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Abstract

This dissertation presents optimization models to aid with the sustainable design

and management of biopower (biomass cofiring) supply chains. We address three main

challenges associated with today’s biopower projects: i) high cost of biomass collection,

storage and delivery, ii) inefficiency of the mechanisms used to incentivize biomass usage

for generating electricity, and iii) lack of clear understanding about the trade-offs between

economic and environmental impacts of biopower supply chains.

In order to address the high cost of delivering biomass, we present a novel mixed

integer nonlinear program that integrates production and transportation decisions at power

plants. Proposed model captures the loss in process efficiencies from using biomass, in-

vestment and operational costs associated with cofiring, and savings due to production

tax credit (PTC), a major governmental incentive to support biopower. We develop a La-

grangian relaxation approach to provide upper bounds, and two linear approximations to

provide lower bounds for the problem. An important finding is that the one-size-fits-all

approach of PTC is not effective in motivating plants to utilize biomass and there is a need

for sophisticated incentive schemes. In order to address the second issue, we propose alter-

natives for the existing PTC incentive. The proposed flexible alternatives are functions of

plant capacity and biomass cofiring ratio. We use a resource allocation framework to model

and analyze the profit-earning potentials and fairness of the proposed incentive schemes.

Finally, in order to address the last challenge, we propose a stochastic biobjective optimiza-

tion model to analyze the economic and environmental impacts of biopower supply chains.

The economic objective function maximizes the potential profits in the supply chain and
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the environmental objective function minimizes the life cycle greenhouse gasses (GHG). We

use a life cycle assessment (LCA) approach to derive the emission factors for this objective

function. We capture uncertainties of biomass quality and supply via the use of chance

constraints.

The results of this dissertation work are useful for electric utility companies and

policy makers. Utility companies can use the proposed models to identify ways to improve

biopower production, have better environmental performance, and make use of the existing

incentives. Policy makers would gain insights on designing incentive schemes for a more

efficient utilization of biomass and a fairer distribution of tax-payers money.
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collaboration in our first peer-reviewed paper published in IIE Transactions.

I would like to thank all my great friends and colleagues in the Industrial Engineering

Department at Clemson University. Especially Zahra Azadi, Site Wang, Mowen Lu, Shasha

Wang, Rob Curry, Farhad Hasankhani, Amirali Nasrollah-Zade, Abdelwahab Alwahishie,

Josh Margolis, and Jon Lonski.

I acknowledge financial support from the National Science Foundation, grant CMMI

1462420. I appreciate Clemson University’s Computing and Information Technology center

(CCIT) for generous allotment of compute time on Palmetto cluster.

Finally, my eternal thanks to my parents, Haaj Hossein Karimi and Haajie Golnaz

Niki, for their love, affection, and support. Words are never enough to express my love for

them.

v



Table of Contents

Title Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Dissertation Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Optimization Models to Integrate Production and Transportation Plan-

ning for Biomass Co-Firing in Coal-Fired Power Plants . . . . . . . . . . 7

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Review of Related Literature . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 A Mixed Integer Nonlinear Programming Formulation . . . . . . . . . . . . 19
2.5 Generating Upper Bounds via a Lagrangean Relaxation Algorithm . . . . . 21
2.6 Generating Lower Bounds via Linear Approximation Algorithms . . . . . . 25
2.7 Numerical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.8 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3 Analyzing Tax Incentives for Producing Renewable Energy by Biomass

Cofiring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.4 Developing the Optimization Models . . . . . . . . . . . . . . . . . . . . . . 55
3.5 Designing Flexible PTC Schemes . . . . . . . . . . . . . . . . . . . . . . . . 59
3.6 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

vi



4 A Biobjective Optimization Model to Evaluate the Economic and En-

vironmental Impacts of Biopower Supply Chain under Uncertainty . . 77

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.3 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.5 Computational Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

A Boundary Implications of Nonlinear Models in Chapter 2 . . . . . . . . . . 109
B Computational Performance and Problem Structure of Models in Chapter 3 123
C A Convergence Analysis of Biobjective Chance Constrained Programs . . . 127
D Life Cycle Assessment for the Environmental Objective Function . . . . . . 132

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

vii



List of Tables

2.1 Distribution of biomass and coal plants in Southeast USA . . . . . . . . . . 32
2.2 Summary of problem parameters . . . . . . . . . . . . . . . . . . . . . . . . 34
2.3 Upper bounds via Lagrangean relaxation . . . . . . . . . . . . . . . . . . . . 34
2.4 Solution times in cpu seconds. . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.5 Comparing the performance of the lower bounds for problem (P). . . . . . . 36
2.6 The total biomass used at different levels of biomass market price . . . . . . 37
2.7 Total profits at different levels of biomass market price . . . . . . . . . . . . 38
2.8 Set Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.9 Notations: Decision Variables . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.10 Other Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.1 Example of flexible incentive schemes to support biomass cofiring . . . . . . 59
3.2 Total profits under the profit maximization approach and other schemes ($106) 67
3.3 Optimal biomass usage under profit maximization approach and other schemes

(in %) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.4 The amount of biomass used (kg) per dollar of provided subsidy under dif-

ferent schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.5 Optimal PTCs, cofiring strategies, and avoided emissions (in ton) for MS

coal plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.6 Caption for LOF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2 The payoff table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.3 Emission reductions and profits for different ranges of cofiring . . . . . . . . 102
4 A polynomial time algorithm for the single plant problem. . . . . . . . . . . 115
5 The performance of the solution approaches proposed . . . . . . . . . . . . 123
6 A sample GREET® LCA impact results . . . . . . . . . . . . . . . . . . . . 135

viii



List of Figures

2.1 Linear Approximation Schemes . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2 The error gap between ZP and ZQ as a function of |L| . . . . . . . . . . . . 35
2.3 Analyzing the impact of biomass market price on average profits, costs and

biomass usage in Southeast USA . . . . . . . . . . . . . . . . . . . . . . . . 39
2.4 The relationship between total profits and tax credits . . . . . . . . . . . . 40

3.1 PTC versus cofiring ratio in the ratio-based scheme . . . . . . . . . . . . . . 60
3.2 PTC versus plants’ capacity in the capacity-based scheme . . . . . . . . . . 62
3.3 (a) Total profits, (b) biomass usage, (c) PoF (all versus the total budget),

and (d) Gini coefficient curves for SE . . . . . . . . . . . . . . . . . . . . . . 71
3.4 (a) The PoF, and (b) PoE, versus the total budget for the state of Mississippi 72

4.1 The system boundary to analyze the biomass cofiring life cycle . . . . . . . 85
4.2 Efficient and weakly efficient frontiers for BCCMIP . . . . . . . . . . . . . . 91
4.3 Coal-fired power plants owned by Duke Energy Carolinas LLC . . . . . . . 97
4.4 Biomass suppliers counties within 80-mile radius of coal plants . . . . . . . 98
4.5 True efficient frontier and SAA frontiers with different sample sizes (γ = 0.05) 99
4.6 Average computaion times to calaculate the efficient frontiers (solver times) 100
4.7 Efficient frontiers for different ranges of cofiring ratio . . . . . . . . . . . . . 101
4.8 Three representative Pareto optimal solutions based on the true efficient fron-

tier for 0-50% cofiring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.9 Cofiring strategies, profits, and emissions for three Pareto optimal solutions

in Figure 4.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.10 A carbon cap limit and viable Pareto optimal solutions to comply with . . . 105
4.11 Logistic and cofiring decisions associated with the best viable Pareto solution

(red circle in Figure 4.10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
12 Lagrangean relaxation algorithm . . . . . . . . . . . . . . . . . . . . . . . . 122
13 Feasible regions and optimal points for two plants under PTC scheme models 125
14 A lower semicontinuous function . . . . . . . . . . . . . . . . . . . . . . . . 128
15 The convergence of SAA frontiers to True frontier in BCCMIP . . . . . . . . 131

ix



Chapter 1

Introduction

1.1 Introduction

The large scale physical, social, and ecological impacts of global warming present

increasing and certain threat for the future of our planet. The analysis conducted by the

U.S. Environmental Protection Agency predicts that carbon-dioxide (CO2) concentration

in the atmosphere will reach 500 ppm by 2030 if we continue to consume fossil fuels at the

current rate (EPA 2009). About 41% of global CO2 emissions are due to electricity and

heat generation, and 43% of these emissions are due to coal combustion in thermal power

plants (IEA 2012). In the U.S., coal contributes to 71% of the total CO2 emissions from

the energy sector (U.S. Energy Information Administration (EIA), 2015). The increasing

concerns about global warming and the depletion of fossil fuel reserves have motivated coun-

tries to decrease dependency on fossil fuels and incorporate renewable sources for securing

environmentally friendly future.

The 5th Assessment Report (AR5) of the Intergovernmental Panel on Climate

Change (IPCC) proposes different strategies to decrease the use of fossil fuels in the up-

coming decades. Power plants can adopt one or a combination of the approaches proposed

in order to meet the IPCC environmental goals. The approaches proposed by IPCC are

(Change 2014): a) invest in improving the efficiency of the power generation system; b)
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invest in carbon dioxide capture and storage (CCS) technology; and c)substitute fossil fuels

with fuels which have low carbon content (e.g. natural gas) or are carbon neutral (e.g.

hydro, nuclear, biomass, etc) fuels.

In this dissertation, we propose models that optimize the performance of biomass

utilization in coal-fired power plants. Biomass is the name given to any organic matter

which is derived from plants and animals. That is plant and animal materials such as wood

from forests, crops, seaweed, material left over from agricultural and forestry processes,

and organic industrial, human and animal wastes. Biomass is one of the earliest sources of

energy used by humans. Biomass consists of carbohydrates and is considered a renewable

energy source since its supply is renewable. Compared to other renewable technologies such

as solar or wind, biomass energy can be easily stored.

There are two major ways that biomass can be used for generating electricity: gasi-

fication and direct firing. Biomass gasification systems operate by heating biomass in an

environment where the solid biomass breaks down to form a flammable gas. The gas pro-

duced is cleaned, filtered, and then burned in a gas turbine for power generation. In direct

firing, biomass is used as combustible fuel in a boiler to produce high-pressure steam that is

used to power a steam turbine-driven power generator. Biomass at coal plants can be burned

in a separate boiler or together with coal in the same boiler (cofiring). The primary focus

of study in this dissertation is on the direct co-combustion of biomass and coal at existing

power plants, referred to as biomass cofiring or biopower throughout the dissertation.

Biomass cofiring is shown to be an efficient and inexpensive alternative to mitigate

harmful environmental impact of coal-fired power plants (Baxter 2005, Basua et al. 2011).

Unlike CCS and natural gas technologies, biopower entails insignificant investment costs

and implementation complexities. It is one of the best known near-term solutions that

can help coal plants to meet environmental restrictions and obtain financial incentives and

credits from state and federal governments. Currently, about 40 of the 560 coal-fired power

plants in the U.S. are co-firing biomass.

Despite the well-known benefits, biopower faces with challenges and drawbacks.
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Feedstock availability is a key issue in determining the economic viability of biomass projects.

A poor logistic management plan can negate the financial benefits obtained from available

incentives. In countries with advanced bioenergy policies, such as European countries, the

bioenergy market is regulated and supported by policy measures, such as national targets

or feed-in-tariff (FIT) incentives. In other countries, such as the U.S., improvement of ex-

iting policies and incentive schemes is necessary to make biopower competitive in energy

market. Sustainability is becoming an ever more important issue in biopower projects. At

coal plants, replacing biomass with coal reduces the emissions due to combustion, however,

the total footprint of the associated supply chain still needs to be carefully investigated.

Cultivating biomass resources for cofiring can restrict the land-use diversity and reduce the

capability for producing food for livestock or human use.

Despite the challenges mentioned above, biomass energy market offers a significant

growth potential. In the New Policies Scenario of the IEA World Energy Outlook, global

biopower generation is assumed to increase from 424TWh in 2011 to 1,204TWh in 2030

(EIA 2013b). In the following list, we provide a summary of related problems that this

dissertation addresses.

� Supply chain design and integration of logistic decisions and production planning.

Biomass cofiring in coal plants does not require significant infrastructural changes or

investment costs. However, the decisions related to the logistics of acquiring biomass

resources in conjunction with production processes at coal plants impacts the efficiency

and economic benefits of this technology. Biomass has a disperse and often uncertain

availability throughout the country. Questions such as which supplier(s) to select,

what kind of transportation mode to chose, and what is the best cofiring strategy,

need to be addressed in order to have a better picture about complications of this

technology.

� Governmental incentives in support of biomass cofiring. The importance of govern-

mental incentives to make cofiring an attractive investment option is highlighted in

3



several studies (O’Mahoney et al. 2013, Wils et al. 2012). In the U.S., the main sup-

port program for biomass cofiring is a fixed rate production tax credit (PTC) which

is provided per unit of renewable energy generated from biomass resources (in form

of g/kWh). Whether the current support mechanism is effective in motivating coal

plants to participate in cofiring, and how this mechanism can be improved to provide

a fair and efficient scheme are some of the key questions that need to be answered in

this context.

� Trade-offs between economic and environmental impacts of biopower supply chain.

Biomass cofiring has the potential to decrease GHG emission levels at coal plants.

However, the extent of environmental impacts of this technology will ultimately de-

pend on emissions during product’s life cycle, including biomass supplier activities,

feedstock transportation, and processes at power plants. It is also necessary to take

into account how biomass utilization affect biodiversity and environmental sustainabil-

ity in the region (e.g. by deforestation or exploitation of the land which is otherwise

used for cultivating human or animal foods). Exploring the trade-offs between related

cost/benefits and sustainability issues is crucially important to gain insight on generat-

ing electricity using biomass. There is a need for models which optimize the economic

and environmental impacts of biopower generation in an uncertain environment.

In this dissertation, we develop optimization models and solution algorithms in or-

der to address the challenges listed above. These models enable coal-fired power plants to

identify strategies which allow them to comply with new environmental regulations at the

minimum cost. The proposed models also capture the social and environmental impacts of

operational and strategic decisions made by coal plants. Additionally, we propose models

which enable policy makers identify policies which encourage renewable energy generation.

We apply different modeling approaches (such as mixed integer programming, multiobjec-

tive optimization, stochastic programming) to capture the multifaceted and often uncertain

nature of related information. To solve the proposed models and carry out sensitivity anal-
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yses, we develop problem specific solution methods and algorithms based on several OR

tools (such as Benders decomposition, Lagrangian relaxation, ǫ-constraint method).

We develop real-world case studies to illustrate the practical use of the proposed

models and solution methods. These case studies use data on existing coal-fired power

plants and biomass resources in southeastern states of the U.S. This region of the country is

known to be rich in biomass resources and appropriate for cofiring projects. Two main case

studies are developed and studied in the dissertation. For the case studied in Chapters 2 and

3, we work on the coal plants spread in the nine major states of the Southeast: Alabama,

Arkansas, Florida, Georgia, Louisiana, Mississippi, North Carolina, South Carolina, and

Tennessee. For the case studied in Chapter 4, we work on a utility company which owns a

group of plants in the states of North Carolina and South Carolina.

1.2 Dissertation Structure

The remainder of dissertation is structured as follows:

In Chapter 2, we develop an optimization model to integrate production and trans-

portation planning at power plants that cofire biomass. These models aid the coal-fired

power plants with logistics and operational decisions. The goal is to minimize supply chain

costs. The developed model is a mixed integer nonlinear program (MINLP). We provide

a linear approximations for the MINLP model and use Lagrangian relaxation to calculate

upper and lower bounds for the problem.

In Chapter 3, we provide an analysis of current and proposed tax incentive schemes

to support biomass utilization at existing coal-fired power plants. The proposed alternative

schemes can be used by policy makers to design fair and efficient support mechanisms

and increase plants participation in cofiring given a limited budget. We use a resource

allocation framework to compare and analyze the efficiency and fairness of different flexible

tax schemes.

Finally, in Chapter 4, we provide a stochastic biobjective optimization model to
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analyze the economic and environmental impacts of biopower supply chains. The first

objective function identifies strategies which maximize the potential profits in supply chain.

The second objective function minimizes the GHG emissions throughout the life cycle of

biomass feedstock. We propose a chance constraint approach to capture the uncertainties

in the model. We develop an exact formulation of chance constraint in form of quadratic

constraints. The quadratic constraint makes the model nonlinear. We develop another

formulation based on sample average approximation that only involves linear constraints.

The Pareto optimal solutions are find via ǫ-constraint algorithm.

For further discussions on the problem structure and analytical aspects of the opti-

mization models refer to appendices 1-4 at the end of the document.
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Chapter 2

Optimization Models to Integrate

Production and Transportation

Planning for Biomass Co-Firing in

Coal-Fired Power Plants

2.1 Introduction

Coal-fired power plants in the US consume 1.1 to 1.2× 109 tons of coal annually in

order to generate electricity. The burning of coal in these plants produces many gases (e.g.,

CO2, SO2, NOx, etc.) and heavy metals (e.g., mercury and arsenic), which adversely affect

the environment and human health (US Energy Information Administration (EIA, 2014)).

It is estimated that, for each megawatt-hour of electricity generated, a total of 2,249 lbs

of CO2, 13 lbs of SO2, and 6 lbs of NOx are emitted. In 2013, coal accounted for 32% of

the total energy-related CO2 emissions in the US (US Environmental Protection Agency

(EPA), 2013).

New performance standards and rules proposed by the EPA have placed stringent
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limitations on greenhouse gas (GHG) emissions from new and existing power plants. In

January 2014, EPA issued a revised performance standard proposal for CO2 emissions,

according to which, new coal fired power plants are required to limit emissions to 1,100 lbs

per megawatt-hour. The proposed emissions limit is forcing new coal-fired power plants

to identify technologies which will reduce CO2 emissions by approximately 50%. In June

2014, EPA released proposed rules that are designed to cut CO2 emissions for existing power

plants by 30% from 2005 levels by the year 2030. In March 2013, the agency finalized the

Mercury and Air Toxics Standards to reduce emissions of mercury and other air toxics from

new and existing coal and oil-fired electric generating units. In July 2011, EPA finalized the

Cross-State Air Pollution Rule (CSAPR), which seeks to reduce SO2 and NOx emissions

from power plants in 28 states.

Researchers agree that co-firing offers a near-term solution to reduce CO2 emissions

from coal-fired power plants since viable and long-term solution alternatives (such as, carbon

capture and sequestration (CCS), oxy-firing and carbon loop combustion) still remain in

the early to mid stages of development (Basua et al. 2011). Currently, 40 of the 560

coal-fired power plants in the US are co-firing biomass, a renewable energy process that

is encouraged by incentives such as the renewable portfolio standards (RPS) at the state

level; and the production tax credit (PTC) at the federal level. The federal PTC is a

flat rate income tax credit of 1.1 cents per kilowatt-hour which supports biomass-based

electricity generation technologies such as full-scale biomass cofiring and closed loop partial

cofiring; however, its support for general cofiring (open loop biomass) is not clearly specified

(Internal Revenue Code, Section 45). The importance of extending current tax incentive

plan to cover partial cofiring is suggested in the literature (Smith and Rousaki (2002)). In

this chapter, we evaluate the impact of presenting PTC to support partial cofiring in current

coal-fired power plants. At the state level, RPS requires investor-owned utilities, electric

service providers, and community choice aggregators to increase procurement from eligible

renewable energy resources (EIA 2013a, 2013b, 2013c). Researchers also agree that co-firing

biomass with coal in power plants is an option for RPS compliance and a near-term solution
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for introducing biomass into today’s renewable energy mix (Basua et al. 2011). Based on

the renewable fuel standards (RFS), cellulosic biomass is expected to be the largest source

of renewable energy comprising 44.4% of the targets set for 2020 (EPA 2007). Biomass

used in direct combustion has shown to be dispatchable, i.e., capable of responding to user

needs without energy storage unlike wind and solar power which are at the mercy of nature

(Tillman et al. 2010). While the technology to produce liquid fuels by using biomass is not

yet available, co-firing of biomass is a feasible option worth investigating.

Based upon our review of the literature, we contend that most current research has

involved elucidating the technological aspects of co-firing processes (Li et al. 2012, Tumuluru

et al. 2012) and the techno-economic and feasibility analysis (Dong et al. 2010, Ruhul-

Kabir and Kumar 2012, Steer et al. 2013, Goerndt et al. 2013b, Paudel 2013, Mehmood

et al. 2014). Very little research has been undertaken to estimate the transportation costs

of delivering biomass to power plants (Roni et al. 2014). To the best of our knowledge,

there are no studies which provide models to optimize co-firing decisions at the plant level

by integrating plant operations-, with, transportation and other logistics-related decisions.

Thus, the main contribution of this chapter is the development of mathematical models

to aid co-firing decisions at plant level. The proposed model takes a holistic view of the

processes affected by these decisions such as production, storage, and transportation.

Biomass co-firing impacts the performance of the coal plants in several ways. First,

biomass has less energy density as compared to coal, and therefore, larger quantities of

biomass are required to substitute the same amount of coal. Additionally, biomass in the

form of agricultural and forest waste has poor flowability properties, and thus, it is bulky,

heterogeneous, and unstable. For these reasons, processes such as loading, unloading and

transportation of biomass are challenging and expensive. Second, existing power plants are

typically co-located with coal mines which would typically supply enough coal to satisfy

plant’s demand. Biomass suppliers are typically small or medium sized farms, which are

widely dispersed geographically. Thus, processes such as biomass collection, biomass deliv-

ery, and supplier management are expensive (Aden et al. 2002). Third, co-firing of biomass
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reduces boilers efficiency, and as a consequence, reduces overall system efficiency. Fourth,

biomass co-firing requires investments to adjust the feeding system, since the same system

often cannot be used to feed biomass in burners (Tillman 2000).

Coal plants are aware of the challenges and opportunities related to co-firing. How-

ever, decision makers are in need of tools which integrate the additional savings, additional

costs, and loss of process efficiencies from co-firing. Such tools would enable decision mak-

ers identify the level of co-firing that maximizes profits while complying with existing GHG

emission regulations. To support these decisions we propose an optimization model which

encompasses the (a) additional investments necessary to adopt co-firing at power plants;

(b) reduction in process and equipment (e.g., boiler) efficiency from this coal substitution;

(c) additional transportation-related costs necessary for biomass delivery; (d) savings from

incentives such as PTC. This model is useful in evaluating the existing trade-offs between

profits and the environmental impacts associated with co-firing. We propose solution ap-

proaches to solve these large scale, nonlinear optimization problems. These approaches are

novel and rely on the properties of the models presented.

Another important contribution of this study is that we use real world data to build

a case study. Thus, through our numerical analysis we make a few important observations

about the impact of incentives such as PTC on renewable electricity production. These find-

ings can help policy makers at the federal or state level to evaluate the economic feasibility

of producing renewable electricity, and design policies in support of co-firing.

2.2 Review of Related Literature

The work presented in this chapter contributes to the literature on biomass supply

chain optimization as well as technological and economical feasibility of co-firing.
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2.2.1 Biomass supply chain optimization

The literature on biomass supply chain has grown in the recent years. Early studies

in the area of biomass supply chain management focused mainly on cost-benefit analy-

sis, such as estimating the cost of collecting, handling, and hauling biomass (Perlack and

Turhollow 2002, Petrolia 2008) and comparing different modes of transportation to deliver

biomass (Kumar et al. 2005, Mahmudi and Flynn 2006). This literature pays attention to

mainly operational-level supply chain decisions. More recently, a number of models have

been proposed to optimize the performance of the supply chain by incorporating strategic

and tactical decisions. Models proposed by Eksioglu et al. (2009), Zamboni et al. (2009),

Huang et al. (2010), An et al. (2011) integrate plant location, production, and transportation

decisions in the biomass supply chain. For a comprehensive review of modeling frameworks,

challenges faced, and the future of biomass supply chains we refer the readers to Sharma

et al. (2013).

Related to this research are works by Aguilar et al. (2012) and Roni et al. (2014).

Aguilar et al. (2012) propose a supply chain model to evaluate the likelihood of using

biomass for co-firing. The model evaluates the impact of the locations of biomass suppliers

and the location of coal-fired power plant on co-firing decisions. Roni et al. (2014) propose

a framework to design biomass supply chains to support co-firing of biomass at the national

level. Based on this framework, small-sized plants are better off receiving biomass ship-

ments from local suppliers. Large-sized plants are better-off using hub-and-spoke in-bound

networks that rely both on truck and rail transportation for biomass delivery. Hub-and-

spoke networks are typically used for long-haul delivery of bulky products. These models

either focus on optimizing transportation decisions for a given biomass co-firing strategy or

focus on optimizing co-firing decisions within a plant given the amount of biomass available

in the region. The model we propose integrates transportation and co-firing decisions with

the goal of optimizing system-wide profits.
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2.2.2 Technological and economical feasibility of co-firing

Most of the literature about co-firing is mainly focused on analyzing its technological

and economical feasibility. Work by Goerndt et al. (2013a) identifies the necessary drivers

for successful implementation of co-firing. The drivers identified are the adequate biomass

supply and competitive biomass purchase and transportation costs. The work of Baxter

(2005) indicates that biomass-coal co-combustion is an affordable renewable energy option

that promises reductions in GHG emissions. Works of Hansson et al. (2009) and Al-Mansour

and Zuwala (2010) indicate that biomass co-firing is a technologically sound and near-term

solution to comply with GHG emission regulations in the European Union (EU). They

support their findings by discussing some successful implementations of the technology in

EU. A study by Basua et al. (2011) indicates that nearly all coal-fired power plants can

achieve an incremental gain in GHG reductions with minimum modifications and moderate

investments. Hansson et al. (2009) predict that biomass co-firing will become a major

contributor to meeting the renewable energy production goals in near future. Works by Li

et al. (2012), Shao et al. (2012), Tumuluru et al. (2012), Steer et al. (2013), Tchapda and

Pisupati (2014) investigate the technological challenges and process inefficiencies associated

with biomass co-firing.

Baxter (2005), De and Assadi (2009), Wils et al. (2012), O’Mahoney et al. (2013),

Paudel (2013) study the economic feasibility of co-firing. Ruhul-Kabir and Kumar (2012)

conduct a life cycle energy and environmental performance analysis of co-firing different

types of biomass since the efficiency of co-firing process depends on the specific chemi-

cal content and properties of the biomass used in co-combustion (Mehmood et al. 2014).

O’Mahoney et al. (2013) and Wils et al. (2012) use a cost-benefit analysis to show that

governmental incentives are necessary for making co-firing an attractive investment option.

Similarly, McIlveen-Wright et al. (2011) and De and Assadi (2009) conduct comprehensive

techno-economic analysis of co-firing. They evaluated the technological and economical fea-

sibilities of existing pilot plants, and suggest that there is a need for additional governmental

incentive schemes. The effect of subsidizing biomass co-firing is also discussed by Lintunen
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and Kangas (2010). Their numerical results show that subsidizing biomass combustion in a

coal-fired power plant provides great results with minimum investments in renewable tech-

nology. Tharakan et al. (2005) evaluate the impacts of three co-firing incentive programs

in the US. One of the incentives analyzed is the PTC.

2.3 Problem Description

There are two main co-firing methods used in coal plants, which are direct and

indirect co-firing. Direct biomass co-firing systems include solutions such as: co-milling,

co-feeding, combined burner and new burners. In these systems, biomass is milled and then

fed to coal burners for combustion. This method is the simplest, cheapest and most-widely

used (see Touš et al. (2011), Piriou et al. (2013)). However, direct co-firing is sensitive to

the biomass quality, and, in the long run, direct co-firing shortens the lifespan of equipment

used. Indirect biomass co-firing systems include solutions such as: separated burning,

coupled plant, gasification systems, and pyrolysis. In these systems, biomass is either

burned separately using specially designed boilers; or, it is transformed into a gas using a

gasifier; or it is transformed into a mixture of gas, bio-oils and char through pyrolysis (see

Dong et al. (2010), Caputo et al. (2005), Dasappa et al. (2004)). These systems are more

complex and expensive. However, these systems reduce equipment degradation problems,

such as, corrosion, fouling, and slagging. Such systems allow for larger co-firing rates as

compared to direct co-firing.

The focus of this study is direct co-firing since this method is easy to implement,

requires less capital investments, thus, easier to adopt by existing coal fired power plants.

In this case, the percentage of coal substituted varies between 0-50%.

2.3.1 Biomass Co-Firing: Modeling Plant Efficiency

Biomass has a lower heating value as compared to coal. Additionally, using biomass

negatively impacts the efficiency of the burners used in a coal plant. Thus, co-firing as
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much biomass (by mass) as the amount of coal displaced would reduce the amount of

energy generated. The objective of this section is to determine the relationship that exists

between the amount of coal displaced and the amount of biomass co-fired to maintain the

same energy output at a coal plant.

Let Q0
j (in MW) be the initial (before co-firing) annual heat input rate of a coal

plant j. The heat input is a function of plant’s nameplate capacity (TCj in MW), capacity

factor fj (or utilization rate), and initial plant efficiency rate (ρ0j). The annual heat input

is equal to Q0
j =

TCj∗fj
ρ0j

.

A coal plant would typically use coal in order to generate electricity. The mass of

coal used is a function of the lower heating value for coal (LHV coal
j in BTU/ton) and the

total number of operating hours (OHj in hours/year). The amount of coal used (M coal
j in

tons) is equal to:

M coal
j =

Q0
j ∗OHj ∗ Cwb

LHV coal
j

, (2.1)

where, Cwb is the conversion factor from 1 MW to BTU/hr.

Suppose that ∇M coal
j tons of coal will be displaced in the coal plant. We estimate

the amount of biomass required (M bm
j in tons) to maintain the same energy output using

the following energy equilibrium equation

M bm
j ∗ LHV bm

j = ∇M coal
j ∗ LHV coal

j .

Thus, the amount of biomass required to displace ∇M coal
j tons of coal is equal to

M bm
j = ∇M coal

j ∗
(
LHV coal

j

LHV bm
j

)
.
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We now can calculate βj , the percentage of biomass co-fired in facility j, as follows:

βj =
M bm

j

(M coal
j −∇M coal

j ) +M bm
j

=
1

Mcoal
j

Mbm
j

+ (1− LHV bm
j

LHV coal
j

)
=

1
Mcoal

j

Mbm
j

+ αj

, (2.2)

where αj = 1 − LHV bm
j

LHV coal
j

. Thus, for a fixed value of βj , the amount of biomass required to

displace coal should be:

M bm
j =

M coal
j

1/βj − αj
=

(
1

1/βj − αj

)
∗
(
Q0

j ∗OHj ∗ Cwb

LHV coal
j

)
. (2.3)

Equation (2.3) calculates the amount of biomass required to displace β% of coal

under the assumption that there would be no equipment efficiency loss due to co-firing.

However, equipment efficiency is indeed affected. Let ρj denote plant efficiency, which

is a function of the efficiency of all processes involved. Initially, ρ0j = ρbj ∗ ρrpj , where,

ρbj represents boiler efficiency and ρrpj represents the efficiency of rest of the plant. The

efficiency loss of boilers (ELj) due to displacing βj% of coal, is calculated as follows: ELj =

0.0044β2
j +0.0055 (Tillman 2000). Due to this efficiency loss, plant efficiency decreases from

ρ0j to ρj = (ρbj − ELj) ∗ ρrpj .

The efficiency loss impacts the annual heat input of the coal plant. Thus, the heat

input required to maintain the same energy output increases to:

Qj =
TCj ∗ fj

ρj
=

(
ρ0j
ρj

)
∗Q0

j =

(
ρbj

ρbj − ELj

)
∗Q0

j .

Consequently, the corresponding amount of biomass required for co-firing increases to:

M bm
j =

(
1

1/βj − αj

)
∗
(
Q0

j ∗OHj ∗ Cwb

LHV coal
j

)
∗
(

ρbj

ρbj − ELj

)
=

=

(
1

1/βj − αj

)
∗
(

ρbj

ρbj − ELj

)
∗M coal

j . (2.4)
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Equation (2.4) indicates that the amount of biomass requirement to displace βj%

of the coal is a function of plant nameplate capacity, plant efficiency, lower heating values

of coal, lower heating values of biomass, and plant operating hours.

2.3.2 Biomass Co-Firing: Modeling Costs and Savings

This section estimates the additional costs and savings due to biomass co-firing.

Plant Investment Costs:

Investments on building a new feeding system, purchasing compressors and dryers, purchas-

ing biomass handling equipment, and investments on additional storage space are typically

required to facilitate direct co-firing. Studies such as, Sondreal et al. (2001), Caputo et al.

(2005) indicate that when less than 4% of coal is displaced in a plant, the existing fuel

feeding system can be used for both products. In this case, the annual investments (ICAP
j )

of plant j are expected to be $50 per KW of power generated from biomass, assuming 20

years investment lifetime and 9% discount rate.

In order to calculate the annual investment costs, we first need to calculate how

much power (in MW) could be generated from biomass at a plant of capacity TCj when

βj% of coal (βj% < 4%) is being displace. Next, we multiply this amount with the $50/KW

(or $50,000/MW) to calculate the annual investment costs as follows:

ICAP
j = 50, 000∗

(
M bm

j

M coal
j −∇M coal

j

)
∗
(
TCj ∗ fj ∗

LHV bm
j

LHV coal
j

)
= 50, 000∗

(
TCj ∗ fj ∗

LHV bm
j

LHV coal
j

)
∗
(

βj
1− βj

)
.

Let, Icapj = 50, 000 ∗
(
TCj ∗ fj ∗

LHV bm
j

LHV coal
j

)
, then,

ICAP
j = Icapj ∗

(
βj

1− βj

)
. (2.5)

In the case when βj > 4%, the annual investment costs are higher since large

amounts of biomass would be used by the plant. In this case, the plant would be investing
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in extra storage space, material handling equipments, and compressors and dryers necessary

to process biomass prior to co-firing. The annual investment costs necessary for biomass

storage (ISj ), biomass handling (IHj ), and investments on compressors and dryers (ICD
j ) are

presented next. The annual storage costs are estimated to be $136,578 per MW of power

generated from biomass; the annual handling costs are estimated to be $55,780 and the

annual compressors and dryers costs are $13,646 per MW of power generated from biomass

(Caputo et al. 2005).

The annual cost of biomass storage as follows:

ISj = 136, 578 ∗
(

M bm
j

M coal
j −∇M coal

j

∗ TCj ∗ fj ∗
LHV bm

j

LHV coal
j

)0.5575

=

136578 ∗
(
TCj ∗ fj ∗

LHV bm
j

LHV coal
j

∗ βj
1− βj

)0.5575

.

The annual cost of biomass handling is estimated as follows:

IHj = 55780 ∗
(

M bm
j

M coal
j −∇M coal

j

∗ TCj ∗ fj ∗
LHV bm

j

LHV coal
j

)0.9554

=

55780 ∗
(
TCj ∗ fj ∗

LHV bm
j

LHV coal
j

∗ βj
1− βj

)0.9554

.

The annual cost of compressors and dryers is estimated as follows:

ICD
j = 13646 ∗

(
M bm

j

M coal
j −∇M coal

j

∗ TCj ∗ fj ∗
LHV bm

j

LHV coal
j

)0.5575

=

13646 ∗
(
TCj ∗ fj ∗

LHV bm
j

LHV coal
j

∗ βj
1− βj

)0.5575

.

Let, Isj = 136578∗
(
TCj ∗ fj ∗

LHV bm
j

LHV coal
j

)0.9554

, Ihj = 55780∗
(
TCj ∗ fj ∗

LHV bm
j

LHV coal
j

)0.9554

,

and Icdj = 13646 ∗
(
TCj ∗ fj ∗

LHV bm
j

LHV coal
j

)0.5575

.
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The total capital investment costs in plant j when βj ≥ 4% are:

ICAP
j = ISj +IHj +ICD

j = Isj

(
βj

1− βj

)0.5575

+Ihj

(
βj

1− βj

)0.9554

+Icdj

(
βj

1− βj

)
.0.5575 (2.6)

Operating Costs:

Operating costs consist of the cost of purchasing and transporting biomass. Let cbmi

denote the unit purchase cost of biomass (in $/ton) from supplier i, and, let S denote the

set of biomass suppliers. Then, the total biomass purchasing cost at plant j is equal to

∑
i∈S cbmi ∗M bm

j .

Transportation costs consist of the trucking costs necessary to deliver biomass to

coal plants. We assume that truck shipments of biomass are delivered by third party service

providers who charge a fixed $ amount per ton of biomass shipped. The unit delivery cost

from supplier i to plant j is denoted by cij . The total biomass transportation costs of plant

j are equal to
∑

i∈S cijM
bm
j .

Savings:

Savings resulted from the PTC of 1.1¢ per KWh of renewable electricity, and from

the displacement of ∇M coal
j tons of coal.

Savings due to the PTC are calculated as follows:

Stax
j = σt

j ∗M bm
j , (2.7)

where, σt
j = 11 ∗ LHV bm

j

Cwb .

Savings due to coal displacement are calculated as follows:

Sp
j = ccoalj ∗ (∇M coal

j ) = ccoalj ∗
(
M bm

j ∗
LHV bm

j

LHV coal
j

)
= σp

j ∗M bm
j , (2.8)

where, σp
j = ccoalj ∗ LHV bm

j

LHV coal
j

. Here ccoalj is the door price of coal (in $/ton). This cost includes

purchasing and transportation costs.
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2.4 A Mixed Integer Nonlinear Programming Formulation

This section presents a nonlinear problem formulation which identifies co-firing

strategies that optimize the total profits of coal-fired power plants which share the same

regional biomass resources. The model presented is a nonlinear mixed-integer program. In

the following sections we present a Lagrangean relaxation algorithm that generates upper

bounds for the non-linear model; as well as two linear approximation that provide feasible

solutions to the nonlinear model.

Let Xij be a decision variable which represents the amount of biomass (in tons)

delivered annually from supplier i to coal plant j. Let Bj be a decision variable which

represents the percentage of coal displaced in plant j. Let C denote the set of coal plants,

and S denote the set of suppliers in the supply chain. Then, the amount of biomass used

in plant j can be represented as

M bm
j =

∑

i∈S
Xij .

We use Equation (2.4) to derive the following expression which represents the

amount of biomass used as a function of the decision variables declared.

∑

i∈S
Xij =

(
1

1/Bj − αj

)
∗
(

ρbj

ρbj − 0.0044B2
j − 0.0055

)
∗M coal

j . (2.9)

We express the savings from biomass co-fire at plant j as a function of these decision

variables as follows:
∑

i∈S
(σp

j + σt
j)Xij .

Biomass purchasing costs at plant j are equal to

∑

i∈S
cbmi Xij .
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Truck transportation costs at plant j are equal to

∑

i∈S
cijXij.

As described in Section 2.3.2, the functions used to estimate investment costs for

Bj% < 4% are different from the functions used when Bj% ≥ 4%. In order to capture these

differences in our model, we introduce the binary decision variables Yj, and define them as

follows:

Yj =





1 if Bj ≤ 0.04

0 if Bj > 0.04

We linearize the relationship between Yj and Bj using the following equations.

Bj ≤ 0.04 +M(1− Yj)

Bj > 0.04 ∗ (1− Yj)

We can now express the investment costs of plant j as:

Icapj ∗
(

Bj

1−Bj

)
Yj +

(
Isj + Icdj

)( Bj

1−Bj

)0.5575

(1− Yj) + Ihj ∗
(

Bj

1−Bj

)0.9554

(1− Yj) .

The following is the nonlinear mixed-integer programming formulation for this prob-

lem which we will be referring to as formulation (P).

Maximize : ZP (X,Y,B) =
∑

j∈C

(
σp
j + σt

j

)(∑

i∈S
Xij

)
−
∑

i∈S

∑

j∈C
(cij + cbmi )Xij−

−
∑

j∈C
Icapj

(
Bj

1−Bj

)
Yj −

∑

j∈C
Ihj

(
Bj

1−Bj

)0.9554

(1− Yj)−

−
∑

j∈C

(
Isj + Icdj

)( Bj

1−Bj

)0.5575

(1− Yj)
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Subject to:

∑

j∈C
Xij ≤ si ∀i ∈ S, (2.10)

∑

i∈S
Xij ≤

(M coal
j ∗ ρbj)

(1/Bj − αj)(ρbj − 0.0044B2
j − 0.0055)

∀j ∈ C, (2.11)

Bj ≤ 0.04 +M(1− Yj) ∀j ∈ C, (2.12)

Bj > 0.04(1 − Yj) ∀j ∈ C, (2.13)

Xij ∈ R+ ∀i ∈ S, j ∈ C (2.14)

Bj ∈ [0, 1] ∀j ∈ C. (2.15)

Yj ∈ {0, 1} ∀j ∈ C. (2.16)

The objective function maximizes the benefits of co-firing across all j ∈ C. Con-

straints (4.1) indicate that the biomass delivered by supplier i is limited by its availability

(si). Constraints (4.3) represent the amount of biomass required in a plant as a function

of plant capacity, plant efficiency and as a function of the percentage of biomass co-fired.

Constraints (2.12) and (2.13) provide a linear representation of the relationship between the

decision variables Bj and Yj. Constraints (2.14) are the non-negativity constrains, (2.15)

are the boundary constraints, and (2.16) are the binary constraints.

2.5 Generating Upper Bounds via a Lagrangean Relaxation

Algorithm

In this section we present a Lagrangean relaxation algorithm that generates upper

bounds for model (P). This algorithm relaxes constraints (4.1). The Lagrangean relaxation

model is:

Maximize : ZP (λ) =
∑

i∈S

∑

j∈C
(cij − λi)Xij +

∑

i∈S
siλi −

∑

j∈C
Icapj

(
Bj

1−Bj

)
Yj
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−
∑

j∈C
Ihj

(
Bj

1−Bj

)0.9554

(1− Yj)−
∑

j∈C

(
Isj + Icdj

)( Bj

1−Bj

)0.5575

(1− Yj)

Subject to: (4.3) to (2.16)

Where, c̄ij = σp
j + σt

j − cbmi − cij . The Lagrangean dual (LD) problem is: minλ≥0ZP (λ).

The Lagrangean relaxation model ZP (λ) can be decomposed into |C| single plant

problems. We refer to the single plant problems as subproblems (SP)j . The following is

the corresponding problem formulation.

Maximize : ZSPj(X,Y,B) =
∑

i∈S
ciXi − Icap

(
B

1−B

)
Y

−Ih
(

B

1−B

)0.9554

(1− Y )−
(
Is + Icd

)( B

1−B

)0.5575

(1− Y )

Subject to:

Xi ≤ si ∀i ∈ S (2.17)

∑

i∈S
Xij ≤

(M coal
j ∗ ρbj)

(1/Bj − αj)(ρbj − 0.0044B2
j − 0.0055)

(2.18)

B ≤ 0.04 +M(1− Y ) (2.19)

B > 0.04(1 − Y ) (2.20)

Xi ∈ R+ ∀i ∈ S (2.21)

B ∈ [0, 1] (2.22)

Y ∈ {0, 1} (2.23)

Constraints (2.17) are valid inequalities since each feasible solution to the single

plant problem (SP)j meets these supply limitation constraints. The single plant problem

can further be decomposed into three sub-problems. Subproblem 1 assumes B∗ ∈ [0, 0.04],

subproblem 2 assumes B∗ ∈ (0.04, 0.221], and subproblem 3 assumes B∗ ∈ (0.221, 0.5].

Subproblem 1:

Maximize : Z(X,B) =
∑

i∈S
ciXi − Icap

(
B

1−B

)
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Subject to: (2.17), (2.18), (2.21)

B ∈ [0, 0.04]

Subproblem 2:

Maximize : Z(X,B) =
∑

i∈S
ciXi − Ih

(
B

1−B

)0.9554

−
(
Is + Icd

)( B

1−B

)0.5575

Subject to: (2.17), (2.18), (2.21)

B ∈ (0.040.221]

Subproblem 3:

Maximize : Z(X,B) =
∑

i∈S
ciXi − Ih

(
B

1−B

)0.9554

−
(
Is + Icd

)( B

1−B

)0.5575

Subject to: (2.17), (2.18), (2.21)

B ∈ (0.2210.5]

These subproblems are easy and can be solved by inspection in polynomial time.

The corresponding algorithm is presented in Table 4.

Theorem 1 In an optimal solution X∗ = {X∗
1 ,X

∗
2 , . . . ,X

∗
l } to the single plant problem, at

most one of the suppliers’ is used partially. That means, X∗
i = si, ∀i ∈ S∗/k; X∗

k = γ; and

X∗
i = 0 for i /∈ S∗. Where, S∗ is the set of suppliers selected in the optimal solution. (See

the proof in Appendix A.)

Theorem 2 The special case of problem (P) -when there is a single plant in the supply

chain- can be solved to optimality via an O(|S|log(|S|)) algorithm, where |S| represents the

number of suppliers in the supply chain. (See the proof in Appendix A.)
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The algorithm that solves the single plant problem starts by sorting the suppliers in

a decreasing order of ci. Without loss of generality, we assume that ci > 0 for i ∈ S. Let S∗

denote the set of suppliers selected in an optimal solution. Initially S∗ is empty. We start

by finding the B∗
1 that maximizes Z(X,B) for B ∈ [0, 0.04]. Next, we find B∗

2 that maxi-

mizes Z(X,B) for B ∈ (0.04, 0.221], and B∗
3 that maximizes Z(X,B) for B ∈ (0.221, 0.5].

Therefore, the optimal solution to this problem is B∗ = argmax{Z(B∗
1),Z(B∗

2),Z(B∗
3)}.

Recall that, in an optimal solution constraints (2.18) are binding. Thus, we can express the

optimal objective function value as a function of B only.

Let’s show how we find B∗
1 . We start with supplier 1 and calculate Z(B1). If

Z(B1) > 0, then S∗ = S∗⋃ 1. We add supplier i to S∗ as long as the following holds

true ZZ(Bi−1) < Z(Bi) > 0. Let supplier j be such that Z(Bj−2) < Z(Bj−1) > Z(Bj).

This implies that at some B∗ ∈ [Bj−1, Bj ] function Z(B) reached its maximum. Since the

slope of Z(B) could change its sign at most twice in the interval [Bj−1, Bj ], and Z(Bj−1) >

Z(Bj), that means, within this interval, the slope increased from Bj−1 to B ≤ Bj , and

then, decreased from B to Bj . This implies that there is at most one maximum within

this interval. We use the Golden Search algorithm to identify B∗ which maximized Z(B)

(Luenberger and Ye 2008). The Golden Search algorithm will be used at most three times,

ones for each interval [0, 0.04], [0.04, 0.221), (0.221, 0.5].

Figure 12 outlines the Lagrangean relaxation algorithm. In each iteration of this

algorithm |C| single plant problems are solved. These solutions are used to update the

upper bound (UB). The lower bound is found by solving model (Q) (see Section 2.6.1).

We employ the subgradient optimization method to solve the Lagrangean dual problem

(LD) (Nemhauser and Wolsey 1988) and update the Lagrangean multipliers λi. We use the

following equation:

λn
i = λn−1

i + un(si −
∑

j

Xn
ij),

where un = ξn(UB−LB)
∑

i∈S(si−
∑

j Xij)
. The parameter ξ ∈ (0; 2] is reduced if the upper bound fails

to improve after a fixed number of iterations. The algorithm stops if one of the following
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conditions is satisfied: (i) the error gap (ǫ =
(
UB−LB

LB

)
∗ 100) is less than 1%, or (ii) the

number of iterations reaches a pre-specified bound.

2.6 Generating Lower Bounds via Linear Approximation Al-

gorithms

2.6.1 A Linear Mixed Integer Problem Formulation

Let’s assume that plant j decides to use biomass to displace coal at a fix rate of

βj = 1%, 2%, 3% etc. Without loss of generality, we assume that this plant would pursue

a single coal displacement strategy, and therefore, would select a single value of βj . We

denote the finite set of all the values that βj can potentially take by L. Let l = 1, . . . , |L|

index this set, and let Ll denote the l−the element of this set. We declare Ylj to be a binary

variable which takes the value 1 if facility j displaces Ll = βj% coal, and takes the value 0

otherwise.

For a given value of βj , the amount of biomass needed at plant j is constant and

is calculated using equation (2.4). We denote this amount by M bm
lj . The total amount of

biomass required at plant j is equal to:

M bm
j =

∑

l∈L
M bm

lj Ylj. (2.24)

Investment costs also depend on the value of βj . For a given value of βj these costs

are fixed. Thus, we use equation (2.5) to calculate investment costs when βj ≤ 0.04. For

βj > 0.04, we calculate investment costs using equation (2.6). Let Ilj denote investment

costs at plant j for a given value of βj . The total investment costs are equal to

∑

l∈L

∑

j∈C
IljYlj. (2.25)

The following is a linear mixed integer programming formulation for problem (P)

25



which we will be referring to as formulation (Q).

Maximize : ZQ(X,Y ) =
∑

i∈S

∑

j∈C
c̄ijXij −

∑

l∈L

∑

j∈C
IljYlj

Subject to:

∑

j∈C
Xij ≤ si ∀i ∈ S, (2.26)

∑

l∈L
Ylj ≤ 1 ∀j ∈ C, (2.27)

∑

i∈S
Xij ≤

∑

l∈L
M bm

lj Ylj j ∈ C, (2.28)

Xij ∈ R+ ∀i ∈ S, j ∈ C (2.29)

Ylj ∈ {0, 1} ∀l ∈ L,∀j ∈ C (2.30)

The objective function maximizes the benefits of co-firing across all j ∈ C. Con-

straint (2.27) limits the number of co-firing strategies adopted by a coal plant to one. Con-

straints (2.28) set the upper bound on the amount of biomass requirements based on the

co-firing strategy selected. (2.29) and (2.30) are the non-negativity and binary constraints.

Proposition 1: A feasible solution to problem (Q) is feasible to the non-linear

problem (P); and the objective function value of (Q) is a lower bound for problem (P). (See

the proof in Appendix A.)

Theorem 3 As |L| approaches infinity, an optimal solution to (Q) is optimal to (P) with

probability 1. (See proof in Appendix A.)

2.6.2 A Linear Approximation of Model (P)

Linearizing constraints (4.3):

The right hand side of constraints (4.3) are nonlinear functions. Let fj =
(ρbj∗Bj)

(1−αj∗Bj)(ρbj−0.0044B2

j−0.0055)
.
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Thus, these constraints can be expressed as:

∑

i∈S
Xij ≤ M coal

j ∗ fj ∀j ∈ C.

Proposition 2:

Bj ≤
1

M coal
j

∑

i∈S
Xij ≤ fj ≤ (Bj + aj) ∀j ∈ C.

Where, aj =
0.5(ρbj−(1−0.5αj)(ρbj−0.0066))

(1−0.5αj )(ρbj−0.0066)
(See proof in Appendix A).

Corollary 1: Let (LR) be the following linear approximation of problem (P).

Maximize : ZP (X,Y,B)

Subject to: (4.1), (2.12) to (2.16)

M coal
j ∗Bj ≤∑i∈S Xij ≤ M coal

j ∗ (Bj + aj) ∀j ∈ C. (2.31)

Problem (LR) is a relaxation of (P). The objective function value of (LR) is an upper

bound for (P).

On addition to constraints (2.31), we develop the linear function f j = aj ∗ Bj + bj

which is such that:

∑

i∈S
Xij ≤ M coal

j ∗ f j ≤ M coal
j ∗ fj ∀j ∈ C.

Corollary 2: Let (LA) be the following linear approximation of problem (P).

Maximize : ZP (X,Y,B)

Subject to: (4.1), (2.12) to (2.16)

∑

i∈S
Xij ≤ M coal

j ∗ f j ∀j ∈ C. (2.32)

Constraints (2.32) are an inner approximation of (4.3). A solution to problem (LA) is

27



feasible for (P). The objective function value of (LA) is a lower bound for (P).

Linearizing the objective function :

For Bj ∈ [0, 0.5], the following nonlinear terms in the objective function, f1
j =

(
Bj

1−Bj

)
is convex for Bj ∈ [0, 0.5], and f2

j =
(

Bj

1−Bj

)9554
is convex for Bj ∈ [0.04, 0.5] (see

Propositions 6 and 7). The nonlinear term f3
j =

(
Bj

1−Bj

)0.5575
is concave for Bj ∈ [0, 0.22]

and convex for Bj ∈ (0.22, 0.5] (see Proposition 8). For each of these three terms, we develop

three linear approximations, one that overestimates the function (an outer approximation),

one that underestimates the function (an inner approximation), and one that minimizes the

squared error (fit line). Let f
oi

j = aoij ∗Bj + boij be the outer approximation line of the i-th

term (i = 1,2,3) for each j ∈ C. Let f
ui
j = auij ∗Bj+buij be the inner approximation line and

f
fi

j = afij ∗Bj+bfij the fit line. By substituting the non-linear terms in the objective function

of (P), with the outer approximation lines we get the following, partial linearization of the

objective function of (P).

Maximize :
∑

i∈S

∑

j∈C
cijXij −

∑

j∈C
Icapj

(
ao1j Bj + bo1j

)
Yj −

∑

j∈C
Ihj
(
ao2j Bj + bo2j

)
(1− Yj)−

−
∑

j∈C

(
Isj + Icdj

) (
ao3j Bj + bo3j

)
(1− Yj)

Rearranging the terms in the objective function we have:

Maximize :
∑

j∈C

(∑

i∈S
cijXij − aojBj − b

o

jBjYj − d
o

jYj − eoj

)
.

Where, aoj = Ihj a
o2
j +

(
Isj + Icdj

)
ao3j ; b

o

j = Icapj ao1j − Ihj a
o2
j −

(
Isj + Icdj

)
ao3j ; d

o

j = Icapj bo1j −

Ihj b
o2
j −

(
Isj + Icdj

)
bo3j ; and eoj = Ihj b

o2
j +

(
Isj + Icdj

)
bo3j . Figure 2.1 presents the liner ap-

proximations of the objective function and constraints (4.3).

To get a fully linear objective function we introduce Zj = BjYj. Thus,

Zj =





Bj if Yj = 1

0 if Yj = 0
(2.33)
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Figure 2.1: Linear Approximation Schemes

To represent this relationship using linear functions, we introduce additional vari-

ables. Let Y1
j and Y2

j be binary variables, and let w1
j , w

2
j , w

3
j be continuous variables in

[0, 1]. Let (LAu) be the following linear approximation of problem (P). Equations (2.38)

to (2.45) linearize the relationship between Zj nd Bj .

Maximize : ZLAu

=
∑

j∈C

(∑

i∈S
cijXij − aujBj − b

u
jZj − d

u
j Yj − euj

)
.
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∑

j∈C
Xij ≤ si ∀i ∈ S (2.34)

∑

i∈S
Xij ≤ M coal

j ∗ f j ∀j ∈ C (2.35)

Bj ≤ 0.04 +M(1− Yj) ∀j ∈ C (2.36)

Bj > 0.04(1 − Yj) ∀j ∈ C (2.37)

Y1
j + Y2

j = 1 ∀j ∈ C (2.38)

w1
j ≤ Y1

j ∀j ∈ C (2.39)

w2
j + w3

j = Y2
j ∀j ∈ C (2.40)

0.04w1
j = Zj ∀j ∈ C (2.41)

0.04w1
j + 0.04w2

j + 0.5w3
j = Bj ∀j ∈ C (2.42)

w1
j , w

2
j , w

3
j , Bj ∈ [0, 1] ∀j ∈ C (2.43)

Y1
j ,Y2

j , Yj ∈ {0, 1} ∀j ∈ C (2.44)

Xij ∈ R+ ∀i ∈ S, j ∈ C (2.45)

Let (LAo) be the following liner approximation of problem (P).

Maximize : ZLAo

=
∑

j∈C

(∑

i∈S
cijXij − aojBj − b

o

jZj − d
o

jYj − eoj

)
.

Subject to: (2.34) to (2.45).

Let (LAf ) be the following liner approximation of problem (P).

Maximize : ZLAf

=
∑

j∈C

(∑

i∈S
cijXij − afjBj − b

f
jZj − d

f
j Yj − efj

)
.

Subject to: (2.34) to (2.45).

Corollary 3: A solution of problem (LAu) is feasible for problem (P).

Corollary 4: A solution of problem (LAo) is feasible for problem (P).

Corollary 5: A solution of problem (LAf ) is feasible for problem (P).
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Let (LRu) be the following liner approximation of problem (P).

Maximize : ZLRu

=
∑

j∈C

(∑

i∈S
cijXij − aujBj − b

u

jZj − d
u

j Yj − euj

)
.

Subject to: (2.34), (2.31), (2.36) to (2.45).

Proposition 3: Problem (LRu) is a relaxation of problem (P), thus its objective

function value is an upper bound for (P).

Proof: Problem (LRu) is a relaxation of (P) since the feasible region of (LRu) contains the

feasible region of (P). This is due to replacing constraints (2.35) with their corresponding

outer approximation, constraints (2.31).

2.7 Numerical Analysis

We develop a case study in order to evaluate the impact of biomass co-firing on

the production of renewable electricity. The case study is focused on the following 9 states

located in the southeast: Alabama, Arkansas, Florida, Georgia, Louisiana, Mississippi,

North Carolina, South Carolina and Tennessee. We focus on this region since it is rich with

biomass. Numerical analysis is also used to evaluate the performance of the algorithms

proposed.

2.7.1 Data Description

2.7.1.1 Biomass supply:

Biomass availability data by state and county is extracted from the Knowledge

Discovery Framework (KDF) database, an outcome of the US Billion Ton Study led by

the Oak Ridge National Laboratory (KDF Accessed 12.10.2013). This database provides

the amount of biomass available at the county level in the form of forest products, forest

residues, agricultural products, agricultural residues, energy plants, etc. The database

provides the amount of biomass available at different market prices for the 2012 to 2030
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period.

From this data set we extracted and used data about forest products and residues.

We focus the analysis on these products only, because, research has shown that these prod-

ucts are low in sulfur, as well as, chemicals such as, chlorine, potassium and nitrogen. These

chemicals when burned cause corrosion and consequently impact the lifetime of burners.

Thus, the chances are these will be the types of biomass used by coal plants.

2.7.1.2 Coal plants:

The data about coal-fired power plant locations, nameplate capacities, types of

coal used, utilization rates, and annual heat input rates, is collected from the US Energy

Information Administration (2011). This database presents a total of 1,400 coal-fired power

plants across the USA, with an overall nameplate capacity of 343,757 MW.

Table 2.1 summarizes the data about biomass available and coal plants in Southeast

USA. The amounts of biomass listed represent the available biomass at $200/ton in 2014

based on KDF (Accessed 12.10.2013).

Table 2.1: Distribution of biomass and coal plants in Southeast USA

Biomass available Number of
State (in tons) coal plants

AL 5,004,000 11
AR 4,505,800 4
FL 2,878,500 15
GA 6,892,500 14
LA 5,044,100 4
MS 5,772,200 5
NC 5,755,400 25
SC 3,666,300 16
TN 2,872,500 10
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2.7.1.3 Truck transportation costs:

In order to estimate costs for truck transportation of biomass, we use the data

provided by Searcy et al. (2007). They provide two cost components which are the distance

variable cost (DVC) and distance fixed cost (DFC). The distance variable cost includes the

fuel and labor costs. The distance fixed cost includes the cost of loading and unloading

a truck. These costs were provided for different types of biomass, such as, woodchips,

straw and stover. We used the data provided for woodchips. The DVC of woodchips is

estimated $0.112/(tons mile) and DFC is estimated $3.01/(tons). Woodchips are shipped

using truck with a capacity of 40 tons. This data is used as follows in order to calculate

cij($/ton) = DFC +DV C ∗ dij , where dij represents the distance between supplier i and

plant j.

2.7.2 Experimental Results

The nonlinear model (P) is solved using GAMS/BONMIN solver. The linear ap-

proximation models are solved using Version 20141128 of AMPL an GUROBI 6.0.0. solver.

The experiments are completed using a Dell personal computer with Intel(R) Core(TM)

i5-4300U CPU @ 1.90GHz 2.50 GHz; and 8.00 GB of RAM. The following summarizes our

experimental results.

2.7.2.1 Evaluating the quality of the upper and lower bounds:

In order to test the performance of the upper and lower bounds proposed we ran-

domly generate a number of problems. We tried solving model (P) using the overall dataset.

However, BONMIN ran out of memory without finding a feasible solution due to the prob-

lem size. Thus, we solved model (P) using the data from Alabama. Next, we changed one

problem parameter at a time and generated 8 different problems. For example, in Problems

1 and 2, biomass supply for each county in Alabama is generated randomly based on the

intervals presented in the Table 2.2. For each problem we generated 5 random instances,

and the results presented are the averages overall problem instances. The rest of problem
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parameters remain the same as the ones described in Section 2.7.1.

Table 2.2: Summary of problem parameters

Problem Nr. Parameter Random interval

1 Biomass supply (si): low [0,10000]
2 Biomass supply (si): high [0,40000]
3 Biomass cost (cbmi ): low [0,100]
4 Biomass cost (cbmi ): high [0,500]
5 Coal price (σp

j ): low [10,50]

6 Coal price (σp
j ): high [50,200]

7 Transportation cost (cij): low [0,80]
8 Transportation cost (cij): high [30,100]

Table 2.3 summarizes the results of the Lagrangean relaxation algorithm. The error

gap =
(
UB−LB

LB

)
∗ 100. The quality of the upper bounds is very good. The maximum error

bound is less than 4%.

Table 2.3: Upper bounds via Lagrangean relaxation

Lagr. Relaxation BONMIN

Problem Nr. Error CPU CPU

(%) (sec) (sec)

1 0.78 671 368
2 0.01 49 410
3 1.28 813 578
4 3.69 911 128
5 0.00 70 170
6 0.00 33 96
7 0.00 79 439
8 0.36 109 502

We solved model (P) and its linear approximation model (Q) in order to evaluate

the quality of the solutions provided by the linear approximation as a function of problem

size (|L|). This analysis gave us an indication of what would be a good size for set L.

We tried solving model (P) using the overall dataset. Initially, we solved model (P) using

the data from Alabama. Next, we solved model (Q) several times using the same dataset.

Each time we changed |L|. We focus on strategies for which the value of Bj is between

34



1% and 50% which are appropriate strategies for direct co-firing. As we increase |L|, we

explore additional co-firing strategies within this range. For example, when | L |= 3, the

only strategies considered are Bj = 0%, 25%, and 50%. When | L |= 51, then strategies

considered are Bj = 0%, 1%, 2%, . . . , 49%, 50%.

Figure 2.2: The error gap between ZP and ZQ as a function of |L|

Figure 2.2 presents the relationship between the size of |L| and the relative error gap

between the optimal solution to models (Q) and (P) when biomass market price is fixed at

$20/ton, $50/ton and $120/ton. The error gap is calculated as follows:

Error gap =
(ZP −ZQ)

ZP
∗ 100.

As expected, the relative error gap approaches zero as we increase the size of L. The results

of this graph indicate that the error gap is smaller than 0.1 when the size of L is smaller

than 25. In our numerical analysis we use |L| = 200 to ensure high quality solutions from

the approximation.

Table 2.4 summarizes the running time of GUROBI when solving model (Q) and

BONMIN when solving model (P). The running time of GUROBI increases only slightly

due to the increase in problem size.

Table 2.5 summarizes the results from solving the linear approximation models pre-

sented in Sections 2.6.1 and 2.6.2. As indicated by Proposition 1 and Corollaries 2 to 5, by
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Table 2.4: Solution times in cpu seconds.

Solution time
|L| P Q

297
5 4.2
10 3.9
20 4.7
25 4.3
50 4.8
100 5.2
200 7.2

solving problems (Q), (LA), (LAo), (LAu) and (LAf ) we generate feasible solutions for

problem (P). We use these solutions to calculate lower bounds for (P). Based on these nu-

merical results, the time it took to solve problem (P) using BONMIN is order of magnitude

higher than the time required to solve problem (Q). The time required to solve problems

(LAo), (LAu) and (LAf ) is clearly the best, however, the quality of the corresponding

solutions is poor.

Table 2.5: Comparing the performance of the lower bounds for problem (P).

Prob. BONMIN (Q) (LA) (LAu) (LAo) (LAf )
Nr. CPU Error CPU Error CPU Error CPU Error CPU Error CPU

(sec) (%) (sec) (%) (sec) (%) (sec) (%) (sec) (%) (sec)

1 368.00 0.00∗ 7.96 10.40 454.60 13.69 0.61 11.35 0.45 30.79 0.17
2 410.40 0.00 6.64 1.09 255.80 5.08 0.54 5.08 0.22 7.41 0.16
3 578.60 0.00 8.00 2.93 325.80 8.48 0.83 3.45 0.63 8.77 0.21
4 128.20 0.00 6.40 22.71 147.00 23.77 0.23 25.13 0.19 107.51 0.07
5 170.60 0.00 7.44 2.04 112.00 8.45 0.25 4.20 0.18 7.62 0.10
6 95.80 0.00 6.92 1.11 115.80 1.49 0.34 1.39 0.28 2.80 0.17
7 439.00 0.09∗ 8.23 1.05 220.00 2.12 0.29 1.58 0.14 3.91 0.14
8 502.33 0.00∗ 9.00 3.14 295.00 6.70 0.22 5.36 0.17 12.58 0.08

*The quality of solutions from solving model (Q) are slightly better than solutions found from BONMIN,

although BONMIN reports 0% error gap for these solutions.
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2.7.2.2 Sensitivity analysis:

Table 2.6 presents the total amount of biomass used by state as biomass price

increases. Table 2.7 presents the total profits by state as biomass price increases. In order

to generate these results we solved model (Q) for different values of biomass market price.

Note that, not all of the available biomass is sold at the highest price, only the additional

amount that becomes available at that price. Increasing the price positively impacts the

amount of biomass that can be used for production of renewable energy. This is mainly

because the amount of biomass made available to and used by power plants increases as

plants are willing to pay a higher price.

Table 2.6: The total biomass used at different levels of biomass market price

Biomass price Total biomass used (in mill tons)
(in $/ton) AL AR FL GA LA MS NC SC TN

20 1.40 0.04 1.15 1.75 0.44 1.62 1.81 0.73 1.45
40 4.27 0.85 4.40 5.22 1.16 3.32 4.87 3.30 3.97
60 4.48 0.90 4.69 5.43 1.17 3.36 5.29 3.29 4.10
80 4.60 0.90 4.73 5.51 1.17 3.36 5.35 3.33 4.13
100 4.82 0.90 4.73 5.51 1.17 3.36 5.35 3.33 4.13
140 4.82 0.90 4.73 5.51 1.17 3.36 5.35 3.33 4.13
200 4.82 0.90 4.73 5.51 1.17 3.36 5.35 3.33 4.13

The results of Figures 2.6 and 2.7 indicate that, the amount of biomass used depends

on the number of coal plants, rather than biomass availability within the state. For example,

North Carolina, South Carolina, Florida, Georgia and Tennessee use most of the biomass

available in the region. This is because the number of coal plants in these states varies

between 10 and 25. The number of coal plants in the remaining states in Southeast is

smaller (see Table 2.1). Therefore, these states become biomass suppliers to states that

have more coal plants.

Let consider the case of Florida. Biomass availability in Florida (at the highest

market price of $200/ton) is close to 2.88 million tons. However, the amount of biomass

used in Florida, based on our numerical results, is 4.73 million tons at a market price of
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$80/ton. The corresponding system wide profits are $213 million. In this case, although

biomass is produced in other states within the region, the benefits of the PTC will be

collected by Florida. Similarly, Tennessee produces only 2.87 million tons of biomass. Based

on our model, Tennessee would use up to 4.13 million tons of biomass and generate up to

$152 million in profits mainly due to PTC. On the other side, states such as Arkansas and

Louisiana that are rich in biomass (over 5 million tons of biomass available each) would

make a small profit of $0.9 million and $1.17 million correspondingly.

Table 2.7: Total profits at different levels of biomass market price

Biomass price Total profits (in mill $)
in ($/ton) AL AR FL GA LA MS NC SC TN

20 172.93 0.98 65.94 100.28 12.68 67.64 104.58 45.69 67.36
40 376.20 8.90 206.48 247.77 22.57 108.54 235.01 160.27 150.62
60 378.73 9.16 212.80 251.60 23.30 108.57 247.54 155.99 152.65
80 378.67 9.22 213.21 252.27 23.54 108.53 247.07 156.86 152.41
100 378.81 9.16 213.21 252.27 23.51 108.85 247.21 156.86 151.90
140 378.74 9.23 213.08 252.41 23.50 108.90 247.32 156.49 152.12
200 379.35 9.16 213.06 252.42 23.81 108.04 247.48 156.33 152.12

The results of Table 2.7 indicate that biomass usage and total profits remain the

same as the market price increases beyond $80/ton. Using the additional biomass which

becomes available at the higher market price decreases profits. This is because the additional

tax savings are smaller than the additional purchase, transportation and investment costs

necessary to use the additional biomass.

Figure 2.3 presents the relationship that exists between biomass market price and total

profits, tax savings, biomass used, and investment and logistics costs. The PTC is fixed

at 1.1 cents per kilowatt-hour. As the market price of biomass increases from $20/ton to

$80/ton, the amount of biomass available and overall system profits increase. The rate

of increase of profits is higher when the market price increases from $20 to $40/ton. The

amount of biomass used and corresponding profits do not change at market prices higher
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Figure 2.3: Analyzing the impact of biomass market price on average profits, costs and
biomass usage in Southeast USA

that $80/ton since the additional tax savings are smaller than the additional purchase,

transportation and investment costs.

Figure 2.4 depicts the relationship between PTC and total profits, tax savings,

biomass used, and investment and logistics costs in Southeast US as well as, in Arkansas,

Mississippi and South Carolina. The market price of biomass here is fixed at $100/ton.

Results indicate that, when PTC is equal to zero, the average benefits from co-firing biomass

- although small- are positive. Plants find co-firing to be beneficial when PTC is zero, with

the exception of plants located in Arkansas and Louisiana. In Arkansas, coal plants would

use biomass for co-fire when PTC is greater than 0.7 cents per kilowatt-hour (Figure 2.4(b));

and in Louisiana when PTC is greater than 0.2 cents per kilowatt-hour.

The results of Figure 2.4(a) indicate that an increase of PTC from 0 to 1 cent per

kilowatt-hour has a dramatic impact on biomass usage in Southeast. The amount of biomass

used increases 4.8 times. Increasing the PTC from 1 to 2 cents per kilowatt-hour increases

biomass usage by 6%; and increasing PTC from 2 to 3 cents per kilowatt-hour increases

biomass usage by 0.5%. These results indicate that the impact of increasing PTC beyond 2

cents per kilowatt-hour on the total amount of renewable electricity produced in Southeast
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(a) Southeast USA (b) Arkansas

(c) Mississippi (d) South Carolina

Figure 2.4: The relationship between total profits and tax credits

is only marginal. The corresponding increase in total profits is just due to the higher PTC,

and it is not due to increase use of biomass used.

2.8 Summary and Conclusions

Co-firing biomass in coal-fired power plants is a strategy that leads to reduced

greenhouse gas emissions. This chapter presents a mathematical model to evaluate the

impact of biomass co-firing in generating renewable electricity. The model captures the

additional biomass purchasing and transportation costs, plant investment costs, savings

due to PTC, and savings from reducing the amount of coal purchased. The model also

captures the loss in process efficiencies due to using biomass, a product which has lower

heating value as compared to coal. The model proposed is a MINLP, thus, we present a
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linear approximation which is easier to solve. We use numerical analysis to evaluate the

quality of solutions from the linear approximation model.

We develop a case study using data from nine states located in the southeast region

of the US. The data source used are the Knowledge Discovery Framework KDF (Accessed

12.10.2013) and the US Energy Information Administration (2011). These databases pro-

vide information about the available amount of biomass for production of renewable energy

by county and state, at different market prices, during the period 2012 to 2020. The

databases also provide detailed information about the coal-fired power plants in the US.

We used this data and conducted an extensive number of experiments. The following sum-

marizes our main observations:

Observation 1: Tax credits are necessary in order to increase production of renewable energy. The

results of Figure 2.4 indicate that increasing the PTC impacts greatly the production

of renewable electricity. Our numerical results indicate that increasing PTC beyond

2 cents/kilowhat hour has only marginal impacts in increasing renewable energy gen-

eration.

Observation 2: Tax credit should not be “one size fits all”. Instead, tax credits could be a function of

the amount of renewable electricity produced, or plant capacity.

The results of Figure 2.3 indicate that the amount of biomass used increases only

slightly with the increase of biomass market price beyond $80/ton given that PTC

is fixed at 1.1 cents per kilowatt-hour. Since biomass is a bulk product with low

energy density and widely dispersed geographically, collection and transportation costs

are high. For every 1% increase in biomass usage, the corresponding increase of

transportation and collection costs is higher. In order to encourage the production of

renewable energy, it makes sense to design a PTC which is a function of the amount

of biomass used, and consequently, a function of the amount of renewable energy

produced.

Production tax credits based on coal plant capacity are being currently implemented in
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European countries (IEA-ETSAP and IRENA 2013, Boekhoudt and Behrendt 2015).

Typically, the tax credit (such as, the “feed-in tariff” implemented in Austria) is higher

for smaller sized plants. Higher credits allow smaller plants to overcome the burdens

of implementing biomass co-firing.

Observation 3: There is a need for comprehensive tax credit schemes to encourage renewable electricity

production and reduce GHG emissions. Biomass distribution in the US differs by

region, and it does not match the distribution of coal-fired power plants (Figure 2.1).

Therefore, in our case study, some states of Southeast became biomass suppliers to

other states that do currently have a larger number of power plants. Consequently,

states that have the resources to transform biomass to renewable electricity rip the

gains from PTC. Recall that, one of the main reasons of producing renewable energy is

to reduce GHG emissions due to burning of coal. Clearly, when biomass is transported

over state borders, the transportation distances and corresponding GHG emissions do

increase. Further increases of PTC would allow power plants to remain profitable even

if biomass is delivered from suppliers located far away. Thus, decisions related to PTC

size and scheme should be mindful of of the impacts of PTC to GHG emissions due

to co-firing and transportation in the supply chain.
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Notations

Table 2.8: Set Notations

Sets

C the set of coal plants
S the set of biomass suppliers
L the set of potential values of β

Table 2.9: Notations: Decision Variables

Decision Variables

Bj represents the percentage of coal (mass basis) displaced in plant j ∈ C (in %)
Xij represents the amount of biomass transported from supplier i to plant j (in tons)
Yj binary variable that takes the value 1 if β ≤ 4 in plant j ∈ C, and takes the

value 0 otherwise
Ylj binary variable that takes the value 1 if facility j ∈ C displaced Ll = β% coal,

and takes the value 0 otherwise
Zj semi-continuous variable that takes the same value as Bj if Yj = 1 and takes the value 0 if Yj = 0
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Table 2.10: Other Notations

Other Notations

αj is equal to 1− (LHV coal
j /LHV bm

j )

β the percentage of biomass (mass basis) used for cofiring (in %)
βj the percentage of biomass co-fired in plant j ∈ C (in %)
Cwb the conversion factor from MW to BTU/hr (in BTU/(hr*MW)
ccoalj the unit door price of coal (in %/ton)

cbmi the unit purchase cost of biomass from supplier i ∈ S (in $/ton)
cij the unit transportation cost along arc (i, j) inA (in $/ton)
∇M coal

j the change in the value of M coal
j (in tons)

ELj the efficiency loss of boilers due to co-firing in plant j ∈ C (in %)
fj the utilization rate / capacity factor of plant j ∈ C (in %)
Icapj is equal to (50, 000 ∗ TCj ∗ fj ∗ LHV bm

j )/LHV coal
j

ICAP
j the investment costs in plant j ∈ C (in $)

Isj is equal to Isj = 136578 ∗
(
TCj ∗ fj ∗

LHV bm
j

LHV coal
j

)0.9554

,

ISj the investment necessary for biomass storage in plant j ∈ C (in $)

Ihj is equal to Ihj = 55780 ∗
(
TCj ∗ fj ∗

LHV bm
j

LHV coal
j

)0.9554

,

IHj the investment necessary for biomass handling in plant j ∈ C (in $)

Icdj is equal to Icdj = 13646 ∗
(
TCj ∗ fj ∗

LHV bm
j

LHV coal
j

)0.5575

ICD
j the investment necessary for compressors and dryers in plant j ∈ C (in $)

LHV coal
j the lower heating value of coal used in plant j ∈ C (in BTU/ton)

LHV bm
j the lower heating value of biomass used in plant j ∈ C (in BTU/ton)

M coal
j the amount of coal used in plant j ∈ C (in tons/year)

M bm
j the amount of biomass used in plant j ∈ C (in tons/year)

M a very large number
mmb

lj the amount of biomass necessary to displace l(∈ L)% of coal in plant j ∈ C (in tons)

OHj the number of operating hours in plant j ∈ C (in hours/year)
Q0

j the initial (before co-firing) annual heating input of plant j ∈ C (in MW)

Qj the annual heating input after co-firing of plant j ∈ C (in MW)
ρ0j the initial (before co-firing) efficiency rate of plant j ∈ C (in %)

ρj the efficiency rate after co-firing of plant j ∈ C (in %)
ρbj the efficiency rate of boilers in plant j ∈ C (in %)

ρrpj the efficiency rate of the rest (without boilers) of plant j ∈ C (in %)

σp
j is equal to (ccoalj ∗ LHV bm

j

LHV coal
j

)

Sp
j the total savings due to reducing the amount of coal purchased in plant j ∈ C,

(in $/year)
σt
j is equal to (11 ∗ LHV bm

j )/(Cwb)

Stax
j the total savings due to production tax savings in plant j ∈ C,

(in $/(ton*year))
TCj coal plant j ∈ C nameplate capacity (in MW)44



Chapter 3

Analyzing Tax Incentives for

Producing Renewable Energy by

Biomass Cofiring

3.1 Introduction

Concerns about the impacts of Greenhouse Gas (GHG) emissions on the environ-

ment, human health, and the worldwide economy brought many nations leaders together

during the 2015 United Nations (UN) Climate Change Conference in Paris (2015). UN

members reached an agreement, committing to control GHG emissions. In the U.S., coal

is the single largest contributor to GHG emissions, totaling as much as 28% of the GHG

released into the environment (U.S. Environmental Protection Agency (EPA), 2017). This

chapter focuses on tax incentives for biomass cofiring, the direct co-combustion of biomass

with coal in plants using coal to generate heat and electricity. In the U.S., coal contributes to

71% of the total carbon dioxide (CO2) emissions from the energy sector (U.S. Energy Infor-

mation Administration (EIA), 2015). Among all the GHG-reduction technologies, biomass

cofiring has been shown to be one of the least expensive and relatively easy to implement

(Basua et al. 2011).
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The Clean Power Plan, finalized by the U.S. Environmental Protection Agency in

2015, established CO2 pollution standards for new and existing coal-fired power plants. As

a result, researchers estimated that 17% of coal-fired power plants that fail to comply with

existing regulations may close over the next few years (Bloomberg New Energy Finance

2015). These plant closings would result in job losses and higher electricity prices. While

governmental support mechanisms in European Union (EU) countries offer many incentives

for biomass cofiring, the U.S. is different. At the federal level, the PTC is the only tax

incentive offered to support biomass cofiring. At the state level, regulations such as Re-

newable Portfolio Standards (RPS), mandate that power plants generate more renewable

energy by using sources like biomass.

While many researchers agree that cofiring biomass with coal in power plants is an

option for RPS compliance and a near-term solution for introducing biomass into today’s

renewable energy market, only 40 of the 560 power plants in the U.S. currently do so (Basua

et al. 2011). These installations are typically in the range of 50 MW to 700 MW (a few

units are between 5 and 50 MW) and spread around the Contiguous U.S. (IEA Bioenergy

Task 32, 2017). At least two reasons disincentivize the use of cofiring in power plants:

First, cofiring is not cost effective because the cost of collecting, transporting, and storing

biomass is high, and burning biomass increases slagging and boiler corrosion. Therefore,

overall plant efficiency drops. Second, there are only limited state and federal support for

cofiring. These facts impact the likelihood of power plants to cofire biomass. This is the

reason why many researchers suggest that a comprehensive governmental support system is

needed to make biomass cofiring economically attractive (Smith and Rousaki 2002, Kangas

et al. 2009, McIlveen-Wright et al. 2011, Moiseyev et al. 2014, Montgomery May 2015,

Ekşioğlu et al. 2016).

Indeed, there are other climate policies that lead to GHG emission reductions, such

as, carbon cap, carbon tax, RPS, etc. (Fischer and Newell 2008, Goulder and Schein 2013).

A number of studies indicate that policies such as PTC and RPS, in contrary to a carbon tax

or carbon cap, do not incentivize potentially cheaper GHG emission reductions that could
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be achieved via the use of energy efficient equipment and vehicles, use of cleaner fossil fuels,

and investments in carbon capture and storage. However, by incentivizing biomass usage,

PTC contributes to renewable energy generation, contributes to reductions in agricultural

and forest waste (which would otherwise be landfilled) and contributes in creating economic

value for farmers.

This study develops models that (a) support federal- or state-level design of efficient

tax incentives for biomass cofiring, and (b) optimize the performance of individual plants

corresponding supply chains. These models suggest approaches that policymakers may

use to make the best use of their limited budgets. The optimization models presented are

extensions of resource allocation problems, which provide insights into how to allocate scarce

resources among competing players and achieve the best possible overall system performance

(Katoh et al. 2013). This research identifies federal or state funding as the scarce resource

to be distributed among coal-fired power plants via renewable energy subsidies similar

to the PTC. Depending on the definition of performance used and the conditions under

which optimal performance is achieved, different types of resource allocation models can be

developed. A profit maximization model (max-profit) distributes the resources in such a way

that the total profits of the supply chain is maximized (in the context of welfare economics,

this approach is similar to the utilitarian solution, an allocation of resources that seeks to

maximize the total utility of all individuals (Bertsimas et al. 2011)). Considering the systems

total profit as the efficiency measure, this resource allocation model provides the solution for

a fully efficient system. Such an approach, however, may favor large-capacity plants, which

typically have higher profit margins than their smaller counterparts. A fair distribution

of financial resources among non-cooperative entities is desirable because of political and

social reasons (Crawford 1998). In designing environmental policies, the distributive justice

is particularly important for reducing conflicts and retaining equity (Caney 2009). The

literature reviews reveal that researchers have not agreed upon criteria for defining fairness

(Kumar and Kleinberg 2006, Bertsimas et al. 2011). Some models detailed in the literature

include the max-min fairness (Radunović and le Boudec 2007), the proportional fairness
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(Kelly et al. 1998), and the total equity models (Luss 1999). Attaining fairness often comes

at the price of losing system efficiencies. This efficiency loss can be evaluated by comparing

with the optimal solution of profit maximization model (Section 3.3).

The work in this chapter makes two major contributions to the literature: First,

this research introduces a novel framework to aid the design of governmental tax incentives,

such as the PTC. The resource allocation model proposed identifies how a government

might distribute its budget among power plants that cofire biomass. The max-profit ap-

proach only focuses on maximizing the total profits, but, to balance equity and fairness in

the system, this study proposes policies that can distribute monetary funds to the advantage

of small-capacity plants or plants that generate the most renewable energy. This research

also investigates a budget distribution that maximizes the minimum attainable profit in the

system through a max-min fairness model. Such a scheme is considered to result in the

worst-case degradation of the max-profit objective (Bertsimas et al. 2012). Thus, the max-

profit and max-min schemes provide the efficiency and fairness bounds within which lay the

novel schemes proposed by this research. The resulting resource allocation models are mixed

integer bilinear programs (MIBLP) which are reformulated using McCormick relaxation to

provide efficient solution methods. The second major contribution this chapter presents is

the case study, based on data gathered from the southeastern U.S. The analysis provides

novel insights on the efficiency and fairness of various allocation schemes. For example,

the existing flat PTC maximizes a systems profitability; however, the model results in the

fewest kWh of renewable energy generated. Capacity-based schemes maximize the number

of plants that cofire, and they generate the most kWh of renewable energy. Ratio-based

schemes provide balanced outcomes in terms of profitability and renewable energy gener-

ation. These observations provide helpful insights to policymakers in designing effective

incentive schemes that promote biomass cofiring.
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3.2 Related Work

Our study in this chapter relates to three main streams of literature: techno-

economic studies on biomass cofiring, incentive mechanisms and regulations in renewable

energy, and fairness studies in resource allocation problems.

Previous literature establishes the technical feasibility of biomass and coal co-combustion

in coal-fired power plants (Baxter 2005, Goerndt et al. 2013a, Koppejan and Van Loo 2012).

While most of this research focuses on the techno-economic analysis of cofiring at certain

power plants, a few studies extend the scope by considering biomass supply chain costs

(Roni et al. 2014, Sharma et al. 2013, Ekşioğlu et al. 2015). Studies by Hansson et al.

(2009) and Al-Mansour and Zuwala (2010) demonstrate the potential of biomass cofiring as

an affordable near-term solution to comply with GHG regulations in the EU. Most of the

techno-economic assessments of biomass cofiring suggest that financial support is essential

to encourage existing plants to utilize biomass power (Tharakan et al. 2005, De and Assadi

2009, McIlveen-Wright et al. 2011, Cuellar 2012). Dong (2012) details environmental con-

cerns that providing plants financial incentives for biomass cofiring may lead to increased

use of coal to generate power. However, Lintunen and Kangas (2010) show that cofiring does

not result in significant increase of fossil fuel use, despite the fact that subsidizing biomass

cofiring does use funds that could otherwise be invested in pure renewable technology. In

Chapter 2. we propose an integrated transportation and production planning model that

captures the impacts of biomass cofiring decisions on supply chain costs. In that chapter,

by developing a case study using southeastern U.S. coal plants, we showed that biomass

cofiring in some states is not profitable. Therefore, providing a PTC as low as 0.7g/kWh

could increase power plants efforts to generate renewable energy in their respective regions.

In this chapter we propose a variety of governmental incentives that may increase compa-

nies generating renewable energy via biomass cofiring. The performance of the presented

incentives are evaluated via an extensive numerical analysis based on a fact-based case

study.
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Some papers in sustainable operations management literature address the impacts

of environmental policies and tax incentives on production and operational decisions (Drake

et al. 2016, Krass et al. 2013, Kroes et al. 2012). Works by Garcia et al. (2012), Shrimali and

Baker (2012), Alizamir et al. (2016), Zhou et al. (2011) focus on the design and assessment

of incentive mechanisms that promote renewable energy generation. Kim and L. (2012)

propose an optimization model that helps policymakers identify feed-in tariffs (FIT), which

maximize the incorporation of renewable energy into the regions overall energy supply.

Because of the wide-spread usage and proven effectiveness of FIT (Fouquet and Johansson

2008), this support mechanism has received the most attention in the literature. Wiser

et al. (2007) analyze the efficiency of the PTC applied to companies generating renewable

electricity from wind. A few studies focus on the design and analysis of incentives for

biomass cofiring technolog (Lintunen and Kangas 2010, Kangas et al. 2009, Moiseyev et al.

2014, Aguilar et al. 2012). For example, Moiseyev et al. (2014) analyze the impact of

subsidies and carbon pricing on woody biomass cofiring in EU markets. Luo and Miller

(2013) use a game theoretic approach to design and manage a biofuel supply chain. Their

study develops an optimization model that captures the impact of monetary incentives

that support biofuel producers. In Aguilar et al. (2012), the economic factors influencing

the likelihood of biomass cofiring in the U.S. northern region is investigated. Their study

suggests that state-level renewable energy portfolio standards do not show significant effect

on the adoption of biomass cofiring at coal plants.

Similar to those studies, this work proposes models that help policymakers identify

PTCs that maximize plants efforts to generate renewable energy. In addition, the models

proposed in this work ensure a fair allocation of the PTC among participating plants and

compare these models performance, using an extensive numerical analysis, to determine

their profitability and fairness.

Finally, this research uses a resource allocation modeling framework to design PTC

allocation schemes (Katoh et al. 2013). Very few studies in the literature use resource

allocation models to design support mechanisms for renewable energy systems. However,
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Dai et al. (2014) propose proportional resource allocation models to address how tradable

emission permits can be allocated among a set of entities. Overall, resource allocation

models provide the appropriate setting to aid decision makers in allocating scarce resources

among self-interested parties. These models analyze the efficiency and fairness of different

allocation schemes (Bertsimas et al. 2011, 2012), and this modeling framework has been used

on a broad range of applications in operations management literature, such as healthcare

management (McCoy and Lee 2014, Atasu et al. 2016), supply chain management (Cui

et al. 2007, Wu and Niederhoff 2014), and recycling network design (Gui et al. 2015), among

others. Using a resource allocation model to address profitability and fairness questions will

provide new insights to determining the best ways to incentivize plants generating renewable

energy.

3.3 Problem Description

Consider a supply chain consisting of biomass suppliers and coal-fired power plants.

Plants face the issue of determining whether or not to cofire biomass, and if a plant decides

to cofire, this plant must also decide how much biomass to use. Using coal to produce

energy is cheaper than using biomass because the cost of collecting, transporting, and

storing biomass is high, and biomass cofiring reduces plant efficiency. Consider that the

supply chain is influenced by the policies established by a governmental entity, which faces

a limited budget and the challenge of designing efficient and fair polices to encourage plants

to generate renewable energy via biomass cofiring. The flexible approach proposed here

presents policies that may (a) maximize system-wide profits, (b) ensure a fair distribution

of budget to participating plants, or (c) maximize the kWh of renewable energy generated.

The models developed here are used to evaluate the trade-offs that exist among a variety

of policies.

These approaches are inspired by current U.S. and EU practices. For example,

in the U.S., the PTC provides a flat tax credit per unit of renewable energy generated
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to facilities that implement either full-scale biomass firing or closed-loop biomass cofiring.

Full-scale biomass firing refers to using solely biomass in a power plant. Closed-loop biomass

cofiring refers to the scenario when biomass is exclusively planted for the purpose of being

used at power plant to produce electricity. However, plants that implement only partial

cofiring are excluded and do not benefit from the PTC (Internal Revenue Code, §45).

The EU uses FIT schemes to support biomass-related energy generation (Menanteau et al.

2003, Ragwitz et al. 2007, Fouquet and Johansson 2008). Finland has the largest number

of biomass cofiring installations in the EU (78 biomass cofiring plants accroding to IEA

Bioenrgy Task 32 database, 2017). Finland offers tax exemptions for the energy produced

from biomass, provides investment subsidies for cofiring related projects, and offers an FIT

of 133.5 ¿/MWh for combined heat and power (CHP) generation. A study by Ragwitz et al.

(2007) evaluates the advantages of step-wise FIT schemes, in which plants are compensated

based on plant characteristics, fuel types, and levels of renewable energy generation. For

instance, in UK, coal-fired power stations that cofire more than 15% biomass, will receive

twice as much support compared to lower levels of cofiring. In Germany, small bioenergy

systems (<5MW) receive an FIT rate of $0.1627/kWh and larger systems receive a rate of

$0.1087/kWh Croucher et al. (2010). The FIT programs are increasingly favored by EU

countries to promote bioenergy and other renewables. This could be due to the fact that

under FIT, the costs of support are directly passed on to end users of electricity (Dong

2012).

Based on these observations, our study extends these policies in the following di-

rections: A ratio-based PTC which allows plants with the highest biomass-to-coal ratios

to receive higher tax credits. A capacity-based PTC which provides a tax credit based on

plant capacity, so smaller plants receive increased tax credit rates. These models capture

two sides of this decision making process: First, the governmental entity decides the PTCs

structure, if funds are allocated for cofiring. On the other side, power plants choose a cofir-

ing strategy that maximizes profits because they depend on supply chain-related costs and

revenues from the PTC.
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The criteria that governments use to identify the best allocation of resources has been

the subject of extensive studies in welfare economics (Mas-Colell et al. 1995, Young 1995, Sen

and Foster 1997). The utilitarian approach refers to the common policy of a governmental

entity identifying a distribution of resources that will maximize the sum of the utilities of all

participants. Under the fairness principle, the governmental entity identifies a distribution

of resources which optimizes some system fairness measure. Due to the subjective nature of

fairness, no one principle is universally accepted as “the most fair.” Thus, depending on the

specific problem at hand and the fairness scheme definition applied, different fair solutions

may apply. In light of those studies, here we investigate the distribution of renewable energy

credits among the coal plants to help them obtain financial benefits from biomass cofiring.

For instance, a solution to the max-min fairness scheme finds a distribution of resources that

will maximize the minimum profit of all participating plants. Such a scheme results in the

worst-case degradation of the max-profit objective (Bertsimas et al. 2012). In the context of

this problem, a fair policy ensures a maximum number of small- and large-capacity power

plants participate. Without fairness policies, only large-capacity plants may take advantage

of tax incentives because large-capacity plants typically have large profit margins with the

necessary cushion against uncertainties associated with investments in biomass cofiring. A

fair policy also compensates based on the ratio of biomass-to-coal because the relationship

between costs and the amount of biomass cofired is not linear.

Definitions: Let C = {1, . . . , C} represent the set of plants in the supply chain. Let

Bj represent the biomass cofiring strategy (the heat input ratio) adopted by plant j and the

function M b
j (Bj) represent the amount of biomass required annually (in tons) to displace

coal in plant j. Cofiring decisions at coal plants are impacted by biomass availability in the

region, denoted by b. The set B := {Bj |
∑

j∈C M
b
j (Bj) ≤ b} represents all of the feasible

cofiring strategies.

Let T represent the resource set, which is the set of all feasible allocations of PTC,

i.e., each allocation that satisfies physical and monetary limitations that plants and the

government face. Let T ∈ T represent one of these PTC allocations where Tj is a tax
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rate reduction in the form of $Tj per mega-watt hour (MWh) of electricity generated from

biomass in plant j and T := {Tj |∀j ∈ C}. The corresponding annual revenues from tax

credits for each plant is a function St
j(Tj , Bj) of the size of tax reduction and cofiring

strategy. Let g represent the available annual assigned budget to support biomass cofiring

through PTC, and let tl, tu represent a lower and an upper bound on the size of the tax

rate. The resource set is defined as follows

T := {T ∈ R
n
+ |
∑

j∈C
St
j(Tj , Bj) ≤ g,Bj ∈ B, tl ≤ Tj ≤ tu,∀j ∈ C}.

For a given T ∈ T , assume that each coal plant can achieve a known profit level Uj via

cofiring, and U := {Uj |∀j ∈ C}. The amount of profit is a function of available PTC and

cofiring strategy adopted by the plants (Uj : (Tj , Bj) → R+). In Section 3.4.1, the details

of deriving profit levels for plants are explained.

Profit maximization approach: Under this approach, the government selects a T ∈ T

to maximize the sum of profits of all participating plants:

U∗ = max
T∈T

∑
j∈C Uj(Tj , Bj). (3.1)

In practice, a profit maximization approach is not always favored since it may result in

an unequal distribution of resources which may not be proportional to power plants efforts

to generate renewable electricity. As a result, some of the plants may not receive a fair

share of the available budget. Despite being likely impractical, this approach represents

a fully efficient system and thus helps us to evaluate the other more practical approaches

(capacity-based and ratio-based schemes).

Fairness approach: While identifying a fair distribution of resources among supply chain

members is desired, no agreed-upon set of criteria define “fairness” in the literature. To

quantify and compare the fairness of different allocation schemes, researchers use metrics

such as the minimum system profit, the gap between minimum and maximum profit, and

the Jain and Theil indices (Rawls 1971). The fairness metric used in this study is the
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minimum guarantee of profit to all players and is obtained as follows

U = max
T∈T

min
j∈C

Uj(Tj , Bj). (3.2)

As mentioned earlier the practical PTC schemes proposed and analyzed here are based on

plant capacity and cofiring ratios. Let S represent the PTC scheme to be implemented by

the government and US
j represent the optimal profit of plant j achieved under this scheme.

Let US = minj∈C US
j denote the minimum profit imposed by scheme S. Bertsimas et al.

(2012) define fairness loss of any scheme S as the difference between the fairness metric U

and the resulted minimum profit US. Then, the relative loss in the minimum profit achieved

under S, as compared to the maximized minimum profit under max-min scheme, is the price

of efficiency (PoE) and calculated as PoE = U−US

U
. A fair allocation of resources leads to a

loss of efficiency in the supply chain. The price of fairness (PoF ) is a measure of efficiency

loss due to implementing the fairness scheme, and is given by PoF =
U∗−

∑

j∈C
US

j

U∗ . A PoF

value equal to 0 indicates that both of the profit maximization and fair approaches have

equal system efficiencies.

3.4 Developing the Optimization Models

3.4.1 Calculating a Plant’s Profit

Revenues are obtained via savings from the PTC, plus savings due to displacing coal with

biomass. Recall St
j , which represents revenues due to PTC. Let Sc

j represent the annual

revenues due to displacing coal with biomass, and let M c
j represent the amount of coal

substituted by biomass at plant j. Both Sc
j and M c

j are functions of cofiring ratio Bj. If p
c
j

is the unit purchase cost of coal in plant j, then, the corresponding annual revenues (in $)

from coal displacement is equal to Sc
j(Bj) = pcjM

c
j (Bj).

Costs of biomass cofiring include biomass delivery, ash disposal, coal plant retrofitting

investments, and operations and maintenance (O&M) (IEA-ETSAP and IRENA 2013).
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Biomass delivery cost accounts for the cost of purchasing and transportation. The unit

delivery cost is denoted by cd (in $/ton). Ash generated from burning coal alone is a

byproduct with a market value; however, ash generated from cofiring with biomass is not

suitable and should be disposed at some cost (Tharakan et al. 2005). The unit ash disposal

cost is denoted by ca (in $/ton). Let Vj denote the total annual costs due to biomass

delivery and ash disposal: Vj(Bj) =
(
cb + ca

)
M b

j (Bj). The investment costs consist of the

fixed annual operating O&M costs Fj (in $ per MW) and the overnight capital costs Ij

(in $ per MW). Capital costs occur at the beginning of a cofiring project. Let cf be the

capital charge factor used to calculate the annual equivalent cost over the project’s lifetime.

Parameter Nj represents the plant’s capacity in MW. Equation (3.3) presents the annual

investment costs at plant j.

Ij(Bj) =
(
BjFj + cf I(Bj)

)
Nj . (3.3)

The profit achieved at plant j is calculated by subtracting total revenues from total costs

as

Uj(Tj , Bj) = St
j(Tj , Bj) + Sc

j (Bj)− Ij(Bj)− Vj(Bj). (3.4)

3.4.2 Max-Profit Optimization Model

Following a profit maximization approach, the governmental entity uses model (3.1)

to identify a credit allocation that will maximize the total profits of power plants. Let

the ordered set L :=
{
β1, β2, . . . , β|L|

}
contain all the potential values for cofiring strategy

Bj. This assumption is not restrictive, since, in real-world decision making about cofiring

strategies, only certain cofiring strategies (e.g. 5%, 10%, or 20%) are implemented in a

plant (see, for axample, DEBCO (2013)). Moreover, if needed, additional cofiring strategies

can be evaluated by simply increasing the size of L. Accordingly, let the binary variable

Ylj (∀l ∈ L; j ∈ C) take the value 1 if Bj = βl and 0 otherwise. The binary variables Ylj

represents the cofiring strategy βl, l ∈ L adopted by plant j, therefore, Bj =
∑

l∈L βlYlj,
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where
∑

l∈L Ylj = 1. Furthermore, in order to ease exposition we let mlj := M b
j (Bj = βl),

vlj := Vj(Bj = βl), Ilj := I(Bj = βl), and sclj := Sc
j (Bj = βl). The optimization model for

this approach can be formulated by the following mixed integer bilinear program (MIBP).

We refer to this as model (MP).

(MP) max : U(T,Y) =
∑

l∈L

∑

j∈C
m′

ljTjYlj +
∑

l∈L

∑

j∈C
(sclj − vlj − Ilj)Ylj (3.5a)

s.t.

∑

l∈L
Ylj = 1, ∀j ∈ C, (3.5b)

∑

l∈L

∑

j∈C
mljYlj ≤ b, (3.5c)

∑

l∈L

∑

j∈C
m′

ljTjYlj ≤ g, (3.5d)

Tj ∈ [tmin, tmax], ∀j ∈ C, (3.5e)

Ylj ∈ {0, 1} , ∀l ∈ L, j ∈ C, (3.5f)

where m′
lj is the amount of renewable energy produced at plant j under strategy βl and

m′
lj = Hbmlj (H

b is the heating value of biomass feedstock). In this formulation, constraints

(4.1) guarantee that each plant will select exactly one cofiring strategy, and constraint (4.2)

sets an upper bound on the total amount of biomass available for cofiring. Constraint (4.3)

limits the total revenues when tax revenues are less than or equal to the available budget,

and constraints (4.5) set bounds for T, while constraints (4.6) are the binary variables.

Model (MP) is non-convex due to the presence of mixed integer bilinear terms TjYlj

in the objective function and constraints. Now, we provide a tight linear relaxation of the

model using the McCormick relaxation technique (McCormick 1976). This relaxation con-

verts model (MP) into a mixed integer linear program (MILP). Furthermore, since Ylj’s are

binary variables, this relaxation is tight (Adams and Sherali 1993). Based on this method,

a convex relaxation of a non-convex functions is obtained using convex over-estimators and

under-estimators of the function over its domain. Accordingly, the MILP formulation for
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the max-profit model is represented as the model (LMP) below

(LMP) max : U(T,Y,W) =
∑

l∈L

∑

j∈C
m′

ljWlj +
∑

l∈L

∑

j∈C
(sclj − vlj − Ilj)Ylj (3.6a)

s.t.

(4.1), (4.2), (4.5), (4.6),

∑

l∈L

∑

j∈C
m′

ljWlj ≤ g, (3.6b)

Wlj ≥ tminYlj, ∀l ∈ L, j ∈ C, (3.6c)

Wlj ≥ tmaxYlj + Tj − tmax, ∀l ∈ L, j ∈ C, (3.6d)

Wlj ≤ tmaxYlj, ∀l ∈ L, j ∈ C, (3.6e)

Wlj ≤ tminYlj + Tj − tmin, ∀l ∈ L, j ∈ C, (3.6f)

Wlj ∈ R
n
+, ∀l ∈ L, j ∈ C, (3.6g)

where the optimal solution of the model (LMP) provides an optimal solution to the model

(MP).

3.4.3 Max-Min Optimization Model

In this section we propose an optimization model for the max-min fairness scheme,

which identifies a tax incentive to maximize the minimum profit of participating plants.

That is,

maxmin
j∈C

∑

l∈L
m′

ljWlj +
∑

l∈L
(sclj − vlj − Ilj)Ylj, (3.7)

s.t.

(4.1), (4.2), (4.5), (4.6), (3.6b)− (3.6g).

58



We can transform this model into an MILP model as follows:

(MM) maxZ, (3.8a)

s.t.

Z ≤
∑

l∈L
m′

ljWlj +
∑

l∈L
(sclj − vlj − Ilj)Ylj, j ∈ C, (3.8b)

(4.1), (4.2), (4.5), (4.6), (3.6b)− (3.6g).

The optimal solution of the model (MM) will provide the necessary information to evaluate

the relative fairness loss for the proposed PTC schemes.

3.5 Designing Flexible PTC Schemes

This section proposes flexible tax incentive schemes with respective optimization

models. These flexible incentives are step-wise schemes that are functions of plant capacity

and the cofiring ratio. The capacity-based scheme for compensation could provide more

support for small-capacity plants to help manage uncertainties associated with adopting new

technologies. The ratio-based scheme compensates plants based on the ratio of biomass-to-

coal used. Since high-ratio cofiring is known to be more expensive than small-ratio cofiring

and plants often need to undergo some infrastructural changes for high ratio cofiring, the

ratio-based scheme provides greater support for such decisions (see an example in Table

3.1).

Table 3.1: Example of flexible incentive schemes to support biomass cofiring

Capacity-based scheme Ratio-based scheme

Plant capacity Credit Biomas to coal ratio Credit

Less than 100 MW
More than 100 MW

$0.020/kWh
$0.015/kWh

Less than 5%
Between 5-25%
More than 25%

$0.010/kWh
$0.015/kWh
$0.025/kWh
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3.5.1 Ratio-Based Schemes

This scheme rewards plants based on the cofiring strategy selected. Under such

a scheme, the tax credit received by plant j, Tj , is proportional to the cofiring strategy

adopted, Bj. We start with partitioning the set of cofiring strategies L into K subsets,

such that Lk = {l ∈ L|δk−1 ≤ βl < δk} for k = 1, . . . ,K and 0 = δ0 < δ1 < . . . < δK .

This scheme could provide larger incentives to plants that adopt higher cofiring ratios (see

Figure 3.1).

PTC ($/MWh)

Bj

TK

�k

T1

T2

�1 �2

Figure 3.1: PTC versus cofiring ratio in the ratio-based scheme

In order to capture the structure of PTC under the ratio-based scheme, we introduce

variables Tk, k = 1, . . . ,K as follows

Tj =





T1 0 ≤ Bj < δ1
...

TK δK−1 ≤ Bj < δK

∀j ∈ C

where tmin
k ≤ Tk ≤ tmax

k for k = 1, . . . ,K, and tmax
k−1 ≤ tmin

k for k = 2, . . . ,K. Also note

that tmin
1 = tmin and tmax

K = tmax to keep the values for PTCs within the limits defined by

resource set T . The optimization model for the ratio-based PTC scheme is
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(RS) max : US(T,Y,W) =
∑

l∈L

∑

j∈C
m′

ljWlj +
∑

l∈L

∑

j∈C
(sclj − vlj − Ilj)Ylj (3.9a)

s.t.

(4.1), (4.2), (4.6), (3.6g),

Wlj ≥ tmin
k Ylj, ∀l ∈ Lk, k = 1, . . . ,K,∀j ∈ C, (3.9b)

Wlj ≥ tmax
k Ylj + Tk − tmax

k , ∀l ∈ Lk, k = 1, . . . ,K,∀j ∈ C, (3.9c)

Wlj ≤ tmax
k Ylj, ∀l ∈ Lk, k = 1, . . . ,K,∀j ∈ C, (3.9d)

Wlj ≤ tmin
k Ylj + Tk − tmin

k , ∀l ∈ Lk, k = 1, . . . ,K,∀j ∈ C, (3.9e)

Tk ∈ [tmin
k , tmax

k ], k = 1, . . . ,K. (3.9f)

Note that this scheme is simpler to implement compared to the profit maximization ap-

proach since, instead of deciding a separate PTC for each plant, each plant will have K

options (i.e. K = 2, 3, . . .) for PTC, depending on the levels of renewable energy generated.

Proposition 1. The optimal objective function value of (RS) is a lower bound to

the optimal objective function value of the max-profit model (LMP).

Proof: See the Appendix B.

3.5.2 Capacity-Based Schemes

This scheme rewards plants based on their capacity, i.e. small-sized plants receive a

higher PTC than large-sized plants, so smaller-capacity plants have an incentive to partici-

pate in cofiring. It is often observed that smaller plants can hardly overcome the burdens of

implementing cofiring technology. It is shown that using flat rate PTC, larger plants with

greater investments tend to have better opportunities to reap the benefits of PTC (Toke

2005). The reason behind this is the fact that PTC can only be used against passive income

and those with already higher incomes are the ones that can utilize the full benefits of

PTC. Considering the significant number of small and average coal plants in the U.S. (48%

of coal plants in the country have less than 250 MW capacity) encouraging these plants to

utilize biomass resources would help with nationwide demands to increase renewable energy
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production. Similar capacity-based incentives are in place in some European countries. For

instance, in Ireland, small biomass CHP plants receive about 16% higher FITs compared

to larger facilities (Boekhoudt and Behrendt 2015).

Following an approach similar to the ratio-based schemes discussed above, coal

plants are classified by partitioning the set C into K subsets Ck = {j ∈ C|νk−1 ≤ Nj < νk}

for k = 1, . . . ,K and 0 = ν0 < ν1 < . . . < νK . As depicted in Figure 3.2, the biggest PTCs

are provided in descending order, with the smallest power plants receiving the largest credits

and the largest accepting the smallest.

PTC ($/MWh)

Nj (MW) 

T1

νk

TK

T2

ν1 ν2

Figure 3.2: PTC versus plants’ capacity in the capacity-based scheme

The variables Tk, k = 1, . . . ,K are defined to capture the proposed scheme in the

optimization model:

Tj =





T1 0 ≤ Nj < ν1
...

TK νK−1 ≤ Nj < νK

∀j ∈ C

where tmin
k ≤ Tk ≤ tmax

k for k = 1, . . . ,K, and tmax
k−1 ≥ tmin

k for k = 2, . . . ,K. Also,

tmin
K = tmin and tmax

1 = tmax. The optimization model for the capacity-based PTC scheme
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can be represented as

(CS) max : US(T,Y,W) =
∑

l∈L

∑

j∈C
m′

ljWlj +
∑

l∈L

∑

j∈C
(sclj − vlj − Ilj)Ylj(3.10a)

s.t.

(4.1), (4.2), (4.6), (3.6g),

Wlj ≥ tmin
k Ylj, ∀l ∈ Lk, k = 1, . . . ,K,∀j ∈ C, (3.10b)

Wlj ≥ tmax
k Ylj + Tk − tmax

k , ∀l ∈ Lk, k = 1, . . . ,K,∀j ∈ C, (3.10c)

Wlj ≤ tmax
k Ylj, ∀l ∈ Lk, k = 1, . . . ,K,∀j ∈ C, (3.10d)

Wlj ≤ tmin
k Ylj + Tk − tmin

k , ∀l ∈ Lk, k = 1, . . . ,K,∀j ∈ C, (3.10e)

Tk ∈ [tmin
k , tmax

k ], k = 1, . . . ,K. (3.10f)

Proposition 2. The optimal objective function value of (CS) is a lower bound to

the optimal objective function value of the max-profit model (LMP).

Proof: See Proposition 1 proof.

3.6 Numerical Results

In this section we design a case study and provide managerial insights into tax in-

centives for biomass cofiring. First, we present the case study which is developed using data

from nine southeastern U.S. states because the region is rich in biomass. Next, the results of

sensitivity analysis on the PTC schemes are summarized, and managerial insights are pro-

vided. Information about the platform and computational performance of the optimization

solvers are presented in Appendix B.

3.6.1 Case Study Development

This case study focuses on the following nine states located in the southeast U.S.:

Alabama, Arkansas, Florida, Georgia, Louisiana, Mississippi, North Carolina, South Car-

olina, and Tennessee. The data about biomass availability comes from the Knowledge Dis-

covery Framework (KDF) database provided by the Oak Ridge National Laboratory (KDF
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Accessed 12.10.2013). The database provides detailed, county-level information about the

availability of different types of biomass feedstock, such as forest products and residues, as

well as agricultural products and residues. This study only focuses on woody biomass since

it is shown to be the biomass of choice for cofiring projects (Fernando 2005). The data about

the characteristics of existing coal-fired power plants, such as nameplate capacity, capacity

factor, and operational hours, is provided by the U.S. Energy Information Administration

(EIA, 2010).

The data about capital and O&M costs are collected from related articles in the

literature. Different references in the literature estimate capital costs for biomass power

that range between $50 and $400 per kW of installed capacity. The main reason for this

variability in cost estimation is the difference among the quality of energy fuels analyzed

and the status of the existing infrastructures at respective power plants (IEA-ETSAP and

IRENA 2013). These costs do not seem to be significant when cofiring ratio is 5% -10%

because the existing infrastructure of the coal plants can efficiently be utilized without

additional investments. According to Sondreal et al. (2001), the expected capital cost is

usually close to $50 per kW of installed capacity when cofiring ratio is less than 5%. These

costs are typically between $150 and $300 per kW of installed capacity when cofiring ratio

is 10-20% (Zhang et al. 2009).

Studies show that in most of the existing cofiring projects, displacing upto 50%

of coal with biomass is technically achievable (IEA-ETSAP and IRENA 2013). However,

cofiring at a ratio higher than 20% would increase the risk of fouling and slagging in the

boilers leading to a significant drop in boiler efficiency. Pulverized coal (PC), fluidized

bed (FB), and stoker boilers are the three most common types of combustion boilers in

existing coal plants. It is known that FB and stoker boilers are better fits for cofiring

higher percentages of biomass (Fernando 2012). In case that either of those type of boilers

are already in use at a coal plant, the retrofit costs for cofiring will not be significantly

higher compared to lower ratio cofiring. High ratio cofiring in PC boilers often involves

with higher risks of slagging and corrosion and plant owners should invest in different type
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of boilers for combustion (Basua et al. 2011). We assume an average capital cost of $400

per kW of installed capacity when cofiring is at a ratio between 25% and 50%. Equation

(3.11) presents capital costs as a function of cofiring ratio. The O&M costs are estimated

to be 2.5-3.5% of the overall capital costs.

C(Bj) =





$50/kW 0.00 < Bj ≤ 0.05

$150/kW 0.05 < Bj ≤ 0.15

$300/kW 0.15 < Bj ≤ 0.25

$400/kW 0.25 < Bj ≤ 0.50

∀j ∈ C. (3.11)

Using biomass results in an efficiency loss and reduces the plants’ nameplate capacity. The

plants’ nameplate capacity is used to calculate the investment costs since the retrofit costs

are calculated based on nameplate capacity (Cuellar 2012).

We set tmin = $0/MWh and tmax = $20/MWh. We use the same bounds for

all schemes. In order to keep the proposed fair schemes simple, the following setups are

considered. For the step-wise schemes proposed, we only consider K = 2 and K = 3.

This approach is inspired by common practices in step-wise FIT schemes (see, for example,

Germany’s FIT policies in Couture et al. (2010)). The corresponding (RS) models developed

are referred to as the 2-level and 3-level ratio-based schemes. The selected ranges for 2-level

ratio-based schemes are

Tj =





T1 0 ≤ Bj < 0.05,

T2 0.05 ≤ Bj < 0.5,
∀j ∈ C,

where $0 ≤ T1 ≤ $10, and $10.01 ≤ T2 ≤ $20. And for the 3-level ratio-based schemes,

Tj =





T1 0 ≤ Bj < 0.05

T2 0.05 ≤ Bj < 0.25

T3 0.25 ≤ Bj < 0.5

∀j ∈ C,
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where $0 ≤ T1 ≤ $10, $10.01 ≤ T2 ≤ $15, and $15.1 ≤ T3 ≤ $20.

Similarly, for the capacity-based schemes, we partition the set of coal plants C into

two and three subsets based on capacity by setting K = 2 and K = 3. The corresponding

(CS) models developed are referred to as the 2-level and 3-level capacity-based schemes.

The corresponding ranges for 2-level and 3-level capacity-based schemes are, respectively,

Tj =





T1 0 ≤ Nj < 500

T2 500 ≤ Nj

∀j ∈ C,

where $10.01 ≤ T1 ≤ $20, and $0 ≤ T2 ≤ $10,

Tj =





T1 0 ≤ Nj < 500

T2 500 ≤ Nj < 2000

T3 2000 ≤ Nj

∀j ∈ C,

where $15.1 ≤ T1 ≤ $20, $10.01 ≤ T2 ≤ $15, and $0 ≤ T3 ≤ $10.

The total number of potential cofiring strategies in all cases is set to |L| = 201, thus,

each plant can potentially cofire at ratios of Bj ∈ L = {0, 0.0025, 0.005, . . . , 0.5}.

3.6.2 Comparing the PTC Schemes

This section uses numerical analyses to evaluate the impacts that the max-profit,

max-min and other PTC schemes have on profitability and renewable energy production.

Table 3.2 summarizes the total profits, and Table 3.3 summarizes the total biomass utilized

when solving the models proposed (maximum values are in bold). For these instances the

available budget of individual states is set to $300M . For the SE problem set, the budget

is set at $3, 000M . Since these numbers may not reflect the budgets actually available,

sensitivity analyses are also conducted based on a broad range of available budgets (Figures

3.3 and 3.4).

Results show that, similar to max-profit model, the flat rate model maximizes the
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total profits in the supply chain. The profits from the capacity-based models are typically

lower, with very few exceptions, than the profits from the ratio-based models. Therefore,

the relative loss in profits, as indicated by the PoF, is greatest for the capacity-based model:

The average PoF is 18%, and the maximum PoF is 70%, compared to the PoF for ratio-

based models of only 3.3%. For a few problems, the ratio-based model gives the same results

as the max-profit model. The average PoF for flat rate models is 0%. Table 3.3 presents

Table 3.2: Total profits under the profit maximization approach and other schemes ($106)

Problem (LMP) (MM) (CS) (RS) Flat rate
2-level 3-level 2-level 3-level

AL 268.53 173.43 240.01 251.36 265.03 256.33 268.53

AR 163.53 141.33 48.43 118.31 163.53 144.56 163.53

FL 273.69 106.42 234.84 260.38 269.85 255.32 273.69

GA 271.40 145.83 247.02 258.12 268.62 260.85 271.40

LA 176.07 146.08 64.98 134.90 175.24 157.82 176.07

MS 227.96 227.96 176.45 184.26 227.96 218.71 227.96

NC 275.80 16.52 256.60 265.11 272.33 265.13 275.80

SC 270.68 16.60 251.10 263.05 269.53 259.27 270.68

TN 268.57 25.16 186.46 232.63 268.15 253.36 268.57

SE 2,675.18 1,235.45 2,347.55 2,490.96 2,666.20 2,551.38 2,675.18

the optimal solution of the problems in terms of the percentage of the biomass available

and how much is being used. The maximum values for each problem appear in bold. As

expected, the profit maximization approach does not guarantee to maximize the amount

of biomass used at a plant or, consequently, the amount of renewable electricity generated.

Indeed, the profit maximization approach, compared to the other schemes, leads to utilize

less amounts of biomass. Likewise, the flat rate approach does not maximize the amount

of biomass nor renewable energy. On the other hand, the capacity-based models use the

maximum amount of biomass. Two problem instances in the 3-level capacity-based model,

AR and SC, use 100% of the biomass available in the region. The average biomass usage

for 2-level capacity-based models is about 80% of the total amount available. On average,

biomass usage for the 2-level and 3-level ratio-based models is 56% and 67%, respectively,

of the total amount available. These results indicate that the flat rate model, while easy to

implement, is not as effective as the capacity-based or ratio-based models in encouraging

power plants to generate renewable energy. The ratio-based schemes are sensitive to the
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Table 3.3: Optimal biomass usage under profit maximization approach and other schemes
(in %)

Problem (LMP) (MM) (CS) (RS) Flat rate
2-level 3-level 2-level 3-level

AL 48.68 94.73 79.45 65.08 48.73 62.67 48.68
AR 54.05 56.72 90.09 66.67 54.05 54.05 54.05
FL 84.62 98.19 100.00 100.00 84.62 99.99 84.62
GA 48.29 71.77 79.34 62.19 48.38 62.74 48.29
LA 35.34 35.37 50.56 44.18 35.32 39.70 35.34
MS 41.91 41.91 62.86 55.21 41.91 43.17 41.91
NC 42.32 99.87 65.50 54.23 42.32 54.94 42.32
SC 66.43 98.85 89.29 78.02 66.61 83.59 66.43
TN 84.78 81.36 100.00 100.00 84.80 98.66 84.78
SE 57.46 90.78 85.09 74.73 57.49 69.56 57.46

Average 56.39 76.96 80.22 70.03 56.42 66.91 56.39

value of cofiring ratio Bj , which is directly related to the decision variable Ylj (recall that

Ylj = 1 if Bj = βl). This decision variable appears in the profit maximizing objective

function along with the constraints (4.1)-(4.3), and when higher incentives Tj are provided

for bigger cofiring ratios, profits are maximized rather than enforcing more participation

or renewable energy generation (the term TjYlj positively impacts the objective function).

Note that, Bj is not a direct measure of plant characteristics, i.e. two plants with equal

cofiring strategies may have different sizes, capacity factors, etc. On the other hand, the

capacity-based schemes are directly related to the plants installed capacity Nj , a parameter

that only appears in the objective function and biomass limit constraint (4.2) (recall that the

biomass amount mlj is a function of Nj, Fj , and Oj - Chapter 2. and Appendix B.). Fixing

the incentive value for different ranges of Nj does not help improve the objective function,

unlike the case for the ratio-based approach. However, providing higher incentives for

plants with smaller capacities better increases the utilization of the biomass limit constraint,

which leads to increased renewable energy production. The capacity-based approach more

accurately represents power plant characteristics, and effective capacity-based schemes may

encourage more plants to participate and produce more renewable energy.(See Appendix B.

for a simple numerical example).

Furthermore, in Table 3.4, we summarize the quantity of biomass used for cofiring

per each dollar of incentive provided under profit maximization and other schemes. Consis-
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tent with results of the Table 3.3, capacity-based schemes lead to higher biomass usage per

dollar of credit provided. It is interesting to observe that this quantity is not significantly

different between ratio-based schemes and the profit maximization and flat rate schemes.

Table 3.4: The amount of biomass used (kg) per dollar of provided subsidy under different
schemes

Problem (LMP) (MM) (CS) (RS) Flat rate
2-level 3-level 2-level 3-level

AL 8.12 15.80 13.25 10.86 8.13 8.13 8.12
AR 8.12 8.52 13.53 10.01 8.12 8.12 8.12
FL 8.12 9.42 9.59 9.60 8.12 8.12 8.12
LA 8.12 8.13 11.62 10.15 8.11 8.11 8.12
GA 8.12 12.07 13.34 10.46 8.13 8.13 8.12
MS 8.06 8.06 12.10 10.62 8.06 8.06 8.06
NC 8.12 19.16 12.57 10.40 8.12 8.12 8.12
SC 8.12 12.08 10.91 9.54 8.14 8.14 8.12
TN 8.12 7.79 9.58 9.58 8.12 8.12 8.12
SE 8.12 12.83 12.02 10.56 8.12 8.12 8.12

Average 8.11 11.39 11.85 10.18 8.12 8.12 8.11

Our analysis show that the total budget available to fund incentives such as the

PTC can significantly impact renewable energy generation and plant profitability. In Figure

3.3(a) we plot profits versus budget limit, and in Figure 3.3(b) we plot the amount of biomass

used versus budget limit. These plots correspond to the SE problem set, and for all the

proposed schemes.

Based on these results, the flat rate and 2-level ratio-based schemes maximize profits.

The 2-level capacity-based scheme results in largest biomass usage; and the max-profit, flat

rate, and 2-level ratio-based schemes use the least amount of biomass. The results indicate

that, the profits of the 2-level capacity-based model do not change for a budget greater

than $3,500M. This is mainly because the plants have used all the available biomass in the

region. A similar observation is made for the max-profit, flat rate and 2-level ratio-based

schemes. However, these schemes reach this point when the budget equals $5,300M. That

is, the same amount of renewable electricity is generated when implementing the 2-level

ratio-based scheme -as compare to the max-profit, flat rate and 2-level ratio-based schemes-

for about $1,500M less.

The analysis presented here shows that the total budget available to fund incentives
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like the PTC can significantly impact renewable energy generation and plant profitability.

Figure 3.3(a) plots profits against budget limits, and Figure 3.3(b) shows the amount of

biomass used versus budget limits. These plots correspond to the SE problem set and all

the proposed schemes. Based on these results, flat rate and 2-level ratio-based schemes

maximize profits. The 2-level capacity-based scheme results in the largest biomass usage,

and max-profit, flat rate, and 2-level ratio-based schemes use the least amount of biomass.

The results indicate that the profits of the 2-level capacity-based model do not change for

a budget greater than $3,500M because the plants will have used all the available biomass

in the region. A similar observation is made for the max-profit, flat rate, and 2-level ratio-

based schemes. However, these schemes reach this point when the budget equals $5,300M.

The same renewable amount of renewable electricity is generated when implementing the

2-level ratio-based scheme, as compared to the max-profit, flat rate, and 2-level ratio-based

schemes, for about $1,500M less. Figure 3.3(c) plots the PoF against budget availability.

This graph shows that the values of PoF are sensitive to the available budget. When the

budget is less than $800M , the ratio-based schemes result in the highest PoF. When the

budget is greater than $800M , the capacity-based schemes result in the highest PoF. Recall

that PoF measures the relative gap between the max-profit and fairness schemes, so as PoF

increases, the relative gap between these two approaches increases as well. On the other

hand, capacity-based schemes result in plants using the most biomass, as demonstrated

above. These results could help policy makers design credit allocation policies that balance

efficiency and fairness. Capacity-based schemes result in the most renewable energy gener-

ated, while ratio-based schemes balance profitability and biomass utilization. PoE values

for the SE problem set were 100% because at least one plant decided not to cofire (US = 0)

no matter what budget level was tested. However, not all of the individual states embraced

such a policy (for instance, see Mississippi’s results below).

We further analyze the fairness in distribution of subsidies among coal plants by

calculating the Gini coefficients for each of the incentive schemes proposed. Figure 3.3(d)

represents the Gini coefficient curves of different subsidy distribution schemes for coal plants
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Figure 3.3: (a) Total profits, (b) biomass usage, (c) PoF (all versus the total budget), and
(d) Gini coefficient curves for SE

in the southeast U.S. The calculated Gini coefficients are 0.59 and 0.62 for 2-level and 3-

level capacity-based schemes, 0.69 and 0.74 for 2-level and 3-level ratio-based schemes, and

0.69 for flat rate scheme. These results are consistent with PoF measure of fairness as

discussed above. The capacity-based schemes lead to smaller Gini coefficients compared to

ratio-based and flat rate schemes suggesting that, in general, the distribution of incentives is

fairer under capacity-based schemes. Using PoF and PoE metrics, the efficiency and fairness

balance is measured by comparing the results with max-profit and max-min models deemed

as the most efficient and most fair models, respectively. The capacity-based schemes result

in higher PoF and lower PoE values compared to flat rate and ratio-based schemes, implying

a fairer distribution of subsides which comes with the cost of larger loss of efficiency.
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The PoF and PoE values for different levels of budget availability in Mississippi are

depicted in Figure 3.4. Similar to the case of problem set SE, by increasing the available

budget, the capacity-based schemes tend to result in a larger loss of profits (48% on average)

than the flat rate (0%) and ratio-based schemes (2% on average). However, capacity-based

schemes lead to smaller PoE than other schemes. For a budget level of $250M , both

the 2-level and 3-level capacity-based schemes result in zero PoE, while the ratio-based

schemes both lead to highest relative PoE of 100%. Table 3.5 summarizes the optimal
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Figure 3.4: (a) The PoF, and (b) PoE, versus the total budget for the state of Mississippi

values of Tj , biomass cofiring strategy Bj, and average CO2 reductions for each of the

plants in Mississippi. We estimate the amount of avoided emissions at coal plants using

the default IPCC emission factors for stationary combustion in the energy industries: 340.6

kgCO2/MWh for bituminous coal used for power generation and 363 kgCO2/MWh for

lignite coal (Intergovernmental Panel on Climate Change (IPCC) 2008). These results

suggest: (i) All the plants participate in cofiring in the 3-level capacity-based model, but

plant participation is lowest in this model, followed by the max-profit and flat rate models.

(ii) High rate tax incentives do not guarantee that every plant participates in cofiring. The

flat rate model provides the same incentive ($19.99 per MWh) to all plants; however, only a

few plants participate since the revenues from such an incentive do not cover their expenses.

Plant 1, although of greater capacity than plant 3, participates only in the 3-level
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Table 3.5: Optimal PTCs, cofiring strategies, and avoided emissions (in ton) for MS coal
plants

(CS) (RS) Flat rate
Plant Capacity 2 level 3 level 2 level 3 level

(MW) T ∗ B∗ CO2 avoided T ∗ B∗ CO2 avoided T ∗ B∗ CO2 avoided T ∗ B∗ CO2 avoided T ∗ B∗ CO2 avoided

1 513 10 0.00 0 15 0.04 117999 0 0 0 0 0 0 19.99 0 0
2 59 20 0.03 1413 20 0.15 7064 0 0 0 0 0 0 19.99 0 0
3 400 20 0.50 1086198 20 0.50 1086198 20 0.15 325859 20 0.35 760339 19.99 0.15 325859
4 2229 10 0.14 1159352 10 0.04 331243 20 0.14 1159352 15 0.15 1242162 19.99 0.15 1242162
5 1215 10 0.04 128400 15 0.15 481501 20 0.06 192600 0 0 0 19.90 0.04 128400

capacity-based scheme because the plant currently uses lignite coal, and other plants use

bituminous coal (see parameter values at the end of this chapter). Lignite coal has a smaller

heating value and is cheaper than bituminous coal, so the revenues from displacing coal are

not significant. Thus, this plant does not find biomass cofiring economically attractive.

Finally, the information about avoided emissions can help us to compare the schemes

in terms of cofiring expenses per ton of CO2 reduction. The unit costs per ton of CO2

avoided are $100.6 and $99 for 2-level and 3-level capacity-based schemes, $90.6 and $90.7

for 2-level and 3-level ratio-based schemes, and $89.6 for flat rate scheme. The capacity-

based schemes turn out to be more expensive per each unit of avoided CO2 when compared

to ratio-based and flat rate schemes. This difference is mainly due to the fact that capacity-

based schemes lead to higher amount of biomass usage and the coal plants need to invest

more on their infrastructure in order to cofire higher percentages of biomass.

3.6.3 Managerial Insights

We now summarize some observations and insights produced by our case study.

Provided that there is a limited budget to support biomass cofiring through PTC:

� The flat rate model leads to the fewest kWh of renewable energy produced and favors

large-sized plants. The flat rate model behaves similar to the max-profit model. Such

a model maximizes system’s efficiency, that is, total profits. However, these profits

are collected by the large-sized plants mainly.

� Capacity-based models lead to the most renewable energy produced and increased num-

ber of participating plants in cofiring. The 2-level and/or 3-level capacity-based models
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result in plants utilizing the greatest amount of biomass in all the problems solved,

which implies that plants will generate the most renewable energy if these incentive

models are implemented. All the plants, smallest to largest, participate in the 3-level

capacity-based model. While this scheme does not maximize a systems efficiency, it

distributes the assigned budget more fairly to all the plants in the region.

� Ratio-based models balance the PoF. Under these models, smaller amounts of renew-

able energy are produced, but more profits are obtained than from the capacity-based

models. These models generate more renewable energy than flat rate and max-profit

models, but the proposed models also produce lower profits.

� Capacity-based models lead to fairer incentive schemes. Regarding the fairness issue

in distribution of subsidies among the coal plants, capacity-based schemes lead to fairer

distributions compared to ratio-based and flat rate schemes as suggested by PoF/PoE

metrics and Gini coefficients.

� The size of the budget influences biomass cofiring decisions both for power plants and

governments. Ratio- based models lead to plants using more biomass than capacity-

based models when budgets are relatively small; capacity-based models lead to plants

using more biomass when budgets are larger. This fact impacts governmental decisions

about which allocation scheme to use and the size of tax rates. From the plants point

of view, the selected scheme and the size of tax rates impact decisions about whether

to participate in cofiring and, if so, how much biomass to cofire.

3.7 Conclusions

This chapter investigates the impacts of governmental incentives on renewable en-

ergy generation via biomass cofiring in coal-fired power plants. The literature indicates that

biomass cofiring is readily available technology that is relatively easy to implement and will

significantly reduce CO2 emissions among existing coal-fired power plants.
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We consider a resource allocation framework that allows the government to en-

courage power plants to cofire by providing credits in the form of the PTC to help plants

absorb the additional costs incurred from biomass cofiring. We start with developing the

max-profit and max-min models which guarantee to find an allocation scheme to maximize

achievable total profits and highest minimum profit of participating plants, respectively.

These approaches provide a basis for evaluating the proposed schemes in terms of relative

loss in system’s efficiency and fairness. Next, flexible PTC schemes are proposed, based

both on plants capacity and the cofiring strategies used, to incorporate fairness in these al-

location problems. The capacity-based and ratio-based schemes offer more financial support

to smaller plants and those adopting higher cofiring ratios, respectively. The corresponding

optimization models are non-convex, which are computationally difficult to solve. We refor-

mulate the non-convex MIP as a linear MIP by using the McCormick relaxation of bilinear

terms with binary variables.

Computational experiments are conducted using case studies based on information

from nine southeastern U.S. states. We first compare the computational performance of solv-

ing linear MIPs by using Gurobi and non-convex MIPs by using BONMIN and COUENNE.

Results show that the MIP solver outperforms the other two solvers in terms of CPU time

and optimality gap for all of the instances. Then, we solve the case studies when ratio-based

and capacity-based scheme are applied in profit optimization models.

The study in this chapter demonstrates the potential of different governmental in-

centives to promote renewable energy production via biomass cofiring. Our results indicate

that the existing flat PTC could maximizes system’s efficiency, but does not make the best

use of the available biomass to generate renewable energy. One the other hand, capacity-

based schemes result in highest levels of biomass utilization in most of the cases. Roughly

speaking, it seems that ratio-based schemes provide a good balance between profitability

and renewable energy production. However, the ratio-based schemes do not necessarily offer

an economically attractive option for some plants (see the results from Mississippi). These

observations provide insights to policy makers in state and federal levels to assist them in de-
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signing better tax scheme frameworks, considering available budgets and emission reduction

goals.

Parameters Values

Table 3.6: Values assigned for the main parameters used in this chapter (Wang (2008),
IEA-ETSAP and IRENA (2013), US Energy Information Administration (2010), Cuellar
(2012), US National Renewable Energy Laboratory (NREL) (2004))

Parameter Unit Value
FOM ($/kWh yr) 12
TPC ($/ton) 50
cf (/yr) 0.15
cash ($/ton) 10
A (%) 2
ccoal -Bituminous- ($/ton) 64.92
ccoal -Subbituminous- ($/ton) 14.28
ccoal -Lignite- ($/ton) 20.18
LHV bm (kWh/ton) 4926.8
LHV coal -Bituminous- (kWh/ton) 6582.5
LHV coal -Subbituminous- (kWh/ton) 6154.5
LHV coal -Lignite- (kWh/ton) 4396.1
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Chapter 4

A Biobjective Optimization Model

to Evaluate the Economic and

Environmental Impacts of

Biopower Supply Chain under

Uncertainty

4.1 Introduction

Economic interests and environmental regulations are two main drivers to adopting

GHG reduction technologies by coal-fired power plants. Many developed countries have

designed and implemented policies which penalize GHG emissions or incentivise renewable

electricity generation (Boekhoudt and Behrendt 2015). A recent meeting of the Intergov-

ernmental Panel on Climate Change (IPCC) resulted in an agreement and commitment

to control GHG emissions in order to keep the global average temperature well below 2◦C

(3.6◦F) above pre-industrial levels (Paris Agreement, COP21 (2015)). The 5th Assessment
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Report (AR5) of the IPCC proposes different scenarios that fossil-based energy systems can

use to achieve large-scale, emission reductions during the upcoming decades. Power plants

can adopt any single or combination of the following approaches to meet the IPCC envi-

ronmental goals (Change 2014): invest in improving the efficiency of their system; invest

in carbon dioxide (CO2) capture and storage (CCS) technology; and substitute fossil fuels

with fuels which have low carbon content (e.g. natural gas) or are carbon neutral (e.g.

hydro, nuclear, biomass, etc) fuels.

Coal plants would typically start with efficiency improvement activities since they

require little to no infrastructural changes. Other actions a plant take usually depend on

the available capital and environmental performance of the plant. The implementation of

CCS or natural gas technologies is a complex process which typically requires high invest-

ment costs. The co-combustion of biomass (typically woody biomass) with coal, known as

biomass cofiring, is another appealing mid-term solution that can help coal plants to meet

environmental goals and have a smoother transition to a full technology conversion in the

long run if necessary. Biomss cofiring is a relatively inexpensive and efficient technology

to mitigate GHG emissions in coal plants (Baxter 2005). It usually requires insignificant

infrastructural change since solid biomass has similar physical characteristics to coal and

can be burned in the same boilers designed for coal combustion.

It has been shown that increasing biomass content in cofiring by 1% (based on

energy input ratio) would result in about 1.3% drop in global warming potential of the

corresponding energy system (Mann and Spath 2001). Another pathway to utilize biomass

feedstock is conversion to cellulosic ethanol to power internal combustion vehicles. A study

by Campbell et al. (2009) suggests that using biomass to generate electricity (as in biomass

cofiring) results in bigger emission offsets compared to ethanol. However, the extent of

environmental impact of this technology will ultimately depend on the total life cycle emis-

sions, including biomass supplier activities, feedstock transportation, and processes at power

plants. It has also been shown that cofiring helps with reducing waste (e.g. wood waste,

agricultural waste) and the environmental problems associated with it’s disposal (Tillman
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2000). According to Sebastián et al. (2011), if the biomass is not utilized for cofiring and

remains in the environment, the CH4 emissions related to its natural biodegradation would

contribute to the life cycle GHG emissions.

Economic viability of biomass cofiring depends on the availability of resources and

governmental support mechanisms. It is shown that biomass cofiring is economical when

there are rich sources of biomass in close vicinity of plants, i.e. within 50-90 miles radius

(Nicholls et al. 2006, Roni et al. 2014). Otherwise, government incentives are necessary

to help plants to reach a break-even point (Ekşioğlu et al. 2016). Currently, the main

financial incentive for biomass related electricity generation in the US is a production tax

credit (PTC), a fixed rate credit (g/kWh) which is provided for each unit of electricity

generated from a renewable resource. As mentioned earlier, utilizing biomass leads to

reduced emissions from coal plants. However, in order to investigate the feasibility of plants

to comply with environmental regulations, it is important to investigate the GHG footprint

of the corresponding supply chain. For example, a significant increase in GHG emissions due

to feedstock transportation may offset emission reductions at the power plants. According

to Khorshidi et al. (2014), the level of biomass cofiring (biomass to coal ratio) is another

factor that directly impacts the GHG footprint of this technology. These observations

motivated the development of a biobjective optimization model to analyze the influence

of logistic and operational decisions on economic benefits and environmental impacts of

biomass cofiring which is proposed in this paper. This type of industry-specific study of

sustainability in biopower supply chains is rarely addressed in literature (?). In order to

better capture the environmental impacts of cofiring, we integrate its life cycle assessment

(LCA) into the proposed optimization framework. LCA is known to be a powerful tool to

estimate the GHG emissions of biomass and biofuel supply chains (Muench and Guenther

2013).

This paper makes the following contributions to the literature. First, we develop a

biobjective optimization model that captures the interactions between two (often) conflict-

ing goals of energy systems, i.e. maximizing the profit-earning potential and minimizing
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GHG emissions. The proposed model considers the biopower supply chain including biomass

feedstock suppliers, transportation activities, and power plants. The proposed model cap-

tures the inherent uncertainties in the system. In order to capture the environmental

impacts of the supply chain we incorporate the LCA impact results within the optimiza-

tion framework. This type of modeling and analysis of biomass cofiring under uncertainty

has not appeared in the literature before. Second, we develop a realistic example where

a utility company which owns a number of coal-fired power plants decides to evaluate the

feasibility of including biomass in their fuel portfolio. Third, we evaluate the performance

of different approaches used to solve the biobjective optimization model under uncertainty.

This analysis helps decision makers to understand the trade-offs that exist between solution

accuracy and solution time of different approaches.

4.2 Literature Review

The literature related to biomass cofiring has grown significantly and across several

disciplines in the last decade. In this section we mainly focus on studies related to biomass

cofiring supply chains and studies which integrate life cycle assessment with optimization

models.

4.2.1 Biomass cofiring supply chains

Most of the literature on supply chain management and design focus on the uti-

lization of biomass for producing biofuels and biorefinery operations (Ekşioğlu et al. 2009,

Sharma et al. 2013, Yue et al. 2014, De Meyer et al. 2014, Ba et al. 2016). There are fewer

studies which focus on the utilization of solid biomass for cofiring supply chain, also known

as biopower supply chain (Aguilar et al. 2012, Roni et al. 2014, Cinar et al. 2015, Ekşioğlu

et al. 2016). In this study, we focus on models that integrate transportaiton and investment

decisions with operational decisions to provide a clear picture of what happens in real-wold

projects (Memişoğlu and Üster 2015, Ekşioğlu et al. 2016). In Memişoğlu and Üster (2015),
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an integrated network planning model was developed that covers both strategic and tacti-

cal level decisions. The developed model is a large scale MIP and the authors propose an

efficient solution algorithm based on Benders decomposition method. This model focuses

on biomass-to-biofuel supply chains. Ekşioğlu et al. (2016) have introduced a model for

integrating transportation and operational decisions for biomass cofiring in power plants.

In addition to considering supply chain decisions, this model also considers the impacts of

governmental incentives and efficiency losses due to cofiring at power plants. The developed

model is an MINLP. The authors use Lagrangian relaxation to calculate lower bounds and

propose an efficient linearization scheme to reformulate the model as an MIP. The work

presented in thid study is an extension of the model by Ekşioğlu et al. (2016). This model

extends the scope of the study by incorporating environmental impacts of the biopower

supply chain via an additional objective function. The proposed model also captures the

uncertainties associated with biomass quality. The models assumes centralized decision

making where coal plants are managed by a single utility company.

Most of the optimization models that study biomass supply chains are deterministic,

however, a few models consider the uncertain nature of of biomass supply and costs (Kim

et al. 2011, Chen and Fan 2012, Gebreslassie et al. 2012, Marufuzzaman et al. 2014, Cinar

et al. 2015). Kim et al. (2011), Chen and Fan (2012), Marufuzzaman et al. (2014) present

the optimal design and operation of supply chain networks for biofuels under the supply,

demand, and/or market price uncertainties. Gebreslassie et al. (2012) proposed a multiob-

jective stochastic optimization model for a hydrocarbon biorefinery supply chain. In order

to capture the uncertainties, the authors modeled their problem as a two-stage stochas-

tic program. The first objective function minimizes the supply chain costs. The second

objective function minimizes the financial risk through conditional value-at-risk measure.

This objective incorporates the government incentives that support biofules. A literature

review carried out in Cinar et al. (2015) emphasized that there is a need to show the effect

of uncertainties in cofiring supply chain network design and determination of optimal fuel

combination. According to Mehmood et al. (2014), the specific chemical content and prop-
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erties of biomass used in cofiring have a critical role in the efficiency of electricity generation

process. In this study, we model the impact of uncertainty in quality of biomass feedstock

used for cofiring via a probabilistic (chance) constraint.

4.2.2 Life cycle assessment and multiobjective optimization

Life cycle assessment is a tool which is most commonly used to estimate the GHG

emissions of biomass and biofuel chains (Rabl et al. 2007, Muench and Guenther 2013).

Mann and Spath (2001) is one of the earliest LCA studies on biomass cofiring. Their study

shows a cofiring rates as small as 5% can result in a 5.4% reduction of GHG footprint of a

coal plant. Similar studies were published by Heller et al. (2003), Cherubini et al. (2009),

Sebastián et al. (2011); and Ruhul-Kabir and Kumar (2012) in later years. One of the

shortcomings of conventional LCA is its inability to provide a systematic way to compare

and analyze the impacts of different supply chain decisions to find the best viable approach.

An approach to overcome this limitation is by integrating LCA into an optimization frame-

work (Azapagic and Clift 1999). This is a fairly new approach in biomass and bioenergy

context (You and Wang 2011, Čuček et al. 2011, You et al. 2012). Multiobjective optimiza-

tion provides an appropriate framework when we want to analyze conflicting goals in the

system such as minimizing the environmental impacts and maximizing the potential profits.

Such approach to evaluate the environmental and economic performance in biomass sup-

ply chains have appeared in Santibanez-Aguilar et al. (2011), Čuček et al. (2012), Cambero

et al. (2016), Dias et al. (2016). All of the mentioned studies focus on the design or planning

of biomass-to-biofuel supply chains while in our study we investigate the biomass cofiring

supply chain by means of LCA and economic evaluation under uncertainty.

Only a few studies in OR literature about biomass supply chains address the uncer-

tainty in their problems (Gebreslassie et al. 2012, Cambero and Sowlati 2014). Gebreslassie

et al. (2012) propose a biobjective optimization model which minimizes the cost and fi-

nancial risk of a hydrocarbon biorefinery supply chain design. In this study, a number of

problem parameters, such as market price, supply, and demand are assumed to be random
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variables. To the best of our knowledge, this study is the first one to investigate the im-

pacts of uncertain problem parameters within a multiobjective optimization framework for

biomass cofiring.

There are a few studies in literature where the chance constraints (CCs) are used

in the multiobjective models to analyze the perfomance of the supply chains (Bilsel and

Ravindran 2011, Xu et al. 2011, Kalinina et al. 2013). In order to find the Pareto optimal

solutions under uncertainty, Bilsel and Ravindran (2011) applied a goal programming ap-

proach and Xu et al. (2011) used fuzzy programming to reformulate their model. Kalinina

et al. (2013) replaced the CC with its deterministic equivalent. We follow the approach in

Kalinina et al. (2013) to find the Pareto optimal solutions in the proposed model. Further-

more, we apply the sample average approximation approach as explained in Kim and Ryu

(2011) to evaluate its performance with respect to Pareto optimal solutions. For a review

of different approaches used to solve stochastic multiobjective optimization models we refer

the reader to Gutjahr and Pichler (2016).

4.3 Problem Description

In this study we investigate the economic and environmental impacts of cofiring in a

setting where an electric utility company decides to introduce solid biomass as a renewable

fuel to be cofired with coal in its existing coal-fired power plants. According to (IEA-

ETSAP and IRENA 2013) most of the existing coal plants can potentially do up to 50%

cofiring (biomass to coal heat ratio). Biomass cofiring can be a source of potential profits

due to displacement of cheaper biomass with coal. Plants may also be eligible to receive

financial incentives and credits from state and local governments due to biomass utilization.

On the other hand, the extensive use of biomass may involve significant logistic costs and

efficiency reductions at coal plants. A number of studeis show that biomass cofiring reduces

emissions at the coal plant Mann and Spath (2001), Heller et al. (2003). However, the

impact of cofiring on emissions is not well understood when emissions from biomass supply
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chain are also taken into consideration. The biobjective optimization model we propose is

expected to help utility companies to understand the trade-offs which exist between profits

and emissions for different cofiring strategies (biomass to coal ratio).

The economic objective function maximizes the potential profits due to biomass

cofiring. cofiring generates revenues from governmental incentives (credits) and from coal

displacement. In the US, a main governmental incentive for electricity generation from

biomass is production tax credit (PTC), a fixed rate credit which is provided per unit of

electricity generated (g/kWh). In our problem, we assume that all of the participating coal

plants are eligible to receive this incentive. Furthermore, the objective function captures

the retrofit costs due to adding cofiring capabilities, logistic and operational costs, as well

as efficiency loss due to using biomass in the boilers. We follow the instructions proposed in

Ekşioğlu et al. (2016) to derive the cost components and capture the efficiency reductions.

4.3.1 Estimating Environmental Impacts of Cofiring via LCA

In order to capture the environmental impacts of biomass cofiring and the underlying

supply chain we employ the conventional life cycle assessment approach. LCA is commonly

used to estimate GHG emissions of biomass and biofuel chains (Rabl et al. 2007). We

consider a cradle-to-grave approach to estimate annual GHG emissions (CO2-equivalent)

during the life cycle of biomass used for cofiring.This LCA analysis follows the standards

and principles proposed by the ISO 14044:2006 (ISO 2006). The four main steps of LCA

as outlined in ISO 14044 for our study is described below.

Goal and scope definition: The goal of the LCA analysis is to determine the life

cycle environmental impacts of biomass cofiring. This analysis is intended to provide useful

information for electric utility companies that want to use biomass as a renewable fuel to

be cofired with coal in their coal-fired power plants. In this analysis we are only looking at

use phase emissions from the power plants. Utility companies may be required to report

GHG emissions throughout the fuel supply chain to comply with regulations or to receive
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renewable energy credits 1. The functional unit considered for this analysis is the mass

amount of biomass used at coal plants (Ton). The system boundary for LCA is depicted in

Figure 4.1.

Figure 4.1: The system boundary to analyze the biomass cofiring life cycle

The life cycle boundary for our analysis include the following three main phases:

� Phase 1: Raw material acquisition includes the activities related to collection and

processing of biomass, and coal extraction. It begins with acquiring solid biomass and

coal mining, and ends with biomass and coal ready for transport.

� Phase 2: Fuel transportation includes transport of coal and biomass from the point

of acquisition to the energy conversion facility.

1The Greenhouse Gas Protocol Initiative defines three scopes for emissions accounting and reporting
(GHG Protocol 2011): (a) direct GHG emissions; (b) indirect GHG emissions associated with the generation
of imported/purchased electricity; and (c) other indirect GHG emissions due to activities from sources owned
or controlled by other companies (e.g. raw material acquisition or transportation of fuels)
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� Phase 3: Energy conversion facility includes operation of the power plant and any

modifications necessary to process and cofire biomass to generate electricity.

Inventory analysis: In this step, we analyze the input/output data associated

with biomass cofiring supply chain and operations. The total life cycle emissions inventory

accounts for raw material acquisition and preprocessing, coal and biomass transportation,

and emissions at coal plants due to electricity generation and related operations. The

total GHG emissions from each unit process is fed to the optimization model. The life cycle

inventory entries, per functional unit of utilized biomass, is obtained from literature, several

databases, and previous LCA analyses. We have used standard environmental databases

that store emission data for similar processes, such as, EPA’s Emissions & Generation

Resource Integrated Database (eGRID) and the US Life Cycle Inventory Database (USLCI)

by National Renewable Energy Laboratory (?). To conduct LCA, Argonne National Lab’s

GREET Life Cycle Analysis® tool (Wang 2008) is used. More details about the life cycle

inventory entries and assumptions are provided in the Appendix.

Impact assessment and and integrating LCA in the biobjective optimiza-

tion In third step, results of the life cycle inventory analysis are translated into potential

environmental contributions. The main metric used for quantifying environmental concerns

is global warming potential. In this work, emissions of two GHG gases CO2 and CH4 are

grouped together in a single indicator in terms of carbon dioxide equivalent emissions (CO2-

equivalent/ton). The relative global warming potential of CH4 to CO2 is assumed to be

25 : 1 based on a time horizon of 100 years suggested as part of Kyoto Protocol(IPCC,

2007).

The conventional LCA does not provide a systematic way to compare the envi-

ronmental impacts of different supply chain decisions. An excellent approach to overcome

this limitation is through integrating the outcomes of impact assessment into a multiob-

jective optimization framework. This allows decision makers to evaluate diverse supply

chain design and operations alternatives that may be implemented to improve environ-

mental performance while also assessing other aspects of the system such as economic and
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social impacts. In order to integrate the LCA into the optimization model we follow the

approaches proposed by Azapagic and Clift (1999) where the functional input is represented

by decision variables, and relative impact of each activity is represented by objective func-

tion coefficients. This method is defined as the “problem oriented” approach to Impact

Assessment (Heijungs et al. 1992).

Interpretation In last step of LCA analysis, results of the biobjective optimization

model are analyzed and a set of practical strategies, which may help with the improvement

of environmental and economic performance, are recommended. Solving the optimization

model results in a set of optimal trade-off (Pareto optimal) solutions. These solutions rep-

resent a range of operational alternatives to utilize biomass in order to achieve best possible

emission reductions and economic benefits. The proposed optimization approach provides

additional insights into biomass cofiring. The Pareto optimal solutions help us to under-

stand the inherent trade-offs that exist between economic and environmental objectives.

4.3.2 Mathematical formulation

In this section we present a chance constrained, biobjective, mixed integer program-

ming (BCCMIP) model to analyze the economic and environmental impacts of biopower

supply chain. We consider a set of coal plants have decided to cofire. These plants decide

about biomass utilization and supply chain design and operations. The first objective func-

tion maximizes the average annual system-wide profits. The second objective minimizes net

annual GHG emissions of biomass supply chain. These emissions are presented in terms of

total CO2-equivalent emissions.

The list of notations used in the BCCMIP model is presented below:

Sets
S set of biomass suppliers (i ∈ S)
C set of coal plants (j ∈ C)
Ci set of coal plants that can receive biomass shipment from supplier i (Ci ⊂ C, i ∈ S)
K set of price levels for biomass feedstock (k ∈ K)
L set of potential cofiring strategies, i.e. L := {0, 0.01, 0.02, . . . , 0.5} (l ∈ L)

Decision variables
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Xijk continuous variable representing the amount of biomass of price k ∈ K transported annually
from supplier i ∈ S to plant j ∈ C (Ton)

Ylj binary variable that takes the value 1 if plant j ∈ C decides to use the cofiring strategy
l ∈ L and takes the value 0 otherwise

Parameters
σt
lj amount of savings at plant j via tax incentives (PTC) when cofiring at

level l ($)
σp
lj amount of saving at plant j from displacing coal with biomass by cofiring

at level l ($)
Ilj annualized investment costs due to cofiring at plant j when cofiring

at level l ($)
cijk unit purchase cost of biomass from supplier i delivered to plant j at price level k ($/Ton)
vijk unit variable cost due to O&M, storage, and handling of biomass at plant j ($/Ton)
ealj average GHG emissions impact due to the extraction and mining of coal to be burned in

plant j at cofiring level l (kgCO2 − eq/Ton)
etlj average GHG emissions impact of coal transportation to be burned in

plant j at cofiring level l (kgCO2 − eq/Ton)
eplj GHG emissions impact due to biomass and coal co-combustion on plant j at cofiring

level l (kgCO2 − eq/Ton)
mlj amount of required annual biomass feedstock if plant j decides to cofire at level l (Ton)
esi GHG emissions impact due to the activities (skidding, debarking, chipping) at

biomass supplier facility i (kgCO2 − eq/Ton)
eavoidi impact of GHG emissions avoided from natural biodegradation of biomass as

CH4 (kgCO2 − eq/Ton)
dij geographical distance from supplier i to plant j for biomass transportation

using great-circle method (mile)
et GHG emissions impact of transporting biomass feedstock via trucks

(kgCO2 − eq/Ton−mile)
epj GHG emissions impact due to handling, drying, and storage of biomass feedstock

at plant j (kgCO2 − eq/Ton)
sik maximum amount of available biomass at supplier i at price level k (Ton)
g limit on the financial incentives obtainable from government due to biomass utilization ($)
hi random variable representing the level of energy content in biomass provided by

supplier i (MMBtu/Ton)
Elj total required energy from burning biomass to meet the baseload requirement of

plant j when cofiring at level l (MMBtu)

The proposed optimization model, BCCMIP, is presented as follows.

max Z1(Y,X) :=
∑

l∈L

∑

j∈C

(
σt
lj + σp

lj − Ilj
)
Ylj −

∑

i∈S

∑

j∈Ci

∑

k∈K
(cijk + vijk)Xijk

min Z2(Y,X) :=
∑

l∈L

∑

j∈C

(
ealj + etlj + eplj

)
mljYlj +

∑

i∈S

∑

j∈C

∑

k∈K

(
esi − eavoidi + dije

t + epj

)
Xijk
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s.t.

∑

l∈L
Ylj = 1, ∀j ∈ C, (4.1)

∑

j∈Ci

∑

k∈K
Xijk ≤ sik, ∀i ∈ S, k ∈ K, (4.2)

∑

l∈L

∑

j∈C
σt
ljYlj ≤ g, ∀l ∈ L, j ∈ C, (4.3)

Pr(
∑

i∈S

∑

k∈K
hiXijk ≥

∑

l∈L
EljYlj) ≥ 1− γ, ∀j ∈ C, (4.4)

Xijk ∈ R+ ∀i ∈ S, j ∈ Ci, k ∈ K (4.5)

Ylj ∈ {0, 1} ∀l ∈ L, j ∈ C, (4.6)

Constraints (4.1) guarantee that each power plant will adopt exactly one cofiring

strategy (including 0% cofiring). Constraints (4.2) limit the amount of biomass delivered

to be less than or equal the available feedstock at each supplier facility. Constraint (4.3)

puts a limit on the amount of credit obtained by utility company. Constraint 4.4 represent

the CCs at a reliability level of γ. These constraints impose, for at lease (1 − γ)100% of

times, total energy value of delivered biomass is greater or equal to the energy requirements

of each plant. Constraints (4.5)-(4.6) represent non-negative and binary decision variables.

4.4 Methodology

In this section we introduce the methodological approaches used to capture the

uncertainties in the model and find the Pareto optimal solutions. The model BCCMIP

proposed in previous section contains parameter randomness, conflicting objective func-

tions, as well as mixed integer decision variables and which make solving the problem quite

challenging. First we address the approach used to find the Pareto optimal solutions.

Since the developed optimization model is a multiple criteria decision making prob-
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lem, there is no unique optimal solution to minimize/maximize both of the objective func-

tions simulataneously, rather we find the Pareto optimal (Pareto efficient) solutions. Read-

ers are referred to Ehrgott (2013) for a comprehensive review of the theory and applications

of multicriteria optimization.

In order to simplify the exposition, we represent the introduced model in previous

section as the simplified model (Q) below

(Q) min f(x) := (f1(x), f2(x))

P (E(x, h) ≤ 0) ≥ 1− γ,

x ∈ X ,

where f1, f2 : Rn1 × Z
n2 → R, x := (x1, x2) ∈ R

n1 × Z
n2 . E(x, h) = −hx1 + b1x

2 is the

energy function determining the total energy content of the used feedstcok, X = {(x1, x2) ∈

R
n1 ×Z

n2 | A1x
1+A2x

2 ≤ b2}, is the discrete feasibility set defined by problem conditions,

and γ ∈ (0, 1] is the reliability level priory fixed by the Decision Maker. Heating values

for provided biomass fuels hi, i = 1, . . . , n1 are defined on the probability space (Ω,Σ, P ).

Note that the economic maximization objective function can turn to a minimization with

a simple multiplication by (−1).

Definition 1. A feasible solution x′ to (Q) is called weakly efficient solution, if

there is no other feasible x such that fk(x) < fk(x
′) for k = 1, 2. If x′ is weakly efficient,

then f(x′) is called a weakly efficient objective function value. The set of all weakly efficient

objective function values is referred to as weakly efficient frontier

Definition 2. A feasible solution x∗ to (Q) is called efficient or Pareto optimal, if

there is no other feasible x such that fk(x) ≤ fk(x∗) for k = 1, 2 and f(x) 6= f(x∗). If x∗ is

efficient, then f(x∗) is called a Pareto optimal objective function value. The set of all efficient

solutions x′ ∈ X is denoted by XE . The set of all Pareto optimal objective function values is

referred to as Pareto frontier or efficient frontier. In Figure 4.2 the geometric representation
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of the efficient and weakly efficient frontiers for the model BCCMIP is shown.

Figure 4.2: Efficient and weakly efficient frontiers for BCCMIP

4.4.1 Capturing the Uncertainties

One of the major uncertainties in this problem that may impact decision making

is the energy content (measured as the lower heating value, hi) of the biomass feedstock

imported to the coal plant. Coal plants generally require that total energy potential of the

replaced biomass be as good as the replaced coal to satisfy the baseload electricity output

of the plant. However, this is not a rigid requirement that must be satisfied all the times.

In case that the energy content of the initially decided biomass ratio is not enough, coal

plants may decide to reduce the amount of utilized biomass or accept a negligible reduction

in plant output if the provided incentives or resulted emission reductions are appealing.

The chance constraint programming is an appropriate approach to deal with this

type of uncertainty in our model. Constraints 4.4 introduced in previous section indicate

that for at least (1 − γ)100% of the times (γ values are typically small, e.g., 1%, 5%, etc.)

the total energy potential of the imported biomass feedstock is greater or equal to the

energy content of the displaced coal. We assume the vector of heating values, h : Ω → Rn1 ,

follows a multivariate normal distribution. We explain two different approaches we applied

to model CC’s. In the computational analysis we implement both approaches and compare

the advantage and disadvantages of each. For a review of different approaches to model and

solve the CCs in the context of stochastic multiobjective optimization refer to (Abdelaziz

91



2012).

4.4.1.1 True efficient frontier

Lemma 1.1. (Kataoka 1963) Suppose h = (h1, . . . , hn) has a multivariate normal

distribution with mean E(h) = (E(hi), . . . ,E(hn)), and let cov(hi, hj) be the covariance of

hi and hj . Then, for any x ∈ R
n, the inner product hx = h1x1 + . . . + hnxn is normally

distributed with mean

E(hx) = E(h1)x1 + . . .+ E(hn)xn

and variance

V ar(hx) = x′V ar(h)x =
n∑

i=1

n∑

j=1

xicov(hi, hj)xj.

Proposition 1.1.(γ-satisfying efficient solution) Suppose for any i = 1, . . . , n1, the

random variables hi are normally distributed and independent. Then a point x∗ ∈ R
n1×Z

n2

is a γ-satisfying efficient solution for problem (Q) if and only if x∗ is Pareto optimal for the

deterministic problem (Q′) below:

(Q′) min(f1(x), f2(x))

b1x
2 −

n1∑

i=1

E(hi)x
1
i +Φ−1(1− γ)

√
x1′V ar(h)x1 ≤ 0,

x ∈ X ,

where Φ(x) = 1√
2π

∫ x

−∞ e
−y2

2 dy.

Proof. Assume that x∗ is a γ-satisfying efficient solution of problem (Q). We show

that the first constraint of problem (Q) is the exact equivalent to

b1x
2 − E(hx1)−Φ−1(1− γ)

√
x1′V ar(h)x1 ≤ 0.

Based on the definition E(x, h) = −hx1 + b1x
2. By Lemma 1.1., E(x, h) is normally

distributed with the expected value E(E(x, h)) = −∑n1

i=1 E(hi)x
1
i + b1x

2 and variance
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V ar (E(x, h)) = x1
′
V ar(h)x1. The CC in problem (Q), P (E(x, h) ≤ 0) ≥ 1 − γ, can be

expressed as

P

(
E(x, h) − E(E(x, h))√

V ar (E(x, h))
≤ −E(E(x, h))√

V ar (E(x, h))

)
≥ 1− γ.

Note that P (E(x, h) ≤ 0) = Φ

(
−E(E(x,h))√
V ar(E(x,h))

)
. Therefore the CC is equivalent to

Φ

(
−E(E(x, h))√
V ar (E(x, h))

)
≥ 1− γ,

that is

−E(E(x, h))√
V ar (E(x, h))

≥ Φ−1(1− γ),

which leads to E(E(x, h)) + Φ−1(1− γ)
√

V ar (E(x, h)) ≤ 0.

By replacing E(E(x, h)) and V ar (E(x, h)) with their equivalents based on Lemma

1.1. we would get the deterministic equivalent of the CC as:

b1x
2 −

n1∑

i=1

E(hi)x
1
i +Φ−1(1− γ)

√
x1′V ar(h)x1 ≤ 0. (4.7)

�

The set of Pareto optimal objective function values resulted from γ-satisfying effi-

cient solutions is referred to as True efficient frontier. Note that the new constraints (4.7)

are in the form of second order cone constraints (SOCCs). Modern optimization solvers can

effectively solve problems with these types of constraints. However, it is known that solving

the multiobjective optimization models with SOCCs is generally more expensive than the

case where all constraints are linear. To avoid such difficulties researchers may develop lin-

ear or convex approximations of the nonlinear constraints (Ağpak and Gökçen 2007, Bilsel

and Ravindran 2011) or find average approximations of the CCs through scenario generation

(Luedtke and Ahmed 2008, Pagnoncelli et al. 2009).
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4.4.1.2 Approximate efficient frontier

The other well-known approach to treat the CC is through a sampling procedure. In

this approach, a set of realizations for the random parameter is generated prior to solving the

problem. Using the generated scenarios, the CC is replaced with a set of new constraints

(linear) that reflect the approximate behavior of the CC. This method is known as the

sample average approximation (SAA) introduced initially by Charnes and Cooper (1959).

Given that the random parameter follows a known probability distribution, we use a

simulation approach (e.g. Monte Carlo) to generate a set of realizations for random variable

h, as hs, s = 1, . . . , N . The sample average approximation of CC is obtained by replacing

the original probability distribution P by the empirical measure PN . Let 1(0,∞) : R → {0, 1}

be the indicator function of (0,∞), i.e.

1(0,∞)(t) :=





1 if t > 0,

0 if t ≤ 0.

Note that P (E(x, h)) ≤ 0) ≥ 1− γ is equivalent to P (E(x, h)) > 0) ≤ γ. Using this

indicator function the CC can be formulated as EP

[
1(0,∞)(E(x, h))

]
≤ γ. Then, the CC

can be approximated by

EPN

[
1(0,∞)(E(x, h))

]
=

1

N

N∑

s=1

1(0,∞)(E(x, h
s)) ≤ γ. (4.8)

By introducing a binary variable V s we can reformulate the SAA constraint (4.8) as the

following

E(x, hs) ≤ mV s, s = 1, . . . , N,

N∑

s=1

V s ≤ Nγ,

V s ∈ {0, 1}, s = 1, . . . , N,
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where m is a large constant to make the firs constraint redundant in case V s := 1.

The set of Pareto optimal objective function values resulted from solving problem

(Q) using the SAA constraints above is called SAAN efficient frontier. In Appendix C., we

show that under mild assumptions, the sequence of SAAN efficient frontiers converge to the

True efficient frontier as N → ∞ with probability 1.

4.4.2 Finding the Efficient Frontiers

We implement the ǫ-constraint method (Changkong and Haimes 1983) to generate

a set of Pareto optimal solutions for the multiobjective model BCCMIP. In this method,

the biobjective model is turned into a single objective model by keeping one of the objec-

tive functions and converting the other objective function into a bounded constraint. To

generate the set of Pareto optimal solutions we start by solving each of the single objective

optimization models while systematically changing the values of the constrained objective.

Especially, for our BCCMIP model we solve the following two single objective models

max f1(x) (4.9)

x ∈ X, (4.10)

f2(x) ≤ ǫ2, (4.11)

where the economic objective is maximized and the environmental objective is constrained

with an upper bound limit, and

min Z2(x) (4.12)

x ∈ X, (4.13)

Z1(x) ≥ ǫ1, (4.14)
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where the environmental objective is minimized and the economic objective is constrained

with a lower bound limit. X is the feasible region resulted from intersection of set X

introduced in previous section and the CC P (E(x, h) ≤ 0) ≥ 1− γ. Depending on how we

model the CC, either by the deterministic equivalent or SAA approach, we will get either

of True efficient frontier or SAAN efficient frontier respectively.

To find the Pareto optimal solutions, we start by finding the range of parameters ǫ1

and ǫ2 in the set of Pareto optimal solutions. We first construct the payoff table (as shown

in Table 4.2), by solving problems (4.9-4.10) and (4.12-4.13).

Table 4.2: The payoff table

Problem Solved
maxx∈X f1(x) minx∈X f2(x)

z1 ($M) ǫmax
1 ǫmax

2

z2 ($M) ǫmin
1 ǫmin

2

The payoff table indicates the greatest value and smallest value that parameters ǫ1

and ǫ2 can take respectively. The ǫ-constraint method follows the Algorithm 1 explained

below to find a set of Pareto optimal solutions.

4.5 Computational Results

4.5.1 Data Description

For our computational analyses we develop a case study using data from coal-fired

power plants owned by Duke Energy Carolinas LLC. This electric power holding company

supplies electricity for customers in the states of North and South Carolina. We consider

7 main coal plants with over 50MW capacity spread across the two states to meet the

baseload electricity requirements of the company (Figure 14). All the plants are equipped

with pulverized coal boilers which is shown to be compatible for biomass cofiring (Tillman

et al. 2010). Information about plants characteristics are collected from energy.gov and

Duke Energy website. For details about the economics of biomass cofiring and relevant

supply chain costs, we refer the reader to Ekşioğlu et al. (2016) and Karimi et al. (2017).
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Algorithm 1 The ǫ-constraint algorithm

procedure ParetoFront(Z)
input Pareto optimal set L, number of intervals k
Build the payoff table and calculate the range of the parameters ǫ1 and ǫ2

Calculate the step size ∆ǫ1 =
ǫmax
1

−ǫmin
1

k
, ∆ǫ2 =

ǫmax
2

−ǫmin
2

k
.

for i = 0 to k do

ǫ1 = ǫmin
1 + i∆ǫ1

Solve (4.9-4.11)
if (4.9-4.11) feasible then

Add solution to L

end if

end for

for i = 0 to k do

ǫ2 = ǫmax
2 − i∆ǫ2

Solve (4.12-4.14)
if (4.12-4.14) feasible then

Add solution to L

end if

end for

return L

end procedure

Figure 4.3: Coal-fired power plants owned by Duke Energy Carolinas LLC

Biomass availability data by state and county is extracted from the Knowledge Discovery

Framework (KDF) database, an outcome of the US Billion Ton Study led by the Oak Ridge

National Laboratory (KDF Accessed 12.10.2013). This database provides the amount of

biomass available at the county level in the form of forest products, agricultural products,

agricultural residues, etc. The database provides the amount of biomass available at differ-

ent market prices, which vary from $20 to $200 per ton of biomass feedstock. We consider
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a total of 90 suppliers of woody biomass in South and North Carolina. These suppliers are

located within 80 mile radius of plants (Figure 4.4). We only focus on the wood processing

residues and forest management residues resources for biomass cofiring. These resources

have little to no impact on land use change and are not significantly useful otherwise.

Figure 4.4: Biomass suppliers counties within 80-mile radius of coal plants

The data extracted from eGRID and USLCI databases is logged into Argonne Lab’s GREET

Life Cycle Analysis® tool for life cycle assessments (more details about LCA in the Ap-

pendix A).

Finally, the solution algorithms are implemented using Julia language and optimiza-

tion models are build using Julia for Mathematical Programming (JuMP, ?). Computa-

tional analyses to compare the true and approximate frontiers are run on a personal laptop

with Intel(R) Core(TM) i5-4300U CPU with 1.90GHz, 2.50GHz, and 8.00GB of RAM. The

solutions to the case study problems, which are summarized in Table 4.3, are found by run-

ning the algorithm on Clemson University’s high performance computing nodes (Palmetto

Cluster). MIP and MISOCP models are solved using Gurobi 7.0.1 solver.

4.5.2 True vs. Approximate Efficient Frontiers

In our analysis, we are interested in comparing the performance of the two ap-

proaches introduced in Section 4.4 to capture the uncertainties. As explained, the true

frontier model is a biobjective MIQCP and the SAA frontier model is a biobjective MIP.

Typically MIQCPs are harder to solve compared to MIP due to the presence of quadratic
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constraints. In Figure 4.5 the true efficient frontiers and a group of SAA frontiers for dif-

ferent scenario sizes (N) with a 95% reliability level is depicted. It is shown that the SAA

frontiers provide lower bounds for the environmental objective function and upper bounds

for the economic objective function. By increasing the scenario size the SAA frontiers get

closer to the true frontier. This is a promising indicator that by increasing the parameter N

we can have a good approximation of the true frontier and avoid the difficulties of solving

the biobjective MIQCP model. But how difficult is it to find the true frontier?
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Figure 4.5: True efficient frontier and SAA frontiers with different sample sizes (γ = 0.05)

In Figure 4.6 the computational times for finding the true and SAA frontiers are presented

(both models are solved using the ǫ-constraint method). The average CPU seconds for

finding the true frontier is around 1600 seconds. On the other hand, the computational

time for SAA frontier has an exponential growth as we increase the scenario size. The

reason is by increasing N the number of constraints (??)-(??) increases and it contributes

to the exponential growth of the MIP model. Despite the presence of quadratic constraints

in MIQCP, the problem size remains fixed and we are able to find the true frontier with less

difficulty compared to SAA frontiers when N > 35. For the rest of the results presented in

this section we only report on the true frontiers.
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Figure 4.6: Average computaion times to calaculate the efficient frontiers (solver times)

4.5.3 Evaluating the Impacts of Cofiring

Figure 4.7 represents the efficient frontiers for different ranges of cofiring.The x-axis

represents the total annual profits from biomass cofiring in all the seven plants. A negative

value in the x-axis means the total costs associated with adopting cofiring is more than

the savings and this leads to economic loss for the utility company. The y-axis represents

the total annual emissions across all coal plants. These estimates capture emissions due to

burning of coal, and emissions due to biomass transportation and suppliers activities. The

total annual emissions without cofiring are estimated to be 64.34M Ton CO2-eq. The graph

represents the total emissions for the following scenarios: coal plants are required to displace

0-15% of coal with biomass; displace 0-25% of coal with biomass; displace 5-25% of coal with

biomass; displace 5-50% of coal with biomass; and displace 0-50% of coal with biomass. As

mentioned in the problem definition, we assume centralized decision making, thus, cofiring

decisions are made by the utility company in collaboration with coal plants with the goal of

optimizing system’s performance. Figure 4.7 shows that giving each plant more flexibility

in decision making, would result in greater profits and emission reductions. For example,

when plants are to do cofiring between 5 and 25%, higher profits are achieved (compared

to 0-25% scenario) since all plants do cofiring and utilize biomass. However, total emissions

still remain high due to more biomass transportation and suppliers activities. Allowing

plants to do cofiring between 0 and 50% results in better quality solutions. Such solutions

allow plants that are located close to suppliers to cofire more than other plants, thus, leading
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to higher profits while achieving higher emission reductions.

Figure 4.7: Efficient frontiers for different ranges of cofiring ratio

Table 4.3 summarizes the efficient frontiers for cofiring scenarios presented in Figure 4.7.

First row represents the base case which assumes no cofiring. For the cofiring scenarios,

range, standard deviation, and mean of Pareto optimal objective values are reported. These

results imply some interesting observations. Total emission reductions for all scenarios is

around 7% in average. There is no significant difference in reductions when high-ratio

cofiring (e.g. 25-50%) is imposed. This is due to the fact that by increasing biomass usage,

despite greater reduction in coal consumption, emissions due to transportation and suppliers

activities compromise the emission reductions at coal plants. Table 4.3 results show that

there are more deviations in profit making potentials for similar levels of emissions reduction.

For the scenario when plants are allowed to do cofiring from 0 to 50%, total profits can be

as much as $74M and as low as -$22M. Respectively, emissions reduction ranges from 6.4%

to 8%. Every Pareto optimal solution represents an alternative cofiring and logistic plan

for coal plants. The cofiring and supply chain decisions have crucial roles in economic

attractiveness of biopower.

Next, we illustrate how these Pareto optimal solutions can lead to operational de-

cisions regarding cofiring at individual plants. It is up to the decision makers to choose a

strategy based on the environmental regulations and company interests. In Figure 4.8, three
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Table 4.3: Emission reductions and profits for different ranges of cofiring

Cofiring
range

Emissions (MTon CO2-eq) Biopower profits ($M) Emissions reduction
min max std mean min max std mean min (%) max (%)

0% - - - 64.34 - - - 0 - -
0-15% 59.53 59.74 0.05 59.56 27.28 74.25 14.15 50.72 7.1% 7.5%
0-25% 59.43 59.75 0.07 59.48 6.27 74.54 20.41 40.65 7.1% 7.8%
5-25% 59.60 59.74 0.04 59.66 44.08 74.24 5.34 70.07 7.1% 7.4%
5-50% 59.60 59.74 0.04 59.66 46.31 74.24 5.02 70.16 7.1% 7.4%
0-50% 59.27 59.75 0.17 59.44 -22.24 74.54 30.84 37.02 6.3% 8%

Pareto optimal solutions are selected to represent three types of possible decision making for

biomass cofiring. Figures 4.9 a-c show the cofiring strategy, profits, and life cycle emissions

for each plant that are informed by these representative Pareto solutions.
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Figure 4.8: Three representative Pareto optimal solutions based on the true efficient frontier
for 0-50% cofiring

Point A in Figure 4.8 corresponds to a Pareto optimal point that we would like to

call an environmentally friendly solution. This solution leads to the greatest reduction on

life cycle emissions due to biomass cofiring. Chart (a) in Figure 4.9 represents the resulted

cofiring strategies, emissions and the amount of profits attainable for each plant. The chart

shows that under this solution some of the smaller coal plants will undergo economic loss

while the bigger plants will gain negligible profits. The point B corresponds to a more

moderate Pereto optimal solution where none of the plants undergo economic loss, but

the total emission reduction is not as big as the previous solution (Chart (b), Figure 4.9).

Finally the point C at top of the efficient frontier represents a conservative solution where

all of the plants gain profits, however, the emission reductions is at the lowest attainable
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levels.

(a) Pareto optimal solution A

(b) Pareto optimal solution B

(c) Pareto optimal solution C

Figure 4.9: Cofiring strategies, profits, and emissions for three Pareto optimal solutions in
Figure 4.8

Comparing the cofiring strategies of big and small plants at points A and C would

help with understanding the different outcomes for emissions. At point A the two smallest

plants cofire at rates of 49% and 50% (maximum possible), with total biomass use of 1.66M

ton, while the two largest plants choose not to use biomass. At point C the two smallest

plants cofire at rates of 0% and 5%, and the two largest plants cofire at rates 5% and 4%.

The total biomass usage for these plants at point C is 0.87M ton. Biomass utilization at

point A is almost twice as much for point C and this leads to higher emission reductions
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at point A. An important note should be taken into account for the case when large plants

decide to do cofiring. It is known that under current flat rate PTC, larger plants with

greater investments tend to have better opportunities to reap the financial benefits (Toke

2005, Karimi et al. 2017). For this case study, we have assumed a total limit of $150M for the

savings obtainable from PTC (constraint 4.3). When large coal plants do cofiring the limit

on PTC savings is reached and further biomass usage is not economically feasible. That is

why for point C the total profits are higher but biomass usage and emissions reductions are

lower. Whereas point A represents a solution for which smaller plants do maximum possible

cofiring without reaching the limit on PTC savings and that leads to higher biomass usage

and emission reductions.

Finally, we explain an example of how this model can aid the decision making in

presence of some environmental regulations. Currently, there is no nation-wide carbon tax

or carbon cap policies in place. Some of the states (e.g. California) have started imposing

such policies and it is likely that other states will start to implement such policies in near

future. By assuming a limit imposed by government on the total emissions allowable for

a company (i.e. a Carbon cap policy), our model can be helpful on deciding the best

operational and logistic plan to comply with such policy yet gain the most benefits from

available incentives (Figure 4.10). In Figure 4.10 we assume a limit on the total annual

GHG emissions allowed for a company. All the Pareto optimal solutions below the limit

line are associated with operational and logistic plans that would satisfy this requirement.

A viable solution which is to the right-most end of the Pareto curve may lead to the highest

profits. In Figure 4.11, the best viable logistic and cofiring plans associated with the red-

circled point in Figure 4.10 is illustrated. This solution can potentially lead to a $44.3M

profit for Duke Energy.

This company may not need to consider extra reductions in GHG emissions as long
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Figure 4.10: A carbon cap limit and viable Pareto optimal solutions to comply with

5%
13%

3%

43%

1%

15%

Figure 4.11: Logistic and cofiring decisions associated with the best viable Pareto solution
(red circle in Figure 4.10)

as the representative solution is under the limit line. If, for example, the logistic and

operational decisions associated with the point A in Figure 4.8 had chosen to follow, even

though this solution meets the emission limit, it would result in an economic loss of $15M .

4.6 Conclusions

In this paper, we develop an optimization model to evaluate the economic and

environmental impacts of utilizing solid biomass for cofiring in a set of coal-fired power

plants owned by a central utility company. We aim at facilitating the decision making

regarding the operational and logistic plans to cofire by assessing the potential economic

benefits and GHG emissions throughout the supply chain of biomass. The economic benefits
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are mainly due to the financial incentives provided by the governments while considering

the costs associated with procurement of biomass and capital investments. To estimate the

GHG impacts, we utilize the well known LCA methodology and integrate its outcomes in

our optimization framework. Furthermore, because of the importance of feedstock quality

in the efficiency of electricity generation process, we take into account the uncertainty in

energy content (heating value) of the utilized biomass in the model via chance constraints.

The proposed model developed is called BCCMIP.

In our computational experiments, we start by implementing two distinct approaches

to model the uncertainties implied by CCs and find the Pareto frontiers. First, by deriving

the deterministic equivalent of the CCs we reformulate the model as a biobjective MIQCP.

This model would result in the true efficient frontier and is typically harder to solve com-

pared to MIPs. Second, we apply a sampling procedure known as SAA to reformulate

the model as biobjective MIP and find the approximate Pareto frontiers. We use the ǫ-

constraint algorithm to find the Pareto frontiers in both models. The computational results

show that by increasing the size of sample scenarios in SAA the approximate frontier get

closer to the true frontier; however, the average computation time increases exponentially.

For scenario sizes where N > 35 the true frontier was faster to calculate than the SAA

frontiers.

In our case study, we work on the problem of biomass cofiring for a utility company

with coal plants in the states of North and South Carolina. Our numerical analysis show

that by taking into account the footprint of the supply chain, including the suppliers activ-

ity, fuel transportation, and coal plants emissions, the total GHG emission reductions is in

the range of 6 to 8% annually. Results show that there is not significant variation in emis-

sions reduction for difference ranges of cofiring ratios. Especially, we observed that, higher

biomass utilization rate (high ratio cofiring) does not guarantee a better environmental per-

formance. This might be due to the fact that using more biomass is associated with higher

transportation emissions and this counterbalances the reductions at coal plants. Regarding

profitability, there were more variations for similar levels of GHG reductions which implies
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a significant sensitivity on operational and logistic decisions. We showcased an example on

how this model can be helpful to find the best strategies in response to Carbon cap and

similar policies. By considering the goal of complying to a Carbon limit policy, we presented

a set of Pareto optimal logistic and operational decisions that potentially lead to economic

profits and another set of Pareto optimal solutions that lead to economic loss due to poorer

logistic and operational decisions.

This research can be extended in several directions. One important subject of inter-

est is analyzing the impacts of cofiring in conjunction with CCS technology (bio-CCS). Some

preliminary studies show that bio-CCS may lead to negative emissions, but a comprehen-

sive study of life cycle impacts throughout the supply chain, similar to what we did here, is

necessary. Another extension of current research may involve the inclusion of an expanded

and more complicated supply chain structure for biomass. Biomass feedstock may be im-

ported from farther resources using different transportation modes, such as train, barge, or

intermodal transportation. Our problem can also be modified to take into account more

uncertainty elements such as random market prices, biomass availability or seasonality, and

electricity demand.
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Appendix A Boundary Implications of Nonlinear Models in

Chapter 2

Theorem 1: In an optimal solution X∗ = {X∗
1 ,X

∗
2 , . . . ,X

∗
l } to the single plant

problem, at most one of the suppliers’ is used partially. That means, X∗
i = si, ∀i ∈ S∗/k;

X∗
k = γ; and X∗

i = 0 for i /∈ S∗. Where, S∗ is the set of suppliers selected in the optimal

solution.

Proof:

Let’s assume that the suppliers within set S are sorted in an increasing order of the

size of variable unit costs (ci + cbmi ). Thus, (c1 + cbm1 ) ≤ . . . ≤ (ci + cbmi ) ≤ . . . ≤ (cl + cbml ),

where, l = |S|. Let the unit profit be ci =
(
σp + σt − ci − cbmi

)
. Thus, the unit profits are

decreasing, and c1 ≥ c2, . . . ,≥ cl.

Let’s divide the interval [0, 0.5] into k smaller subintervals as follows [0, B1], [B1, B2], ...[Bk−1, 0.5].

The breakpoint B1 represents what percentage of coal that could be displaced if all the

biomass available at supplier 1 is being used by the plant. Next, B2 represents the percent-

age of coal that can be displaced if biomass supply available at suppliers 1 and 2 was used;

and so on. Without loss of generality, we assume that l ≥ k.

Increasing the value of B impacts the amount of biomass used at the plant, thus, the

right hand-side values of constraints (4.3) increase with B. Let M1,M2, . . . ,Mk represents

the amount of biomass required at B1, B2, . . . , Bk. Indeed, M1 = s1 since we assumed that

supplier 1 is being used to meet the demand for biomass as B increases from 0 to B1;

M2 = s1 + s2; and so on.

For fixed values of B, we can also calculate corresponding investment costs using

equations (4) and (5). Let I1, I2, ...Ik be the investment costs at the corresponding break-

points B1, B2, . . . , Bk.

Let Z1,Z2, . . . ,Zk denote the total cost for B ∈ {B1, B2, . . . , Bk}. Therefore, Zl =

∑l
i=1 ciXi − Il for l = 1, . . . , k.

Theorem 1 implies that in an optimal solution the total amount of biomass used is
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equal to: M∗ =
∑j

i=1X
∗
i =

∑j−1
i=1 si+γ, and γ ≤ sj, j ≤ k. We prove this by contradiction.

Let’s assume thatX∗ = {X∗
1 ,X

∗
2 , . . . ,X

∗
f} is an optimal solution to the single plant problem.

This solution is such that more than one of the suppliers is used partially. That means:

X∗
1 < s1,X

∗
2 < s2, . . . ,X

∗
f < sf , and

∑f
i=1 X

∗
i = M∗. Let I∗ denote the corresponding

investment costs. Since X∗ is the optimal solution to this problem, then Z(X∗) ≥ Z(X) for

any feasible X. Let X = {X1,X2, . . . ,Xj} be a feasible solution such that: X1 = s1,X2 =

s2, . . . ,Xj−1 = sj−1,Xj = γ; and
∑j

i=1Xi = M∗. Since the total amount of biomass used

in both solutions is the same, M∗, the corresponding investment costs are the same. In

solution X all the suppliers are completely used, thus, j < f .

Z(X∗)−Z(X) =

(
f∑

i=1

ciX
∗
i − I∗

)
−
(

j∑

i=1

ciXi − I∗
)

=

f∑

i=1

ciX
∗
i −

j−1∑

i=1

cisi − cjγ =

=

f∑

i=1

ciX
∗
i −

j−1∑

i=1

ciX
∗
i −

j−1∑

i=1

ci(si −X∗
i )− cjγ

=

f∑

i=j

ciX
∗
i −

j−1∑

i=1

ci(si −X∗
i )− cjγ.

Since
∑f

i=1 X
∗
i =

∑j
i=1 Xi, this is true:

∑f
i=j X

∗
i =

∑j−1
i=1 (si − X∗

i ) + γ. Since

c1 ≥ c2, . . . ≥ cj . . . ≥ cf , the following holds true:

Z(X∗)−Z(X) =

f∑

i=j

ciX
∗
i −

j−1∑

i=1

ci(si −X∗
i )− cjγ ≤ cj

f∑

i=j

X∗
i − cj

j−1∑

i=1

(si −X∗
i )− cjγ = 0.

Therefore, Z(X∗) ≤ Z(X). This contradicts the assumption that Z(X∗) is an optimal

solution for the single plant problem. Therefore, in an optimal solution at most one of the

suppliers is used partially. �

Theorem 2. The special case of problem (P) -when there is a single plant in the

supply chain- can be solved to optimality via an O(|S|log(|S|)) algorithm.

Proof:
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Let’s assume that the suppliers within set S are sorted in an increasing order of the

size of variable unit costs (ci + cbmi ). Let’s divide the interval [0, 0.5] into k smaller subin-

tervals [0, B1], [B1, B2], ...[Bk−1, 0.5] in a similar way as explained in Theorem 1. Without

loss of generality, we assume that ci > 0 for i = 1, . . . , k. We analyze the characteristics of

the solution to (P) for B ∈ [0, 0.04], B ∈ [0.04, 0.221), and B ∈ (0.221, 0.5].

Case 1: B∗ ∈ [0, 0.04].

Let (X∗, B∗, Y ∗) denote a solution to the single plant case of problem (P). Since

B∗ ≤ 0.04, then Y ∗ = 1. Let’s assume that suppliers 1, . . . , i were selected in the optimal

solution. Thus, B∗ ∈ [Bi−1, Bi]. Based on Theorem 1, and since constraints (22) are binding

(Proposition 9), the optimal objective function value is

Z(B∗) =
i−1∑

j=1

cjsj+ci


 M coalρbB∗

(1− αB∗)(ρb − 0.0044(B∗)2 − 0.0055)
−

i−1∑

j=1

sj


−Icap

(
B∗

1−B∗

)
.

Let function

f1
i (B) =

(
ciM

coalρb
)
B

(1− αB)(ρb − 0.0044B2 − 0.0055)

and

f2
i (B) = Icap

(
B

1−B

)
.

Thus,

Z(B∗) =
i−1∑

j=1

cjsj − ci

i−1∑

j=1

sj + f1
i (B

∗)− f2
i (B

∗) =
i−1∑

j=1

(cj − ci)sj + f1
i (B

∗)− f2
i (B

∗).

Functions f1
i (B) and f2

i (B) are continuous functions of B for B ∈ [Bi−1, Bi]. Thus,

the objective function Z(B) is also continuous on B (Stromberg 2015). Since Z(B) is

the difference of two convex functions, we cannot conclude that it is concave, or, that it

is convex. Let δ1i (B) denote the slope of function f1
i (B); and δ2i (B) denote the slope of
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function f2
i (B). Since both functions are increasing, δ1i (B) > 0 and δ2i (B) > 0. The

following cases could be encounter for B ∈ [Bi−1, Bi].

(a) δ1i (B) > δ2i (B): since the slope of Z(B) > 0, Z(B) is increasing, thus, B∗ = Bi.

(b) δ1i (B) < δ2i (B): since the slope of Z(B) < 0, Z(B) is decreasing, thus, B∗ = Bi−1.

(c) δ1i (B) = δ2i (B) for some B ∈ [Bi−1, Bi]: Since both f1
i (B) and f2

i (B) are strictly in-

creasing in B, the slope of these lines could be equal in at most two points. Thus, Z(B)

could be quasi-convex, or quasi-concave, or have one minimum and one maximum in

B ∈ [Bi−1, Bi]. If Z(B) is quasi-convex, B∗ = argmax{Z(Bi−1),Z(Bi)}. If Z(B) is

quasi-concave, or have one minimum and one maximum, then, B∗ ∈ (Bi−1, Bi).

Case 2: B∗ ∈ [0.04, 0.221).

The optimal objective function value is

Zi(B
∗) =

i−1∑

j=1

cjsj + ci


 M coalρbB∗

(1− αB∗)(ρb − 0.0044(B∗)2 − 0.0055)
−

i−1∑

j=1

sj




−Ih
(

B∗

1−B∗

)0.9554

−
(
Is + Icd

)( B∗

1−B∗

)0.5575

.

Let function

f1
i (B) =

(
ciM

coalρb
)
B

(1− αB)(ρb − 0.0044B2 − 0.0055)
−
(
Is + Icd

)( B

1−B

)0.5575

and

f2
i (B) = Ih

(
B

1−B

)0.9554

.

Thus,

Zi(B
∗) =

i−1∑

j=1

(cj − ci)sj + f1
i (B

∗)− f2
i (B

∗)
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Functions f1
i (B) and f2

i (B) are continuous functions of B. Thus, the objective

function Z(B) is also continuous on B (Stromberg 2015). Function f1
i (B) is convex since it

is the difference of a convex and a concave function. However, we cannot say the same for

function Z(B) since it is the difference of two convex function. Let δ1i (B) denote the slope

of function f1
i (B); and δ2i (B) denote the slope of function f2

i (B). Since both functions

are increasing, δ1i (B) > 0 and δ2i (B) > 0. The following cases could be encounter for

B ∈ [Bi−1, Bi].

(a) δ1i (B) > δ2i (B): since the slope of Z(B) > 0, Z(B) is increasing, thus, B∗ = Bi.

(b) δ1i (B) < δ2i (B): since the slope of Z(B) < 0, Z(B) is decreasing, thus, B∗ = Bi−1.

(c) δ1i (B) = δ2i (B) for someB ∈ [Bi−1, Bi]: If Z(B) is quasi-convex, B∗ = argmax{Z(Bi−1),Z(Bi)}.

If Z(B) is quasi-concave, or have one minimum and one maximum, then, B∗ ∈

(Bi−1, Bi).

Case 3: B ∈ (0.221, 0.5].

The optimal objective function value is

Zi(B
∗) =

i−1∑

j=1

cjsj + ci


 M coalρbB∗

(1− αB∗)(ρb − 0.0044(B∗)2 − 0.0055)
−

i−1∑

j=1

sj




−Ih
(

B∗

1−B∗

)0.9554

−
(
Is + Icd

)( B∗

1−B∗

)0.5575

.

Let function

f1
i (B) =

(
ciM

coalρb
)
B

(1− αB)(ρb − 0.0044B2 − 0.0055)

and

f2
i (B) = Ih

(
B

1−B

)0.9554

+
(
Is + Icd

)( B

1−B

)0.5575

.

Thus,
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Zi(B
∗) =

i−1∑

j=1

(cj − ci)sj + f1
i (B

∗)− f2
i (B

∗)

Functions f1
i (B) and f2

i (B) are continuous functions of B. Thus, the objective

function Z(B) is also continuous on B (Stromberg 2015). Function f2
i (B) is convex since it

is the sum of two convex functions. We cannot conclude whether function Z(B) is concave

or convex since it is the difference of two convex functions. Let δ1i (B) denote the slope of

function f1
i (B); and δ2i (B) denote the slope of function f2

i (B). Since both functions are

increasing, δ1i (B) > 0 and δ2i (B) > 0. The following cases could be encounter while solving

Zi(B).

(a) δ1i (B) > δ2i (B): since the slope of Z(B) > 0, Z(B) is increasing, thus, B∗ = Bi.

(b) δ1i (B) < δ2i (B): since the slope of Z(B) < 0, Z(B) is decreasing, thus, B∗ = Bi−1.

(c) δ1i (B) = δ2i (B) for someB ∈ [Bi−1, Bi]: If Z(B) is quasi-convex, B∗ = argmax{Z(Bi−1),Z(Bi)}.

If Z(B) is quasi-concave, or have one minimum and one maximum, then, B∗ ∈

(Bi−1, Bi).

Implications of the results from Cases 1-3.

Based on Theorem 1, at most one supplier will be used partially in an optimal

solution. Additionally, we did sort the suppliers in a decreasing order of their unit profit

c. That means, if suppliers 1, . . . , j are selected in an optimal solution, supplier j (the

last supplier selected) is the only one that could have been used partially. To find an

optimal solution to the problem we need to compare the objective function values for each

B ∈ {B1, . . . , Bl}.

�

Proposition 1: A feasible solution to problem (Q) is feasible to the non-linear

problem (P); and the objective function value of (Q) is a lower bound for problem (P).

Proof: This is true due to the way we constructed model (Q). We built model (Q) by

discretizing the continuous variable Bj . L is the set of the co-firing strategies that are
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Table 4: A polynomial time algorithm for the single plant problem.

Step 1: Initialize: S∗ = ∅; B∗ = 0; Mi = Bi = Ii = 0 for i = 1, . . . , k, k ≤ |S|. l = 1
Step 2: Let B1 = 0.04, B2 = 0.221, B3 = 0.5.
Step 3: Sort si ∈ S in an ascending order of unit profit ci.
Step 4: For i = 1, . . . , k:

Let Mi = Mi−1 + si
Calculate Bi using equation (2)
Calculate Z(Bi)

End For i
Step 5: For p = 1, . . . 3:

For i = l, . . . k:
If Z(Bi) > 0

If Z(Bi) > Z(Bi−1) and Bi ≤ Bp then
S∗ = S∗⋃ i
φ = i

Else

Find Bp∗ ∈ [Bi−1, Bi] using Golden Search Algorithm
If Bp∗ > Bi−1, then S∗ = S∗⋃ i, φ = i

End If

End If

End For i
l = φ

End For p
B∗ = argmax{Z(B1∗),Z(B2∗),Z(B3∗)}

Step 6: Report the optimal solution:
B∗

For i = 1, . . . , |S∗| − 1, let X∗
i = si.

Let j = |S∗|. Calculate X∗
j .

If B∗ ≤ 0.04 then Y ∗ = 1, Else, Y ∗ = 0.

investigated, thus, it includes some, but clearly not all the potential values that Bj could

take.

Let Ξ(Q) be the set of solutions to problem (Q), and Ξ(P) be the set of solutions

to problem (P). Let (XQ
ij , Y

Q
lj ) ∈ Ξ(Q) be a feasible solution to problem (Q). We can use
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this solution to derive a feasible solution for problem (P) in the following way.

XP
ij = XQ

ij for i ∈ I, j ∈ C (15)

BP
j =

∑

l∈L
Ll ∗ Y Q

lj forj ∈ C (16)

Y P
j =





1 if
∑

l∈L Ll ∗ Y Q
lj ≤ 0.04

0 otherwise.
(17)

Since (XQ
ij , Y

Q
lj ), a feasible solution to (Q), can be used to derive a feasible solution

for (P); it can easily be verified that the corresponding objective function value of (Q) is a

lower bound for (P). �

Theorem 3: As |L| approaches infinity, an optimal solution to (Q) is optimal to

(P) with probability 1.

Proof: An optimal solution to problem (Q) could be transformed to a feasible solution

for (P) using equations (15) to (17). Let, ZQ∗ be the corresponding objective function

value of (Q), and ZP be the corresponding objective function value of (P). By construc-

tion, these two objective function values are equal. Next, we show that, under certain

conditions, an optimal solution to (P) can be transformed to a feasible solution to (Q). Let

(XP∗
ij , BP∗

j , Y P∗
j ) be the optimal solution to problem (P).

CASE 1: |L| is finite.

If BP∗
j ∈ L, then, we can derive a feasible solution for (Q) using the following

equations.

XQ
ij = XP∗

ij for i ∈ I, j ∈ C (18)

Y Q
lj =





1 if BP∗
j = Ll

0 otherwise
for j ∈ C. (19)

However, given that BP∗
j is a continuous variable, and L is a finite set, the probability

that BP∗
j is represented in L is equal to zero.
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If BP∗
j /∈ L, then, we cannot derive an solution to model (Q) using a solution to

(P).

CASE 2: |L| is infinite.

In this case, lim|L|→inf P (BP∗
j ∈ L) = 1. This implies that, given an optimal solution

to (P) we can derive a feasible solution to (Q) using equations (18) and (19). Let, ZP∗ be

the corresponding objective function value of (P), and ZQ be the corresponding objective

function value of (Q). These two objective function values are equal. By Proposition 1 and

optimality theory, we have: ZP ≤ ZP∗ = ZQ ≤ ZQ∗ and ZP∗ ≥ ZQ. This implies that

ZP∗ = ZQ∗.

To summarize, as |L| → inf the optimal solutions to models (Q) and (P) are equal

with probability 1. �

Proposition 2:

Bj ≤
1

M coal
j

∑

i∈S
Xij ≤ fj ≤ (Bj + aj) ∀j ∈ C.

Where, aj =
0.5(ρbj−(1−0.5αj)(ρ

b
j−0.0066))

(1−0.5αj )(ρbj−0.0066)
.

Proof: Function fj has the following properties: fj = 0 if Bj = 0 and fj > Bj for

Bj > 0. This is due to the way we construct fj. If Bj represents the percentage of coal

being substituted in plant j (by mass), then, fj transforms this percentage into an equivalent

percentage of biomass needed to enable this substitution. Thus, the linear function f j = Bj

is an inner approximation of fj. Indeed, f j underestimates fj for Bj ∈ (0, 0.5].

Function fj is an increasing function of Bj. Thus the difference fj −Bj reaches its

maximum when Bj = 0.5. This maximum difference is aj . To summarize,

fj = 0 if Bj = 0

fj = Bj + αj if Bj = 0.5

Bj < fj < Bj + αj if 0 < Bj < 0.5.

�
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Proposition 4: Function f(Bj) =
Bj

(1−Bj)
is increasing in Bj , for 0 ≤ Bj ≤ 1.

Proof: To proof this we show that for any ǫ > 0, such that, Bj + ǫ < 1, the following holds

true f(Bj + ǫ)− f(Bj) ≥ 0.

Therefore,

f(Bj + ǫ)− f(Bj) =
Bj + ǫ

(1− (Bj + ǫ))
− Bj

(1−Bj)
=

(Bj + ǫ)(1 −Bj)−Bj(1− (Bj + ǫ))

(1− (Bj + ǫ))(1−Bj)
=

=
Bj −B2

j + ǫ− ǫBj −Bj +B2
j + ǫBj

(1− (Bj + ǫ))(1 −Bj)
=

ǫ

(1− (Bj + ǫ))(1 −Bj)
> 0.

�

Proposition 5: Functions f(Bj) =
(

Bj

1−Bj)

)0.5575
and f(Bj) =

(
Bj

1−Bj

)0.9554
are

increasing in Bj , for 0 ≤ Bj ≤ 1.

Proof: Via proposition 4 we show that
Bj

1−Bj
is increasing in Bj . For Bj ∈ [0, 0.5],

Bj

1−Bj

takes values in [0, 1]. Therefore,
Bj

1−Bj
in some power l (0 < l < 1) is also an increasing

function of Bj. �

Proposition 6: Functions f(Bj) =
(

Bj

1−Bj)

)
is strongly convex for 0 ≤ B ≤ 0.5.

Proof: We prove this by investigating the second derivative of this function with respect

to Bj .

df(Bj)

dBj
=

1

(1−Bj)2
,

and

d2f(Bj)

dB2
j

=
2

(1−Bj)3
.

Clearly,
d2f(Bj)

dB2

j

≥ 2 for 0 ≤ B ≤ 0.5. Therefore, functions f(Bj) =
(

Bj

1−Bj)

)
is strongly

convex. �

Proposition 7: Functions f(Bj) =
(

Bj

1−Bj)

)0.9554
is strictly convex for 0.04 ≤ B ≤

0.5.

Proof: We prove this by showing that the second derivative of this function with respect
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to Bj is greater than zero for 0.04 ≤ B ≤ 0.5.

df(Bj)

dBj
=

0.9554

(1−Bj)2(
Bj

1−Bj
)0.0446

,

and

d2f(Bj)

dB2
j

=

1.9108(1−Bj )
(

Bj

1−Bj

)0.0446 − 0.0426108
(

Bj

1−Bj

)1.0446

(1−Bj)4
.

For 0.04 ≤ B ≤ 0.5, function (1 − Bj)
4 ≥ 0. Additionally, for 0.04 ≤ B ≤ 0.5, the

difference

1.9108(1 −Bj)(
Bj

1−Bj

)0.0446 − 0.0426108
(

Bj

1−Bj

)1.0446 > 0.

Therefore, functions f(Bj) =
(

Bj

1−Bj)

)0.9554
is strictly convex for 0.04 ≤ B ≤ 0.5. �

Proposition 8: Functions f(Bj) =
(

Bj

1−Bj)

)0.5575
is strictly concave for 0.04 ≤ B <

0.221 and strictly convex for 0.221 < B ≤ 0.5.

Proof: We prove this by showing that the second derivative of this function with respect

to Bj is less than zero for for 0.04 ≤ B < 0.221; and greater than zero for 0.221 < B ≤ 0.5.

d2f(Bj)

dB2
j

=
0.5575

(
2

(1−Bj )2
+

2Bj

(1−Bj)3

)

(
Bj

1−Bj

)0.4425 −
0.246694

(
1

1−Bj
+

Bj

(1−Bj)2

)2

(
Bj

1−Bj

)1.4425

The second derivative takes negative values for 0.04 < Bj < 0.221 and takes positive

values for 0.221 < Bj ≤ 0.5.

Therefore, functions f(Bj) =
(

Bj

1−Bj)

)0.5575
is strictly concave for 0.04 ≤ B ≤ 0.221

and is strictly convex for 0.221 < B ≤ 0.5. �

Proposition 9: In an optimal solution to model (P), constraints (4.3) are binding.
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Proof: We prove this by contradiction.

Let (X∗, Y ∗, B∗) be an optimal solution of (P). Let I∗ denote the corresponding

investment costs, and let S∗ denote the set of suppliers selected. The optimal objective

function value is ZP (X∗, Y ∗, B∗) =
∑

i∈S∗ ciX
∗
i − I∗.

Let’s assume that constraints (4.3) are not binding at (X∗, Y ∗, B∗). Therefore,

∑

i∈S∗

X∗
i <

(M coal ∗ ρb)
(1/B∗ − α)(ρb − 0.0044(B∗)2 − 0.0055)

.

Let (X,Y,B) be a feasible solution of (P). We create this solution by starting at

(X∗, Y ∗, B∗) and decreasing the value of B∗ by ǫ > 0 so that constraints (4.3) become

binding.

Let’s now calculate:

ZP (X∗, Y ∗, B∗)−ZP (X,Y,B) =

(∑

i∈S∗

ciX
∗
i − I∗

)
−
(∑

i∈S∗

ciX
∗
i − I

)
= I − I∗ ≤ 0.

As shown in Propositions 4 and 5, the investment cost functions do increase with

B. Since B < B∗, then, I < I∗. Therefore,

ZP (X∗, Y ∗, B∗) < ZP (X,Y,B).

This contradicts the initial assumption that (X∗, Y ∗, B∗) be an optimal solution of

(P). Therefore, at an optimal solution constraints (4.3) are binding.

�

Proposition 10: Function f(Bj) =
ρbjBj

(1−αjBj)(ρbj−0.0044B2

j−0.0055)
is strongly convex

for 0 ≤ Bj ≤ 0.5, 0 ≤ αj ≤ 1, and ρbj > 0.0066.

Proof: We prove this by showing that the second derivative of this function with respect

to Bj is greater than zero for 0 ≤ Bj ≤ 0.5, 0 ≤ αj ≤ 1, and ρbj > 0. The second derivative

is:
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d2f(Bj)

dB2
j

=
0.00015488ρbjB

3
j

(1− αjBj)(−0.0055 + ρbj − 0.0044B2
j )

3
+

0.0088ρbjBj

(1− αjBj)(−0.0055 + ρbj − 0.0044B2
j )

2
=

=
0.0088ρbjBj

(1− αjBj)(−0.0055 + ρbj − 0.0044B2
j )

2

(
1 +

0.0176B2
j

(−0.0055 + ρbj − 0.0044B2
j )

)

For 0 ≤ αj ≤ 1 and ρbj > 0, the following holds true:

(
0.0088ρbjBj

(1−αjBj)(−0.0055+ρbj−0.0044B2

j )
2

)
>

0.

Expression

(
1 +

0.0176B2

j

(−0.0055+ρbj−0.0044B2

j )

)
> 0 if (−0.0055 + ρbj − 0.0044B2

j ) > 0.

The minimum value that expression (−0.0055 + ρbj − 0.0044B2
j ) can take is when

ρbj = 0 and Bj = 0.5. In this case, the value of this expression is −0.0066. If ρbj > 0.0066,

then,
d2f(Bj )

dB2

j

> 0 and function f(Bj) =
ρbjBj

(1−αjBj)(ρbj−0.0044B2

j−0.0055)
is strictly convex. �
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Step 1: Initialize λ, UB, n, u, ξ, ǫ, N

Step 2: Let LB = ZQ(X,Y )

Step 3: Solve subproblems (SP)j for j ∈ C

Step 4: Compute the upper bound:

UBn =
∑

j∈J
ZSP
j (X,Y,B) +

∑

i∈S
siλi

If UBn > UB, then

UB = UBn

ǫ = UBn−LB
LB

End If

Let n = n+ 1

Step 5: If ǫ ≤ 0.01, then STOP

ELSE

Let un = ξn(UB−LB)
∑

i∈S(si−
∑

j X
n
ij)

2

Let λn
i = λn−1

i + un(si −
∑

j Xij)

Step 6: If n > N , then, STOP

ELSE go to Step 3

Figure 12: Lagrangean relaxation algorithm
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Appendix B Computational Performance and Problem Struc-

ture of Models in Chapter 3

B.1 Computational Performance

We model the MIBP problem (MP) in GAMS 23.7 and solve the problem using

BONMIN and COUENNE solver packages. We model the corresponding MIP reformula-

tion, model (LMP), in AMPL 20141128 and solve it using GUROBI 6.5.0. The computations

are done in a Dell personal computer with Intel(R) Core(TM) i5− 4300U CPU 2.50 GHz

processor, and with 8.00 GB of RAM.

The performance measures used for models (MP) and (LMP) are presented in Table

5. This table summarizes the size of the problems solved, the running time in CPU seconds,

and the optimality gap reported by each solver. Each problem corresponds to one of the

states in the southeastern U.S. The last problem set (SE), corresponds to the whole South-

east. Two stopping criteria apply: (i) CPU running time of no more than 4,000 seconds,

and (ii) relative optimality gap of no more than e−06. The results from Table 5 indicate

Table 5: The performance of the solution approaches proposed

Model (MP) Model (LMP)
Nr. of Number of BONMIN COUENNE Number of Gurobi

Problem Plants Variables Constraints CPU Gap CPU Gap Variables Constraints CPU Gap

AL 11 4,000 2,211 13 4.06e−01 124 e−06 4,411 8,813 0.4 e−06

AR 4 352 804 6 1.00e−06 40 e−06 1,604 3,206 0.2 e−06

FL 15 4,000 3,015 17 3.76e−01 309 e−06 6,015 12,017 0.9 e−06

GA 12 2,965 2,814 16 1.00e−06 253 e−06 5,614 11,216 0.3 e−06

LA 4 4,000 804 6 8.19e−01 29 e−06 1,604 3,206 0.8 e−06

MS 5 4,000 1,005 7 4.66e−01 51 e−06 2,005 4,007 0.3 e−06

NC 23 1,531 5,025 27 5.00e−06 157 e−06 10,025 20,027 0.4 e−06

SC 16 4,000 3,216 18 8.79e−01 925 e−06 6,416 12,818 0.4 e−06

TN 9 4,000 2,010 12 4.92e−01 138 e−06 4,010 8,012 0.3 e−06

SE 99 4,000 20,904 106 5.00e−03 4,000 8e−03 41,704 83,306 2.5 e−06

that using McCormick relaxation leads to finding the optimal solution for all problems in

less than 3 CPU seconds, an approach which is much more efficient than using off-the-shelf

nonlinear solvers. Additionally, for the majority of the problems solved, BONMIN stopped

because it reached the maximum running time without providing the optimal solution.
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B.2 Note on Capacity-based Schemes

Note on the increased biomass utilization under capacity-based schemes.

The results of Tables 2. and 3. indicate that capacity-based schemes lead to higher levels

of biomass utilization than with the ratio-based schemes, in most cases. This increased

use of biomass seems counterintuitive since, under the ratio-based schemes, plants that

adopt higher cofiring ratios have the opportunity to receive higher incentives and may, we

hypothesize, use more biomass overall because of the optimization models structure. This

phenomenon can be illustrated with an example of a single power plant model. Model (UB)

for a single plant can be represented as follows:

max : α1TB − α2B (20a)

s.t.

∑

j∈C
α3B ≤ b, (20b)

α1TB ≤ g, (20c)

T ∈ [tmin, tmax], (20d)

B ∈ [0, 0.5]. (20e)

Using the 2-level capacity-based and ratio-based schemes explained in Section 6.1., also

assume two plants, with capacities 400MW and 2229MW, respectively, falling under the

first and second levels of capacity ranges in the 2-level capacity-based scheme. Figure (13)

illustrates the feasible region of the model (20) under these schemes and for the two plants.

The marked point on each graph represents the optimal solution for the corresponding

model. For the smaller plant, T is allowed to chose amounts greater than $10.01 (Section

6.1.) under the capacity-based scheme, which allows the optimal points for both schemes

to be the same values. However, for larger-sized plant, under the capacity-based scheme, T

is only allowed to chose amounts less than $10 and this provides a larger feasibility range

for B. Consequently, the optimal point under the ratio-based model results in a smaller
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(a) 2-level ratio-based model (400MW) (b) 2-level capacity-based model (400MW)

(c) 2-level ratio-based model (2229MW) (d) 2-level capacity-based model (2229MW)

Figure 13: Feasible regions and optimal points for two plants under PTC scheme models

value for cofiring ratio. Therefore, a capacity-based model leads to greater B∗ than the

ratio-based model, despite the fact that ratio-based model provides greater incentive for

high-ratio biomass cofiring.

B.3 Saving Functions

Proposition 1. Proof: The utilitarian approach identifies a PTC rate for each

plant that maximizes system-wide profits, accounting for the existing limitations on budget

(g) and the biomass supply in the region (b). Note that, for each plant j, Tj can take values

within [tmin, tmax]. The proposed ratio-based scheme adds additional constraints to the

model. These constraints limit PTC to taking values within smaller subintervals which are

all contained within [tmin, tmax]. These additional limitations reduce the size of the feasible

region for model (RS). Thus, its objective function value is a lower bound for model (UL).

�
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Tax saving function. Each plant j ∈ C is characterized by its installed capacity

Nj , the plant’s capacity factor Fj , and the annual operating hours Oj. These characteristics

define the amount of energy (in MWh) generated annually at a plant. The amount of energy,

denoted with Ej , is function of Nj, Fj , Oj . Given these plants characteristics the amount of

energy generated at a plant is equal to Ej = Nj ∗ Fj ∗Oj . Then, if plant j is to cofire at a

ratio of Bj , the amount of renewable energy generated would equal to Ej ∗ Bj. Note that,

the lower heating values for coal and biomass are not the same. If Hb represents the lower

heating value of biomass (in kWh per ton), then the amount of biomass required annually

(in tons) to displace coal equals

M b
j (Bj) =

Bj ∗ Ej

10−3 ∗Hb
. (21)

Finally, if Tj represent the amount of PTC received by coal-fired power plant j, the annual

saving due to PTC equals

St
j(Tj , Bj) = Tj ∗Hb ∗Mj(Bj).
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Appendix C A Convergence Analysis of Biobjective Chance

Constrained Programs

Let’s assume the multiobjective model BCCMIP introduced in Chapter 4 can be

relaxed as the simplified model below

(Q) min (f1(x), f2(x))

P (E(x, h) ≤ 0) ≥ 1− γ,

x ∈ X ,

where f1, f2 : Rn → R are continuous real-valued functions, the energy function E(x, h)

consists of the continuous variable x ∈ R
n, and random variable h defined on the probability

space (Ω,Σ, P ). X is a compact feasibility set defined by problem conditions, and γ ∈ (0, 1]

is the reliability level priory fixed by the Decision Maker. In what follows we present a

proof of the conjecture that the sequence of SAAN efficient frontiers converge to the True

efficient frontier as N → ∞ with probability 1.

We provide the proof based on constrained-objective scalarization of (Q). The ǫ-

constraint problems Li(ǫ), i = 1, 2 for the original problem (Q) are defined as

Li(ǫ) minfi(x)

p(x) ≤ γ,

fj(x) ≤ ǫj, j = 1, 2, j 6= i

x ∈ X ,

where p(x) = P (E(x, h) ≤ 0) and ǫ1, ǫ2 are upper bounds on the values of the objective

functions f1(x) and f2(x).

We can apply the SAA approach to define approximate ǫ-constraint problems L̂iN (ǫ),
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i = 1, 2 as

L̂iN (ǫ) minfi(x)

p̂N (x) ≤ γ,

fj(x) ≤ ǫj, j = 1, 2, j 6= i

x ∈ X ,

where p̂N (x) = 1
N

∑N
s=1 1(0,∞)(E(x, h

s)).

Definition 1. A sequence of extended real valued functions fk(x) is said to epi-

converge to a function f(x), written as fk
e→ f , if for any x the following conditions hold:

(i) for any sequence xk converging to x,

lim inf
k→∞

fk(xk) ≥ f(x)

(ii) there exists a sequence xk converging to x such that

lim sup
k→∞

fk(xk) ≤ f(x)

Note that epi-convergence can be interpreted as a one-sided version of uniform convergence.

Definition 2. A function f : X → R is lower semicontinuous if for every α ∈ R

the set {x ∈ X : f(x) > α} is an open set. If f is lower semicontinuous at x0 we have that

lim inf
x→x0

f(x) ≥ f(x0).

x
0

Figure 14: A lower semicontinuous function

Proposition 1.1 Pagnoncelli et al. (2009) If E(x, h) is a Carathéodory function
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(i.e. h is measurable and x continuous), then p(x) and p̂N (x) are lower semicontinuous and

p̂N
e→ p. Proof. Refer to Pagnoncelli et al. (2009).

Assumption 1.1 The problem L1(ǫ) has an optimal solution x∗ such that for any

δ > 0, there is x ∈ X with ‖x− x∗‖ ≤ δ, p(x) ≤ γ, and f2(x) ≤ ǫ2.

In the other words, we assume the existence of a sequence {xk} of feasible points

for problem L1(ǫ) that converge to the an optimal solution x∗.

Proposition 1.2. Suppose E(x, h) is a Carathéodory function and f1(x) is a con-

tinuous function. Let Z∗ and Ẑ∗
N be the optimal objective function values for L1(ǫ) and

L̂1N (ǫ) respectively. Then Ẑ∗
N → Z∗ with probability 1 as N → ∞.

Proof. From proposition 1.1. p̂N (x) epi-converges to p(x) w.p.1. Based on Assump-

tion 1.1. problem L1(ǫ) has optimal solution and there is x ∈ X such that p(x) ≤ γ and

f2(x) ≤ ǫ2. Therefore p̂N (x) ≤ γ and problem L̂iN (ǫ) has feasible solution w.p.1 for N large

enough. By compactness of X , bounded constraint f2(x) ≤ ǫ2, and lower semicontinuity of

p̂N (x), the feasible region of L̂1N (ǫ) is compact; thus, L̂1N (ǫ) has optimal solution w.p.1 for

N large enough.

Now let us choose a feasible solution x for L̂1N (ǫ) which is arbitrary close to x∗.

Obviously f1(x) ≥ Ẑ∗
N . From Assumption 1.1. for any δ ≥ 0 we have ‖x − x∗‖ ≤ δ and

since f1(x) is continuous:

lim sup
N→∞

Ẑ∗
N ≤ f1(x

∗) = Z∗ w.p.1 (22)

Let x̂∗N be the optimal solution to L̂1N (ǫ), i.e. x̂∗N ∈ X , p̂N (x̂∗N ) ≤ γ, f2(x̂
∗
N ) ≤ ǫ2,

and Ẑ∗
N = f1(x̂

∗
N ). Both x∗ and x̂∗N belong to compact X so it is safe to assume x̂∗N

converges to x∗ w.p.1, and since p̂N
e→ p for any x ∈ X then

lim inf
N→∞

p̂N (x̂∗N ) ≥ p(x∗) w.p.1 (23)

Note that x∗ is a feasible solution of L1(ǫ), thus p(x
∗) ≤ γ, f2(x

∗) ≤ ǫ2, and f1(x
∗) ≥ Z∗.
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It follows from (23) that

lim inf
N→∞

f1(x̂
∗
N ) ≥ Z∗ w.p.1 (24)

Finally, from (22) and (24) we conclude that Ẑ∗
N → Z∗ and the proof is complete. �

In above proposition we show the convergence of optimal objective function value of

ǫ-constraint problem L̂1N (ǫ) to that of problem L1(ǫ). Similarly, same result can be shown

for the optimal objective function values of the problems L2(ǫ) and L̂2N (ǫ) asN → ∞. Next,

we show how it is possible to find Pareto optimal solutions to problem (Q) via ǫ-constraint

problems.

Definition 3. For a given point x∗, we use the symbols Li(ǫ
∗) and L̂iN (ǫ∗), i = 1, 2,

to represent the problems Li(ǫ) and L̂iN (ǫ), i = 1, 2, respectively, such that ǫj = ǫ∗j = fj(x
∗)

for j = 1, 2 and j 6= i.

Theorem 1.1. Assume x∗ ∈ R
n is a feasible solution to the biobjective problem

(Q). As N → ∞ the approximate problems L̂iN (ǫ), i = 1, 2, will result in a true Pareto

optimal solution x∗ w.p.1, if and only if x∗ is an optimal solution to L̂iN (ǫ∗), i = 1, 2.

Proof. In Proposition 2.2. we showed that, as N → ∞, the optimal objective

function value of every problem L̂iN (ǫ), i = 1, 2, converges to the optimal objective function

value of corresponding problem Li(ǫ), i = 1, 2, w.p.1. Consequently, for any optimizer x∗

of Li(ǫ), i = 1 or 2, there exists a sequence of optimizers {x̂∗N} for L̂iN (ǫ), i = 1 or 2 that

converge x∗ w.p.1. Now we outline the necessary and sufficient conditions for x∗ to be a

Pareto optimal solution to (Q), i.e. a true Pareto optimal solution.

Necessity : Let x∗ be a Pareto optimal solution to problem (Q), then it is an optimizer

to problems L̂iN (ǫ∗), i = 1, 2. Let us assume that x∗ does not solve at least one of the

problems L̂iN (ǫ∗), i = 1 or 2, optimally. Say L̂1N (ǫ∗). Then there exists a feasible solution

x such that f1(x) < f1(x
∗) and f2(x) ≤ f2(x

∗) (constraint of L̂1N (ǫ∗) based on Definition

3). This contradicts the Pareto optimality of x∗ for (Q). In other words, x∗ has to optimally

solve any problem L̂iN (ǫ∗), i = 1, 2.

Sufficiency : If x∗ is an optimizer for problems L̂iN (ǫ∗), i = 1, 2, then it is a Pareto
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optimal solution for (Q). x∗ is a feasible solution for (Q) by assumption. Since x∗ is also

an optimal solution to problems L̂iN (ǫ∗), i = 1, 2, there is no other feasible solution x such

that f1(x) < f1(x
∗) (for L̂1N (ǫ∗)) and f2(x) < f2(x

∗) (for L̂2N (ǫ∗)). This is the definition

of Pareto optimality for x∗. �

Based on the necessary and sufficient conditions outlined above, it is possible to

find every true Pareto optimal solution to the problem (Q) via L̂iN (ǫ∗), i = 1, 2 for N

large enough. Therefore the proposed conjecture is true under mild assumptions. The

experimental results reported on Chapter 4. support the conjecture as well (see Figure

15 below). Intuitively, since p̂N
e→ p (convergence from below), seems that the resulted

approximate frontiers also have a convergence from below towards the True frontier.
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Appendix D Life Cycle Assessment for the Environmental

Objective Function

Basic assumptions

� Two categories of sustainable biomass considered for the study: forest management

residues and wood processing residues.

� We do not take into account the environmental impacts due to direct and indirect

land use change (forest residues and urban wood waste have marginal land use change

impacts).

� We assume that the CO2 uptake during the biomass growth is equal to the amount

that is emitted during the combustion at the power plant (biogenic carbon is not

tracked in the analysis).

� GHG emissions due to transmission of power from plants to final users were not

included in the analysis.

� We assume if the biomass is not utilized for cofiring and remains in the environment,

the CH4 emissions related to natural biodegradation would contribute to the life cycle

GHG emissions.

Raw materials acquisition

Extracting coal from the ground is the first phase of the fossil fuel life cycle. Mining

and cleaning are the main processes to prepare coal to be transported to power plants.

The emissions at this stage are mainly due to diesel emissions from mining and prepara-

tion equipment and methane (CH4) emissions from the mine. The GHG estimations for

coal mining are mainly adopted from Spath et al. (1999) and the Argonne National Labora-

tory’s GREET (Greenhouse gases, Regulated Emissions, and Energy use in Transportation)

model. We consider the two main types of coal, bituminous and subbituminous, as each of
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the coal plants under the study uses either of the these types as their primary fuel. The sub-

bituminous coal is relatively pure and can be prepared for transportation by removing large

impurities and crushing it into smaller size pieces. The bituminous coal generally requires

a jig washing process to separate heavier impurities Spath et al. (1999). The preparation of

urban wood waste for cofiring is initially involved with the collection of waste, transferring

to a depot, and crushing the matter into small pieces (wood chips). After transporting the

wood chips to power plants, extra processes may be applied to make biomass a compati-

ble fuel for combustion in PC boilers (e.g. drying or compression). We will consider the

impact of these processes in the third phase. The collection of forest residues mainly done

by skidders which gather the residues and pile them in a landing site. The average energy

use for the collection of forest residues using medium sized grapple skidders is reported as

83.8 MBtu/dry Ton in Boardman et al. (2014). In the landing depot, branches and barks

are removed from trees using a stroke-boom delimber or iron gate for larger trees. The

delimbed trees are then loaded into a chipper. The energy use for debarking/delimbing and

chipping using conventional methods are assumed to be 116.4 MBtu/dry Ton and 105.8

MBtu/dry Ton respectively (based on the report in Boardman et al. (2014)). The primary

GHG impact of preprocessing phase arise from the use of diesel equipment and trucks. The

carbon intensity of diesel fuel is assumed to be 95 kg CO2-eq/MMBtu (Skone and Gerdes

2008).

Fuel transportation

We use the information provided in Boardman et al. (2014) to take into account

the emissions due to coal transportation. In this model, it is assumed that 10% of coal is

transported on a barge over 330 miles and the other 90% of coal is transported by train over

440 miles (Wang 2008). The amount of required coal for a year depends on the heating value

of coal, plant characteristics, and cofiring strategy. It is assumed that biomass feedstock (in

form of wood chips) is transported by diesel trucks from supplier facilities to coal plants.

Based on the GHG conversion factors provided by UK’s Department for Environment, Food
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& Rural Affairs (DEFRA), the average emission rate of transporting wood is 0.275 kg CO2-

eq/Ton-mile (DEFRA 2016). Work by Bauer et al. (2010) evaluates the relationships that

exist among vehicle fuel consumption, CO2 emissions, and vehicle load for transporting

different biomass feedstock. The specific parameter values for biomass transportation were

obtained and validated using Argonne Greet Model (Wang 2008) and the U.S. Life Cycle

Inventory Database. The geographical distance from suppliers to plants are calculated based

on the great-circle distance method.

Electricity generation

In this phase of the life cycle we consider all of the processes typically carried out at

a coal-fired power plant including those related to biomass fuel preparation and handling.

The coal plants of interest use the pulverized coal (PC) boilers for fuel combustion. The

majority of existing US coal plants use PC boilers, and this type of boiler can handle higher

ratios of biomass cofiring (Tillman et al. 2010). The US Environmental Protection Agency

(EPA) provides the environmental characteristics of current electricity generation utilities in

the Emission & Generation Resource Integrated Database (eGRID). We use eGRID to find

the annual GHG emission rates of the coal plants under study. eGrid provides the data for

annual CO2 equivalent output emission rates (kg CO2-eq/MWh) for existing power plants

in US. Using the efficiency factor and heat input of the primary fuel used at each plant

we can estimate the output emission per ton of coal used Mcoal =
1MWh

η0LHVcoal
. Regarding

the avoided emissions, according to Mann and Spath (2001) The total CO2 and methane

avoided per ton of biomass are 1.117 ton 0.065 ton respectively (using global warming

potential of greenhouse gases relative to CO2 it adds up to 1.117 + 25 ∗ 0.065 = 2.742

ton CO2-eq per ton of biomass avoided. However, in determining the net greenhouse gas

emission balance for this system, it is important to recognize that not all of the emissions

and avoided emissions will occur at the same time. While CO2 will be emitted at the

power plant as soon as biomass is fired, the release of CO2 and methane from mulch, and

particularly from landfills, will be delayed. Because it is exposed to the elements, the time
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frame for complete decomposition of mulch would likely be on the order of just few years,

and is reported to occur at a rate of 10% per year (Harmon et al. (1996)).

GREET® life cycle analysis tool (2015) is the main tool we used for LCA. A sample

output for one of the plants with 763MW capacity which uses pulverized coal boilers and

bituminous coal as the primary fuel is presented in Table 6.

Table 6: A sample GREET® LCA impact results

Activity Description GHG impact factor

Raw material acquisition

Bituminous coal Mining - cleaning 59.9 kg CO2-eq/Ton
Forest residues Collection (skidding) - debarking - chipping 29.1 kg CO2-eq/Ton
Urban wood waste Collection - chipping 18.4 kg CO2-eq/Ton
Transportation

Biomass Truck (100%), depending on supplier location 0.27 kg CO2-eq/Ton-mile
Coal Barge (10%, 330 miles), rail (90%, 440 miles) 18.27 kg CO2-eq/Ton
Energy conversion facility

Handling Unloading, dust collection, and cleaning 4.00 kg CO2-eq/Ton
Drying Using natural gas (0.07kgCO2/MJ intensity) 65.95 kg CO2-eq/Ton
Storage Loading-unloading equipment 0.85 kg CO2-eq/Ton
Co-combustion Assuming the carbon neutrality of biomass 3041.6 kg CO2-eq/Ton
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Ekşioğlu, S. D., H. Karimi, B. Ekşioğlu. 2016. Optimization models to integrate production and
transportation planning for biomass co-firing in coal-fired power plants. IIE Transactions
48(10) 901–920.
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