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CHAPTER I: INTRODUCTION 

 

 

In real life most of problems have to be evaluated by considering more than one objective 

(criterion). Optimizing an objective has a long history. Multi-objective optimization (MOP) has 

been studied in the literature as a result of the emerging necessity to consider conflicting 

objectives created by complex systems. Since objectives are generally conflicting by nature, a 

single point that optimizes all of the objectives cannot be found in these cases. So the aim of the 

MOP problem is to reach a set of solutions that cannot be replaced by better points in the feasible 

space considering all of the objectives. This situation gave rise to the specific definition of 

optimality for MOP problems, called Pareto optimality. A problem that has different aspects to 

be considered can be handled by a utility function. However, the shape of this utility function 

may not always have a linear structure; besides, deriving a utility function is neither simple nor 

even possible in every case. So trying to reach to all or part of the Pareto optimal set is necessary 

in most cases. 

A MOP problem can be formulated as follows: 

          { (              )          }                        (1) 

where     and (       ;   denotes the set of feasible set of solutions and is defined by 

                                                       (2) 

where        and     . The corresponding objective space is defined by           . 

It is assumed that objectives are conflicting and cannot be optimized simultaneously within the 

feasible solution space. When     are all continuous, the valued problem is called a multi-

objective linear programming (MOLP) problem; on the other hand, when     is replaced with 

   , it becomes the well-known multi-objective integer programming (MOIP) problem. Multi-
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criteria optimization problems with integer decision variables differ from their continuous 

counterparts and thus require different solution approaches. In particular, problems with integer 

decision variables have non-convex and finite feasible space in comparison with continuous 

problems. 

There are some basic methods that can be used for all types of MOPs in practice. The 

weighted sum method is the most popular Pareto generation method. The well-known epsilon-

constraint method establishes a series of hyper cubes in the objective space by constraining all 

objectives except one. Non-dominated solutions are then obtained by solving a single-objective 

problem in each hypercube based on the excluded objective. Another methodology is called 

scalarization techniques, in which all objectives are combined into a single function. A 

discussion about scalarization functions can be found in Ehrgott ((2006)). Reference point-

related approaches exist which can also be covered under scalarization functions. The distance to 

a reference point for all objectives is potentially minimized in this approach rather than distance 

to special points as defined in the MOP context (i.e., anchor or nadir points) (A.P. Wierzbicki, 

1980). Several studies summarize the contributions and open problems in solving MOP problems  

(Chinchuluun & Pardalos, 2007); (Marler & Arora, 2004); (Klamroth & Tind, 2007). 

MOP is essential in many complex systems and product design decisions. In practice, 

decision makers (DM) prefer to select from a diverse set of non-dominated solution alternatives 

before finalizing their decision. In most practical applications, the process of obtaining the full 

Pareto front is impossible with reasonable computational effort. Besides, as indicated by 

Karasakal and Koksalan (2009) and Steuer (1986), even if a DM can generate the whole Pareto 

surface, selecting the most preferred solution remains difficult and may cause information 

overload if the entire Pareto set is presented to the DM. Hence, there is a need for efficient 
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methods for solving multi-objective programs, which provide well dispersed non-dominated 

solution sets that are also representative of the Pareto front.  

Approximate methods for MOLP aim to generate an approximation set for the whole 

Pareto front rather than for the exact Pareto front. The performance of approximate methods is 

measured by how representative the final solution set is (Hansen & Jaszkiewicz, 1998). Although 

there are several measures of representativeness, the three most common are coverage, 

uniformity and cardinality  (Faulkenberg & Wiecek, 2010); (Sayin, 2000). Approximate methods 

can be classified based on how candidate Pareto points are generated. As one of the most popular 

tools used in many problems, metaheuristic-based methods produce approximation sets that may 

include dominated solutions (Hanne, 2000), even if solutions are filtered at the end of the 

algorithm. Gunawan et al. (2003) proposed a method based on a multi-objective genetic 

algorithm. The nonlinear multi-objective optimization algorithm of Fu and Diwekar (2004) is 

based on the principles of probabilistic uncertainty analysis and the traditional constraint method 

in an effort to generate a representation of the nondominated frontier. A good literature survey 

for metaheuristic-based approximation methods can be found in Ehrgott and Gandibleux (2008) 

and Konak et al. (2006).  

 Representativeness of a solution set is an important part of approximation algorithms as 

it ensures that certain regions of Pareto surface that contain interesting solutions to the DM are 

not omitted and that the solutions are evenly distributed on the criteria space. In this study, we 

only focus on methodologies that guarantee producing Pareto optimal points using exact 

algorithms. We refer the reader to the survey paper of Ruzika and Wiecek (2005), which reviews 

all of these exact approximation methods. Considering the exact nature of these algorithms, as 
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opposed to metaheuristics, these methods can be also named as “representative set” generation 

algorithms.  

For representative set generation algorithms, one key concept is evaluating the quality of 

the solution set. Sayin (2000) defined the coverage error as the distance between the worst 

represented point on the nondominated frontier and the corresponding representative point. Any 

point in the nondominated set is considered represented by its closest representative point in the 

criterion space. The distance between the two points gives the error in representing the 

nondominated point. The coverage error is defined as the maximum of such errors over all 

nondominated points. Uniformity is defined as the minimum distance between representative 

points. Smaller coverage errors and larger uniformity levels are desirable for better 

representation. Cardinality refers to the cardinality of the solution set, and it represents the 

number of solutions that are apart from each other for a predetermined distance. Other 

approaches purportedly evaluate the quality of an approximation of the nondominated frontier, 

which does not require generation of an actual nondominated frontier  (Zitzler, Thiele, 

Laumanns, Fonseca, & Fonseca, 2003); (Laumanns, Thiele, Deb, & Zitzler, 2002); (Wu & 

Azarm, 2001); (Fleischer, 2003). 

The second contribution of this thesis is another algorithm that aims to generate the 

Pareto front of MOIP problems. MOIP problems are unique in the sense that the structure of 

their Pareto front is non-convex. The MOIP methodologies can be broadly categorized into two 

main groups: exact and approximate methods. Exact methods aim to generate the whole Pareto 

front and have been extensively studied over the past decade. Przybylski et al. (2010b) compare 

four different exact methods for solving MOIP problems that have more than two objectives. The 

authors conclude that their proposed “two phased method" outperforms the algorithms of Sylva 
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and Crema (2004), Tenfelde-Podehl (2003) and Laumann et al. (2005). Laumann et al. (2005) 

was used as benchmark in this study as it is an adaptive epsilon constraint-based method for 

problems with more than two objectives. Lemesre et al. (2007) then put forward the 2-Parallel 

Partioning Method (2-PPM) to solve biobjective problems. This method works by partitioning 

the objective space and finding one nondominated point and an associated solution in each part. 

The remaining solutions are then found by exploring the feasible solution set, reduced by the 

previously identified solutions. This method was later extended to any number of objectives by 

Dhaenens et al. (2010), and it was given the name K-PPM. In another recent study, Przybylski et 

al. (2010a) propose a recursive algorithm for finding all nondominated extreme points for MOIP 

problems based on weight space decomposition. However, the algorithm resented by Ozlen and 

Azizoglu (2009) is more efficient in terms of computational requirements. Lokman and Koksalan 

(2012) presented another exact algorithm for MOIP problems, which seems to outperform all 

previously mentioned algorithms from the aspect of computational time, which will be explained 

in detail in the third chapter of this dissertation. However, it should be noted that the application 

of exact methods in the most practical MOIP problem instances is not practical since the 

computational effort required to generate whole Pareto increases rapidly with the number of 

variables and objectives. Despite this, running exact methods for practical MOIP problems is still 

important since they can be used as benchmarks to evaluate approximate methods.  

 

1.1) Motivation 

 

An analyst can contribute to the decision process, if the preferences of the decision maker 

(DM) have an appropriate mathematical structure. This structure is either a relation (preference 

relation) or a function (value function) (Keeney & Raiffa, 1976). A value function, denoted by  , 
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is a real-valued function defined on the criterion space with the property that the DM prefers a 

feasible solution   to another one,   if and only if            . In general, the function   is not 

known to either the DM or the analyst; one can suppose, however, that the function   is non-

decreasing in each of the criteria. In the absence of any other information about this value 

function, one can say that the DM wishes to optimize each of the criteria (Marcotte & Soland, 

1986). However, not all solutions sets necessarily constitute a good representation of the efficient 

set, as it usually contains too many points or is not uniformly spread across the actual Pareto 

front. This has motivated the search for discrete representations that consist of efficient points 

that are different from the extreme points (Sayin, 2003). At this point, one can consider using 

metaheuristics or exact algorithms to get an approximation set of the actual Pareto front of MOP. 

As mentioned earlier, metaheuristics do not offer solutions that are guaranteed to be Pareto 

optimal. Hence, an exact algorithm that produces a solution set that is also representative of the 

Pareto set is a necessary tool for practical purposes. In this study, our first goal is to propose an 

algorithm that is exact and generates a solution set that is representative of the actual Pareto 

front, which can be used for real-life MOP problems. 

MOIP problems are of special kind of problem among MOP problems in the sense that 

their Pareto front is also discrete and cannot be expressed with efficient faces. As it is explained 

later in the preliminaries section, the Pareto front’s unique structure has led to MOIP-specific 

definitions, such as supported or nonsupported solutions. Again, due to their non-convex 

structure, weighted sum, for example, one of the more well-known methods, becomes obsolete, 

as it cannot generate all of the Pareto front but only extreme points of it. There are two phased 

methods in the literature that use weighted sum in order to generate the extreme points, that then 

resorts to other techniques to generate the rest of the Pareto front. Likewise, there are many exact 



 

7 
 

methodologies that generate the Pareto front by relying on the previous solutions and generating 

the whole Pareto starting from one of its corners. Latter methodologies are more efficient than 

two phased approaches in terms of running time. However, they cannot generate a representative 

set at an intermediate stage of the algorithm. Hence, one has to wait until the termination of the 

algorithm to have a complete understanding of the Pareto front. Besides, to the best of our 

knowledge, none of the existing exact algorithms is capable of being parallelized, which makes 

them computationally hard to tackle when faced with substantial MOIP problems. Hence, there 

is a need for an exact algorithm that can generate the whole Pareto set for the MOIP problem, 

and which can be used as an approximation method under time restrictions. Based on this, the 

second goal of this thesis can be expressed as proposing such an algorithm.  

In summary, the research objectives of this thesis can be summed up as follows: 

1. Design algorithms that  

a.  can be used in order to generate representative solutions; 

b. are exact in nature; and 

c. can be used to generate the whole set of Pareto solutions in cases where the Pareto 

front is finite and cannot be expressed in closed form. 

2. Incorporate the branch and bound (B&B) idea to the MOP area. 

 

1.2) Dissertation Organization 

 

 Preliminary concepts are presented in the remainder of this chapter regarding MOP 

literature. The second chapter presents an exact representative set generation algorithm with all 

the benchmark studies. Chapter Two starts with related literature and continues with the details 

of the proposed algorithm. Before the final section of first chapter, the benchmark algorithms are 
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explained, and the chapter concludes with computational experiments and a summary of 

conclusions based on the tests and analysis. Chapter Three presents another new exact algorithm 

proposed for MOIP problems that can be used to generate the whole Pareto set or as an 

approximation algorithm. After a brief introduction, the benchmark algorithms are explained. 

Then, the details of the proposed approach are presented. This chapter concludes with 

computational analysis and results related to the algorithm. The final chapter contains a summary 

of the results based on the studies in the dissertation and recommendations for further research 

related to the proposed algorithms.  

1.3)  Preliminaries 

A linear multi-objective optimization problem with continuous variables (MOLP) is defined as 

follows: 

    (             )              

where     and       ;   denotes the set of feasible set of solutions and is defined by 

                   

where,                . The corresponding objective space is defined by   

              . By the nature of the objectives, they cannot be optimized simultaneously within 

the feasible space. If this could be done, the Pareto set would consist of a single point. 

A feasible solution      is efficient if there does not exist any other feasible solution 

    , such that           . If    is efficient,       is nondominated. If         are such 

that           
              (          

   (for maximization type of objectives), we say 

that               ; and                    . Feasible solutions        are            if 

          
  .   is the set that contains all non-dominated solutions. 
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                       points are the points located on the boundary of the convex 

hull of  ;                            points are located on the interior of the convex hull 

of  . From the solution space point of view, supported efficient points are the solutions, and 

those can be found by the equivalent weighted sum single objective problem 

                           

for some     
 
. Accordingly,                               are the efficient solutions that 

cannot be found as optimal solutions of    for any     
 
. Each supported efficient solution is 

an optimal solution of some weighted sum problem (Geoffrion, 1968). It is well-known that all 

efficient solutions of MOLP are supported, but unsupported efficient solutions may exist for 

MOIP (Vincent et al, 2013). Based on these definitions, the following observations can be made: 

The weighted sum approach cannot guarantee the generation of the whole Pareto set for 

nonconvex Pareto surfaces. Aside from this, the greater the degree to which there is conflict 

among the objectives, the greater the degree to which the gradients of the objective functions are 

radially dispersed, the smaller the dominated set; the smaller the domination set, the greater the 

likelihood of unsupportedness. 

 

A feasible solution   ̂    is                  if there is no     such that       

     ̂          . The point     ̂  is then called                    . 

A feasible solution   ̂    is                    if there is no                ̂  such that 

           ̂          . The point     ̂  is then called                      . 
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There are also several                   definitions in the literature (e.g., Geoffrion, 1968). A 

feasible solution     is called                    if it is efficient and if there is a real 

number     such that for all   and     satisfying            ̂  there exists an index   such 

           ̂ . 

     ̂       

           ̂ 
   

The corresponding point      ̂  is called a properly nondominated point. However, this definition 

of proper efficiency becomes obsolete if MOIP, i.e.,efficient and proper efficient sets, becomes 

the same set when the decision space is integer valued. For a more detailed discussion of 

efficiencies and their comparisons, we refer readers to Ehrgott (2005). 

Several points in the outcome space serve as auxiliary points when constructing 

approximation sets. These are based on the following definitions 

  
                            

  
                             

   
  is called “            ” if the objectives are all minimization type. Then, the ideal point, 

  , the utopia point,    and anti-ideal,    and anti-utopia,     points are defined as follows: 
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where       is a vector with small positive components. The range of attainable set is given by 

   [  
    

  ]             . 

The set of anchor points is denoted by IM. There is another definition that is key to most 

of the algorithms, and this is called the “           .” The nadir point is a point in the design 

space in which all objectives are simultaneously at their worst values. Since it is not simple to 

find the nadir point, one can estimate it by constructing the payoff table. This table is constructed 

by entering all anchor points into a table. Then, one can derive the worst values for each 

objective in this table,   
           . When all of these    

  values are combined, an estimate 

of the nadir point can be calculated. 

1.3.1) Normalization of objectives 

 If the ranges of objectives are significantly different, the methods (explained later in this 

study) cannot produce well-dispersed solution sets. So, in order to carry all of the objectives to a 

common scale, we perform the following normalization: 

  L=[        }= [     ] 

where       Then, we calculate the normalized value of an objective as follows: 

  
  

     
 

  
                    

This way, all the objectives are measured on a 0-1 scale, which indicates the relative position of 

an objective with respect to its ideal and the nadir point. Figueira et al. (2010) used a similar 

scheme in their study, which converted the 0-1 range to percentages. 
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The pure normalization schemes are designed to normalize just the objectives. 

Psychologically-oriented schemes also exist, and these have been designed to obtain some effect, 

regarded as psychologically desired, when optimizing the achievement scalarizing function. 

Other schemes use the information from previous iterations to build a normalizing or preferential 

set of weights. Finally, the user-controlled preferential schemes can be specifically used by the 

DM in order to introduce preferential information to the process. It is empirically proven that, in 

general, these schemes produce different solutions for the same reference point (Ruiz, Luque, & 

Cabell, 2009). 

1.3.2) Scalarization Techniques: Weighted Sum,  -Constraint Method and others 

Scalarization is a single objective related to a MOP problem with additional variables and/or 

parameters. It is usually solved repeatedly in order to find some subset of efficient solutions of 

the MOP problem (Ehrgott, (2006)). Wierzbicki (1980) discussed all relevant aspects of the main 

scalarization techniques specifically for MOLP problems. First, we start by describing two main 

approaches commonly used in MOP area: weighted sum” and the  -constraint method. 

 

1.3.2.1) Weighted sum  

Weighted sum is a convex combination of the p objectives of MOP problem, in which the 

feasible set stays unchanged: 

   
   

∑      

 

   

 

 

Solutions of this technique are only supported efficient solutions with     . 
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1.3.2.1)  -Constraint Method 

In this method, one of the   objectives (          ) is retained for minimization and other, 

    are returned into constraints: 

   
   

    

                        

The optimal solution for this method is weakly efficient. 

The differences between the two approaches can be summarized in a succinct list as follows: 

1. For linear problems, the weighting method is applied to the original feasible region and results 

in a corner solution, thereby generating only efficient extreme solutions. On the contrary, the   -

constraint method alters the original feasible region and can produce non-extreme efficient 

solutions. As a result, with the weighting method, many runs may be redundant in the sense 

various combinations of weights result in the same efficient extreme solution. On the other hand, 

with the   -constraint method, we can exploit almost every run to produce a different efficient 

solution, thereby obtaining a more rich representation of the efficient set. 

2. The weighting method cannot produce unsupported efficient solutions in multi-objective 

integer and mixed integer programming problems, while the   -constraint method does not suffer 

from this disadvantage. 

3. In the weighting method, the scaling of the objective functions has a strong influence on the 

obtained results. Therefore, the normalization of the objective functions is necessary before 

forming the weighted sum; in the  -constrained method, this is not necessary. 

4. An additional advantage of the   -constraint method is that we can control the number of the 

generated efficient solutions by properly adjusting the number of grid points in each of the 

objective function ranges. This is not as easy with the weighting method (Mavrotas, 2009). 
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1.3.2.3) Tchebycheff Method and Achievement Scalarization  

 

The structure of scalarization that will be explained strictly relies on the concept of “order 

preserving functions,” which can be defined as follows: 

A function    ̅     is order preserving if and only if            ̅        ̅    , where  ̅ is 

a constant. Wierzbicki (1980) describes many scalarization functions of this type that use a 

reference point (aspiration level) to generate non-dominated points. Among those, the following 

functions happen to be the most popular ones throughout the MOP literature due to their linear or 

linearizable structure. 

Augmented weighted Tchebycheff method: 

This method is especially popular for interactive methods (Steuer & Choo, 1983); (Steuer, 

Silverman, & Whisman, 1993). This method considers the distance between a feasible point    

in criterion space and the ideal point   : 

   
   

   
     

         
    ∑       

   

 

   

 

where     is a vector of weights. If     an optimal solution,    is efficient; on the other 

hand, if this augmentation is avoided, it can generate weakly efficient points. The non-linear 

“   ” term can be linearized by adding a variable and   number of constraints to the model, 

which will be explained in detail in the next section where proposed algorithm is presented. 

Achievement scalarization and reference point functions: 

The most general form of the achievement scalarization function is as follows: 

   
   

   
     

            ∑         
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where    is the reference point for objective k,     is a vector of weights, and      In 

Wierzbicki (2000), this function has been called a “prototype” achievement scalarizing function. 

This function is order preserving and is preferred mostly for MOIP problems. For general cases, 

other versions of this function can be obtained by replacing          with just    , as it is 

applied by Karasakal and Koksalan (2009). Scaling objective values play an important role in 

terms of preserving the properties of these scalarization functions. 
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CHAPTER II: REPRESENTATIVE SET GENERATION FOR MULTI-OBJECTIVE 

LINEAR PROGRAMMING PROBLEMS 

 

Vector maximization approaches aim to find all efficient solutions  to present to the DM 

(Sayin, 1996). Since the exact solution set is often not attainable, an approximate description of 

the solution set becomes an appealing alternative (Ruzika & Wiecek, 2005). Hence, the reasons 

for developing “approximating approaches” in lieu of exact methods can be summarized as 

follows: 

 To represent the solution set when this set is numerically computable (linear or convex 

MOPs) in order to have a general idea of the Pareto front space rather than all Pareto 

solutions; 

 To approximate the solution set when some, but not all, of the efficient or Pareto points 

are numerically computable (nonlinear MOPs); 

 To approximate the solution set when the efficient or Pareto points are computationally 

prohibitive to solve (discrete MOPs).  

These approximations can be obtained in the form of set points or surfaces. Discrete (point-wise) 

approximations are among the simplest forms of approximations and are called approximations 

of the 0
th

 order. In this approach, the Pareto efficient solutions generated by a particular solution 

method serve as the approximating points and no further structure is computed. Other 

approximation forms in the literature are piecewise linear (1st order), quadratic (2nd order) and 

cubic (3rd order) approximations of the Pareto front. 

While finding a discrete set of points that are well dispersed over the nondominated 

frontier and that represent all parts of the frontier is desirable, it is also important to achieve this 

with a reasonable amount of computational effort. Further, a solution set is usually not 
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considered a good approximation of the efficient set in terms of “representativeness” if it 

contains too many points that do not necessarily cover the Pareto front while spreading 

uniformly. These observations motivate the search for discrete representations of the Pareto front 

that consist of efficient points that are different from the extreme points (Sayin, 2003). 

The approximation algorithms can be classified based on the underlying methodology. 

Some approximation approaches are exact in the sense that they only find efficient (locally or 

globally) solutions, while other approaches are heuristic (i.e., they do not provide efficiency 

guarantee, like NSGA II, and are commonly used due to good time performance). Our focus in 

this work is on the approximation methods that guarantee efficiency of the solutions generated. 

All observations and classifications have led to the goal of this work, which is to develop a 

practical approximation method that generates representative approximations of the Pareto front 

such that the points generated are guaranteed to be efficient. This chapter starts with a brief 

review of literature. It is followed by details of the proposed algorithm. The next section 

summarizes two methods from the literature that are used as benchmark algorithms. We first 

describe the quality measures used to assess the performance of the approximation techniques 

and finally present the experimental results. The chapter concludes with the discussion of results 

and future research directions. 

2.1) Related Literature 

 

The subject of the approximation of the Pareto set of MOPs has been of interest to scientists for 

almost forty years. To the best of our knowledge, pioneering studies in this field were presented 

in 1970s (Polak & Payne, 1976). 

In this section, aside from the proposed algorithm, we want to cover three studies that are 

important for their resemblance to the proposed algorithm, either in terms of the general idea 
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behind the algorithm or their purposes. Sayin (2003) proposed an approach for generating a 

representative subset from the nondominated frontier while guaranteeing a specified level of 

quality. The procedure starts with the generation of efficient faces. Then, the points are added to 

the solution set in a way that a desired level of the coverage error is reached. When the 

nondominated set is nonconvex, a procedure called REPR-D is used that generates 

representations of faces sequentially considering all of the points included in the face 

representations so far (Sayin, 2003). The approach performs well in terms of the quality of the 

representation. However, it requires the generation of all nondominated faces before creating the 

representative points. Hence, there are computational difficulties in the generation of the 

nondominated faces and in obtaining representative points (which requires solving 0–1 integer 

programs), especially for substantial problems. Since Sayin’s (2003) approach is also used to 

assess the coverage measure, the procedure of generating efficient faces is covered in detail in 

section 2.5.1) Coverage Measure 

In 2009, Karasakal and Koksalan presented another algorithm for representative set 

generation purposes. The general idea behind the algorithm is that the Pareto surface is 

approximated with a fitted surface, and reference points are generated systematically on this 

surface. The authors used an edited version of the algorithm proposed by Sayin (2003) for 

benchmarking purposes, called REPR. Details of this algorithm, along with its complexity 

analysis, will be presented in more detail in 2.6) Experimental Results.  

The final study we want to mention is called the “Normal Constraints” method (Mattson, 

Mullur, & Messac, 2004) and is important in terms of supplying the idea of dividing the criterion 

space into equal grids on our algorithm. After presenting some rigorous information about this 

approach, we will continue with the details of the proposed approach. 
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2.1.1) Normal Constraints (NC) Method 

 

The NC method was originally designed for MOP problems, and it guarantees an even 

distribution of the solution set (Mattson et al., 2004). The idea for the algorithm is to convert the 

MOP problem into a single objective optimization problem that is solved repeatedly, subject to a 

judiciously constructed set of constraints. These constraints are placed evenly on a surface, 

which is called an “anchor plane.” Accordingly, the search is performed within this restricted 

area. Hence, the algorithm produces evenly distributed solution points. 

The graphical representation of the algorithm in two and three objective problems are 

shown in the figures below. 

 

 
Figure 1: Segmentation of utopia line in a two objective MOP by NC (Mattson et al., 2004) 
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Figure 2: Segmentation of the search space in a three objective MOP by NC (Mattson et al., 

2004) 

  

 

The steps of the algorithm are summarized in Table 1: 

 

Table 1: Steps of Normal Constraints method 

 
 

 

This algorithm is repeated   times, or the number of objectives. Anchor points and the nadir 

point are obtained using the method that was described in Preliminaries.  

All explanations for the other important steps of the algorithm can be found in Mattson et al. 

(2004). The advantages of this algorithm can be summarized as follows: 

 Overall CPU time requirement of the algorithm is reasonable, and not much is affected 

by the size of the problem after tuning the partition parameters; 

 It can be run in parallel; and 

 It guarantees the representativeness of the solution set. 



 

21 
 

On the other hand, an important drawback of this approach is the objective function used during 

optimization. In other words, the solution set is constructed by optimizing only one of the 

objectives within the grids, which are constructed based on all the remaining objectives (i.e., 

without relying on a scalarization technique). This increases the chance of generating points that 

can be dominated. 

2.2) Proposed Algorithm 

The general idea of the proposed algorithm is to solve the achievement scalarization 

function in a way that guarantees dispersion of the solution points that are Pareto optimal. The 

scalarization function is constructed such that the maximum distance among all objectives to a 

reference point is minimized. In order to achieve a well dispersed solution set, the reference 

points generated in the objective space should have two properties. First, the reference points 

should be well dispersed on the whole Pareto surface. In order to achieve this, equal grids are 

constructed on the objective space using all but one of the objective axes. The second property is 

to ensure that the reference points remain as close as possible to the Pareto front. This property 

also improves the computational efficiency by strengthening the scalarization function 

formulation. In the following sections, we explain the details of the algorithm by providing the 

terminology and definitions used in the algorithm. 

The first step of the algorithm is to identify the most desirable points of the objectives in 

the feasible space in terms of each objective (anchor points,  
 ). Then, the nadir point    is 

estimated by constructing the payoff table, as explained in preliminaries section. 

2.2.1) Partition parameter     

This parameter controls the number of locally Pareto optimal points in the generated 

solution set. One extreme value for this parameter is “1,” which means no grid partitioning. In 
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this case, the algorithm produces at most   unique points, all of which are anchor points. As   

approaches infinity, the grid size decreases to zero and the CPU time requirement of the 

algorithm approaches infinity. Hence, there is a direct relationship between the algorithm’s total 

runtime and the partition parameter  . 

2.2.2) Determining grid boundaries 

As mentioned previously, the algorithm relies on the idea of dividing the objective space 

into equal grids. In order to do this, the range of all objectives is divided into   equal parts, i.e., 

         
    , for all objectives except for the “main” objective, j, selected for each 

loop,              and    . A column vector,     is used to store the boundaries of each grid 

for the objective  . The first element in a row of all vectors are the values of the anchor points, 

i.e.,      
 . By adding    to the previous row in   , all of the   rows are filled. 

There are two different mathematical models that need to be solved during the algorithm, 

the first of which is generating the reference point at each grid. This model is called the 

“intermediate model” and is expressed as follows: 

       

           

                               

In this formulation     and     are determined by the boundaries of the current grid. After 

solving for this model, the best point in terms of main objective, ,  
 , is obtained. Then, a 

reference point,     is calculated using this value. Finally, a model with an achievement 

scalarizing function is solved with the reference point in order to identify the closest Pareto 

point, which will be presented later. By repeating the same process on each grid, we complete 

the exploration for objective  . After completing all of the grids for objective  , we change the 
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index of main objective from   to    . Hence, we explore all parts of the objective space from 

all aspects by setting each objective as the main objective one time.   

2.2.3) Achievement scalarization of reference points 

The reference points are projected onto the nondominated frontier by an achievement 

scalarizing problem, which is formulated as follows: 

      ∑            

 

   

 

                                                              

    

In this formulation,   is the feasible decision space and   is a small positive constant that avoids 

dominated solutions. The achievement scalarizing program always finds a feasible nondominated 

point if any exists (Karasakal & Koksalan, 2009). 

This scalarization function minimizes the maximum of the Tchebycheff distances 

between the reference points and the solution point. The emphasis is on one objective, which has 

the maximum distance to the desired point from the reference point. In addition, the distance to 

the other objectives is also taken into account through the augmented part of the equation with a 

weight multiplier  .  

There are three important parameters in this formulation: the reference point   , the 

weighting coefficients,  , and the coefficient of the augmentation part,   . The only parameter 

that is selected randomly is  . All other parameters are set by some procedures as part of the 

proposed algorithm, and this is explained in detail in the following sections. To the best of our 

knowledge, there is no theoretical or empirical study in the literature about setting   . However, 

it is required to be       . Steuer and Choo (1983) proved that a   always exists that is 
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small enough to obtain all the non-dominated sets for cases with finite-discrete and polyhedral 

feasible regions. In this study, we choose   as        which is sufficiently large enough not to be 

ignored by the first part of the objective function and small enough not to dominate the same 

part. 

2.2.4) Finding the reference points 

The algorithm is executed for each coordinate in the objective space; that is, optimization is 

performed by focusing on each of the objectives one by one. The remainder of the objectives are 

divided into equal parts, and the grids are formed. Let the main objective be denoted by   again, 

where           . The grids are then obtained by dividing each objective   axis into “partition 

parameter,”  , many parts, where            and    .  

In order to maintain both approximation and representativeness in the reference points, 

this study proposes calculating reference points that combine the information obtained from 

intermediate model and grid corners. The first source that supplies one of the coordinates of the 

reference point is the point obtained by optimizing the     objective (i.e., the current main 

objective) on the current grid, and this serves to obtain a point that approximates to the Pareto 

front. The objective value of this intermediate model for the     objective,   
 , is then assigned as 

the j
th

 coordinate value of reference point. The second source of information is the boundaries of 

current grid. The     coordinates of the reference point are determined based on the current 

grid, and incorporating this information helps to spread the reference points diversely. This 

procedure is illustrated for the three objective cases in Figure 3 with an example. It is then 

formalized for the general case. 
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Figure 3: Three dimensional representation of how reference points are generated 

 

In Figure 3, the current grid is denoted by a blue square lying on the x-y plane; in the 

intermediate model the third objective, the z dimension, is the main objective and is optimized to 

find the best point in terms of the third dimension. In this example, the objective value of the 

intermediate model is 84. The information from the current grid is then incorporated. Since all 

the objectives are assumed to be the minimization type in this example, the corner of the grid, 

whose coordinates are determined by the minimum of x, 366, and the minimum of y, 337, are 

incorporated in the reference point. Hence, the final reference point is (366, 337, 84). 

In general, the first step is to identify the best point in terms of the main objective,     
   

by optimizing the intermediate model on the grid. Next, the coordinates of the minimum 

(maximum),          corner points of the grid are determined if the existing objectives of the 

MOP are of the minimization (maximization) type. Finally, a reference point,     is calculated by 

equating   
    

  ;   
                          . 
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Figure 4 and Figure 5 represent a sample for a bi-objective MOIP case in which both 

objectives are of the minimization type. The yellow points below the red line are the reference 

points generated (e.g., 32 represents the reference point generated on the ‘3
rd’

 grid while 

optimizing objective ‘2’). The blue dots on in Figure 4 are the Pareto points that can be obtained 

after solving the achievement scalarization model on the corresponding grids (i.e., the Pareto 

solutions in the feasible region, above the red line).  

 

 
Figure 4: Pareto points for bi-objective MOIP 

 
Figure 5: Reference points for bi-objective MOIP 
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2.2.5) Finding the weighting coefficients 

Ruiz et al. (2009) studied the weighting schemes in reference point procedures. 

Illustratively, if the reference point is outside the feasible region, or are not achievable, the non-

positive orthant is projected from the reference point following the direction given by the weight 

vector,   [       ]  until it touches the efficient frontier. If the reference point is 

achievable, the solution is the last nondominated point that the nonpositive orthant touches, as 

shown in Figure 6 and Figure 7. In this algorithm, “GUESS” and “STOM” weighting schemes 

are implemented, which are expressed as follows, respectively: 

 

 
Figure 6: "GUESS" type of weighting scheme, Ruiz et al. (2009) 

 
Figure 7: "STOM" type of weighting scheme, Ruiz et al. (2009) 

 

 

   
 

  ̅
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    ̅

                   

 

 

where   ̅
    

   . The STOM scheme is preferred when the problem is of the minimization 

type; the GUESS is suggested for maximization problems. Throughout the experimental runs of 

the thesis,   will be 0.001. 

However, this calculation is not enough since a true weighting scheme should have the 

property of       , ∑   
 
   . In order to map the results of the above calculation on a 

[   ] scale, we apply the following scaling: 

   
 

∑
 

  ̅
    

 
 
   

 
 

  ̅
    

   

 

After presenting all of the details for the proposed approach, we will summarize the 

algorithm. The following steps represent the outline of the proposed algorithm: 

 Step 0.1: Obtain anchor points,    ,             and estimate the nadir 

point,     from the payoff table  

 Step 1.0 (Generating reference points): Set the number of partitions,  ; 

initialize solution set,    , and the reference point set,    . 

o Step 1.1: Select the     objective,            as the main 

objective; 

o Step 1.2: Divide           ,     into   parts, set the grid 

boundaries [       ]; in the total construct,        number of 

grids for objective  . 



 

29 
 

o Step 1.3: Solve the intermediate model, get   
 , and construct the 

reference point,     using   
  and            ; populate the 

reference point set with    (i.e.,              

 Repeat steps 1.1-1.3 for  j  {1,…,p} and construct   grids 

for each j  

 Step 2.1(Generating representative points): Solve the achievement 

scalarizing model for       , get the representative Pareto solution     

and update solution set         . 

2.3.1) Overview of the Benchmark Methods: Outer Surface Approximation-Based 

Approach  

The algorithm proposed by Karasakal and Koksalan (2009) starts by solving the series of 

augmented Tchebycheff programs (Steuer 1986) systematically and introducing different lower 

bounds to each of the objectives. As a result, an initial set of nondominated solutions is obtained. 

Afterwards, a surface is fitted that approximates the shape of the nondominated frontier by 

minimizing the sum of square distances from the selected nondominated points. A set of 

approximately evenly spaced reference points on the fitted surface are then selected, and each 

reference point is projected onto the nondominated frontier in the gradient direction of the fitted 

surface. When the fitted surface approximates the nondominated frontier well, the projections of 

these reference points are expected to be approximately uniformly distributed over the 

nondominated frontier and to form a good representation, i.e. coverage. An illustration of this 

concept is presented in Figure 8 for two objectives. 
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Figure 8: An illustration of the approach by Karasakal and Koksalan (2009) 

 

The following is a summary of the steps of the algorithm, presented in a similar way as the 

proposed approach in order to show similarities and differences more clearly: 

 Step 0.1: Obtain anchor points and estimate the nadir point from the payoff table, 

               and     

 Step 1.0: Generate the initial points to fit the space solving of augmented equal-

weighted Tchebycheff programs (i.e., if the size of initial set is k.)  

 Step 1.0 (Fitting the surface)  

 Step 1.1: Find a nondominated point   that is the minimum Tchebycheff 

distance from the ideal criterion vector in the diagonal direction. 
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 Step 1.2: In the weighted –    function, set      and                 

and solve [∑       
   

   

 
]
   

   using a bi-section to determine  . 

 Step 1.3: After p is determined, new   values are calculated using 

  (       )=    , where R and S are two matrices, presented within the 

text previously, that contain the initial set and nadir point information. 

 Step 2.0 (Generating reference points):  

o Divide the curve lying on the     -plane into approximately equal-length 

arcs using a step size of  z for             . 

o Project the endpoints of the arcs on the     -plane onto the zi-axis for all 

{i = 1,…, p – 1}. (Let ni be the number of projections on the zi-axis.) 

o Find n1n2· · · np−1 points on the z1z2 …zp−1 hyperplane as the intersection 

of points projected to each of the axes. 

o Project each of these n1n2…np−1 points onto the weighted-Lp surface by 

fixing objectives         at their corresponding values and maximizing 

objective m over the weighted-Lm surface to find the value of zp that 

corresponds with the combination under consideration. 

 Step 2.0 (Generating representative points):  

o Solve the model with the achievement scalarization objective for each 

reference point. 

2.3.2) Overview of the Benchmark Methods: Modified REPR Algorithm 

This algorithm relies on generating efficient faces of convex Pareto fronts and is based on 

Sayin (2003). Karasakal and Koksalan (2009) modified the algorithm to generate representative 

points, as follows: 
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 Step 0.1: Generate efficient faces of the Pareto front and initialize coverage error 

as 1 for all faces.  

 Step 1.0: Generate a representative point by considering the worst representative 

point in a face. 

o Step 1.1: If the last representative point is already in the set, discard it; if 

not, add it to the final set. 

o Step 1.2: Calculate the new coverage error for the current face. 

o Step 1.3: Check if the desired number of points is generated. If true, stop 

the algorithm; if not, continue with the face that has worst coverage error. 

Details regarding the efficient face generation and coverage error calculation steps are presented 

in the 2.5) Quality Measures for Approximation Techniques since these models have been also 

used to calculate the coverage error for the proposed approach.  

2.4) Complexity of the Algorithm and Advantage over Benchmark algorithms 

The number of optimizations within each grid is restricted to two linear optimization 

procedures; one optimization is required for finding the local optimum, and the other to identify 

the closest Pareto optimal solution. Calculation of reference points and weights of the 

scalarization model are not affected by any other parameters of the algorithm or the problem. 

Thus, there is a constant number of iterations for each grid. This means that the complexity of 

the algorithm is only affected by the number of partition parameter, T, and the number of 

objectives,  .  

As summarized previously, Karasakal and Koksalan’s (2009) algorithm requires an initial 

effort for surface fitting in order to determine the approximation surface and generate reference 

points on this surface. The proposed algorithm follows a relatively straightforward approach to 
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generate good reference points that are both well approximated and diverse. Algorithm 

complexity is designed to compare two algorithms at the idea level, but this ignores low-level 

details such as the implementation programming language, the hardware the algorithm runs on, 

and the instruction set of the given CPU (Leiserson, Rivest, Stein, & Cormen, 2001). Hence, a 

detailed complexity analysis of both algorithms is presented below in order to show the 

differences between the two approaches in terms of time requirement. 

Common notation: 

p: number of objectives 

R: number of reference points 

Complexity Analysis of Proposed Approach 

T: number of partitions              

Step 0.1:   many LP (MIP) solves to find anchor points; p comparisons to construct 

payoff table. 

Step 1.0 (Generating reference points): 

Step 1.2:        many summations to determine grid boundaries 

Step 1.3:   many LP solves (intermediate model) 

Step 2.1(Generating representative points):   many LP (MIP) solves with 

scalarization objective. 

In Total:  

(   ) LP (MIP if the problem is MOIP) solves+ 

  LP solves+          summations 
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Complexity Analysis of Karasakal and Koksalan (2009) 

k: Size of initial set used to fit the surface 

Ti: Number of partition on 
       

 
 many planes determined by step size,  z 

Step 0.1:   many LP(MIP) solves to find anchor points; p comparisons to construct 

payoff table 

Step 1.0 (Fitting the surface)  

Step 1.1:   many LP(MIP) solves 

Step 1.2:    summations (to calculate the special direction for point b) 

Step 1.3: At least “1” bi-section solve ([∑       
   

   

 
]
   

  ) to find  . 

Step 1.4:       multiplications+ [          )] summations to construct 

R matrix; matrix inversion of  ;     multiplications+          ) 

summations to construct S matrix;    summation    multiplication (for matrix 

multiplication) to find weights. 

Step 2.0 (Generating reference points)  

Step 2.1:    summations to partition line segments 

Step 2.4:   many order of m model solves (i.e., non-linear models when m>1) 

Step 3.0 (Generating representative points):   many LP (MIP) solves 

In Total: 

 [                    ]    ] summations + 

                multiplications+ 

1 bi-section solve + matrix inversion+ 
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    many LP (MIP) solves+ 

  many order of m model solves (nonlinear if    ) 

When the totals of all computations are compared, including the basic but minor computations 

such as summations or multiplications, it can easily be observed that the proposed approach 

requires significantly less computational effort. It is worth emphasizing that the total calculation 

effort calculated for Karasakal and Koksalan’s (2009) algorithm considers only one pass to 

determine an “ ” parameter to approximate the surface. However, the most significant 

difference between the two algorithms is the number of optimizations that are needed to generate 

the reference points. Unless the fitted surface function is an order of 1, Karasakal and Koksalan 

(2009) propose to solve non-linear models to determine reference point, whereas our algorithm 

proposes to solve same number of linear programs for any problem.  

 

Figure 9: An illustration of how reference points are generated by the proposed algorithm and 

Karasakal and Koksalan’s (2009) algorithm on a two objective MOP with the maximization type 

of objectives and a non-convex Pareto front 

Boundary of feasible region 
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The functions of Karasakal and Koksalan’s (2009) algorithm and the proposed algorithm are 

illustrated in Figure 8 above on a MOLP with two objectives. The proposed algorithm starts with 

initial points to approximate the surface, which are represented by blue dots on the figure . 

Indeed, the blue dot on the diagonal line drawn in the direction of the nadir to ideal point is a 

special point that is generated on purpose. This is called point b, since it is considered one of the 

most important points that gives insight about the shape of actual Pareto front. A high order line 

(it is a line rather than a surface since it is an example with two objectives) is represented by red 

is fitted, and this passes through the initial points. The border of the feasible region on the 

objective space is represented by a blue line; points above this blue line are feasible solutions. 

Karasakal and Koksalan propose to draw a segmentation line first and determine equally distant 

points on that line; the fitted surface line then needs to be optimized by fixing one of the 

objective values to the corresponding objective value of previously generated, equally distant 

points, one by one. Through this procedure, they obtain the points represented by purple 

triangles. Although the resultant points lie more uniformly on the fitted line, they are generally 

staying in a distance to the feasible region. On the other hand, reference points generated by the 

proposed approach lie in the feasible region since we propose to optimize one of the objectives 

on each grid. This might become an advantage, especially with problems of the non-convex 

Pareto front, because a fitted surface might miss some non-convexities; therefore, the algorithm 

proposed by Karasakal and Koksalan (2009) might generate reference points that are distant 

from the actual feasible space; despite this, these reference points will result in some Pareto 

points since the algorithm requires solving an achievement scalarization objective that 

guarantees Pareto optimality, some regions still might remain not well represented at these type 

of cases. 
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2.5) Quality Measures for Approximation Techniques 

2.5.1) Coverage Measure 

In Sayin (2000), the coverage error is defined as follows: 

Let     be a real number. Let D  Z be a discrete set. D is called a    representation of 

Z, if for any z   Z there exists y   D such that d(z, y)  . 

Coverage has other definitions in the objective space, one of which is proposed by Wu and 

Azarm (2001), denoted by “  ”: 

        =∏                           

where      ; this measure gives an idea about the spread of the points in the representative 

set. 

In order to calculate the measure proposed by Sayin (2000) on the decision variables space for 

MOLP problems, there are a couple of steps that require solving two different mathematical 

programs. The first program is used to determine the efficient faces of faces MOLP problems, 

and it is a linear program. The second program is a mixed integer program that is used to 

calculate the coverage measure. Since these steps are also the main steps of the algorithm used 

for benchmarking in Karasakal and Koksalan’s (2009) study, this is also an important procedure 

that needs to be mentioned.  

2.5.2.1) Calculating Efficient Faces 

 

The following definitions need to be outlined in order to explain the algorithm that aims 

to generate all efficient faces. Let F be a subset of X, where X is the feasible decision space of 

the MOLP problem. F is a face of X if every line segment in X with a relative interior point in F 

has both end points in F. A face F is an efficient face if all the elements of F are efficient.  
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Based on these definitions, Sayin (1996) proposed the following model to find the efficient faces 

of a MOLP problem: 

                      

          ̅   ̅  

 ̅   ̅  

        , 

          

where      and       and  

 

 ̅  [
 

   
] and  ̅  [

 
 
], 

where    is the     identity matrix and     . It should be noted that X can be rewritten as 

  {    | ̅   ̅}  Let             and          . Define     as the matrix 

derived from  ̅ by deleting rows of  ̅ not in  ;     is defined as the vector derived from  ̅ by 

deleting elements of  ̅ not in  . For    , define                    .    ,      

represents a face of X (Yu & Zeleny, 1975). Note that         and for    ,        is 

possible. We will refer to      as a proper face of   if       . 

The proposed algorithm for finding    is based on checking elements of    starting with 

k=0. For k=0, the only element of         and       . Thus, by solving problem (   ), the 

algorithm first checks whether the problem (MOLP) is completely efficient (Benson & Sayin, 

1994). The algorithm terminates with the conclusion     . If not, then for each element I of 

  , problem (   ) is solved. The following three rules are followed based on the solutions of 

each problem: 
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 If     ) is infeasible: I is dropped from further consideration since         it is then 

placed on a list that keeps index sets yielding infeasible combinations,    . 

 If     ) has an optimal value of “ ”:   is dropped from further consideration since      is 

efficient. I is placed in another list that keeps index sets yielding efficient faces,   . 

 If     ) is unbounded or has positive optimized value: It is concluded that      has at 

least one element that is not efficient. Therefore, it is possible that           efficient; 

thus, supersets of  ,i.e.,    , should be checked via solving     ). This means that 

immediate supersets of I , e.g., index sets that contain I and belong to       , are placed in 

a list for later consideration,    . After all the elements of    are considered, the index 

sets that were placed in the    . Before solving        the following checks are 

performed: 

o If J                 , then J also generates an infeasible solution and is 

discarded. 

o If J               , then J also generates a feasible solution and is 

discarded. 

o If none of these is true,       is solved and placed in appropriate set based on its 

solution. 

The procedure stops when there are no furthere faces to consider. 

2.5.2.2) Models to Solve in Order to Obtain Lower and Upper Bound of Coverage Measure 

 

For the representation of the Pareto front of a MOLP problem, the coverage measure is 

calculated based on the efficient faces that are calculated following the method previously 

described. After coming up with representative solution set, D, and the efficient faces set, FS, the 
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last step is to calculate the coverage measure. Sayin (200) proposed several mathematical models 

in order to calculate the lower and upper bound bounds for coverage error. Based on these 

definitions, consider a   - representation D of set     . Take an element z of Z. The point x in 

D that represents z is the one that is closest to z. If the Tchebycheff distance between x and z is 

         it is known that all distances (|     |        ) between x and z are less than or 

equal to         in all coordinates. Following this, the mixed integer problem is solved to 

determine        , based on following definitions: Let M denote a sufficiently large positive 

number. Define       and       as vectors whose entries are all  . Let             

                            denote the variables. 

                            

                          (1) 

                               (2) 

                              (3) 

                           (4) 

                           (5) 

  
      

                     (6) 

     

                         

                           

In addition to the Tchebycheff distance version of the model,       , which gives the upper 

bound on the coverage error, the rectilinear distance also needs to be calculated by solving 

      . Building on the model defined for        , additional variables are defined    
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          . Then, the 2
nd

 and 3
rd

 constraints in the above model are replaced with the 

following equations: 

                       

                      

The 6
th

 equation is replaced with following equation: 

  
    

                        

The following equation is added to the formulation: 

     
                  

Keeping the set of efficient faces,   ,        and        are used to measure the coverage 

error over individual faces, where         is lower and        is upper bound on the coverage 

error. In particular, the following procedure can be applied to compute overall coverage error, ϵ 

of  : 

For elements of   ,     denoting an efficient face             ,      number of        and 

       are solved with       and D in each to compute     The overall ϵ of   is then calculated 

by           
 . In order to insert efficient face information to each formulation, all indices in 

the efficient face are set as equality in the formulation. 

2.5.2) Uniformity Measure 

The uniformity measure concept is a measure of spacing between Pareto points. Ideally, 

we desire a discrete representation of the Pareto set with equally spaced Pareto points; however, 

it not possible with the unsymmetrical nature of the Pareto front, even if it is convex and 

polyhedral. Here, we use the measure proposed by Sayin (2000), which is defined as the 

minimum distance,    between any two distinct points in the discrete representation of the 

efficient set: 
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where  ̅  denotes the set of efficient solutions found by the algorithm. 

This measure may be misleading when considered on its own; that is, the number of points in the 

set should also be taken into account when evaluating a uniformity quality result. For example, a 

set of solutions that has more points may produce a worse (lower) uniformity result than a set 

that has only two points that are placed far away from each other. Hence, it should be considered 

with cardinality measure. 

2.5.3) Cardinality Measure  

The cardinality measure concept refers to the number of points in the representation. This 

number should be high enough to fully represent the solution set; at the same time, it should be 

low enough not to overwhelm the DM with choices. 

The measure proposed by Wu and Azarm(2001), called the “number of distinct choices" 

is used. This methodology is based on the idea that Pareto solutions within a certain distance of 

each other are counted as a single point. In this study, the number of points in the solution set is 

used as measure of cardinality. 

2.6) Experimental Results 

2.6.1) Method of Sample Problem Generation 

During the experiments, sample instances are generated following the same method as 

Karasakal and Koksalan (2009). In other words, randomly generated polytopes are used as 

sample problems, which are expressed in the form {                  }, where   is 

a     matrix and     . In the first set of experiments, a structure originally proposed by 

Steuer (1994) for random problem generation is used. Criterion space is used to generate these 
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instances. An identity matrix of C is used to simplify the search procedure for finding the 

nondominated faces. The elements of the constraint matrix A were randomly generated from a 

uniform distribution; the interval is denoted by [     ]. To generate the right-hand side vector 

b first,        is constructed as an interior point on the feasible region, where the parameter 

M is a nonnegative scalar and       is a vector of ones. Then, a nonnegative value    

[     ] to form point               on the boundary level of the     constraint is selected 

randomly (where    is the     constraint’s gradient). Finally, the     constraint is formulated as 

follows: 

    
       

            

We used the same values as Karasakal and Koksalan (2009) as parameters: [     ]        ] 

(i.e., zero density is   ); [     ]  [      ]  and    . Ten randomly generated problem 

instances are generated for each parameter combination. The levels of the parameters   are 

          and of parameter   are          . 

The second part of the study consists of two problem size parameters. These are the 

number of objectives     and the number of constraints      In this set of experiments, the 

elements of matrix A, vector b, and matrix C are randomly generated from the discrete uniform 

distribution in the intervals                    and         , respectively (see Sayin, 2003). 

A 25% zero density was provided in matrix A. The problems are created in two different     

combinations,       and       . For each combination, three different sets of problems 

with different levels of parameter           were generated. For each problem set,    instances 

are generated in the MATLAB R2007b environment. 
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2.6.2) Computational Results 

The proposed algorithm has been coded in ILOG OPL 6.3 with CPLEX 12.1, and runs 

have been performed on a laptop with a RAM of 4GB and a dual-core processor of 2.1GHz. The 

first set of instances are used to test the coverage and uniformity performance of the proposed 

algorithm with the benchmark study of Karasakal and Koksalan (2009). The following table 

shows the average number of representative points generated for all sizes: 

Table 2: Average Number of representative points (reported results from Karasakal and 

Koksalan, 2009). 

No. of 

criteria 

Average Number of representative points 

(reported results from Karasakal and 

Koksalan, 2009) 

No. of constraints 

5 10 30 

2 20(21.1) 19.7(20.5) 18.4 (26.1) 

3 26.4(24.9) 34.2(34.5) 41.4 (44.8) 

4 31.8(24.8) 49.2(40.6) 58.4 (60.2) 

5 47(25.5) 49.5(44.5)  64.0 (64.1) 

 

The values in parentheses are the average number of representative points generated by 

the benchmark study. Based on this table, it can be concluded that the average number of 

representative solutions generated for the proposed algorithm do not exceed the number of 

solution sets generated by the benchmark for the group of instances written in bold. Similar to 

the gap between the targeted number and the actual number of solution points observed in the 

benchmark algorithm, obtaining the exact number of aimed representative solutions is not always 

possible for the proposed algorithm. This is due to the equal partitioning of grids. Keeping the 

number of partitions the same for each axis is important in order to get reference points with 

well-covered and uniform distribution. The total number of reference points is presented as 

           in the above calculations. Hence, when setting the partition parameter, T, 
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deviations from the actual number of representative points we want to obtain might become 

inevitable in many cases (e.g., when          is equated to a certain value, it needs to be 

solved to find T which is supposed to be a positive integer). 

As mentioned previously, coverage and uniformity levels are the two quality measures 

that require further calculation. All algorithms that are used to calculate these are coded in 

Microsoft Visual Studio 2010, and the linear program required to find the efficient faces is 

solved with a CPLEX 12.5 C++ library. Table 3 and 4 ummarize the quality measure results for 

all instances in which the corresponding size of the representative sets are presented in Table 2. 

From this point forward, Karasakal and Koksalan’s (2009) algorithm will be referred to as 

Algorithm-1; Sayin’s as Algorithm-2; and our proposed algorithm as Algorithm-3. The results 

regarding Algorithm-1and 2 are obtained from Karasakal and Koksalan (2009); the can refer to 

this article for more details. 

 

 

Table 3: Average coverage errors obtained by approaches 1–3 in the first set of experiments. 

No. of 

criteria 

Average coverage errors 

No. of constraints 

5 10 30 

Algo. 1 Algo. 2 Algo.3 Algo. 1 Algo. 2 Algo.3 Algo. 1 Algo. 2 Algo.3 

2 0.0460 0.0490 0.0529 0.0500 0.0530 0.0511 0.0440 0.0530 0.0501 

3 0.2130 0.2170 0.2515 0.2280 0.2160 0.2180 0.2230 0.1970 0.1011 

4 0.3790 0.3740 0.4516 0.4190 0.3760 0.3040 0.4170 0.3490 0.2140 

5 0.4790 0.4420 0.7174 0.4500 0.4010 0.5536 0.4800 0.4130 0.4043 

Ave. 0.2793 0.2705 0.3683 0.2868 0.2615 0.2817 0.2910 0.2530 0.1924 
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Table 4: Average uniformity levels obtained by approaches 1–3 in the first set of experiments 

No. of 

criteria 

Average uniformity levels 

No. of constraints 

5 10 30 

Algo. 1 Algo. 2 Algo.3 Algo. 1 Algo. 2 Algo.3 Algo. 1 Algo. 2 Algo.3 

2 0.0560 0.0360 0.0064 0.0550 0.0380 0.0119 0.0470 0.0130 0.0110 

3 0.1110 0.0150 0.0170 0.1020 0.0130 0.0166 0.0930 0.0070 0.0110 

4 0.1460 0.0200 0.0173 0.1320 0.0060 0.0156 0.1250 0.0060 0.0098 

5 0.3160 0.0140 0.0130 0.1670 0.0180 0.0188 0.1360 0.0060 0.0081 

Ave. 0.1573 0.0213 0.0134 0.1140 0.0188 0.0157 0.1003 0.0080 0.0100 

 

All the objectives in this experiment are scaled between zero and 1; hence a coverage error of 

0.47 is interpreted as having a representative point for each nondominated point at most 47% of 

the range of the objectives. Uniformity is the smallest distance between any representative points 

in the representative set. Hence, the smaller coverage measure and larger uniformity measure are 

desirable in terms of quality perfective. Based on this statement, one can conclude that the 

proposed approach is compatible with previous approaches. Indeed, as the problem size grows, 

the proposed approach generates better results; i.e., the number of constraints and variables 

increase, hence the model coverage error becomes relatively smaller. However, the proposed 

approach does not perform well in terms of the uniformity measure since in most cases 

uniformity is under the average of benchmark Algorithm-1 and is compatible with Algorithm-2. 
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Table 5: Average CPU times required by approaches 1–3 in the first set of experiments 

No. of 

criteria 

Average CPU time  

No. of constraints 

5 10 30 

Algo. 1 Algo. 2 Algo. 3 Algo. 1 Algo. 2 Algo. 3 Algo. 1 Algo. 2 

Algo. 

3 

2 13.20 95.60 0.5057 15.40 97.70 0.4615 20.90 176.60 1.5813 

3 15.10 135.20 0.1927 19.70 188.70 0.6514 36.30 282.10 0.7351 

4 21.80 222.20 1.3916 29.10 267.00 2.3882 47.30 551.70 2.4290 

5 25.40 221.00 1.1422 33.90 372.20 1.0549 52.40 960.80 3.0114 

Ave. 18.875 168.500 0.8081 24.5250 231.400 1.1390 39.2250 492.800 1.9392 

 

As the last important performance measure of the proposed approach, we have compared 

the time performance of the proposed approach with the benchmark algorithms. In order to do 

this, we used two different sets of data, the first of which is one that has been used to assess 

quality performance and that has a polyhedral structure. The results are presented in Table 5. The 

second set of data includes instances that are generated in a different way, as explained at the 

begging of the section. These do not necessarily have a polyhedral Pareto front structure and are 

larger. These results are presented in Table 6. 

Table 6: CPU Time of obtaining one solution point for proposed approach and the Karasakal and 

Koksalan (2009) algorithm 

No. of 

criteria 

No. of 

constraints  

No. of 

decision 

variables 

Average No. of 

representative 

points 

CPU time of proposed 

approach in sec. /solution 

point  

CPU time 

of 

Algorithm-

1 in sec. 

/solution 

point 

2 40 50 100 150 0.0165 0.0103 0.25 0.22 

4 40 50 84 148.5 0.0413 0.0480 0.27 0.24 

6 40 50 197.4 1274.8 0.0190 0.1135 0.30 0.27 

2 80 100 100 150 0.0189 0.0200 0.31 0.27 

4 80 100 80 145 0.0648 0.0749 0.33 0.29 

6 80 100 198 1320.3 0.0229 0.1638 0.40 0.33 
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For the second set of experiments, only the results of Algorithm-1 are presented, since 

Algorithm-2 has already been deemed inefficient compared to Algorithm-1 (Karasakal and 

Koksalan, 2009). The time performance of the proposed approach can be observed in both of the 

tables 5 and 6 above. This is especially true in larger sizes that have a non-polyhedral structure. 

As such, the proposed approach is becoming significantly better than the benchmark algorithms, 

as predicted by the complexity analysis presented earlier. 

 

 

 

 

 

 

 

 

 

 

 

 



 

49 
 

We have done further analysis in order to assess how performance of quality measures changes 

for different partition values.  

Table 7: Change of performance parameters with different values of partition parameters on the 

first set of experiments 

  2 objective 

  T1(36) T2(70) T3(136) 

  uniformity coverage 

CPU 

Time uniformity coverage 

CPU 

Time uniformity coverage 

CPU 

Time 

max 335594 0.2911 0.358 173368 0.1688 0.587 95333 0.0899 1.083 

min 15557 0.0047 0.972 4280 0.0032 1.444 900 0.0047 1.493 

St.dev. 108349 0.0884 0.218 64127 0.0494 0.272 39353 0.0297 0.154 

average 129841 0.0406 0.751 58146 0.0382 0.935 20686 0.0369 1.334 

  3 objective 

  T1(230) T2(499) T3(846) 

  uniformity coverage2 

CPU 

Time uniformity coverage2 

CPU 

Time uniformity coverage2 

CPU 

Time 

max 4440000 0.4455 2.019 1820000 0.4387 4.181 536660 0.4586 7.324 

min 44205 0.0172 2.791 15313 0.0000 6.072 5414 0.0220 13.136 

St.dev. 1592416 0.1296 0.262 632195 0.1445 0.677 177474 0.1210 1.793 

average 1040043 0.2119 2.405 395516 0.1876 5.272 90148 0.1669 9.255 

  4 objective 

  T1(80) T2(477) T3(1032) 

  uniformity coverage2 

CPU 

Time uniformity coverage2 

CPU 

Time uniformity coverage2 

CPU 

Time 

max 1278540 0.5655 2.227 358862 0.4848 12.940 8465 0.4805 24.698 

min 33477 0.1304 3.128 10812 0.1801 19.822 800 0.1268 46.381 

St.dev. 382532 0.1338 0.340 108499 0.1181 2.187 2998 0.1218 6.560 

average 209034 0.2965 2.691 56924 0.2855 15.506 2851 0.2704 31.088 

  5 objective 

  T1(50) T2(402) T3(941) 

  uniformity coverage2 

CPU 

Time uniformity coverage2 

CPU 

Time uniformity coverage2 

CPU 

Time 

max 1205750 1.0000 1.015 399010 0.5627 8.719 4240 0.4113 21.569 

min 13024 0.3366 2.098 4038 0.1606 22.977 371 0.3174 33.789 

St.dev. 563040 0.2153 0.341 148111 0.1476 5.147 1330 0.0440 3.944 

average 428746 0.5388 1.556 83202 0.4091 12.389 961 0.3512 25.100 
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Although uniformity measure seems not better than the Karasakal and Koksalan(2009)’s 

algorithm, and coverage error does not seem to beat Sayin(2003)’s algorithm in the first set of 

experiments, there is an important factor that need to be paid attention, that is the cardinality of 

the sample sets which can be observed in Table 2. At this point, it should be noted that both 

uniformity and the coverage error are both sensitive to the number of points in the set. That is, 

perfect spacing between points changes as the number of represented points increases; similarly 

the maximum distance that a representative point can be found for any Pareto point is also 

affected by the number of representative points generated. In order to show the sensitivity of 

uniformity with a true measure which considers both the spacing and the number of points in the 

representative set, we have resorted to another measure. Wavelength analysis based uniformity 

measure has been proposed by Meng et al. (2005) which can be summarized as follows: 

   √
∑          ̅   

 
   

   
 

 where        {

 

 
 

 

      
    

,   and    is the minimum distance between point   and its closest 

neighbor, and  ̅ id the mean of these distances. According to this calculation, smaller    values 

indicate a better uniformity.  

Table 7 shows the change of these two quality measures with changing number of representative 

points, i.e. increasing partition parameter. As number of partitions increases, CPU time 

requirement increases accordingly, however the improvement in coverage and uniformity 

measures seems much faster than this change. This means the advantage in run time can be used 

in order  to close the gap between our algorithm and Karasakal and Koksalan’s algorithm in 
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terms of uniformity ; and the gap between our algorithm and Sayin’s algorithm in terms of 

coverage. 

 

Figure 10: Change of average of uniformity  and coverage measure per three different partition 

values in increasing order for the set of instances with 4 objectives and 10 constraints 

 

2.7) Conclusion and Future Work 

In this chapter, an algorithm for MOLP was proposed, which can be used to generate a 

representative set of Pareto solutions in a relatively fast way. The proposed approach is an exact 

method that guarantees the generation of Pareto optimal solutions by relying on an achievement 

scalarization function. From this perspective, the proposed algorithm is distinguishable from 

metaheuristics and algorithms like the normal constraints method. The proposed approach is 

comparable to the algorithms proposed by Karasakal and Koksalan (2009), which contains two 

other exact approaches that serve the same purpose. In this study, the authors use a modified 

version of an algorithm that was initially proposed by Sayin (2003) to benchmark their 

algorithm. All of the computational results of the proposed approach are compared with the 

averages of both algorithms on instances generated in the same way that authors of this study 

followed. Based on these results, the proposed approach falls behind Karasakal and Koksalan’s 
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(2009) algorithm in terms of uniformity, but is compatible with Sayin’s (2000) approach. On the 

other hand, the proposed algorithm outperforms both approaches in terms of time performance. 

Considering the fact that tests are performed in different environments, computers and not using 

exactly the same instances, this observation is supported by the previously described complexity 

analysis. Since the latter algorithm is already proven to be better than Sayin’s approach in terms 

of time performance, the complexity analysis for this algorithm has not been presented. In 

addition, the proposed approach generates compatible results for the coverage error, and it is 

starting to perform better than benchmark algorithms for problems with bigger sizes. 

Future studies may consider trying the algorithm on MOIP instances since it has 

significant potential to perform well on non-convex Pareto fronts. Furthermore, when 

determining the reference point, improvements should be made that take advantage of integer 

feasible space, such as rounding the reference points systematically up and down in a way to get 

an integer approximation of the Pareto front with 0
th

 order of approximation (i.e., in a way that 

does not depend on the achievement scalarization function to get Pareto optimal points).  
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CHAPTER III: MULTI-OBJECTIVE BRANCH AND BOUND APPROACH FOR 

MOIP 
 

3.1) Introduction 
A MOIP problem can be formulated as follows: 

          { (              )          } (1) 

where     and (       ;   denotes the set of feasible set of solutions and is defined by 

                      (2) 

where              and all decision variables are required to be integers. If some of the  ’s 

are continuous and some are integer, then the problem becomes a multi-objective mixed integer 

programming (MOMIP) problem. 

The difference between MOLP and MOMIP problems are stated in terms of the 

“topologically connectedness” concept. A set is called topologically connected if there are no 

non-empty open sets, S1 and S2, such that         and      = . For MOLP, the efficient 

set XE and the nondominated set YN are topologically connected and YN is composed of 

nondominated faces of dimensions   to    . However, neither XE nor YN are topologically 

connected for MO(M)IP in general. 

Multi-objective combinatorial optimization (MOCO) problems are a special class within 

MOIP problems such that the feasible set of a combinatorial problem is defined as a subset 

      of the power set of a finite set            . In terms of the feasible set, this 

definition comprises multi-objective versions of the shortest path, a minimum spanning tree, an 

assignment, a knapsack, a travelling salesperson, or set covering problems, to name a few.  

All MOIP problems have a discrete solution space that is non-convex by nature. As it is 

mentioned in the definition of “supported solutions,” which can be identified as a solution of a 
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weighted sum of objectives, there are unsupported solutions in MOIP problems that cannot be 

generated by weighted sum approaches. Therefore, identifying a closed form of efficient faces is 

not possible in this context. Even though approaches that aim to generate a representative set for 

MOIP problems are used in real-life problems in the decision-making process, obtaining the 

whole Pareto set also becomes necessary for verification purposes. Based on this observation, 

both representative and exhaustive algorithms might be of interest for the DM. 

Exact algorithms for MOIP problems have become a popular topic of optimization that is 

in line with the increasing practical usage of this type of algorithm in many real-life problems 

and decision support systems. In the next sections, the main studies that are proposed to solve 

MOIP problems are explained in detail which are important in terms of the proposed algorithm. 

However, to the best of our knowledge, most of these efficient algorithms explore the Pareto 

surface starting from one corner of it and approaching the opposite end, even if they intend to 

take some smart actions that speed up this traversal. Hence, when the DM stops the algorithm at 

a certain point before termination, he or she ends up with a partial Pareto optimal set that does 

not give much information about a certain part of the Pareto surface. In addition, there are also 

meta-heuristic approaches that are superior in terms of time performance but that do not 

guarantee any type of Pareto optimality while acting as an approximation tool. Hence, there is a 

need for an exact method that proceeds more diversely while maintaining the Pareto optimality 

notion. The algorithm proposed in this chapter aims to fill this gap. 

The branch and bound (B&B) method is one of the main approaches that is often resorted 

to when optimizing problems with integer variables. Accordingly, it has received significant 

attention in the multi- objective optimization field. All of this research falls under the umbrella of 

multi-objective branch and bound (MOB&B). Since the concept of B&B mostly relies on the 
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existence of integer valued variables, the explicit word “integer” has been dropped from the 

general naming convention of the approach. In addition to its natural convenience for integer 

variables in single objective, mixed integer linear programming, it has some additional 

advantages in multi-objective optimization context. The B&B approach is preferable because it 

finds Pareto efficient solutions with a finite number of iterations. 

This thesis emphasizes the distinction between the two B&B perfectives that are used in 

the literature: Branching on decision variables or branching on multiple objectives. The second 

approach seems to be more meaningful, especially when the number of objectives is greater than 

the number of variables. This decision about which perspective to choose can be made by 

evaluating the tradeoff between solving linear (relaxed) problems while handling all decision 

variables, and solving integer problems while performing a reasonable amount of branching on 

the multiple objectives. Potentially, the first approach requires more iterations than the second 

one, since the number of decision variables is generally much greater than the number of 

objectives, which means more branching is needed to fully characterize the Pareto front. 

Furthermore, there might be multiple solutions that lead to the same Pareto point, and thus some 

of the computational effort spent does not lead to new Pareto solutions. None of the existing 

approaches can identify these cases, which in turn might lead to numerous branching in order to 

repeatedly identify the same solution.  

Another classification of the multi-objective optimization methods is based on the 

difference between the usage and design of algorithms and closely relates to the role of the DM. 

Whenever the DM guides the search process, the algorithm falls into the “interactive” category. 

In contrast, non-interactive methods allow the DM to be involved at the end of the solution 

process through a “posterior selection” procedure. In this category, the DM can evaluate the 
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entire Pareto front, which improves the DM’s confidence in the results since he or she has a 

broader characterization of the tradeoff space. From this perspective, the proposed algorithm has 

an exact nature if it is allowed to run until termination. On the other hand, if it is used as an 

approximation algorithm, the DM’s search can be interactively restricted to certain regions, and 

hence can be run as an interactive algorithm. 

In the next section, we present a general overview of the literature regarding exact 

methods for MOIP. Next we explain, in more detail, some of the earlier work that led to the 

proposed algorithm. We then present the detailed steps of the proposed approach. Finally, we 

discuss the results of computational experiments performed to assess the main attributes of the 

algorithm.  

3.2) Literature Review 
 

Early work on exact solution methods for multi-objective optimization mostly focuses on 

finding supported nondominated points. An excellent review of the exact and approximation 

methods developed specifically for the MOCO problems can be found in Ehrgott and 

Gandibleux (2000). Some authors in these early studies separate the generation of the 

nondominated points into two phases. In the first phase, all supported nondominated points are 

generated using the weighted sum scalarization. In the second phase, all unsupported 

nondominated points are obtained by employing problem-specific techniques. This approach has 

been applied to several biobjective combinatorial problems. Visée et al. (1998) proposed a two-

phase method and B&B procedure for the biobjective knapsack problem. Ramos et al. (1998) 

and Steiner and Radzik (2008) developed a two-phase method to generate all nondominated trees 

for the biobjective spanning tree problem. Przybylski et al. (2010) worked on the two-phase 

method for MOIP problems and experimented with three-objective assignment problems. Ozlen 
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and Azizoglu (2009) developed an algorithm to generate all nondominated points for MOIP 

problems based on the epsilon constraint method. They do not conduct computational 

experiments but they demonstrate their algorithm on a three-objective assignment problem. 

Laumanns et al. (2006) also developed an algorithm to generate nondominated points based on 

the epsilon constraint method. Sylva and Crema (2004) developed an exact algorithm to generate 

all nondominated points for MIPs. Lastly, Lokman and Koksalan (2012) developed an algorithm 

that is superior to those proposed in both Sylva and Crema (2004) and Ozlen and Azizoglu 

(2009). The study of Lokman and Koksalan will be explained in detail since it is the inspiration 

for the objective function used in the proposed algorithm. 

Prior work using B&B for MOIP problems dates back as early as 1983. Kiziltan and 

Yucaoglu (1983) proposed an algorithm for multi-objective zero-one linear programming 

problems. Fifteen years later, one of the major studies that aimed to design a B&B algorithm for 

multi-objective mixed integer problems was published, which branched on decision variables by 

Mavrotas and Diakolulaki (1998). This is claimed to be the first attempt to develop a general 

purpose vector maximization algorithm applicable to all kinds of Mixed 0-1 MOLP problems of 

small or medium size (i.e., a few hundreds of variables). Mavrotas and Diakoulaki revised this 

work in (2005) with some improvements (2005). However, this study was corrected by Vincent 

et al. (2013) who claimed that Mavrotas and Diakolulaki (2005) do not allow for a complete 

description of the nondominated set YN of an MOMIP. Moreover, a solution set may still 

contain dominated points. In the same study, Vincent et al. (2013) suggested some corrections to 

the filtering rule by pointing to the fact that one might need some interior points (not extreme 

nondominated) in order to come up with correct domination results; edges are generated as a 

result of MOLP solves performed at each node. The algorithm proposed by the authors is for bi-
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objective mixed integer optimization problems. Furthermore, the bound sets discussed in detail 

in this study constitute a fundamental concept introduced to B&B for MOP. Ehrgott and 

Gandibleux (2007) presented a study that aimed to identify good upper and lower bound sets to 

be used in a MOB&B context, where several lower bound candidates are presented. These 

bounds differ from eachother in terms of performance and computation effort spent to identify 

the set, while the ideal point of a node at a B&B tree is the most common lower bound used in 

the literature. On the other hand, the upper bound is defined by any set of feasible solutions such 

that no two points dominates the other; similarly, several candidates for an upper bound set are 

presented. Abbas and Chergui (2012) proposed adding cuts during a B&B traversal for MOMIP 

problems while branching on decision variables. So far, no algorithm that branches on objective 

values has been mentioned that can be used for any type of MOIP problem (i.e., not just for 

MOCO). This is because, to the best of our knowledge, Marcotte and Soland (1986) presented 

the only study in this field. This algorithm will be covered in detail in the next section following 

a detailed explanation of the main exact methods in the literature. 

3.2.1) Exact Algorithms for MOIP  

A method for finding the set of nondominated vectors for multi objective integer linear 

programs by Sylva and Crema (2004) 

Sylva and Crema (2004) developed a general algorithm that enumerates a full set of solutions, requiring a 

solution of the following model: 
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where                    denotes the t
th
 nondominated point in a set of solutions; M is a sufficiently 

large number to unconstraint      . The qwquation ∑      
 
    ensures at least one of the objective 

values to be improved. Hence, a new nondominated solution is generated. Since the algorithm keeps 

adding new binaries and constraints every time a new solution is generated, it grows as it evolves until 

infeasibility, or the stopping condition.  

General Approach Generating All Non-dominated solutions by Ozlen and Azizoglu (2009) 

This algorithm is an exact algorithm proposed by Ozlen and Azizoglu (2009). It is a modified 

version of the classical  -constraint method, which searches within narrower efficiency ranges and jumps 

between non-dominated solutions rather than taking incremental steps. One important difference from the 

original   -constraint method is the structure of the objective function used throughout the algorithm. An 

important requirement of this algorithm is the integrality of the objective function coefficients. If this is 

not the case, then the coefficients can always be converted to integers by proper scaling. The general 

formulation of the model as follows: 
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where    
    and   

    are the upper bound and lower bound of the     objective, respectively; and   is the 

feasible set of the original problem. 

After generating a solution point by solving the model above, the right-hand sides of the constraints 

set are updated according to the algorithm presented in the study. The main function of the algorithm is to 

find the best solutions hierarchically for each objective while ensuring all levels of objectives that are 

fixed by some additional constraints are searched. So, the right-hand side values of the constraint, which 

stands for the objective that is being optimized in the first place, is updated and the model is changed, so 

that a new solution has a better value of this objective under the same requirements on all other 

objectives. The main advantages of using this algorithm are as follows: 

 This algorithm generates the whole Pareto surface without performing full enumeration. 

 This algorithm is a good method for determining the true Pareto and assessing the global Pareto 

proportion for approximation algorithms. 

The following are the algorithm’s disadvantages: 

 This algorithm generates the whole Pareto surface by starting from one corner of the Pareto 

region and then iteratively finding a neighboring non-dominated solution. Hence, this algorithm 
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produces the Pareto front by growing it locally. Therefore, it is not implementable in parallel 

computing and requires considerable CPU time as the problem instance grows. 

 An excessive amount of duplicate solutions are produced by the algorithm, which also increases 

the CPU time. This problem is attempted to be overcome in a later version of the study by 

documenting the same regions that should not be searched again. 

The complexity of the algorithm grows exponentially based on the size of the Pareto space. Furthermore, 

as the number of objectives increases, the number of iterations increases exponentially. While it is 

difficult to make an average case analysis; the worst-case complexity analysis suggests that the 

complexity can be expressed as      , where   is the number of points in a Pareto set. 

Finding all non-dominated points of multi-objective integer programs by Lokman and Koksalan 

(2012) 

Lokman and Koksalan (2012) propose two algorithms that aim to generate all Pareto sets of MOIP 

problems. 

Algorithm I: 

This first algorithm improves upon Sylva and Crema (2004) by reducing the number of constraints and 

binaries through the change of objective function. One of the objectives is selected arbitrarily; let us 

denote that m, and it stays as the main objective that is being maximized by the new special structure of 

the objective. The basic form of the new objective function is as follows: 

           ∑      
   

 

where   is small positive constant that ensures that resultant solution is nondominated. This objective 

function generates the best non dominated solution in terms of the m
th
 objective. Considering this, the 

improvement constraints used in Sylva and Crema (2004) has been reduced by one. Hence, rest of the 

resultant model needs to be solved until infeasibility is as follows: 
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           ∑      
   

 

     

      (     )     (     )                              
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        stands for the indices of solution points in the solution set, denoted by   , collected so 

far;   is the active objective. It has been proved that if this model ends up with infeasibility, the 

resultant    will contain all of the nondominated points of the Pareto surface. This algorithm 

requires    additional constraints and        binary variables in total. 

Algorithm 2  

The authors presented a second algorithm that improves upon the previous algorithm by 

separating the main model into submodels. It has been observed that, at most, one constraint is 

sufficient to define the region that contains the nondominated points relative to the available 

points. Based on this, it is concluded that the right-hand side values of each p-1 objective for 

each submodel can be determined more effectively. 

This algorithm basically solves a different model for each nondominated point collected 

so far in set   . After setting the first point’s 1
st
 objective value as the right-hand side value of    

in the below model, i.e.,   
     the points in    are searched for the point that has the value of 1

st
 

objective is greater then   
   

;and maximum of values of 2
nd

 objective is set for the bound value 

of 2
nd

 objective, i.e.,   
    This continues until the pth objective, in a manner in which each time a 
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point is selected to set the next objective’s boundary by only considering the points in   , which 

are not dominated by the previously set boundary values: 

Max         ∑   
   
       

s.t.        
    

     
    

: 

         
  

     

Two important improvements have been offered by the authors to prevent extra model 

solving. The first is about setting the bounds. It basically attempts to improve the boundary 

values. If an optimal solution        is generated by using a certain set of boundary values, 

      
        

  , then any boundaries that will be used between this point and    will generate 

the same solution. 

The second suggestion is to use the information obtained from the submodel solves that 

result in infeasibility. The authors proposed to store boundary values in a list that generates 

infeasibility rather than using some boundary values vector that dominates one of the vectors in 

this list as boundary value; since outcome will be nothing but infeasibility.  

Although the worst-case complexity of the algorithm is presented as        , with the 

rules mentioned above applied, the number of models solved is observed to be significantly less 

than the worst case bound on a small sample case with three objectives. 
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Figure 11: Projection of solution set onto z1-z2 plane for a three-objective MOIP problem  
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 Third objective is selected as the main objective 

 Superscripts at each solution denotes at which order corresponding 

solution is generated 
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Figure 12: Search space after obtaining first four solution points, according to Algorithm-2 

 

3.2.2) B&B Tree Branching on objective values  

3.2.2.1) MOB&B on Objective Space in Literature 

Marcotte and Soland (1986) presented the first B&B algorithm, which is designed for the objective space. 

They designed this algorithm as an interactive approach, which evolves based on a DM’s preferences and 

does not rely on the Pareto optimality concept. The following generalization stated by Marcotte and Soland 

(1986) is worth mentioning here: 

A branch-and-bound algorithm is defined as the collection of rules which specify 

following: (a) how to determine whether a given subset Yi can or cannot contain 

an optimal solution, and how to recognize an optimal solution; (b) how to carry 

out branching at each intermediate node; (c) how to calculate the upper bounds 

and (d) how to choose an intermediate node for branching. Such an algorithm 

terminates because either an optimal solution has been identified or no 

intermediate node can be chosen for the next branching. 
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Their algorithm applies both to the case in which the feasible set is convex (e.g., MOLP) and to 

the case in which the feasible set is discrete and non-convex. Furthermore, the algorithm is 

designed as an interactive algorithm. However, it only requires the DM to make comparisons 

between two or several points in the objective space (points that are not always feasible). It is 

claimed that the hypotheses required regarding the DM’s preferences are minimal. In other 

classical B&B approaches, a solution found at a node is rejected only if the ideal value of current 

node is dominated by an efficient solution. In the algorithm presented in this paper, a node may 

be rejected because its ideal (i.e., best values that each objective can attain at a node) is not 

preferred by the DM to an efficient solution already found by the algorithm. The algorithm 

proceeds with the calculation of ideal values of the newly created nodes. The incumbent solution 

is defined to be that efficient point, among all those found thus far, that is preferred by the DM. 

The node whose ideal is preferred (among the ideals of the newly created nodes) is inserted into 

the master list, whereas the other nodes (which have been arranged in order) form the partial list, 

Plist(k), corresponding to the separation of node Nk. They will only be inserted into the master 

list later, when the preferred node gets to the "top" of the master list. At that time, the DM will 

be asked to insert into the master list the successor, in its partial list, of the node that is about to 

be separated. This insertion is only made, however, after verification that the ideal of the node in 

question is preferred to the incumbent solution. Although the master list does not contain all the 

intermediate nodes, it is totally ordered by preference and its first element is always the 

intermediate node preferred (i.e., whose ideal is preferred) by the DM.  

The algorithm can terminate in any of the three following ways: (a) the ideal of the first 

node of the master list is feasible, (b) the ideal of the first node of the master list is not preferred 

to the incumbent solution, or (c) the master list is empty. In case (a), it is the ideal that is the 
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optimal solution since it is no less preferable than the ideals of all the intermediate nodes. In 

cases (b) and (c), the incumbent solution is optimal because it is, by transitivity, no less 

preferable than the ideals of all the intermediate nodes. Cases (a) and (b) correspond to the two 

ways to fathom a node in a usual B&B algorithm—by feasible solution and by bound. 

Let Eff(Y) denote the Pareto set of problem defined as “Maximize y subject to     ” 

where y is a vector in   . Nk the node examined, by Yk the proper subset of Y corresponding to 

Nk, and by    (  
    

      
 ) the ideal of Yk. The first step of branching consists of finding a 

point belonging to Eff (Yk) that is also guaranteed to be an efficient point for the original 

problem. 

To find an efficient point at node N, the following problem P is solved: 

         ∑  
   

 

   

                       

where   
  are all positive. It is claimed that, in the B&B tree, each node represents a nonempty 

subset containing at least one efficient point.  

Let   be the collection consisting of the set {y
i
} and the sets    { |     

 } for        

where                
 
   

 
   ;  , the separation at node Nk, is generally neither a 

partition of Yk nor a cover of Yk. First, the set ⋃      is, in general, a proper subset of Yk. 

Second, if p > 2, the intersection of the sets belonging to Y is not empty in general (see Figure 12 

for pictures of the sets involved when p = 2 and p = 3, respectively). However, it is claimed that 

the first of these two characteristics does not affect the validity of the separation since Y is a 

cover of Eff( Yk) and the solution sought necessarily belongs to Eff( Yk) by the authors.  
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Figure 13: Two- and three-dimensional examples for the interactive B&B algorithm of Marcotte 

and Soland (1986) 

 

The proposed algorithm is supposed to be used for MOLP problems as well. Thus, they 

have defined a small value,   , which can help create discrete regions in which DM is indifferent 

between the solutions that have less difference than   .  

There are two important observations about the proposed algorithm that may prevent 

exploration of the entire Pareto front of a MOIP problem: The structure of the objective function 

presented above is the weighted sum of objectives, which is simply the convex combination of 

the points on the surface. Unfortunately, it is known that MOIP problems have a non-convex 

Pareto structure and weighted sum can generate only supported points on the Pareto front, as 

previously indicated. This means the proposed approach can only generate supported points to 

the DM. If it is allowed to run until the end without any intervention by the DM, there is no 

guarantee that the whole Pareto front will be obtained. In addition, the authors indicate that when 



 

69 
 

a number of objectives is greater than or equal to three, sibling nodes have intersecting efficient 

frontiers. Hence, it is possible to determine the same solutions that in turn cause inefficiencies in 

terms of running time. 

3.3) Proposed Approach 

The following algorithm is proposed for multi-objective problems with integer variables 

(MOIP). This is the necessary condition in order to obtain a discrete Pareto surface that consists 

of a finite number of solution points, as opposed to the case of MOIP’s mixed integer (MOMIP) 

or linear (MOLP) counterparts. 

The general idea behind the proposed approach is similar to the algorithm of Marcotte 

and Soland (1986) in the sense that branching is performed on solution points in the objective 

space. However, Marcotte and Soland (1986) uses a weighted sum approach to generate a new 

solution at each node, and this can exclude the non-supported parts of the Pareto surface. In 

addition, their algorithm includes searches on overlapping regions for sibling nodes, which might 

increase the running time of the algorithm. Our approach aims to apply B&B in objective space 

while avoiding these drawbacks. To achieve that, branching is done in a manner in which sibling 

nodes create partitions of the efficient sets of the parent node without overlapping regions. Also, 

in order for the algorithm to find both supported and non-supported points, weighted sum 

structure is avoided. Instead, an objective function that focuses on optimizing one of the 

objectives is chosen as the main structure, which is similar to that used in Lokman and Koksalan 

(2012). As a result, the proposed algorithm can identify dominated and non-dominated solutions 

during the solution process. In order to eliminate the identification of dominated solutions, we 

developed fathoming rules with the help of some dominance relationships developed among 

node types. The proof for the convergence of the algorithm, or finding all non-dominated 
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solutions, is also supplied. Suggested fathoming rules differ based on the memory requirements 

and are discussed in more detail in the fathoming schemes section. 

Assume we have the following general form of MOIP problem, P: 

                                 

                     

          

where       ∑   
   

 
    and   

  are the positive coefficients of the decision variable   for each 

objective  . As previously stated, the Pareto surface of the MOIP problems is a closed non-

convex set of a finite number of solution points.  

The initial decision that needs to be made at the start of the algorithm is to choose one of 

the objectives as the main objective, which will be optimized throughout the search tree. This 

decision might affect the order of solutions obtained throughout the traversal, and accordingly, 

this decision might impact total running time. However, none of these effects can be foreseen, so 

this selection remains somewhat arbitrary at this point. After making this decision, the main 

objective and all other objectives are combined into one single expression that is used as the 

objective function throughout the algorithm. This structure is the same as the one used by the 

second algorithm of Lokman and Koksalan (2012). This structure is primarily used to generate 

the best solution in terms of the main objective while eliminating weakly dominated solutions on 

the valid feasible region. With the usage of this objective, a single objective MIP is solved at 

each node, denoted by  . 

Let p denote the number of objectives, again and assume the p
th

 objective is the effective 

objective. Then, the following MIP problem, P1, is solved:  
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P1: Max         ∑   
   
       

s.t.      

where   is a sufficiently small positive constant that prevents obtaining weakly nondominated 

but dominated solutions. Let the optimal solution obtained as the result of above model at node i, 

  , be represented by       
     

       
  ; and let   denote the set of nondominated solutions on 

     . Based on the B&B idea,    is the predecessor of some child nodes. We note that, unlike 

the single objective B&B, the number of children of a node is more than two nodes. 

A sample Pareto space with three objectives is represented in Figure 13. In this example, 

the optimal solution of the current node,      can be used to divide the whole area of    into eight 

sub-regions, which can be expressed as    in general. In this expression, “2” comes from the 

number of partitions obtained by considering the ‘<’ and ‘>’ sides of each axis, with     being 

the origin of whole partitions. Since there are “p” many axes to consider, the total combination 

adds up to   . Hence, each sub-region becomes a branch of a node on the B&B tree. 



 

72 
 

 

Figure 14: Partition of objective space based on a single solution point in three objectives 

 

Figure 15: Partitions that contain the Pareto solutions based on their 3
rd

 objective value 
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Figure 16: Partition space for a three-objective MOIP 

The sub-problem solved for each sub-region corresponding to node   can be defined as: 

P2:    Max         ∑   
   
       

s.t.       
        

  

   
        

  

: 

     
            

  

   
     

     

where     and             are the bounds on objectives, which are determined using the parent 

node for each node. In order to construct the sub-regions,      number of constraints are 

added at most to the existing  ;   of them are upper bounds;     of them are for lower 

bounding.  

𝑧  

𝑧  

𝑧  

𝑧𝑖  
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A nondominated solution that has the best value of objective   on      is generated by the 

objective function of P1 at the root node. This means there is no need to search the region for 

better values of objective   (i.e.,    , which is the p
th

 objective value of last generated solution. 

Moreover, the objective function form prioritizing p
th

 criteria with an augmentation term ensures 

that there can be no weakly nondominated solutions in the sub-region of    with a better p
th

 

objective value than    (Steuer 1986). Accordingly, we can exclude the solutions with   
   value 

in the lower levels of the B&B search tree. Hence, the algorithm evolves in a way that generates 

smaller values in terms of the p
th

 objective at every level, adding only an upper bound constraint 

for the objective p. 

At the root node, all upper bounds are initially set at infinity, and all lower bounds initially start 

with negative infinity, which means there are no boundary constraints at the root node.  

For each branch, i.e. child node, a different combination is created in order to maintain the 

general branching idea. For all nodes but the root node, boundaries are determined initially based 

on the Pareto solution produced by parent node.        ,   
   acts either as upper bound or 

lower bound for a child node of node  . So, with the exception of the root node, the j
th

 objective 

lower and upper bounds for each sub-problem are determined by two values: (1) the j
th

 objective 

of the solution obtained at the parent node,     and (2) bounds of the parent node for the j
th

 

objective. At this point, an important remark should be made about difference of applying the 

upper and lower bound. For the problem P2, the upper bound is set as inequality, while the lower 

bound is set as strict inequality while using      i.e.,      
   and      

   in order to ensure 

sibling nodes are optimized with mutually exclusive regions without identifying the same 

solutions. These boundaries need to be combined with the boundaries inherited from the parent 
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node in order to determine the sub-region of the node that will be optimized to find or fathom a 

new solution.  

Based on the refinements mentioned so far, the model that needs to be solved at each node can 

be formulated as follows: 

P3:  Max         ∑   
   
       

s.t.       
        

    (1) 

   
        

    (2) 

: 

     
            

  (p-1) 

   
        (p) 

     

This can be seen in Figure 15 and Figure 16 clearly. In Figure 14, it can be observed that the area 

that has greater values in terms of objective p (in a three-objective context p=3) has been 

eliminated due to the fact that the best point of p
th

 objective has been obtained at the root node. 

That is, plane A in this figure represents the constraint p of model P3. 

By eliminating the area that contains the values better than   
   of node i, the number of sub-

regions to be searched is reduced from   . Since the number of dimensions is reduced by one, 

the resultant number of sub-regions, namely the branches on each node, becomes       .In 
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Figure 15, plane B represents the whole two dimensional search region, which has bounds on it 

for all but the 3
rd

 objective. 

3.3.1) Branching Strategy 

Lower and upper bounds are attributed to each child node,  ,            . To determine the 

boundaries of the sub-region, the algorithm uses both the solution of the parent node and the 

bounds inherited from the parent node. Let us refer to the bounds determined by the new solution 

at node  ,     , “new solution bounds,” and denote them as    
    

 and    
    

,            . 

These bounds can be determined by generating all combinations of strictly greater than,  , and 

less than inequalities,  , for each objective            . The following nested loop 

structure can be used to assign the bounds that need to be set due to    :  

for j1=1..2 

if j1=1,    
       

  else    
       

   

for j2=1..2 

             if j2=1,      
       

  else    
       

   

: 

for jp-1=1..2 

                             if j p-1=1,       
         

  else      
         

   

end 

end 

end 
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This procedure can be named the “child creation: step 1” since the child creation requires one 

more important step. 

Similarly, let us name the bounds inherited from the parent node as “parent node bounds” and 

denote them as    
    

 and    
    

,            . The necessary methodology to determine 

the final bounds for each child node  ,    
     

 , which is used in the model of the node, can be 

summarized as follows: 

For               at node   

 If    
        

    
 then    

 =   
    

else    
    

 

 If    
        

    
 then    

 =   
    

else    
    

 

It can be summarized as choosing the most restricting value among    
    

 and    
    

/    
     and 

   
    

 for each objective; there is a smaller value for the upper bounds, i.e., 

   
  max{   

        
    

}; a bigger value for the lower bounds, i.e.,    
 =        

        
     . 

This procedure can be named as “child creation: step 2.” At the end of these two steps, we 

perform a minor verification, as follows: 

 If                       
     

  then               

Indeed, the search region of this node will already be contained in other nodes. Proposition 2 in 

the next section shows this result. 

As mentioned previously, lower bounds are applied as strict inequalities, while upper bounds are 

applied as inequalities. In the pure integer context, strict inequalities can be converted to 
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inequalities by subtracting   from    
 , where   is a positive real number with    . Recalling 

that this algorithm is proposed for MOIP models, each solution with different objective values 

differs from the other by at least “1”; thus we can use    , or              . This 

convention is also useful in creating mutually exclusive search spaces for each sibling node, 

which is explained within the proof of Proposition 1 in the next section. 

It is indicated previously, that there are        child nodes of a node. However, special structure 

of the objective function and the way branches are constructed can further be exploited to reduce 

this number. That is, searching in the sub-region of one of the child nodes is actually redundant 

since it is guaranteed to generate a dominated solution unless infeasible. Hence, the number child 

of nodes can be reduced by one for each node; i.e,          nodes are created per node. The 

reason this particular region contains dominated solutions is clarified with the following 

proposition. 

Proposition 1 (Redundant subregion elimination): Let            denote child node of   , 

which has            as set of non-dominated points; the sub-region is determined with the 

following bounds:       
        

       
        

              
        

 for P1. It can then be 

concluded that                 ; the same solution as parent node or a dominated solution is 

obtained as the result of this solve. 

Proof: Let           denote the solution that is generated in this particular branch. We know that 

the points generated by child nodes generate results with equal or worse values than the parent 

node (i.e.,   
        

   
 ). For the other objective values of this child node,         , 

since    
     {   

        
    }.  
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Let’s assume for all dimensions that    
        

    
; this means all the   

         
 are forced to 

be less than or equal to   
   for all but the main objective. The objective function has to find the 

solution that has greatest    on this region, which means   
         

   
   . We also know that all 

other objectives are required to be less than or equal to the   
   . Hence, the objective function 

that identifies the greatest value for the main objective and a total sum of other objectives is 

supposed to generate the same solution                . 

Let’s assume for objective i,    
        

    
 and    

        
    

 for all others, which means 

all the   
         

 are forced to be less than or equal to   
   for all but objective  . Since    

  

   {   
        

    } for node k, it will be    
        

     
    

 for child       . Hence, 

   
        

    
      The objective function has to find the solution that has greatest    on this 

region, which means   
         

   
  . We also know that all other objectives are required to be 

less than or equal to the   
   .On the other hand, the solution will be strictly less than     for 

objective I. Hence, the solution that will be generated under these circumstances will be strictly 

worse than     for one objective, even though it is equal to     in all other objectives. So 

              . 

This conclusion completes the proof   

3.3.2) Node selection and Stopping Condition 

In the classical B&B method for integer programs, “breadth first” and “depth first” are the two 

main strategies followed while traversing the tree. Depending on the use cases of the model, both 

have some advantages and disadvantages. In the proposed approach, the algorithm starts with 
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“breadth first” traversal of the tree. Figure 16 illustrates how breadth-first evolves with child 

creation procedure. 

 

Figure 17: Proceeding of breadth first on a B&B for a three-objective MOIP problem 

 

When this algorithm is allowed to terminate without any intervention, it generates all Pareto 

solutions of the original problem. The following two propositions prove the validity of this 

claim. The first proposition establishes the mutual exclusivity of the child nodes in the objective 

space. 

Proposition 2 (mutually exclusive solutions): Let                     denote the child nodes 

of   . Let                     denote the set of non-dominated solutions that can be generated 

by the subtree of each child node, with    being the set of non-dominated points for    itself  

Then we have mutual exclusivity,                                   , 
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Proof: Let all the feasible solutions in search space of   be denoted by   . It is then observed that 

      . At this point, it is assumed all alternative solutions, i.e., those with the same objective 

values but that differ in terms of decision variables, can be obtained once one of the alternatives 

is identified.  

Recalling the steps of child creation, namely steps 1 and 2, the bounds for the solution of 

this node can be shown as bounded as           . Using this result, the following scenarios 

emerge in terms of the boundaries of child nodes: 

The solution for parent node,    , might fall in somewhere between the upper and lower 

bound, or            . Then the boundaries for each child node of k are determined by 

using     and          by following the procedure defined in previous section. As child 

creation: step 1 of the procedure suggests,     is used as lower and bounds for each objective 

                in such a way that each child will have a different set of bounds. For those 

child nodes that have   
   as the lower bound, the    

  acts as the upper bound; the other child 

nodes that take on the upper bound values as   
   ;    

  act as the lower bound. In this setting, 

even if two nodes use   
   as the lower or upper bound at the same time, and both nodes generate 

solutions on this border, these solutions have to differ in terms of at least one of the objectives 

because of the different combination of boundaries created; hence, the solutions are different 

from each other. 

The second case is when    
    

   for the child nodes       
   and accordingly 

       
   hence, the search region on the     dimension reduces to a single point, which is   

  . 

Assume this child node has the set of A as the upper and lower bounds for the rest of the 
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objectives, i.e., A={         } where                   . However, there is another node 

with the same set of bounds A, but       
  ; since upper bounds are set as inequality, this 

allows for the generation of solutions with      
  . Hence, nodes with       

  are redundant 

and fathomed with a check in the procedure; remaining nodes do not have overlapping regions, 

as shown in the first part of the proof.   

Hence, each child node is a mutually exclusive partition of the solution space defined by the 

parent node. Another important characteristic is whether these mutually exclusive sub-regions, 

defined by all child nodes, cover the entire solution space of the parent node. Next, we show that 

these child nodes cover for the search region of parent node minus its solution point; i.e., the set 

of non-dominated points of a parent node can be obtained by finding all the non-dominated 

points of the child nodes except for the solution point obtained at the parent node. 

Proposition 3:                    [          ]            

Proof: At the branching strategy part, it has been shown that   , or the set of all feasible solutions 

that lies on           , is divided into two around    on all dimensions except for p. At 

this point, it can be observed that all dimensions of   
              are used as bound and are 

included in the search space of the child node m as upper bound,    
    

  , when   
      

 . 

It has already been shown in a previous proof that a child node is fathomed when   
      

  and 

includes some other nodes as the upper bound. The only region that is left that is also covered by 

child nodes is the upper border of the parent node, i.e.,    . By resorting to the same case 

partitioning again, if the solution of parent node is between the upper and lower bounds     

        , there will be some child nodes that use     as the upper bound and     as the lower 
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bound. And    
  is divided into two for the rest of     objectives; hence, it will be covered as 

being the upper bound by node I, which has also one of    
     

    or    
     

  ” combinations 

of             . If the solution is on the upper bound of some or all of the coordinates, i.e., 

   =     the upper bound can be thought as the     in the previous argument, and it can be 

concluded that     is covered for this case, too. 

Furthermore, only one of these regions is omitted due to Proposition 1, which is proven not to 

contain any new non-dominated solution.  

Hence, it is proven that the proposed algorithm does not generate duplicate solutions and 

explores the entire solution space in which nondominated solutions might exist. 

Lemma 1: All the nodes at the same level have mutually exclusive solution sets, and a 

combination of their search regions is equal to the search area of original problem. 

Proof: From the observations in Propositions 2 and 3, we arrive to this result by considering that 

all child nodes on a level are the children or grandchildren of some sibling nodes. We know that 

siblings have no intersection and cover all the search space of their own parent. 

A numerical example is shown in Figure 18, and Figure 18 illustrates the steps of the proposed 

algorithm for the following knapsack problem. 

         

          

           

Where 

  [
  
  
  

 
  
  
  

 
  
  
  

 
  
  
  

 
  
  
  

 
  
  
  

 
  
  
  

 
  
  
  

 
  
  
  

 
  
  
  

] 



 

84 
 

  [
  
  
  

 
  
  
  

 
  
  
  

 
  
  
  

 
  
  
  

 
  
  
  

 
  
  
  

 
  
  
  

 
  
  
  

 
  
  
  

] 

  [         ]  

  [                         ]  

 

 

Figure 18: Root node and its branches and their corresponding region projected on two 

dimensions for the sample problem 

 

Figure 19 : One of the child nodes of the root node and its branches and their corresponding 

region projected on two dimensions for the sample problem 
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It should be added that even though a node is automatically fathomed per the infeasibility (see 

Proposition 1), the problem size will grow exponentially due to the addition of an exponential 

number of nodes. Hence, it is always worth investigating what further actions can be taken in 

order to reduce the number of nodes to be explored. At this point, it is important to delve further 

into domination relations between nodes of the B&B tree. Propositions in the next section 

attempt to reveal these relations more rigorously. For our purposes, we make the following 

definition: 

A “dominating corner (DC) node” of a parent node is the one with all branching constraints that 

guarantees that the solution will be better than the solution of parent node for all but the main 

objective, or if this node is represented by i,   
     

                 . All other child 

nodes are called “regular nodes.”  

3.3.3) Domination Relationship between Nodes 

The following two propositions establishe the dominance relationships between parent and child 

nodes. 

Proposition 4: None of the child nodes can dominate the parent node. 

Proof: Recall that node that is worse than all but the main objective is excluded from the search. 

In the remaining nodes, there are regular nodes and the dominating corner node.  

For the regular nodes, it is required that they are better than their parent node for at least one 

objective with the branching constraints, but worse at least for one objective. 

For the DC node, all but the main objectives are required to be better than parent node. Assume 

there does exist a solution which is strictly better than all but main objective is generated by this 

child, which has equal value of main objective to the parent node for the main objective,  , then 
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the objective value would be higher than the value obtained at parent node. However, this 

contradicts the fact that, parent node is maximized over the superset of the same search space 

with the same objective function.   

Lemma 2: A parent node cannot dominate a child node.  

Proof: The proof follows from the fact that branching constraints are set up in a way that the 

solution of the parent node is improved for at least one of the objectives for each child node. 

According to Proposition 1, only the child needs to be less than the solution of parent node is 

never created. 

The following propositions are presented to show the relationship between sibling nodes and 

nodes in different generations (levels).  

Lemma 3: A regular child node of a parent has a solution whose main objective equals or less 

than solution of parent node; the solution of the DC node’s main objective is strictly less than the 

main objective value of parent node. 

Proof: The proof follows from the last part of Proposition 4 for a DC node. On the other hand, a 

solution with the same value as main objective can be generated by a regular node, with the 

requirement that total of all but the main objective values is less than the parent node’s solution 

value. That is, let   denote this child node, and     and     solutions of the child node and parent 

node, respectively; then,   
      

  can happen if ∑   
     

  ∑   
     

 . Otherwise,     would 

have been identified as the optimal solution of the parent node.  

Proposition 5: Solution of a DC node can dominate the solutions obtained from regular siblings 

of the DC node. 
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Proof: Let us denote the solution obtained from DC node as     ,the  solution of a regular 

sibling   as    , and the solution of their parent   as    . Both of the child nodes will have   
   as 

upper bound on their    objective. Let node   be required to be better than     for a set of 

objectives             and worse than or equal to   
   for objective(s) m, s.t.   

            and     based on the definition of regular node. Then, if   
     

   and 

  
      

  , which is a possible case, and   
     

        ; besides, it is already guaranteed 

that   
     

                    , by the nature of branching constraints; i.e., DC node is 

forced to be better than     for all but objective   , whereas   
     

  . Hence,            

Proposition 6: The child of a DC node can dominate a solution obtained from sibling nodes of 

corresponding DC node. 

Proof: In addition to the notation used in the previous proof, let     denote the child node of the 

DC node and its solution by      . Then, it is claimed that there can be cases where           

even if     is not dominated by     . We first need to assume that               and 

             in all objectives, which is a possible case. 

Let   
     

     (since it is allowed that   
     

   , this outcome is possible) and   
    

  
  (since it is allowed that   

      
   , this outcome is also possible). In addition to this, set A 

is defined in the same way as the previous proof:    
     

                  

    hence,   
     

  ; hence,               and    . Then, assume   

       
  , (since 

it is allowed that   

       
    , this outcome is possible); and for the rest of the objective 

dimensions and   

        
      

   where            . On the other hand, assume for the 

subset of  ,   
      

     and   
     

           that       dominates     for the 
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objectives in set  . For the rest of the objectives, it is already guaranteed that   
     

     

            with the branching constraints of node  . This observation completes the proof  

Based on this proposition following lemma can be added. 

Lemma 4: The child of a DC node can dominate a solution obtained from the children of the 

regular siblings of the DC node. 

Proof: For this case, assume that               and              in all objectives, 

which a possible case. In addition to the notation used in previous proof, let    denote the child 

node of regular node  , which is also a sibling of node   . Following the proof of Proposition 6, 

if it is assumed that   

   
=  

       
     and   

      
     for     , it can be concluded 

that   
   dominates   

     

All of these conclusions are represented in Figures (a) and (b), where (a) shows the case between 

DC and regular siblings of a generation, and (b) shows the case between two generations. The 

second generation is classified only based on the nature of their parents. 
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Figure 20: Domination relations (a) for sibling nodes based on their own types, (b)for nodes in 

different generations based on their parent types, and (c) for the nodes in different generations 

based on both their parent types and their own types 
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Figure 21: Representation of each node type for a problem with three objectives 

Table 7 summarizes the domination relationships among nodes more accurately. It can also be 

observed in Figure 19, Part (c). In addition, Figure 20 shows the representation of the each node 

type for a problem with three objectives. 

1. Regular node  

2. DC nodes 

3. Child of the DC node  

4. Child of the regular node 

 

 

 

 

 

Not 

searched 

(3) 

(4) 

(4) 

(4) 

(4) 

(4) 

(4) 

(3) 

(3) 

Not 

searched Not 

searched 

Not 

searched 

(2) 

(2) 

(2) 



 

91 
 

 

Table 8: Domination relations: (if row element dominates column element, ‘yes’; otherwise ‘no’) 

 (1st type) (2nd type) (3rd type) (4th type) 

(1st type) no no no no 

(2nd type) yes - no yes 

(3rd type) yes no yes1 yes 

(4th type) no no no yes2 

3.3.4) Fathoming of Nodes 

Based on the domination relations presented for the proposed algorithm, some nodes can be 

removed from further consideration; in other words, there is no further branching on these nodes. 

This is the “fathoming” operation, as in the case of single-objective B&B. Fathoming in the 

proposed approach is performed for two reasons: infeasibility of a node or derivation of some 

upper bounds through the use of domination relations between nodes, as described in the 

previous section. 

1. Fathoming due to infeasibility: Following lemma shows that a node with infeasible solution 

can be eliminated from further consideration. 

Lemma 5: If the solution of a node is infeasible, all of its child nodes will result with 

infeasibility. 

Proof: According to Proposition 3, a parent node has the search region that contains all the 

Pareto solutions that can be generated by its child nodes. So if the Pareto set existing in the 

search region of node k is empty       then                        . 

                                                           
1
 This is possible if this child node is also DC node 

2
 This is possible if this child node is also DC node 
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2. Fathoming due to upper bounding (domination): A DC node solution can dominate its 

regular sibling based on Proposition 5. Besides, descendants of a regular node can be 

dominated by its DC sibling and all descendant nodes this DC node, based on Proposition 6 

and Lemma 4. These two simple derivations cause nodes to generate a dominating result of 

solutions that can be used as upper bounds for fathoming the next nodes to be created. Due to 

Lemma 2, this node cannot be fathomed totally. It has the potential to create non-dominated 

solutions. On the other hand, if a node itself is dominated either by its DC sibling or 

descendant of a DC (grand) uncle, the child nodes that will be created from this dominated 

node can also be dominated by the same node. This result can sometimes be reached directly, 

just by comparing the upper bounds attributed to the new child node with the dominating 

node. If the upper bound of the newly created node is dominated by the same node that 

dominates the parent node, this child is fathomed totally. 

 

Figure 21 shows a sample case with three objectives. In this figure result of node (3) is 

dominated by its DC sibling, node (1). After observing this domination, the bounds of the 

child nodes of node (3) are determined. However, before solving these child nodes, if the 

upper bounds of each child node (3.1, 3.2 and 3.3) are compared with dominating node(1), it 

is observed that none of the solutions obtained from node (3.2) can outperform the result 

obtained from node (1); hence, this child node can be fathomed. 

As it can be observed from this example, with increasing fathoming, the size of the tree to be 

traversed shrinks accordingly. However, keeping track of ancestors of a node requires significant 

memory. The task of keeping the record and comparisons of the DC node versus regular node 

might be cumbersome. Besides, creating an upper bound pre-requires finding a node that 
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dominates the parent node. This means that before coming up with an upper bound, some 

domination checks needs to be made. As the number of this comparison increases, the runtime of 

whole algorithm also increases. Hence, it is possible to design the algorithm in a way that keeps 

the record of ancestor relations for a reasonable number of generations. This way, the size of set 

of nodes that can dominate the newly generated solutions is kept in a reasonable size. 

Accordingly the number of domination checks and the memory requirements for storing the 

record of relations between nodes is kept manageable. 

 

Figure 22: Fathoming sample on a problem with three objectives. 

 

The following two propositions show that the proposed algorithm converges and that the 

converged set includes all the Pareto efficient solutions.  
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Proposition 7: Proposed algorithm terminates. 

Proof: Assume one node is created and solved for all the solutions on the feasible space. 

Since it is proven that none of the nodes generate duplicate solutions, and solution set of the 

problem is finite; child nodes that are created from the last identified solutions will result 

with infeasibility; hence, it will be fathomed  

Proposition 8: Proposed algorithm can generate all Pareto points. 

Proof: All of the solution space is covered by search space of root node since upper and 

lower bounds of root node is plus and minus infinity. The objective function optimizes main 

objective,  , over this region, avoiding the weakly dominated solutions, i.e., solutions with 

the same main objective value, but having a smaller value of sum of other objectives. By 

Lemma 3, there is no way of skipping a value between generations; i.e., there cannot be a 

solution    between the optimal solution of node  ,     , and solution of one of its child node 

 ,      such that   
     

    
  . Besides, by Proposition 3, child nodes cover the same space 

without skipping any region. Only region that is excluded is the part of solution space where 

it is proven that no Pareto solution can exist by Proposition 1. That is, no solution point 

which can be a Pareto candidate is skipped in both vertical and horizontal directions of  . 

Then, it is obvious that algorithm will terminate with a solution set which contains Pareto set 

of the problem  

Effect of fathoming can be seen in the following tables which belong to the small knapsack 

problem used to show branching structure and presented above where first objective is the 

main objective. 
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Table 9: Results without fathoming in 4.813 seconds 

node #  Obj 1 Obj 2 Obj 3 

1 286 300 291 

2 273 337 331 

3 261 324 236 

4 275 271 328 

6 240 347 299 

7 230 319 335 

8 234 333 267 

10 253 310 259 

11 256 294 336 

12 271 288 328 

13 251 247 330 

20 232 353 277 

23 211 311 280 

24 203 317 258 

25 230 304 274 

27 253 296 333 

30 238 298 296 

44 215 310 282 
 

Table 10: Results after fathoming applied by using the nodes at the same level in 3.109 seconds 

node #  
Solution 
point 1 

Solution 
point 2 

Solution 
point 3 

1 286 300 291 

2 273 337 331 

3 261 324 236 

4 275 271 328 

6 240 347 299 

7 230 319 335 

8 234 333 267 

11 256 294 336 

12 271 288 328 

13 251 247 330 

20 232 353 277 

24 253 296 333 
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In this small sample, rows which are presented in bold represent the true Pareto solutions. 

Solutions shown in italics in Table 8 are the solutions of fathomed nodes which do not appear in 

Table 9. Total number of nodes traversed is 44 in the first tree, whereas this number reduced to 

24 in the tree with fathoming. More exhaustive test results are presented later in the 

computational experiments section of the chapter which aims at assessing the effect of 

fathoming. 

3.3.5) Pareto Filtering Strategies 

Based on the domination relations presented previously, the proposed approach finds solutions 

that can be dominated by another solution that is obtained in the later stages of the solution 

process. In order to have a 100% non-dominated set, it should be waited till the algorithm 

terminates. At this point, it is obvious that some type of filtering is necessary in order to 

eliminate dominated points from the solution set, generally called as “Pareto Filtering.”  This 

step creates another variation point for the proposed algorithm. The most common approach is to 

perform filtering in the end. Alternatively, the filtering could be performed after finding of a new 

solution or intermittently, e.g., filtering every other 100 solutions or at the end of each level. The 

obvious tradeoff is the computational time spent during the filtering and the improved efficiency 

through the increased and timely node fathoming.  

Simultaneous Filtering: At the end of a MIP solve at each node, unless it ends up with 

infeasibility, a new solution is obtained and this solution can be dominated by or dominates one 

of solutions added previously to the solution set. If a solution named based on the node it is 

obtained, and is represented by  , the set of nodes that have the potential to generate the 

solutions which can dominate the solution  , can be represented by     ; while set of nodes 

which can generate solutions that can be dominated by the a can be denoted by     . So filtering 
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means, after the new solution is obtained at   , checking if it dominates any of the solutions in 

    ; or being dominated by any of the solutions obtained from     . This later step is similar to 

the actions that can be taken during the derivation of upper bound to be used for fathoming. 

However, covering all      is not a must for fathoming; on the other hand if one wants true 

information about Pareto optimality of a solution, it is necessary to make sure all elements of 

     is covered. 

Elements of      and      are determined according to the propositions presented in the section 

about “domination relationships between nodes.”  According to these relations, node  , can be in 

S set for node  , but can be in set   for another node  , i.e.              . Figure 23 below 

shows this type of a node on a three-objective-case. Since   is child of the DC uncle of   and  , 

it can dominate both of them; However, since   is DC node of its own small family, it can 

dominate its regular sibling  . Based on this observation it can easily be deduced that, S and I 

sets of each node needs to be dynamically updated during a tree traversal, which require keeping 

significant amount of information in memory or some type of recording process which requires 

and writing in order to construct the each S and I set of a solution correctly. By following this 

filtering technique it can be guaranteed that none of the solutions obtained so far can be 

dominated by the solutions in the candidate solution set, although it does not guarantee that one 

of these points cannot be dominated by a solution that can be obtained by one of the succeeding 

nodes. Besides, the result of domination check for set S can also be used for fathoming of nodes. 

As the cardinality of set S increases, fathoming becomes more powerful in reducing the size of 

the tree; hence, using the information regarding set S of each node fathoming due to upper 

bounding is used at with highest performance.  
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Figure 23: Changing S and I memberships for a node in a MB&B tree with three objectives 

Final filtering: As opposed to filtering the results simultaneously, one can choose to filter all the 

solutions obtained during the traversal of tree at the end of termination of tree search as a last 

step to the algorithm. The filter that is used for this type requires checking if a solution is 

dominated by any of other the solutions in the solution set, which is done by each solution with 

all others and removing it from the set if it turns out to be dominated by one of the solutions. The 

advantage of this method is that it needs less memory space since it does not necessarily require 

to keep the information among nodes. On the other hand, its disadvantage is that is does not have 

a clear idea about the domination chances of a solution point, which is a concept that will be 

clarified in 3.3.6) Probability of being non-dominated for solution set.  

Intermittent filtering: The third option is to have intermittent filtering. To summarize, 

simultaneous filtering goes hand in hand with the fathoming procedure and can supply all the 

information that is necessary for fathoming as well, which helps keep the tree size under control. 

Furthermore, by keeping the domination relationships among all nodes, we only need to compare 

a solution with the ones that have the potential to dominate. On the other hand, retrieving all the 

information regarding the previous nodes requires either memory or spending time on read/write 

processes, and final filtering does not suffer from this advantage. Hence, a filtering approach 

    

  

  

                  a b c 
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based on intermittent filtering keeps the complete information in memory for fathoming (i.e., 

S(c), for each node), but performs the final filtering at the end (i.e., not keep information of I(c) 

for any node c). Since this approach provides all the available information necessary to take 

advantage of fathoming while reducing the storage requirements, this method is used during the 

computational tests conducted for the assessment of the general performance of the algorithm. 

3.3.6) Probability of being non-dominated for solution set 

As stated above, not all solutions generated up until an intermediate stage of the 

algorithm are guaranteed to be Pareto optimal. Hence, we developed a probability measure of 

being dominated that can be helpful when results are evaluated by the user if the proposed 

approach is terminated before the convergence. Similarly, these results, at intermediate steps, 

could be used to provide real-time information to the user on the non-dominance probability of 

solutions found thus far. To the best of our knowledge no other existing approximation methods, 

either exact or meta-heuristic, supplies this type of information. 

A solution can be dominated if another point is generated that has equal or better values for all 

the objectives, one of which is strictly better. Indeed, the best solutions for each objective, 

namely the anchor points, supply the broadest estimate how much a solution can be improved 

upon in one dimension on the solution space. The probabilities are calculated for each objective 

in the objective space. Hence, this value can always be used in order to calculate the sample 

space for this probability. However, we claim that it is possible to come up with more accurate 

estimates about this probability in the context of proposed algorithm. Actually, the search space 

is restricted by the area of active nodes, which means the search space can be much smaller than 

the region determined by the anchor points. Hence, the total area defined by all active nodes 
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which have the potential to generate points that can dominate the current node give the sample 

space for probability. So, the calculation of this measure can be summarized as follows: 

      Set of active nodes when node c is about to be solved 

                   ∑    
     

                

       

  

          

                       ∑    
     

                

       

 

                     ∏(   
                      

                  
)

 

   

 

The above probability measure is defined for node c’s solution. An aggregated probability for the 

entire set of solutions could be calculated by averaging of all the individual solution’s probability 

measures. This type of a measure is calculated for the samples in the computational results part. 

Given the critical role of the active nodes in accurately estimating the probability of domination, 

the node selection strategy of the proposed MOB&B for branching is breadth first. This way we 

ensure that we always have well-dispersed active nodes with similar sized node specific 

unexplored search spaces. Hence, at any given time, the set of active nodes can be either from 

the same level or at the next level of the current node. However, this is not a necessary condition 

to calculate this probability. If one wants to apply the algorithm with the depth-first approach, 

the calculation presented previously is still valid. 
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Figure 24: Current node and relevant regions of active node represented on the three objective 

MOIP example 

 

 
Figure 25: Snapshot of a sample tree showing current node and all active nodes with three 

objectives 
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3.3.7) Parallelizing the algorithm  

As mentioned earlier, the proposed algorithm can be run in parallel, which is extremely useful 

from the computational perspective. There are two ways to run the algorithm in parallel, 

depending on whether the solution is aimed for the whole Pareto set or a well-dispersed 

approximation. 

Different main objectives in parallel: The proposed algorithm, irrespective of which objective 

is selected as the main objective, is guaranteed to find the whole Pareto set as long as it is run 

until convergence, or when all the active nodes are fathomed. However, an early termination the 

proposed algorithm (e.g., prior to fathoming all nodes) would lead to different solution sets for 

different choices of the main objective. This parallelization approach is preferable for generating 

well-dispersed solution set that is an approximation of the whole Pareto set. This parallelization 

approach selects different objectives as the main objective and assign each main objective’s run 

to a separate thread. When the solution process is terminated, the solutions from each thread are 

combined and filtered to obtain the final approximating set. 

 Siblings in parallel: This is a method that can be resorted to when the proposed 

algorithm is used to obtain the whole Pareto set. After the root node, nodes at a level can 

be partitioned into groups and can be restarted on different machines, threads, etc., by 

carrying over the boundary information from root node. This is due to two reasons: 

 The search space of each sibling is mutually exclusive (Proposition 3).  

 Since the search spaces of the nodes do not change, domination relations among the 

nodes also do not change. That is, intermediate filtering is not a must for the algorithm; 
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thus, all solutions gathered from different parallel runs can be combined and filtered at 

the end or even some intermediate moments before termination.  

This method of parallelization can be thought as switching from breadth-first to depth-first 

search, starting from an early stage of the algorithm (after the root node) and proceeding with 

breadth-first again on the separate reduced trees. For any type of parallelization, as long as all the 

solutions are combined to be filtered, all solutions can still be supplied with precise probability 

calculations for being non-dominated. 

3.3.8) Handling alternative solutions 

There might be more than one solution in decision space, which results in same objective values, 

namely alternative solutions. Since the algorithm is designed to run in the objective space, it 

cannot differentiate between two solutions that are identical in terms of objective vectors but 

distinct in terms of decision vectors. However, if this algorithm were used as a decision support 

tool, there are a couple of ways to reach alternative solutions, none of which are hard. If one is 

interested in alternative solutions for a certain objective value outcome, the same problem can be 

resolved by adding as many constraints as the number of objectives, each of which would fix the 

values of corresponding objective to the value of preferred solution and generate different results 

by inserting the algorithms that generates alternative solutions. In many optimization software 

packages, this property is implemented as a side tool that can be coded within the algorithm with 

a single command, based on a user inputted option.  
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Figure 26: General flow chart of the breadth-first algorithm 
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Figure 27: Pseudo-code of the algorithm 

   

3.4) Experimental Results 

3.4.1) Sample Problems 

For testing purposes of the proposed algorithm, three MOCO problem types have been used, the 

multi-objective knapsack problem (MOKP), the multi-objective shortest path problem (MOSP), 

and the spanning tree problem multi-objective (MOST). These problems are solved with a 

STEP 0 (Root node): Set main objective, 𝑖. Solve model P3 with no bounds on 

objectives; i.e., set the 𝑙𝑏𝑗   𝐼𝑛𝑓𝑖𝑛𝑖𝑡𝑦; 𝑢𝑏𝑗  𝐼𝑛𝑓𝑖𝑛𝑖𝑡𝑦  𝑗     𝑝 . Initialize 

Pareto Candidate Set, i.e., 𝐸   . 

 If solution is feasible, obtain the objective function values for corresponding 

solution, 𝑧 ; 𝐸  𝐸  𝑧 ; create child nodes of root node; current node=first 

child node of root node. If solution is infeasible STOP. 

STEP 1(Bound setting): Compare the bounds of current node with the bounds of 

parent node and set the final bounds,  𝑙𝑏𝑗 and  𝑢𝑏𝑗 at P3.  

STEP 2(Optimization): Solve P3. If feasible, obtain the objective function values 

for corresponding solution 𝑧𝑗
   j       𝐸  𝐸  𝑧 ; continue with Step 3. If 

P3 is infeasible go to step 6. 

STEP 3(Child creation): Create child nodes, make connections between them, 

enter level and relative information. Enter the bounds based on 𝑧 ; i.e., solution of 

current node.   

STEP 4(Domination check): Check if 𝑧  is dominated by its dominating list, 

  𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ; If dominated go to Step 5. If not dominated go to Step 6. 

STEP 5(Fathoming): Compare the objective values of dominating solution with 

upper bounds of child nodes; if any of them dominated fathom the child node. 

STEP 6(Stopping condition): Check if there exists next node. If exists current 

node=next node; return to Step 1. If next node does not exist STOP (or Final 

Pareto filtering) 
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different number of variables and objectives. Instances used for each case are exactly the same as 

the instances used by Lokman and Koksalan (2012) for the MOKP problem. These instances are 

used to verify the results as well. However, for the other two problems, since formulation of the 

problems differs slightly, despite the fact that inputs of instances are the same, the sample 

models are not exactly the same. The following formulations are used in order to model the 

relevant problems. 

MOKP 

Weights and profits of the items are generated as integers uniformly distributed between 10 and 

100. The capacity of the knapsacks is taken as half of total weight: 
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MOSP 

Preliminary experiments for the MOSP problem showed that the number of non-dominated 

solutions is small when complete graph is used. Typically, there are several paths from source to 

sink with a relatively small number of arcs in a complete graph, and these dominate many other 

paths. In order to overcome this difficulty, special random graphs are generated, where source 

and sink nodes are defined as 1 and n, respectively. The details about how these graphs are 

generated can be found in Lokman and Koksalan (2012). 
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MOST 

Multi-objective spanning tree (MOST) is the last type of problem used for testing purposes. In 

order to have a mathematical program, the minimum spanning tree problem is formulated as a 

multi-commodity flow problem. Then it can be written as follows: 



 

108 
 

 

                               

     

∑∑   

 

   

 

   

         

 

∑   
 

 

   

 ∑   
 

 

   

 {
             
            

              
                                  

 

   
                                 

                   

 
          

 
where 

  (   )  ∑∑       

 

   

 

   

               

                                               

    {
                                            

                               
 

                                              

   
                                                  

When there is a complete graph with n nodes, node 1 is defined as the supply node of n 

commodities and the remaining nodes as demand nodes, where each demand node has a demand 

for a different commodity of exactly one unit. Therefore, the difference of outflow and the 

inflow of commodity k will be equal to 1 for the demand node k whereas it will be equal to -1 for 

the supply node 1. All other nodes will be transshipment nodes for this commodity k. This model 

results with a spanning tree since using only one supplier will guarantee a connected graph. In 

addition, no cycles occur in this connected graph to minimize the cost. 
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3.4.2) Computational Results 

The sample MOCO problems mentioned above are used to assess the performance of variations 

and attributes of the algorithm as well as its performance. For this purpose, the first set of 

experiments were conducted to observe the effect of fathoming. The second set of experiments 

were used compare the effect of simultaneous filtering versus final filtering. The third set of 

experiments were conducted to evaluate the non-dominance probability estimation. The last set 

of experiments showed the time performance of the algorithm. All versions of algorithm are 

coded in Microsoft Visual Studio 2010 using C++, and MIP solver of CPLEX 12.5.1 is used 

through concert technology. Two different machines are used to collect the results—the first PC 

has Intel® Core™i3 M390 with 2.67 GHz speed and 4(3.80 GB usable) RAM. The other PC has 

Intel® Core™ i5 2400 with 3.10 GHz speed and 16(15.9 usable) RAM. 

3.4.2.1) Effect of fathoming 

Fathoming is an important specialty of the proposed MOB&B algorithm as it is a single 

optimization case and has been explained in detail in 3.3.4) Fathoming of Nodes. In order to 

assess the effect of fathoming, two levels of fathoming are implemented into the algorithm. The 

first one uses a very basic fathoming structure with two types of information, the first piece of 

which is the DC sibling of each node. The second piece is the information inherited from the first 

level, e.g., relationships based on the children of root node. This information indicates whether a 

node is grandchild of the first DC node. Hence, it is checked if upper bounds of a child node are 

dominated by solution obtained from its DC sibling or the nodes at the same level those are 

inherited from the first DC child, if node itself is not a DC grandchild. The type modeled with 

this type of fathoming is called “Type 1 fathoming.” Then, in order to observe the full effect of 

fathoming, a structure that uses all the information on the tree to fathom the nodes is coded. That 
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is, this version requires carrying the information of all nodes that can dominate each node based 

on the domination relationships among nodes explained previously. This version of algorithm is 

called “Type 2 fathoming.”  

Three levels from each type of sample problems are chosen for this analysis. Each of the set 

contains five instances. The first four columns contain the averages for these instances. Since 

Type 2 fathoming requires considerable memory usage, the biggest problem sizes that allowed us 

to run all of their instances with Type 2 fathoming turned out to be relatively smaller sizes of 

problems within the sample problem set. Table 11 shows the results for each problem type: 

Table 11: Impact of fathoming on three different problem sizes 

 

Average 

# of 

Pareto 

Points 

 

Averag

e # of 

models 

solved 

Average 

CPU 

Time of 

run in 

sec 

Average 

Filterin

g Time 

in sec 

Type 2 reductions from Type 1 

% of 

reduction 

for # of 

models 

solved 

% of 

reduction 

for CPU 

time of 

run 

% of 

reduction 

for 

filtering 

time 

MOKP-25 

nodes 3 

objectives 

Type1 

fathoming 211.8 

 

3235.2 933.25 0.2316 

12% 36% 83% 
Type2 

fathoming 
2839.2 600.56 0.0394 

MOSP-

100 nodes 

3 

objectives 

Type1 

fathoming 217.4 

 

15952.2 42931.91 0.1973 

7% 24% 52% 

Type2 

fathoming 
14905.4 32428.00 0.0941 

MOST-10 

nodes 3 

objectives 

Type1 

fathoming 
761.6 

12427.8 9831.13 0.4738 

10% 21% 42% 
Type2 

fathoming 
11205 7735.26 0.2740 

 

Based on these results, the number of models and the total CPU time required is reduced 

significantly. Even in the least effective case time that is required to traverse the tree reduces by 

more than 20%. Fathoming affects both filtering time and total tree traversal time. Filtering time 
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is affected due to the decreasing number of solutions that result from the reduced size of the tree. 

Hence, it is worth expending the effort to keep information necessary information for fathoming. 

Based on this result, we used full fathoming for the rest of the analysis. 

3.4.2.2) Simultaneous Filtering vs. Final Filtering 

As it has been explained in 3.3.5) Pareto Filtering Strategies, the proposed algorithm requires 

Pareto filtering, and one might choose to perform this filtering at different points of the tree 

traversal. Simultaneous filtering was previously proposed as the extreme level of this procedure, 

and this requires comparing the value of a node with the solutions obtained at the nodes that can 

dominate it immediately after it is obtained. It has been noted that this is a memory dependent 

procedure, but it is advantageous in the sense that dominated nodes from earlier levels of the tree 

by newly generated nodes are eliminated as soon as the dominating solution is generated, which 

saves time making unnecessary comparisons that are performed at the later filtering stage. The 

other extreme of this filtering mechanism is final filtering, and this is performed when tree 

traversal is finished. In order to assess the effect of the filtering on the total CPU time, two 

versions of the algorithm are examined with two different filtering schemes. The first one is 

close to the simultaneous filtering, or filtering the solution set after the completion of each level. 

All solutions obtained at that level are compared with the solutions obtained previously in order 

to have a filtered set at the end of each level. The version of the algorithm with this type of 

filtering scheme is called “Type 2 filtering.” The version with final filtering is called “Type 1 

filtering.” Table 11 shows the effect of filtering. The same instances that are used in the 

fathoming analysis are used for this analysis as well. Both of the versions contain full fathoming 

schemes as the fathoming level. 
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Table 12: Impact of filtering for three different problem sizes 

 

Average 
# of 

Pareto 

Points 

Average 
# of 

models 

solved 

Average 

CPU Time 

of run in 

sec 

Average 

Filtering 

Time in 

sec 

Filtering effect of 

Type 2 

% of 

reduction 

for CPU 

time of 

run 

% of 

reduction 

for 

filtering 

time 

Knapsack 

Problem with 

25 nodes 3 

objectives 

Type1 

filtering 
211.8 2839.2 

600.56 0.0394 

3.10% 28.93% 
Type2 

filtering 
581.97 0.0280 

Shortest Path 

Problem 100 

nodes 3 

objectives 

Type1 

filtering 
217.4 14905.4 

32428.00 0.9412 

2.83% 41.88% 
Type2 

filtering 
31508.96 0.5470 

Spanning Tree 

Problem 10 

nodes 3 

objectives 

Type1 

filtering 
761.6 11205 

7735.26 0.2741 

3.94% 90.11% 
Type2 

filtering 
7430.12 0.0271 

 

Simultaneous filtering seems to have a significant effect on filtering time, although it does not 

affect the total running time with that strength. Small reductions in the total runtime stems from 

the difference created on fathoming checks by eliminating the dominated nodes from the 

dominating node lists of each node which are used to for fathoming. Before deciding upon which 

type of filtering to implement, one should make a tradeoff analysis between the increased speed 

and additional memory required to carry over all the required information. 

3.4.2.3) Probability measure of being non-dominated 

The proposed algorithm can be used as an approximation algorithm together with the probability 

calculation presented in 3.3.6) Probability of being non-dominated for solution set. For the 

testing purposes of this property, we have calculated a single probability that represents the 

average staying non-dominated probability of all solutions obtained after a certain number of 
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models are solved. The change of this measure has been presented in the following figures for 

three different problem types. 

 

Figure 28: Change of average non-domination probability of solution set with respect to number 

of models solved for a MOSP instance with 100 nodes and 3 objectives 
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Figure 29: Change of average non-domination probability of solution set with respect to number 

of models solved for a MOKP instance with 50 items and 3 objectives 

  

 

Figure 30: Change of average non-domination probability of solution set with respect to number 

of models solved for a MOST instance with 10 nodes and 3 objectives 
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As shown in the relevant calculations, one can also trace the non-domination probability 

calculated for the individual solutions. For instance, the following figure shows how the non-

domination probability of a solution changes at the 187
th

 node of the MOB&B tree belonging to 

the MOST problem instance used to generate the average non-domination probability above. 

Although the whole tree algorithm solved more than 8000 models, the non-domination 

probability became “1” after the 2000
th

 model solution. 

 

Figure 31: Change of non-domination probability for four different solutions with respect to 

number of models solved at the MOST instance with 100 nodes and 3 objectives 

3.4.2.4) Time and Representativeness Performance of proposed algorithm 

Further tests are performed on the whole test set used by Lokman and Koksalan (2012) in order 

to make a complete assessment regarding the time performance of the proposed algorithm. All 

versions used during these sets have full fathoming and final filtering property. The way the 

fathoming scheme is implemented requires memory usage, and this did not allow us to run all the 

models in the standard breadth-first approach. Hence, it created the necessity for two versions of 
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the algorithm. The first one is for the small sizes and with standard breadth-first approach, which 

will be referred as “standard traversal.” The second version’s aim is to decrease memory 

requirement, hence reducing the size of the tree that needs to be traversed is the way resorted and 

the whole tree is divided into smaller portions like it should be done when parallel running 

property needs to be used. In order to obtain the smaller portions, nodes at a certain level can be 

used to initiate the smaller portions of the tree. The results are summarized in Table 12 and 

indicate whether it is generated by the standard version of algorithm or by the partitioned 

version.  

Table 13: Time performance of proposed approach in comparison with Lokman and Koksalan 

(2012) 

  

# of 

Pareto 

Points 

per 

instance 

# of 

models 

solved 

per 

instance 

Total 

runtime 

in sec. 

per 

instance  

Average results 

per Pareto point 

for MOB&B 

Average results per 

Pareto point for 

Lokman&Koksalan 

(2012) 

models 

solved  

CPU 

time 

models 

solved 

CPU 

time 

Knapsack 

25 item with 3 objectives 211.8 2839.2 600.6 13.41 2.84 2.21 0.16 

50 item with 3 objectives  570.2  11233  15072  19.70  26.43 2.17 0.41 

100 item with 3 objectives 6786.2 97217 242172.3 14.33 35.69 1.86 2.91 

25 item with 4 objectives
3
  425.2  42313  6289.34  99.51  14.79 8.46 0.8 

Shortest Path 

25 nodes with 3 objectives 50.4 816 131.65 16.19 2.61 2.24 0.07 

50 nodes with 3 objectives 109.2 3905.6 1893.46 35.77 17.34 2.26 0.19 

100 nodes with 3 objectives 217.40 14905.4 32428.94 68.56 10.16 2.15 0.46 

150 nodes with 3 objectives 649.5 22768.5 41245.3 32.99 62.8 2.09 0.75 

25 nodes with 4 objectives 3726.4 12148.8 2682.67 3.26 0.72 7.65 0.25 

50 nodes with 4 objectives
4
  2110  42341  29573.88  20.07  14.02 9.49 1.07 

Spanning Tree 

25 nodes with 3 objectives 761.6 11205 7738.002 14.71 10.16 2.11 0.39 

 

                                                           
3
 Partitioned version of algorithm is used as opposed to standard breadth first 

4
 Partitioned version of algorithm is used as opposed to standard breadth first 
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          The CPU time performance of single runs cannot beat the CPU time performance of the 

benchmark algorithm. However, it should be noted that parallel running is an option for 

MOB&B, but not for the benchmark algorithm. As mentioned previously, MOB&B is 

implemented in a breadth-first manner in order to achieve a more representative set throughout 

the run. The following figures show how quality measures of both algorithms change on each 

Pareto point generated for a knapsack instance. Coverage measure used in this analysis is the 

measure of Wu and Azarm (2001), as presented in 2.5.1) Coverage Measure. 

          Recalling that larger coverage and uniformity values are preferable, it can be observed that 

MOB&B always evolves with better coverage; furthermore, the proposed algorithm is not worse 

than the benchmark algorithm in terms of uniformity quality. 
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Figure 32: Change of coverage measure for Lokman and Koksalan (2012) and MOB&B at each 

Pareto point generated for a knapsack problem with 25 items.   

 

Figure 33: Change of uniformity measure for Lokman and Koksalan (2012) and MOB&B at each 

Pareto point generated for a knapsack problem with 25 items. 
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CHAPTER IV: CONCLUSION AND FURTHER STUDIES 

4.1) Summary of Contributions 

In this dissertation we proposed two different algorithms, each of which aims to generate 

representative points that can be used while approximating the actual Pareto front. Both of the 

algorithms are exact methods that rely on solutions of some mathematical models. The first 

algorithm is proposed for general MOP problems, which means it can be used both for MOLP 

and MOIP problems. Experimental results and other analysis support that the proposed algorithm 

is a practical and fast algorithm compared to the existing exact algorithms in the literature. 

Furthermore, in terms of quality measures, e.g., coverage and uniformity of representative points, 

the proposed algorithm is compatible with the best algorithm benchmark work. 

The second algorithm that has been proposed is for MOIP problems, and it adapts the 

existing B&B idea in a systematic way to branch on Pareto candidates on the (objective) criteria 

space. Many properties of the algorithm have been shown with proves, figures and experimental 

studies, such as fathoming and filtering. Fathoming due to integer bounds has been improved in 

particular, with the relations explained between the nodes of the B&B tree. Aside from this, 

because of these existing domination relations, Pareto filtering has become the comparison of 

solutions that have the potential to dominate each other rather than making a simple pairwise 

comparison of all solutions in the candidate set. In addition to the standard features adapted from 

standard B&B, new features particular to the MOIP context have been introduced, such as 

precise probability of non-domination, convenience of running in parallel. Although time 

performance of algorithms does not seem to be better than the time performance of the 

benchmark algorithm from the point of generating whole Pareto front, the MOB&B approach 

generates a more representative candidate set than does the benchmark algorithm in case in 
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which they are both used to generate approximations of the Pareto front. This is due to the 

difference between how the feasible search space is traversed; that is, MOB&B considers whole 

feasible region as long as breadth-first type of traversing chosen, while benchmark approaches 

does this starting from a corner of the same region and proceeding by relying on the previously 

found points. This conclusion is supported by graphs that represent the relative change of quality 

measures on a sample problem. Finally, the proposed algorithm has the flexibility to change 

based on the conditional requirements. As an example, switching from breadth-first to depth-first 

at a certain level and continue with breath first at each smaller tree is tried on some test sets.  

4.2) Further Studies 

Both of the algorithms proposed in this thesis have the potential to be used as interactive 

approaches. In other words, they can be used to focus on certain parts of the feasible space rather 

than on the whole feasible space based on the preferences of the DM, if he or she does not intend 

to come up with the whole Pareto front. As mentioned in the last section of second chapter, the 

first proposed algorithm can be further adapted for MOIP problems in order to further speed up 

the algorithm. 

The second algorithm is implemented to keep the required information in memory. 

However, with some sacrifice from running time, the algorithm can also be implemented with 

zero memory requirement thorough the usage of binary input/output files. Pareto filtering is a 

key component of this algorithm, and different variations for this component have been 

proposed. Final filtering has been used in most of the test cases, which compares whole solutions 

obtained throughout the all tree traversal. However, this procedure can be improved by keeping 

the domination relations between nodes until the end; this way, some time can be saved by 

avoiding some of the pairwise comparisons. The results indicate that fathoming has a significant 
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effect on the performance of the algorithm. Therefore, any effort that can enrich the fathoming 

rules will help enhance the performance of the algorithm. The MOB&B algorithm proposed in 

this study relies on integer solvers at this stage. It might worth investigating if this structure can 

be enriched by existing multi-objective simplex methods along with some rounding procedures 

in order to come up with the Pareto solutions, or at least to derive some upper bound sets to be 

used for fathoming.  
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APPENDIX 

APPENDIX A: STATISTIC TABLES FOR THE RESULTS OF FIRST ALGORITHM 

 

Table 14: Statistics for the uniformity analysis in Table 4 

Uniformity 

    5 const 10 const 30 const 

2 obj 

min 0.000527 0.001425 0.001272 

max 0.019332 0.026639 0.025132 

stdev 0.006619 0.00975 0.008628 

3 obj 

min 0.001234 0.000148 0.000248 

max 0.038846 0.034031 0.022475 

stdev 0.010818 0.011909 0.008201 

4 obj 

min 0.000854 0.004926 0.000104 

max 0.037458 0.032464 0.023529 

stdev 0.015815 0.009305 0.007747 

5 obj 

min 0.000467 0.001259 0.0025 

max 0.035174 0.038968 0.0334 

stdev 0.013327 0.011529 0.010214 

 

 

Table 15: Statistics for coverage error for the analysis in Table 3 

Coverage 

    5 const 10 const 30 const 

2 obj 

min 2.74E-06 0.000412 6.38E-06 

max 0.123654 0.130514 0.14589 

stdev 0.042285 0.04182 0.056533 

3 obj 

min 0.165267 0.036445 0.02746 

max 0.466684 0.412547 0.324093 

stdev 0.081334 0.114158 0.098046 

4 obj 

min 0.270381 0.163809 0.081797 

max 0.595553 0.561461 0.306913 

stdev 0.108219 0.130771 0.08063 

5 obj 

min 0.407538 0.336629 0.0534 

max 0.99999 0.999969 0.479 

stdev 0.253937 0.212042 0.178496 
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Table 16: Statistics for the results presented in Table 5 

Statistics of CPU time Set 1 

    2 obj 3 obj 4 obj 5 obj 

5 const. 

max 1.455 0.738 2.121 1.329 

min 0.218 0.115 0.799 0.735 

stdev 0.36752 0.045984 0.414595 0.194648 

10 const. 

max 0.895 1.504 3.082 1.36 

min 0.145 0 1.987 0.778 

stdev 0.254129 0.430887 0.381781 0.203522 

30 const 

max 3.384 1.508 5.381 3.278 

min 0.493 0.235 1.831 2.676 

stdev 0.908195 0.414539 1.035147 0.198275 

 

 

 

Table 17: Statistics for the results in Table 6 

    2 obj 4 obj 6 obj 

    SmallSize Bigsize SmallSize Bigsize SmallSize Bigsize 

  

max 0.022 0.019467 0.048608 0.057088 0.020788 0.162369 

min 0.01279 0.008527 0.033148 0.038215 0.017904 0.09009 

stdev 0.002884 0.001346 0.005025 0.006823 0.000961 0.026089 

    SmallSize Bigsize SmallSize Bigsize SmallSize Bigsize 

  

max 0.02111 0.0232 0.078375 0.094538 0.025131 0.180755 

min 0.01724 0.016547 0.05445 0.064634 0.019197 0.138518 

stdev 0.001314 0.002037 0.007262 0.007661 0.001867 0.012296 
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APPENDIX B: STATISTIC TABLE FOR THE RESULTS OF SECOND ALGORITHM 

 

Table 18: Statistics for the results presented in Table 13 

  Total CPU Time Total Models Solved 

  Min. Max. St.Dev. Min. Max. St.Dev. 

Knapsack 

25 item with 3 objectives 151.9 952.0 327.2 972.0 5162.0 1581.4 

50 item with 3 objectives 3466.0 34021.0 13263.7 4562.0 23984.0 8774.1 

100 item with 3 objectives 15836.0 412381.0 170426.3 63497.0 123541.0 30542.9 

25 item with 4 objectives 2575.4 12208.0 4162.8 29473.0 67211.0 17293.9 

Shortest Path 

25 nodes with 3 objectives 19.3 213.7 85.8 158.0 1255.0 486.9 

50 nodes with 3 objectives 688.4 3606.2 1147.4 1750.0 6702.0 2109.7 

100 nodes with 3 objectives 19573.0 43682.0 10939.6 10327.0 19792.0 3949.9 

150 nodes with 3 objectives 30751.0 59826.0 13033.1 15298.0 31885.0 7074.9 

25 nodes with 4 objectives 546.2 6244.2 2368.3 4038.0 21711.0 7035.0 

50 nodes with 4 objectives 19753.0 39614.0 9745.2 24378.0 59326.0 16026.6 

Spanning Tree 

25 nodes with 3 objectives 2137.5 17516.8 5912.9 5043.0 20123.0 6037.0 
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In most real-life problems, decision alternatives are evaluated with multiple conflicting 

criteria. The entire set of non-dominated solutions for practical problems is impossible to obtain 

with reasonable computational effort. The decision makers (DM) generally needs only a 

representative set of solutions from the actual Pareto front. The first algorithm we present aims to 

efficiently generate a well-dispersed, non-dominated solution set that is representative of the 

Pareto front and that can be used for general multi-objective optimization problem. The 

algorithm first partitions the criteria space into grids to generate reference points, and then 

searches for non-dominated solutions in each grid. This grid-based search utilizes an 

achievement scalarization function and guarantees Pareto optimality. The results of our 

experimental results demonstrate that the proposed method is very competitive with other 

algorithms in the literature when representativeness quality is considered. The algorithm is 

advantageous from the computational efficiency point of view.  

Although generating the whole Pareto front does not seem practical for many real-life 

cases, it is sometimes required for verification purposes or in cases where the DM wants to run 

his or her decision-making structures on the full set of Pareto solutions. For this purpose, we 

present another novel algorithm. This algorithm attempts to adapt the standard branch and bound 
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approach to the multi-objective context by proposing to branch on solution points in objective 

space. This algorithm is proposed for multi-objective integer optimization problems. The various 

properties of branch and bound concept have been investigated and are explained within the 

multi-objective optimization context. These include fathoming, node selection, heuristics, and 

some multi-objective optimization specific concepts such as filtering, non-domination 

probability and parallel running. This approach has the potential to be used both for full Pareto 

generation or as an approximation approach, as has been shown with experimental studies. 
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