ Φ, dim (Ωσ(φ)) = (k − p)− 1.

2. dim(Φ) = p− 1 and for each φ ∈ Φ, dim (Ωσ(φ)) = k − p.
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Proof.

(⇒): Since dim(Ω) = k − 1, by Proposition 5.48 there must exist d ∈ N and S ∈ DΩ such that

dim(Φ
(d)
Ω,S ) + d = k − 1. Recognize that there are now two possible cases: (i) d = (k − p) − 1 and

dim(Φ
(k−p−1)
Ω,S ) = p, or (ii) d = k− p and dim(Φ

(k−p)
Ω,S ) = p− 1. We now examine these cases, one at

a time.

Suppose that d = (k − p) − 1 and dim(Φ
(k−p−1)
Ω,S ) = p. Let Φ = Φ

(k−p−1)
Ω,S . Then clearly

Φ ⊆ Ωφ and dim(Φ) = p. Furthermore, from (5.32) and (5.36) we have that for each φ ∈ Φ,

dim(Ωσ(φ)) = (k − p)− 1. Hence, condition (1) of the proposition is satisfied.

Next suppose that d = k − p and dim(Φ
(k−p)
Ω,S ) = p − 1. Let Φ = Φ

(k−p)
Ω,S . Clearly Φ ⊆ Ωφ

and dim(Φ) = p − 1. From (5.32) and (5.36) we have that for each φ ∈ Φ, dim(Ωσ(φ)) = k − p.

Hence, condition (2) of the proposition is satisfied.

(⇐): Recognize that by utilizing arguments analogous to those used to prove the reverse direction

of Proposition 5.49, both conditions (1) and (2) above result in concluding that dim(Ω) ≥ k − 1.

However, since we know that dim(Ω) 6= k, it must be that dim(Ω) ≤ k−1. Thus, dim(Ω) = k−1.

Having now established necessary and sufficient conditions for any set satisfying Property

5.38 to have dimension k or k − 1, we are able to make several important observations about

invariancy regions. We discuss these observations in the following subsection.

5.3.3 An Initial Strategy for Partitioning Sθ

In this subsection we provide two corollaries which result directly from the theory developed

in Section 5.3.2. We then use the results of these corollaries to prove a proposition which contains the

primary theoretical result that ensures the correctness of the methodology we introduce in Sections

5.4 and 5.5. Consider the following two corollaries, the first follows from Proposition 5.49 and the

second follows from Proposition 5.50.

Corollary 5.51. Given a feasible complementary basis B , the invariancy region IRB is k-dimensional

if and only if there exists Φ ⊆ IRφB such that dim(Φ) = p and dim (AS(φ) ∩ C(φ,B)) = k− p for all

φ ∈ Φ.

Proof. The result follows directly from Proposition 5.49, the fact that invariancy regions satisfy

Property 5.38, and Proposition 5.36.
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Corollary 5.52. Let a feasible complementary basis B be given for which dim(IRB) 6= k. Then

dim(IRB) = k− 1 if and only if there exists Φ ⊆ IRφB for which one of the following two conditions

holds:

1. dim(Φ) = p and for each φ ∈ Φ, dim (AS(φ) ∩ C(φ,B)) = (k − p)− 1.

2. dim(Φ) = p− 1 and for each φ ∈ Φ, dim (AS(φ) ∩ C(φ,B)) = k − p.

Proof. The result follows directly from Proposition 5.50, the fact that invariancy regions satisfy

Property 5.38, and Proposition 5.36.

We now use the results of these corollaries and propose another result which will be extremely

useful in developing an initial strategy for partitioning Sθ. Consider the following proposition.

Proposition 5.53. Let two feasible complementary bases Bi and Bj be given such that IRBi and

IRBj are each full dimensional and adjacent, i.e., dim
(
IRBi ∩ IRBj

)
= k− 1. Then there exists a

sequence of bases {Bn}j−1
n=i+1 and Φ ⊆ ∩jn=iIR

φ
Bn such that: (i) dim(Φ) ≥ p− 1, (ii) for each φ ∈ Φ,

C(φ,Bγ) and C(φ,Bγ+1) are adjacent for all γ ∈ {i, . . . , j − 1}, and (iii) dim
(
IRBγ

)
≥ k − 1 for all

γ ∈ {i+ 1, . . . , j − 1}.

Proof. Recognize that because dim
(
IRBi ∩ IRBj

)
= k−1, dim

(
IRφBi ∩ IR

φ
Bj

)
is either p or p−1.

We consider these cases one at a time.

First suppose that dim
(
IRφBi ∩ IR

φ
Bj

)
= p. Fix any φ′ ∈

(
IRφBi ∩ IR

φ
Bj

)
and con-

sider the invariancy regions IRσBi(φ
′) and IRσBj (φ

′). Recognize that with φ′ fixed, M(φ′) is a

real valued matrix, and for any basis B , the cone C(φ′,B) is simply the conic combination of vec-

tors with real components. Hence, with φ′ fixed we can consider IRσBi(φ
′) and IRσBj (φ

′) in the

context of the works of [18] and [2], since in these works M is a real valued matrix. Then by

Theorem 5.10 of [18], there exists a sequence of invariancy regions
{
IRσBn(φ′)

}j−1

n=i+1
, and by ex-

tension, a sequence of bases {Bn}j−1
n=i+1, such that C(φ′,Bγ) and C(φ′,Bγ+1) are adjacent for all

γ ∈ {i, . . . , j − 1} and dim (AS(φ′) ∩ C(φ′,Bγ)) ≥ (k − p) − 1 for all γ ∈ {i + 1, . . . , j − 1}. We

say that such a sequence of bases is valid for φ′. Recognize that valid sequences are not necessarily

unique, and furthermore, the same sequence may not be valid for distinct φ∗, φ∗∗ ∈
(
IRφBi ∩ IR

φ
Bj

)
.
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For a given φ ∈
(
IRφBi ∩ IR

φ
Bj

)
, let C φ represent the set of all valid sequences for φ and define

C := ∪
φ∈
(
IRφBi∩IR

φ
Bj

)C φ. Then for each S ∈ C define the set

V (S ) :=
{
φ ∈

(
IRφBi ∩ IR

φ
Bj

)
: sequence S is valid for φ

}
. (5.77)

Recognize that the following are true:

1. |C | <∞.

2. ∪S∈C V (S ) =
(
IRφBi ∩ IR

φ
Bj

)
.

3. For each S ∈ C , the set V (S ) is semi-algebraic.

The first is due to the fact that there are a finite number of bases and hence a finite number of

sequences. The second is obvious. The third is due to the fact that V (S ) can be represented as

V (S ) =

( ⋂
B∈S

Φ
(≥k−p−1)
IRB

)⋂ ⋂
(Bi,Bj)∈S

{φ : C(φ,Bi) is adjacent to C(φ,Bj)}


=

( ⋂
B∈S

Φ
(≥k−p−1)
IRB

)⋂ ⋂
(Bi,Bj)∈S

{
φ : rank

(
G• (Bi∩Bj)(φ)

)
= h− 1

} .

Notice that the above set is clearly semi-algebraic if: (i) Φ
(≥k−p−1)
IRB

is semi-algebraic for each B ∈ S ,

and (ii) the set
{
φ : rank

(
G• (Bi∩Bj)(φ)

)
= h− 1

}
is semi-algebraic for each pair (Bi,Bj) ∈ S . The

former is clear from Proposition 5.44 and the fact that invariancy regions satisfy Property 5.38.

The arguments needed to show the latter are analogous to those used in the proof of Proposition

5.44 in which we showed that conditions on the rank of a matrix can be imposed using a set

of polynomial inequalities. Now, since (1), (2) and (3) hold, we have by Proposition 5.42 that

there exists some S ′ ∈ C for which dim(V (S ′)) = p. Hence, if we let Φ = V (S ′), together

S ′ and Φ satisfy conditions (i) and (ii) of the proposition. Furthermore, since dim(Φ) = p and

dim (AS(φ) ∩ C(φ,B)) ≥ (k − p) − 1 for all φ ∈ Φ and B ∈ S , condition (iii) of the proposition is

also satisfied by Corollary 5.52.

Now suppose that dim
(
IRφBi ∩ IR

φ
Bj

)
= p − 1. Recognize that

(
IRφBi ∩ IR

φ
Bj

)
satisfies

Property 5.38 and so by Proposition 5.50 we have that since dim
(
IRBi ∩ IRBj

)
= k−1, there must

exist a p − 1 dimensional subset Φ′ of
(
IRφBi ∩ IR

φ
Bj

)
such that dim (AS(φ) ∩ C(φ,Bi)) = k − p

180



for all φ ∈ Φ′ and dim (AS(φ) ∩ C(φ,Bj)) = k − p for all φ ∈ Φ′. Recognize that this can only

happen if for each φ ∈ Φ′, C(φ,Bi) and C(φ,Bj) share a facet Fφ of dimension at least k − p

and AS(φ) has a k − p dimensional intersection with Fφ. Recall the following facts: (i) for every

feasible complementary basis B and every φ ∈ Sφ, C(φ,Bγ) is an h dimensional cone in Rh, and

(ii) because M(φ) is sufficient for each φ ∈ Sφ we have K(M(φ)) is convex for each φ ∈ Sφ and

∪feasible bases B C(φ,B) forms a partition of K(M(φ)) for each φ ∈ Sφ. From these three facts,

recognize that for every φ ∈ Φ′, every τ ∈ relint(Fφ ∩ AS(φ)) and every τ ′ ∈ Rh, there exists

εφτ,τ ′ > 0 such that for all ε ∈ (0, εφτ,τ ′ ] we have either (i) τ+ετ ′ 6∈ K(M(φ)), or (ii) τ+ετ ′ ∈ K(M(φ))

and the parametric complementary cone containing τ + ετ ′ also contains Fφ. For each φ ∈ Φ′ define

the set A (φ) := {B : ∃τ ∈ relint(Fφ ∩ AS(φ), τ ′ ∈ Rh such that τ + εφτ,τ ′τ
′ ∈ C(φ,B)}. Further

recognize that due to the convexity of K(M(φ)) for each φ ∈ Sφ, that there must exist a subset

{B1, . . . ,Bm} of bases in A (φ) such that the sequence {Bn}mn=1 satisfies the following properties:

(i) B1 = Bi, (ii) Bm = Bj , (iii) C(φ,Bn) and C(φ,Bn+1) are adjacent for all n ∈ {1, . . . ,m−1}, and

(iv) and Fφ ⊂ C(φ,Bn) for all n ∈ {1, . . . ,m}. As with the case in which dim
(
IRφBi ∩ IR

φ
Bj

)
= p,

we say that this sequence is valid for φ. Hence, as we did in the previous case, for each sequence S

valid for some φ ∈ Φ′ we can construct the set V (S ) of φ ∈ Φ′ for which S is valid. Then since we

showed that there are a finite number of valid sequences, ∪S∈C V (S ) =
(
IRφBi ∩ IR

φ
Bj

)
, and for

each valid sequence S , the set V (S ) is semi-algebraic, we have from Proposition 5.42 that there

must exist a valid sequence S ′ such that dim(V (S ′)) = p−1. Let Φ = V (S ′). Then clearly Φ is a

p− 1 dimensional subset of Φ′ such that a single sequence of bases S is valid for all φ ∈ Φ. Hence,

conditions (i) and (ii) of the proposition also hold when dim
(
IRφBi ∩ IR

φ
Bj

)
= p− 1. Furthermore,

since dim(Φ) = p− 1 and dim (AS(φ) ∩ C(φ,B)) = k− p for all φ ∈ Φ and B ∈ S , condition (iii) of

the proposition is also satisfied by Proposition 5.50.

To aid in visualization of some of the concepts introduced in the proof of Proposition 5.53,

particularly the case in which dim
(
IRφBi ∩ IR

φ
Bj

)
= p− 1, we include Figure 5.1 which displays an

example of parametric complementary cones which are not adjacent, but do share a k−1 dimensional

facet. Note that this example is specific to the special case in which h = 3 and p = k − 1. Observe,

particularly from the top view in Figure 5.1b, that because K(M(φ)) is convex and partitioned by

the set of parametric complementary cones, the missing space “between” cones C(φ,Bi) and C(φ,Bi)

must also be partitioned by other parametric complementary cones and furthermore, there must be
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(a) Side view (b) Top view

Figure 5.1: Example of k − p dimensional intersection of AS(φ) with two distinct complementary
cones. (h = 3, p = k − 1)

a subset C of these cones such that for each cone in C, the intersection of the cone with AS(φ) is

k − 1 dimensional. Hence, there must be a sequence of cones in C, and by extension a sequence of

bases, which satisfy the conditions of Propostion 5.53.

Recognize that Proposition 5.53 indicates that one strategy for partitioning Sθ is to begin

with a full dimensional invariancy region, compute the sequences of bases which yield each adjacent

full dimensional invariancy region, and then repeat the process for each discovered region until no

undiscovered invariancy regions exist within Sθ. In the next section we introduce the theoretical

results which we use to carry out these procedures.

5.4 Phase 2: Partitioning the parameter space

In this section we introduce the theory necessary for developing an algorithm that can be

used to partition Sθ, given an initial basis B0 such that dim (IRB0
) = k. The algorithm itself is

presented at the end of this section. We discuss obtaining this initial basis, and present an algorithm

for doing so, in Section 5.5. We note that much of the material in this section is a direct extension

of work done in [2]. As a result, the format of this section, up to approximately the introduction of

Outline 5.62, replicates the format of Section 3 in [2].
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Before we can find sequences of bases which link adjacent invariancy regions as discussed in

Proposition 5.53, we must first establish a method so that given a complementary feasible basis B ,

we can determine a complementary feasible basis B ′ which is adjacent to B . Observe the following

proposition.

Proposition 5.54. [18] If M(φ) ∈ Rh×h is column sufficient for each φ ∈ Sφ and two bases B1 and

B2 are adjacent, then |B1 ∩ B2| ≥ h− 2.

Proof. The result follows by extension of Lemma 3.8 of [18].

The result of Proposition 5.54 is quite powerful as it implies that given any basis B , all

complementary bases which are adjacent to B can be obtained by replacing either 1 or 2 elements

of B with their complements.

Definition 5.55. Replacing a single element of a basis with its complement is called a diagonal

pivot.

Definition 5.56. Replacing two elements of a basis with their complements is called an exchange

pivot.

These terms arise from techniques for solving LCP which consider the LCP in a tableau

format and rely on principal pivoting to find feasible solutions. For a given basis B , the corresponding

tableau is the augmented matrix

TB(φ, σ) :=
[
G(φ)−1

•B G(φ) G(φ)−1
•B q(φ, σ)

]
(5.78)

where the right hand side (RHS) is precisely νB(θ). Note that the elements of the tableau associated

with a given basis B are rational functions of φ and σ. However, only the elements of the RHS of

the tableau depend on σ. Thus, since the majority of the theory we present in this work for which

we utilize tableaux deals with only the LHS elements, when appropriate, we drop the dependency

of TB on σ and use the notation TB(φ).

It is important to note that given a basis B , not every diagonal and exchange pivot will

result in a new feasible basis. To see this, suppose that in a particular diagonal or exchange pivot

J ⊂ B is the set of indices replaced with their complements. If rank
(
G(φ)

•((B\J)∪J)

)
6= h for all

φ ∈ Sφ then
(
(B \ J) ∪ J

)
cannot be a basis. Additionally, even if a pivot on B does result in a new
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basis B ′, the bases B and B ′ may not be adjacent. Due to these facts, we next need to determine

conditions under which pivots will yield new adjacent bases. Such conditions can be developed using

the tableau TB(φ, σ).

We first consider diagonal pivots. Since principal pivoting has been studied extensively in

the context of LCP, the following result is a direct extension of a well known fact in the literature.

Observation 5.57. Given a complementary feasible basis B and any index i ∈ B , the set (B \ {i})∪

{ı} is a basis if and only if there exists φ ∈ Sφ such that (TB(φ))i,ı 6= 0.

The following proposition and its corollary are slightly modified from [18].

Proposition 5.58. Given a complementary feasible basis B , suppose that for some index i ∈ B the

set B ′ = (B \ {i}) ∪ {ı} is a basis. Then B and B ′ are adjacent.

Proof. The proposition is implied by the facts that for all φ ∈ Sφ, C(φ,B)∩C(φ,B ′) = cone
(
G(φ)• (B\{i})

)
and dim

(
cone

(
G(φ)• (B\{i})

))
= h− 1. Therefore, by Definition 5.24, the bases B and B ′ are adja-

cent.

Corollary 5.59. Given a complementary feasible basis B , suppose that for some index i ∈ B

the set B ′ = (B \ {i}) ∪ {ı} is a basis. If M(φ) is column sufficient for all φ ∈ Sφ then for each

φ ∈ Sφ, C(φ,B ′) is the unique parametric complementary cone adjacent to C(φ,B) along the facet

cone
(
G(φ)• (B\{i})

)
.

Proof. The Corollary is implied by the fact that for column sufficient matrices the relative interiors

of all complementary cones are disjoint.

Together Observation 5.57 and Proposition 5.58 provide conditions under which an adjacent

complementary feasible basis B ′ can be derived from a given complementary feasible basis B by

using a single diagonal pivot. We now consider exchange pivots and present the following two new

propositions.

Proposition 5.60. For a given complementary basis B , suppose there exist distinct i, j ∈ B such

that B ′ = (B \ {i, j}) ∪ {ı, } is a complementary basis which is adjacent to B . Then if M(φ) is

column sufficient for every φ ∈ Sφ, either (TB(φ))i,ı = 0 for all φ ∈ Sφ or (TB(φ))j, = 0 for all

φ ∈ Sφ.
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Proof. Assume without loss of generality that there exists φ′ ∈ Sφ such that (TB(φ′))i,ı 6= 0.

Then B̂ = (B \ {i}) ∪ {ı} is a complementary basis and for each φ ∈ Sφ, C(φ,B) ∩ C(φ, B̂) =

cone
(
G(φ)• (B\{i})

)
. Furthermore, by Corollary 5.59, B̂ is the unique basis whose parametric com-

plementary cone intersects C(φ,B) along this facet for all φ ∈ Sφ. Therefore, since B ′ is also adjacent

to B , it must be that C(φ,B) ∩ C(φ,B ′) ⊆ cone
(
G(φ)• (B\{j})

)
for all φ ∈ Sφ. Hence, there must

exist J ′ ⊂ B ′ such that |J ′| = h − 1 and dim
(
cone

(
G(φ)• (B\{j})

)
∩ cone (G(φ)• J′)

)
= h − 1 for all

φ ∈ Sφ. Note that since |J ′| = h− 1, either ı or  must be a member of J ′. Consider the following

two cases:

Case 1: ı ∈ J ′

Since dim
(
cone

(
G(φ)• (B\{j})

)
∩ cone (G(φ)• J′)

)
= h − 1 for all φ ∈ Sφ, we have G(φ)• ı ∈

span
(
G(φ)• (B\{j})

)
for all φ ∈ Sφ. Now, suppose that G(φ)• ı /∈ cone

(
G(φ)• (B\{j})

)
for all φ ∈ Sφ.

Then C(φ,B) and C(φ,B ′) can only be adjacent along the facet cone
(
G(φ)• (B\{j})

)
for all φ ∈ Sφ if

C(φ,B) = cone (G(φ)•B) ⊂ cone
(
G(φ)

• ((B\{i})∪{ı})

)
= C(φ, B̂) for all φ ∈ Sφ, but this contradicts

the fact that M(φ) is column sufficient for all φ ∈ Sφ since in this case C(φ, B̂) and C(φ,B) do not

have disjoint relative interiors for all φ ∈ Sφ. Suppose instead that G(φ)• ı ∈ cone
(
G(φ)• (B\{j})

)
.

This implies that C(φ, B̂) = cone
(
G(φ)

• ((B\{i})∪{ı})

)
⊆ cone (G(φ)•B) = C(φ,B) for all φ ∈ Sφ,

which means that one of the following must hold: (i) C(φ, B̂) is not full dimensional for all φ ∈ Sφ,

or (ii) C(φ, B̂) and C(φ,B) do not have disjoint relative interiors for all φ ∈ Sφ. Notice, however,

that the former contradicts the fact that B̂ is a basis and the latter contradicts the fact that M(φ)

is column sufficient for all φ ∈ Sφ.

Case 2:  ∈ J ′

Since dim
(
cone

(
G(φ)• (B\{j})

)
∩ cone (G(φ)• J′)

)
= h − 1 for all φ ∈ Sφ, we have G(φ)•  ∈

span
(
G(φ)• (B\{j})

)
for all φ ∈ Sφ. Since TB(φ, σ) =

[
G(φ)−1

•B G(φ) G(φ)−1
•B q(φ, σ)

]
, we have

(TB(φ))j,γ = 0 for all γ ∈ (B \ {j}). Thus, since for all φ ∈ Sφ, G(φ)•  is a linear combination of the

columns of G(φ)• (B\{j}), it must be that (TB(φ))j, = 0.

Cases 1 and 2 are now complete. The contradictions found in Case 1 show that either

ı /∈ J ′ or (TB(φ))i,ı = 0 for all φ ∈ Sφ. Clearly, if (TB(φ))i,ı = 0 for all φ ∈ Sφ the thesis of the

proposition holds. If, on the other hand, ı /∈ J ′ then  ∈ J ′ which, as is shown in Case 2, implies

that (TB(φ))j, = 0 for all φ ∈ Sφ. Thus, the claim of the proposition holds in all cases.
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Note that aspects of one of the proofs in [18] are used in the proof of the following proposition.

Proposition 5.61. Let a complementary basis B and distinct i, j ∈ B be given. Given φ ∈ IRφB ,

the set B ′ = (B \ {i, j}) ∪ {ı, } is a complementary basis such that C(φ,B) is adjacent to C(φ,B ′)

along the facet cone
(
G(φ)−1

•(B\{i})

)
if and only if (TB(φ))i,ı = 0, (TB(φ))j,ı > 0, and (TB(φ))i, 6= 0.

Proof. (⇐): We first show that B ′ is a basis and then show that C(φ,B) is adjacent to C(φ,B ′) along

the facet cone
(
G(φ)−1

•(B\{i})

)
. Since the LHS of TB(φ) is given by G(φ)−1

•B G(φ), we have (TB(φ))i,γ =

0 for all γ ∈ B \ {i} and (TB(φ))j,ξ = 0 for all ξ ∈ B \ {j}. Thus, since (TB(φ))j,ı > 0, G(φ)• ı cannot

be a linear combination of the columns of G(φ)•(B\{i,j}). Furthermore, since (TB(φ))i,ı = 0 and

(TB(φ))i, 6= 0, G(φ)•  cannot be a linear combination of the columns of G(φ)•((B\{i,j})∪{ı}). Thus,

the columns of G(φ)•B′ are linearly independent, showing that B ′ is a basis.

We now show that C(φ,B) is adjacent to C(φ,B ′) along the facet cone
(
G(φ)−1

•(B\{i})

)
. Notice

that for any set J ⊂ E and σ ∈ Sσ, q(φ, σ) lies in the relative interior of cone (G(φ)• J) if and only

if q(φ, σ) is a strictly positive combination of the columns of G(φ)•J , i.e., for each γ ∈ J there exists

βγ > 0 such that q(φ, σ) =
∑
γ∈J

βγG(φ)•γ . Thus, consider

W (β) : =
∑

γ∈(B\{i})

βγG(φ)•γ

= βjG(φ)•j +
∑

γ∈(B\{i,j})

βγG(φ)•γ

(5.79)

Recall that (TB(φ))•ı = G(φ)−1
•B G(φ)•ı, which implies:

G(φ)•ı = G(φ)•B(TB(φ))•ı

=
∑
γ∈B

G(φ)•γ(TB(φ))γı

=
∑

γ∈(B\{i})

G(φ)•γ(TB(φ))γı

= G(φ)•j(TB(φ))j,ı +
∑

γ∈(B\{i,j})

G(φ)•γ(TB(φ))γı

(5.80)

Since (TB(φ))j,ı > 0, (5.80) gives G(φ)•j =
1

(TB(φ))j,ı
G(φ)•ı −

∑
γ∈(B\{i,j})

G(φ)•γ
(TB(φ))γı
(TB(φ))j,ı

.
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Using this result and substituting into (5.79) yields

W (β) = βj

 1

(TB(φ))j,ı
G(φ)•ı −

∑
γ∈(B\{i,j})

G(φ)•γ
(TB(φ))γı
(TB(φ))j,ı

+
∑

γ∈(B\{i,j})

βγG(φ)•γ

=
βj

(TB)j,ı
G(φ)•ı −

∑
γ∈(B\{i,j})

(
βγ − βj

(TB(φ))γı
(TB(φ))j,ı

)
G(φ)•γ

(5.81)

From (5.79) and (5.81) we observe that by selecting β̃ so that: (i) β̃γ > 0 for all γ ∈ (B \ {i}),

and (ii) β̃γ > β̃j
(TB(φ))γı
(TB(φ))j,ı

for all γ ∈ (B \ {i, j}), we have that W (β̃) is in the relative interior

of both cone
(
G(φ)• (B\{i})

)
and cone

(
G(φ)• (B′\{})

)
. This shows that dim(cone(G(φ)• (B\{i})) ∩

cone(G(φ)• (B′\{}))) = h− 1 and therefore B and B ′ are adjacent.

(⇒): We prove this direction by contradiction. Consider the following 3 cases:

Case 1: (TB(φ))i,ı 6= 0

By Corollary 5.59, B̂ = (B \ {i}) ∪ {ı} is the unique basis such that C(φ, B̂) is adjacent to

C(φ,B) along the facet cone
(
G(φ)−1

•(B\{i})

)
. This is a contradiction.

Case 2: (TB(φ))j,ı ≤ 0

Since B ′ is a basis, the unique way to represent W (β) as a linear combination of the columns

of G(φ)•B′ is (5.81). Therefore, in this case there does not exist β such that W (β) lies in both the

relative interiors of cone
(
G(φ)−1

•(B\{i})

)
and C(φ,B ′). Hence, C(φ,B) cannot be adjacent to C(φ,B ′)

along cone
(
G(φ)−1

•(B\{i})

)
, which is a contradiction.

Case 3: (TB(φ))i, = 0

Since (TB(φ))i,ı = 0, the matrix G(φ)−1
•B G(φ)•B′ has a row of all zeros. Thus G(φ)−1

•B G(φ)•B′

is not invertible, which is a contradiction since both B and B ′ are bases.

Finding a contradiction in each of the cases above shows that we must have (TB(φ))i,ı = 0,

(TB(φ))j,ı > 0, and (TB(φ))i, 6= 0.

By combining the results of Propositions 5.54, 5.58, 5.60 and 5.61 as well as Observation 5.57

and Corollary 5.59, we are now able to develop the following strategy for finding all complementary

bases which are adjacent to a given basis B :

1. Calculate the tableau TB(φ) associated with basis B .

2. For any i ∈ B for which there exists φ ∈ Sφ such that (TB(φ))i,ı 6= 0, the set (B \ {i}) ∪ {ı} is

a complementary basis adjacent to B .
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3. For any distinct i, j ∈ B for which there exists φ ∈ IRφB such that (TB(φ))i,ı = 0, (TB(φ))j,ı > 0

and (TB(φ))i, 6= 0, the set (B \ {i, j})∪{ı, } is a feasible complementary basis adjacent to B .

Recall, however, that our goal is to partition Sθ. Although there is a strong relationship

between complementary cones and invariancy regions, it is not always the case that adjacent invari-

ancy regions result from adjacent complementary cones. Recall, though, that in Proposition 5.53

we showed that for any pair of adjacent full dimensional invariancy regions IRBi and IRBj with

i < j, there always exists a sequence of bases {Bn}j−1
n=i+1 and Φ ⊆ ∩jn=iIR

φ
Bn such that C(φ,Bγ)

and C(φ,Bγ+1) are adjacent for all γ ∈ {i, . . . , j − 1} and φ ∈ Φ, and dim
(
IRBγ

)
= k − 1 for all

γ ∈ {i+ 1, . . . , j − 1}. Throughout the rest of this work we utilize the theory developed thus far in

order to establish a method for determining such sequences. We first present a brief outline of this

method and then provide the details necessary for its implementation.

Outline 5.62:

Preliminaries: Let R represent a set of invariancy regions for which adjacent regions need to

be found. Let K represent the set of feasible bases discovered.

Phase 1 –

Initialization: Find an initial full dimensional invariancy region IRB0
and add it to R . Add

B0 to K .

Phase 2 –

Main Step: 1. Select IRB ∈ R and remove it from R .

2. Determine the set of feasible bases which have invariancy regions that are:

(i) adjacent to IRB , and (ii) at least (k − 1)–dimensional.

3. For each basis B̂ discovered in step 2, if B̂ /∈ K , add IRB̂ to R and B̂ to

K .

4. If R = ∅, STOP. Otherwise, go back to step 1.

Note that in Outline 5.62 the main step serves as a basis for Algorithm 5.5, while the

initialization phase serves as a basis for Algorithm 5.12. The former is presented in Section 5.4

and the latter in Section 5.5. We now discuss the details necessary to implement the procedure

above. The details of the initialization step, i.e., determining an initial feasible basis B0 such that
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dim (IRB0
) ≥ k − 1, are given in Section 5.5. For any feasible complementary basis B and index

i ∈ B , we define the following sets which will be useful during the remainder of this discussion:

ZB :=
{
j ∈ B : (Adj (G(φ)•B))j • q(φ, σ) = 0 ∀φ ∈ Sθ, σ ∈ Sσ

}
(5.82)

h iB :=
{

(φ, σ) ∈ Rk : (Adj(G(φ)•B))i • q(φ, σ) = 0
}

(5.83)

EB :=
{
j ∈ B : hjB ∩ IRB = ∅

}
(5.84)

Hi
B :=

{
j ∈ B \ (EB ∪ {i}) :

(
h iB ∩ IRB

)
⊆
(

hjB ∩ IRB

)}
(5.85)

Here ZB is the set of indices in B for which the RHS of TB(φ, σ) is identically zero. For

given φ ∈ Sθ and σ ∈ Sσ these RHS values can be interpreted as the multipliers on the columns

of G(φ)•B needed to represent q(φ, σ) as a linear combination of the columns of G(φ). Thus, if the

RHS value is identically zero for some index i, this indicates that the column G(φ)• i is unnecessary

in the representation of q(φ, σ). There is also another interpretation. Notice from (5.8) that for each

i ∈ B ,
(
G(φ)−1

•B
)
i •
q(φ, σ) ≥ 0 is a defining inequality of IRB . Thus if there is some i ∈ B for which

the RHS of TB(φ, σ) is identically zero, the associated defining inequality of IRB is 0 ≥ 0, which

is trivially satisfied. Now consider h iB . Given an index i ∈ B , h iB is the hypersurface in Rk which

implies the defining constraint of IRB associated with index i. The set EB is then the set of indices

j ∈ B for which hjB does not intersect IRB . Finally, consider Hi
B . Given an index i ∈ B , the set Hi

B

is the set of indices in B \ (EB ∪ {i}) such that the intersection of h iB and IRB is a subset of the

intersection of hjB and IRB . Recognize that given i ∈ B , for each j ∈ Hi
B ⊆ B \ (EB ∪ {i}), every

point in IRB which satisfies the defining constraint of IRB associated with i at equality also satisfies

the defining constraints of IRB associated with j at equality. Now, given a complementary basis

B , consider the construction of the sets ZB , EB and Hi
B for each i ∈ B . Recognize from (5.82) that

ZB can be constructed easily by observing TB(φ, σ). Unfortunately, constructing EB and Hi
B (for a

given i ∈ B) is not so straightforward. For this purpose we introduce the following two propositions.
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Proposition 5.63. Given a complementary basis B for which dim(IRB) ≥ k − 1 and distinct

indices i, j ∈ B , j ∈ Hi
B if and only if the following nonlinear program has an optimal value of zero.

NLPH(B , i, j) := max
λ,φ,σ

λ

s.t. g(B) (Adj(G(φ)•B))` • q(φ, σ) ≥ 0 ∀ ` ∈ (B \ (ZB ∪ {i, j}))

(Adj(G(φ)•B))i • q(φ, σ) = 0

g(B) (Adj(G(φ)•B))j • q(φ, σ) ≥ λ
φ ∈ Sφ, σ ∈ Sσ

(5.86)

Proof. (⇒): Let (λ∗, φ∗, σ∗) be an optimal solution to NLPH(B , i, j). Notice that since j ∈ Hi
B , ev-

ery θ ∈ (h iB∩IRB) is also in (hjB∩IRB). This means that for every (λ, φ, σ) feasible toNLPH(B , i, j),

(Adj(G(φ)•B))j • q(φ, σ) = 0, which shows that λ∗ ≤ 0. Additionally, since dim(IRB) ≥ k − 1, there

must exist θ′ = (φ′, σ′) in IRB , i.e., all defining inequalities of IRB are satisfied at θ′. Thus (0, φ′, σ′)

is feasible to NLPH(B , i, j). This shows that λ∗ ≥ 0. Thus, we must have λ∗ = 0.

(⇐): Suppose (λ∗, φ∗, σ∗) is an optimal solution to NLPH(B , i, j) and λ∗ = 0. Recognize that

if there existed θ′ = (φ′, σ′) in IRB such that θ′ ∈ h iB but θ′ 6∈ hjB , then there would also exist

λ′ > 0 such that g(B) (Adj(G(φ)•B))j • q(φ, σ) = λ′. Furthermore, (λ′, φ′, σ′) would be feasible for

NLPH(B , i, j). This contradicts the fact that λ∗ = 0, though, and so we must have that for all

θ ∈ (h iB ∩ IRB), θ ∈ hjB . Hence,
(

h iB ∩ IRB

)
⊆
(

hjB ∩ IRB

)
and therefore j ∈ Hi

B .

We note here that due to the fact that Sθ is assumed to be a bounded polytope, NLPH will

always have a bounded feasible region. Moreover, Sθ being bounded guarantees that every NLP we

introduce in this section will also have a bounded feasible region.

Proposition 5.64. Given a complementary basis B for which dim(IRB) ≥ k − 1 and an index

i ∈ B , we have i ∈ EB if and only if there exists j ∈ B such that NLPH(B , i, j) has a strictly

negative optimal value, or is infeasible.

Proof. (⇒): Recall from (5.84) that since i ∈ EB , we have h iB∩IRB = ∅. This shows that there does

not exist a j ∈ B with a feasible solution (λj , φj , σj) to NLPH(B , i, j) for which λj ≥ 0. Now, for

each j ∈ B let IRjB represent the semi-algebraic superset of IRB which results from eliminating the

defining constraint of IRB associated with index j from IRB . For an arbitrary j ∈ B , suppose that

h iB ∩IR
j

B = ∅. Clearly, in this case NLPH(B , i, j) is infeasible. On the other hand, if h iB ∩IR
j

B 6= ∅,

let θ̃j = (φ̃j , σ̃j) be a point in h iB ∩ IR
j

B . Then we have: (i) g(B)
(
Adj(G(φ̃j)•B)

)
` •
q(φ̃j , σ̃j) ≥ 0
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for all ` ∈ (B \ {i, j}), (ii)
(
Adj(G(φ̃j)•B)

)
i •
q(φ̃j , σ̃j) = 0, and (iii) there exists λ̃j < 0 such that

g(B)
(
Adj(G(φ̃j)•B)

)
j •
q(φ̃j , σ̃j) ≥ λ̃j . Thus, NLPH(B , i, j) is feasible and has a strictly negative

optimal value. We have now shown that for each j ∈ B : (i) if h iB ∩ IR
j

B = ∅ then NLPH(B , i, j)

is infeasible, and (ii) if h iB ∩ IR
j

B 6= ∅ then NLPH(B , i, j) is feasible, but has a strictly negative

optimal value.

(⇐): Recognize that if there existed θ′ = (φ′, σ′) in h iB ∩ IRB then there would also exist λ′ ≥ 0

such that g(B) (Adj(G(φ)•B))` • q(φ, σ) = λ′ for all ` ∈ B . Furthermore, (λ′, φ′, σ′) would be feasible

to NLPH(B , i, `) for all ` ∈ B . However, this contradicts the fact that there exists j ∈ B for which

the optimal value of NLPH(B , i, j) is strictly negative. Hence, we must have that (h iB ∩ IRB) = ∅,

which shows that i ∈ EB .

The results of Propositions 5.63 and 5.64 provide a strategy so that, given a complementary

basis B , we can build the sets EB and Hi
B for each i ∈ B . We present this strategy in Algorithm 5.1.

Algorithm 5.1 BuildEandH(B) – Build EB and Hi
B for each i ∈ B .

Input: A complementary basis B such that dim(IRB) ≥ k − 1. (Assume the set ZB has been
constructed.)
Output: The sets EB and Hi

B for each i ∈ B .

1: Let EB = ∅.
2: Let H`

B = ∅ for each ` ∈ B .
3: for i ∈ (B \ (ZB ∪ EB)) do
4: for j ∈ (B \ (ZB ∪ EB ∪ {i})) do
5: if j 6∈ Hi

B then solve NLPH(B , i, j) to obtain optimal solution (λ∗, φ∗, σ∗).

6: if λ∗ = 0 then add
(
j ∪Hj

B

)
to Hi

B .

7: else if λ∗ < 0 then add i to EB and exit the for loop beginning on Line 4.

8: Return EB and H`
B for each ` ∈ B .

Throughout the remainder of this section we introduce several more propositions whose

results allow us to perform the steps of Outline 5.62. Similarly to Proposition 5.63, many of these

propositions introduce nonlinear programs (NLPs) that can be solved in order to determine, for

example, if a given invariancy region is full dimensional. We note that many of these NLPs do

not need to be solved to optimality, but rather a feasible solution must be found which has an

associated objective function value which is strictly positive. As we develop the theory necessary

for partitioning Sθ, we also show directly how this theory can be applied to each of the instances

we introduced earlier in Examples 5.5 and 5.6. We will do so, though, using the subvectors φ and

σ rather than θ. Consider (5.5) and (5.6) and recall that φ represents the subvector of θ such that
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every element of φ is present in some element of M(θ) and σ represents the subvector of θ such

that no element of σ is present in any element of M(θ). Hence, we have: (i) for Example 5.5 ,

φ =

[
θ1

θ2

]
and σ = ∅, and (ii) for Example 5.6, φ = θ1 and σ = θ2. For the sake of clarity,

when discussing these examples we use variable names to describe the elements of each basis rather

than their corresponding indices. The solution to Example 5.5 is given in Table 5.1 and depicted

in Figure 5.2a while the solution to Example 5.6 is given in Table 5.2 and depicted in Figure 5.2b.

How each solution is determined is shown during the discussion that follows. We note that each

nonlinear program solved throughout the course of this work is solved using the “fmincon” function

in MATLAB.

Due to the size of the tableaux we utilize throughout this section and Section 5.5, we do not

include them in their entirety in these sections. Instead, we include tableaux for Examples 5.5 and

5.6 in Sections 5.A and 5.B, respectively. We note that for Example 5.6, phase 1 of our procedure

requires only one iteration and thus, all tables in Section 5.B are dedicated to phase 2. On the

other hand, for Example 5.5, phase 1 requires several iterations and for this reason Tables 5.4–5.10

are dedicated to phase 1, while Tables 5.11–5.13 are dedicated to phase 2. Additionally, the size

of several of the tableaux for Example 5.5 are so large that we cannot include every column. In

these cases (Tables 5.8–5.13) we include only the columns associated with nonbasic variables (note

that the columns for basic variables are simply identity vectors). We also point out that each of

the tables in Sections 5.A and 5.B is not necessary obtained from the previous table. For example,

bases B5.5
i , B5.5

ii , and B5.5
iii are all obtained from exchange pivots from B∗5.5 and thus Tables 5.5–5.7

are all obtained from Table 5.4. As another example, we note that B5.5
2 is obtained from a diagonal

pivot from basis B5.5
0 and so Table 5.13 is obtained from Table 5.11. How each table is obtained

from previous tables will be made clear as we consider Examples 5.5 and 5.6 in more detail in this

section and Section 5.5.

For Examples 5.5 and 5.6 we claim that the initial bases B5.5
0 = {w1, z2, z3, z4, z5} and

B5.6
0 = {w1, w2, w3, w4} are feasible. Respective tableaux for B5.5

0 and B5.6
0 are contained in Tables

5.11 and 5.14 which are found in Sections 5.A and 5.B, respectively. A discussion on obtaining

initial bases is provided in Section 5.5. The following proposition provides the tools necessary for

determining whether or not the invariancy region associated with a given basis is full dimensional.
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Table 5.1: Solution for Example 5.5.

B5.5
0 :



w1 =
3φ3

1+18φ2
1 φ2−49φ2

1−75φ1 φ
2
2+148φ1 φ2+68φ1+96φ2

2−16φ2−76

2 (−3φ2
1+8φ1 φ2+19φ1+41φ2

2−24φ2−22)

z2 = − (φ1+2) (9φ3
1−9φ2

1 φ2−33φ2
1−87φ1 φ

2
2+21φ1 φ2+22φ1−59φ3

2+13φ2
2+50φ2+5)

4 (−3φ2
1+8φ1 φ2+19φ1+41φ2

2−24φ2−22)

z3 =
(φ1+2) (−6φ2

1−φ1 φ2+11φ1+15φ2
2−16φ2+1)

2 (−3φ2
1+8φ1 φ2+19φ1+41φ2

2−24φ2−22)

z4 =
(φ1+2) (3φ2

1+8φ1 φ2−φ1+5φ2
2+5φ2−11)

2 (−3φ2
1+8φ1 φ2+19φ1+41φ2

2−24φ2−22)

z5 =
(φ1+2) (9φ1−13φ2+φ1 φ2+21φ2

2−12)
2 (−3φ2

1+8φ1 φ2+19φ1+41φ2
2−24φ2−22)



B5.5
1 :



z1 =
3φ3

1+18φ2
1 φ2−49φ2

1−75φ1 φ
2
2+148φ1 φ2+68φ1+96φ2

2−16φ2−76
8 (32φ2−7φ1+29)

z2 =
−81φ3

1+288φ2
1 φ2−111φ2

1+47φ1 φ
2
2+856φ1 φ2+422φ1+544φ2

2+392φ2−44
16 (32φ2−7φ1+29)

z3 = − 61φ1−60φ1 φ2+29φ2
1−12

4 (32φ2−7φ1+29)

z4 =
75φ1+32φ2−5φ1 φ2+13φ2

1+20
4 (32φ2−7φ1+29)

z5 =
16φ1+96φ2+9φ1 φ2+2φ2

1+84
4 (32φ2−7φ1+29)



B5.5
2 :



w1 =
−11φ2

1+37φ1+48φ2−44
2 (7φ1+8φ2−13)

z2 = − (φ1+2) (−9φ2
1−23φ1 φ2+15φ1−17φ2

2+23φ2+3)
4 (7φ1+8φ2−13)

w3 = − (φ1+2) (−6φ2
1−φ1 φ2+11φ1+15φ2

2−16φ2+1)
2 (7φ1+8φ2−13)

z4 = (φ1+2) (3φ1+5φ2−6)
2 (7φ1+8φ2−13)

z5 = (φ1+2) (4φ1+3φ2−7)
2 (7φ1+8φ2−13)



Table 5.2: Solution for Example 5.6.

B5.6
0 :

 w1 = −σ − 1
w2 = φ− σ − 1
w3 = −18σ − 34
w4 = −9σ − 17

 B5.6
1 :


w1 = − 8σ+φσ+8

φ+7

z2 = − 9σ+17
φ+5

w3 = − (2φ+13) (9σ+17)
φ+5

z4 = σ−φ+1
φ+7



B5.6
3 :


z1 = (2φ+13) (9σ+17)

φ+8

z2 = 9σ+17
φ+8

z3 = − 8σ+φσ+8
2φ+19

z4 = −φ+ 3
2σ+ 3

2

φ+ 19
2

 B5.6
5 :

 z1 = 18σ + 34
w2 = φ+ 3

2σ + 3
2

z3 = − 1
2σ −

1
2

w4 = 9σ + 17


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φ1

φ2

IRB2

IRB1

IRB0

(a) Example 5.5

φ

σ

IRB5

IRB1
IRB0

IRB3

Infeasible

(b) Example 5.6

Figure 5.2: Partitions of Sθ for the two examples.

Proposition 5.65. For a given feasible complementary basis B , IRB is full dimensional if and only

if |ZB | ≤ h−(k−p) and there exists φ′ ∈ Sφ and σ′ ∈ Sσ such that g(B) (Adj(G(φ′)•B))i • q(φ
′, σ′) > 0

for all i ∈ B \ ZB , i.e., if the following NLP has a strictly positive optimal value:

NLPD(B) := max
λ,φ,σ

λ

s.t. g(B) (Adj(G(φ)•B))i • q(φ, σ) ≥ λ1 ∀ i ∈ B \ ZB
φ ∈ Sφ, σ ∈ Sσ

(5.87)

Proof. (⇐): Suppose (λ∗, φ∗, σ∗) is a solution to NLPD(B) and λ∗ > 0. Then since

g(B) (Adj(G(φ′)•B))i • q(φ
′, σ′) > 0 for all i ∈ B \ ZB , we have that AS(φ∗) intersects the rela-

tive interior of cone
(
G(φ∗)•(B\ZB )

)
. Furthermore, since AS(φ∗) intersects the relative interior of

cone
(
G(φ∗)•(B\ZB )

)
, there must exist ε > 0 such that AS(φ) intersects the relative interior of

cone
(
G(φ)•(B\ZB )

)
for all φ ∈ Bε(φ

∗). Thus, since dim(AS(φ)) = k − p for all φ ∈ Sφ, we have

dim (AS(φ) ∩ C(φ,B)) = min {k − p, h− |ZB |} for all φ ∈ Bε(φ∗). By Corollary 5.51 this shows that

dim(IRB) = k since |ZB | ≤ h− (k − p).

(⇒): We prove this direction using contradiction. Consider the following cases:

Case 1: |ZB | > h− (k − p)

Notice that for each i ∈ ZB , the column G(φ)• i is unnecessary for the description of

AS(φ) ∩ C(φ,B) for all φ ∈ Sφ. Therefore (AS(φ) ∩ C(φ,B)) ⊆ cone
(
G(φ)•(B\ZB )

)
for all φ ∈ Sφ.

However, since |ZB | > h − (k − p), dim
(
cone

(
G(φ)•(B\ZB )

))
< k − p for all φ ∈ Sφ. This shows
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that dim (AS(φ) ∩ C(φ,B)) < k − p for all φ ∈ Sφ and thus, by Corollary 5.51, IRB cannot be full

dimensional, which is a contradiction.

Case 2: There does not exist a solution (λ∗, φ∗, σ∗) to NLPD(B) such that λ∗ > 0.

If NLPD(B) is infeasible, IRB is empty, which is a contradiction. On the other hand,

suppose that for all solutions (λ∗, φ∗, σ∗) to NLPD(B), λ∗ ≤ 0. If this is the case then for all

θ ∈ IRB and all ε > 0, we have Bε(θ) 6⊂ IRB . Therefore IRB cannot be full dimensional, which is

a contradiction.

Finding contradictions in both cases above shows that there must exist a solution (λ∗, φ∗, σ∗)

to NLPD(B) such that λ∗ > 0 and that |ZB | ≤ h− (k − p).

As a result of Proposition 5.65, for any basis B , NLPD(B) can be used to determine whether

or not IRB is full dimensional. NLPD(B5.5
0 ) and NLPD(B5.6

0 ) can be derived from (5.12) and (5.13).

Note that obtaining these bases as well as the representations of their respective invariancy regions

will be discussed in Section 5.5.

NLPD(B5.5
0 ) :

max
λ,φ

λ

s.t. −3φ3
1 − 18φ2

1φ2 + 49φ2
1 + 75φ1φ

2
2 − 148φ1φ2 − 68φ1 − 96φ2

2 + 16φ2 + 76 ≥ λ
(φ1 + 2)(9φ3

1 − 9φ2
1φ2 − 33φ2

1 − 87φ1φ
2
2 + 21φ1φ2 + 22φ1 − 59φ3

2 + 13φ2
2 + 50φ2 + 5) ≥ λ

(φ1 + 2)(6φ2
1 + φ1φ2 − 11φ1 − 15φ2

2 + 16φ2 − 1) ≥ λ
(φ1 + 2)(−3φ2

1 − 8φ1φ2 + φ1 − 5φ2
2 − 5φ2 + 11) ≥ λ

(φ1 + 2)(−9φ1 + 13φ2 − φ1φ2 − 21φ2
2 + 12) ≥ λ

φ1 + φ2 ≤ 1

φ1, φ2 ≥ 0

NLPD(B5.6
0 ) :

max
λ,φ,σ

λ

s.t. −σ − 1 ≥ λ
φ− σ − 1 ≥ λ
−18σ − 34 ≥ λ
−9σ − 17 ≥ λ

φ ∈ [−3, 1], σ ∈ [−3, 1]

The respective optimal solutions of NLPD(B5.5
0 ) and NLPD(B5.6

0 ) are approximately

(λ∗, φ∗1, φ
∗
2) = (6.5333, 0, 0.5333) and (λ∗∗, φ∗∗, σ∗∗) = (2, 0.5345,−3). Hence, by Proposition 5.65,

IRB5.5
0

and IRB5.6
0

are both full dimensional. Thus, Proposition 5.65, together with the procedures

of Section 5.5, allows for the completion of the intialization phase of Outline 5.62. The next task
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we address is that of step 2: “Determine the set of feasible bases which have invariancy regions that

are: (i) adjacent to IRB , and (ii) at least (k − 1)–dimensional.”

This can be done by finding the set of j ∈ B such that dim(hjB ∩ IRB) = k − 1 and then,

for each such index j, determining all bases which have invariancy regions that are adjacent to IRB

along hjB . Consider the following observations, propositions, and definitions.

Observation 5.66. Let a complementary basis B and an index i ∈ B be given. It is clear from

(5.82) and (5.84) that if i ∈ (ZB ∪ EB) then h iB does not form a (k − 1)-dimensional boundary of

IRB .

Proposition 5.67. For a given complementary basis B , if there exists i ∈ (B \ (ZB ∪ EB)), φ′ ∈ Sφ

and σ′ ∈ Sσ such that g(B) (Adj(G(φ′)•B))j • q(φ
′, σ′) > 0 for all j ∈

(
B \

(
ZB ∪Hi

B ∪ {i}
))

and

(Adj(G(φ′)•B))i • q(φ
′, σ′) = 0, then h iB forms a (k − 1)-dimensional boundary of IRB . Hence, if the

following NLP has a strictly positive optimal value, h iB forms a (k − 1)-dimensional boundary of

IRB .

NLPF (B , i) := max
λ,φ,σ

λ

s.t. g(B) (Adj(G(φ)•B))j • q(φ, σ) ≥ λ1 ∀ j ∈
(
B \

(
ZB ∪Hi

B ∪ {i}
))

(Adj(G(φ)•B))i • q(φ, σ) = 0

φ ∈ Sφ, σ ∈ Sσ

(5.88)

Proof. Suppose (λ∗, φ∗, σ∗) is a solution to NLPF (B , i) and λ∗ > 0. Recognize that since (λ∗, φ∗, σ∗)

is feasible to NLPF (B , i), we have (Adj(G(φ∗)•B))i • q(φ
∗, σ∗) = 0 which clearly shows that θ∗ =

(φ∗, σ∗) lies on the hypersurface h iB . We proceed by showing that θ∗ ∈ IRB and that the defining

constraints of IRB which are implied by h iB cannot be removed without adding new points to IRB ,

i.e., h iB forms a (k − 1)-dimensional boundary of IRB .

We now show that θ∗ ∈ IRB by showing that θ∗ satisfies all defining constraints of IRB .

Recognize that since θ∗ satifies the constraints of NLPF (B , i), we have that θ∗ satisfies the defining

constraints of IRB associated with each element of B \
(
ZB ∪Hi

B
)
. From (5.85) notice that for each

` ∈ B , if ` ∈ Hi
B then (h iB ∩ IRB) ⊆ (h`B ∩ IRB). Hence, since (Adj(G(φ∗)•B))i •q(φ

∗, σ∗) = 0,

it is clear from (5.83) that (Adj(G(φ∗)•B))` •q(φ
∗, σ∗) = 0 for all ` ∈ Hi

B . This also shows that θ∗

satisfies all defining constraints of IRB associated with elements of Hi
B . Next, recall from (5.82)

that for all j ∈ ZB , (Adj(G(φ)•B))j • q(φ, σ) = 0 for all φ ∈ Sφ and σ ∈ Sσ. Therefore θ∗ trivially

satisfies all defining constraints of IRB associated with elements of ZB . Thus, we now have that
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θ∗ satisfies all defining constraints of IRB . Furthermore, since λ∗ > 0, there must exist ε > 0

such that all θ = (φ, σ) in the ball of radius ε centered at θ∗ satisfy (Adj(G(φ)•B))j • q(φ, σ) ≥ 0

for all j ∈
(
B \

(
Hi

B ∪ {i}
))

. Hence, since θ∗ lies on h iB , this ε-ball must contain a θ̂ satisfying

all the defining inequalities of IRB except those implied by h iB . Thus, the inequalities implied by

h iB cannot be removed from the description of IRB without altering its structure and therefore h iB

forms a (k − 1)-dimensional boundary of IRB .

Observation 5.68. The converse of Proposition 5.67 also holds if IRB is full dimensional.

Observation 5.69. Let a complementary basis B and an index i ∈ B be given such that h iB forms

a (k − 1)-dimensional boundary of IRB . It is clear from (5.85) that if j ∈ Hi
B , hjB also forms a

(k − 1)-dimensional boundary of IRB .

Together, Observations 5.66, 5.68 and 5.69 and Proposition 5.67 provide us with a strategy

so that, given a complementary basis B such that IRB is full dimensional, we can compute the set

FB :=
{
i ∈ B : h iB forms a (k − 1)-dimensional boundary of IRB

}
(5.89)

of indices in B whose associated hypersurfaces form (k − 1)-dimensional boundaries of IRB . We

present this strategy in Algorithm 5.2.

Algorithm 5.2 BuildF(B) – Build FB .
Input: A complementary basis B such that dim(IRB) = k. (Assume that the sets ZB ,EB and Hi

B
for all i ∈ B have been constructed.)
Output: The set FB .

1: Let FB = ∅.
2: for i ∈ (B \ (ZB ∪ EB ∪ FB)) do solve NLPF (B , i) to find optimal solution (λ∗, φ∗, σ∗).
3: if λ∗ > 0 then add

(
i ∪Hi

B
)

to FB .

4: Return FB .

We now return to our consideration of Examples 5.5 and 5.6. Recognize from (5.88) that in

order to use BuildF (outlined in Algorithm 5.2) to create FB5.5
0

and FB5.6
0

, we must first construct

EB5.5
0

, Hi
B5.5

0
for each i ∈ B5.5

0 , EB5.6
0

and Hj

B5.6
0

for each j ∈ B5.6
0 . For this we use the procedure
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BuildEandH, as outlined in Algorithm 5.1. Observe NLPH(B5.5
0 , w1, z2) (5.86), which we use for

the first step of BuildH(B5.5
0 ):

max
λ,φ

λ

s.t. −3φ3
1 − 18φ2

1φ2 + 49φ2
1 + 75φ1φ

2
2 − 148φ1φ2 − 68φ1 − 96φ2

2 + 16φ2 + 76 = 0

(φ1 + 2)(9φ3
1 − 9φ2

1φ2 − 33φ2
1 − 87φ1φ

2
2 + 21φ1φ2 + 22φ1 − 59φ3

2 + 13φ2
2 + 50φ2 + 5) ≥ λ

(φ1 + 2)(6φ2
1 + φ1φ2 − 11φ1 − 15φ2

2 + 16φ2 − 1) ≥ 0

(φ1 + 2)(−3φ2
1 − 8φ1φ2 + φ1 − 5φ2

2 − 5φ2 + 11) ≥ 0

(φ1 + 2)(−9φ1 + 13φ2 − φ1φ2 − 21φ2
2 + 12) ≥ 0

φ1 + φ2 ≤ 1

φ1, φ2 ≥ 0

The approximate optimal solution toNLPH(B5.5
0 , w1, z2) is (λ∗, φ∗, σ∗) = (34.8687, 0.1478, 0.8522)

which, based on the result of Proposition 5.63, shows that z2 6∈ Hw1

B5.5
0

. For the sake of space, we do

not explicitly show the additional ten NLPs solved during the BuildH(B5.5
0 ) procedure, but we do

provide the following outline of the results:

w1: z2 – Optimal value of NLPH(B5.5
0 , w1, z2) ≈ 34.8687. Do not add z2 to EB5.5

0
or Hw1

B5.5
0

.

z3 – Optimal value of NLPH(B5.5
0 , w1, z3) ≈ 0.8015. Do not add z3 to EB5.5

0
or Hw1

B5.5
0

.

z4 – Optimal value of NLPH(B5.5
0 , w1, z4) ≈ 4.6874. Do not add z4 to EB5.5

0
or Hw1

B5.5
0

.

z5 – Optimal value of NLPH(B5.5
0 , w1, z5) ≈ 16.1191. Do not add z5 to EB5.5

0
or Hw1

B5.5
0

.

z2: w1 – NLPH(B5.5
0 , z2, w1) is infeasible. Add z2 to EB5.5

0
and cease consideration of z2.

z3: w1 – Optimal value of NLPH(B5.5
0 , z3, w1) ≈ 76.64. Do not add w1 to EB5.5

0
or Hz3

B5.5
0

.

z4 – Optimal value of NLPH(B5.5
0 , z3, z4) ≈ 21.348. Do not add z4 to EB5.5

0
or Hz3

B5.5
0

.

z5 – Optimal value of NLPH(B5.5
0 , z3, z5) ≈ 30.1402. Do not add z5 to EB or Hz3

B5.5
0

.

z4: w1 – NLPH(B5.5
0 , z4, w1) is infeasible. Add z4 to EB5.5

0
and cease consideration of z4.

z5: w1 – NLPH(B5.5
0 , z5, w1) is infeasible. Add z5 to EB5.5

0
and cease consideration of z5.

After running BuildEandH(B5.5
0 ) we find that EB5.5

0
= {z2, z4, z5} and Hi

B5.5
0

= ∅ for all i ∈ B .

We do not explicitly show the steps of running BuildEandH(B5.6
0 ), but the results reveal that

EB5.6
0

= {w1}, Hw1

B5.5
0

= Hw2

B5.5
0

= ∅, Hw3

B5.5
0

= {w4}, and Hw4

B5.5
0

= {w3}. One can observe from Figures

5.3a and 5.3b that these sets have been constructed correctly.
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θ1

θ2

IRB5.5
0

Sθ
hw1

B5.5
0

hz3B5.5
0

hz2B5.5
0

hz4B5.5
0

hz5B5.5
0

(a) Hypersurfaces for B5.5
0 .

θ1

θ2

IRB5.6
0

Sθ

hw1

B5.6
0

hw2

B5.6
0

hw3

B5.6
0
, hw4

B5.6
0

(b) Hypersurfaces for B5.6
0 .

Figure 5.3: Hypersurfaces associated with initial bases for the two examples.

We are now ready to use the procedure BuildF to construct the sets FB5.5
0

and FB5.6
0

.

For both examples, we first consider the index w1. Recall, however, that w1 ∈ EB5.6
0

and thus,

by Observation 5.66, we can immediately conclude that w1 6∈ FB5.6
0

. Hence, we need only observe

NLPF (B5.5
0 , w1) (5.88):

max
λ,φ

λ

s.t. −3φ3
1 − 18φ2

1φ2 + 49φ2
1 + 75φ1φ

2
2 − 148φ1φ2 − 68φ1 − 96φ2

2 + 16φ2 + 76 = 0

(φ1 + 2)(9φ3
1 − 9φ2

1φ2 − 33φ2
1 − 87φ1φ

2
2 + 21φ1φ2 + 22φ1 − 59φ3

2 + 13φ2
2 + 50φ2 + 5) ≥ λ

(φ1 + 2)(6φ2
1 + φ1φ2 − 11φ1 − 15φ2

2 + 16φ2 − 1) ≥ λ
(φ1 + 2)(−3φ2

1 − 8φ1φ2 + φ1 − 5φ2
2 − 5φ2 + 11) ≥ λ

(φ1 + 2)(−9φ1 + 13φ2 − φ1φ2 − 21φ2
2 + 12) ≥ λ

φ1 + φ2 ≤ 1

φ1, φ2 ≥ 0

The approximate optimal solution is (λ∗, φ∗1, φ
∗
2) = (0.8015, 0.1388, 0.8599). Thus, by Propo-

sition 5.67 and using (5.83), we see that hw1

B5.5
0

= {φ ∈ Sφ : −3φ3
1 − 18φ2

1φ2 + 49φ2
1 + 75φ1φ

2
2 −

148φ1φ2 − 68φ1 − 96φ2
2 + 16φ2 + 76 = 0} forms a (k − 1)-dimensional boundary of IRB5.5

0
. By

carrying out the remainder of the procedures BuildF
(

B5.5
0

)
and BuildF

(
B5.6

0

)
, we find that

hz3B5.5
0

= {φ ∈ Sφ : (φ1 + 2)(6φ2
1 + φ1φ2 − 11φ1 − 15φ2

2 + 16φ2 − 1) = 0} forms the only addi-

tional (k − 1)-dimensional boundary of IRB5.5
0

and hw2

B5.6
0

= {θ ∈ Sθ : φ− σ − 1 = 0, θ = (φ, σ)} and

hw3

B5.6
0

= hw4

B5.6
0

= {θ ∈ Sθ : −9σ − 17 = 0, φ ∈ Sφ, θ = (φ, σ)} form the (k−1)-dimensional boundaries

of IRB5.6
0

. To see that the correct conclusions have been made about which surfaces form (k − 1)-
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dimensional boundaries of IRB5.5
0

and IRB5.6
0

, observe Figure 5.3 which shows IRB5.5
0

, IRB5.6
0

and

the hypersurfaces associated with each basic variable for Examples 5.5 and 5.6.

We now continue our discussion and develop the tools necessary for determining bases having

invariancy regions which are adjacent to a given invariancy region across a (k − 1)-dimensional

boundary. Consider the following definition, lemma, and proposition.

Definition 5.70. Given a complementary basis B , the associated tableau TB(φ), and distinct indices

i ∈ B and j ∈ E , a pivot on (TB(φ))i,j is the process of creating a new matrix T ∗ by performing

elementary row operations on TB(φ) so that T ∗i,j = 1 and T ∗γ,j = 0 for all γ ∈ (B \ {i}).

Note that for any basis B a pivot on (TB(φ))i,j can only be made if (TB(φ))i,j is not

identically zero.

Lemma 5.71. Let a feasible basis B be given along with distinct i, j ∈ B . If (TB(φ))i,ı is identically

zero and there exists φ′ ∈ IRφB such that (TB(φ′))j,ı > 0 and (TB(φ′))i, 6= 0, then (TB(φ))j,ı > 0 for

all φ ∈ Sφ and (TB(φ))i, 6= 0 for all φ ∈ Sφ.

Proof. By Proposition 5.61, B ′ = (B \ {i, j}) ∪ {ı, } is a feasible complementary basis. Since

(TB(φ))i,ı is identically zero in this case, the tableau TB′(φ) can be obtained from the tableau TB

in two steps: (i) create matrix T ∗ from TB(φ) by performing a pivot on (TB(φ))j,ı, and (ii) obtain

TB′(φ) from T ∗ by performing a pivot on (T ∗)i,. Consider the following subset of TB(φ):

i j ı 

i 1 0 0 (TB(φ))i,
(
G(φ)−1

•B
)
i •
q(φ, σ)

γ 0 0 (TB(φ))γ,ı (TB(φ))γ,
(
G(φ)−1

•B
)
γ •
q(φ, σ)

j 0 1 (TB(φ))j,ı (TB(φ))j,
(
G(φ)−1

•B
)
j •
q(φ, σ)

where γ represents any element of B \{i, j}. Then, by pivoting on (TB(φ))j,ı, we obtain the following

corresponding subset of T ∗:

i j ı 

i 1 0 0 (TB (φ))
i,

(
G(φ)−1

•B
)
i •
q(φ, σ)

γ 0 −
(TB (φ))

γ,ı

(TB (φ))
j,ı

0 (TB (φ))
γ,
− (TB (φ))

γ,ı

(TB (φ))
j,

(TB )
j,ı

((
G(φ)−1

•B
)
γ •
−

(TB (φ))
γ,ı

(TB (φ))
j,ı

(
G(φ)−1

•B
)
j •

)
q(φ, σ)

ı 0
1

(TB (φ))
j,ı

1
(TB (φ))

j,

(TB (φ))
j,ı

(
G(φ)−1

•B
)
j •
q(φ, σ)

(TB (φ))
j,ı

Finally, TB′(φ) can be obtained by pivoting on (T ∗)i,. Observe the following elements of interest

from the RHS of TB′(φ):
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

(
G(φ)−1

•B
)
i •
q(φ, σ)

(TB(φ))i,

ı
1

(TB(φ))i,(TB(φ))j,ı

(
(TB(φ))i,

(
G(φ)−1

•B
)
j •
− (TB(φ))j,

(
G(φ)−1

•B
)
i •

)
q(φ, σ) (5.90)

Recall that the RHS of the tableau for an arbitrary basis B∗ isG(φ)−1
•B∗q(φ, σ) =

Adj(G(φ)•B∗)

det(G(φ)•B∗)
q(φ, σ).

Hence, the tableau above shows that

(Adj(G(φ)•B′)) •
det(G(φ)•B′)

q(φ, σ) =

(
G(φ)−1

•B
)
i •
q(φ, σ)

(TB(φ))i,
(5.91)

and

(Adj(G(φ)•B′))i •
det(G(φ)•B′)

q(φ, σ) =
1

(TB(φ))i,j(TB(φ))j,i

(
(TB(φ))i,j

(
G(φ)−1

•B
)
j •
− (TB(φ))j,j

(
G(φ)−1

•B
)
i •

)
q(φ, σ). (5.92)

Consider (5.91) and observe the following:

(Adj(G(φ)•B′))j •
det(G(φ)•B′)

q(φ, σ) =

(
G(φ)−1

•B
)
i •
q(φ, σ)

(TB(φ))i,j

=
(Adj(G(φ)•B))i • q(φ, σ)

det(G(φ)•B)(TB(φ))i,j

⇒ det(G(φ)•B′) =
(Adj(G(φ)•B′))j • q(φ, σ)

(Adj(G(φ)•B))i • q(φ, σ)
det(G(φ)•B)(TB(φ))i,j

Hence, from Lemma 5.15 we can conclude that either (TB(φ))i, > 0 for all φ ∈ Sφ or (TB(φ))i, < 0

for all φ ∈ Sφ and thus (TB(φ))i, 6= 0 for all φ ∈ Sφ. Next consider (5.92) and observe the following:

(Adj(G(φ)•B′))ı •
det(G(φ)•B′)

q(φ, σ) =

(
(TB(φ))i,

(
G(φ)−1

•B
)
j •
− (TB(φ))j,

(
G(φ)−1

•B
)
i •

)
(TB(φ))i,(TB(φ))j,ı

q(φ, σ)

⇒ det(G(φ)•B′)

(Adj(G(φ)•B′))ı • q(φ, σ)
=

(TB(φ))i,(TB(φ))j,ı(
(TB(φ))i,

(
G(φ)−1

•B
)
j •
q(φ, σ)− (TB(φ))j,

(
G(φ)−1

•B
)
i •
q(φ, σ)

)

⇒ det(G(φ)•B′) =
(Adj(G(φ)•B′))i • q(φ, σ)(TB(φ))i,j(TB(φ))j,i(

(TB(φ))i,j
(
G(φ)−1

•B
)
j •
q(φ, σ)− (TB(φ))j,j

(
G(φ)−1

•B
)
i •
q(φ, σ)

)
=

(Adj(G(φ)•B′))i • q(φ, σ)(TB(φ))i,j(TB(φ))j,i det(G(φ)•B)(
(TB(φ))i,j (Adj(G(φ)•B))j • q(φ, σ)− (TB(φ))j,j (Adj(G(φ)•B))i • q(φ, σ)

) (5.93)
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Recall that each element of the tableau associated with any feasible complementary basis is

a rational function whose numerator and denominator are both polynomials in θ = (φ, σ) such that

the denominator does not equal zero for any θ ∈ Sθ. Hence, we can conclude that every element

of the tableau associated with any feasible complementary basis is continuous for all θ ∈ Sθ. Thus,

we must have that the denominator of (5.93) has constant sign for all θ ∈ Sθ. We can therefore

conclude from this fact, the fact that (TB(φ))i, has constant sign for all φ ∈ Sφ, Lemma 5.15 and

(5.93) that either (TB(φ))j,ı > 0 for all φ ∈ Sφ or (TB(φ))j,ı < 0 for all φ ∈ Sφ. Therefore, since we

have (TB(φ′))j,ı > 0, it must be that (TB(φ))j,ı > 0 for all φ ∈ Sφ.

Proposition 5.72. Let B be a feasible basis such that IRB is full dimensional and let h iB be a

(k−1)-dimensional boundary of IRB . For any complementary set B ′ 6= B such that |B∩B ′| ≥ h−2,

IRB and IRB′ are adjacent along h iB if and only if one of the following conditions holds.

1. B ′ = (B \ {i}) ∪ {ı} and (TB(φ))i,ı is not identically zero.

2. B ′ = (B\{i, j})∪{ı, }, (TB(φ))i,ı is identically zero, there exists φ′ ∈ Sφ such that (TB(φ′))j,ı >

0 and (TB(φ′))i, 6= 0, and the following NLP has a strictly positive optimal value:

NLPA(B , i, j) :=

max
λ,φ,σ

λ

s.t. g(B) (Adj(G(φ)•B))
ξ • q(φ, σ) ≥ λ1 ∀ ξ ∈

(
B \

(
ZB ∪Hi

B ∪ {i}
))

(Adj(G(φ)•B))i • q(φ, σ) = 0

g(B ′) (Adj(G(φ)•B′))ξ • q(φ, σ) ≥ λ1 ∀ ξ ∈
(
B ′ \

(
ZB′ ∪H

B′ ∪ {}
))

φ ∈ Sφ, σ ∈ Sσ

(5.94)

Proof. (⇐): Consider the two conditions:

Condition 1: B ′ = (B \ {i}) ∪ {ı} and (TB(φ))i,ı is not identically zero.

By Observation 5.57, B ′ is a basis. The adjacency of IRB and IRB′ along h iB comes from

the following facts: (i)
(

AS(φ) ∩ cone
(
G(φ)−1

•(B\{i})

))
forms a common boundary of both IDB and

IDB′ , and (ii) IDB and IDB′ share this common boundary if and only if h iB is a common boundary

of both IRB and IRB′ .

Condition 2: B ′ = (B \ {i, j})∪{ı, }, (TB(φ))i,ı is identically zero, and NLPA(B , i, j) has a strictly

positive optimal value.

By Proposition 5.61, B ′ is a basis. We will show that if there exists a solution (λ∗, φ∗, σ∗)

to NLPA(B , i, j) such that λ∗ > 0, then h iB forms a (k− 1)-dimensional boundary of both IRB and
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IRB′ , and furthermore, dim
((

h iB ∩ IRB

)
∩
(

h iB ∩ IRB′
))

= k − 1. Observe from (5.90) that the

RHS of TB′(φ) associated with index  is

(
G(φ)−1

•B
)
i •
q(φ, σ)

(TB(φ))i,
. Also, recognize from Lemma 5.71 that

(TB(φ))i, 6= 0 for all φ ∈ Sφ. Thus we see from (5.83) that h iB ⊆ h B′ . This shows that for every

` ∈ H
B′ , (h iB ∩ IRB) ⊆ (h`B′ ∩ IRB). Thus, since (λ∗, φ∗, σ∗) is feasible to NLPA and λ∗ > 0, we

have that θ∗ = (φ∗, σ∗) lies on h iB ⊆ h B′ and satisfies strictly all defining constraints of both IRB

and IRB′ which are not implied by h iB . Hence, h iB forms a (k − 1)-dimensional boundary of both

IRB and IRB′ and dim
((

h iB ∩ IRB

)
∩
(

h iB ∩ IRB′
))

= k − 1.

(⇒): Since B ′ is a complementary set such that B ′ 6= B , |B ∩ B ′| ≥ h− 2, and IRB and IRB′ are

adjacent along h iB , we must have one of the following two cases:

Case 1: |B ∩ B ′| = h− 1

In this case IRB and IRB′ are adjacent along h iB if and only if B ′ = (B \ {i}) ∪ {ı} is

a basis. Additionally, B ′ = (B \ {i}) ∪ {ı} is a basis if and only if there exists φ ∈ Sφ such that

(T (φ)B)i,ı 6= 0. Hence, in this case Condition 1 is satisfied.

Case 2: |B ∩ B ′| = h− 2

In this case, B ′ = (B \ {i}) ∪ {ı} cannot be a basis and therefore there cannot exist φ ∈

Sφ such that (T (φ)B)i,ı 6= 0, i.e., (T (φ)B)i,ı is identically zero. Furthermore, the fact that IRB

and IRB′ are adjacent along h iB implies that there exists j ∈ B such that B ′ = (B \ {i, j}) ∪

{ı, } is a basis. Additionally, as we showed in the proof for the reverse direction, we have h iB ⊆

h B′ . Since IRB and IRB′ are adjacent across h iB , we know dim
((

h iB ∩ IRB

)
∩
(

h iB ∩ IRB′
))

=

k − 1. Furthermore, recognize that we can only have dim
((

h iB ∩ IRB

)
∩
(

h iB ∩ IRB′
))

= k − 1

if there exists a point θ′ = (φ′, σ′) which lies on
(

h iB ∩ IRB

)
∩
(

h iB ∩ IRB′
)

and at which all

defining constraints of both IRB and IRB′ which are not identically zero and not implied by h iB

are satisfied strictly, i.e., g(B) (Adj(G(φ′)•B))
ξ • q(φ

′, σ′) > 0 for all ξ ∈
(
B \

(
ZB ∪Hi

B ∪ {i}
))

and

g(B ′) (Adj(G(φ′)•B′))ξ • q(φ
′, σ′) > 0 for all ξ ∈

(
B ′ \

(
ZB′ ∪H

B′ ∪ {}
))

. Let λ′ represent the

minimum value of the LHS of each of these inequalities. Then clearly λ′ > 0 and (λ′, φ′, σ′) is

feasible to NLPA. Therefore the optimal value of NLPA must be strictly positive.

Notice that Condition 1 of Proposition 5.72 indicates situations in which diagonal pivots can

be used to obtain new adjacent invariancy regions, while Condition 2 indicates situations in which

exchange pivots can be used to obtain new adjacent invariancy regions. Hence, combining Lemma
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5.71 and Proposition 5.72 leads us to a strategy so that, given a given full dimensional invariancy

region, we can compute the set

AB :=
{

Complementary bases B ′ : IRB′ is adjacent to IRB
}

(5.95)

of all adjacent invariancy regions. We note, however, that since the algorithm we are developing for

mpLCP is iterative, there may often be times in which, given a basis B , the set AB contains bases

which have previously been discovered and whose invariancy regions have already been explored. In

this case it is unnecessary to explore these bases agian. Thus, we introduce the following set, which

we dynamically update throughout our procedure:

B := {Complementary bases B ′ : B ′ has been discovered and processed} (5.96)

Hence, we are typically not interested in generating AB entirely. Instead we need the subset

AB := AB \B. (5.97)

We present a strategy for obtaining this set in Algorithm 5.3.

Algorithm 5.3 FindAdjacentFull(B ,B) – Determine all previously undiscovered invariancy
regions which are adjacent to a given full dimensional invariancy region.
Input: A complementary basis B such that dim(IRB) = k and the set B of previously discovered
bases. (Assume that the sets ZB ,EB ,H

i
B for all i ∈ B , and FB have been constructed.).

Output: The set AB and an updated version of B.

1: Let AB = ∅.
2: Select an arbitrary φ′ ∈ Sφ.
3: for i ∈ FB do
4: Let B ′ = (B \ {i}) ∪ {ı}.
5: if B ′ 6∈ B and (TB(φ))i,ı is not identically zero then add B ′ to AB and B.
6: else
7: for j ∈ B \ {i} do
8: Let B ′′ = (B \ {i, j}) ∪ {ı, }.
9: if B ′′ 6∈ B, (TB(φ′))j,ı > 0 and (TB(φ′))i, 6= 0 then

10: Perform pivots to find TB′′(φ), then build ZB′′ and run BuildEandH(B ′′).
11: Solve NLPA(B , i, j) to obtain optimal solution (λ∗, φ∗, σ∗).
12: if λ∗ > 0 then add B ′′ to AB and B.

13: Return AB and B.
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We now again consider Examples 5.5 and 5.6. However, in order to highlight certain key

qualities present in each example, we now consider them separately, beginning with Example 5.5.

Due to the size of the tableaux associated with this example, they cannot be displayed here, but

are instead included in Section 5.A. We will now use FindAdjacentFull, outlined in Algorithm

5.3, to find all bases whose invariancy regions are adjacent to IRB5.5
0

. During our previous con-

sideration of Example 5.5 we found that hw1

B5.5
0

and hz3B5.5
0

formed (k − 1)-dimensional boundaries of

IRB5.5
0

and so FB5.5
0

= {w1, z3}. Observe from Table 5.11 in Section 5.A that (T (φ)B5.5
0

)w1,z1 =

4 (32φ2−7φ1+29)
−3φ2

1+8φ1 φ2+19φ1+41φ2
2−24φ2−22

and (T (φ)B5.5
0

)z3,w3
= −7φ1−8φ2+13
−3φ2

1+8φ1 φ2+19φ1+41φ2
2−24φ2−22

. Since nei-

ther of these elements are identically zero, by condition 1 of Proposition 5.72, performing diagonal

pivots on these elements provides new bases B5.5
1 = {z1, z2, z3, z4, z5} and B5.5

2 = {w1, z2, w3, z4, z5}

which have invariancy regions which are adjacent to IRB5.5
0

. Thus, we add B5.5
1 and B5.5

2 to AB5.5
0

and conclude FindAdjacentFull. Note that tableaux for B5.5
1 and B5.5

2 are found in Tables 5.12

and 5.13, respectively, which are contained in Section 5.A. We now complete our consideration of

Example 5.5. We note, however, that using NLPD and the procedures BuildEandH and BuildF

reveal that: (i) both IRB5.5
1

and IRB5.5
2

are full dimensional, (ii) no (k − 1)-dimension boundaries

other than hz1B5.5
1

= hw1

B5.5
0

exist for IRB5.5
1

, and (iii) no (k − 1)-dimension boundaries other than

hw3

B5.5
2

= hz3B5.5
0

exist for IRB5.5
2

. This shows that IRB5.5
0

, IRB5.5
1

and IRB5.5
2

form a partition of Sθ

for Example 5.5.

Let us now return our focus to Example 5.6. We use FindAdjacentFull to find all bases

whose invariancy regions are adjacent to IRB5.6
0

. During our previous consideration of Example

5.6 we found that hw2

B5.6
0

and hw3

B5.6
0

= hw4

B5.6
0

formed (k − 1)-dimensional boundaries of IRB5.6
0

and so

FB5.6
0

= {w2, w3, w4}. Hence, we would now like to find additional invariancy regions adjacent to

IRB5.6
0

along each of these boundaries. We begin by observing (T (φ)B5.6
0

)w2,z2 , (T (φ)B5.6
0

)w3,z3 and

(T (φ)B5.6
0

)w4,z4 from Table 5.14 in Section 5.B. All are identically zero. This shows that condition 1

of Proposition 5.72 does not apply for any of the (k − 1)-dimensional boundaries of IRB5.6
0

and so

we must use condition 2. As we must check for pivots associated with the variables w2, w3 and w4,

we consider these variables one at a time, beginning with w2. Observe the following vector, which is

the z2 column of T (φ)B5.6
0

:


0

0

−3

φ+ 5

. Suppose that in Line 2 of Algorithm 5.3 we selected φ′ = 0.
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Then we see that the condition of the “if” statement on Line 9 is only satisfied by w4. Hence, we

only consider the exchange pivot involving w2 and w4. Observe NLPA(B5.6
0 , w2, w4) (5.94):

max
λ,φ,σ

λ

s.t. −σ − 1 ≥ λ
−18σ − 34 ≥ λ
−9σ − 17 ≥ λ
φ− σ − 1 = 0

−8σ − φσ − 8 ≥ λ
−((2φ+ 13)(9σ + 17)) ≥ λ
φ ∈ [−3, 1], σ ∈ [−3, 1]

The optimal solution to NLPA(B5.6
0 , w2, w4) is (λ∗, φ∗, σ∗) = (2,−2,−3), which shows that

by Condition 2 of Proposition 5.72, the invariancy region associated with basis B5.6
1 = {w1, z2, w3, z4}

is adjacent to IRB5.6
0

across hw2

B5.6
0

. We therefore add B5.6
1 to AB5.6

0
and B. Observe the invariancy

region IRB5.6
1

=

θ = (φ, σ) :

−(8σ + φσ + 8) ≥ 0

(σ − φ+ 1) ≥ 0

− (2φ+ 13) (9σ + 17) ≥ 0

−(9σ + 17) ≥ 0

, which we derive from T (φ)B5.6
1

(Table

5.15 in Section 5.B).

Now consider w3. It can be observed from T (φ)B5.6
0

, found in Table 5.14 in Section 5.B,

that due to the “if” statement on Line 9 of Algorithm 5.3, the only exchange pivots we must now

consider are those involving: (i) w3 and w1, and (ii) w3 and w2. The respective optimal solu-

tions to NLPA(B5.6
0 , w3, w1) and NLPA(B5.6

0 , w3, w2) are approximately (−0.6667, 1,−1.8889) and

(0.8889,−1.6217,−1.8889). This shows that the basis {z1, w2, z3, w4} does not yield an invariancy

region which is adjacent to IRB5.6
0

across hw3

B5.6
0

, but basis B5.6
2 = {w1, z2, z3, w4} does. We therefore

add B5.6
2 to AB5.6

0
and B. Note that the tableau associated with B5.6

2 is found in Table 5.16 in

Section 5.B. Observe IRB5.6
2

:

IRB5.6
2

=

θ = (φ, σ) :

−6φ− 9σ − 9 ≥ 0

3φ− 3σ − 3 ≥ 0

90σ + 170 ≥ 0

−5 (2φ+ 13) (9σ + 17) ≥ 0

 (5.98)

Finally, consider w4. The “if” statement on Line 9 of Algorithm 5.3 reveals that the only

exchange pivot we must consider involves w4 and w1. The optimal solution to NLPA(B5.6
0 , w4, w1)

is approximately (−0.3611,−1.25,−1.8889), which shows that basis {w1, z2, w3, z4} does not yield

an invariancy region adjacent to IRB5.6
0

across hw4

B5.6
0

. Although it may not be obvious, IRB5.6
2

is
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not full dimensional. For this reason we now again briefly pause our consideration of Example 5.6

in order to determine ways in which we can detect, and properly handle this type of situation.

Recall that, given a complementary basis B for which dim(IRB) = k, we have now developed

strategies for: (i) proving that IRB is full dimensional, (ii) discovering the (k − 1)-dimensional

boundaries of IRB , and (iii) discovering additional invariancy regions which are adjacent to IRB .

Hence, the next set of procedures we still need in order to be able to partition Sθ are those which

allow us to perform steps (ii) and (iii) above if dim(IRB) 6= k. The following corollaries provide the

theory necessary in order to perform these tasks.

Corollary 5.73. Let distinct feasible complementary bases B ′ and B be given which satisfy: (i)

dim(IRB) = k, (ii) |B ′∩B | ≥ h−2, and (iii) IRB is adjacent to IRB′ along h iB . Then dim (IRB′) ≥

k − 1. Furthermore, dim (IRB′) = k − 1 if and only if |ZB′ | > h − (k − p) or the optimal value of

NLPD(B ′) is nonpositive.

Proof. First notice that dim (IRB′) ≥ k − 1 since h iB forms a k − 1 dimensional facet of both IRB

and IRB′ , as shown in the proof of Proposition 5.72. The fact that dim (IRB′) = k − 1 if and

only if |ZB′ | > h − (k − p) or the optimal value of NLPD(B ′) is nonpositive follows directly from

Proposition 5.65.

Proposition 5.72 provides a strategy for determining the invariancy regions which are adja-

cent to a given full dimensional invariancy region. Corollary 5.73 provides a strategy for determining

when a discovered invariancy region is k − 1 dimensional. Suppose that for some complementary

basis B we solve NLPD(B) and discover that IRB is not full dimensional. Recognize that Corollary

5.73 does not provide any insight into which indices in B ought to be pivoted on in order to yield

a new basis B ′ for which IRB′ is adjacent to IRB and at least (k − 1)-dimensional. The following

discussion addresses finding such indices. Consider the following proposition.

Proposition 5.74. Let distinct feasible complementary bases B ′ and B be given which satisfy:

(i) dim(IRB) = k, (ii) |B ′ ∩ B | ≥ h − 2, and (iii) IRB is adjacent to IRB′ along h iB′ . Then

dim (IRB′) = k−1 if and only if for every θ ∈ IRB′ there exists an εθ > 0 and an index j ∈ B ′ \{i}

such that the following hold:

(1) For all θ′ = (φ′, σ′) ∈ Bεθ (θ) ∩ IRB′ , (Adj(G(φ′)•B′)i,• q(φ
′, σ′) = (Adj(G(φ′)•B′)j,• q(φ

′, σ′).

(2) Bεθ (θ) ∩ {θ = (φ, σ) : g(B ′) (Adj(G(φ)•B′)i,• q(φ, σ) > 0, g(B ′) (Adj(G(φ)•B′)j,• q(φ, σ) > 0} = ∅.
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Proof. (⇒): Since we know that IRB′ is (k − 1)-dimensional and adjacent to another invariancy

region across h iB′ , we know IRB′ ⊂ h iB′ . Since there are a finite number of constraints defining IRB′ ,

we know that this can only be the case if for every θ ∈ IRB′ , there exists j ∈ B ′ \ {i} such that: (i)

h iB′ and hjB′ intersect at θ, (ii) dim(h iB′∩hjB′∩IRB′) = k−1, and (iii) there exists εθ > 0 such that the

intersections of the open semi-algebraic half-spaces {θ = (φ, σ) : g(B ′) (Adj(G(φ)•B′)i,• q(φ, σ) > 0}

and {θ = (φ, σ) : g(B ′) (Adj(G(φ)•B′)j,• q(φ, σ) > 0} with Bεθ (θ) are disjoint. Recognize that points

(i) and (ii) imply condition 1 and point (iii) implies condition 2.

(⇐): Since we know that IRB′ is adjacent to another invariancy region, from the definition of

adjacency we know dim(IRB′) ≥ k − 1. Recognize that condition 2 of the proposition implies that

for every θ ∈ IRB′ , there exists j ∈ B ′ \{i} and εθ > 0 such that the open semi-algebraic half-spaces

{θ = (φ, σ) : g(B ′) (Adj(G(φ)•B′)i,• q(φ, σ) > 0} and {θ = (φ, σ) : g(B ′) (Adj(G(φ)•B′)j,• q(φ, σ) > 0}

are disjoint within Bεθ (θ). This is enough to show that dim(IRB′) ≤ k − 1. Hence, we have

dim(IRB′) = k − 1.

The work done in the proof of Proposition 5.74 does provide some insight into which indices

in a basis whose invariancy region is (k − 1)-dimensional ought to be pivoted on, but in order to

effectively use the result of the proposition, we require several concepts from algebra. For this we

quote several definitions and theorems from Bôcher and Duval [13]. Many of the results we cite

here are properties of polynomials of multiple variables. We note that although many of the cited

results are given specifically for polynomials of three variables, as stated in [13], the concepts apply

directly to polynomials in any number of variables and we therefore present the more general version

of these results. We also note that the author of [13] uses the term vanishes to indicate the property

of equalling zero.

Definition 5.75. (Definition 2 of Section 60 of Bôcher and Duval [13]) A polynomial is said to be

reducible if it is identically equal to the product of two polynomials, neither of which is a constant.

Recognize that Definition 5.75 implies that a polynomial is irreducible if it cannot be written

as the product of two nonconstant polynomials.

Proposition 5.76. (Shortened version of Theorem 6 of Section 76 of Bôcher and Duval [13]) A

polynomial in k variables which is not identically zero can be resolved into the product of irreducible

factors, no one of which is constant.
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Proposition 5.77. (Theorem 8 of Section 76 of Bôcher and Duval [13]) If p and q are two polyno-

mials in k variables which both vanish at the point (x0
1, . . . , x

0
k) and of which q is irreducible, and if

in the neighborhood N of (x0
1, . . . , x

0
k) p vanishes at all points at which q vanishes, then q is a factor

of p.

Definition 5.78. (Bôcher and Duval [13]) By the greatest common divisor of two polynomials is

meant their common factor of greatest degree.

We now make the following important observations based on these definitions and proposi-

tions.

Observation 5.79. The converse of Proposition 5.77 holds if we remove the condition that the

polynomial q be irreducible.

Observation 5.80. Suppose the polynomial q in Proposition 5.77 was not assumed to be irreducible,

then the claim “q is a factor of p” can be replaced with “the greatest common divisor of q and p has

a nonconstant factor which vanishes at (x0
1, . . . , x

0
k).”

Based on the results of Observation 5.79 and 5.80, we introduce some additional notation.

Given a complementary basis B and distinct i, j ∈ B , we define:

GCD(B , i, j) := Greatest common divisor of (Adj(G(φ)•B)i,• q(φ, σ) and (Adj(G(φ)•B)j,• q(φ, σ).

(5.99)

Then for each complementary basis B and each index i ∈ B we define the set Di
B so that:

Di
B := ∅ if dim(IRB) = k, (5.100)

and

Di
B :=

{
j ∈ B : GCD(B , i, j) is a nonconstant polynomial and

(IRB ∩ h iB) ⊆ (IRB ∩GCD(B , i, j))
}

otherwise. (5.101)

In order to clarify these notations and highlight their importance in solving mpLCP, we provide the

following small example. Suppose we are given an instance of mpLCP in which Sθ = [−4, 4]2, and

in the process of partitioning Sθ we discover a basis B with invariancy region
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IRB =

θ ∈ Sθ :

w1 = (θ1 − 2)(θ2 + 3) ≥ 0

w2 = (θ1 − 2)(θ3 − 3) ≥ 0

w3 = −θ1 − θ2 + 4 ≥ 0

w4 = θ1 + θ2 ≥ 0

 .

This invariancy region is displayed in Figure 5.4.

θ1

θ2

IRB

hw2

B

hw1

B

hw3

B

hw4

B

Figure 5.4: Example of a (k − 1)-dimensional region.

Recognize from Figure 5.4 that dim(IRB) = k−1 even though there is no defining constraint

of IRB for which the LHS is a constant multiple of another constraint’s LHS. Examples such as

this one motivate our use of the sets GCD(B , i, j) and Di
B . Notice that in this example we have

GCD(B , w1, w2) = θ1 − 2 while the greatest common divisor for each other pair of variables is a

constant. Further recognize that hw1

B ∩ IRB = hw2

B ∩ IRB . Hence, we can see that Dw1

B = {w2},

Dw2

B = {w1}, Dw3

B = ∅ and Dw4

B = ∅. This small example provides some insight into the types

of situations in which (k − 1)-dimensional regions can arise. In order to be able to study these

situations further, we need to develop a method for constructing the set Di
B for a given basis B and

index i ∈ B . One strategy for doing this is to first compute GCD(B , i, j) for each j ∈ B \ {i} and

then, if GCD(B , i, j) is a nonconstant polynomial, check to see if there is a point in IRB that lies

on the surface (Adj(G(φ)•B))i • q(φ, σ) = 0 but at which GCD(B , i, j) is nonzero. If no such point

exists, include j in Di
B . Otherwise, do not. Recognize that one way to determine whether such a

point exists is to determine the maximum value of GCD(B , i, j)2 for points IRB which lie on the

surface (Adj(G(φ)•B))i • q(φ, σ) = 0. If this maximum value is zero, include j in Di
B . Otherwise, do

not. This strategy motivates the following proposition.
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Proposition 5.81. Given complementary basis B such that dim(IRB) = k−1 and an index i ∈ B ,

we have that j ∈ B \ {i} is in Di
B if and only if GCD(B , i, j) is a nonconstant polynomial and the

following NLP has an optimal value of zero:

NLPG(B , i, j) := max
λ,φ,σ

λ

s.t. g(B) (Adj(G(φ)•B))` • q(φ, σ) ≥ 0 ∀ ` ∈ (B \ (ZB ∪ {i}))

(Adj(G(φ)•B))i • q(φ, σ) = 0

GCD(B , i, j)2 ≥ λ
φ ∈ Sφ, σ ∈ Sσ

(5.102)

Proof. It is clear from (5.100) and (5.101) that j cannot be in Di
B unless GCD(B , i, j) is a noncon-

stant polynomial. Recognize the similarity between the second condition given in (5.101) and (5.85).

Hence, the remainder of the proof is analogous to the proof of Proposition 5.63.

The algebraic properties of polynomials that we have now introduced, together with the

subsequent observations we have made and the result of Proposition 5.81, lead to the following

corollary which plays an important role in handling (k − 1)-dimensional invariancy regions.

Corollary 5.82. Let distinct feasible complementary bases B ′ and B be given which satisfy: (i)

dim(IRB) = k, (ii) |B ′∩B | ≥ h−2, and (iii) IRB is adjacent to IRB′ along h iB′ . Then dim (IRB′) =

k − 1 if and only if Di
B′ 6= ∅.

Proof. The reverse direction of the proof follows directly from (5.100), (5.101) and the fact that since

IRB is adjacent to IRB′ along h iB′ we know dim(IRB′) ≥ k − 1. Hence, we focus on the forward

direction and assume that dim (IRB′) = k− 1. Recall that because dim (IRB′) = k− 1 and IRB is

adjacent to IRB′ along h iB′ , we have that for all θ = (φ, σ) ∈ IRB′ , (Adj(G(φ′)•B′)i,• q(φ
′, σ′) = 0.

Thus, using the vocabulary of [13], condition (1) of Proposition 5.74 implies that there exist j ∈

B ′ \ {i} and θ′ ∈ IRB′ such that in a neighborhood around θ′, (Adj(G(φ′)•B′)j,• q(φ
′, σ′) vanishes

whenever (Adj(G(φ′)•B′)i,• q(φ
′, σ′) vanishes. From Proposition 5.77 and Observation 5.80 and using

(5.99) we conclude that: (i) GCD(B ′, i, j) is a nonconstant polynomial, and (ii) (IRB ∩ h iB) ⊆

(IRB ∩GCD(B , i, j)). Hence, we observe from (5.101) that Di
B′ will not be empty.

The result of Corollary 5.82 now shows us that, given a complementary basis B for which

IRB is (k−1)-dimensional and contained within h iB for some i ∈ B , the indices in B\{i} which, when

pivoted on, have the potential to yield new bases whose associated invariancy regions are adjacent
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to IRB and at least (k−1)-dimensional, are precisely those in Di
B . One of the final theoretical result

we need before being able to present a complete method for partitioning Sθ given an initial basis

with a full dimensional invariancy region is a strategy for determining whether or not a pivot on an

index in Di
B will yield an adjacent invariancy region. For this purpose we introduce the following

proposition.

Proposition 5.83. Let distinct bases B and B ′ be given for which dim(IRB) = k−1 and |B∩B ′| ≥

h − 2. Furthermore, let ` ∈ B be the index for which we know IRB ⊂ h`B . Then IRB′ is adjacent

to IRB along h`B if and only if there exists i ∈ D`
B such that one of the following conditions holds:

1. B ′ = (B \ {i}) ∪ {ı} and (TB(φ))i,ı is not identically zero.

2. There exists an additional index j ∈ B \ {i} such that B ′ = (B \ {i, j}) ∪ {ı, }, (TB(φ))i,ı is

identically zero, there exists φ′ ∈ Sφ such that (TB(φ′))j,ı > 0 and (TB(φ′))i, 6= 0, and the

following NLP has a strictly positive optimal value:

NLPA2(B , i, j) := max
λ,φ,σ

λ

s.t. g(B) (Adj(G(φ)•B))
ξ • q(φ, σ) ≥ λ1 ∀ ξ ∈

(
B \

(
ZB ∪Hi

B ∪ {i}
))

(Adj(G(φ)•B))i • q(φ, σ) = 0

g(B ′) (Adj(G(φ)•B′))ξ • q(φ, σ) ≥ λ1 ∀ ξ ∈
(

B ′ \
(

ZB′ ∪H
B′ ∪ {}

))
φ ∈ Sφ, σ ∈ Sσ

(5.103)

Proof. It is clear from Observation 5.80, (5.99), (5.100) and (5.101) that dim(IRB ∩h`B ∩h iB) = k−1

if and only if i ∈ D`
B . The remainder of the proof is analogous to that of Proposition 5.72.

The result of Proposition 5.83 now provides us with a strategy so that, given a (k − 1)-

dimensional invariancy region B , we can find the set AB of all previously undiscovered invariancy

regions whose invariancy regions are adjacent IRB . We present this strategy in Algorithm 5.4.

Recognize the similarity of Algorithms 5.3 and 5.4. In fact, the “for” loop beginning on

line 6 of Algorithm 5.4 follows exactly the same pattern as the “for” loop beginning on line 3 of

Algorithm 5.3. The only difference is in the set of indices over which the loops iterate. This is simply

due to the difference in the ways in which we detect indices whose associated hypersurfaces form

(k − 1)-dimensional boundaries of an invariancy region that is k, versus (k − 1), dimensional. In

Algorithm 5.3 we deal with full dimensional regions, so the indices of interest are those in FB , which

we assume to be constructed prior to a call to Algorithm 5.3. In Algorithm 5.4 we deal with (k− 1)

dimensional regions, and therefore, as indicated by Corollary 5.82 and Proposition 5.83, the indices
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Algorithm 5.4 FindAdjacentKminus1(B ,`,B) – Determine all previously undiscovered invari-
ancy regions which are adjacent to a given (k − 1)-dimensional invariancy region.
Input: A complementary basis B such that dim(IRB) = k − 1, an index ` ∈ B for which we know

IRB ⊂ h`B and the set B of previously discovered bases. (Assume that the sets ZB ,EB , and Hi
B for

all i ∈ B have already been constructed.)
Output: The set AB and an updated version of B.

1: Let AB = ∅ and D`
B = ∅.

2: Select an arbitrary φ′ ∈ Sφ.
3: for j ∈ B \ {`} do compute GCD(B , `, j).
4: if GCD(B , `, j) is a nonconstant polynomial then solve NLPG(B , `, j) to obtain the optimal

solution (λ∗, φ∗, σ∗).
5: if λ∗ = 0 then add j to D`

B .

6: for i ∈ D`
B do

7: Let B ′ = (B \ {i}) ∪ {ı}
8: if B ′ 6∈ B and (TB(φ))i,ı is not identically zero then add B ′ to AB and B.
9: else

10: for j ∈ B \ {i} do
11: Let B ′′ = (B \ {i, j}) ∪ {ı, }
12: if B ′′ 6∈ B, (TB(φ′))j,ı > 0 and (TB(φ′))i, 6= 0 then

13: Perform pivots to find TB′′(φ), then build ZB′′ and run BuildEandH(B ′′).
14: Solve NLPA2(B , i, j) to obtain optimal solution (λ∗, φ∗, σ∗).
15: if λ∗ > 0 then add B ′′ to AB and B.

16: Return AB and B.

of interest are those in D`
B , for a specifically chosen ` ∈ B (we will later refer to this specific index

as κB and we discuss its selection in Rule 5.84). Hence, we use lines 3–5 to construct this index set.

There is one last result that we need to establish before we present the our algorithm

for partitioning Sθ. Given a basis B whose invariancy region is (k − 1)-dimensional, we need to

determine a strategy for selecting the index ` ∈ B which we will use in a call to FindAdjacentK-

minus1(B , `,B). For this purpose we introduce some additional notation. For each complementary

basis B discovered during our computation, we keep track of a particular index in B , which we

denote κB and define according to the following rule:

Rule 5.84. (For defining κB)

Suppose B was discovered by a pivot from basis B ′. Then we define κB so that:

1. κB = ı if there exists i ∈ B ′ such that B = (B ′ \ {i}) ∪ {ı} and (TB′(φ))i ı is not identically

zero.

2. κB =  if there exist distinct i, j ∈ B ′ such that B = (B ′ \ {i, j}) ∪ {ı, } and (TB′(φ))i ı is

identically zero, and there exists φ′ ∈ Sφ such that (TB(φ′))j,ı > 0 and (TB(φ′))i, 6= 0.
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We note that, although we do not specifically include the recording of κB in Algorithm 5.3

or 5.4, we assume for the remainder of this work that: (i) for every basis discovered in Algorithm

5.3, κB is recorded whenever the “if statements” on lines 5 and 12 are satisfied, and (ii) for every

basis discovered in Algorithm 5.4, κB is recorded whenever the “if statements” on lines 8 and 15 are

satisfied. Now, consider the following proposition concerning the index κB .

Proposition 5.85. Let distinct complementary bases B and B ′ be given such that: (i) dim(IRB) =

k − 1, |B ∩ B ′| ≥ h− 2, and (iii) IRB and IRB′ are adjacent across h iB′ for some i ∈ B ′. Then we

have IRB ⊂ hκB
B .

Proof. Recognize that because IRB is (k−1)-dimensional and adjacent to IRB′ across h iB′ , we have

IRB ⊂ h iB′ . We now consider the cases in which B was obtained by a diagonal pivot or an exchange

pivot from B ′, beginning with the case of the diagonal pivot. If B was obtained from B ′ using a

diagonal pivot as outlined in condition (1) of either Proposition 5.72 or 5.83 then there exists i ∈ B ′

such that B = (B ′ \ {i}) ∪ {ı} and (TB̂′(φ))i,ı is not identically zero. Performing the pivot on this

element shows that the RHS of TB(φ) associated with ı is equal to the RHS of TB̂(φ) divided by

(TB̂(φ))i,ı. Hence, h iB̂′ ⊆ h ıB . Therefore, by letting κB = ı we have IRB ⊂ hκB
B . Now suppose that B

was obtained from B ′ using an exchange pivot as outlined in condition (2) of either Proposition 5.72

or 5.83. In this case there exist distinct i, j ∈ B ′ \{i} such that B = (B ′ \{i, j})∪{ı, }, (TB′(φ))i,ı is

identically zero and there exists φ′ ∈ Sφ such that (TB′(φ
′))j,ı > 0 and (TB′(φ

′))i, 6= 0. We showed

in the proof of Proposition 5.72 that in this case h iB′ ⊆ h B . Therefore, by letting κB =  we have

IRB ⊂ hκB
B . Hence, the claim of the proposition holds in both cases.

We have now build the tools necessary for presenting the main result of this section, an

strategy for paritioning Sθ given an initial full dimensional invariancy region. We give this strategy

in Algorithm 5.5.

Each of the algorithms presented in this section has included the statement, “Assume that

the sets ZB ,EB and Hi
B for all i ∈ B have already been constructed.” Line 9 of Algorithm 5.5 provides

justification for this assumption, as these sets are constructed for each basis discovered during a call

to either FindAdjacentFull or FindAdjacentKminus1. Also, when we say “Build ZB ,” we

assume that one does so by observing the RHS of TB(φ, θ) and adding to ZB each index in B whose

RHS element is identically zero.
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Algorithm 5.5 PartitionSθ(B0) – Partition the parameter space Sθ, given an initial full dimen-
sional invariancy region.
Input: An initial complementary basis B0 such that dim(IRB0

) = k. (Assume that the sets
ZB0

,EB0
,Hi

B0
for all i ∈ B0 have already been constructed.)

Output: The partition of Sθ, denoted P.

1: Let S = {B0} and B = ∅.
2: while S 6= ∅ do select B from S.
3: if dim(IRB) = k then run BuildF(B) and then FindAdjacentFull(B ,B).
4: else run FindAdjacentKminus1(B , κB ,B).

5: Set S = S ∪AB .
6: for B ′ ∈ AB do solve NLPD(B ′) to obtain optimal solution (λ∗, φ∗, σ∗).
7: if λ∗ > 0 then label IRB′ as full dimensional and add it to P.
8: else label IRB′ as (k − 1)-dimensional.

9: Build ZB′ and then run BuildEandH(B ′).
10: Return P.

We now return to our consideration of Example 5.6. The additional invariancy regions

which are adjacent to IRB5.6
1

are those adjacent across hz2B5.6
1

and hw3

B5.6
1

. Recognize from Table 5.15

in Section 5.B that diagonal pivots on z2 and w3 are not possible. Furthermore, the only possible

exchange pivot involving z2 also involves w1, and the only possible exchange pivot involving w3 also

involves w1. NLPA can be used to verify that both of these pivots yield adjacent regions. Hence, we

obtain B5.6
3 = {z1, z2, z3, z4} and B5.6

4 = {z1, w2, w3, z4}, whose associated tableaux are located in

Tables 5.17 and 5.18 in Section 5.B. Before further considering either of these bases, we first consider

B5.6
2 . Recall that, although we claimed it to be the case, we have yet to verify that dim(IRB5.6

2
) 6= k.

For this purpose, we solve NLPD(B5.6
2 ) which has an approximate optimal solution of (λ∗, φ∗, σ∗) =

(0,−0.0603,−1.8889). This shows that, in fact, dim(IRB5.6
2

) 6= k. Recall from our previous work

and from Rule 5.84 that κB5.6
2

= z2. Thus, we now run FindAdjacentKminus1(B5.6
2 ,z2,B). In

doing so we find that GCD(B5.6
2 , z2, w1) = 1

15 , GCD(B5.6
2 , z2, z3) = 1

15 , and GCD(B5.6
2 , z2, w4) =

3σ+ 17
3 . As GCD(B5.6

2 , z2, w4) is the only of these which is a nonconstant polynomial, we now solve

NLPG(B5.6
2 , z2, w3) from which we obtain an approximate optimal solution of (λ∗∗, φ∗∗, σ∗∗) =

(0,−0.503,−1.8889) which shows that w4 ∈ Dz2
B5.6

2
. We observe from TB5.6

2
(φ), found in Table 5.16 in

Section 5.B, that the only possible pivot from B5.6
2 which involves w4 is the exchange pivot which also

involves w1. Recognize, though, that this pivot will result in obtaining B5.6
3 . We leave the remainder

of the consideration of Example 5.6 to the reader, as the remainder of the steps for partitioning Sθ

are analogous to steps we have already shown. Recall, though, that the solution to both examples
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can be observed in Tables 5.1 and 5.2. In the next section we discuss a technique for determining

an initial basis with a full dimensional invariancy region.

5.5 Phase 1: Determining an initial feasible solution

In this section we develop a method for determining an initial feasible solution to the mpLCP

(5.1) which provides a good starting point for our task of partitioning the parameter space Sθ. Thus,

we seek a basis B0 such that dim (IRB0
) = k. We present the algorithm for finding B0 at the end

of this section.

We now discuss the techniques which we use to obtain an initial basis B0 such that dim (IRB0
) =

k. We assume throughout this discussion that 0 ∈ Sθ. Recognize that this assumption is not re-

strictive because it can be achieved by a simple translation when necessary. Define the augmented

phase 1 multiparametric LCP, mpLCPph1:

w −M(φ)z = q(φ, σ) + rρ

w>z = 0

w, z ≥ 0

(5.104)

Here ρ ∈ R is an additional parameter and r ∈ Rh is defined so that, if we represent q(φ, σ) as

q +4Q•Uφ+4Q•V , we have

ri =

{
|qi|+ 1 if qi ≤ 0

0 otherwise
for each i ∈ {1, . . . , h}. (5.105)

Notice that mpLPCph1 (5.104) is a variant of mpLCP (5.1) in which k is replaced by k+ 1.

Therefore, all definitions and theory presented for mpLCP directly apply to mpLPCph1. Throughout

the following discussion we will use a superscript ph1 to denote the phase 1 analogues of various

sets and other notations we defined in Section 5.4. For example, the notation IRph1
B and (h iB)ph1

represent the respective analogues of IRB and h iB for mpLPCph1.

Recognize that we impose no lower or upper bound on the value of ρ. As a result, the phase

1 counterpart to any NLP presented for phase 2 can yield an unbounded solution. We note that

this is not a problem since an unbounded maximization (minimization) problem still yields a strictly

positive (negative) optimal value, which is the condition that must be verified for the majority of

the NLPs we have introduced.
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Proposition 5.86. The complementary basis

B∗ := {1, . . . , h} (5.106)

is feasible to mpLCPph1 (5.104) and IRph1
B∗ is full dimensional.

Proof. Since G(φ)•B∗ = I, IRph1
B∗ = {(φ, σ, ρ) ∈ Sφ × Sσ × R : q(φ, σ) + rρ ≥ 0}. Observe from this

and (5.105) that (φ, σ, ρ) = (0,0, 1) ∈ IRph1
B∗ . Thus IRph1

B∗ 6= ∅ and therefore B∗ is feasible to

mpLCPph1. Furthermore, since the system of inequalities q(φ, σ) + rρ ≥ 0 is satisfied strictly at

(φ, σ, ρ) = (0,0, 1), there must exist ε > 0 such that Bε ((0,0, 1)) ⊂ IRph1
B∗ . Hence, IRph1

B∗ is full

dimensional.

Proposition 5.86 shows that a full dimensional invariancy region for mpLCPph1 is imme-

diately available. Thus, a very simple strategy for determining an initial basis B0 is to determine

the k-dimensional boundaries of IRph1
B∗ , determine the bases whose phase 1 invariancy regions are

adjacent to IRph1
B∗ across each such boundary, and then repeat this procedure for each newly dis-

covered invariancy region. Each time a new basis B is discovered, NLPD(B) (5.87) can be solved to

determine whether or not IRB is full dimensional. We then continue partitioning Sθ×R in the same

way that we discussed partitioning Sθ in Section 5.5, and stop once a basis with a full dimensional

invariancy region is discovered. If no such basis is discovered throughout the procedure, we can con-

clude that no such basis exists. Note that if no basis exists which has a full dimensional invariancy

region, then there is no need to search for bases whose invariancy regions are (k − 1)-dimensional.

Although this procedure is a brute force method, it serves as a good foundation for the procedure

we will ultimately use.

Recognize that for any phase 1 invariancy region IRph1
B , the phase 2 invariancy region IRB

is precisely the intersection of IRph1
B with the hyperplane ρ = 0. Thus, in order to improve the

technique discussed above, we would like to determine the k-dimensional boundaries of an invariancy

region IRph1
B across which we are most likely to find an adjacent invariancy region IRph1

B′ such that

the intersection of IRph1
B′ with the hyperplane ρ = 0 has dimension k. With this in mind, consider

the following NLP and the subsequent related proposition.

NLPS(B) := min
φ,σ,ρ

ρ

s.t. g(B)Adj(G(φ)•B) (q(φ, σ) + rρ) ≥ 0

φ ∈ Sφ, σ ∈ Sσ

(5.107)
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Proposition 5.87. If M(φ) is a Q0 matrix for all φ ∈ Sφ, then the mpLCP (5.1) is feasible if and

only if there exists a complementary basis B for which NLPS(B) (5.107) has a nonpositive optimal

value.

Proof. (⇒): If mpLCP (5.1) is feasible then there is a basis B ′ and some θ̂ = (φ̂, σ̂) ∈ Sθ such that

g(B ′)Adj(G(φ̂)•B′)q(φ̂, σ̂) ≥ 0. Clearly in this case (φ, σ, ρ) = (φ̂, σ̂, 0) is feasible to NLPS(B ′) and

thus the optimal value must be nonpositive.

(⇐): Recall that NLPS(B∗) has a feasible solution in which ρ = 1. Thus, since mpLCP (5.1) is

equivalent to mpLCPph1 with ρ fixed to 0, if there exists a basis B ′ such that NLPS(B ′) is feasible

for some ρ̂ ≤ 0 then, since K(M(φ)) is convex for all φ such that M(φ) is Q0, there must exist a

basis B ′′ such that NLPS(B ′′) is feasible at ρ = 0. Therefore mpLCP must be feasible.

Given a complementary basis B , denote the optimal solution of NLPS(B) as (φ∗B , σ
∗
B , ρ
∗
B)

and define

EQB := {i ∈ B : Adj(G(φ∗B)•B) (q(φ∗B , σ
∗
B) + rρ∗B) = 0} (5.108)

which is the set of indices in B whose corresponding defining constraints of IRph1
B are binding at

(φ∗B , σ
∗
B , ρ
∗
B).

Proposition 5.88. Assume that M(φ) is a Q0 matrix for all φ ∈ Sφ. Let a complementary basis

B be given and let (φ∗B , σ
∗
B , ρ
∗
B) represent the optimal solution of NLPS(B) (5.107). Suppose that

there does not exist an i ∈ EQB such that a diagonal or exchange pivot can be made from B which

involves index i. Then the following hold:

• If ρ∗B > 0, then mpLCP is infeasible.

• If ρ∗B = 0 and dim (IRB) < k, then there does not exist a feasible complementary basis B ′

such that dim (IRB′) = k.

Proof. If no diagonal or exchange pivots are possible which involve a particular index i ∈ B , this

indicates that the facet cone
(
G(φ)• (B\{i})

)
of the parametric complementary cone C(φ,B) forms a

boundary of K(M(φ)) for all φ ∈ Sφ. Thus, since K(M(φ)) is convex for each φ such that M(φ)

is a Q0 matrix, all phase 1 invariancy regions lie in the same semi-algebraic half-space defined by

the hypersurface (h iB)ph1 that IRph1
B lies in. Since this is true for all indices in EQB , we have the

following:
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1. If the optimal value of NLPS(B) is strictly positive, no phase 1 invariancy region exists which

intersects the hyperplane ρ = 0.

2. If the optimal value of NLPS(B) is zero, no phase 1 invariancy region other than IRph1
B can

have a nonempty intersection with the hyperplane ρ = 0.

Since IRB is the intersection of ρ = 0 and IRph1
B , the claim of the proposition follows.

Observe that Proposition 5.88 provides the following two simplifications of the brute force

method: (i) it identifies a subset of the k-dimensional boundaries of an invariancy region which

need to be checked for adjacent invariancy regions, and (ii) it provides a stopping criterion under

which one may conclude that either the mpLCP (5.1) is infeasible or there do not exist any full

dimensional invariancy regions for mpLCP. It now seems that we may be able to use the following

strategy for obtaining an initial invariancy region of full dimension: Follow the same procedure

outlined in Section 5.4 for partitioning Sθ, except, given any discovered complementary basis B ,

only consider pivoting on the indices in B ∩ EQB . There is, however, one flaw in this strategy

that we will remedy shortly. To see this flaw, consider the following situation. Suppose we have a

complementary basis B such that IRph1
B is (k + 1)-dimensional, but is contained in the half-space

ρ ≥ 0 and dim(IRB) < k. Further suppose that we pivot on an index in EQB and obtain a new

basis B ′ for which dim(IRph1
B′ ) = k and the optimal value of NLPS(B ′) is strictly negative. It

is then possible to obtain a third basis B ′′ by a pivot on an index in EQB′ such that IRph1
B′′ is

(k + 1)-dimensional, but is contained in the half-space ρ ≤ 0 and dim(IRB′′) < k. See Figure 5.5

for a visual example of this situation with k = 2.

To ensure that this situation does not arise, when we encounter a phase 1 invariancy region

IRph1
B that is k-dimensional, we do something stronger than search for adjacent phase 1 invariancy

regions. Instead we search for phase 1 invariancy regions which are not only adjacent to IRph1
B , but

are also adjacent to a full dimensional region which we know IRph1
B to be adjacent to. To ensure that

this is possible, throughout phase 1, for every discovered invariancy region we record the following:

PB := The basis for which we know dim(IRph1
PB

) = k + 1 and IRph1

B is adjacent to IRph1
PB

. (5.109)

ιB := The index in PB for which we know IRph1
B is adjacent to IRph1

PB
along (h ιB

PB
)ph1. (5.110)
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θ1

ρ

– IRph1
B

– IRph1
B′

– IRph1
B′′

– ρ = 0

θ2

Figure 5.5: Example of pivots yielding (k + 1)-dimensional phase 1 regions on either side of ρ = 0,
but without generating a full dimensional phase 2 region.

Recognize that recording these values is always possible since we begin phase 1 by considering

B∗, which has a full dimensional phase 1 invariancy region. Throughout the rest of phase 1 we use

the strategy outlined in Algorithm 5.6 to record PB and ιB .

Algorithm 5.6 BuildPandι(B ,B ′) – Construct PB and ιB .
Input: A complementary basis B and the basis B ′ from which a diagonal or exchange pivot was
performed in order to obtain B .
Output: PB′ and ιB .

1: if dim(IRph1
B′ ) = k + 1 then set PB = B ′.

2: if B ′ was obtained from B by a diagonal pivot involving an index i ∈ B satisfying condition
(1) of Proposition 5.72 then set ιB′ = i.

3: else we know B ′ was obtained from B by an exchange pivot involving a pair of indices i, j ∈ B
satisfying condition (2) of Proposition 5.72. Thus, set ιB′ = i.

4: else set PB = PB′ and ιB = ιB′ .

5: Return PB and ιB .

We are almost ready to introduce our algorithm for obtaining an initial basis with full

dimensional phase 2 invariancy region. Before we do so, however, we note that all of the NLPs, with

the exception ofNLPA2, have analogous counterparts which are applicable for phase 1. For each NLP

we denote the phase 1 analogue by adding a superscript of “ph1.” Note that the only modification

needed to obtain these NLPs is that in each q(φ, σ) be replaced by q(φ, σ) + rρ. Additionally,
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each of the procedures we outlined in algorithms in Section 5.4 also have counterparts which are

applicable for phase 1, with the except of PartitionSθ, of course. Many of these procedures require

slight modifications, however, so we will soon present the phase 1 counterparts explicitly. Note that

for each procedure, we denote the phase 1 counterpart by adding appending “ Ph1” to the name

of the procedure. For example, BuildEandH Ph1 denotes the phase 1 analogue of the phase 2

procedure BuildEandH. Before we present these procedures, first recall that, due to the result of

Proposition 5.88, whenever the solution to NLPS is nonnegative, we are not interested in finding all

k-dimensional boundaries of a (k + 1)-dimensional phase 1 invariancy region, but only the subset

FB :=
{
i ∈ EQB : (h iB)ph1 forms a k-dimensional boundary of IRφB

}
(5.111)

of k-dimensional boundaries whose associated indices are also in the set EQB . Thus, there are two

counterparts to the phase 2 procedure BuildF, which we denote BuildF Ph1 1 and BuildF Ph1 2.

We use the former when the solution to NLPS is nonnegative and thus return FB , otherwise we use

the latter which returns Fph1
B . We now present the phase 1 counterparts of each of the procedures

we outlined in algorithms in Section 5.4.

Algorithm 5.7 BuildEandH Ph1(B) – Build Eph1
B and (Hi

B)ph1 for each i ∈ B .

Input: A complementary basis B such that dim(IRph1
B ) ≥ k. (Assume the set Zph1

B has been
constructed.)

Output: The sets Eph1
B and (Hi

B)ph1 for each i ∈ B .

1: Let Eph1
B = ∅.

2: Let (H`
B)ph1 = ∅ for each ` ∈ B .

3: for i ∈
(

B \
(

Zph1
B ∪ Eph1

B

))
do

4: for j ∈
(

B \
(

Zph1
B ∪ Eph1

B ∪ {i}
))

do

5: if j 6∈ (Hi
B)ph1 then solve NLP ph1

H (B , i, j) to obtain optimal solution (λ∗, ρ∗, φ∗, σ∗).

6: if λ∗ = 0 then add
(
j ∪ (Hj

B)ph1
)

to (Hi
B)ph1.

7: else if λ∗ < 0 then add i to Eph1
B and exit the for loop beginning on Line 4.

8: Return Eph1
B and (H`

B)ph1 for each ` ∈ B .

Notice that because our procedure for obtaining phase 1 invariancy regions which are adja-

cent to phase 1 invariancy regions that are not full dimensional is not analogous to the procedure

used in phase 2, we cannot yet provide an algorithm outlining the procedure FindAdjacentK Ph1.

We first present the following proposition, which serves as the phase 1 counterpart to Proposition

5.83.
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Algorithm 5.8 BuildF Ph1 1(B) – Build FB .

Input: A complementary basis B such that dim(IRph1
B ) = k + 1. (Assume that NLPS(B) has

been solved and has a nonnegative optimal value. Also assume that the sets EQB , Zph1
B ,Eph1

B and

(Hi
B)ph1 for all i ∈ B have been constructed.)

Output: The set FB .

1: Let FB = ∅.
2: for i ∈

(
EQB \

(
ZB ∪ EB ∪ FB

))
do solve NLP ph1

F (B , i) to find optimal solution (λ∗, ρ∗, φ∗, σ∗).

3: if λ∗ > 0 then add
(
i ∪ (Hi

B)ph1
)

to FB .

4: Return FB .

Algorithm 5.9 BuildF Ph1 2(B) – Build FB .

Input: A complementary basis B such that dim(IRph1
B ) = k+1. (Assume that NLPS(B) has been

solved and has a strictly negative optimal value. Also assume that the sets EQB , Zph1
B ,Eph1

B and

(Hi
B)ph1 for all i ∈ B have been constructed.)

Output: The set FB .

1: Let Fph1
B = ∅.

2: for i ∈
(

B \
(

ZB ∪ EB ∪ Fph1
B

))
do solve NLP ph1

F (B , i) to find optimal solution (λ∗, ρ∗, φ∗, σ∗).

3: if λ∗ > 0 then add
(
i ∪ (Hi

B)ph1
)

to Fph1
B .

4: Return Fph1
B .

Proposition 5.89. Let distinct bases B and B ′ be given for which dim(IRph1
B ) = k and |B ∩B ′| ≥

h − 2. Furthermore, let ` ∈ B be the index for which we know IRph1
B ⊂ (h`B)ph1. Then IRph1

B′ is

adjacent to IRph1
PB

along (h`B)ph1 if and only if there exists i ∈ (D`
B)ph1 such that one of the following

conditions holds:

1. B ′ = (B \ {i}) ∪ {ı} and (T ph1
B (φ))i,ı is not identically zero.

2. There exists an additional index j ∈ B \ {i} such that B ′ = (B \ {i, j}) ∪ {ı, }, (T ph1
B (φ))i,ı is

identically zero, there exists φ′ ∈ Sφ such that
(
T ph1

B (φ′)
)
j,ı
> 0 and

(
T ph1

B (φ′)
)
i,
6= 0, and

the following NLP has a strictly positive optimal value:

NLP ph1
A2 (B, i, j) :=
max
λ,φ,σ

λ

s.t. g(PB )
(
Adj(G(φ)•PB )

)
ξ •

(q(φ, σ) + rρ) ≥ λ1 ∀ ξ ∈
(
PB \

(
Zph1

PB
∪ (H

ιB
PB

)ph1 ∪ {ιB}
))

(
Adj(G(φ)•PB )

)
ιB •

(q(φ, σ) + rρ) = 0

g(B ′) (Adj(G(φ)•B′))ξ • (q(φ, σ) + rρ) ≥ λ1 ∀ ξ ∈
(

B ′ \
(

Zph1

B′ ∪ (Hj

B′)
ph1 ∪ {j}

))
φ ∈ Sφ, σ ∈ Sσ

(5.112)

223



Algorithm 5.10 FindAdjacentFull Ph1(B ,B) – Determine all previously undiscovered invari-
ancy regions which are adjacent to a given full dimensional phase 1 invariancy region.
Input: A complementary basis B such that dim(IRph1

B ) = k + 1 and the set B of previously dis-

covered bases. (Assume that NLPS(B) has been solved and that the sets Zph1
B ,Eph1

B , (Hi
B)ph1 for all

i ∈ B , and either FB or Fph1
B have been constructed.).

Output: The set A
ph1

B and an updated version of B.

1: Let A
ph1

B = ∅.
2: Select an arbitrary φ′ ∈ Sφ.

3: Let (ρ̂, φ̂, σ̂) denote the optimal solution of NLPS(B).

4: if ρ̂ < 0 then let F denote Fph1
B .

5: else let F denote FB .

6: for i ∈ F do
7: Let B ′ = (B \ {i}) ∪ {ı}.
8: if B ′ 6∈ B and (T ph1

B (φ))i,ı is not identically zero then add B ′ to A
ph1

B and B and run

BuildPandι(B ,B ′).
9: else

10: for j ∈ B \ {i} do
11: Let B ′′ = (B \ {i, j}) ∪ {ı, }.
12: if B ′′ 6∈ B, (T ph1

B (φ′))j,ı > 0 and (T ph1
B (φ′))i, 6= 0 then

13: Perform pivots to find T ph1
B′′ (φ), then build Zph1

B′′ and run BuildEandH Ph1(B ′′).
14: Solve NLP ph1

A (B , i, j) to obtain optimal solution (λ∗, ρ∗, φ∗, σ∗).

15: if λ∗ > 0 then add B ′′ to A
ph1

B and B and run BuildPandι(B ,B ′).
16: Return A

ph1

B and B.

Proof. It is clear from analogous arguments to those given in Section 5.4, namely Proposition 5.83, to-

gether with Observation 5.80, (5.99), (5.100) and (5.101), that dim
(
IRph1

B ∩ (h`B)ph1 ∩ (h iB)ph1
)

= k

if and only if i ∈ (D`
B)ph1. Furthermore, it is also clear that if B was obtained from PB by a single

diagonal as prescribed in condition (1) or a single exchange pivot as prescribed in condition (2) then

dim
(
IRph1

B ∩ (h`B)ph1 ∩ (h ιB
PB

)ph1
)

= k. We also have dim
(
IRph1

B ∩ (h`B)ph1 ∩ (h iB)ph1 ∩ (h ιB
PB

)ph1
)

=

k. Now suppose that B was obtained from PB by a sequence of pivots to intermediate bases, with

each pivot satisfying either condition (1) or (2). In the case of pivots satisfying condition (1), the

adjacency of each newly discovered region to IRPB along (h`B)ph1 is clear due to the uniqueness

of shared k-dimesional boundaries for regions obtained from diagonal pivots. In the case of pivots

satisfying condition (2), recognize from (5.112) that the first set of constraints of NLP ph1
A2 ensure

that at any solution for which λ > 0, all defining constraints of IRph1
PB

are satisfied strictly except

for those implied by (h`B)ph1. The second constraint ensures that solutions lie on (h`B)ph1. Finally,

the third set of constraints ensure that at any solution for which λ > 0, all defining constraints

of the newly discovered invariancy region are satisfied strictly except for those implied by (h`B)ph1.
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Recognize that this can only hold if dim
(
IRph1

B ∩ (h`B)ph1 ∩ (h iB)ph1 ∩ (h ιB
PB

)ph1
)

= k. Hence, we

can conclude that IRph1
PB

and IRph1
B are adjacent along (h`B)ph1 regardless of the number of pivots

taken to obtain B from PB , so long as each pivot satisfies either condition (1) or (2). The remainder

of the proof is analogous to those of Propositions 5.72 and 5.83.

We now present FindAdjacentK Ph1 which is modified from FindAdjacentKminus1 in

order to account for the differences we mentioned earlier. This procedure is presented in Algorithm

5.11.

Algorithm 5.11 FindAdjacentK Ph1(B ,`,B) – Determine all previously undiscovered invariancy
regions which are adjacent to a given k-dimensional phase 1 invariancy region, and furthermore, are
also adjacent to a specific (k + 1)-dimensional phase 1 invariancy region.

Input: A complementary basis B such that dim(IRph1
B ) = k, an index ` ∈ B for which we know

IRph1
B ⊂ (h`B)ph1 and the set B of previously discovered bases. (Assume that the sets Zph1

B ,Eph1
B ,

and (Hi
B)ph1 for all i ∈ B have already been constructed.)

Output: The set A
ph1

B and an updated version of B.

1: Let A
ph1

B = ∅ and (D`
B)ph1 = ∅.

2: Select an arbitrary φ′ ∈ Sφ.
3: for j ∈ B \ {`} do compute GCDph1(B , `, j).
4: if GCDph1(B , `, j) is a nonconstant polynomial then solve NLP ph1

G (B , `, j) to obtain the
optimal solution (λ∗, ρ∗, φ∗, σ∗).

5: if λ∗ = 0 then add j to (D`
B)ph1.

6: for i ∈ (D`
B)ph1 do

7: Let B ′ = (B \ {i}) ∪ {ı}
8: if B ′ 6∈ B and (T ph1

B (φ))i,ı is not identically zero then add B ′ to A
ph1

B and B and run

BuildPandι(B ,B ′).
9: else

10: for j ∈ B \ {i} do
11: Let B ′′ = (B \ {i, j}) ∪ {ı, }
12: if B ′′ 6∈ B, (T ph1

B (φ′))j,ı > 0 and (T ph1
B (φ′))i, 6= 0 then

13: Compute T ph1
B′′ (φ), then build Zph1

B′′ .

14: Run BuildEandH Ph1(B ′′) and BuildPandι(B ,B ′′).
15: Solve NLP ph1

A2 (B , i, j) to obtain optimal solution (λ∗, ρ∗, φ∗, σ∗).

16: if λ∗ > 0 then add B ′′ to A
ph1

B and B.

17: Return A
ph1

B and B.

We are now able to present the algorithm which we use to obtain an initial complementary

basis whose phase 2 invariancy region is k-dimensional. We do so in Algorithm 5.12. Afterwards we

present a proposition in which we prove the correctness of the proposed method.

225



Algorithm 5.12 FindInitialBasis – Find an initial complementary basis having a full dimensional
phase 2 invariancy region.
Input: None, other than an instance of mpLCP.
Output: An initial basis B0 such that dim(IRB0

) = k and the set B.

1: Let S = {B∗} and B = ∅.
2: while S 6= ∅ do select B from S.
3: Solve NLPS(B) to obtain optimal solution (ρ′, φ′, σ′).
4: if ρ′ < 0 then
5: if dim(IRph1

B ) = k + 1 then solve NLPD(B) to find optimal solution (λ′′, φ′′, σ′′).
6: if λ′′ > 0 then STOP. Set B0 = B and return B0 and B.
7: else run BuildF Ph1 2(B) and then FindAdjacentFull Ph1(B ,B).

8: else run FindAdjacentK Ph1(B , κB ,B).

9: else
10: if dim(IRph1

B ) = k + 1 then run BuildF Ph1 1(B) and then FindAdjacent-
Full Ph1(B ,B).

11: if A
ph1

B = ∅ and ρ′ ≥ 0 then STOP. There is no B ′ such that dim(IRB′) = k.

12: else run FindAdjacentK Ph1(B , κB ,B).

13: Set S = S ∪A
ph1

B .

14: for B ′ ∈ A
ph1

B do solve NLP ph1
D (B ′) to find optimal solution (λ∗, ρ∗, φ∗, σ∗).

15: if λ∗ > 0 then label IRph1
B′ as full dimensional.

16: else label IRph1
B′ as k-dimensional.

17: Build Zph1
B′ and then run BuildEandH Ph1(B ′).

Proposition 5.90. Given an instance of mpLCP as described in (5.1), if M(φ) is sufficient for all

φ in Sφ and there exists a complementary basis B such that dim(IRB) = k, Algorithm 5.12 will

return a complementary basis B ′ such that dim(IRB′) = k.

Proof. Recognize that Algorithm 5.12 only ceases if a (i) STOP command is reached on either line

6 or 11, or (ii) there are no more bases in S to explore. Clearly if the STOP command on line

6 is reached the claim of the proposition holds since a full dimensional phase 2 invariancy region

is returned. On the other hand, if the STOP command on line 11 is reached, the claim of the

proposition is also satisfied since the correctness of this stopping criterion is proved in Proposition

5.88. Now consider the case in which there are no more bases in S to explore. The theory we have

developed in this section ensures that, given a complementary basis B discovered during phase 1

for which dim(IRB) 6= k, the only indices in B for which we do not consider performing pivots

are precisely those which have no possibility of yielding a new basis B ′ such that dim(IRB′) = k.

Hence, the result of the proposition holds in this case as well.
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We return to Example 5.5 and briefly discuss how the theory presented here can be used

to obtain an initial basis. We omit the consideration of phase 1 for Example 5.6 because only

one iteration is necessary. It is easy to verify that the optimal value of NLPS(B∗ 5.6) (5.107) is

nonpositive and the optimal value of NLPD(B∗ 5.6) (5.87) is strictly positive, and so B∗ 5.6 serves as

the initial basis for Example 5.6. Now, from Table 5.4 in Section 5.A we construct NLPS(B∗ 5.5):

min
φ,ρ

ρ

s.t. 3 ≥ 0

−2− φ1 + 3ρ ≥ 0

0 ≥ 0

0 ≥ 0

0 ≥ 0

φ1 + φ2 ≤ 1

φ1, φ2 ≥ 0

The approximate optimal solution is (φ∗1, φ
∗
2, ρ
∗) = (0, 0, 0.6667). This shows that IRph1

B∗ 5.5

does not intersect the hyperplane ρ = 0 and thus B∗ 5.5 is infeasible for mpLCP. From (5.108) we

find that EQB∗ 5.5 = {w2, w3, w4, w5}. However, recognize that Zph1
B = {w3, w4, w5}. Hence, w2 is

the only variable in IRph1

B∗ 5.5 which is considered during the call to BuildF Ph1. The optimal value

of NLP ph1
F (B∗ 5.5) (see (5.88) for NLPF ) is unbounded, which shows that (hw2

B∗ 5.5)ph1 forms a k-

dimensional boundary of IRph1

B∗ 5.5 . Now we consider pivots on w2. It can be observed from T ph1

B∗ 5.5(φ),

found in Table 5.4 in Section 5.A, that although a diagonal pivot from w2 is not possible, exchange

pivots involving w2 along with w3, w4 or w5 are possible. The respective approximate optimal so-

lutions of NLP ph1
A (B∗ 5.5, w2, w3), NLP ph1

A (B∗ 5.5, w2, w4), and NLP ph1
A (B∗ 5.5, w2, w5) (see (5.94)

for NLPA), given in the order (λ, ρ, φ1, φ2), are (3, 0.7112, 0.1336, 0.1336), (3, 0.7459, 0.2377, 0) and

(3, 0.7567, 0.2701, 0). This shows that the bases B5.5
i = {w1, z2, z3, w4, w5}, B5.5

ii = {w1, z2, w3, z4, w5},

and B5.5
iii = {w1, z2, w3, w4, z5} all yield phase 1 invariancy regions adjacent to IRph1

B∗ 5.5 across

(hw2

B∗ 5.5)ph1. Hence, we set PB5.5
i

= PB5.5
ii

= PB5.5
iii

= B∗ 5.5 and ιB5.5
i

= ιB5.5
ii

= ιB5.5
iii

= w2. Note that

the tableaux associated with B5.5
i , B5.5

ii and B5.5
iii can be found in respective order in Tables 5.5–5.7 in

Section 5.A. We next consider basis B5.5
i . The approximate optimal solution of NLP ph1

D (B5.5
i ) (see

(5.87) for NLPD) is (0, 0, 0, 0.6667), which shows that IRph1

B5.5
i

is not full dimensional. Thus, we run

FindAdjacentK Ph1. Recognize that κB5.5
i

= z3 and B = {B∗ 5.5,B5.5
i ,B5.5

ii ,B
5.5
iii }. In doing so we

find GCDph1(B5.5
i , z3, w1) = 1

2 , GCDph1(B5.5
i , z3, z2) = 1

4φ1 − 3
4ρ+ 1

2 , and GCDph1(B5.5
i , z3, w4) =

GCDph1(B5.5
i , z3, w5) = 1

2φ1− 3
2ρ+ 1. We also find that the optimal values of NLP ph1

G (B5.5
i , z3, z2),
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NLP ph1
G (B5.5

i , z3, w4) and NLP ph1
G (B5.5

i , z3, w5) (see (5.102) for NLPG) are all zero, so we have

(Dz3
B5.5
i

)ph1 = {z2, w4, w5}. We observe from Table 5.5 in Section 5.A that for each variable in

(Dz3
B5.5
i

)ph1 a diagonal pivot is possible. Performing these diagonal pivots result in new bases

B5.5
iv = {w1, w2, z3, w4, w5}, B5.5

v = {w1, z2, z3, z4, w5}, and B5.5
vi = {w1, z2, z3, w4, z5}. The tableaux

associated with these bases can be found in Tables 5.8–5.10 in Section 5.A. We note that both IRB5.5
v

and IRB5.5
vi

are k-dimensional, while IRB5.5
iv

is full dimensional. However, IRB5.5
iv

also has another

very interesting property, because IRB5.5
iv

= IRB∗ 5.5 . We discuss this phenomenon in more detail

in Section 5.6. At this point we claim that the remainder of the work needed to complete phase 1

for Example 5.5 is analogous to work we have already shown. In fact, a single diagonal pivot from

either B5.5
v or B5.5

vi will reveal B5.5
0 = {w1, z2, z3, z4, z5}.

5.6 A note on obtaining non-overlapping invariancy regions

It is important to recognize that a partition of Sθ for mpLCP is not unique, in general.

Hence, if one is not careful, when attempting to partition Sθ it is possible to generate invari-

ancy regions IRB and IRB′ , associated with distinct complementary bases B and B ′, such that

dim(IRB ∩IRB′) = k. In fact, this very situation arose during our phase 1 examination of Example

5.5. In this section we pose two important research questions, which we present directly after the

following two definitions.

Definition 5.91. Given distinct complementary bases B and B ′, we say that IRB and IRB′ overlap

if dim(IRB ∩ IRB′) = k. Otherwise, they are non-overlapping.

Definition 5.92. Given an feasible instance of mpLCP, let P be the output of Algorithm 5.5. We

say that P is a true partition of Sθ if no two invariancy regions in P overlap. Otherwise, we say that

P is a quasi-partition.

Now consider these two important research questions.

Question 5.93. Given a feasible instance of mpLCP, what conditions are needed to ensure that a

true partition of Sθ exists?

Question 5.94. When a true partition of Sθ exists, what precautions can be taken to ensure that

one is obtained?
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The remainder of this section is devoted to the consideration of these questions. We now

introduce propositions whose results will allow us to establish an answer to Question 5.93.

Lemma 5.95. Given distinct complementary bases B and B ′, the invariancy regions IRB and IRB′

overlap if and only if there exists Φ ⊆ Sφ such that dim(Φ) = p and dim(AS(φ)∩C(φ,B)∩C(φ,B ′)) =

k − p for all φ ∈ Φ.

Proof. Recognize that the set IRB ∩IRB′ satisfies Property 5.38. Thus, by observing (5.22), (5.29)

and Proposition 5.36 we conclude that the result of this lemma follows directly from Proposition

5.49.

Proposition 5.96. Let distinct complementary bases B and B ′ be given such that the invariancy

regions IRB and IRB′ overlap. Then there exist index sets J ⊂ B and J ′ ⊂ B ′ such that the

following hold:

1. k − p ≤ |J | ≤ k − p+ 1 and k − p ≤ |J ′| ≤ k − p+ 1.

2. dim(cone(G(φ)• J) ∩ cone(G(φ)• J′)) ≥ k − p.

3. aff(AS(φ)) ⊆ span(G(φ)• J∗) for all φ ∈ Sφ, where aff(AS(φ)) represents the affine hull of

AS(φ) and J∗ =

{
J if |J | ≥ |J ′|
J ′ otherwise

.

Proof. From Lemma 5.95 we have that there exists Φ ⊆ Sφ such that dim(Φ) = p and dim(AS(φ)∩

C(φ,B) ∩ C(φ,B ′)) = k − p for all φ ∈ Φ. This shows that for each φ ∈ Φ the intersections AS(φ) ∩

C(φ,B) and AS(φ)∩ C(φ,B ′) must be contained within the boundaries of the respective parametric

complementary cones. Furthermore, since for all φ ∈ Sφ we have dim(AS(φ)) = k−p, for each φ ∈ Sφ

and each B̂ ∈ {B ,B ′} the intersection AS(φ)∩C(φ, B̂) must occur either within a (k−p)-dimensional

facet of C(φ, B̂), or within the convex hull of two (k − p)-dimensional facets (and therefore within a

(k−p+1)-dimensional facet). For each φ ∈ Φ, let FB(φ) and FB′(φ) respectively denote the facets of

minimal dimension which contain AS(φ)∩C(φ,B) and AS(φ)∩C(φ,B ′). Recall that for any basis B∗

and any φ∗ ∈ Sφ, every `-dimensional facet of C(φ∗,B∗) is given by cone(G(φ∗)• I) for some I ⊆ B∗

with |I| = `. Hence, we have that there exist J ⊂ B and J ′ ⊂ B ′ such that cone(G(φ)• J) = FB(φ) and

cone(G(φ)• J′) = FB′(φ) for all φ ∈ Φ. Thus, we also have that k−p ≤ |J | ≤ k−p+1, k−p ≤ |J ′| ≤

k−p+1 and dim(cone(G(φ)• J)∩cone(G(φ)• J′)) ≥ k−p. Furthermore, let J∗ =

{
J if |J | ≥ |J ′|
J ′ otherwise

and recognize that we have either (i) |J∗| = k− p and span(G(φ)• J) = span(G(φ)• J′) for all φ ∈ Φ,
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or (ii) |J∗| = k − p + 1 and span(cone(G(φ)• J∗)) = span(cone(G(φ)• (J∪J′))) for all φ ∈ Φ. More

importantly, in either case we also have aff(AS(φ)) ⊆ span(G(φ)• J∗) for all φ ∈ Φ. We now show

that because dim(Φ) = p, we actually have aff(AS(φ)) ⊆ span(G(φ)• J∗) for all φ ∈ Sφ.

Recognize that because aff(AS(φ)) ⊆ span(G(φ)• J∗) for all φ ∈ Φ, we have the following

result.

For every σ ∈ Rk−p and φ ∈ Φ, ∃χφ,σ ∈ R|J
∗| such that q(φ, σ) = G(φ)• J∗χ

φ,σ. (5.113)

Since dim(Φ) = p, it is full dimensional in Rp. Hence, there must exist ε > 0 and φ′ ∈ Φ

such that Bε(φ
′) ⊆ Φ. Thus, for every φ ∈ Rp we have φ′ + εφ ∈ Φ. Thus, using (5.113) we obtain

the following result.

q(φ′ + εφ, σ) = G(φ′ + εφ)• J∗χ
φ′+εφ,σ for all φ ∈ Rp and σ ∈ Rk−p (5.114)

We now assume without loss of generality that φ′ = 0 and ε = 1. If this were not the

case, recognize that it could easily be achieved by constructing an equivalent mpLCP using a simple

change of parameters in which we replace φ with φ̃−φ′
ε . Under this assumption, (5.114) shows that

for every φ ∈ Rp, each point in AS(φ) can be represented as a linear combination of the columns of

G(φ)• J∗ . Hence, aff(AS(φ)) ⊆ span(G(φ)• J∗) for all φ ∈ Rp ⊃ Sφ.

Proposition 5.97. Let distinct complementary bases B and B ′ be given such that the invariancy

regions IRB and IRB′ overlap. Without loss of generality, there exists a partition of Sθ which does

not include IRB′ .

Proof. The claim of the proposition is trivial when IRB′ ⊆ IRB and so we assume this is not the

case. From the arguments used in the proof of Proposition 5.96, we can conclude that for every

θ = (φ, σ) ∈ IRB′ , σ lies on a facet of C(φ,B ′) whose dimension is either k − p or k − p+ 1. Thus,

since M(φ) is sufficient for each φ ∈ Sφ and consequently K(M(φ)) is convex for each φ ∈ Sφ, for

every θ = (φ, σ) ∈ (IRB′ \ IRB) we must have that there exists a set Bθ of complementary bases

such that: (i) σ ∈ C(φ,B∗) for all B∗ ∈ Bθ, and (ii) |Bθ\B ′| ≥ 1. Furthermore, since there are a finite

number of bases there must exist at least one basis Bθ ∈ Bθ such that dim(C(φ,Bθ)∩AS(φ)) = k−p

for all φ ∈ Sφ such that dim(C(φ,B ′) ∩ AS(φ)) = k − p. Since IRB′ is full dimensional, this shows

that IRBθ is also full dimensional. Hence, we use the following strategy for including invariancy

regions in our partition of Sθ: (i) Let K = IRB ; (ii) Select a θ ∈ (IRB′ \K ); (iii) include IRBθ
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in the partition of Sθ and add IRBθ to K ; (iv) If (IRB′ \K ) 6= ∅, go back to Step (ii). Thus,

by following this strategy we ensure that, although IRB′ is not included in the partition of Sθ, for

every θ ∈ IRB′ there is a full dimensional invariancy region included in the partition of Sθ which

contains θ.

Recognize that result of Proposition 5.97 provides an answer to Question 5.93. Fortunately,

the answer is that a true partition of Sθ exists whenever M(φ) is a sufficient matrix for all φ ∈ Sφ.

Note that we have not studied whether or not the converse of this statement holds. The result we

have obtained is certainly satisfactory, though, since we already assume in this work that M(φ) is

sufficient for all φ ∈ Sφ.

We now move our focus to Question 5.94. It seems that the best strategy for ensuring that

a true partition is discovered when attempting to partition Sθ is this: Each time a full dimensional

invariancy region is being considered during phase 2, discard all other invariancy regions which

overlap the one currently being considered. One very naive way in which this could be accomplished

is given in the following steps.

1. Given a feasible complementary basis B for which dim(IRB) = k, let B = {B} and create a

modified mpLCP is which Sθ is replaced by IRB .

2. Perform phase 1 of our two phase mpLCP procedure. (Recall that B denotes the set of bases

not considered in our procedure.)

3. If phase 1 returns an initial basis B ′ with dim(IRB′) = k, then dim(IRB) and dim(IRB′)

overlap. Add B ′ to B and repeat Step (2). Otherwise, if phase 1 does not return an initial

basis, STOP.

This strategy then provides an answer to Question 5.94. We point out, though, that this may

not be the most appropriate response to Question 5.94. It seems that a better response, although

somewhat disappointing, should be that, even though one can ensure that a true partition can be

obtained, it is generally impractical to do so. In the worst case the invariancy regions associated

with every feasible complementary basis can overlap. To see this, recall Figure 5.1. In this figure,

it could easily be the case that all parametric complementary cones, even those not depicted, could

have a 1-dimensional intersection with AS(φ) for all φ ∈ Sφ. Even though this result seems a bit

disappointing, we do point out that obtaining a quasi-partition for mpLCP still provides a solution
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for every θ ∈ Sθ and is therefore perfectly acceptable. Before ending this section, we do provide a

few key results which establish situations in which we can be sure that overlapping regions either do

not exist or will not be obtained by steps in our algorithms. We then provide one final result which

offers a practical step that can be taken in order to eliminate from consideration some, though not

all, bases whose invariancy regions overlap a region which is currently under consideration.

Proposition 5.98. For a complementary basis B , if ZB = ∅ then there does not exist another

complementary basis B ′ such that IRB and IRB′ overlap.

Proof. Recognize that the set ZB can be interpreted as the set of i ∈ B such that for all φ ∈ Sφ,

G(φ)• i is unnecessary in the representation of the points in AS(φ) as linear combinations of the

columns of G(φ)•B , i.e., AS(φ) ⊆ span
(
G(φ)• (B\{i})

)
for all φ ∈ Sφ. Thus, if ZB = ∅ then AS(φ)

intersects the relative interior of C(φ,B) for all but at most a finite number of φ ∈ Sφ. Hence, there

cannot exist Φ ⊆ Sφ such that dim(Φ) = p and dim(AS(φ) ∩ C(φ,B) ∩ C(φ,B ′)) = k − p for all

φ ∈ Φ. Thus, the result of the proposition follows from Lemma 5.95.

Proposition 5.99. Given a complementary basis B for which dim(IRB) = k and an i ∈ B \ ZB ,

neither a diagonal pivot involving i, as outlined in condition (1) of Proposition 5.72, nor an exchange

pivot involving i, as outlined in condition (2) of Proposition 5.72, will result in a new basis B ′ for

which IRB and IRB′ overlap.

Proof. Since i 6∈ ZB there are at most a finite number of φ ∈ Sφ such that G(φ)• i is unnecessary in the

representation of the points in AS(φ) as linear combinations of the columns of G(φ)•B . This shows

that there are at most a finite number of φ ∈ Sφ such that dim
(
AS(φ) ∩ cone

(
G(φ)• (B\{i})

))
= k−p,

i.e., there is no Φ ⊆ Sφ such that dim(Φ) = p and dim
(
AS(φ) ∩ cone

(
G(φ)• (B\{i})

))
= k− p for all

φ ∈ Φ. Recall that if B ′ is obtained from B by a diagonal pivot involving i, as outlined in condition

(1) of Proposition 5.72, or an exchange pivot involving i, as outlined in condition (2) of Proposition

5.72, then (C(φ,B) ∩ C(φ,B ′)) ⊆ cone
(
G(φ)• (B\{i})

)
for all φ ∈ Sφ. Thus, there cannot exist a

Φ ⊆ Sφ such that dim(Φ) = p and dim
(
AS(φ) ∩ C(φ,B) ∩ C(φ,B ′)

)
= k − p for all φ ∈ Φ. The

result of the proposition then follows from Lemma 5.95.

Proposition 5.100. Given a complementary basis B for which dim(IRB) = k, if there exists an

index i ∈ ZB such that (TB(φ))i,ı is not identically zero, then for the basis B ′ = (B \ {i}) ∪ {ı} we

have that IRB and IRB′ overlap.
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Proof. Since i ∈ ZB we have AS(φ) ⊆ span
(
G(φ)• (B\{i})

)
for all φ ∈ Sφ. Furthermore, since

dim(IRB) = k there must exist Φ ⊂ Sφ such that dim(Φ) = p and dim(AS(φ)∩cone(G(φ)• (B\{i}))) =

k − p for all φ ∈ Φ. Since (TB(φ))i,ı is not identically zero, B ′ = (B \ {i}) ∪ {ı} is a basis and

C(φ,B) ∩ C(φ,B ′) = cone
(
G(φ)• (B\{i})

)
for all φ ∈ Sφ. Thus, dim

(
AS(φ) ∩ C(φ,B) ∩ C(φ,B ′)

)
=

k − p for all φ ∈ Φ. The result of the proposition then follows from Lemma 5.95.

As a result of Proposition 5.100, the procedures we presented in Sections 5.4 and 5.5 can

be modified so that whenever a basis B is discovered for which there exists an index i ∈ ZB such

that (TB(φ))i,ı is not identically zero, the basis B ′ = (B \ {i}) ∪ {ı} is added to B and therefore

not considered for inclusion in the final partition of Sθ. The implementation we discuss in the next

section incorporates this modification. We also point out that this modification is enough to ensure

that the overlapping regions we discovered during our phase 1 consideration of Example 5.5 are not

both considered. Observe from Table 5.4 in Section 5.A that w3 ∈ Zph1

B∗5.5 and (T ph1

B∗5.5(φ))w3,z3 is

not identically zero. Hence, we add (B∗5.5 \ {w3}) ∪ {z3} = B5.5
iv to B during the first iteration of

the phase 1 algorithm and as a result, the invariancy region associated with this basis would not be

considered in a later iteration of phase 1.

5.7 Experimental Results

We now present the results of a computational experiment we conducted in order to test

the practical performance of the proposed algorithms. We also include a few brief notes on our

implementation.

We implemented the proposed two-phase algorithm using MATLAB. All auxiliary NLPs

were solved using the “fmincon” function within MATLAB. We note that since the version of mpLCP

we consider in this work was previously unsolved, there is no other method with which we can

compare. All tests were run using MATLAB R2016a [62] on a machine running Linux Mint 17 with

two 2.4GHz processors, each with 4GB of RAM.

For our experiment we randomly generated 105 instances. We produced ten instances for

each value of h in {4, . . . , 12}; half with k = 2 and half with k = 3. We also produced an additional

five instances for each value of h in {13, 14, 15} with k = 2. Each instance was derived from a

multiobjective program with k+1 convex quadratic objectives. These multiobjective programs were

then scalarized using the weighted-sum method (see, for example, [27]) to obtain an mpQP in the
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form of (5.4), and then reformulated as an instance of mpLCP. We then solved each instance using

our the implementation of the proposed method. A summary of the results is given in Table 5.3. As

Table 5.3: Experimental Results – Averages are taken over instances that were solved in under one
hour.

Number Average Average Average Average
Solved in Average Num. Ph1 Num. Ph2 Num. Time Per

k h < 1 hour Time (s) Iterations Iterations Regions Iteration (s)

2 4 5 7.1 1.2 3.0 1.8 1.6
5 5 25.5 1.8 3.0 3.0 5.3
6 5 50.7 2.0 6.6 4.8 5.8
7 5 144.0 1.8 7.2 6.4 16.0
8 5 66.5 2.0 4.2 4.2 10.7
9 5 215.2 3.0 10.6 8.8 15.8

10 5 132.4 2.0 6.8 5.8 15.0
11 5 347.2 4.6 9.6 7.4 24.4
12 4 460.8 2.2 12.2 10.0 31.7
13 5 1,329.8 4.2 18.2 17.4 59.3
14 4 816.5 3.0 13.7 12.2 48.0
15 4 1,547.2 4.0 14.7 14.0 82.5

3 4 5 21.4 1.2 5.0 4.0 3.4
5 5 47.7 3.6 5.0 4.4 5.5
6 5 51.6 1.4 4.2 3.4 9.2
7 5 212.0 1.6 8.6 8.0 20.7
8 5 417.8 3.2 8.6 7.4 35.4
9 5 1,406.8 2.8 15.8 12.0 75.6

10 5 887.9 1.8 10.4 9.8 80.4
11 4 2,124.4 2.0 14.2 11.7 130.7
12 2 1,648.2 1.5 8.5 8.0 164.8

expected, the results display a positive correlation between instance size and numbers of iterations

and regions as well as average CPU time spent in each iteration. Figure 5.6 depicts the partitions of

Sθ computed during this experiment for four instances. Recall that for each pair of k and h values

described in Table 5.3 we generated five instances of mpLCP. The label on each subfigure of Figure

5.6 indicates which of the five instances has its solution depicted in the figure.

We now discuss a few details of our implementation. All parameters of the “fmincon”

optimization function were left at their default values, except the constraint violation tolerance,

which was set to 10−9; the maximum number of iterations, which was set to 4, 000; and the maximum

number of function evaluations, which was set to 8,000. Also, when solving NLPs as feasibility

problems, we assumed that λ was sufficiently large when it reached a value of 10−4. Additionally, in

our implementation we explicitly compute the tableau associated with each discovered basis. Thus,

the overall performance could likely be improved by instead using matrix factorization techniques.

In the computational experiments conducted in [2], we discovered that the efficiency of phase 1

could be improved if we sorted k-dimensional boundaries of (k+ 1)-dimensional regions based the ρ
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(a) k = 2, h = 6: Instance 3 of 5. (b) k = 2, h = 9: Instance 5 of 5.

(c) k = 2, h = 11: Instance 4 of 5. (d) k = 2, h = 13: Instance 1 of 5.

Figure 5.6: Partitions of Sθ.

component of the normalized normal vector of the boundaries (recall that in this work all boundaries

are hyperplanes) prior to seeking adjacent regions across each boundary. We used a similar strategy

here, but rather than sorting using the ρ component of the normal vector, we use the ρ component

of the normalized gradient vector of each polynomial function defining a k-dimensional boundary

of a given region, evaluated at the solution of NLPs. By searching for adjacent regions across k-

dimensional boundaries with the largest ρ component of this normalized gradient first, we increase

the likelihood of discovering a new region that has a lower optimal value of NLPs (minimal value

of ρ) than the previous region. In this way we aim to speed up the process of discovering a region

that intersects the hyperplane ρ = 0.

We also note that in our implementation, depending on the optimization technique chosen

for use alongside MATLAB’s “fmincon” function (interior point, trust region reflective, SQP, active

235



set), the optimizer occasionally returns a local optimal solution which is not always feasible, even

in situations in which a feasible solution exists. We found that this occurred more frequently for

larger problems. To counter this issue, each time we use the “fmincon” function, we begin with SQP

optimizer, but if the function fails or returns an infeasible solution, we resolve using the interior

point optimizer. This is, of course, inefficient, and we will therefore seek a more robust optimizer to

utilize in future implementations.

5.8 Conclusion

In this work we have introduced the first ever method for solving mpLCP (5.1) in which all

elements of the matrix M and the vector q are permitted to be affine functions of the parameters, so

long as M(θ) is a sufficient matrix for each permissible value of θ. Phase 1 answers the previously

unanswered question of how one can determine an initial full dimensional invariancy region which

can be used as a starting point in the process of partitioning the parameter space Sθ. The partition

of Sθ is carried out in Phase 2. Experimental results are provided which give evidence of the utility

of the proposed method.

In the future we will develop a more robust implementation of the procedures proposed in

this work. We will also apply the presented methodology to several application problems which

arise in areas of finance, engineering, health science, and more. As the methods we have presented

can also be used to solve multiobjective (convex) quadratic optimization problems, we will also use

the tools presented here as the foundation for a procedure for solving multiobjective mixed integer

convex quadratic programs.
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5.B Appendix B: Tableaux for Example 5.6

Table 5.14: TB5.6
0

(φ, σ)

w1 w2 w3 w4 z1 z2 z3 z4

w1 1 0 0 0 0 0 2 1 −σ − 1

w2 0 1 0 0 0 0 5 −φ− 7 φ− σ − 1

w3 0 0 1 0 -1 -3 0 0 −18σ − 34

w4 0 0 0 1 -1 φ+ 5 0 0 −9σ − 17

Table 5.15: TB5.6
1

(φ, σ)

w1 w2 w3 w4 z1 z2 z3 z4

w1 1 1
φ+7 0 0 0 0 5

φ+7 + 2 0 − 8σ+φσ+8
φ+7

z2 0 0 0 1
φ+5 − 1

φ+5 1 0 0 − 9σ+17
φ+5

w3 0 0 1 3
φ+5 − 3

φ+5 − 1 0 0 0 − (2φ+13) (9σ+17)
φ+5

z4 0 − 1
φ+7 0 0 0 0 − 5

φ+7 1 σ−φ+1
φ+7

Table 5.16: TB5.6
2

(φ, σ)

w1 w2 w3 w4 z1 z2 z3 z4

w1 1 − 2
5 0 0 0 0 0 2φ

5 + 19
5 − 2φ

5 −
3σ
5 −

3
5

z2 0 0 − 1
3 0 1

3 1 0 0 6σ + 34
3

z3 0 1
5 0 0 0 0 1 −φ5 −

7
5

φ
5 −

σ
5 −

1
5

w4 0 0 φ
3 + 5

3 1 −φ3 −
8
3 0 0 0 − (2φ+13) (9σ+17)

3

Table 5.17: TB5.6
3

(φ, σ)

w1 w2 w3 w4 z1 z2 z3 z4

z1 0 0 −φ+5
φ+8 − 3

φ+8 1 0 0 0 (2φ+13) (9σ+17)
φ+8

z2 0 0 − 1
φ+8

1
φ+8 0 1 0 0 9σ+17

φ+8

z3
φ+7

2φ+19
1

2φ+19 0 0 0 0 1 0 − 8σ+φσ+8
2φ+19

z4
5

2φ+19 − 2
2φ+19 0 0 0 0 0 1 − 2φ+3σ+3

2φ+19

Table 5.18: TB5.6
4

(φ, σ)

w1 w2 w3 w4 z1 z2 z3 z4

z1 0 0 0 -1 1 −φ− 5 0 0 9σ + 17

w2 φ+ 7 1 0 0 0 0 2φ+ 19 0 −8σ − φσ − 8

w3 0 0 1 -1 0 −φ− 8 0 0 −9σ − 17

z4 1 0 0 0 0 0 2 1 −σ − 1
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Table 5.19: TB5.6
5

(φ, σ)

w1 w2 w3 w4 z1 z2 z3 z4

z1 0 0 -1 0 1 3 0 0 18σ + 34

w2 − 5
2 1 0 0 0 0 0 −φ− 19

2 φ+ 3σ
2 + 3

2

z3
1
2 0 0 0 0 0 1 1

2 −σ2 −
1
2

w4 0 0 -1 1 0 φ+ 8 0 0 9σ + 17
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Chapter 6

Conclusion and Future Research

In this final chapter of the dissertation we first provide a summary of the contributions

to the field of Operations Research presented in this work, and then discuss directions of future

research.

6.1 Summary of Contributions

In this work we have presented significant contributions in a variety of areas of mathematical

programming by introducing new theory and methodology which can be used to solve specific classes

of multiobjective and parametric programs. We have also provided empirical evidence of the practical

relevance of these contributions by implementing each of the proposed techniques and conducting

computational experiments comparing the performance of these techniques with that of current

state-of-the-art procedures.

6.1.1 Primary Theoretical Contributions

In Chapter 4 we uncover various aspects of the structure of mpLCP with parameters present

in the q vector which were previously unknown, particularly for degenerate problems. Chapter 5

contains perhaps our most important theoretical contribution. Here we conduct the first ever study

of mpLCP with parameters in general positions within the M matrix. We reveal that the parameter

space Sθ can be partitioned into a set of regions such that within each region the representation

of the decision variables as functions of the parameters is invariant. Moreover, we discover that
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each of these regions can be represented as a semi-algebraic set, i.e., a set defined by polynomial

inequalities. As a result, we are first to study this problem in the context of algebraic geometry. We

unveil many other fascinating aspects of the problem’s structure and introduce breakthrough theory

which allows us to present the first procedure for solving this problem.

6.1.2 Primary Methodological/Computational Contributions

In Chapter 2 we introduce a new data structure, in the form of a modified binary tree,

that is able to efficiently store sets of nondominated solutions of BOMILPs. We conduct three

computational experiments aimed at testing the practical value of the proposed data structure. The

results show that this structure provides a more efficient method for storing solutions to BOMILP

than other prevalent techniques and that the new data structure is quite useful when when paired

with branch-and-bound methods for solving BOMILPs.

In Chapter 3 we provide the first ever study of presolve techniques for BOMILP. We present

justification for the extension of several presolve processes commonly used alongside single objec-

tive BB procedures to the biobjective setting. We also give the first comprehensive study of a

branch-and-bound procedure designed for solving BOMILPs with general integers. We provide a

new interpretation of bound sets, new techniques for checking previously proposed fathoming rules,

and introduce new fathoming rules. We are also first to discuss the extension of procedures for

presolve, preprocessing, branching, and the measurement of a duality gap to the context of general

BOMILP. The computational experiments we performed show that the BB scheme we present is

extremely useful and outperforms current state-of-the-art techniques for solving BOMILP for all

problems previously considered in the literature. We therefore also present a new set of challenging

BOMILP instances adapted from practical instances of single objective mixed-integer linear pro-

grams available in the MIPlib library. Computational tests performed on these instances indicate

that the new BB procedure still performs comparably with the current state-of-the-art even for

significantly challenging problems.

Chapters 4 and 5 contain studies of mpLCP in which we develop new techniques for par-

titioning the parameter space Sθ ⊂ Rk into a set of so-called invariancy regions such that, within

each region the representation of the decision variables as functions of the parameters is invariant

at the mpLCP solution. For the study contained in Chapter 4 we allow parameters only within

the q vector. Hence, the problem considered in this chapter is a reduced version of the problem
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considered in Chapter 5, where we permit parameters within both the q vector and the M matrix.

The methods presented in each of these chapters are two phase procedures. In Phase 1 of each

procedure an initial region of full dimension with which one can begin a procedure for partition-

ing Sθ is obtained. In phase 2, given any invariancy region which is k or (k − 1)-dimensional, all

(k − 1)-dimensional boundaries of the invariancy region are determined, and all other invariancy

regions whose dimesions are at least k − 1 and which are adjacent to the original invariancy region

across each of its (k − 1)-dimensional boundaries are computed. Hence, at termination of phase

2 the set of discovered k-dimensional invariancy regions forms a partition of the feasible subset of

Sθ. The worst-case complexity of the method presented in Chapter 4 is one order of magnitude

lower than that of the current state-of-the-art procedure for degenerate problems and matches that

of the current state-of-the-art procedure for nondegenerate problems. Additionally, experimental

results were conducted in which we compared the performance of the two phase method proposed

in Chapter 4 with the current state-of-the-art procedure. The results showed that our method per-

forms significantly better, often achieving running times two orders of magnitude faster than the

current state-of-the-art procedure. The problem considered in Chapter 5 was previously unsolved.

Nevertheless, we implemented the proposed two phase procedure and provide the results of of its

performance on a set of reasonably sized, randomly generated instances.

6.2 Future Research

The work we have done in this dissertation leads to several new and exciting areas in which

we may conduct research in the future. Some of these areas can be studied immediately, but some

will require the construction of additional building blocks before they can be studied extensively.

For this reason, we separate our discussion of future research into short term and long term goals.

6.2.1 Short Term Goals for Future Research

The studies we have conducted on BOMILP have revealed that, although there is much

potential for the development of highly efficient and effective branch-and-bound procedures for

BOMILP, these procedures are extremely complex and quite difficult to implement efficiently using

current commercial optimization packages. It seems that in order to develop a truly efficient imple-

mentation of a BB procedure for BOMILP one must either opt to build his own solver without the
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use of commercial packages, or wait until tools for solving BOMILP to be incorporated within com-

mercial software. Unfortunately, neither of these options is very promising. We have seen, however,

that there is some benefit to incorporating various aspects of objective space search procedures, such

as the triangle splitting method, alongside branch-and-bound methods. For this reason, in the near

future we will study objective space search procedures in more detail, and develop a hybrid solution

procedure for solving BOMILP which combines aspects of both branch-and-bound procedures and

objective space search methods.

The LCP is a highly applicable problem, especially since it encompasses linear programs

and convex quadratic programs. By extension, mpLCP then encompasses multiparametric linear

programs and convex quadratic programs. As our study of mpLCP was the first to consider the case

in which parameters are permitted in general locations within the M matrix, the solution procedure

we presented can be applied to a variety of applications from disciplines such as finance, business

and the various areas of engineering, which can be modelled as either multiobjective programs

or problems of optimization under uncertainty and have yet been unstudied. Hence, in the near

future we will collaborate with other researchers from each of these disciplines in order to discover

interesting applications to which we can apply the new methodology.

6.2.2 Long Term Goals for Future Research

In the studies we have conducted for BOMILP, we have found the computation of nondom-

inated subsets of solutions to be sufficiently challenging even in the presence of only two objectives.

Nevertheless, there is significant need to extend the ideas we have developed to the case of three

or more objectives. We will study ways in which this can be done, and use our findings to develop

methods for solving multiobjective mixed-integer linear programs with more than two objectives.

The methods we have developed for solving mpLCP can be used to solve multiobjective opti-

mization problems with any number of convex quadratic and linear objectives and linear constraints.

As a result, the presented solution procedure serves as a sufficient extension of the parametric sim-

plex method to the context of multiobjective convex quadratic programs. Thus, in future work we

will use the mpLCP method we have presented as a foundational tool with which we will develop a

method for solving biobjective, and eventually multiobjective, mixed-integer quadratic programs.
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[13] M. Bôcher and E. P. R. Duval. Introduction to Higher Algebra. Macmillan, 1907.

250

http://agupte.people.clemson.edu/MultiobjBB.pdf
http://agupte.people.clemson.edu/MultiobjBB.pdf
http://arxiv.org/abs/1411.6538
http://www.clemson.edu/ces/math/technical_reports/belotti.bb-bicriteria.pdf
http://www.clemson.edu/ces/math/technical_reports/belotti.bb-bicriteria.pdf
http://www.clemson.edu/ces/departments/math/documents/technical-reports/TR2015_11_pb.bs.mw.pdf
http://www.clemson.edu/ces/departments/math/documents/technical-reports/TR2015_11_pb.bs.mw.pdf


[14] J. Bochnak, M. Coste, and M.-F. Roy. Real Algebraic Geometry, volume 36. Springer Science
& Business Media, 2013.

[15] N. Boland, H. Charkhgard, and M. Savelsbergh. The triangle splitting method for biobjective
mixed integer programming. In J. Lee and J. Vygen, editors, Integer Programming and Com-
binatorial Optimization (IPCO), volume 8494 of Lecture Notes in Computer Science, pages
162–173. Springer, 2014.

[16] N. Boland, H. Charkhgard, and M. Savelsbergh. A criterion space search algorithm for biob-
jective mixed integer programming: The triangle splitting method. INFORMS Journal on
Computing, 27(4):597–618, 2015.

[17] B. Chakraborty, S. Nanda, and M. Biswal. On the solution of parametric linear complemen-
tarity problems. International Journal of Pure and Applied Mathematics, 17:9–18, 2004.

[18] S. Columbano, K. Fukuda, and C. N. Jones. An output-sensitive algorithm for multi-
parametric LCPs with sufficient matrices. In Polyhedral Computation, volume 48, pages 73–
102. American Mathematical Society, 2009.

[19] R. Cottle, J.-S. Pang, and V. Venkateswaran. Sufficient matrices and the linear complemen-
tarity problem. Linear Algebra and Its Applications, 114:231–249, 1989.

[20] R. W. Cottle. Monotone solutions of the parametric linear complementarity problem. Mathe-
matical Programming, 3(1):210–224, 1972.

[21] R. W. Cottle. A field guide to the matrix classes found in the literature of the linear comple-
mentarity problem. Journal of Global Optimization, 46(4):571–580, 2010.

[22] R. W. Cottle, J.-S. Pang, and R. E. Stone. The Linear Complementarity Problem. SIAM,
2009.

[23] M. Courtillot. On varying all the parameters in a linear-programming problem and sequential
solution of a linear-programming problem. Operations Research, 10(4):471–475, 1962.

[24] R. Danao. On the parametric linear complementarity problem. Journal of Optimization Theory
and Applications, 95(2):445–454, 1997.
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