
Wayne State University

Wayne State University Dissertations

1-1-2013

Exact And Representative Algorithms For Multi
Objective Optimization
Ozgu Turgut
Wayne State University,

Follow this and additional works at: http://digitalcommons.wayne.edu/oa_dissertations

Part of the Operational Research Commons

This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in
Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState.

Recommended Citation
Turgut, Ozgu, "Exact And Representative Algorithms For Multi Objective Optimization" (2013). Wayne State University Dissertations.
Paper 929.

http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F929&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F929&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F929&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F929&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/308?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F929&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations/929?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F929&utm_medium=PDF&utm_campaign=PDFCoverPages

EXACT AND REPRESENTATIVE ALGORITHMS FOR MULTI-OBJECTIVE

OPTIMIZATION

by

OZGU TURGUT

DISSERTATION

Submitted to the Graduate School

of Wayne State University,

Detroit, Michigan

in partial fulfillment of the requirements

for degree of

DOCTOR OF PHILOSOPHY

2014

MAJOR: INDUSTRIAL ENGINEERING

Approved by:

Advisor Date

ii

DEDICATION

to my Mom and Sisters…

iii

ACKNOWLEDGEMENTS

 Foremost, I would like to thank to my advisor, Dr. Alper E. Murat, for his support and

motivation during the time I spent at WSU and for his contribution to my character as a

professional through his hardworking, smart and persevering perspective. Next, I would like to

thank all of my committee members, Dr. Kenneth Chelst, Dr. Ratna Babu Chinnam, Dr. Leslie

Monplaisir and Dr. Boris S. Mordukhovich, each of whom were valuable researchers and

professors with outstanding achievements. They have been perfect examples of faculty members

that it will always be an honor for me to have been a graduate of their school. I want to express

my gratitude to Dr. Ratna Babu Chinnam for introducing me to “multi-objective optimization”

with Dr. Alper E. Murat and for creating this motivating and productive research environment in

our department with his impressive vision and discipline.

Special thanks go to Dr. Monplaisir for his determined support of the research through

sincere encouragement and immense knowledge, despite his heavy schedule as a department

chair. He and Dr. Celestine C. Aguwa led me to work on interesting projects, each of which

helped me improve in terms of creativity, team work and solution-based thinking. One last

special thanks to Dr. Evrim Dalkiran for the contributions she made to my dissertation and life

through her deep and inspiring knowledge, creativity, teaching ability and flawless character.

Last but not least, important thanks go to Shanshan Qui for her sincere, supportive and joyful

companionship since we met. I also want to thank to my company, LLamasoft, Inc. in the name

of Dr. Nejat Karabakal, along with my advisor, Dr. Alper E. Murat, for maintaining this flexible

research environment that allowed me to continue working on exciting OR projects at LLamasoft

while finishing my dissertation.

iv

TABLE OF CONTENTS

Dedication………………………………………………………………………………………………….ii

Acknowledgements .. iii

List of Tables .. vii

List of Figures .. viii

CHAPTER I: INTRODUCTION .. 1

1.1) Motivation .. 5

1.2) Dissertation Organization... 7

1.3) Preliminaries .. 8

1.3.1) Normalization of objectives ... 11

1.3.2) Scalarization Techniques: Weighted Sum, -Constraint Method and others 12

1.3.2.3) Tchebycheff Method and Achievement Scalarization ... 14

CHAPTER II: REPRESENTATIVE SET GENERATION FOR MULTI-OBJECTIVE

LINEAR PROGRAMMING PROBLEMS .. 16

2.1) Related Literature .. 17

2.1.1) Normal Constraints (NC) Method .. 19

2.2) Proposed Algorithm ... 21

2.2.1) Partition parameter ... 21

2.2.2) Determining grid boundaries .. 22

2.2.3) Achievement scalarization of reference points ... 23

v

2.2.4) Finding the reference points ... 24

2.2.5) Finding the weighting coefficients ... 27

2.3.1) Overview of the Benchmark Methods: Outer Surface Approximation-Based Approach 29

2.3.2) Overview of the Benchmark Methods: Modified REPR Algorithm .. 31

2.4) Complexity of the Algorithm and Advantage over Benchmark algorithms .. 32

2.5) Quality Measures for Approximation Techniques... 37

2.5.1) Coverage Measure .. 37

2.5.2) Uniformity Measure ... 41

2.6) Experimental Results ... 42

2.6.1) Method of Sample Problem Generation ... 42

2.6.2) Computational Results .. 44

2.7) Conclusion and Future Work ... 51

CHAPTER III: MULTI-OBJECTIVE BRANCH AND BOUND APPROACH FOR MOIP 53

3.1) Introduction ... 53

3.2) Literature Review .. 56

3.2.1) Exact Algorithms for MOIP ... 58

3.2.2) B&B Tree Branching on objective values ... 65

3.3) Proposed Approach .. 69

3.3.1) Branching Strategy ... 76

3.3.2) Node selection and Stopping Condition ... 79

3.3.3) Domination Relationship between Nodes... 85

vi

3.3.4) Fathoming of Nodes ... 91

3.3.5) Pareto Filtering Strategies... 96

3.3.6) Probability of being non-dominated for solution set .. 99

3.3.7) Parallelizing the algorithm .. 102

3.3.8) Handling alternative solutions .. 103

3.4) Experimental Results ... 105

3.4.1) Sample Problems .. 105

3.4.2) Computational Results .. 109

CHAPTER IV: CONCLUSION AND FURTHER STUDIES ... 119

4.1) Summary of Contributions .. 119

4.2) Further Studies ... 120

Appendix A: Statistic Tables For The Results of First Algorithm .. 122

Appendix B: Statistic Table For The Results Of Second Algorithm .. 124

References……….. ... 122

Abstract……….. ... 124

Autobiographical Statement .. 124

vii

LIST OF TABLES

Table 1: Steps of Normal Constraints method .. 20

Table 2: Average Number of representative points (reported results from Karasakal and Koksalan,

2009). .. 44

Table 3: Average coverage errors obtained by approaches 1–3 in the first set of experiments. 45

Table 4: Average uniformity levels obtained by approaches 1–3 in the first set of experiments 46

Table 5: Average CPU times required by approaches 1–3 in the first set of experiments 47

Table 6: CPU Time of obtaining one solution point for proposed approach and the Karasakal and

Koksalan (2009) algorithm .. 47

Table 7: Change of performance parameters with different values of partition parameters on the first

set of experiments .. 49

Table 8: Domination relations: (if row element dominates column element, ‘yes’; otherwise ‘no’) 91

Table 9: Results without fathoming in 4.813 seconds .. 95

Table 10: Results after fathoming applied by using the nodes at the same level in 3.109 seconds 95

Table 11: Impact of fathoming on three different problem sizes .. 110

Table 12: Impact of filtering for three different problem sizes ... 112

Table 13: Time performance of proposed approach in comparison with Lokman and Koksalan (2012) . 116

Table 14: Statistics for the uniformity analysis in Table 4 ... 122

Table 15: Statistics for coverage error for the analysis in Table 3 .. 122

Table 16: Statistics for the results presented in Table 5.. 123

Table 17: Statistics for the results in Table 6 .. 123

Table 18: Statistics for the results presented in Table 13 .. 124

viii

LIST OF FIGURES

Figure 1: Segmentation of utopia line in a two objective MOP by NC (Mattson et al., 2004) 19

Figure 2: Segmentation of the search space in a three objective MOP by NC (Mattson et al., 2004) 20

Figure 3: Three dimensional representation of how reference points are generated................................... 25

Figure 4: Pareto points for bi-objective MOIP ... 26

Figure 5: Reference points for bi-objective MOIP ... 26

Figure 6: "GUESS" type of weighting scheme, Ruiz et al. (2009) ... 27

Figure 7: "STOM" type of weighting scheme, Ruiz et al. (2009) ... 27

Figure 8: An illustration of the approach by Karasakal and Koksalan (2009) .. 30

Figure 9: An illustration of how reference points are generated by the proposed algorithm and

Karasakal and Koksalan’s (2009) algorithm on a two objective MOP with the maximization

type of objectives and a non-convex Pareto front .. 35

Figure 10: Change of average of uniformity and coverage measure per three different partition values

in increasing order for the set of instances with 4 objectives and 10 constraints 51

Figure 11: Projection of solution set onto z1-z2 plane for a three-objective MOIP problem 64

Figure 12: Search space after obtaining first four solution points, according to Algorithm-2.................... 65

Figure 13: Two- and three-dimensional examples for the interactive B&B algorithm of Marcotte and

Soland (1986) .. 68

Figure 14: Partition of objective space based on a single solution point in three objectives 72

Figure 15: Partitions that contain the Pareto solutions based on their 3
rd

 objective value 72

Figure 16: Partition space for a three-objective MOIP ... 73

Figure 17: Proceeding of breadth first on a B&B for a three-objective MOIP problem 80

Figure 18: Root node and its branches and their corresponding region projected on two dimensions

for the sample problem .. 84

Figure 19 : One of the child nodes of the root node and its branches and their corresponding region

projected on two dimensions for the sample problem ... 84

Figure 20: Domination relations (a) for sibling nodes based on their own types, (b)for nodes in

different generations based on their parent types, and (c) for the nodes in different

generations based on both their parent types and their own types ... 89

ix

Figure 21: Representation of each node type for a problem with three objectives 90

Figure 22: Fathoming sample on a problem with three objectives. .. 93

Figure 23: Changing S and I memberships for a node in a MB&B tree with three objectives 98

Figure 24: Current node and relevant regions of active node represented on the three objective MOIP

example ... 101

Figure 25: Snapshot of a sample tree showing current node and all active nodes with three objectives .. 101

Figure 26: General flow chart of the breadth-first algorithm .. 104

Figure 27: Pseudo-code of the algorithm .. 105

Figure 28: Change of average non-domination probability of solution set with respect to number of

models solved for a MOSP instance with 100 nodes and 3 objectives 113

Figure 29: Change of average non-domination probability of solution set with respect to number of

models solved for a MOKP instance with 50 items and 3 objectives 114

Figure 30: Change of average non-domination probability of solution set with respect to number of

models solved for a MOST instance with 10 nodes and 3 objectives 114

Figure 31: Change of non-domination probability for four different solutions with respect to number

of models solved at the MOST instance with 100 nodes and 3 objectives 115

Figure 32: Change of coverage measure for Lokman and Koksalan (2012) and MOB&B at each

Pareto point generated for a knapsack problem with 25 items. ... 118

Figure 33: Change of uniformity measure for Lokman and Koksalan (2012) and MOB&B at each

Pareto point generated for a knapsack problem with 25 items. ... 118

CHAPTER I: INTRODUCTION

In real life most of problems have to be evaluated by considering more than one objective

(criterion). Optimizing an objective has a long history. Multi-objective optimization (MOP) has

been studied in the literature as a result of the emerging necessity to consider conflicting

objectives created by complex systems. Since objectives are generally conflicting by nature, a

single point that optimizes all of the objectives cannot be found in these cases. So the aim of the

MOP problem is to reach a set of solutions that cannot be replaced by better points in the feasible

space considering all of the objectives. This situation gave rise to the specific definition of

optimality for MOP problems, called Pareto optimality. A problem that has different aspects to

be considered can be handled by a utility function. However, the shape of this utility function

may not always have a linear structure; besides, deriving a utility function is neither simple nor

even possible in every case. So trying to reach to all or part of the Pareto optimal set is necessary

in most cases.

A MOP problem can be formulated as follows:

 { () } (1)

where and (; denotes the set of feasible set of solutions and is defined by

 (2)

where and . The corresponding objective space is defined by .

It is assumed that objectives are conflicting and cannot be optimized simultaneously within the

feasible solution space. When are all continuous, the valued problem is called a multi-

objective linear programming (MOLP) problem; on the other hand, when is replaced with

 , it becomes the well-known multi-objective integer programming (MOIP) problem. Multi-

2

criteria optimization problems with integer decision variables differ from their continuous

counterparts and thus require different solution approaches. In particular, problems with integer

decision variables have non-convex and finite feasible space in comparison with continuous

problems.

There are some basic methods that can be used for all types of MOPs in practice. The

weighted sum method is the most popular Pareto generation method. The well-known epsilon-

constraint method establishes a series of hyper cubes in the objective space by constraining all

objectives except one. Non-dominated solutions are then obtained by solving a single-objective

problem in each hypercube based on the excluded objective. Another methodology is called

scalarization techniques, in which all objectives are combined into a single function. A

discussion about scalarization functions can be found in Ehrgott ((2006)). Reference point-

related approaches exist which can also be covered under scalarization functions. The distance to

a reference point for all objectives is potentially minimized in this approach rather than distance

to special points as defined in the MOP context (i.e., anchor or nadir points) (A.P. Wierzbicki,

1980). Several studies summarize the contributions and open problems in solving MOP problems

(Chinchuluun & Pardalos, 2007); (Marler & Arora, 2004); (Klamroth & Tind, 2007).

MOP is essential in many complex systems and product design decisions. In practice,

decision makers (DM) prefer to select from a diverse set of non-dominated solution alternatives

before finalizing their decision. In most practical applications, the process of obtaining the full

Pareto front is impossible with reasonable computational effort. Besides, as indicated by

Karasakal and Koksalan (2009) and Steuer (1986), even if a DM can generate the whole Pareto

surface, selecting the most preferred solution remains difficult and may cause information

overload if the entire Pareto set is presented to the DM. Hence, there is a need for efficient

3

methods for solving multi-objective programs, which provide well dispersed non-dominated

solution sets that are also representative of the Pareto front.

Approximate methods for MOLP aim to generate an approximation set for the whole

Pareto front rather than for the exact Pareto front. The performance of approximate methods is

measured by how representative the final solution set is (Hansen & Jaszkiewicz, 1998). Although

there are several measures of representativeness, the three most common are coverage,

uniformity and cardinality (Faulkenberg & Wiecek, 2010); (Sayin, 2000). Approximate methods

can be classified based on how candidate Pareto points are generated. As one of the most popular

tools used in many problems, metaheuristic-based methods produce approximation sets that may

include dominated solutions (Hanne, 2000), even if solutions are filtered at the end of the

algorithm. Gunawan et al. (2003) proposed a method based on a multi-objective genetic

algorithm. The nonlinear multi-objective optimization algorithm of Fu and Diwekar (2004) is

based on the principles of probabilistic uncertainty analysis and the traditional constraint method

in an effort to generate a representation of the nondominated frontier. A good literature survey

for metaheuristic-based approximation methods can be found in Ehrgott and Gandibleux (2008)

and Konak et al. (2006).

 Representativeness of a solution set is an important part of approximation algorithms as

it ensures that certain regions of Pareto surface that contain interesting solutions to the DM are

not omitted and that the solutions are evenly distributed on the criteria space. In this study, we

only focus on methodologies that guarantee producing Pareto optimal points using exact

algorithms. We refer the reader to the survey paper of Ruzika and Wiecek (2005), which reviews

all of these exact approximation methods. Considering the exact nature of these algorithms, as

4

opposed to metaheuristics, these methods can be also named as “representative set” generation

algorithms.

For representative set generation algorithms, one key concept is evaluating the quality of

the solution set. Sayin (2000) defined the coverage error as the distance between the worst

represented point on the nondominated frontier and the corresponding representative point. Any

point in the nondominated set is considered represented by its closest representative point in the

criterion space. The distance between the two points gives the error in representing the

nondominated point. The coverage error is defined as the maximum of such errors over all

nondominated points. Uniformity is defined as the minimum distance between representative

points. Smaller coverage errors and larger uniformity levels are desirable for better

representation. Cardinality refers to the cardinality of the solution set, and it represents the

number of solutions that are apart from each other for a predetermined distance. Other

approaches purportedly evaluate the quality of an approximation of the nondominated frontier,

which does not require generation of an actual nondominated frontier (Zitzler, Thiele,

Laumanns, Fonseca, & Fonseca, 2003); (Laumanns, Thiele, Deb, & Zitzler, 2002); (Wu &

Azarm, 2001); (Fleischer, 2003).

The second contribution of this thesis is another algorithm that aims to generate the

Pareto front of MOIP problems. MOIP problems are unique in the sense that the structure of

their Pareto front is non-convex. The MOIP methodologies can be broadly categorized into two

main groups: exact and approximate methods. Exact methods aim to generate the whole Pareto

front and have been extensively studied over the past decade. Przybylski et al. (2010b) compare

four different exact methods for solving MOIP problems that have more than two objectives. The

authors conclude that their proposed “two phased method" outperforms the algorithms of Sylva

5

and Crema (2004), Tenfelde-Podehl (2003) and Laumann et al. (2005). Laumann et al. (2005)

was used as benchmark in this study as it is an adaptive epsilon constraint-based method for

problems with more than two objectives. Lemesre et al. (2007) then put forward the 2-Parallel

Partioning Method (2-PPM) to solve biobjective problems. This method works by partitioning

the objective space and finding one nondominated point and an associated solution in each part.

The remaining solutions are then found by exploring the feasible solution set, reduced by the

previously identified solutions. This method was later extended to any number of objectives by

Dhaenens et al. (2010), and it was given the name K-PPM. In another recent study, Przybylski et

al. (2010a) propose a recursive algorithm for finding all nondominated extreme points for MOIP

problems based on weight space decomposition. However, the algorithm resented by Ozlen and

Azizoglu (2009) is more efficient in terms of computational requirements. Lokman and Koksalan

(2012) presented another exact algorithm for MOIP problems, which seems to outperform all

previously mentioned algorithms from the aspect of computational time, which will be explained

in detail in the third chapter of this dissertation. However, it should be noted that the application

of exact methods in the most practical MOIP problem instances is not practical since the

computational effort required to generate whole Pareto increases rapidly with the number of

variables and objectives. Despite this, running exact methods for practical MOIP problems is still

important since they can be used as benchmarks to evaluate approximate methods.

1.1) Motivation

An analyst can contribute to the decision process, if the preferences of the decision maker

(DM) have an appropriate mathematical structure. This structure is either a relation (preference

relation) or a function (value function) (Keeney & Raiffa, 1976). A value function, denoted by ,

6

is a real-valued function defined on the criterion space with the property that the DM prefers a

feasible solution to another one, if and only if . In general, the function is not

known to either the DM or the analyst; one can suppose, however, that the function is non-

decreasing in each of the criteria. In the absence of any other information about this value

function, one can say that the DM wishes to optimize each of the criteria (Marcotte & Soland,

1986). However, not all solutions sets necessarily constitute a good representation of the efficient

set, as it usually contains too many points or is not uniformly spread across the actual Pareto

front. This has motivated the search for discrete representations that consist of efficient points

that are different from the extreme points (Sayin, 2003). At this point, one can consider using

metaheuristics or exact algorithms to get an approximation set of the actual Pareto front of MOP.

As mentioned earlier, metaheuristics do not offer solutions that are guaranteed to be Pareto

optimal. Hence, an exact algorithm that produces a solution set that is also representative of the

Pareto set is a necessary tool for practical purposes. In this study, our first goal is to propose an

algorithm that is exact and generates a solution set that is representative of the actual Pareto

front, which can be used for real-life MOP problems.

MOIP problems are of special kind of problem among MOP problems in the sense that

their Pareto front is also discrete and cannot be expressed with efficient faces. As it is explained

later in the preliminaries section, the Pareto front’s unique structure has led to MOIP-specific

definitions, such as supported or nonsupported solutions. Again, due to their non-convex

structure, weighted sum, for example, one of the more well-known methods, becomes obsolete,

as it cannot generate all of the Pareto front but only extreme points of it. There are two phased

methods in the literature that use weighted sum in order to generate the extreme points, that then

resorts to other techniques to generate the rest of the Pareto front. Likewise, there are many exact

7

methodologies that generate the Pareto front by relying on the previous solutions and generating

the whole Pareto starting from one of its corners. Latter methodologies are more efficient than

two phased approaches in terms of running time. However, they cannot generate a representative

set at an intermediate stage of the algorithm. Hence, one has to wait until the termination of the

algorithm to have a complete understanding of the Pareto front. Besides, to the best of our

knowledge, none of the existing exact algorithms is capable of being parallelized, which makes

them computationally hard to tackle when faced with substantial MOIP problems. Hence, there

is a need for an exact algorithm that can generate the whole Pareto set for the MOIP problem,

and which can be used as an approximation method under time restrictions. Based on this, the

second goal of this thesis can be expressed as proposing such an algorithm.

In summary, the research objectives of this thesis can be summed up as follows:

1. Design algorithms that

a. can be used in order to generate representative solutions;

b. are exact in nature; and

c. can be used to generate the whole set of Pareto solutions in cases where the Pareto

front is finite and cannot be expressed in closed form.

2. Incorporate the branch and bound (B&B) idea to the MOP area.

1.2) Dissertation Organization

 Preliminary concepts are presented in the remainder of this chapter regarding MOP

literature. The second chapter presents an exact representative set generation algorithm with all

the benchmark studies. Chapter Two starts with related literature and continues with the details

of the proposed algorithm. Before the final section of first chapter, the benchmark algorithms are

8

explained, and the chapter concludes with computational experiments and a summary of

conclusions based on the tests and analysis. Chapter Three presents another new exact algorithm

proposed for MOIP problems that can be used to generate the whole Pareto set or as an

approximation algorithm. After a brief introduction, the benchmark algorithms are explained.

Then, the details of the proposed approach are presented. This chapter concludes with

computational analysis and results related to the algorithm. The final chapter contains a summary

of the results based on the studies in the dissertation and recommendations for further research

related to the proposed algorithms.

1.3) Preliminaries

A linear multi-objective optimization problem with continuous variables (MOLP) is defined as

follows:

 ()

where and ; denotes the set of feasible set of solutions and is defined by

where, . The corresponding objective space is defined by

 . By the nature of the objectives, they cannot be optimized simultaneously within

the feasible space. If this could be done, the Pareto set would consist of a single point.

A feasible solution is efficient if there does not exist any other feasible solution

 , such that . If is efficient, is nondominated. If are such

that
 (

 (for maximization type of objectives), we say

that ; and . Feasible solutions are if

 . is the set that contains all non-dominated solutions.

9

 points are the points located on the boundary of the convex

hull of ; points are located on the interior of the convex hull

of . From the solution space point of view, supported efficient points are the solutions, and

those can be found by the equivalent weighted sum single objective problem

for some

. Accordingly, are the efficient solutions that

cannot be found as optimal solutions of for any

. Each supported efficient solution is

an optimal solution of some weighted sum problem (Geoffrion, 1968). It is well-known that all

efficient solutions of MOLP are supported, but unsupported efficient solutions may exist for

MOIP (Vincent et al, 2013). Based on these definitions, the following observations can be made:

The weighted sum approach cannot guarantee the generation of the whole Pareto set for

nonconvex Pareto surfaces. Aside from this, the greater the degree to which there is conflict

among the objectives, the greater the degree to which the gradients of the objective functions are

radially dispersed, the smaller the dominated set; the smaller the domination set, the greater the

likelihood of unsupportedness.

A feasible solution ̂ is if there is no such that

 ̂ . The point ̂ is then called .

A feasible solution ̂ is if there is no ̂ such that

 ̂ . The point ̂ is then called .

10

There are also several definitions in the literature (e.g., Geoffrion, 1968). A

feasible solution is called if it is efficient and if there is a real

number such that for all and satisfying ̂ there exists an index such

 ̂ .

 ̂

 ̂

The corresponding point ̂ is called a properly nondominated point. However, this definition

of proper efficiency becomes obsolete if MOIP, i.e.,efficient and proper efficient sets, becomes

the same set when the decision space is integer valued. For a more detailed discussion of

efficiencies and their comparisons, we refer readers to Ehrgott (2005).

Several points in the outcome space serve as auxiliary points when constructing

approximation sets. These are based on the following definitions

 is called “ ” if the objectives are all minimization type. Then, the ideal point,

 , the utopia point, and anti-ideal, and anti-utopia, points are defined as follows:

11

where is a vector with small positive components. The range of attainable set is given by

 [

] .

The set of anchor points is denoted by IM. There is another definition that is key to most

of the algorithms, and this is called the “ .” The nadir point is a point in the design

space in which all objectives are simultaneously at their worst values. Since it is not simple to

find the nadir point, one can estimate it by constructing the payoff table. This table is constructed

by entering all anchor points into a table. Then, one can derive the worst values for each

objective in this table,
 . When all of these

 values are combined, an estimate

of the nadir point can be calculated.

1.3.1) Normalization of objectives

 If the ranges of objectives are significantly different, the methods (explained later in this

study) cannot produce well-dispersed solution sets. So, in order to carry all of the objectives to a

common scale, we perform the following normalization:

 L=[}= []

where Then, we calculate the normalized value of an objective as follows:

This way, all the objectives are measured on a 0-1 scale, which indicates the relative position of

an objective with respect to its ideal and the nadir point. Figueira et al. (2010) used a similar

scheme in their study, which converted the 0-1 range to percentages.

12

The pure normalization schemes are designed to normalize just the objectives.

Psychologically-oriented schemes also exist, and these have been designed to obtain some effect,

regarded as psychologically desired, when optimizing the achievement scalarizing function.

Other schemes use the information from previous iterations to build a normalizing or preferential

set of weights. Finally, the user-controlled preferential schemes can be specifically used by the

DM in order to introduce preferential information to the process. It is empirically proven that, in

general, these schemes produce different solutions for the same reference point (Ruiz, Luque, &

Cabell, 2009).

1.3.2) Scalarization Techniques: Weighted Sum, -Constraint Method and others

Scalarization is a single objective related to a MOP problem with additional variables and/or

parameters. It is usually solved repeatedly in order to find some subset of efficient solutions of

the MOP problem (Ehrgott, (2006)). Wierzbicki (1980) discussed all relevant aspects of the main

scalarization techniques specifically for MOLP problems. First, we start by describing two main

approaches commonly used in MOP area: weighted sum” and the -constraint method.

1.3.2.1) Weighted sum

Weighted sum is a convex combination of the p objectives of MOP problem, in which the

feasible set stays unchanged:

∑

Solutions of this technique are only supported efficient solutions with .

13

1.3.2.1) -Constraint Method

In this method, one of the objectives () is retained for minimization and other,

 are returned into constraints:

The optimal solution for this method is weakly efficient.

The differences between the two approaches can be summarized in a succinct list as follows:

1. For linear problems, the weighting method is applied to the original feasible region and results

in a corner solution, thereby generating only efficient extreme solutions. On the contrary, the -

constraint method alters the original feasible region and can produce non-extreme efficient

solutions. As a result, with the weighting method, many runs may be redundant in the sense

various combinations of weights result in the same efficient extreme solution. On the other hand,

with the -constraint method, we can exploit almost every run to produce a different efficient

solution, thereby obtaining a more rich representation of the efficient set.

2. The weighting method cannot produce unsupported efficient solutions in multi-objective

integer and mixed integer programming problems, while the -constraint method does not suffer

from this disadvantage.

3. In the weighting method, the scaling of the objective functions has a strong influence on the

obtained results. Therefore, the normalization of the objective functions is necessary before

forming the weighted sum; in the -constrained method, this is not necessary.

4. An additional advantage of the -constraint method is that we can control the number of the

generated efficient solutions by properly adjusting the number of grid points in each of the

objective function ranges. This is not as easy with the weighting method (Mavrotas, 2009).

14

1.3.2.3) Tchebycheff Method and Achievement Scalarization

The structure of scalarization that will be explained strictly relies on the concept of “order

preserving functions,” which can be defined as follows:

A function ̅ is order preserving if and only if ̅ ̅ , where ̅ is

a constant. Wierzbicki (1980) describes many scalarization functions of this type that use a

reference point (aspiration level) to generate non-dominated points. Among those, the following

functions happen to be the most popular ones throughout the MOP literature due to their linear or

linearizable structure.

Augmented weighted Tchebycheff method:

This method is especially popular for interactive methods (Steuer & Choo, 1983); (Steuer,

Silverman, & Whisman, 1993). This method considers the distance between a feasible point

in criterion space and the ideal point :

 ∑

where is a vector of weights. If an optimal solution, is efficient; on the other

hand, if this augmentation is avoided, it can generate weakly efficient points. The non-linear

“ ” term can be linearized by adding a variable and number of constraints to the model,

which will be explained in detail in the next section where proposed algorithm is presented.

Achievement scalarization and reference point functions:

The most general form of the achievement scalarization function is as follows:

 ∑

15

where is the reference point for objective k, is a vector of weights, and In

Wierzbicki (2000), this function has been called a “prototype” achievement scalarizing function.

This function is order preserving and is preferred mostly for MOIP problems. For general cases,

other versions of this function can be obtained by replacing with just , as it is

applied by Karasakal and Koksalan (2009). Scaling objective values play an important role in

terms of preserving the properties of these scalarization functions.

16

CHAPTER II: REPRESENTATIVE SET GENERATION FOR MULTI-OBJECTIVE

LINEAR PROGRAMMING PROBLEMS

Vector maximization approaches aim to find all efficient solutions to present to the DM

(Sayin, 1996). Since the exact solution set is often not attainable, an approximate description of

the solution set becomes an appealing alternative (Ruzika & Wiecek, 2005). Hence, the reasons

for developing “approximating approaches” in lieu of exact methods can be summarized as

follows:

 To represent the solution set when this set is numerically computable (linear or convex

MOPs) in order to have a general idea of the Pareto front space rather than all Pareto

solutions;

 To approximate the solution set when some, but not all, of the efficient or Pareto points

are numerically computable (nonlinear MOPs);

 To approximate the solution set when the efficient or Pareto points are computationally

prohibitive to solve (discrete MOPs).

These approximations can be obtained in the form of set points or surfaces. Discrete (point-wise)

approximations are among the simplest forms of approximations and are called approximations

of the 0
th

 order. In this approach, the Pareto efficient solutions generated by a particular solution

method serve as the approximating points and no further structure is computed. Other

approximation forms in the literature are piecewise linear (1st order), quadratic (2nd order) and

cubic (3rd order) approximations of the Pareto front.

While finding a discrete set of points that are well dispersed over the nondominated

frontier and that represent all parts of the frontier is desirable, it is also important to achieve this

with a reasonable amount of computational effort. Further, a solution set is usually not

17

considered a good approximation of the efficient set in terms of “representativeness” if it

contains too many points that do not necessarily cover the Pareto front while spreading

uniformly. These observations motivate the search for discrete representations of the Pareto front

that consist of efficient points that are different from the extreme points (Sayin, 2003).

The approximation algorithms can be classified based on the underlying methodology.

Some approximation approaches are exact in the sense that they only find efficient (locally or

globally) solutions, while other approaches are heuristic (i.e., they do not provide efficiency

guarantee, like NSGA II, and are commonly used due to good time performance). Our focus in

this work is on the approximation methods that guarantee efficiency of the solutions generated.

All observations and classifications have led to the goal of this work, which is to develop a

practical approximation method that generates representative approximations of the Pareto front

such that the points generated are guaranteed to be efficient. This chapter starts with a brief

review of literature. It is followed by details of the proposed algorithm. The next section

summarizes two methods from the literature that are used as benchmark algorithms. We first

describe the quality measures used to assess the performance of the approximation techniques

and finally present the experimental results. The chapter concludes with the discussion of results

and future research directions.

2.1) Related Literature

The subject of the approximation of the Pareto set of MOPs has been of interest to scientists for

almost forty years. To the best of our knowledge, pioneering studies in this field were presented

in 1970s (Polak & Payne, 1976).

In this section, aside from the proposed algorithm, we want to cover three studies that are

important for their resemblance to the proposed algorithm, either in terms of the general idea

18

behind the algorithm or their purposes. Sayin (2003) proposed an approach for generating a

representative subset from the nondominated frontier while guaranteeing a specified level of

quality. The procedure starts with the generation of efficient faces. Then, the points are added to

the solution set in a way that a desired level of the coverage error is reached. When the

nondominated set is nonconvex, a procedure called REPR-D is used that generates

representations of faces sequentially considering all of the points included in the face

representations so far (Sayin, 2003). The approach performs well in terms of the quality of the

representation. However, it requires the generation of all nondominated faces before creating the

representative points. Hence, there are computational difficulties in the generation of the

nondominated faces and in obtaining representative points (which requires solving 0–1 integer

programs), especially for substantial problems. Since Sayin’s (2003) approach is also used to

assess the coverage measure, the procedure of generating efficient faces is covered in detail in

section 2.5.1) Coverage Measure

In 2009, Karasakal and Koksalan presented another algorithm for representative set

generation purposes. The general idea behind the algorithm is that the Pareto surface is

approximated with a fitted surface, and reference points are generated systematically on this

surface. The authors used an edited version of the algorithm proposed by Sayin (2003) for

benchmarking purposes, called REPR. Details of this algorithm, along with its complexity

analysis, will be presented in more detail in 2.6) Experimental Results.

The final study we want to mention is called the “Normal Constraints” method (Mattson,

Mullur, & Messac, 2004) and is important in terms of supplying the idea of dividing the criterion

space into equal grids on our algorithm. After presenting some rigorous information about this

approach, we will continue with the details of the proposed approach.

19

2.1.1) Normal Constraints (NC) Method

The NC method was originally designed for MOP problems, and it guarantees an even

distribution of the solution set (Mattson et al., 2004). The idea for the algorithm is to convert the

MOP problem into a single objective optimization problem that is solved repeatedly, subject to a

judiciously constructed set of constraints. These constraints are placed evenly on a surface,

which is called an “anchor plane.” Accordingly, the search is performed within this restricted

area. Hence, the algorithm produces evenly distributed solution points.

The graphical representation of the algorithm in two and three objective problems are

shown in the figures below.

Figure 1: Segmentation of utopia line in a two objective MOP by NC (Mattson et al., 2004)

20

Figure 2: Segmentation of the search space in a three objective MOP by NC (Mattson et al.,

2004)

The steps of the algorithm are summarized in Table 1:

Table 1: Steps of Normal Constraints method

This algorithm is repeated times, or the number of objectives. Anchor points and the nadir

point are obtained using the method that was described in Preliminaries.

All explanations for the other important steps of the algorithm can be found in Mattson et al.

(2004). The advantages of this algorithm can be summarized as follows:

 Overall CPU time requirement of the algorithm is reasonable, and not much is affected

by the size of the problem after tuning the partition parameters;

 It can be run in parallel; and

 It guarantees the representativeness of the solution set.

21

On the other hand, an important drawback of this approach is the objective function used during

optimization. In other words, the solution set is constructed by optimizing only one of the

objectives within the grids, which are constructed based on all the remaining objectives (i.e.,

without relying on a scalarization technique). This increases the chance of generating points that

can be dominated.

2.2) Proposed Algorithm

The general idea of the proposed algorithm is to solve the achievement scalarization

function in a way that guarantees dispersion of the solution points that are Pareto optimal. The

scalarization function is constructed such that the maximum distance among all objectives to a

reference point is minimized. In order to achieve a well dispersed solution set, the reference

points generated in the objective space should have two properties. First, the reference points

should be well dispersed on the whole Pareto surface. In order to achieve this, equal grids are

constructed on the objective space using all but one of the objective axes. The second property is

to ensure that the reference points remain as close as possible to the Pareto front. This property

also improves the computational efficiency by strengthening the scalarization function

formulation. In the following sections, we explain the details of the algorithm by providing the

terminology and definitions used in the algorithm.

The first step of the algorithm is to identify the most desirable points of the objectives in

the feasible space in terms of each objective (anchor points,
). Then, the nadir point is

estimated by constructing the payoff table, as explained in preliminaries section.

2.2.1) Partition parameter

This parameter controls the number of locally Pareto optimal points in the generated

solution set. One extreme value for this parameter is “1,” which means no grid partitioning. In

22

this case, the algorithm produces at most unique points, all of which are anchor points. As

approaches infinity, the grid size decreases to zero and the CPU time requirement of the

algorithm approaches infinity. Hence, there is a direct relationship between the algorithm’s total

runtime and the partition parameter .

2.2.2) Determining grid boundaries

As mentioned previously, the algorithm relies on the idea of dividing the objective space

into equal grids. In order to do this, the range of all objectives is divided into equal parts, i.e.,

 , for all objectives except for the “main” objective, j, selected for each

loop, and . A column vector, is used to store the boundaries of each grid

for the objective . The first element in a row of all vectors are the values of the anchor points,

i.e.,
 . By adding to the previous row in , all of the rows are filled.

There are two different mathematical models that need to be solved during the algorithm,

the first of which is generating the reference point at each grid. This model is called the

“intermediate model” and is expressed as follows:

In this formulation and are determined by the boundaries of the current grid. After

solving for this model, the best point in terms of main objective, ,
 , is obtained. Then, a

reference point, is calculated using this value. Finally, a model with an achievement

scalarizing function is solved with the reference point in order to identify the closest Pareto

point, which will be presented later. By repeating the same process on each grid, we complete

the exploration for objective . After completing all of the grids for objective , we change the

23

index of main objective from to . Hence, we explore all parts of the objective space from

all aspects by setting each objective as the main objective one time.

2.2.3) Achievement scalarization of reference points

The reference points are projected onto the nondominated frontier by an achievement

scalarizing problem, which is formulated as follows:

 ∑

In this formulation, is the feasible decision space and is a small positive constant that avoids

dominated solutions. The achievement scalarizing program always finds a feasible nondominated

point if any exists (Karasakal & Koksalan, 2009).

This scalarization function minimizes the maximum of the Tchebycheff distances

between the reference points and the solution point. The emphasis is on one objective, which has

the maximum distance to the desired point from the reference point. In addition, the distance to

the other objectives is also taken into account through the augmented part of the equation with a

weight multiplier .

There are three important parameters in this formulation: the reference point , the

weighting coefficients, , and the coefficient of the augmentation part, . The only parameter

that is selected randomly is . All other parameters are set by some procedures as part of the

proposed algorithm, and this is explained in detail in the following sections. To the best of our

knowledge, there is no theoretical or empirical study in the literature about setting . However,

it is required to be . Steuer and Choo (1983) proved that a always exists that is

24

small enough to obtain all the non-dominated sets for cases with finite-discrete and polyhedral

feasible regions. In this study, we choose as which is sufficiently large enough not to be

ignored by the first part of the objective function and small enough not to dominate the same

part.

2.2.4) Finding the reference points

The algorithm is executed for each coordinate in the objective space; that is, optimization is

performed by focusing on each of the objectives one by one. The remainder of the objectives are

divided into equal parts, and the grids are formed. Let the main objective be denoted by again,

where . The grids are then obtained by dividing each objective axis into “partition

parameter,” , many parts, where and .

In order to maintain both approximation and representativeness in the reference points,

this study proposes calculating reference points that combine the information obtained from

intermediate model and grid corners. The first source that supplies one of the coordinates of the

reference point is the point obtained by optimizing the objective (i.e., the current main

objective) on the current grid, and this serves to obtain a point that approximates to the Pareto

front. The objective value of this intermediate model for the objective,
 , is then assigned as

the j
th

 coordinate value of reference point. The second source of information is the boundaries of

current grid. The coordinates of the reference point are determined based on the current

grid, and incorporating this information helps to spread the reference points diversely. This

procedure is illustrated for the three objective cases in Figure 3 with an example. It is then

formalized for the general case.

25

Figure 3: Three dimensional representation of how reference points are generated

In Figure 3, the current grid is denoted by a blue square lying on the x-y plane; in the

intermediate model the third objective, the z dimension, is the main objective and is optimized to

find the best point in terms of the third dimension. In this example, the objective value of the

intermediate model is 84. The information from the current grid is then incorporated. Since all

the objectives are assumed to be the minimization type in this example, the corner of the grid,

whose coordinates are determined by the minimum of x, 366, and the minimum of y, 337, are

incorporated in the reference point. Hence, the final reference point is (366, 337, 84).

In general, the first step is to identify the best point in terms of the main objective,

by optimizing the intermediate model on the grid. Next, the coordinates of the minimum

(maximum), corner points of the grid are determined if the existing objectives of the

MOP are of the minimization (maximization) type. Finally, a reference point, is calculated by

equating

 ;
 .

26

Figure 4 and Figure 5 represent a sample for a bi-objective MOIP case in which both

objectives are of the minimization type. The yellow points below the red line are the reference

points generated (e.g., 32 represents the reference point generated on the ‘3
rd’

 grid while

optimizing objective ‘2’). The blue dots on in Figure 4 are the Pareto points that can be obtained

after solving the achievement scalarization model on the corresponding grids (i.e., the Pareto

solutions in the feasible region, above the red line).

Figure 4: Pareto points for bi-objective MOIP

Figure 5: Reference points for bi-objective MOIP

27

2.2.5) Finding the weighting coefficients

Ruiz et al. (2009) studied the weighting schemes in reference point procedures.

Illustratively, if the reference point is outside the feasible region, or are not achievable, the non-

positive orthant is projected from the reference point following the direction given by the weight

vector, [] until it touches the efficient frontier. If the reference point is

achievable, the solution is the last nondominated point that the nonpositive orthant touches, as

shown in Figure 6 and Figure 7. In this algorithm, “GUESS” and “STOM” weighting schemes

are implemented, which are expressed as follows, respectively:

Figure 6: "GUESS" type of weighting scheme, Ruiz et al. (2009)

Figure 7: "STOM" type of weighting scheme, Ruiz et al. (2009)

 ̅

28

 ̅

where ̅

 . The STOM scheme is preferred when the problem is of the minimization

type; the GUESS is suggested for maximization problems. Throughout the experimental runs of

the thesis, will be 0.001.

However, this calculation is not enough since a true weighting scheme should have the

property of , ∑

 . In order to map the results of the above calculation on a

[] scale, we apply the following scaling:

∑

 ̅

 ̅

After presenting all of the details for the proposed approach, we will summarize the

algorithm. The following steps represent the outline of the proposed algorithm:

 Step 0.1: Obtain anchor points, , and estimate the nadir

point, from the payoff table

 Step 1.0 (Generating reference points): Set the number of partitions, ;

initialize solution set, , and the reference point set, .

o Step 1.1: Select the objective, as the main

objective;

o Step 1.2: Divide , into parts, set the grid

boundaries []; in the total construct, number of

grids for objective .

29

o Step 1.3: Solve the intermediate model, get
 , and construct the

reference point, using
 and ; populate the

reference point set with (i.e.,

 Repeat steps 1.1-1.3 for j {1,…,p} and construct grids

for each j

 Step 2.1(Generating representative points): Solve the achievement

scalarizing model for , get the representative Pareto solution

and update solution set .

2.3.1) Overview of the Benchmark Methods: Outer Surface Approximation-Based

Approach

The algorithm proposed by Karasakal and Koksalan (2009) starts by solving the series of

augmented Tchebycheff programs (Steuer 1986) systematically and introducing different lower

bounds to each of the objectives. As a result, an initial set of nondominated solutions is obtained.

Afterwards, a surface is fitted that approximates the shape of the nondominated frontier by

minimizing the sum of square distances from the selected nondominated points. A set of

approximately evenly spaced reference points on the fitted surface are then selected, and each

reference point is projected onto the nondominated frontier in the gradient direction of the fitted

surface. When the fitted surface approximates the nondominated frontier well, the projections of

these reference points are expected to be approximately uniformly distributed over the

nondominated frontier and to form a good representation, i.e. coverage. An illustration of this

concept is presented in Figure 8 for two objectives.

30

Figure 8: An illustration of the approach by Karasakal and Koksalan (2009)

The following is a summary of the steps of the algorithm, presented in a similar way as the

proposed approach in order to show similarities and differences more clearly:

 Step 0.1: Obtain anchor points and estimate the nadir point from the payoff table,

 and

 Step 1.0: Generate the initial points to fit the space solving of augmented equal-

weighted Tchebycheff programs (i.e., if the size of initial set is k.)

 Step 1.0 (Fitting the surface)

 Step 1.1: Find a nondominated point that is the minimum Tchebycheff

distance from the ideal criterion vector in the diagonal direction.

31

 Step 1.2: In the weighted – function, set and

and solve [∑

]

 using a bi-section to determine .

 Step 1.3: After p is determined, new values are calculated using

 ()= , where R and S are two matrices, presented within the

text previously, that contain the initial set and nadir point information.

 Step 2.0 (Generating reference points):

o Divide the curve lying on the -plane into approximately equal-length

arcs using a step size of z for .

o Project the endpoints of the arcs on the -plane onto the zi-axis for all

{i = 1,…, p – 1}. (Let ni be the number of projections on the zi-axis.)

o Find n1n2· · · np−1 points on the z1z2 …zp−1 hyperplane as the intersection

of points projected to each of the axes.

o Project each of these n1n2…np−1 points onto the weighted-Lp surface by

fixing objectives at their corresponding values and maximizing

objective m over the weighted-Lm surface to find the value of zp that

corresponds with the combination under consideration.

 Step 2.0 (Generating representative points):

o Solve the model with the achievement scalarization objective for each

reference point.

2.3.2) Overview of the Benchmark Methods: Modified REPR Algorithm

This algorithm relies on generating efficient faces of convex Pareto fronts and is based on

Sayin (2003). Karasakal and Koksalan (2009) modified the algorithm to generate representative

points, as follows:

32

 Step 0.1: Generate efficient faces of the Pareto front and initialize coverage error

as 1 for all faces.

 Step 1.0: Generate a representative point by considering the worst representative

point in a face.

o Step 1.1: If the last representative point is already in the set, discard it; if

not, add it to the final set.

o Step 1.2: Calculate the new coverage error for the current face.

o Step 1.3: Check if the desired number of points is generated. If true, stop

the algorithm; if not, continue with the face that has worst coverage error.

Details regarding the efficient face generation and coverage error calculation steps are presented

in the 2.5) Quality Measures for Approximation Techniques since these models have been also

used to calculate the coverage error for the proposed approach.

2.4) Complexity of the Algorithm and Advantage over Benchmark algorithms

The number of optimizations within each grid is restricted to two linear optimization

procedures; one optimization is required for finding the local optimum, and the other to identify

the closest Pareto optimal solution. Calculation of reference points and weights of the

scalarization model are not affected by any other parameters of the algorithm or the problem.

Thus, there is a constant number of iterations for each grid. This means that the complexity of

the algorithm is only affected by the number of partition parameter, T, and the number of

objectives, .

As summarized previously, Karasakal and Koksalan’s (2009) algorithm requires an initial

effort for surface fitting in order to determine the approximation surface and generate reference

points on this surface. The proposed algorithm follows a relatively straightforward approach to

33

generate good reference points that are both well approximated and diverse. Algorithm

complexity is designed to compare two algorithms at the idea level, but this ignores low-level

details such as the implementation programming language, the hardware the algorithm runs on,

and the instruction set of the given CPU (Leiserson, Rivest, Stein, & Cormen, 2001). Hence, a

detailed complexity analysis of both algorithms is presented below in order to show the

differences between the two approaches in terms of time requirement.

Common notation:

p: number of objectives

R: number of reference points

Complexity Analysis of Proposed Approach

T: number of partitions

Step 0.1: many LP (MIP) solves to find anchor points; p comparisons to construct

payoff table.

Step 1.0 (Generating reference points):

Step 1.2: many summations to determine grid boundaries

Step 1.3: many LP solves (intermediate model)

Step 2.1(Generating representative points): many LP (MIP) solves with

scalarization objective.

In Total:

() LP (MIP if the problem is MOIP) solves+

 LP solves+ summations

34

Complexity Analysis of Karasakal and Koksalan (2009)

k: Size of initial set used to fit the surface

Ti: Number of partition on

 many planes determined by step size, z

Step 0.1: many LP(MIP) solves to find anchor points; p comparisons to construct

payoff table

Step 1.0 (Fitting the surface)

Step 1.1: many LP(MIP) solves

Step 1.2: summations (to calculate the special direction for point b)

Step 1.3: At least “1” bi-section solve ([∑

]

) to find .

Step 1.4: multiplications+ [)] summations to construct

R matrix; matrix inversion of ; multiplications+)

summations to construct S matrix; summation multiplication (for matrix

multiplication) to find weights.

Step 2.0 (Generating reference points)

Step 2.1: summations to partition line segments

Step 2.4: many order of m model solves (i.e., non-linear models when m>1)

Step 3.0 (Generating representative points): many LP (MIP) solves

In Total:

 []] summations +

 multiplications+

1 bi-section solve + matrix inversion+

35

 many LP (MIP) solves+

 many order of m model solves (nonlinear if)

When the totals of all computations are compared, including the basic but minor computations

such as summations or multiplications, it can easily be observed that the proposed approach

requires significantly less computational effort. It is worth emphasizing that the total calculation

effort calculated for Karasakal and Koksalan’s (2009) algorithm considers only one pass to

determine an “ ” parameter to approximate the surface. However, the most significant

difference between the two algorithms is the number of optimizations that are needed to generate

the reference points. Unless the fitted surface function is an order of 1, Karasakal and Koksalan

(2009) propose to solve non-linear models to determine reference point, whereas our algorithm

proposes to solve same number of linear programs for any problem.

Figure 9: An illustration of how reference points are generated by the proposed algorithm and

Karasakal and Koksalan’s (2009) algorithm on a two objective MOP with the maximization type

of objectives and a non-convex Pareto front

Boundary of feasible region

Fitted line by KK Algo.

Segment. line of KK Algo.

Gridding line of Prop. Algo.

Ref. Point by KK. Algo

Ref. Point by Prop. Algo

Initial points to fit line by KK.

Algo.

Z1

Z
2

36

The functions of Karasakal and Koksalan’s (2009) algorithm and the proposed algorithm are

illustrated in Figure 8 above on a MOLP with two objectives. The proposed algorithm starts with

initial points to approximate the surface, which are represented by blue dots on the figure .

Indeed, the blue dot on the diagonal line drawn in the direction of the nadir to ideal point is a

special point that is generated on purpose. This is called point b, since it is considered one of the

most important points that gives insight about the shape of actual Pareto front. A high order line

(it is a line rather than a surface since it is an example with two objectives) is represented by red

is fitted, and this passes through the initial points. The border of the feasible region on the

objective space is represented by a blue line; points above this blue line are feasible solutions.

Karasakal and Koksalan propose to draw a segmentation line first and determine equally distant

points on that line; the fitted surface line then needs to be optimized by fixing one of the

objective values to the corresponding objective value of previously generated, equally distant

points, one by one. Through this procedure, they obtain the points represented by purple

triangles. Although the resultant points lie more uniformly on the fitted line, they are generally

staying in a distance to the feasible region. On the other hand, reference points generated by the

proposed approach lie in the feasible region since we propose to optimize one of the objectives

on each grid. This might become an advantage, especially with problems of the non-convex

Pareto front, because a fitted surface might miss some non-convexities; therefore, the algorithm

proposed by Karasakal and Koksalan (2009) might generate reference points that are distant

from the actual feasible space; despite this, these reference points will result in some Pareto

points since the algorithm requires solving an achievement scalarization objective that

guarantees Pareto optimality, some regions still might remain not well represented at these type

of cases.

37

2.5) Quality Measures for Approximation Techniques

2.5.1) Coverage Measure

In Sayin (2000), the coverage error is defined as follows:

Let be a real number. Let D Z be a discrete set. D is called a representation of

Z, if for any z Z there exists y D such that d(z, y) .

Coverage has other definitions in the objective space, one of which is proposed by Wu and

Azarm (2001), denoted by “ ”:

 =∏

where ; this measure gives an idea about the spread of the points in the representative

set.

In order to calculate the measure proposed by Sayin (2000) on the decision variables space for

MOLP problems, there are a couple of steps that require solving two different mathematical

programs. The first program is used to determine the efficient faces of faces MOLP problems,

and it is a linear program. The second program is a mixed integer program that is used to

calculate the coverage measure. Since these steps are also the main steps of the algorithm used

for benchmarking in Karasakal and Koksalan’s (2009) study, this is also an important procedure

that needs to be mentioned.

2.5.2.1) Calculating Efficient Faces

The following definitions need to be outlined in order to explain the algorithm that aims

to generate all efficient faces. Let F be a subset of X, where X is the feasible decision space of

the MOLP problem. F is a face of X if every line segment in X with a relative interior point in F

has both end points in F. A face F is an efficient face if all the elements of F are efficient.

38

Based on these definitions, Sayin (1996) proposed the following model to find the efficient faces

of a MOLP problem:

 ̅ ̅

 ̅ ̅

 ,

where and and

 ̅ [

] and ̅ [

],

where is the identity matrix and . It should be noted that X can be rewritten as

 { | ̅ ̅} Let and . Define as the matrix

derived from ̅ by deleting rows of ̅ not in ; is defined as the vector derived from ̅ by

deleting elements of ̅ not in . For , define . ,

represents a face of X (Yu & Zeleny, 1975). Note that and for , is

possible. We will refer to as a proper face of if .

The proposed algorithm for finding is based on checking elements of starting with

k=0. For k=0, the only element of and . Thus, by solving problem (), the

algorithm first checks whether the problem (MOLP) is completely efficient (Benson & Sayin,

1994). The algorithm terminates with the conclusion . If not, then for each element I of

 , problem () is solved. The following three rules are followed based on the solutions of

each problem:

39

 If) is infeasible: I is dropped from further consideration since it is then

placed on a list that keeps index sets yielding infeasible combinations, .

 If) has an optimal value of “ ”: is dropped from further consideration since is

efficient. I is placed in another list that keeps index sets yielding efficient faces, .

 If) is unbounded or has positive optimized value: It is concluded that has at

least one element that is not efficient. Therefore, it is possible that efficient;

thus, supersets of ,i.e., , should be checked via solving). This means that

immediate supersets of I , e.g., index sets that contain I and belong to , are placed in

a list for later consideration, . After all the elements of are considered, the index

sets that were placed in the . Before solving the following checks are

performed:

o If J , then J also generates an infeasible solution and is

discarded.

o If J , then J also generates a feasible solution and is

discarded.

o If none of these is true, is solved and placed in appropriate set based on its

solution.

The procedure stops when there are no furthere faces to consider.

2.5.2.2) Models to Solve in Order to Obtain Lower and Upper Bound of Coverage Measure

For the representation of the Pareto front of a MOLP problem, the coverage measure is

calculated based on the efficient faces that are calculated following the method previously

described. After coming up with representative solution set, D, and the efficient faces set, FS, the

40

last step is to calculate the coverage measure. Sayin (200) proposed several mathematical models

in order to calculate the lower and upper bound bounds for coverage error. Based on these

definitions, consider a - representation D of set . Take an element z of Z. The point x in

D that represents z is the one that is closest to z. If the Tchebycheff distance between x and z is

 it is known that all distances (| |) between x and z are less than or

equal to in all coordinates. Following this, the mixed integer problem is solved to

determine , based on following definitions: Let M denote a sufficiently large positive

number. Define and as vectors whose entries are all . Let

 denote the variables.

 (1)

 (2)

 (3)

 (4)

 (5)

 (6)

In addition to the Tchebycheff distance version of the model, , which gives the upper

bound on the coverage error, the rectilinear distance also needs to be calculated by solving

 . Building on the model defined for , additional variables are defined

41

 . Then, the 2
nd

 and 3
rd

 constraints in the above model are replaced with the

following equations:

The 6
th

 equation is replaced with following equation:

The following equation is added to the formulation:

Keeping the set of efficient faces, , and are used to measure the coverage

error over individual faces, where is lower and is upper bound on the coverage

error. In particular, the following procedure can be applied to compute overall coverage error, ϵ

of :

For elements of , denoting an efficient face , number of and

 are solved with and D in each to compute The overall ϵ of is then calculated

by
 . In order to insert efficient face information to each formulation, all indices in

the efficient face are set as equality in the formulation.

2.5.2) Uniformity Measure

The uniformity measure concept is a measure of spacing between Pareto points. Ideally,

we desire a discrete representation of the Pareto set with equally spaced Pareto points; however,

it not possible with the unsymmetrical nature of the Pareto front, even if it is convex and

polyhedral. Here, we use the measure proposed by Sayin (2000), which is defined as the

minimum distance, between any two distinct points in the discrete representation of the

efficient set:

42

where ̅ denotes the set of efficient solutions found by the algorithm.

This measure may be misleading when considered on its own; that is, the number of points in the

set should also be taken into account when evaluating a uniformity quality result. For example, a

set of solutions that has more points may produce a worse (lower) uniformity result than a set

that has only two points that are placed far away from each other. Hence, it should be considered

with cardinality measure.

2.5.3) Cardinality Measure

The cardinality measure concept refers to the number of points in the representation. This

number should be high enough to fully represent the solution set; at the same time, it should be

low enough not to overwhelm the DM with choices.

The measure proposed by Wu and Azarm(2001), called the “number of distinct choices"

is used. This methodology is based on the idea that Pareto solutions within a certain distance of

each other are counted as a single point. In this study, the number of points in the solution set is

used as measure of cardinality.

2.6) Experimental Results

2.6.1) Method of Sample Problem Generation

During the experiments, sample instances are generated following the same method as

Karasakal and Koksalan (2009). In other words, randomly generated polytopes are used as

sample problems, which are expressed in the form { }, where is

a matrix and . In the first set of experiments, a structure originally proposed by

Steuer (1994) for random problem generation is used. Criterion space is used to generate these

43

instances. An identity matrix of C is used to simplify the search procedure for finding the

nondominated faces. The elements of the constraint matrix A were randomly generated from a

uniform distribution; the interval is denoted by []. To generate the right-hand side vector

b first, is constructed as an interior point on the feasible region, where the parameter

M is a nonnegative scalar and is a vector of ones. Then, a nonnegative value

[] to form point on the boundary level of the constraint is selected

randomly (where is the constraint’s gradient). Finally, the constraint is formulated as

follows:

We used the same values as Karasakal and Koksalan (2009) as parameters: []]

(i.e., zero density is); [] [] and . Ten randomly generated problem

instances are generated for each parameter combination. The levels of the parameters are

 and of parameter are .

The second part of the study consists of two problem size parameters. These are the

number of objectives and the number of constraints In this set of experiments, the

elements of matrix A, vector b, and matrix C are randomly generated from the discrete uniform

distribution in the intervals and , respectively (see Sayin, 2003).

A 25% zero density was provided in matrix A. The problems are created in two different

combinations, and . For each combination, three different sets of problems

with different levels of parameter were generated. For each problem set, instances

are generated in the MATLAB R2007b environment.

44

2.6.2) Computational Results

The proposed algorithm has been coded in ILOG OPL 6.3 with CPLEX 12.1, and runs

have been performed on a laptop with a RAM of 4GB and a dual-core processor of 2.1GHz. The

first set of instances are used to test the coverage and uniformity performance of the proposed

algorithm with the benchmark study of Karasakal and Koksalan (2009). The following table

shows the average number of representative points generated for all sizes:

Table 2: Average Number of representative points (reported results from Karasakal and

Koksalan, 2009).

No. of

criteria

Average Number of representative points

(reported results from Karasakal and

Koksalan, 2009)

No. of constraints

5 10 30

2 20(21.1) 19.7(20.5) 18.4 (26.1)

3 26.4(24.9) 34.2(34.5) 41.4 (44.8)

4 31.8(24.8) 49.2(40.6) 58.4 (60.2)

5 47(25.5) 49.5(44.5) 64.0 (64.1)

The values in parentheses are the average number of representative points generated by

the benchmark study. Based on this table, it can be concluded that the average number of

representative solutions generated for the proposed algorithm do not exceed the number of

solution sets generated by the benchmark for the group of instances written in bold. Similar to

the gap between the targeted number and the actual number of solution points observed in the

benchmark algorithm, obtaining the exact number of aimed representative solutions is not always

possible for the proposed algorithm. This is due to the equal partitioning of grids. Keeping the

number of partitions the same for each axis is important in order to get reference points with

well-covered and uniform distribution. The total number of reference points is presented as

 in the above calculations. Hence, when setting the partition parameter, T,

45

deviations from the actual number of representative points we want to obtain might become

inevitable in many cases (e.g., when is equated to a certain value, it needs to be

solved to find T which is supposed to be a positive integer).

As mentioned previously, coverage and uniformity levels are the two quality measures

that require further calculation. All algorithms that are used to calculate these are coded in

Microsoft Visual Studio 2010, and the linear program required to find the efficient faces is

solved with a CPLEX 12.5 C++ library. Table 3 and 4 ummarize the quality measure results for

all instances in which the corresponding size of the representative sets are presented in Table 2.

From this point forward, Karasakal and Koksalan’s (2009) algorithm will be referred to as

Algorithm-1; Sayin’s as Algorithm-2; and our proposed algorithm as Algorithm-3. The results

regarding Algorithm-1and 2 are obtained from Karasakal and Koksalan (2009); the can refer to

this article for more details.

Table 3: Average coverage errors obtained by approaches 1–3 in the first set of experiments.

No. of

criteria

Average coverage errors

No. of constraints

5 10 30

Algo. 1 Algo. 2 Algo.3 Algo. 1 Algo. 2 Algo.3 Algo. 1 Algo. 2 Algo.3

2 0.0460 0.0490 0.0529 0.0500 0.0530 0.0511 0.0440 0.0530 0.0501

3 0.2130 0.2170 0.2515 0.2280 0.2160 0.2180 0.2230 0.1970 0.1011

4 0.3790 0.3740 0.4516 0.4190 0.3760 0.3040 0.4170 0.3490 0.2140

5 0.4790 0.4420 0.7174 0.4500 0.4010 0.5536 0.4800 0.4130 0.4043

Ave. 0.2793 0.2705 0.3683 0.2868 0.2615 0.2817 0.2910 0.2530 0.1924

46

Table 4: Average uniformity levels obtained by approaches 1–3 in the first set of experiments

No. of

criteria

Average uniformity levels

No. of constraints

5 10 30

Algo. 1 Algo. 2 Algo.3 Algo. 1 Algo. 2 Algo.3 Algo. 1 Algo. 2 Algo.3

2 0.0560 0.0360 0.0064 0.0550 0.0380 0.0119 0.0470 0.0130 0.0110

3 0.1110 0.0150 0.0170 0.1020 0.0130 0.0166 0.0930 0.0070 0.0110

4 0.1460 0.0200 0.0173 0.1320 0.0060 0.0156 0.1250 0.0060 0.0098

5 0.3160 0.0140 0.0130 0.1670 0.0180 0.0188 0.1360 0.0060 0.0081

Ave. 0.1573 0.0213 0.0134 0.1140 0.0188 0.0157 0.1003 0.0080 0.0100

All the objectives in this experiment are scaled between zero and 1; hence a coverage error of

0.47 is interpreted as having a representative point for each nondominated point at most 47% of

the range of the objectives. Uniformity is the smallest distance between any representative points

in the representative set. Hence, the smaller coverage measure and larger uniformity measure are

desirable in terms of quality perfective. Based on this statement, one can conclude that the

proposed approach is compatible with previous approaches. Indeed, as the problem size grows,

the proposed approach generates better results; i.e., the number of constraints and variables

increase, hence the model coverage error becomes relatively smaller. However, the proposed

approach does not perform well in terms of the uniformity measure since in most cases

uniformity is under the average of benchmark Algorithm-1 and is compatible with Algorithm-2.

47

Table 5: Average CPU times required by approaches 1–3 in the first set of experiments

No. of

criteria

Average CPU time

No. of constraints

5 10 30

Algo. 1 Algo. 2 Algo. 3 Algo. 1 Algo. 2 Algo. 3 Algo. 1 Algo. 2

Algo.

3

2 13.20 95.60 0.5057 15.40 97.70 0.4615 20.90 176.60 1.5813

3 15.10 135.20 0.1927 19.70 188.70 0.6514 36.30 282.10 0.7351

4 21.80 222.20 1.3916 29.10 267.00 2.3882 47.30 551.70 2.4290

5 25.40 221.00 1.1422 33.90 372.20 1.0549 52.40 960.80 3.0114

Ave. 18.875 168.500 0.8081 24.5250 231.400 1.1390 39.2250 492.800 1.9392

As the last important performance measure of the proposed approach, we have compared

the time performance of the proposed approach with the benchmark algorithms. In order to do

this, we used two different sets of data, the first of which is one that has been used to assess

quality performance and that has a polyhedral structure. The results are presented in Table 5. The

second set of data includes instances that are generated in a different way, as explained at the

begging of the section. These do not necessarily have a polyhedral Pareto front structure and are

larger. These results are presented in Table 6.

Table 6: CPU Time of obtaining one solution point for proposed approach and the Karasakal and

Koksalan (2009) algorithm

No. of

criteria

No. of

constraints

No. of

decision

variables

Average No. of

representative

points

CPU time of proposed

approach in sec. /solution

point

CPU time

of

Algorithm-

1 in sec.

/solution

point

2 40 50 100 150 0.0165 0.0103 0.25 0.22

4 40 50 84 148.5 0.0413 0.0480 0.27 0.24

6 40 50 197.4 1274.8 0.0190 0.1135 0.30 0.27

2 80 100 100 150 0.0189 0.0200 0.31 0.27

4 80 100 80 145 0.0648 0.0749 0.33 0.29

6 80 100 198 1320.3 0.0229 0.1638 0.40 0.33

48

For the second set of experiments, only the results of Algorithm-1 are presented, since

Algorithm-2 has already been deemed inefficient compared to Algorithm-1 (Karasakal and

Koksalan, 2009). The time performance of the proposed approach can be observed in both of the

tables 5 and 6 above. This is especially true in larger sizes that have a non-polyhedral structure.

As such, the proposed approach is becoming significantly better than the benchmark algorithms,

as predicted by the complexity analysis presented earlier.

49

We have done further analysis in order to assess how performance of quality measures changes

for different partition values.

Table 7: Change of performance parameters with different values of partition parameters on the

first set of experiments

 2 objective

 T1(36) T2(70) T3(136)

 uniformity coverage

CPU

Time uniformity coverage

CPU

Time uniformity coverage

CPU

Time

max 335594 0.2911 0.358 173368 0.1688 0.587 95333 0.0899 1.083

min 15557 0.0047 0.972 4280 0.0032 1.444 900 0.0047 1.493

St.dev. 108349 0.0884 0.218 64127 0.0494 0.272 39353 0.0297 0.154

average 129841 0.0406 0.751 58146 0.0382 0.935 20686 0.0369 1.334

 3 objective

 T1(230) T2(499) T3(846)

 uniformity coverage2

CPU

Time uniformity coverage2

CPU

Time uniformity coverage2

CPU

Time

max 4440000 0.4455 2.019 1820000 0.4387 4.181 536660 0.4586 7.324

min 44205 0.0172 2.791 15313 0.0000 6.072 5414 0.0220 13.136

St.dev. 1592416 0.1296 0.262 632195 0.1445 0.677 177474 0.1210 1.793

average 1040043 0.2119 2.405 395516 0.1876 5.272 90148 0.1669 9.255

 4 objective

 T1(80) T2(477) T3(1032)

 uniformity coverage2

CPU

Time uniformity coverage2

CPU

Time uniformity coverage2

CPU

Time

max 1278540 0.5655 2.227 358862 0.4848 12.940 8465 0.4805 24.698

min 33477 0.1304 3.128 10812 0.1801 19.822 800 0.1268 46.381

St.dev. 382532 0.1338 0.340 108499 0.1181 2.187 2998 0.1218 6.560

average 209034 0.2965 2.691 56924 0.2855 15.506 2851 0.2704 31.088

 5 objective

 T1(50) T2(402) T3(941)

 uniformity coverage2

CPU

Time uniformity coverage2

CPU

Time uniformity coverage2

CPU

Time

max 1205750 1.0000 1.015 399010 0.5627 8.719 4240 0.4113 21.569

min 13024 0.3366 2.098 4038 0.1606 22.977 371 0.3174 33.789

St.dev. 563040 0.2153 0.341 148111 0.1476 5.147 1330 0.0440 3.944

average 428746 0.5388 1.556 83202 0.4091 12.389 961 0.3512 25.100

50

Although uniformity measure seems not better than the Karasakal and Koksalan(2009)’s

algorithm, and coverage error does not seem to beat Sayin(2003)’s algorithm in the first set of

experiments, there is an important factor that need to be paid attention, that is the cardinality of

the sample sets which can be observed in Table 2. At this point, it should be noted that both

uniformity and the coverage error are both sensitive to the number of points in the set. That is,

perfect spacing between points changes as the number of represented points increases; similarly

the maximum distance that a representative point can be found for any Pareto point is also

affected by the number of representative points generated. In order to show the sensitivity of

uniformity with a true measure which considers both the spacing and the number of points in the

representative set, we have resorted to another measure. Wavelength analysis based uniformity

measure has been proposed by Meng et al. (2005) which can be summarized as follows:

 √
∑ ̅

 where {

, and is the minimum distance between point and its closest

neighbor, and ̅ id the mean of these distances. According to this calculation, smaller values

indicate a better uniformity.

Table 7 shows the change of these two quality measures with changing number of representative

points, i.e. increasing partition parameter. As number of partitions increases, CPU time

requirement increases accordingly, however the improvement in coverage and uniformity

measures seems much faster than this change. This means the advantage in run time can be used

in order to close the gap between our algorithm and Karasakal and Koksalan’s algorithm in

51

terms of uniformity ; and the gap between our algorithm and Sayin’s algorithm in terms of

coverage.

Figure 10: Change of average of uniformity and coverage measure per three different partition

values in increasing order for the set of instances with 4 objectives and 10 constraints

2.7) Conclusion and Future Work

In this chapter, an algorithm for MOLP was proposed, which can be used to generate a

representative set of Pareto solutions in a relatively fast way. The proposed approach is an exact

method that guarantees the generation of Pareto optimal solutions by relying on an achievement

scalarization function. From this perspective, the proposed algorithm is distinguishable from

metaheuristics and algorithms like the normal constraints method. The proposed approach is

comparable to the algorithms proposed by Karasakal and Koksalan (2009), which contains two

other exact approaches that serve the same purpose. In this study, the authors use a modified

version of an algorithm that was initially proposed by Sayin (2003) to benchmark their

algorithm. All of the computational results of the proposed approach are compared with the

averages of both algorithms on instances generated in the same way that authors of this study

followed. Based on these results, the proposed approach falls behind Karasakal and Koksalan’s

52

(2009) algorithm in terms of uniformity, but is compatible with Sayin’s (2000) approach. On the

other hand, the proposed algorithm outperforms both approaches in terms of time performance.

Considering the fact that tests are performed in different environments, computers and not using

exactly the same instances, this observation is supported by the previously described complexity

analysis. Since the latter algorithm is already proven to be better than Sayin’s approach in terms

of time performance, the complexity analysis for this algorithm has not been presented. In

addition, the proposed approach generates compatible results for the coverage error, and it is

starting to perform better than benchmark algorithms for problems with bigger sizes.

Future studies may consider trying the algorithm on MOIP instances since it has

significant potential to perform well on non-convex Pareto fronts. Furthermore, when

determining the reference point, improvements should be made that take advantage of integer

feasible space, such as rounding the reference points systematically up and down in a way to get

an integer approximation of the Pareto front with 0
th

 order of approximation (i.e., in a way that

does not depend on the achievement scalarization function to get Pareto optimal points).

53

CHAPTER III: MULTI-OBJECTIVE BRANCH AND BOUND APPROACH FOR

MOIP

3.1) Introduction
A MOIP problem can be formulated as follows:

 { () } (1)

where and (; denotes the set of feasible set of solutions and is defined by

 (2)

where and all decision variables are required to be integers. If some of the ’s

are continuous and some are integer, then the problem becomes a multi-objective mixed integer

programming (MOMIP) problem.

The difference between MOLP and MOMIP problems are stated in terms of the

“topologically connectedness” concept. A set is called topologically connected if there are no

non-empty open sets, S1 and S2, such that and = . For MOLP, the efficient

set XE and the nondominated set YN are topologically connected and YN is composed of

nondominated faces of dimensions to . However, neither XE nor YN are topologically

connected for MO(M)IP in general.

Multi-objective combinatorial optimization (MOCO) problems are a special class within

MOIP problems such that the feasible set of a combinatorial problem is defined as a subset

 of the power set of a finite set . In terms of the feasible set, this

definition comprises multi-objective versions of the shortest path, a minimum spanning tree, an

assignment, a knapsack, a travelling salesperson, or set covering problems, to name a few.

All MOIP problems have a discrete solution space that is non-convex by nature. As it is

mentioned in the definition of “supported solutions,” which can be identified as a solution of a

54

weighted sum of objectives, there are unsupported solutions in MOIP problems that cannot be

generated by weighted sum approaches. Therefore, identifying a closed form of efficient faces is

not possible in this context. Even though approaches that aim to generate a representative set for

MOIP problems are used in real-life problems in the decision-making process, obtaining the

whole Pareto set also becomes necessary for verification purposes. Based on this observation,

both representative and exhaustive algorithms might be of interest for the DM.

Exact algorithms for MOIP problems have become a popular topic of optimization that is

in line with the increasing practical usage of this type of algorithm in many real-life problems

and decision support systems. In the next sections, the main studies that are proposed to solve

MOIP problems are explained in detail which are important in terms of the proposed algorithm.

However, to the best of our knowledge, most of these efficient algorithms explore the Pareto

surface starting from one corner of it and approaching the opposite end, even if they intend to

take some smart actions that speed up this traversal. Hence, when the DM stops the algorithm at

a certain point before termination, he or she ends up with a partial Pareto optimal set that does

not give much information about a certain part of the Pareto surface. In addition, there are also

meta-heuristic approaches that are superior in terms of time performance but that do not

guarantee any type of Pareto optimality while acting as an approximation tool. Hence, there is a

need for an exact method that proceeds more diversely while maintaining the Pareto optimality

notion. The algorithm proposed in this chapter aims to fill this gap.

The branch and bound (B&B) method is one of the main approaches that is often resorted

to when optimizing problems with integer variables. Accordingly, it has received significant

attention in the multi- objective optimization field. All of this research falls under the umbrella of

multi-objective branch and bound (MOB&B). Since the concept of B&B mostly relies on the

55

existence of integer valued variables, the explicit word “integer” has been dropped from the

general naming convention of the approach. In addition to its natural convenience for integer

variables in single objective, mixed integer linear programming, it has some additional

advantages in multi-objective optimization context. The B&B approach is preferable because it

finds Pareto efficient solutions with a finite number of iterations.

This thesis emphasizes the distinction between the two B&B perfectives that are used in

the literature: Branching on decision variables or branching on multiple objectives. The second

approach seems to be more meaningful, especially when the number of objectives is greater than

the number of variables. This decision about which perspective to choose can be made by

evaluating the tradeoff between solving linear (relaxed) problems while handling all decision

variables, and solving integer problems while performing a reasonable amount of branching on

the multiple objectives. Potentially, the first approach requires more iterations than the second

one, since the number of decision variables is generally much greater than the number of

objectives, which means more branching is needed to fully characterize the Pareto front.

Furthermore, there might be multiple solutions that lead to the same Pareto point, and thus some

of the computational effort spent does not lead to new Pareto solutions. None of the existing

approaches can identify these cases, which in turn might lead to numerous branching in order to

repeatedly identify the same solution.

Another classification of the multi-objective optimization methods is based on the

difference between the usage and design of algorithms and closely relates to the role of the DM.

Whenever the DM guides the search process, the algorithm falls into the “interactive” category.

In contrast, non-interactive methods allow the DM to be involved at the end of the solution

process through a “posterior selection” procedure. In this category, the DM can evaluate the

56

entire Pareto front, which improves the DM’s confidence in the results since he or she has a

broader characterization of the tradeoff space. From this perspective, the proposed algorithm has

an exact nature if it is allowed to run until termination. On the other hand, if it is used as an

approximation algorithm, the DM’s search can be interactively restricted to certain regions, and

hence can be run as an interactive algorithm.

In the next section, we present a general overview of the literature regarding exact

methods for MOIP. Next we explain, in more detail, some of the earlier work that led to the

proposed algorithm. We then present the detailed steps of the proposed approach. Finally, we

discuss the results of computational experiments performed to assess the main attributes of the

algorithm.

3.2) Literature Review

Early work on exact solution methods for multi-objective optimization mostly focuses on

finding supported nondominated points. An excellent review of the exact and approximation

methods developed specifically for the MOCO problems can be found in Ehrgott and

Gandibleux (2000). Some authors in these early studies separate the generation of the

nondominated points into two phases. In the first phase, all supported nondominated points are

generated using the weighted sum scalarization. In the second phase, all unsupported

nondominated points are obtained by employing problem-specific techniques. This approach has

been applied to several biobjective combinatorial problems. Visée et al. (1998) proposed a two-

phase method and B&B procedure for the biobjective knapsack problem. Ramos et al. (1998)

and Steiner and Radzik (2008) developed a two-phase method to generate all nondominated trees

for the biobjective spanning tree problem. Przybylski et al. (2010) worked on the two-phase

method for MOIP problems and experimented with three-objective assignment problems. Ozlen

57

and Azizoglu (2009) developed an algorithm to generate all nondominated points for MOIP

problems based on the epsilon constraint method. They do not conduct computational

experiments but they demonstrate their algorithm on a three-objective assignment problem.

Laumanns et al. (2006) also developed an algorithm to generate nondominated points based on

the epsilon constraint method. Sylva and Crema (2004) developed an exact algorithm to generate

all nondominated points for MIPs. Lastly, Lokman and Koksalan (2012) developed an algorithm

that is superior to those proposed in both Sylva and Crema (2004) and Ozlen and Azizoglu

(2009). The study of Lokman and Koksalan will be explained in detail since it is the inspiration

for the objective function used in the proposed algorithm.

Prior work using B&B for MOIP problems dates back as early as 1983. Kiziltan and

Yucaoglu (1983) proposed an algorithm for multi-objective zero-one linear programming

problems. Fifteen years later, one of the major studies that aimed to design a B&B algorithm for

multi-objective mixed integer problems was published, which branched on decision variables by

Mavrotas and Diakolulaki (1998). This is claimed to be the first attempt to develop a general

purpose vector maximization algorithm applicable to all kinds of Mixed 0-1 MOLP problems of

small or medium size (i.e., a few hundreds of variables). Mavrotas and Diakoulaki revised this

work in (2005) with some improvements (2005). However, this study was corrected by Vincent

et al. (2013) who claimed that Mavrotas and Diakolulaki (2005) do not allow for a complete

description of the nondominated set YN of an MOMIP. Moreover, a solution set may still

contain dominated points. In the same study, Vincent et al. (2013) suggested some corrections to

the filtering rule by pointing to the fact that one might need some interior points (not extreme

nondominated) in order to come up with correct domination results; edges are generated as a

result of MOLP solves performed at each node. The algorithm proposed by the authors is for bi-

58

objective mixed integer optimization problems. Furthermore, the bound sets discussed in detail

in this study constitute a fundamental concept introduced to B&B for MOP. Ehrgott and

Gandibleux (2007) presented a study that aimed to identify good upper and lower bound sets to

be used in a MOB&B context, where several lower bound candidates are presented. These

bounds differ from eachother in terms of performance and computation effort spent to identify

the set, while the ideal point of a node at a B&B tree is the most common lower bound used in

the literature. On the other hand, the upper bound is defined by any set of feasible solutions such

that no two points dominates the other; similarly, several candidates for an upper bound set are

presented. Abbas and Chergui (2012) proposed adding cuts during a B&B traversal for MOMIP

problems while branching on decision variables. So far, no algorithm that branches on objective

values has been mentioned that can be used for any type of MOIP problem (i.e., not just for

MOCO). This is because, to the best of our knowledge, Marcotte and Soland (1986) presented

the only study in this field. This algorithm will be covered in detail in the next section following

a detailed explanation of the main exact methods in the literature.

3.2.1) Exact Algorithms for MOIP

A method for finding the set of nondominated vectors for multi objective integer linear

programs by Sylva and Crema (2004)

Sylva and Crema (2004) developed a general algorithm that enumerates a full set of solutions, requiring a

solution of the following model:

59

(

 ∑

 () ()

∑

where denotes the t
th
 nondominated point in a set of solutions; M is a sufficiently

large number to unconstraint . The qwquation ∑

 ensures at least one of the objective

values to be improved. Hence, a new nondominated solution is generated. Since the algorithm keeps

adding new binaries and constraints every time a new solution is generated, it grows as it evolves until

infeasibility, or the stopping condition.

General Approach Generating All Non-dominated solutions by Ozlen and Azizoglu (2009)

This algorithm is an exact algorithm proposed by Ozlen and Azizoglu (2009). It is a modified

version of the classical -constraint method, which searches within narrower efficiency ranges and jumps

between non-dominated solutions rather than taking incremental steps. One important difference from the

original -constraint method is the structure of the objective function used throughout the algorithm. An

important requirement of this algorithm is the integrality of the objective function coefficients. If this is

not the case, then the coefficients can always be converted to integers by proper scaling. The general

formulation of the model as follows:

60

where
 and

 are the upper bound and lower bound of the objective, respectively; and is the

feasible set of the original problem.

After generating a solution point by solving the model above, the right-hand sides of the constraints

set are updated according to the algorithm presented in the study. The main function of the algorithm is to

find the best solutions hierarchically for each objective while ensuring all levels of objectives that are

fixed by some additional constraints are searched. So, the right-hand side values of the constraint, which

stands for the objective that is being optimized in the first place, is updated and the model is changed, so

that a new solution has a better value of this objective under the same requirements on all other

objectives. The main advantages of using this algorithm are as follows:

 This algorithm generates the whole Pareto surface without performing full enumeration.

 This algorithm is a good method for determining the true Pareto and assessing the global Pareto

proportion for approximation algorithms.

The following are the algorithm’s disadvantages:

 This algorithm generates the whole Pareto surface by starting from one corner of the Pareto

region and then iteratively finding a neighboring non-dominated solution. Hence, this algorithm

61

produces the Pareto front by growing it locally. Therefore, it is not implementable in parallel

computing and requires considerable CPU time as the problem instance grows.

 An excessive amount of duplicate solutions are produced by the algorithm, which also increases

the CPU time. This problem is attempted to be overcome in a later version of the study by

documenting the same regions that should not be searched again.

The complexity of the algorithm grows exponentially based on the size of the Pareto space. Furthermore,

as the number of objectives increases, the number of iterations increases exponentially. While it is

difficult to make an average case analysis; the worst-case complexity analysis suggests that the

complexity can be expressed as , where is the number of points in a Pareto set.

Finding all non-dominated points of multi-objective integer programs by Lokman and Koksalan

(2012)

Lokman and Koksalan (2012) propose two algorithms that aim to generate all Pareto sets of MOIP

problems.

Algorithm I:

This first algorithm improves upon Sylva and Crema (2004) by reducing the number of constraints and

binaries through the change of objective function. One of the objectives is selected arbitrarily; let us

denote that m, and it stays as the main objective that is being maximized by the new special structure of

the objective. The basic form of the new objective function is as follows:

 ∑

where is small positive constant that ensures that resultant solution is nondominated. This objective

function generates the best non dominated solution in terms of the m
th
 objective. Considering this, the

improvement constraints used in Sylva and Crema (2004) has been reduced by one. Hence, rest of the

resultant model needs to be solved until infeasibility is as follows:

62

 ∑

 () ()

∑

 stands for the indices of solution points in the solution set, denoted by , collected so

far; is the active objective. It has been proved that if this model ends up with infeasibility, the

resultant will contain all of the nondominated points of the Pareto surface. This algorithm

requires additional constraints and binary variables in total.

Algorithm 2

The authors presented a second algorithm that improves upon the previous algorithm by

separating the main model into submodels. It has been observed that, at most, one constraint is

sufficient to define the region that contains the nondominated points relative to the available

points. Based on this, it is concluded that the right-hand side values of each p-1 objective for

each submodel can be determined more effectively.

This algorithm basically solves a different model for each nondominated point collected

so far in set . After setting the first point’s 1
st
 objective value as the right-hand side value of

in the below model, i.e.,
 the points in are searched for the point that has the value of 1

st

objective is greater then

;and maximum of values of 2
nd

 objective is set for the bound value

of 2
nd

 objective, i.e.,
 This continues until the pth objective, in a manner in which each time a

63

point is selected to set the next objective’s boundary by only considering the points in , which

are not dominated by the previously set boundary values:

Max ∑

s.t.

:

Two important improvements have been offered by the authors to prevent extra model

solving. The first is about setting the bounds. It basically attempts to improve the boundary

values. If an optimal solution is generated by using a certain set of boundary values,

 , then any boundaries that will be used between this point and will generate

the same solution.

The second suggestion is to use the information obtained from the submodel solves that

result in infeasibility. The authors proposed to store boundary values in a list that generates

infeasibility rather than using some boundary values vector that dominates one of the vectors in

this list as boundary value; since outcome will be nothing but infeasibility.

Although the worst-case complexity of the algorithm is presented as , with the

rules mentioned above applied, the number of models solved is observed to be significantly less

than the worst case bound on a small sample case with three objectives.

64

Figure 11: Projection of solution set onto z1-z2 plane for a three-objective MOIP problem

𝑧

256,294,336 1

230,319,335 2

275,271,328 5
273,337,331 4

240,347,299 6

253,296,333 3

𝑧
286,300,291 7

232,353,277 8

 Third objective is selected as the main objective

 Superscripts at each solution denotes at which order corresponding

solution is generated

65

Figure 12: Search space after obtaining first four solution points, according to Algorithm-2

3.2.2) B&B Tree Branching on objective values

3.2.2.1) MOB&B on Objective Space in Literature

Marcotte and Soland (1986) presented the first B&B algorithm, which is designed for the objective space.

They designed this algorithm as an interactive approach, which evolves based on a DM’s preferences and

does not rely on the Pareto optimality concept. The following generalization stated by Marcotte and Soland

(1986) is worth mentioning here:

A branch-and-bound algorithm is defined as the collection of rules which specify

following: (a) how to determine whether a given subset Yi can or cannot contain

an optimal solution, and how to recognize an optimal solution; (b) how to carry

out branching at each intermediate node; (c) how to calculate the upper bounds

and (d) how to choose an intermediate node for branching. Such an algorithm

terminates because either an optimal solution has been identified or no

intermediate node can be chosen for the next branching.

𝑧

256,294,336 1

230,319,335 2

275,271,328 5
273,337,331 4

240,347,299 6

253,296,333 3

𝑧

1

2

Infeasible

66

Their algorithm applies both to the case in which the feasible set is convex (e.g., MOLP) and to

the case in which the feasible set is discrete and non-convex. Furthermore, the algorithm is

designed as an interactive algorithm. However, it only requires the DM to make comparisons

between two or several points in the objective space (points that are not always feasible). It is

claimed that the hypotheses required regarding the DM’s preferences are minimal. In other

classical B&B approaches, a solution found at a node is rejected only if the ideal value of current

node is dominated by an efficient solution. In the algorithm presented in this paper, a node may

be rejected because its ideal (i.e., best values that each objective can attain at a node) is not

preferred by the DM to an efficient solution already found by the algorithm. The algorithm

proceeds with the calculation of ideal values of the newly created nodes. The incumbent solution

is defined to be that efficient point, among all those found thus far, that is preferred by the DM.

The node whose ideal is preferred (among the ideals of the newly created nodes) is inserted into

the master list, whereas the other nodes (which have been arranged in order) form the partial list,

Plist(k), corresponding to the separation of node Nk. They will only be inserted into the master

list later, when the preferred node gets to the "top" of the master list. At that time, the DM will

be asked to insert into the master list the successor, in its partial list, of the node that is about to

be separated. This insertion is only made, however, after verification that the ideal of the node in

question is preferred to the incumbent solution. Although the master list does not contain all the

intermediate nodes, it is totally ordered by preference and its first element is always the

intermediate node preferred (i.e., whose ideal is preferred) by the DM.

The algorithm can terminate in any of the three following ways: (a) the ideal of the first

node of the master list is feasible, (b) the ideal of the first node of the master list is not preferred

to the incumbent solution, or (c) the master list is empty. In case (a), it is the ideal that is the

67

optimal solution since it is no less preferable than the ideals of all the intermediate nodes. In

cases (b) and (c), the incumbent solution is optimal because it is, by transitivity, no less

preferable than the ideals of all the intermediate nodes. Cases (a) and (b) correspond to the two

ways to fathom a node in a usual B&B algorithm—by feasible solution and by bound.

Let Eff(Y) denote the Pareto set of problem defined as “Maximize y subject to ”

where y is a vector in . Nk the node examined, by Yk the proper subset of Y corresponding to

Nk, and by (

) the ideal of Yk. The first step of branching consists of finding a

point belonging to Eff (Yk) that is also guaranteed to be an efficient point for the original

problem.

To find an efficient point at node N, the following problem P is solved:

 ∑

where
 are all positive. It is claimed that, in the B&B tree, each node represents a nonempty

subset containing at least one efficient point.

Let be the collection consisting of the set {y
i
} and the sets { |

 } for

where

 ; , the separation at node Nk, is generally neither a

partition of Yk nor a cover of Yk. First, the set ⋃ is, in general, a proper subset of Yk.

Second, if p > 2, the intersection of the sets belonging to Y is not empty in general (see Figure 12

for pictures of the sets involved when p = 2 and p = 3, respectively). However, it is claimed that

the first of these two characteristics does not affect the validity of the separation since Y is a

cover of Eff(Yk) and the solution sought necessarily belongs to Eff(Yk) by the authors.

68

Figure 13: Two- and three-dimensional examples for the interactive B&B algorithm of Marcotte

and Soland (1986)

The proposed algorithm is supposed to be used for MOLP problems as well. Thus, they

have defined a small value, , which can help create discrete regions in which DM is indifferent

between the solutions that have less difference than .

There are two important observations about the proposed algorithm that may prevent

exploration of the entire Pareto front of a MOIP problem: The structure of the objective function

presented above is the weighted sum of objectives, which is simply the convex combination of

the points on the surface. Unfortunately, it is known that MOIP problems have a non-convex

Pareto structure and weighted sum can generate only supported points on the Pareto front, as

previously indicated. This means the proposed approach can only generate supported points to

the DM. If it is allowed to run until the end without any intervention by the DM, there is no

guarantee that the whole Pareto front will be obtained. In addition, the authors indicate that when

69

a number of objectives is greater than or equal to three, sibling nodes have intersecting efficient

frontiers. Hence, it is possible to determine the same solutions that in turn cause inefficiencies in

terms of running time.

3.3) Proposed Approach

The following algorithm is proposed for multi-objective problems with integer variables

(MOIP). This is the necessary condition in order to obtain a discrete Pareto surface that consists

of a finite number of solution points, as opposed to the case of MOIP’s mixed integer (MOMIP)

or linear (MOLP) counterparts.

The general idea behind the proposed approach is similar to the algorithm of Marcotte

and Soland (1986) in the sense that branching is performed on solution points in the objective

space. However, Marcotte and Soland (1986) uses a weighted sum approach to generate a new

solution at each node, and this can exclude the non-supported parts of the Pareto surface. In

addition, their algorithm includes searches on overlapping regions for sibling nodes, which might

increase the running time of the algorithm. Our approach aims to apply B&B in objective space

while avoiding these drawbacks. To achieve that, branching is done in a manner in which sibling

nodes create partitions of the efficient sets of the parent node without overlapping regions. Also,

in order for the algorithm to find both supported and non-supported points, weighted sum

structure is avoided. Instead, an objective function that focuses on optimizing one of the

objectives is chosen as the main structure, which is similar to that used in Lokman and Koksalan

(2012). As a result, the proposed algorithm can identify dominated and non-dominated solutions

during the solution process. In order to eliminate the identification of dominated solutions, we

developed fathoming rules with the help of some dominance relationships developed among

node types. The proof for the convergence of the algorithm, or finding all non-dominated

70

solutions, is also supplied. Suggested fathoming rules differ based on the memory requirements

and are discussed in more detail in the fathoming schemes section.

Assume we have the following general form of MOIP problem, P:

where ∑

 and

 are the positive coefficients of the decision variable for each

objective . As previously stated, the Pareto surface of the MOIP problems is a closed non-

convex set of a finite number of solution points.

The initial decision that needs to be made at the start of the algorithm is to choose one of

the objectives as the main objective, which will be optimized throughout the search tree. This

decision might affect the order of solutions obtained throughout the traversal, and accordingly,

this decision might impact total running time. However, none of these effects can be foreseen, so

this selection remains somewhat arbitrary at this point. After making this decision, the main

objective and all other objectives are combined into one single expression that is used as the

objective function throughout the algorithm. This structure is the same as the one used by the

second algorithm of Lokman and Koksalan (2012). This structure is primarily used to generate

the best solution in terms of the main objective while eliminating weakly dominated solutions on

the valid feasible region. With the usage of this objective, a single objective MIP is solved at

each node, denoted by .

Let p denote the number of objectives, again and assume the p
th

 objective is the effective

objective. Then, the following MIP problem, P1, is solved:

71

P1: Max ∑

s.t.

where is a sufficiently small positive constant that prevents obtaining weakly nondominated

but dominated solutions. Let the optimal solution obtained as the result of above model at node i,

 , be represented by

 ; and let denote the set of nondominated solutions on

 . Based on the B&B idea, is the predecessor of some child nodes. We note that, unlike

the single objective B&B, the number of children of a node is more than two nodes.

A sample Pareto space with three objectives is represented in Figure 13. In this example,

the optimal solution of the current node, can be used to divide the whole area of into eight

sub-regions, which can be expressed as in general. In this expression, “2” comes from the

number of partitions obtained by considering the ‘<’ and ‘>’ sides of each axis, with being

the origin of whole partitions. Since there are “p” many axes to consider, the total combination

adds up to . Hence, each sub-region becomes a branch of a node on the B&B tree.

72

Figure 14: Partition of objective space based on a single solution point in three objectives

Figure 15: Partitions that contain the Pareto solutions based on their 3
rd

 objective value

𝑧

𝑧

𝑧

𝑧𝑖

𝑧

𝑧

𝑧

𝑧𝑖

A

73

Figure 16: Partition space for a three-objective MOIP

The sub-problem solved for each sub-region corresponding to node can be defined as:

P2: Max ∑

s.t.

:

where and are the bounds on objectives, which are determined using the parent

node for each node. In order to construct the sub-regions, number of constraints are

added at most to the existing ; of them are upper bounds; of them are for lower

bounding.

𝑧

𝑧

𝑧

𝑧𝑖

B

74

A nondominated solution that has the best value of objective on is generated by the

objective function of P1 at the root node. This means there is no need to search the region for

better values of objective (i.e., , which is the p
th

 objective value of last generated solution.

Moreover, the objective function form prioritizing p
th

 criteria with an augmentation term ensures

that there can be no weakly nondominated solutions in the sub-region of with a better p
th

objective value than (Steuer 1986). Accordingly, we can exclude the solutions with
 value

in the lower levels of the B&B search tree. Hence, the algorithm evolves in a way that generates

smaller values in terms of the p
th

 objective at every level, adding only an upper bound constraint

for the objective p.

At the root node, all upper bounds are initially set at infinity, and all lower bounds initially start

with negative infinity, which means there are no boundary constraints at the root node.

For each branch, i.e. child node, a different combination is created in order to maintain the

general branching idea. For all nodes but the root node, boundaries are determined initially based

on the Pareto solution produced by parent node. ,
 acts either as upper bound or

lower bound for a child node of node . So, with the exception of the root node, the j
th

 objective

lower and upper bounds for each sub-problem are determined by two values: (1) the j
th

 objective

of the solution obtained at the parent node, and (2) bounds of the parent node for the j
th

objective. At this point, an important remark should be made about difference of applying the

upper and lower bound. For the problem P2, the upper bound is set as inequality, while the lower

bound is set as strict inequality while using i.e.,
 and

 in order to ensure

sibling nodes are optimized with mutually exclusive regions without identifying the same

solutions. These boundaries need to be combined with the boundaries inherited from the parent

75

node in order to determine the sub-region of the node that will be optimized to find or fathom a

new solution.

Based on the refinements mentioned so far, the model that needs to be solved at each node can

be formulated as follows:

P3: Max ∑

s.t.

 (1)

 (2)

:

 (p-1)

 (p)

This can be seen in Figure 15 and Figure 16 clearly. In Figure 14, it can be observed that the area

that has greater values in terms of objective p (in a three-objective context p=3) has been

eliminated due to the fact that the best point of p
th

 objective has been obtained at the root node.

That is, plane A in this figure represents the constraint p of model P3.

By eliminating the area that contains the values better than
 of node i, the number of sub-

regions to be searched is reduced from . Since the number of dimensions is reduced by one,

the resultant number of sub-regions, namely the branches on each node, becomes .In

76

Figure 15, plane B represents the whole two dimensional search region, which has bounds on it

for all but the 3
rd

 objective.

3.3.1) Branching Strategy

Lower and upper bounds are attributed to each child node, , . To determine the

boundaries of the sub-region, the algorithm uses both the solution of the parent node and the

bounds inherited from the parent node. Let us refer to the bounds determined by the new solution

at node , , “new solution bounds,” and denote them as

 and

, .

These bounds can be determined by generating all combinations of strictly greater than, , and

less than inequalities, , for each objective . The following nested loop

structure can be used to assign the bounds that need to be set due to :

for j1=1..2

if j1=1,

 else

for j2=1..2

 if j2=1,

 else

:

for jp-1=1..2

 if j p-1=1,

 else

end

end

end

77

This procedure can be named the “child creation: step 1” since the child creation requires one

more important step.

Similarly, let us name the bounds inherited from the parent node as “parent node bounds” and

denote them as

 and

, . The necessary methodology to determine

the final bounds for each child node ,

 , which is used in the model of the node, can be

summarized as follows:

For at node

 If

 then

 =

else

 If

 then

 =

else

It can be summarized as choosing the most restricting value among

 and

/
 and

 for each objective; there is a smaller value for the upper bounds, i.e.,

 max{

}; a bigger value for the lower bounds, i.e.,
 =

 .

This procedure can be named as “child creation: step 2.” At the end of these two steps, we

perform a minor verification, as follows:

 If

 then

Indeed, the search region of this node will already be contained in other nodes. Proposition 2 in

the next section shows this result.

As mentioned previously, lower bounds are applied as strict inequalities, while upper bounds are

applied as inequalities. In the pure integer context, strict inequalities can be converted to

78

inequalities by subtracting from
 , where is a positive real number with . Recalling

that this algorithm is proposed for MOIP models, each solution with different objective values

differs from the other by at least “1”; thus we can use , or . This

convention is also useful in creating mutually exclusive search spaces for each sibling node,

which is explained within the proof of Proposition 1 in the next section.

It is indicated previously, that there are child nodes of a node. However, special structure

of the objective function and the way branches are constructed can further be exploited to reduce

this number. That is, searching in the sub-region of one of the child nodes is actually redundant

since it is guaranteed to generate a dominated solution unless infeasible. Hence, the number child

of nodes can be reduced by one for each node; i.e, nodes are created per node. The

reason this particular region contains dominated solutions is clarified with the following

proposition.

Proposition 1 (Redundant subregion elimination): Let denote child node of ,

which has as set of non-dominated points; the sub-region is determined with the

following bounds:

 for P1. It can then be

concluded that ; the same solution as parent node or a dominated solution is

obtained as the result of this solve.

Proof: Let denote the solution that is generated in this particular branch. We know that

the points generated by child nodes generate results with equal or worse values than the parent

node (i.e.,

). For the other objective values of this child node, ,

since
 {

 }.

79

Let’s assume for all dimensions that

; this means all the

 are forced to

be less than or equal to
 for all but the main objective. The objective function has to find the

solution that has greatest on this region, which means

 . We also know that all

other objectives are required to be less than or equal to the
 . Hence, the objective function

that identifies the greatest value for the main objective and a total sum of other objectives is

supposed to generate the same solution .

Let’s assume for objective i,

 and

 for all others, which means

all the

 are forced to be less than or equal to
 for all but objective . Since

 {

 } for node k, it will be

 for child . Hence,

 The objective function has to find the solution that has greatest on this

region, which means

 . We also know that all other objectives are required to be

less than or equal to the
 .On the other hand, the solution will be strictly less than for

objective I. Hence, the solution that will be generated under these circumstances will be strictly

worse than for one objective, even though it is equal to in all other objectives. So

 .

This conclusion completes the proof

3.3.2) Node selection and Stopping Condition

In the classical B&B method for integer programs, “breadth first” and “depth first” are the two

main strategies followed while traversing the tree. Depending on the use cases of the model, both

have some advantages and disadvantages. In the proposed approach, the algorithm starts with

80

“breadth first” traversal of the tree. Figure 16 illustrates how breadth-first evolves with child

creation procedure.

Figure 17: Proceeding of breadth first on a B&B for a three-objective MOIP problem

When this algorithm is allowed to terminate without any intervention, it generates all Pareto

solutions of the original problem. The following two propositions prove the validity of this

claim. The first proposition establishes the mutual exclusivity of the child nodes in the objective

space.

Proposition 2 (mutually exclusive solutions): Let denote the child nodes

of . Let denote the set of non-dominated solutions that can be generated

by the subtree of each child node, with being the set of non-dominated points for itself

Then we have mutual exclusivity, ,

81

Proof: Let all the feasible solutions in search space of be denoted by . It is then observed that

 . At this point, it is assumed all alternative solutions, i.e., those with the same objective

values but that differ in terms of decision variables, can be obtained once one of the alternatives

is identified.

Recalling the steps of child creation, namely steps 1 and 2, the bounds for the solution of

this node can be shown as bounded as . Using this result, the following scenarios

emerge in terms of the boundaries of child nodes:

The solution for parent node, , might fall in somewhere between the upper and lower

bound, or . Then the boundaries for each child node of k are determined by

using and by following the procedure defined in previous section. As child

creation: step 1 of the procedure suggests, is used as lower and bounds for each objective

 in such a way that each child will have a different set of bounds. For those

child nodes that have
 as the lower bound, the

 acts as the upper bound; the other child

nodes that take on the upper bound values as
 ;

 act as the lower bound. In this setting,

even if two nodes use
 as the lower or upper bound at the same time, and both nodes generate

solutions on this border, these solutions have to differ in terms of at least one of the objectives

because of the different combination of boundaries created; hence, the solutions are different

from each other.

The second case is when

 for the child nodes
 and accordingly

 hence, the search region on the dimension reduces to a single point, which is

 .

Assume this child node has the set of A as the upper and lower bounds for the rest of the

82

objectives, i.e., A={ } where . However, there is another node

with the same set of bounds A, but
 ; since upper bounds are set as inequality, this

allows for the generation of solutions with
 . Hence, nodes with

 are redundant

and fathomed with a check in the procedure; remaining nodes do not have overlapping regions,

as shown in the first part of the proof.

Hence, each child node is a mutually exclusive partition of the solution space defined by the

parent node. Another important characteristic is whether these mutually exclusive sub-regions,

defined by all child nodes, cover the entire solution space of the parent node. Next, we show that

these child nodes cover for the search region of parent node minus its solution point; i.e., the set

of non-dominated points of a parent node can be obtained by finding all the non-dominated

points of the child nodes except for the solution point obtained at the parent node.

Proposition 3: []

Proof: At the branching strategy part, it has been shown that , or the set of all feasible solutions

that lies on , is divided into two around on all dimensions except for p. At

this point, it can be observed that all dimensions of
 are used as bound and are

included in the search space of the child node m as upper bound,

 , when

 .

It has already been shown in a previous proof that a child node is fathomed when

 and

includes some other nodes as the upper bound. The only region that is left that is also covered by

child nodes is the upper border of the parent node, i.e., . By resorting to the same case

partitioning again, if the solution of parent node is between the upper and lower bounds

 , there will be some child nodes that use as the upper bound and as the lower

83

bound. And
 is divided into two for the rest of objectives; hence, it will be covered as

being the upper bound by node I, which has also one of

 or

 ” combinations

of . If the solution is on the upper bound of some or all of the coordinates, i.e.,

 = the upper bound can be thought as the in the previous argument, and it can be

concluded that is covered for this case, too.

Furthermore, only one of these regions is omitted due to Proposition 1, which is proven not to

contain any new non-dominated solution.

Hence, it is proven that the proposed algorithm does not generate duplicate solutions and

explores the entire solution space in which nondominated solutions might exist.

Lemma 1: All the nodes at the same level have mutually exclusive solution sets, and a

combination of their search regions is equal to the search area of original problem.

Proof: From the observations in Propositions 2 and 3, we arrive to this result by considering that

all child nodes on a level are the children or grandchildren of some sibling nodes. We know that

siblings have no intersection and cover all the search space of their own parent.

A numerical example is shown in Figure 18, and Figure 18 illustrates the steps of the proposed

algorithm for the following knapsack problem.

Where

 [

]

84

 [

]

 []

 []

Figure 18: Root node and its branches and their corresponding region projected on two

dimensions for the sample problem

Figure 19 : One of the child nodes of the root node and its branches and their corresponding

region projected on two dimensions for the sample problem

256,294,336

𝑧

𝑧

 𝑧

𝑧

𝑧

𝑧

230,319,335

275,271,328

273,337,331

256,294,336

230,319,335

275,271,328 273,337,331

Not

searched

𝑧

𝑧

 𝑧

 𝑧

 𝑧

𝑧

𝑧

𝑧

Infeasible

/FATHOM

240,347,299

253,296,333

230,319,335

𝑧

𝑧

Infeasible

256,294,336

230,319,335

275,271,328

Not

searched

273,337,331

Not

searched

240,347,299

253,296,333

𝑧

𝑧

85

It should be added that even though a node is automatically fathomed per the infeasibility (see

Proposition 1), the problem size will grow exponentially due to the addition of an exponential

number of nodes. Hence, it is always worth investigating what further actions can be taken in

order to reduce the number of nodes to be explored. At this point, it is important to delve further

into domination relations between nodes of the B&B tree. Propositions in the next section

attempt to reveal these relations more rigorously. For our purposes, we make the following

definition:

A “dominating corner (DC) node” of a parent node is the one with all branching constraints that

guarantees that the solution will be better than the solution of parent node for all but the main

objective, or if this node is represented by i,

 . All other child

nodes are called “regular nodes.”

3.3.3) Domination Relationship between Nodes

The following two propositions establishe the dominance relationships between parent and child

nodes.

Proposition 4: None of the child nodes can dominate the parent node.

Proof: Recall that node that is worse than all but the main objective is excluded from the search.

In the remaining nodes, there are regular nodes and the dominating corner node.

For the regular nodes, it is required that they are better than their parent node for at least one

objective with the branching constraints, but worse at least for one objective.

For the DC node, all but the main objectives are required to be better than parent node. Assume

there does exist a solution which is strictly better than all but main objective is generated by this

child, which has equal value of main objective to the parent node for the main objective, , then

86

the objective value would be higher than the value obtained at parent node. However, this

contradicts the fact that, parent node is maximized over the superset of the same search space

with the same objective function.

Lemma 2: A parent node cannot dominate a child node.

Proof: The proof follows from the fact that branching constraints are set up in a way that the

solution of the parent node is improved for at least one of the objectives for each child node.

According to Proposition 1, only the child needs to be less than the solution of parent node is

never created.

The following propositions are presented to show the relationship between sibling nodes and

nodes in different generations (levels).

Lemma 3: A regular child node of a parent has a solution whose main objective equals or less

than solution of parent node; the solution of the DC node’s main objective is strictly less than the

main objective value of parent node.

Proof: The proof follows from the last part of Proposition 4 for a DC node. On the other hand, a

solution with the same value as main objective can be generated by a regular node, with the

requirement that total of all but the main objective values is less than the parent node’s solution

value. That is, let denote this child node, and and solutions of the child node and parent

node, respectively; then,

 can happen if ∑

 ∑

 . Otherwise, would

have been identified as the optimal solution of the parent node.

Proposition 5: Solution of a DC node can dominate the solutions obtained from regular siblings

of the DC node.

87

Proof: Let us denote the solution obtained from DC node as ,the solution of a regular

sibling as , and the solution of their parent as . Both of the child nodes will have
 as

upper bound on their objective. Let node be required to be better than for a set of

objectives and worse than or equal to
 for objective(s) m, s.t.

 and based on the definition of regular node. Then, if

 and

 , which is a possible case, and

 ; besides, it is already guaranteed

that

 , by the nature of branching constraints; i.e., DC node is

forced to be better than for all but objective , whereas

 . Hence,

Proposition 6: The child of a DC node can dominate a solution obtained from sibling nodes of

corresponding DC node.

Proof: In addition to the notation used in the previous proof, let denote the child node of the

DC node and its solution by . Then, it is claimed that there can be cases where

even if is not dominated by . We first need to assume that and

 in all objectives, which is a possible case.

Let

 (since it is allowed that

 , this outcome is possible) and

 (since it is allowed that

 , this outcome is also possible). In addition to this, set A

is defined in the same way as the previous proof:

 hence,

 ; hence, and . Then, assume

 , (since

it is allowed that

 , this outcome is possible); and for the rest of the objective

dimensions and

 where . On the other hand, assume for the

subset of ,

 and

 that dominates for the

88

objectives in set . For the rest of the objectives, it is already guaranteed that

 with the branching constraints of node . This observation completes the proof

Based on this proposition following lemma can be added.

Lemma 4: The child of a DC node can dominate a solution obtained from the children of the

regular siblings of the DC node.

Proof: For this case, assume that and in all objectives,

which a possible case. In addition to the notation used in previous proof, let denote the child

node of regular node , which is also a sibling of node . Following the proof of Proposition 6,

if it is assumed that

=

 and

 for , it can be concluded

that
 dominates

All of these conclusions are represented in Figures (a) and (b), where (a) shows the case between

DC and regular siblings of a generation, and (b) shows the case between two generations. The

second generation is classified only based on the nature of their parents.

89

Figure 20: Domination relations (a) for sibling nodes based on their own types, (b)for nodes in

different generations based on their parent types, and (c) for the nodes in different generations

based on both their parent types and their own types

can dominate

(a)

(b)

2 1 1

4 4 4 4 4 4 3 3 3

(c)

90

Figure 21: Representation of each node type for a problem with three objectives

Table 7 summarizes the domination relationships among nodes more accurately. It can also be

observed in Figure 19, Part (c). In addition, Figure 20 shows the representation of the each node

type for a problem with three objectives.

1. Regular node

2. DC nodes

3. Child of the DC node

4. Child of the regular node

Not

searched

(3)

(4)

(4)

(4)

(4)

(4)

(4)

(3)

(3)

Not

searched Not

searched

Not

searched

(2)

(2)

(2)

91

Table 8: Domination relations: (if row element dominates column element, ‘yes’; otherwise ‘no’)

 (1st type) (2nd type) (3rd type) (4th type)

(1st type) no no no no

(2nd type) yes - no yes

(3rd type) yes no yes1 yes

(4th type) no no no yes2

3.3.4) Fathoming of Nodes

Based on the domination relations presented for the proposed algorithm, some nodes can be

removed from further consideration; in other words, there is no further branching on these nodes.

This is the “fathoming” operation, as in the case of single-objective B&B. Fathoming in the

proposed approach is performed for two reasons: infeasibility of a node or derivation of some

upper bounds through the use of domination relations between nodes, as described in the

previous section.

1. Fathoming due to infeasibility: Following lemma shows that a node with infeasible solution

can be eliminated from further consideration.

Lemma 5: If the solution of a node is infeasible, all of its child nodes will result with

infeasibility.

Proof: According to Proposition 3, a parent node has the search region that contains all the

Pareto solutions that can be generated by its child nodes. So if the Pareto set existing in the

search region of node k is empty then .

1
 This is possible if this child node is also DC node

2
 This is possible if this child node is also DC node

92

2. Fathoming due to upper bounding (domination): A DC node solution can dominate its

regular sibling based on Proposition 5. Besides, descendants of a regular node can be

dominated by its DC sibling and all descendant nodes this DC node, based on Proposition 6

and Lemma 4. These two simple derivations cause nodes to generate a dominating result of

solutions that can be used as upper bounds for fathoming the next nodes to be created. Due to

Lemma 2, this node cannot be fathomed totally. It has the potential to create non-dominated

solutions. On the other hand, if a node itself is dominated either by its DC sibling or

descendant of a DC (grand) uncle, the child nodes that will be created from this dominated

node can also be dominated by the same node. This result can sometimes be reached directly,

just by comparing the upper bounds attributed to the new child node with the dominating

node. If the upper bound of the newly created node is dominated by the same node that

dominates the parent node, this child is fathomed totally.

Figure 21 shows a sample case with three objectives. In this figure result of node (3) is

dominated by its DC sibling, node (1). After observing this domination, the bounds of the

child nodes of node (3) are determined. However, before solving these child nodes, if the

upper bounds of each child node (3.1, 3.2 and 3.3) are compared with dominating node(1), it

is observed that none of the solutions obtained from node (3.2) can outperform the result

obtained from node (1); hence, this child node can be fathomed.

As it can be observed from this example, with increasing fathoming, the size of the tree to be

traversed shrinks accordingly. However, keeping track of ancestors of a node requires significant

memory. The task of keeping the record and comparisons of the DC node versus regular node

might be cumbersome. Besides, creating an upper bound pre-requires finding a node that

93

dominates the parent node. This means that before coming up with an upper bound, some

domination checks needs to be made. As the number of this comparison increases, the runtime of

whole algorithm also increases. Hence, it is possible to design the algorithm in a way that keeps

the record of ancestor relations for a reasonable number of generations. This way, the size of set

of nodes that can dominate the newly generated solutions is kept in a reasonable size.

Accordingly the number of domination checks and the memory requirements for storing the

record of relations between nodes is kept manageable.

Figure 22: Fathoming sample on a problem with three objectives.

The following two propositions show that the proposed algorithm converges and that the

converged set includes all the Pareto efficient solutions.

Not

searched

1.1

2.1

3.1

2.2

2.3

3.2

3.3

1.2

1.3

Not

searched Not

searched

Not

searched

Dominated

Fathomed

94

Proposition 7: Proposed algorithm terminates.

Proof: Assume one node is created and solved for all the solutions on the feasible space.

Since it is proven that none of the nodes generate duplicate solutions, and solution set of the

problem is finite; child nodes that are created from the last identified solutions will result

with infeasibility; hence, it will be fathomed

Proposition 8: Proposed algorithm can generate all Pareto points.

Proof: All of the solution space is covered by search space of root node since upper and

lower bounds of root node is plus and minus infinity. The objective function optimizes main

objective, , over this region, avoiding the weakly dominated solutions, i.e., solutions with

the same main objective value, but having a smaller value of sum of other objectives. By

Lemma 3, there is no way of skipping a value between generations; i.e., there cannot be a

solution between the optimal solution of node , , and solution of one of its child node

 , such that

 . Besides, by Proposition 3, child nodes cover the same space

without skipping any region. Only region that is excluded is the part of solution space where

it is proven that no Pareto solution can exist by Proposition 1. That is, no solution point

which can be a Pareto candidate is skipped in both vertical and horizontal directions of .

Then, it is obvious that algorithm will terminate with a solution set which contains Pareto set

of the problem

Effect of fathoming can be seen in the following tables which belong to the small knapsack

problem used to show branching structure and presented above where first objective is the

main objective.

95

Table 9: Results without fathoming in 4.813 seconds

node # Obj 1 Obj 2 Obj 3

1 286 300 291

2 273 337 331

3 261 324 236

4 275 271 328

6 240 347 299

7 230 319 335

8 234 333 267

10 253 310 259

11 256 294 336

12 271 288 328

13 251 247 330

20 232 353 277

23 211 311 280

24 203 317 258

25 230 304 274

27 253 296 333

30 238 298 296

44 215 310 282

Table 10: Results after fathoming applied by using the nodes at the same level in 3.109 seconds

node #
Solution
point 1

Solution
point 2

Solution
point 3

1 286 300 291

2 273 337 331

3 261 324 236

4 275 271 328

6 240 347 299

7 230 319 335

8 234 333 267

11 256 294 336

12 271 288 328

13 251 247 330

20 232 353 277

24 253 296 333

96

In this small sample, rows which are presented in bold represent the true Pareto solutions.

Solutions shown in italics in Table 8 are the solutions of fathomed nodes which do not appear in

Table 9. Total number of nodes traversed is 44 in the first tree, whereas this number reduced to

24 in the tree with fathoming. More exhaustive test results are presented later in the

computational experiments section of the chapter which aims at assessing the effect of

fathoming.

3.3.5) Pareto Filtering Strategies

Based on the domination relations presented previously, the proposed approach finds solutions

that can be dominated by another solution that is obtained in the later stages of the solution

process. In order to have a 100% non-dominated set, it should be waited till the algorithm

terminates. At this point, it is obvious that some type of filtering is necessary in order to

eliminate dominated points from the solution set, generally called as “Pareto Filtering.” This

step creates another variation point for the proposed algorithm. The most common approach is to

perform filtering in the end. Alternatively, the filtering could be performed after finding of a new

solution or intermittently, e.g., filtering every other 100 solutions or at the end of each level. The

obvious tradeoff is the computational time spent during the filtering and the improved efficiency

through the increased and timely node fathoming.

Simultaneous Filtering: At the end of a MIP solve at each node, unless it ends up with

infeasibility, a new solution is obtained and this solution can be dominated by or dominates one

of solutions added previously to the solution set. If a solution named based on the node it is

obtained, and is represented by , the set of nodes that have the potential to generate the

solutions which can dominate the solution , can be represented by ; while set of nodes

which can generate solutions that can be dominated by the a can be denoted by . So filtering

97

means, after the new solution is obtained at , checking if it dominates any of the solutions in

 ; or being dominated by any of the solutions obtained from . This later step is similar to

the actions that can be taken during the derivation of upper bound to be used for fathoming.

However, covering all is not a must for fathoming; on the other hand if one wants true

information about Pareto optimality of a solution, it is necessary to make sure all elements of

 is covered.

Elements of and are determined according to the propositions presented in the section

about “domination relationships between nodes.” According to these relations, node , can be in

S set for node , but can be in set for another node , i.e. . Figure 23 below

shows this type of a node on a three-objective-case. Since is child of the DC uncle of and ,

it can dominate both of them; However, since is DC node of its own small family, it can

dominate its regular sibling . Based on this observation it can easily be deduced that, S and I

sets of each node needs to be dynamically updated during a tree traversal, which require keeping

significant amount of information in memory or some type of recording process which requires

and writing in order to construct the each S and I set of a solution correctly. By following this

filtering technique it can be guaranteed that none of the solutions obtained so far can be

dominated by the solutions in the candidate solution set, although it does not guarantee that one

of these points cannot be dominated by a solution that can be obtained by one of the succeeding

nodes. Besides, the result of domination check for set S can also be used for fathoming of nodes.

As the cardinality of set S increases, fathoming becomes more powerful in reducing the size of

the tree; hence, using the information regarding set S of each node fathoming due to upper

bounding is used at with highest performance.

98

Figure 23: Changing S and I memberships for a node in a MB&B tree with three objectives

Final filtering: As opposed to filtering the results simultaneously, one can choose to filter all the

solutions obtained during the traversal of tree at the end of termination of tree search as a last

step to the algorithm. The filter that is used for this type requires checking if a solution is

dominated by any of other the solutions in the solution set, which is done by each solution with

all others and removing it from the set if it turns out to be dominated by one of the solutions. The

advantage of this method is that it needs less memory space since it does not necessarily require

to keep the information among nodes. On the other hand, its disadvantage is that is does not have

a clear idea about the domination chances of a solution point, which is a concept that will be

clarified in 3.3.6) Probability of being non-dominated for solution set.

Intermittent filtering: The third option is to have intermittent filtering. To summarize,

simultaneous filtering goes hand in hand with the fathoming procedure and can supply all the

information that is necessary for fathoming as well, which helps keep the tree size under control.

Furthermore, by keeping the domination relationships among all nodes, we only need to compare

a solution with the ones that have the potential to dominate. On the other hand, retrieving all the

information regarding the previous nodes requires either memory or spending time on read/write

processes, and final filtering does not suffer from this advantage. Hence, a filtering approach

 a b c

99

based on intermittent filtering keeps the complete information in memory for fathoming (i.e.,

S(c), for each node), but performs the final filtering at the end (i.e., not keep information of I(c)

for any node c). Since this approach provides all the available information necessary to take

advantage of fathoming while reducing the storage requirements, this method is used during the

computational tests conducted for the assessment of the general performance of the algorithm.

3.3.6) Probability of being non-dominated for solution set

As stated above, not all solutions generated up until an intermediate stage of the

algorithm are guaranteed to be Pareto optimal. Hence, we developed a probability measure of

being dominated that can be helpful when results are evaluated by the user if the proposed

approach is terminated before the convergence. Similarly, these results, at intermediate steps,

could be used to provide real-time information to the user on the non-dominance probability of

solutions found thus far. To the best of our knowledge no other existing approximation methods,

either exact or meta-heuristic, supplies this type of information.

A solution can be dominated if another point is generated that has equal or better values for all

the objectives, one of which is strictly better. Indeed, the best solutions for each objective,

namely the anchor points, supply the broadest estimate how much a solution can be improved

upon in one dimension on the solution space. The probabilities are calculated for each objective

in the objective space. Hence, this value can always be used in order to calculate the sample

space for this probability. However, we claim that it is possible to come up with more accurate

estimates about this probability in the context of proposed algorithm. Actually, the search space

is restricted by the area of active nodes, which means the search space can be much smaller than

the region determined by the anchor points. Hence, the total area defined by all active nodes

100

which have the potential to generate points that can dominate the current node give the sample

space for probability. So, the calculation of this measure can be summarized as follows:

 Set of active nodes when node c is about to be solved

 ∑

 ∑

 ∏(

)

The above probability measure is defined for node c’s solution. An aggregated probability for the

entire set of solutions could be calculated by averaging of all the individual solution’s probability

measures. This type of a measure is calculated for the samples in the computational results part.

Given the critical role of the active nodes in accurately estimating the probability of domination,

the node selection strategy of the proposed MOB&B for branching is breadth first. This way we

ensure that we always have well-dispersed active nodes with similar sized node specific

unexplored search spaces. Hence, at any given time, the set of active nodes can be either from

the same level or at the next level of the current node. However, this is not a necessary condition

to calculate this probability. If one wants to apply the algorithm with the depth-first approach,

the calculation presented previously is still valid.

101

Figure 24: Current node and relevant regions of active node represented on the three objective

MOIP example

Figure 25: Snapshot of a sample tree showing current node and all active nodes with three

objectives

Infeasible

256,294,336

230,319,335

275,271,328

Not

searched

273,337,331

Not

searched

240,347,299

253,296,333

Whole region of the active node which has potential to

generate a solution that can dominate current node

Exact region which a solution that can dominate

current node can be obtained for the active node

Current

node

Current

node

Active nodes at next level

Active nodes at same level

102

3.3.7) Parallelizing the algorithm

As mentioned earlier, the proposed algorithm can be run in parallel, which is extremely useful

from the computational perspective. There are two ways to run the algorithm in parallel,

depending on whether the solution is aimed for the whole Pareto set or a well-dispersed

approximation.

Different main objectives in parallel: The proposed algorithm, irrespective of which objective

is selected as the main objective, is guaranteed to find the whole Pareto set as long as it is run

until convergence, or when all the active nodes are fathomed. However, an early termination the

proposed algorithm (e.g., prior to fathoming all nodes) would lead to different solution sets for

different choices of the main objective. This parallelization approach is preferable for generating

well-dispersed solution set that is an approximation of the whole Pareto set. This parallelization

approach selects different objectives as the main objective and assign each main objective’s run

to a separate thread. When the solution process is terminated, the solutions from each thread are

combined and filtered to obtain the final approximating set.

 Siblings in parallel: This is a method that can be resorted to when the proposed

algorithm is used to obtain the whole Pareto set. After the root node, nodes at a level can

be partitioned into groups and can be restarted on different machines, threads, etc., by

carrying over the boundary information from root node. This is due to two reasons:

 The search space of each sibling is mutually exclusive (Proposition 3).

 Since the search spaces of the nodes do not change, domination relations among the

nodes also do not change. That is, intermediate filtering is not a must for the algorithm;

103

thus, all solutions gathered from different parallel runs can be combined and filtered at

the end or even some intermediate moments before termination.

This method of parallelization can be thought as switching from breadth-first to depth-first

search, starting from an early stage of the algorithm (after the root node) and proceeding with

breadth-first again on the separate reduced trees. For any type of parallelization, as long as all the

solutions are combined to be filtered, all solutions can still be supplied with precise probability

calculations for being non-dominated.

3.3.8) Handling alternative solutions

There might be more than one solution in decision space, which results in same objective values,

namely alternative solutions. Since the algorithm is designed to run in the objective space, it

cannot differentiate between two solutions that are identical in terms of objective vectors but

distinct in terms of decision vectors. However, if this algorithm were used as a decision support

tool, there are a couple of ways to reach alternative solutions, none of which are hard. If one is

interested in alternative solutions for a certain objective value outcome, the same problem can be

resolved by adding as many constraints as the number of objectives, each of which would fix the

values of corresponding objective to the value of preferred solution and generate different results

by inserting the algorithms that generates alternative solutions. In many optimization software

packages, this property is implemented as a side tool that can be coded within the algorithm with

a single command, based on a user inputted option.

104

Figure 26: General flow chart of the breadth-first algorithm

Select main

objective, 𝑝

Optimize

node

Terminate

Infeasible

Create 𝑝 children; Insert

parent node; DC node; sibling

information; next node

information

Feasible

Insert the

boundaries

based on

solution of

parent node

Inherit the

boundaries of

parent node

Determine final

bounds for child

nodes

Check if node

is dominated

(Inside Filter)

Check if child

bounds are

dominated

Fathom the

child node

Dominated

Dominated

Check if

there is next

node of

current node

Exists

Not Exists

Final Pareto

Filter

105

Figure 27: Pseudo-code of the algorithm

3.4) Experimental Results

3.4.1) Sample Problems

For testing purposes of the proposed algorithm, three MOCO problem types have been used, the

multi-objective knapsack problem (MOKP), the multi-objective shortest path problem (MOSP),

and the spanning tree problem multi-objective (MOST). These problems are solved with a

STEP 0 (Root node): Set main objective, 𝑖. Solve model P3 with no bounds on

objectives; i.e., set the 𝑙𝑏𝑗 𝐼𝑛𝑓𝑖𝑛𝑖𝑡𝑦; 𝑢𝑏𝑗 𝐼𝑛𝑓𝑖𝑛𝑖𝑡𝑦 𝑗 𝑝 . Initialize

Pareto Candidate Set, i.e., 𝐸 .

 If solution is feasible, obtain the objective function values for corresponding

solution, 𝑧 ; 𝐸 𝐸 𝑧 ; create child nodes of root node; current node=first

child node of root node. If solution is infeasible STOP.

STEP 1(Bound setting): Compare the bounds of current node with the bounds of

parent node and set the final bounds, 𝑙𝑏𝑗 and 𝑢𝑏𝑗 at P3.

STEP 2(Optimization): Solve P3. If feasible, obtain the objective function values

for corresponding solution 𝑧𝑗
 j 𝐸 𝐸 𝑧 ; continue with Step 3. If

P3 is infeasible go to step 6.

STEP 3(Child creation): Create child nodes, make connections between them,

enter level and relative information. Enter the bounds based on 𝑧 ; i.e., solution of

current node.

STEP 4(Domination check): Check if 𝑧 is dominated by its dominating list,

 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ; If dominated go to Step 5. If not dominated go to Step 6.

STEP 5(Fathoming): Compare the objective values of dominating solution with

upper bounds of child nodes; if any of them dominated fathom the child node.

STEP 6(Stopping condition): Check if there exists next node. If exists current

node=next node; return to Step 1. If next node does not exist STOP (or Final

Pareto filtering)

106

different number of variables and objectives. Instances used for each case are exactly the same as

the instances used by Lokman and Koksalan (2012) for the MOKP problem. These instances are

used to verify the results as well. However, for the other two problems, since formulation of the

problems differs slightly, despite the fact that inputs of instances are the same, the sample

models are not exactly the same. The following formulations are used in order to model the

relevant problems.

MOKP

Weights and profits of the items are generated as integers uniformly distributed between 10 and

100. The capacity of the knapsacks is taken as half of total weight:

∑

where

 ∑

 {

∑

107

MOSP

Preliminary experiments for the MOSP problem showed that the number of non-dominated

solutions is small when complete graph is used. Typically, there are several paths from source to

sink with a relatively small number of arcs in a complete graph, and these dominate many other

paths. In order to overcome this difficulty, special random graphs are generated, where source

and sink nodes are defined as 1 and n, respectively. The details about how these graphs are

generated can be found in Lokman and Koksalan (2012).

∑

 ∑

 {

where

 () ∑∑

 {

MOST

Multi-objective spanning tree (MOST) is the last type of problem used for testing purposes. In

order to have a mathematical program, the minimum spanning tree problem is formulated as a

multi-commodity flow problem. Then it can be written as follows:

108

∑∑

∑

 ∑

 {

where

 () ∑∑

 {

When there is a complete graph with n nodes, node 1 is defined as the supply node of n

commodities and the remaining nodes as demand nodes, where each demand node has a demand

for a different commodity of exactly one unit. Therefore, the difference of outflow and the

inflow of commodity k will be equal to 1 for the demand node k whereas it will be equal to -1 for

the supply node 1. All other nodes will be transshipment nodes for this commodity k. This model

results with a spanning tree since using only one supplier will guarantee a connected graph. In

addition, no cycles occur in this connected graph to minimize the cost.

109

3.4.2) Computational Results

The sample MOCO problems mentioned above are used to assess the performance of variations

and attributes of the algorithm as well as its performance. For this purpose, the first set of

experiments were conducted to observe the effect of fathoming. The second set of experiments

were used compare the effect of simultaneous filtering versus final filtering. The third set of

experiments were conducted to evaluate the non-dominance probability estimation. The last set

of experiments showed the time performance of the algorithm. All versions of algorithm are

coded in Microsoft Visual Studio 2010 using C++, and MIP solver of CPLEX 12.5.1 is used

through concert technology. Two different machines are used to collect the results—the first PC

has Intel® Core™i3 M390 with 2.67 GHz speed and 4(3.80 GB usable) RAM. The other PC has

Intel® Core™ i5 2400 with 3.10 GHz speed and 16(15.9 usable) RAM.

3.4.2.1) Effect of fathoming

Fathoming is an important specialty of the proposed MOB&B algorithm as it is a single

optimization case and has been explained in detail in 3.3.4) Fathoming of Nodes. In order to

assess the effect of fathoming, two levels of fathoming are implemented into the algorithm. The

first one uses a very basic fathoming structure with two types of information, the first piece of

which is the DC sibling of each node. The second piece is the information inherited from the first

level, e.g., relationships based on the children of root node. This information indicates whether a

node is grandchild of the first DC node. Hence, it is checked if upper bounds of a child node are

dominated by solution obtained from its DC sibling or the nodes at the same level those are

inherited from the first DC child, if node itself is not a DC grandchild. The type modeled with

this type of fathoming is called “Type 1 fathoming.” Then, in order to observe the full effect of

fathoming, a structure that uses all the information on the tree to fathom the nodes is coded. That

110

is, this version requires carrying the information of all nodes that can dominate each node based

on the domination relationships among nodes explained previously. This version of algorithm is

called “Type 2 fathoming.”

Three levels from each type of sample problems are chosen for this analysis. Each of the set

contains five instances. The first four columns contain the averages for these instances. Since

Type 2 fathoming requires considerable memory usage, the biggest problem sizes that allowed us

to run all of their instances with Type 2 fathoming turned out to be relatively smaller sizes of

problems within the sample problem set. Table 11 shows the results for each problem type:

Table 11: Impact of fathoming on three different problem sizes

Average

of

Pareto

Points

Averag

e # of

models

solved

Average

CPU

Time of

run in

sec

Average

Filterin

g Time

in sec

Type 2 reductions from Type 1

% of

reduction

for # of

models

solved

% of

reduction

for CPU

time of

run

% of

reduction

for

filtering

time

MOKP-25

nodes 3

objectives

Type1

fathoming 211.8

3235.2 933.25 0.2316

12% 36% 83%
Type2

fathoming
2839.2 600.56 0.0394

MOSP-

100 nodes

3

objectives

Type1

fathoming 217.4

15952.2 42931.91 0.1973

7% 24% 52%

Type2

fathoming
14905.4 32428.00 0.0941

MOST-10

nodes 3

objectives

Type1

fathoming
761.6

12427.8 9831.13 0.4738

10% 21% 42%
Type2

fathoming
11205 7735.26 0.2740

Based on these results, the number of models and the total CPU time required is reduced

significantly. Even in the least effective case time that is required to traverse the tree reduces by

more than 20%. Fathoming affects both filtering time and total tree traversal time. Filtering time

111

is affected due to the decreasing number of solutions that result from the reduced size of the tree.

Hence, it is worth expending the effort to keep information necessary information for fathoming.

Based on this result, we used full fathoming for the rest of the analysis.

3.4.2.2) Simultaneous Filtering vs. Final Filtering

As it has been explained in 3.3.5) Pareto Filtering Strategies, the proposed algorithm requires

Pareto filtering, and one might choose to perform this filtering at different points of the tree

traversal. Simultaneous filtering was previously proposed as the extreme level of this procedure,

and this requires comparing the value of a node with the solutions obtained at the nodes that can

dominate it immediately after it is obtained. It has been noted that this is a memory dependent

procedure, but it is advantageous in the sense that dominated nodes from earlier levels of the tree

by newly generated nodes are eliminated as soon as the dominating solution is generated, which

saves time making unnecessary comparisons that are performed at the later filtering stage. The

other extreme of this filtering mechanism is final filtering, and this is performed when tree

traversal is finished. In order to assess the effect of the filtering on the total CPU time, two

versions of the algorithm are examined with two different filtering schemes. The first one is

close to the simultaneous filtering, or filtering the solution set after the completion of each level.

All solutions obtained at that level are compared with the solutions obtained previously in order

to have a filtered set at the end of each level. The version of the algorithm with this type of

filtering scheme is called “Type 2 filtering.” The version with final filtering is called “Type 1

filtering.” Table 11 shows the effect of filtering. The same instances that are used in the

fathoming analysis are used for this analysis as well. Both of the versions contain full fathoming

schemes as the fathoming level.

112

Table 12: Impact of filtering for three different problem sizes

Average
of

Pareto

Points

Average
of

models

solved

Average

CPU Time

of run in

sec

Average

Filtering

Time in

sec

Filtering effect of

Type 2

% of

reduction

for CPU

time of

run

% of

reduction

for

filtering

time

Knapsack

Problem with

25 nodes 3

objectives

Type1

filtering
211.8 2839.2

600.56 0.0394

3.10% 28.93%
Type2

filtering
581.97 0.0280

Shortest Path

Problem 100

nodes 3

objectives

Type1

filtering
217.4 14905.4

32428.00 0.9412

2.83% 41.88%
Type2

filtering
31508.96 0.5470

Spanning Tree

Problem 10

nodes 3

objectives

Type1

filtering
761.6 11205

7735.26 0.2741

3.94% 90.11%
Type2

filtering
7430.12 0.0271

Simultaneous filtering seems to have a significant effect on filtering time, although it does not

affect the total running time with that strength. Small reductions in the total runtime stems from

the difference created on fathoming checks by eliminating the dominated nodes from the

dominating node lists of each node which are used to for fathoming. Before deciding upon which

type of filtering to implement, one should make a tradeoff analysis between the increased speed

and additional memory required to carry over all the required information.

3.4.2.3) Probability measure of being non-dominated

The proposed algorithm can be used as an approximation algorithm together with the probability

calculation presented in 3.3.6) Probability of being non-dominated for solution set. For the

testing purposes of this property, we have calculated a single probability that represents the

average staying non-dominated probability of all solutions obtained after a certain number of

113

models are solved. The change of this measure has been presented in the following figures for

three different problem types.

Figure 28: Change of average non-domination probability of solution set with respect to number

of models solved for a MOSP instance with 100 nodes and 3 objectives

0.997

0.9975

0.998

0.9985

0.999

0.9995

1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Average probability vs Number of models solved - MOSP problem

114

Figure 29: Change of average non-domination probability of solution set with respect to number

of models solved for a MOKP instance with 50 items and 3 objectives

Figure 30: Change of average non-domination probability of solution set with respect to number

of models solved for a MOST instance with 10 nodes and 3 objectives

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1

0 1000 2000 3000 4000 5000 6000 7000

Average probability vs Number of models solved - MOKP problem

0.9955

0.996

0.9965

0.997

0.9975

0.998

0.9985

0.999

0.9995

1

0 1000 2000 3000 4000 5000 6000 7000 8000

Average probability vs Number of models solved - MOST problem

115

As shown in the relevant calculations, one can also trace the non-domination probability

calculated for the individual solutions. For instance, the following figure shows how the non-

domination probability of a solution changes at the 187
th

 node of the MOB&B tree belonging to

the MOST problem instance used to generate the average non-domination probability above.

Although the whole tree algorithm solved more than 8000 models, the non-domination

probability became “1” after the 2000
th

 model solution.

Figure 31: Change of non-domination probability for four different solutions with respect to

number of models solved at the MOST instance with 100 nodes and 3 objectives

3.4.2.4) Time and Representativeness Performance of proposed algorithm

Further tests are performed on the whole test set used by Lokman and Koksalan (2012) in order

to make a complete assessment regarding the time performance of the proposed algorithm. All

versions used during these sets have full fathoming and final filtering property. The way the

fathoming scheme is implemented requires memory usage, and this did not allow us to run all the

models in the standard breadth-first approach. Hence, it created the necessity for two versions of

0.992

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1

0 500 1000 1500 2000 2500

116

the algorithm. The first one is for the small sizes and with standard breadth-first approach, which

will be referred as “standard traversal.” The second version’s aim is to decrease memory

requirement, hence reducing the size of the tree that needs to be traversed is the way resorted and

the whole tree is divided into smaller portions like it should be done when parallel running

property needs to be used. In order to obtain the smaller portions, nodes at a certain level can be

used to initiate the smaller portions of the tree. The results are summarized in Table 12 and

indicate whether it is generated by the standard version of algorithm or by the partitioned

version.

Table 13: Time performance of proposed approach in comparison with Lokman and Koksalan

(2012)

of

Pareto

Points

per

instance

of

models

solved

per

instance

Total

runtime

in sec.

per

instance

Average results

per Pareto point

for MOB&B

Average results per

Pareto point for

Lokman&Koksalan

(2012)

models

solved

CPU

time

models

solved

CPU

time

Knapsack

25 item with 3 objectives 211.8 2839.2 600.6 13.41 2.84 2.21 0.16

50 item with 3 objectives 570.2 11233 15072 19.70 26.43 2.17 0.41

100 item with 3 objectives 6786.2 97217 242172.3 14.33 35.69 1.86 2.91

25 item with 4 objectives
3
 425.2 42313 6289.34 99.51 14.79 8.46 0.8

Shortest Path

25 nodes with 3 objectives 50.4 816 131.65 16.19 2.61 2.24 0.07

50 nodes with 3 objectives 109.2 3905.6 1893.46 35.77 17.34 2.26 0.19

100 nodes with 3 objectives 217.40 14905.4 32428.94 68.56 10.16 2.15 0.46

150 nodes with 3 objectives 649.5 22768.5 41245.3 32.99 62.8 2.09 0.75

25 nodes with 4 objectives 3726.4 12148.8 2682.67 3.26 0.72 7.65 0.25

50 nodes with 4 objectives
4
 2110 42341 29573.88 20.07 14.02 9.49 1.07

Spanning Tree

25 nodes with 3 objectives 761.6 11205 7738.002 14.71 10.16 2.11 0.39

3
 Partitioned version of algorithm is used as opposed to standard breadth first

4
 Partitioned version of algorithm is used as opposed to standard breadth first

117

 The CPU time performance of single runs cannot beat the CPU time performance of the

benchmark algorithm. However, it should be noted that parallel running is an option for

MOB&B, but not for the benchmark algorithm. As mentioned previously, MOB&B is

implemented in a breadth-first manner in order to achieve a more representative set throughout

the run. The following figures show how quality measures of both algorithms change on each

Pareto point generated for a knapsack instance. Coverage measure used in this analysis is the

measure of Wu and Azarm (2001), as presented in 2.5.1) Coverage Measure.

 Recalling that larger coverage and uniformity values are preferable, it can be observed that

MOB&B always evolves with better coverage; furthermore, the proposed algorithm is not worse

than the benchmark algorithm in terms of uniformity quality.

118

Figure 32: Change of coverage measure for Lokman and Koksalan (2012) and MOB&B at each

Pareto point generated for a knapsack problem with 25 items.

Figure 33: Change of uniformity measure for Lokman and Koksalan (2012) and MOB&B at each

Pareto point generated for a knapsack problem with 25 items.

0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

40000000

45000000

1

2
2

4
3

6
4

8
5

1
0

6

1
2

7

1
4

8

1
6

9

1
9

0

2
1

1

2
3

2

2
5

3

2
7

4

2
9

5

3
1

6

3
3

7

3
5

8

3
7

9

4
0

0

4
2

1

4
4

2

4
6

3

Lokman&Koksalan

MOB&B

0

10

20

30

40

50

60

1

2
0

3
9

5
8

7
7

9
6

1
1

5

1
3

4

1
5

3

1
7

2

1
9

1

2
1

0

2
2

9

2
4

8

2
6

7

2
8

6

3
0

5

3
2

4

3
4

3

3
6

2

3
8

1

4
0

0

4
1

9

4
3

8

4
5

7
Lokman&Koksalan

MOB&B

119

CHAPTER IV: CONCLUSION AND FURTHER STUDIES

4.1) Summary of Contributions

In this dissertation we proposed two different algorithms, each of which aims to generate

representative points that can be used while approximating the actual Pareto front. Both of the

algorithms are exact methods that rely on solutions of some mathematical models. The first

algorithm is proposed for general MOP problems, which means it can be used both for MOLP

and MOIP problems. Experimental results and other analysis support that the proposed algorithm

is a practical and fast algorithm compared to the existing exact algorithms in the literature.

Furthermore, in terms of quality measures, e.g., coverage and uniformity of representative points,

the proposed algorithm is compatible with the best algorithm benchmark work.

The second algorithm that has been proposed is for MOIP problems, and it adapts the

existing B&B idea in a systematic way to branch on Pareto candidates on the (objective) criteria

space. Many properties of the algorithm have been shown with proves, figures and experimental

studies, such as fathoming and filtering. Fathoming due to integer bounds has been improved in

particular, with the relations explained between the nodes of the B&B tree. Aside from this,

because of these existing domination relations, Pareto filtering has become the comparison of

solutions that have the potential to dominate each other rather than making a simple pairwise

comparison of all solutions in the candidate set. In addition to the standard features adapted from

standard B&B, new features particular to the MOIP context have been introduced, such as

precise probability of non-domination, convenience of running in parallel. Although time

performance of algorithms does not seem to be better than the time performance of the

benchmark algorithm from the point of generating whole Pareto front, the MOB&B approach

generates a more representative candidate set than does the benchmark algorithm in case in

120

which they are both used to generate approximations of the Pareto front. This is due to the

difference between how the feasible search space is traversed; that is, MOB&B considers whole

feasible region as long as breadth-first type of traversing chosen, while benchmark approaches

does this starting from a corner of the same region and proceeding by relying on the previously

found points. This conclusion is supported by graphs that represent the relative change of quality

measures on a sample problem. Finally, the proposed algorithm has the flexibility to change

based on the conditional requirements. As an example, switching from breadth-first to depth-first

at a certain level and continue with breath first at each smaller tree is tried on some test sets.

4.2) Further Studies

Both of the algorithms proposed in this thesis have the potential to be used as interactive

approaches. In other words, they can be used to focus on certain parts of the feasible space rather

than on the whole feasible space based on the preferences of the DM, if he or she does not intend

to come up with the whole Pareto front. As mentioned in the last section of second chapter, the

first proposed algorithm can be further adapted for MOIP problems in order to further speed up

the algorithm.

The second algorithm is implemented to keep the required information in memory.

However, with some sacrifice from running time, the algorithm can also be implemented with

zero memory requirement thorough the usage of binary input/output files. Pareto filtering is a

key component of this algorithm, and different variations for this component have been

proposed. Final filtering has been used in most of the test cases, which compares whole solutions

obtained throughout the all tree traversal. However, this procedure can be improved by keeping

the domination relations between nodes until the end; this way, some time can be saved by

avoiding some of the pairwise comparisons. The results indicate that fathoming has a significant

121

effect on the performance of the algorithm. Therefore, any effort that can enrich the fathoming

rules will help enhance the performance of the algorithm. The MOB&B algorithm proposed in

this study relies on integer solvers at this stage. It might worth investigating if this structure can

be enriched by existing multi-objective simplex methods along with some rounding procedures

in order to come up with the Pareto solutions, or at least to derive some upper bound sets to be

used for fathoming.

122

APPENDIX

APPENDIX A: STATISTIC TABLES FOR THE RESULTS OF FIRST ALGORITHM

Table 14: Statistics for the uniformity analysis in Table 4

Uniformity

 5 const 10 const 30 const

2 obj

min 0.000527 0.001425 0.001272

max 0.019332 0.026639 0.025132

stdev 0.006619 0.00975 0.008628

3 obj

min 0.001234 0.000148 0.000248

max 0.038846 0.034031 0.022475

stdev 0.010818 0.011909 0.008201

4 obj

min 0.000854 0.004926 0.000104

max 0.037458 0.032464 0.023529

stdev 0.015815 0.009305 0.007747

5 obj

min 0.000467 0.001259 0.0025

max 0.035174 0.038968 0.0334

stdev 0.013327 0.011529 0.010214

Table 15: Statistics for coverage error for the analysis in Table 3

Coverage

 5 const 10 const 30 const

2 obj

min 2.74E-06 0.000412 6.38E-06

max 0.123654 0.130514 0.14589

stdev 0.042285 0.04182 0.056533

3 obj

min 0.165267 0.036445 0.02746

max 0.466684 0.412547 0.324093

stdev 0.081334 0.114158 0.098046

4 obj

min 0.270381 0.163809 0.081797

max 0.595553 0.561461 0.306913

stdev 0.108219 0.130771 0.08063

5 obj

min 0.407538 0.336629 0.0534

max 0.99999 0.999969 0.479

stdev 0.253937 0.212042 0.178496

123

Table 16: Statistics for the results presented in Table 5

Statistics of CPU time Set 1

 2 obj 3 obj 4 obj 5 obj

5 const.

max 1.455 0.738 2.121 1.329

min 0.218 0.115 0.799 0.735

stdev 0.36752 0.045984 0.414595 0.194648

10 const.

max 0.895 1.504 3.082 1.36

min 0.145 0 1.987 0.778

stdev 0.254129 0.430887 0.381781 0.203522

30 const

max 3.384 1.508 5.381 3.278

min 0.493 0.235 1.831 2.676

stdev 0.908195 0.414539 1.035147 0.198275

Table 17: Statistics for the results in Table 6

 2 obj 4 obj 6 obj

 SmallSize Bigsize SmallSize Bigsize SmallSize Bigsize

max 0.022 0.019467 0.048608 0.057088 0.020788 0.162369

min 0.01279 0.008527 0.033148 0.038215 0.017904 0.09009

stdev 0.002884 0.001346 0.005025 0.006823 0.000961 0.026089

 SmallSize Bigsize SmallSize Bigsize SmallSize Bigsize

max 0.02111 0.0232 0.078375 0.094538 0.025131 0.180755

min 0.01724 0.016547 0.05445 0.064634 0.019197 0.138518

stdev 0.001314 0.002037 0.007262 0.007661 0.001867 0.012296

124

APPENDIX B: STATISTIC TABLE FOR THE RESULTS OF SECOND ALGORITHM

Table 18: Statistics for the results presented in Table 13

 Total CPU Time Total Models Solved

 Min. Max. St.Dev. Min. Max. St.Dev.

Knapsack

25 item with 3 objectives 151.9 952.0 327.2 972.0 5162.0 1581.4

50 item with 3 objectives 3466.0 34021.0 13263.7 4562.0 23984.0 8774.1

100 item with 3 objectives 15836.0 412381.0 170426.3 63497.0 123541.0 30542.9

25 item with 4 objectives 2575.4 12208.0 4162.8 29473.0 67211.0 17293.9

Shortest Path

25 nodes with 3 objectives 19.3 213.7 85.8 158.0 1255.0 486.9

50 nodes with 3 objectives 688.4 3606.2 1147.4 1750.0 6702.0 2109.7

100 nodes with 3 objectives 19573.0 43682.0 10939.6 10327.0 19792.0 3949.9

150 nodes with 3 objectives 30751.0 59826.0 13033.1 15298.0 31885.0 7074.9

25 nodes with 4 objectives 546.2 6244.2 2368.3 4038.0 21711.0 7035.0

50 nodes with 4 objectives 19753.0 39614.0 9745.2 24378.0 59326.0 16026.6

Spanning Tree

25 nodes with 3 objectives 2137.5 17516.8 5912.9 5043.0 20123.0 6037.0

125

REFERENCES

A.P. Wierzbicki. (1980). The use of reference objectives in multiobjective optimization. Springer Berlin

Heidelberg.

Abbas, M., Chergui, M. E., & Mehdi, M. A. (2012). Efficient cuts for generating the non–dominated

vectors for Multiple Objective Integer Linear Programming. International Journal of

Mathematics in Operational Research, 4(3), 302-316.

Benson, H. (1998). An Outer Approximation Algorithm for Generating All Efficient Extreme Points in the

Outcome Set of a Multiple Objective Linear Programming Problem. Journal of Global

Optimization, 13, 1–24.

Benson, H., & Sayin, S. (1994). Finding global representations of the efficient set in multiple objective

mathematical programming (Discussion paper). Department of Decision and Information

Sciences University of Florida.

Chinchuluun, A., & Pardalos, P. (2007). A survey of recent developments in multiobjective optimization.

Annals of Operations Research, 154, 29-50.

Dhaenens, C., Lemsre, J., & Talbi, A. (2010). K-PPM: A new exact method to solve multi-objective to

solve combinatorial optimization problems. European Journal of Operational Research, 200(1),

45-53.

Ecker, Z., & Kouada, I. (1978). Finding all efficient extreme points for multi-objective linear programs

Math Programming. 14, 249-261.

126

Ehrgott, M. ((2006)). A discussion of scalarization techniques for multiple objective integer

programming. Annals of Operations Research, 147(1), 343-360.

Ehrgott, M. (2005). Multicriteria optimization. Springer.

Ehrgott, M., & Gandibleux, X. (2007). Bound sets for biobjective combinatorial optimization problems.

Computers & Operations Research, 34(9), 2674-2694.

Ehrgott, M., & Gandibleux, X. (2008). Hybrid Metaheuristics for Multi-objective Combinatorial

Optimization. Studies in Computational Intelligence (SCI), 114, 221-259.

Ehrgott, M., & Gandibleux., X. (2000). A survey and annotated bibliography of multiobjective

combinatorial optimization. OR Spectrum, 22(4), 425-460.

Faulkenberg, S., & Wiecek, M. (2012). Generating equidistant representations in biobjective

programming. Computational Optimization and Applications, 51(3), 1173-1210.

Faulkenberg, S., & Wiecek, M. M. (2010). On the quality of discrete representations in multiple objective

programming. Optimization and Engineering, 11(3), 423-440.

Figueira, J. R., Liefooghe, A., Talbi, E. G., & Wierzbicki, A. P. (2010). A parallel multiple reference point

approach for multi-objective optimization. European Journal of Operational Research, 205(2),

390-400.

Fleischer, M. (2003). The measure of Pareto optima applications to multi-objective metaheuristics. In

Evolutionary multi-criterion optimization (pp. 519-533). Berlin Heidelberg: Springer .

Fu, Y., & Diwekar, U. M. (2004). An efficient sampling approach to multiobjective optimization. Annals of

Operations Research, 132(1-4), 109-134.

127

Geoffrion, A. (1968). Proper efficiency and the theory of vector maximization. Journal of Mathematical

Analysis and Applications, 22(3), 618–30.

Gülseren, K., & Yucaoglu, E. (1983). An algorithm for multiobjective zero-one linear programming.

Management Science, 29(12), 1444-1453.

Gunawan, S., Farhang-Mehr, A., & Azarm, S. (2003). Multi-level multi-objective genetic algorithm using

entropy to preserve diversity. In Evolutionary Multi-Criterion Optimization (pp. 148-161). Berlin

Heidelberg: Springer.

Hanne, T. (2000). Global multiobjective optimization using evolutionary algorithms. Journal of Heuristics,

6(3), 347-360.

Hansen, M., & Jaszkiewicz, A. (1998). Evaluating the quality of approximations to the non-dominated set.

Technical Universityof Denmark: IMM, Department of Mathematical Modelling.

Isermann, H. (1977). The enumeration of the set of all efficient solutions for a linear multiple objective

program. Operational Research Quarterly, 28(3), 711–725.

Jahn, J., & Merkel, A. (1992). Reference-Point Approximation Method for the Solution of Bicriterial

Nonlinear Optimization Problems. Journal of Optimization Theory and Applications, 78, 87-103.

Karasakal, E., & Koksalan, M. (2009). Generating a representative subset of the nondominated frontier in

multiple criteria decision making. Operations research, 57(1), 187-199.

Keeney, R., & Raiffa, H. (1976). Decision analysis with multiple conflicting objectives. New York: Wiley&

Sons.

Kiziltan, G., & Yucaoglu, E. (1983). An algorithm for multiobjective zero-one linear programming.

Management Science, 29(12), 1444-1453.

128

Klamroth, K., & Tind, J. (2007). Constrained Optimization Using Multiple Objective Programming. Journal

of Global Optimization, 37(3), 325-355.

Konak, A., Coit, D. W., & Smith., A. E. (2006). Multi-objective optimization using genetic algorithms: A

tutorial. Reliability Engineering & System Safety, 91(9), 992-1007.

Laumanns, M., Thiele, L., & Zitzler, E. (2005). An adaptive scheme to generate the pareto front based on

the epsilon-constraint method. European Journal of Operations Research, 169, 932-942.

Laumanns, M., Thiele, L., Deb, K., & Zitzler, E. (2002). Combining convergence and diversity in

evolutionary multiobjective optimization. Evolutionary computation, 10(3), 263-282.

Leiserson, C., Rivest, R., Stein, C., & Cormen, T. (2001). Introduction to algorithms. The MIT press.

Lemesre, J., Dhaenens, C., & Talbi, E. (2007). An exact parallel method for a bi-objective permutation

flowshop problem. European Journal of Operational Research, 177(3), 1641-1655.

Lemesre, J., Dhaenens, C., & Talbi, E. (2007). Parallel partitioning method (PPM): A new exact method to

solve bi-objective problems. Computers & Operations Research, 34(8), 2450-2462.

Lokman, B., & Koksalan, M. (2012). Finding all nondominated points of multi-objective integer programs.

Journal of Global Optimization, 1-19.

Marcotte, O., & Soland, R. M. (1986). An interactive branch-and-bound algorithm for multiple criteria

optimization. Management Science, 32(1), 61-75.

Marler, R., & Arora, J. (2004). Survey of Multiobjective optimization methods for engineering. Struct

Multidisc Optim, 26, 369-395.

129

Mattson, C., Mullur, A., & Messac, A. (2004). Smart Pareto filter: Obtaining a minimal representation of

multiobjective design space. Engineering Optimization, 36(6), 721-740.

Mavrotas, G. (2009). Effective implementation of the e-constraint method in multi-objective

mathematical programming problems. Appl. Math. Comput., 213, 455-465.

Mavrotas, G., & Diakoulaki, D. (2005). Multi-criteria branch and bound: A vector maximization algorithm

for mixed 0-1 multiple objective linear programming. Applied Math and Computing, 171, 53–71.

Mavrotas, G., & Diakoulaki., D. (1998). A branch and bound algorithm for mixed zero-one multiple

objective linear programming. European Journal of Operational Research, 107(3), 530-541.

Odile, M., & Soland, R. M. (1986). An interactive branch-and-bound algorithm for multiple criteria

optimization. Management Science, 32(1), 61-75.

Ozlen, M., & Azizoglu, M. (2009). Multi-objective integer programming: A general approach for

generating all non-dominated solutions. European Journal of Operations Research, 199, 25-35.

Polak, E., & Payne, A. N. (1976). On multicriteria optimization. In Directions in Large-Scale Systems . US:

Springer.

Przybylski, A., Gandibleux, X., & Ehrgott, M. (2010a). A Recursive algorithm for finding all extreme points

on the outcome set of a multiobjective integer program. INFORMS Journal on computing, 22(3),

371-386.

Przybylski, A., Gandibleux, X., & Ehrgott, M. (2010b). A two phase method for multi-objective integer

programming and its application to the assignment problem with three objectives. Discrete

Optimization, 7, 149-165.

130

R.E.Steuer. (1986). Multiple criteria optimization: Theory, computation, and application. New York, NJ:

John Wiley & Sons.

Ramos, R. M., Alonso, S., Sicilia, J., & Gonzalez, C. (1998). The problem of the optimal biobjective

spanning tree. European Journal of Operational Research, 111, 617-628.

Rockafellar, R. T. (1970). Convex Analysis. New York, NJ: Princeton University Press.

Ruiz, F., Luque, M., & Cabell, J. (2009). A Classification of the weighting schemes in reference point

procedures for multiobjective programming. Journal of Operational Research Society, 60,

544{553.

Ruzika, S., & Wiecek, M. M. (2005). Approximation methods in multiobjective programming. Journal of

optimization theory and applications, 126(3), 473-501.

Sarah, S., & Radzik, T. (2008). Computing all efficient solutions of the biobjective minimum spanning tree

problem. Computers & Operations Research, 35(1), 198-211.

Sayin, S. (1996). An algorithm based on facial decomposition for finding the efficient set in multiple

objective linear programming. Operations Research Letters, 19, 87-97.

Sayin, S. (2000). Measuring the quality of discrete representations of effcient sets in multi-objective

mathematical programming: a weighted min-max two stage optimization approach and a

bicriteria algorithm. Management Science, 26, 369-395.

Sayin, S. (2003). A procedure to find discrete representations of the efficient set with specified coverage

errors. Operations Research, 51(3), 427-436.

Steiner, S., & Radzik, T. (2008). Computing all efficient solutions of the biobjective minimum spanning

tree problem. Computers & Operations Research, 35(1), 198-211.

131

Steuer, R. E. (1994). Random problem generation and the computation of efficient extreme points in

multiple objective linear programming. Computational Optimization and Applications, 3(4), 333-

347.

Steuer, R., & Choo, E. (1983). An interactive weighted Tchebycheff procedure for multiple objective

programming. Mathematical Programming, 26(3), 326-344.

Steuer, R., Silverman, J., & Whisman, A. (1993). A Combined Tchebycheff aspiration criterion vector

interactive multiobjective programming procedure. Management Science, 39(10), 1255-1260.

Sylva, J., & Crema, A. (2004). A method for finding the set of nondominated vectors for multiobjective

linear integer linear problems. European Journal of Operations Research, 158, 46-55.

Tenfelde-Podehl, D. (2003). A recursive algorithm for multiobjective combinatorial optimizaztion

problems with q criteria. Graz, Austria: Institut für Mathematik, Technische Universität Graz.

Vincent, T., Seipp, F., Ruzika, S., Przybylski, A., & Gandibleux, X. (2013). Multiple objective branch and

bound for mixed 0-1 linear programming: Corrections and improvements for the biobjective

case. Computers & Operations Research, 40, 498-509.

Visee, M., Teghem, J., Pirlot, M., & Ulungu, E. L. (1998). Two phases method and branch and bound

procedures to solve the bi-objective knapsack problem. Journal of Global Optimization, 12, 139-

155.

Wierzbicki, A. (A-2361). The use of reference objectives in multiobjective optimization-Theoretical

implications and practical experiences. 1980.

Wierzbicki, A., Makowski, M., & Wessels, J. (2000). Model-based decision support methodology with

environmental applications (Vol. 475). Dordrecht: Kluwer Academic Publishers.

132

Wu, J., & Azarm, S. (2001). Metrics for quality assessment of multi-objective design optimization

solution set. Transactions of the ASME, 123, 18-25.

Yu, P., & Zeleny, M. (1975). The Set of all nondominated solutions in linear cases and multicriteria cplex

method. J.Math Anal Appl., 49, 430-468.

Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C., & Fonseca, V. (2003). Performance assessment of

multiobjective optimizers: an analysis and review. IEEE Transactions on evolutionary

computation, 11(3), 423-440.

133

ABSTRACT

EXACT AND REPRESENTATIVE ALGORITHMS FOR MULTI-OBJECTIVE

OPTIMIZATION
by

OZGU TURGUT

May 2014

Advisor: Professor Alper E. Murat

Major: Industrial and Systems Engineering

Degree: Doctor of Philosophy

In most real-life problems, decision alternatives are evaluated with multiple conflicting

criteria. The entire set of non-dominated solutions for practical problems is impossible to obtain

with reasonable computational effort. The decision makers (DM) generally needs only a

representative set of solutions from the actual Pareto front. The first algorithm we present aims to

efficiently generate a well-dispersed, non-dominated solution set that is representative of the

Pareto front and that can be used for general multi-objective optimization problem. The

algorithm first partitions the criteria space into grids to generate reference points, and then

searches for non-dominated solutions in each grid. This grid-based search utilizes an

achievement scalarization function and guarantees Pareto optimality. The results of our

experimental results demonstrate that the proposed method is very competitive with other

algorithms in the literature when representativeness quality is considered. The algorithm is

advantageous from the computational efficiency point of view.

Although generating the whole Pareto front does not seem practical for many real-life

cases, it is sometimes required for verification purposes or in cases where the DM wants to run

his or her decision-making structures on the full set of Pareto solutions. For this purpose, we

present another novel algorithm. This algorithm attempts to adapt the standard branch and bound

134

approach to the multi-objective context by proposing to branch on solution points in objective

space. This algorithm is proposed for multi-objective integer optimization problems. The various

properties of branch and bound concept have been investigated and are explained within the

multi-objective optimization context. These include fathoming, node selection, heuristics, and

some multi-objective optimization specific concepts such as filtering, non-domination

probability and parallel running. This approach has the potential to be used both for full Pareto

generation or as an approximation approach, as has been shown with experimental studies.

135

AUTOBIOGRAHICAL STATEMENT

Ozgu Turgut was born in Kayseri, Turkey on November 13, 1981, the daughter of Billur Dincer

and Ramazan Turgut. She received the Bachelor of Science in 2005 from Bogazici Univeristy,

Istanbul/Turkey. When she was an undergraduate, she worked as an intern for the logistics and supply

chain planning department of DSM Nutritional Products Co. After receiving a B.S. degree, she worked at

Yeditepe Univeristy as a Research and Teaching Assistant. She also prepared projects for consulting

companies and worked as an outsourced expert of various subjects such as simulation and scheduling. She

received a Master of Science degree in Systems Engineering from Yeditepe University, Istanbul, Turkey,

in 2007.

Following this, she continued her studies to earn a Ph.D. in Industrial Engineering at Bogazici University.

After taking courses for three terms, she decided to finish her degree abroad and resumed her studies at

Wayne State University. She has been working for LLamasoft Co. since May 2012 at an advanced

research department as an OR scientist; she plans to continue working there upon graduation.

During her studies at WSU, she gave a number of technical presentations at INFORMS, CASC, the

Midwest Optimization Seminar and several other conferences. Her articles have been published in Expert

Systems with Applications, Procedia Computer Science, and Wind Energy. She presently has two other

articles submitted and under review.

	Wayne State University
	1-1-2013
	Exact And Representative Algorithms For Multi Objective Optimization
	Ozgu Turgut
	Recommended Citation

	tmp.1400011334.pdf.ESYON

