

Edinburgh Research Explorer

Branch-and-bound for biobjective mixed-integer linear
programming

Citation for published version:
Adelgren, N & Gupte, A 2017 'Branch-and-bound for biobjective mixed-integer linear programming' ArXiv.
<https://arxiv.org/abs/1709.03668>

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Early version, also known as pre-print

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 16. Oct. 2020

https://www.research.ed.ac.uk/portal/en/persons/akshay-gupte(f197d57a-93b9-4afd-918a-480d64bb83c6).html
https://www.research.ed.ac.uk/portal/en/publications/branchandbound-for-biobjective-mixedinteger-linear-programming(e8a93642-3751-4302-b36f-94a53a59527f).html
https://arxiv.org/abs/1709.03668
https://www.research.ed.ac.uk/portal/en/publications/branchandbound-for-biobjective-mixedinteger-linear-programming(e8a93642-3751-4302-b36f-94a53a59527f).html

Submitted to INFORMS Journal on Computing
manuscript (Please, provide the manuscript number!)

Authors are encouraged to submit new papers to INFORMS journals by means of
a style file template, which includes the journal title. However, use of a template
does not certify that the paper has been accepted for publication in the named jour-
nal. INFORMS journal templates are for the exclusive purpose of submitting to an
INFORMS journal and should not be used to distribute the papers in print or online
or to submit the papers to another publication.

Branch-and-bound for biobjective mixed-integer
linear programming

Nathan Adelgren*
Department of Mathematics and Computer Science, Edinboro University, PA, USA. nadelgren@edinboro.edu,

Akshay Gupte†

School of Mathematics, University of Edinburgh, Edinburgh, UK. akshay.gupte@ed.ac.uk,

We present a generic branch-and-bound algorithm for finding all the Pareto solutions of a biobjective

mixed-integer linear program. The main contribution is new algorithms for obtaining dual bounds at a

node, for checking node fathoming, presolve and duality gap measurement. Our branch-and-bound is a

decision space search method since the branching is performed on the decision variables, akin to single

objective problems. The various algorithms are implemented using a data structure for storing Pareto sets.

Computational experiments are carried out on literature instances for empirical analysis of our method. We

also perform comparisons against an objective space search algorithm from literature, which show that our

branch-and-bound is able to compute the entire Pareto set in significantly lesser time.

Key words : Branch-and-bound; Mixed-integer programming; Multiobjective optimization; Pareto optima;

Fathoming rules

History : Submitted November 2019; Revised August 2020

1. Introduction

We present a branch-and-bound (BB) algorithm that computes the Pareto set of a biob-

jective mixed-integer linear program (BOMILP), formulated as

min
x

 f1(x) := c1
T

x

f2(x) := c2
T

x

 s.t. x∈XI :=
{
x∈Zn+×Rp

+ : Ax≤ b, li ≤ xi ≤ ui ∀i
}
. (1)

The only assumption we make on the above model is a mild and standard one: that XI 6= ∅
and −∞< li <ui <+∞ for all i, in order to have a bounded feasible problem.

∗ Part of this research was carried out when the first author was a PhD student at Clemson University, USA

† The author was supported by ONR grant N00014-16-1-2725 when he was at Clemson University, USA

1

Author: Branch-and-bound for biobjective MILP
2 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

BOMILPs belong to the general class of multiobjective optimization [Ehr05] and are

an extension of the single objective mixed-integer linear program (MILP) that has been

studied for decades. A multiobjective problem is considered solved when the entire set of

so-called Pareto optimal solutions has been discovered. A common approach to find these

Pareto points has been to scalarize the vector objective (cf. [Ehr06; BKR17]) either by

aggregating all objectives into one or by moving all but one objective to the constraints,

but doing so does not generate all the Pareto points and supplies a very small part of

the optimality information that can otherwise be supplied by the original multiobjective

problem. Indeed, it is easy to construct examples of biobjective MILPs where many Pareto

solutions are located in the interior of the convex hull of the feasible set, a phenomenon

that is impossible with optimal solutions of MILPs. The set of Pareto solutions of a mixed-

integer multiobjective problem with a bounded feasible region is equal to the union of the

set of Pareto solutions from each slice problem. Here the union is taken over the set of

integer feasible values and a slice problem is a continuous multiobjective program obtained

by fixing the integer variables to some feasible values. In general, there are exponentially

many Pareto solutions. Enumeration of the Pareto set for a pure integer problem has

received considerable attention, including iterative approaches [ÖK10; LK13] and lower and

upper bounds on the number of Pareto solutions [BJV13; SVS13] under certain assump-

tions. Algorithms using rational generating functions to enumerate all the Pareto optima

in polynomial-time for fixed parameters (either size of decision space or number of objec-

tives) were given in [DHK09; BP12]. There also have been many efforts at finding good

approximations of the Pareto set [Say00; Say03; RW05; Gra+14; BJV15].

1.1. Background on existing methods

Algorithms for exact solution of multiobjective mixed-integer problems (MOMILPs) can

be broadly classified into three categories depending on the underlying techniques they use:

(i) those based on scalarization methods that transform the MOMILP into a MILP with

a modified objective or with new constraints, (ii) branch-and-bound algorithms which are

decision space search since they divide the feasible region XI by branching on variables (in a

manner similar to solving MILPs), and (iii) those based on objective/criterion space search

methods that solve MILPs or multiobjective LPs over subsets of the feasible objective

space f(XI) := {(f1(x), f2(x)) : x ∈XI}. Multiobjective pure integer problems have been

extensively studied in literature and many scalarization methods have been developed,

Author: Branch-and-bound for biobjective MILP
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 3

either specifically for biobjective problems [RSW06] or the fully general multiobjective case

[ER08; PGE10; MF13]. Specific classes of biobjective combinatorial problems also have

algorithms for solving them [Vis+98; RW07; SS08; BGP09; LLS14]. Earliest branch-and-

bound methods for multiobjective pure integer programs can be found in [KH82; KY83],

but since then more sophisticated algorithms have been developed [JLS12; GNE19; PT19].

Recent work of Boland et al. has focused on objective space search methods for biobjective

[BCS15a] or triobjective [BCS16a; BCS16b] pure integer programs.

Algorithms specialized for the pure integer case do not extend to the mixed-integer

case primarily because of the way they certify Pareto optimality. The Pareto set of a

mixed-integer problem is a finite union of graphs of piecewise linear functions, whereas

that for a pure integer problem is a finite set of points, and hence Pareto computation

and certification of Pareto optimality of a given subset is far more complicated in the

former case. In fact, mixed-integer problems can benefit immensely from sophisticated data

structures for storing Pareto sets, as shown recently by Adelgren et al. [ABG18]. Barring

the objective space search method of [BCS15b], most of the exact algorithms for MOMILP

have been based on branch-and-bound (BB); see the reviews [PG17] and [GNE19, Table

1]. Most of these BB algorithms are designed specifically for problems where all the integer

variables are binary, either for biobjective [Vin+13; SAD14] or the general multiobjective

case [MD05]. Correct node fathoming rules are necessary to guarantee correctness of a BB

algorithm. Belotti et al. [BSW16] have proposed sophisticated algorithms, based on solving

LPs, for node fathoming rules and checking Pareto optimality, and report some limited

preliminary computational results. In principle, this leads to a BB algorithm for BOMILP

with general integer variables, however, such an algorithm based on sophisticated node

fathoming rules has neither been fully implemented nor extensively tested.

1.2. Summary of our work

Our exact algorithm for general BOMILP is based on the BB method. Although there

is certainly merit in studying and developing objective space search methods for solving

BOMILP, our choice is motivated by the recognition that there is still much work that

can be done to exploit the structure of Pareto points in biobjective problems to improve

BB techniques for BOMILP. That is indeed the main contribution of this paper — an

exhaustive computational study of ideas that specifically address the biobjective nature of

problem (1). Besides the fact that BB operates mainly in the x-space and objective space

Author: Branch-and-bound for biobjective MILP
4 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

search, as the name suggests, operates solely in the f -space, another point of distinction

between the two is that the MILPs we consider at each node of the BB tree do not have

to be solved to optimality whereas the correctness of the latter depends on MILPs being

solved to optimality. Of course, it is to be expected that solving MILPs for a longer time

will lead to better convergence results for our BB. Implementing our BB through the

callback interface of a MILP solver allows us to utilize the huge computational progress

made in different components of BB for MILP (cf. [AW13; Mor+16]).

The main components of any BB for MILP include presolve, preprocessing, primal heuris-

tics, dual bounding via cutting planes, node processing, and branching. We present new

algorithms to adapt and extend each of these components to the biobjective case. We begin

with presolve; since primal presolve techniques work solely on the feasible region, their

implementations in state-of-the-art MILP solvers can be directly used for a BOMILP. How-

ever, dual presolve utilizes information from the objective function and hence cannot be

used directly for a BOMILP. We are the first to discuss (§3.1) and implement an extension

of a variety of dual presolve techniques to the multiobjective setting. Additionally, we show

that using one of the primal presolve techniques — probing on integer variables (§3.3),

alongside branching reduces the overall computational time. Two different preprocessing

algorithms (§3.2) are proposed for generating good primal bounds. Our main body of work

is in developing new node processing techniques (§4) for BOMILP. The node processing

component takes increased importance for BOMILP since bound sets for a multiobjec-

tive problem are much more complicated than those for a single objective problem (cf.

§2.2), meaning that generation of valid dual bounds and fathoming of a node is not as

straightforward as that for MILPs. At each node, we describe procedures to generate valid

dual bounds while accounting for the challenges of biobjective problems and strengthen

these bounds through the use of locally valid cutting planes and the solution of single

objective MILPs. Our bounds are tighter than what has previously been proposed. To

guarantee correctness of our BB, we develop new fathoming rules and delineate their dif-

ference to the recent work of [BSW16] in §4.3. A branching scheme is presented in §5.1 and

a method for exploiting distances between Pareto points in the objective space is discussed

in §5.2. Finally, our BB also incorporates an early termination feature that allows it to

terminate after a prescribed gap has been attained. In the MILP case, gap computation

is trivial to implement because primal and dual bounds for MILPs are scalars. However

Author: Branch-and-bound for biobjective MILP
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 5

for BOMILPs, since these bounds are subsets of R2 as explained in §2.2, computation of

optimality gap requires the use of error measures that are nontrivial to compute. To aid

quicker computation, we propose in §5.3 an approximated version of the Hausdorff metric

and computationally compare it to the hypervolume gap measure from literature.

An extensive computational analysis is carried out in §6 on literature instances. The

first of these experiments evaluates our three dual presolve techniques and the results show

that duality fixing is the most useful of the three for reducing CPU time. In our second

experiment, we demonstrate that preprocessing methods utilizing ε-constraint scalarization

techniques typically yield better primal bounds at the start of BB than weighted sum

scalarization techniques. Next, we evaluate the performance of various procedures, such

as probing, objective-space fathoming, a variety of cut generation techniques, and some

minor improvements to our proposed fathoming rules, that we propose in this paper for

improving the overall performance of BB. These tests indicated that probing prior to each

branching decision and objective space fathoming are very useful for decreasing the total

solution time. The local cuts that we added were not as useful. Finally, we compared the

performance of our BB with that of the triangle splitting method [BCS15b], which we

recall is an objective space search method, and observe that our BB uses less CPU time

to compute the complete Pareto sets of the test instances.

We conclude this paper with a few remarks in §7. We observe that a majority of the

algorithms proposed in this paper can be extended naturally to the multiobjective case.

The main challenge in developing a fully implementable and efficient BB algorithm for

multiobjective MILP is in carrying out the bound domination step. We present some

directions for future research on this topic.

2. Preliminaries
2.1. Definitions and Notation

The idea of optimality for single objective optimization is replaced with the idea of effi-

ciency in multiobjective problems. Consider BOMILP (1). For any two points y, y′ ∈ R2,

it is said that y dominates y′ if y ≤ y′, or equivalently y′ ∈ y+R2
≥0. We express this rela-

tionship as y� y′. Denoting f(x) := (f1(x), f2(x)), which is a vector in R2, a point x∈XI

is said to be efficient if there is no x′ ∈XI such that f(x′)� f(x). A point in R2 is Pareto

optimal (also called nondominated) if it is the f -image of some efficient solution in XI .

Denote the sets of efficient solutions and Pareto optimal solutions, respectively, by

XE := {x∈XI : x is efficient}, YN = f(XE) := {f(x) : x∈XE}.

Author: Branch-and-bound for biobjective MILP
6 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

The nondominated subset of any S ⊂R2 is defined as

ND(S) := {y ∈ S : @y′ ∈ S s.t. y′ � y}.

Therefore, if we let YI := {f(x) : x∈XI}, we have that YN =ND(YI).

For k = 1,2, let f ∗k := min{fk(x) : x ∈ XI} be the optimal value of objective k for the

single objective problem. Denote

Y k
I :=

{
y ∈R2 : yi = f ∗i i 6= k, yk = min

x∈XI
{fk(x) : fi(x) = f ∗i i 6= k}

}
k= 1,2.

We have Y k
I ⊂ YN . For each of XI , YI , and Y k

I , dropping the I subscript indicates the

continuous relaxation of the set. Also, if we add a subscript s, then it means that the set

is associated with node s of the BB tree. We use OS to denote the objective space, i.e.,

the smallest rectangle in R2 that contains Y . Given S ⊆OS ⊆ R2, the ideal point of S,

denoted Sideal, is the point y ∈R2 with yk = miny∈S{yk} for k= 1,2.

We assume background in branch-and-cut algorithms for single objective problems (cf.

[Mar01]). One of the key differences and challenging aspects of BOMILP versus MILP is

the concept of primal and dual bound sets, which we explain next.

2.2. Bound sets for BOMILP

Similar to the single objective case, correct fathoming rules are essential for any BB algo-

rithm to solve BOMILP to Pareto optimality. Primal and dual bounds in a single objective

BB are scalars, making it easy to compare them and fathom a node by bound dominance.

In biobjective BB, these bounds are subsets of R2. Bound sets were first discussed by

Ehrgott and Gandibleux [EG07]. The manner in which these bound sets are generated

within a BB is conceptually similar to the single objective case and we explain this next.

Note that our forthcoming explanation trivially extends to the multiobjective case.

Suppose that we are currently at node s of the BB tree. The primal bound sets are

constructed from the set of integer feasible solutions, denoted by Ts ⊂Zn, found so far by

the BB. For every x̃∈ Ts, the BOLP obtained by fixing xi = x̃i for i= 1, . . . , n in BOMILP

(1) is called the slice problem. The Pareto curve for this slice problem is ND(f(X(x̃))),

where X(x̃) denotes the feasible set of the slice problem, and this curve is convex (because

it is minimization) piecewise linear. Then Ns :=ND(∪x̃∈TsND(f(X(x̃)))) is the globally

valid primal bound calculated at node s. For the dual bound set, we consider BOLPs

Author: Branch-and-bound for biobjective MILP
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 7

obtained by relaxing integrality on variables. Since Xs denotes the relaxed feasible set at

node s and Ys = f(Xs), the local dual bound is Ls := ND(Ys) and is convex piecewise

linear. The global dual bound Lglobals is obtained by considering the local dual bounds for

all the open nodes in the BB tree, i.e., Lglobals = ND(∪s′∈ΩsLs′) where Ωs is the set of

unexplored nodes so far, and this bound is a union of convex piecewise linear curves.

For multiobjective BB, node s is allowed to be fathomed by bound dominance if and

only if Ls is dominated by Ns, i.e., for every y′ ∈Ls there exists a y ∈Ns such that y� y′.

Equivalently, due to translation invariance of �, we have that node s can be fathomed

by bound dominance if and only if Ls + R2
≥0 ⊂Ns + R2

≥0. For this reason, henceforth for

convenience, we consider our local dual bound to be Ls =ND(Ys) +R2
≥0 and the current

primal bound to be Us :=Ns +R2
≥0. Thus the dual bound set is a polyhedron whereas the

primal bound is a finite union of polyhedra. Although this deviates from the traditional

view of bound sets, which defines them in the previous paragraph in terms of the boundary

of these polyhedra, it is clear that there is a one-to-one correspondence between fathoming

rules for the two alternate representations of bound sets.

Figure 1 illustrates the concept of bound sets. Here, s2 can be fathomed because Ls2 ⊂Us
but we cannot say anything about fathoming node s1 since Ls1 * Us. As can be imagined

from Figure 1, fathoming is even more crucial and computationally expensive for BOMILPs

since it involves checking inclusion and intersection of polyhedral sets as opposed to com-

paring scalar values in the MILP case. Thus, the majority of the computational effort

in multiobjective BB is spent processing a node s of the BB tree, in particular checking

various fathoming rules.

Us

Ls1

Ls2

Ns

Figure 1 Primal (U) and dual (L) bound sets for BOMILP

Author: Branch-and-bound for biobjective MILP
8 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

3. Presolve and Preprocessing

Examining the structure of an instance of single objective MILP prior to solving it, and

utilizing information found during this examination to simplify the structure of the instance

often has had a significant impact on the time and effort needed to solve that instance.

It has also been shown that knowledge of feasible solutions for an instance of MILP can

have a significant impact on solution time. Hence, it seems natural as a first step to extend

the techniques used in these procedures to the biobjective case. For the discussion that

follows we distinguish the idea of simplifying an instance of BOMILP based on its problem

structure from the idea of determining a set of initial integer feasible solutions. We refer

to the first as dual presolve and the latter as preprocessing.

3.1. Dual Presolve

Presolve for MILP uses both primal and dual information. The primal information of a

BOMILP instance is no different than its single objective counterpart and thus primal

presolve techniques can be applied directly to it. However, due to the presence of an

additional objective, one must take care while utilizing dual information for a biobjective

problem. We extend a few single objective dual presolve techniques to BOMILP (their

extension to three or more objectives is immediate and omitted here).

First, we extend duality fixing (cf. [Mar01]). Let arj denote the element of matrix A in

row r and column j and ckj be the jth entry of kth objective.

Proposition 1 (Duality fixing). Suppose there exists a j with ckj ≥ 0 and aij ≥ 0 for

all k, i. Then XE ⊆ {x : xj = lj}. Similarly, if there exists a j with ckj ≤ 0 and aij ≤ 0 for all

k, i, then XE ⊆ {x : xj = uj}.

Proof. It is well known (cf. [Ehr05, Theorem 4.5]) that x∗ is efficient for a MOMILP if

and only if there exists ε such that x∗ is optimal to the problem:

min
x
{f1(x) : x∈XI , fk(x)≤ εk for all k 6= 1} (2)

Hence, every efficient solution to the given BOMILP can be obtained by solving (2) for

some ε. If the stated assumptions hold, then single objective duality fixing can be applied

to (2). This shows that every efficient solution to the given BOMILP can be obtained by

solving the modified version of (2) in which variable fixing has been performed. �

Next, we extend the exploitation of singleton and dominating columns [Gam+15].

Author: Branch-and-bound for biobjective MILP
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 9

Proposition 2 (Singleton Columns). For every row r in the system Ax≤ b, define

J(r) := {j : arj > 0, ckj < 0 ∀k,aij = 0 ∀i 6= r} and

Ur :=
∑
j∈J(r)

arjlj +
∑

j 6∈J(r),arj>0

arjuj +
∑

j 6∈J(r),arj<0

arjlj.

Suppose there exists some s∈ J(r) such that

cks
ars
≤ min

{
ckt
art

: t∈ J(r), t 6= s

}
.

If ars(us− ls)≤ br−Ur, then XE ⊆ {x : xs = us}.

Proof. Let x be an efficient solution with xs < us. If xj = lj for all j ∈ J(r) \ {s}, then

a new solution x′ constructed from x by setting x′s to us is feasible because∑
j

arjx
′
j =
∑
j 6=s

arjx
′
j + arsus ≤Ur + ars(us− ls)≤ br.

Additionally, the value of every objective function improves because cks < 0 for all k. This

contradicts our assumption of x being efficient. Hence, there exists a j ∈ J(r) \ {s} with

xj > lj. In this case we can construct a new solution x∗ from x by decreasing the value of xj

to x′j while at the same time increasing the value of xs so that Ar•x
∗ =Ar•x. In particular,

ars(x
∗
s −xs) = arj(xj −x∗j) holds. The change of objective k can be estimated by

cksx
∗
s + ckjx

∗
j = cksxs + ckjxj + cks(x

∗
s −xs)− ckj (xj −x∗j)

= cksxs + ckjxj + cks
ars
ars

(x∗s −xs)− ckj
arj
arj

(xj −x∗j)

≤ cksxs + ckjxj + cks
ars
ars

(x∗s −xs)− cks
arj
ars

(xj −x∗j)

= cksxs + ckjxj +
cks
ars

(
ars(x

∗
s −xs)− arj(xj −x∗j)

)
= cksxs + ckjxj.

If x∗s = us, the result of the proposition holds. Otherwise, x∗j = lj holds. Applying this

argument iteratively results in an optimal solution with x∗s = us or x∗j = j for all j ∈
J(r) \ {s}. But as shown before, the latter case contradicts the efficiency of x∗. �

A similar procedure can be followed for arj < 0, ckj > 0 for all k, thereby fixing xs = ls.

Given two variables xi and xj, either both integer or both continuous, we say that xj

dominates xi if (i) ckj ≤ cki for all k, and (ii) arj ≤ ari for every r. 1

1 This variable domination has no relationship with the idea of domination between bound sets

Author: Branch-and-bound for biobjective MILP
10 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

Proposition 3 (Dominating columns). If xj dominates xi,

YN = {f(x) : x∈XE, xi = li or xj = uj} ⊆ {f(x) : x∈XI , xi = li or xj = uj} .

Proof. The ⊆-inclusion is obvious from XE ⊆XI , and so we have to argue the equality.

We will need the following claim, which can be argued easily and is also an extension of

[Gam+15, Lemma 1]: for any x∈XI with a pair of indices (i, j) such that xj <uj, xi > li,

and xj dominates xi, the point xα constructed for arbitrary 0< α≤min{xi − li, uj − xj}

as follows,

xαi = xi−α, xαj = xj +α, xαt = xt, t 6= i, j, (3)

satisfies xα ∈XI and fk(x
α)≤ fk(x) for all k.

Since YN = f(XE) by definition, the ⊇-inclusion is obvious. Now suppose for sake of

contradiction that the ⊆-inclusion is not true. Then there exists some y ∈ YN for which

f−1(y)
⋂

({x : xi = li}∪ {x : xj = uj}) = ∅. (4)

Take any x ∈ f−1(y), this point has xj < uj and xi > li. Consider the feasible solution xα,

for α = min{xi − li, uj − xj}, constructed as in equation (3). By definition of α, we have

xαj = uj or xαi = li, and the claim gives us xα ∈XI . We know that f(x) = y ∈ YN . Then,

f(xα) ≤ f(x) from the above claim implies that xα ∈ f−1(y). Hence, we have reached a

contradiction to equation (4). �

One may use the disjunction resulting from Proposition 3 to generate valid cutting planes

for XI prior to branching. Additionally, there are also ways to further utilize the structure

of dominating columns in order to strengthen variable bounds as described in Gamrath

et al. [Gam+15, Theorem 3, Corollary 1 and 2]. These methods for strengthening bounds

also extend to the multiobjective case. However, we did not find these methods to be

advantageous in our experiments. Thus, since the description of these additional strategies

is quite lengthy, we omit them from this work.

3.2. Preprocessing

As in the single objective case, the efficiency of BB can be significantly improved if good-

quality primal feasible solutions can be generated prior to the start of BB. This can be

accomplished by a heuristic method, such as [Soy15; Lei+16]. We utilize two different

preprocessing techniques, both of which solve single objective MILPs subject to a certain

Author: Branch-and-bound for biobjective MILP
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 11

time limitation — the first uses the ε-constraint method, and the second uses the weighted-

sum approach. We briefly discuss the benefits and drawbacks of using either the ε-constraint

or weighted-sum approaches (see [Ehr05] for background on scalarization methods).

ε-constraint: It is well known that for a BOMILP every y ∈ YN can be obtained using

the ε-constraint method. Unfortunately though, when a MILP formulated using the ε-

constraint method is not solved to optimality, there are two major drawbacks: (i) each

y ∈ YI discovered while processing the MILP must lie within a restricted region of OS, and

(ii) the information associated with the best dual bound cannot be utilized.

weighted-sum: The major drawback of the weighted sum method is that when a MILP

is formulated using this method, only supported Pareto solutions can be found, i.e., those

lying on the boundary of the convex hull of YN . There are, however, the following two

benefits: (i) y ∈ YI discovered during the MILP solve are not restricted to any particular

region of OS, and (ii) the best dual bound is valid for all y ∈ YI and can therefore be used

to create a cutting plane in OS.

As can be seen, there is a certain level of trade-off present between the ε-constraint

method and the weighted sum method. The pros and cons of each technique are illustrated

in Figures 2a and 2b. For each of these figures, we have the following: (i) YN , which we

assume to be unknown, is shown in grey, (ii) the optimal solution, which we assume is not

known at termination of the MILP solve, is depicted as a yellow star, (iii) the best known

solution at termination is shown as a blue square, and (iv) the level curve associated with

the best known dual bound at termination is shown as a dotted red line. Note that for

Figure 2a, we assume that ε is defined so that the feasible region is restricted to the light

blue box.

We now present Algorithms 1 and 2 in which we describe our proposed ε-constraint

and weighted sum based preprocessing procedures. On line 3 of Algorithm 1 we solve the

MILP associated with fλ. Recall that λ is computed so that the level curves of fλ have

the same slope as the line segment joining y1
I and y2

I . On line 5 we then use the solution

of this MILP to compute horizontal and vertical step sizes, h1 and h2. These step sizes

are then used to sequentially increase the values of ε1 and ε2 which are used on line 7 to

construct new MILPs, using the ε-constraint problem, which may yield new, undiscovered

Pareto solutions. On lines 8 and 9 we modify the step sizes h1 and h2. If the MILP solved

on line 7 yields a new, previously undiscovered Pareto solution, we decrease the step size.

Author: Branch-and-bound for biobjective MILP
12 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

(a) ε-constraint method (b) Weighted sum method
Figure 2 Bound information when a single objective MILP terminates early

Otherwise, we increase it. This allows us the continue searching for additional new solutions

in locations of OS which are near previously discovered solutions, and to cease searching

in areas in which new solutions are not being generated. Note that the amount in which

the step sizes are increased or decreased depends on the value of the parameter ρ. Also

note that each time we solve a MILP, we utilize its solution to update Ns.

In Algorithm 2 we compute several sets of weights which we utilize in the weighted-sum

approach to generate Pareto solutions. We initialize the set of weights Λ on line 3 with the

weight λ for which the level curves of fλ have the same slope as the line segment joining y1
I

and y2
I . We use σ to represent the number of weights for which MILPs will be solved in a

given iteration. We deem an iteration successful if at least a fifth of the solved MILPs reveal

previously undiscovered Pareto solutions. We use τ to count the number of unsuccessful

iterations. On line 11 we increase the number of weights that will be used in the next

iteration by computing the next set of weights so that it contains the midpoint of each pair

of adjacent weights in the set Λ′, which is the set of previously used weights together with

0 and 1. The process then terminates when the number of unsuccessful iterations exceeds

the value of the parameter ρ. As we did with Algorithm 1, we also utilize the solution of

each MILP we solve in this procedure to update Ns.

3.3. Probing

After Preprocessing, a probing technique can be used to strengthen the bounds on each

integer variable, as stated below.

Author: Branch-and-bound for biobjective MILP
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 13

Algorithm 1 Preprocessing based on the ε-constraint method.

Input: y1
I , y

2
I and a nonnegative value for parameter ρ.

Output: An initialized set of Pareto solutions N0 ⊆ YN .

1: function PreprocessingMethod1(y1
I , y

2
I , ρ)

2: Let N0 = ∅.

3: Solve the MILP min{fλ(x) : x∈XI} to obtain yλI ∈ YI .

4: Add a cutting plane to X lying on the level curve of fλ associated with the best

dual solution.

5: Set h1 =
(y2I)1−(yλI)1

60
, ε1 = (yλI)1 +h1, h2 =

(y1I)2−(yλI)2
60

and ε2 = (yλI)2 +h2.

6: for k ∈ {1,2} do

7: while εk > (ykI)k do

Solve the MILP Pk(εk) := min{f{1,2}\{k}(x) : x∈XI , fk(x)≤ εk} to obtain y∗ ∈ YN .

8: if N0 6� y∗ then set hk = hk
1+ρ

.

9: else set hk = max(5− ρ,1)hk.

10: for each x∈XI found while solving Pk(εk) do

Let N = GenerateDualBd(s(x)) and set N0 =ND(N0 ∪N).

11: Set εk = εk +hk.

12: Return N0.

Proposition 4 (Probing on xi). Let xi be an integer variable. Fix xi = li, relax inte-

grality on other integer variables and solve the BOLP relaxation to obtain its Pareto set

Lli. If U0 �Lli then XE ⊆ {x : xi ≥ li + 1}.

Proof. Recognize that Lli dominates every y ∈ YI where y = f(x) with xi = li. The

desired result follows from U0 �Lli . �

This probing procedure can be repeated multiple times for a given integer xi and then

iterated over each additional integer variable xj. Furthermore, a similar procedure to that

of Proposition 4 exists for tightening the upper bound. We point out that there are likely

many more tasks that could be performed during Presolve and/or Preprocessing that

could further impact the performance of BB. However, our goal here is not to develop

extensive procedures for these tasks, but to put together an initial implementation that

highlights some of what can be done.

Author: Branch-and-bound for biobjective MILP
14 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

Algorithm 2 Preprocessing based on the weighted-sum method.

Input: A nonnegative value for parameter ρ.

Output: An initialized set of Pareto solutions N0 ⊆ YN .

1: function PreprocessingMethod2(ρ)

2: Let N0 = ∅.

3: Set Λ = {λ}, Λ′ = {0,1} and t= 0.

4: while t≤ ρ do

5: Set τ = 0 and σ= |Λ|.

6: for λ′ ∈Λ do remove λ′ from Λ and add it to Λ′. (Assume Λ′ is always sorted

in increasing order.)

7: Solve the MILP P (λ′) := min{fλ′(x) : x∈XI} to obtain yλ
′ ∈ YI .

8: Add a cutting plane to X lying on the level curve of fλ′ associated with the

best dual solution.

9: if N0 6� yλ
′
then set τ = τ + 1.

10: for each x ∈ XI found while solving P (λ′) do let N = GenerateDu-

alBd(s(x)) and set N0 =ND(N0 ∪N).

11: for each adjacent pair (λ1, λ2)∈Λ′ do add λ1+λ2
2

to Λ.

12: if τ < σ
5

then set t= t+ 1.

13: Return N0.

4. Node processing

Processing a node consists of three basic steps: (i) Generate a valid dual bound; (ii) Check

a fathoming rule to determine whether or not s can be eliminated from the search tree; (iii)

Optionally, if s is not fathomed in (ii), generate a tighter dual bound and repeat (ii). Figure

3 provides a visual example of how one might carry out these three steps. Most of the

fathoming rules for biobjective BB are designed to check whether or not Us dominates (Ys)I

by exploiting the transitivity of dominance. First, a set T is generated such that T� (Ys)I .

Then if Us � T, Us � (Ys)I and s can be fathomed. Otherwise, a tighter bound on (Ys)I is

needed. The first bound we use is a set of two ideal points which we obtain by solving three

single objective LPs; one for each fk and an one with a weighted sum objective fλ in which

the weights, denoted λs, are given by the normal vector of the line segment Hs passing

Author: Branch-and-bound for biobjective MILP
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 15

y1
s

yλs

y2
s

LP ideal
points

LP
ideal

segment

(a) LP ideal points and segment

y1
s

yλs
y2
s

MILP
ideal pts.

(y1
s)I

(yλs)I
(y2
s)I

MILP
ideal seg.

(b) MILP ideal points and segment

Figure 3 Fathoming in biobjective BB

through y1
s and y2

s . We begin with these points because it is straightforward to determine

whether or not Us dominates a singleton. In Figure 3a these points are labelled “LP ideal

points.” Notice that they are not dominated. Consider the intersection of (Ys)
ideal + R2

≥0

and the line with normal vector λs passing through yλs . Recognize that this intersection,

which we denote Hλ
s , is also a valid dual bound. In Figure 3a the resulting line segment

is labelled “LP ideal segment,” but is not dominated. A tighter bound can next be found

by explicitly generating Ls. In Figure 3a this is the set indicated by the red points, which

is again not dominated. After generating Ls, one cannot hope to find a tighter bound on

(Ys)I resulting from LP solutions. Instead, one can solve single objective MILPs to generate

elements of (Ys)I and use these elements to form a valid dual bound. We first generate

ideal points in the same way as before, but use single objective MILPs rather than LPs. In

Figure 3b these points are labelled “MILP ideal points.” Yet again they are not dominated.

We can then consider the intersection of ((Ys)I)
ideal +R2

≥0 and the line with normal vector

λs passing through (yλs)I , which we denote H̃λ
s . This intersection forms another valid dual

bound. In Figure 3b the resulting line segment is labelled “MILP ideal segment” and is

dominated. Hence, s can be fathomed in this example.

We now formally outline the fathoming rules employed in this work. Some additional

notation will be useful. For k ∈ {1,2}, define

Pks :=
(
∪i 6=kyis

)
∪ yλs , (5)

and let

Ps := (P1
s)ideal ∪ (P2

s)ideal. (6)

Author: Branch-and-bound for biobjective MILP
16 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

Additionally, for any I ⊂ {1,2, λ}, define

DIs :=∪2
k=1

((
Pks \∪i∈I yis

)
∪∪i∈I\{k} (yis)I

)ideal
. (7)

Ps represents the sets of ideal points obtained from LP solutions, while DIs represents a

set of ideal points obtained from a mixture of LP and MILP solutions. Our five fathoming

rules are given below. Rule 0 expresses the idea of fathoming due to optimality, while

the remainder of the rules indicate situations in which s can be fathomed due to bound

dominance.

Proposition 5 (Fathoming Rules). Node s can be fathomed if any of the following

holds:

0. Ls ⊂ (Ys)I ,

1a. Us �Ps,

2a. Us �Hλ
s ,

1b. Us �DIs for some I ⊂ {1,2, λ},

2b. Us � H̃λ
s ,

3. Ls ⊆Us.

Proof. Rule 0 is due to integer feasibility of Ls. Rule 1a holds since by construction

Ps �Ls, and so Us �Ls. Rule 2a holds since by construction H̃λ
s �Ls, and so Us �Ls. For

Rule 1b, note that by construction, for any I ⊂ {1,2, λ}, DIs � (ys)I for every (ys)I ∈ (Ys)I

and thus DIs is a valid dual bound at node s. For Rule 2b, note that by construction

Hλ
s � (ys)I for every (ys)I ∈ (Ys)I and thus Hλ

s is a valid dual bound at node s. Rule 3 is

obvious. �

Before we outline the process we use for processing a node s, we briefly discuss another

important task that ought to be carried out while processing node s: Updating Ns. We

do this in two ways: (i) add each integer-feasible line segment discovered while checking

Fathoming Rule 0 to Ns, and (ii) for each discovered x∗ ∈XI , generate the nondominated

subset of

Y(x∗) := {y= f(x) : x∈X,xi = x∗i for all i∈ {m+ 1, . . . ,m+n}} (8)

and add each defining line segment of this set to Ns. Consider the latter of these strategies.

Observe that the feasible set of Y(x∗) can be interpreted as a leaf node of the BB tree,

Author: Branch-and-bound for biobjective MILP
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 17

which we denote s(x∗). Hence, the Y(x∗)+R2
≥0 =Ls(x∗). This leads to a need for generating

the nondominated subset of Ls, i.e. ND(Ls). Typical techniques for generating ND(Ls)

include the multiobjective simplex method and the parametric simplex algorithm (PSA)

[Ehr05]. However, the multiobjective simplex method is far more robust than is necessary

for biobjective problems. Also, we found in practice that using the PSA often resulted in

many basis changes yielding the same extreme point of Ls in OS. Since much work is done

during the PSA to determine the entering and exiting variables, we found that generating

ND(Ls) using the PSA required a significant amount of computational effort. We decided

to use an alternative method for generating ND(Ls) which relies on sensitivity analysis.

We first solve the single objective LP using objective f2 to obtain y2
s . Next we create the

LP

Ps(α) := min{f1(x) +αf2(x) : x∈Xs} (9)

and then carry out the procedure outlined in Algorithm 3.

Algorithm 3 Generate ND(Ls)

Input: Node s.

Output: A set B containing all defining line segments of ND(Ls).

1: function GenerateDualBd(s)

2: Set B= ∅.

3: Solve the LP min{f2(x) : x∈Xs} to obtain y2
s .

4: Solve Ps(0) to obtain solution x∗ and set y= f(x∗).

5: while y 6= y2
s do

6: Use sensitivity analysis to obtain an interval [α′, α′′] such that x∗ is optimal to

Ps(α) for all α∈ [α′, α′′].

7: Let α∗ be the negative reciprocal of the slope of the line through y and y2
s .

8: Set x∗ = arg min{Ps(α′′+ ε)} for sufficiently small ε∈ (0, α∗−α′′].

9: if f(x∗) 6= y then

10: Add the line segment connecting f(x∗) and y to B. Update y to be f(x∗).

11: Return B.

In lines 3 and 4 of Algorithm 3 we compute the south-east and north-west most extreme

points of ND(Ls), respectively. The while loop beginning on line 5 is then used to sequen-

Author: Branch-and-bound for biobjective MILP
18 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

tially compute adjacent extreme points of ND(Ls) in a west to east pattern, until the

south-east most extreme point is rediscovered. Each line segment joining a pair of adjacent

extreme points of ND(Ls) is stored and the set of all computed segments is returned at the

end of the procedure. Note that the correctness of the algorithm relies on an appropriately

small choice for ε on line 8. As we have discussed, there are other methods which can

be used here that do not rely on ε, such as the PSA or the first phase of the two-phase

method for solving biobjective combinatorial problems [Ehr05]. We have already discussed

the difficulties we encountered with the PSA. The difficulty with the first phase of the

two-phase method is that, although it generates the extreme supported Pareto solutions of

a BOLP, it does not generate them in order from left to right. Thus, when using a simplex-

style solution method for each single objective LP, each iteration can require a significant

number of basis changes. Our method generates these extreme points in order from left to

right, and as a result, warm-starting each iteration by reusing the basis information from

the previous iteration reduces the overall number of required basis changes.

Recognize from Proposition 5 that Fathoming Rules 0 and 3 each impose a condition

on Ls and therefore require knowledge of ND(Ls) in order to be employed. We note,

however, that for each of these rules it is often unnecessary to generate ND(Ls) entirely.

In particular, the generation of ND(Ls) should cease if: (i) one is checking Fathoming Rule

0 and a defining line segment of ND(Ls) is generated that is not integer feasible, or (ii)

one is checking Fathoming Rule 3 and a defining line segment of ND(Ls) is generated that

is not contained in Us. Hence, the procedures in Algorithm 3 can be modified in order to

develop strategies for checking Fathoming Rules 0 and 3. These strategies are outlined in

Algorithms 4 and 5, respectively.

Algorithm 4 follows almost the same procedure as Algorithm 3, except it terminates

prematurely on line 10 if a line segment is computed that is not integer feasible. Algorithm 5

also follows almost the same procedure as Algorithm 3. However, this procedure terminates

prematurely on line 5 or 12 if a point or line segment is computed that is not dominated by

Us. We have now built the tools necessary to present our proposed procedure for processing

a node s. We do so in Algorithm 6.

Line 2 of Algorithm 6 is an optional procedure in which we can generate locally valid

cutting planes to strengthen the representation of Xs if so desired. We then compute y1
s

and y2
s on line 3. We then check to see if either of these solutions are integer feasible, and

Author: Branch-and-bound for biobjective MILP
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 19

Algorithm 4 Fathoming Rule 0

Input: Node s and solutions y1
s and y2

s .

Output: 1 if node s should be fathomed, 0 otherwise.

1: function FR 0(s, y1
s , y

2
s)

2: y1
s is the solution to Ps(0). Let x∗ represent the preimage of y1

s . Set y= y1
s .

3: if y= y2
s then return 1

4: else

5: while y 6= y2
s do

6: Use sensitivity analysis to obtain an interval [α′, α′′] such that x∗ is optimal

to Ps(α) for all α∈ [α′, α′′].

7: Let α∗ be the negative reciprocal of the slope of the line through y and y2
s .

8: Set x∗ = arg min{Ps(α′′+ ε)} for sufficiently small ε∈ (0, α∗−α′′].

9: if f(x∗) 6= y then

10: Let S represent the line segment connecting f(x∗) and y.

11: if S 6⊂ (Ys)I then return 0

12: else Update y to be f(x∗).

13: return 1

if they are, we generate the dual bound associated with the integer solution in order to

update Ns. Furthermore, if both solutions are integer feasible, we check Fathoming Rule 0

on line 6. On line 7 we compute the value λs, the value of the weights on the objectives so

that the level curves of fλ have the same slope as the line segment joining y1
s and y2

s . We

then solve the LP associated with fλ. If the solution is integer feasible, we again update

Ns as before. On line 9 we check whether or not y1
s , y

2
s and yλs are dominated by Us. If

they are, we proceed to check Fathoming Rules 1a, 2a, and 3. Otherwise, we solve the

MILP associated with fλ and fk for each k ∈ {1,2} such that the ideal point (Pks)ideal is not

dominated by Us. On lines 21 and 22 we utilize the solutions of each MILP to (optionally)

add local cuts to Xs and update Ns. Finally, we check Fathoming Rules 1b and 2b.

Two additional tasks are performed while processing each node.

4.1. Objective space fathoming

After processing each node, we perform an additional type of fathoming which we refer

to as objective-space fathoming. After updating Ns, we impose bounds on f1 and f2 which

Author: Branch-and-bound for biobjective MILP
20 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

Algorithm 5 Fathoming Rule 3

Input: Node s and solutions y1
s and y2

s .

Output: 1 if node s should be fathomed, 0 otherwise.

1: function FR 3(s, y1
s , y

2
s)

2: y1
s is the solution to Ps(0). Let x∗ represent the preimage of y1

s . Set y= y1
s .

3: if y= y2
s then

4: if Us � y then return 1

5: else return 0

6: else

7: while y 6= y2
s do

8: Use sensitivity analysis to obtain an interval [α′, α′′] such that x∗ is optimal

to Ps(α) for all α∈ [α′, α′′].

9: Let α∗ be the negative reciprocal of the slope of the line through y and y2
s .

10: Set x∗ = arg min{Ps(α′′+ ε)} for sufficiently small ε∈ (0, α∗−α′′].

11: if f(x∗) 6= y then

12: Let S represent the line segment connecting f(x∗) and y.

13: if Us 6� S then return 0

14: else Update y to be f(x∗).

15: return 1

“cut off” portions of OS in which we have discovered that Us � (Ys)I . In certain cases

the remaining subset of OS consists of disjoint regions. When this is the case, we imple-

ment objective-space fathoming by branching on f1 and f2 bounds which generate the

desired disjunctions in OS. In these cases, objective-space fathoming resembles the “Pareto

branching” of Stidsen et al. [SAD14]and “objective branching” of Parragh and Tricoire

[PT19].

4.2. Bound tightening

In order to increase the likelihood of fathoming, we utilize a few different strategies for

tightening the bound Ls. The first strategy we use is the generation of locally valid cutting

planes. We do this in two ways: (i) we generate discjuntive cuts based on disjunctions

observed in OS when performing OS fathoming, and (ii) we convert the BOLP relaxation

associated with s to the BOMILP min{fλ(x) : x∈ (Xs)I}, allow the MILP solver to process

Author: Branch-and-bound for biobjective MILP
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 21

Algorithm 6 Process node s

1: function ProcessNode(s)

2: Compute valid cutting planes for (Xs)I and add them to the description of Xs.

3: for k ∈ {1,2} do Solve min{fk(x) : x∈Xs} to find optimal solution x̄k and generate

yks ∈ Y k
s .

4: if yks ∈ (Ys)I then let N = GenerateDualBd(s(x̄k)) and set Ns =ND(Ns ∪

N).

5: if y1
s , y

2
s ∈ (Ys)I then

6: if FR 0(s, y1
s , y

2
s) = 1 then Fathom s, STOP! (Fathoming Rule 0)

7: Calculate Hs and λs using y1
s and y2

s . Solve min{fλ(x) : x ∈ Xs} to find optimal

solution x̄λ and generate yλs ∈ Y λ
s .

8: if yλs ∈ (Ys)I then let N = GenerateDualBd(s(x̄λ)) and set Ns =ND(Ns ∪N).

9: if Us � y1
s , Us � y2

s and Us � yλs then

10: if Us �Ps then Fathom s, STOP! (Fathoming Rule 1a)

11: else

12: Calculate H̃λ
s .

13: if Us � H̃λ
s then Fathom s, STOP! (Fathoming Rule 2a)

14: else

15: if FR 3(s, y1
s , y

2
s) = 1 then Fathom s, STOP! (Fathoming Rule 3)

16: else

17: Define the set I = ∅.

18: for k ∈ {1,2} do

19: if Us 6� (Pks)ideal then add ({1,2} \ {k})∪{λ} to I

20: for each k ∈ I do solve the MILP min{fk(x) : x∈ (Xs)I} to find optimal solution

x̂k and obtain (yks)I ∈ (Y k
s)I .

21: Add a local cut to Xs lying on the level curve of fk associated with the best

dual solution.

22: Let N = GenerateDualBd(s(x̂k)) and set Ns =ND(Ns ∪N).

23: if Us �DIs then Fathom s, STOP! (Fathoming Rule 1b)

24: else if λ∈ I then

25: Calculate Hλ
s .

26: if Us �Hλ
s then Fathom s, STOP! (Fathoming Rule 2b)

Author: Branch-and-bound for biobjective MILP
22 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

(a) Example instance of BOMILP (b) After branching (c) Locally valid cut

Figure 4 An example showing the usefulness of locally valid cuts for BOMILP

its root node, and add all cuts generated by this solver as local cuts to s as local cuts.

It is widely accepted that for single objective MILPs, locally valid cutting planes are not

particularly helpful for improving the performance of BB. However, locally valid cutting

planes can have a significantly greater impact on BOMILPs. To see this, observe Figure 4.

Assume that Figure 4a displays an instance of BOMILP for which the (f1, f2)-space and

the X-space are one and the same, i.e., this instance contains only two variables y1 and

y2, both integer, and f1 = y1 and f2 = y2. The constraints of this instance yield the blue

polytope, and the integer lattice is indicated by the black dots. The red dots represent

the Pareto-optimal solutions. Suppose that branching is performed as shown in Figure 4b.

Notice that all Pareto optimal solutions in the left branch can be revealed by a single

locally valid cutting plane, as shown by the red dashed line in Figure 4c. Also notice that

this could never be accomplished through the use of globally valid cuts.

4.3. Comparison with another BB

We highlight some key differences regarding the node processing step between our BB and

that of Belotti et al. [BSW12; BSW16], which is the only other BB method for general

BOMILP. There are also differences in the other components of BB, but that is not of

concern here.

The two methods differ in the way fathoming rules are implemented. Firstly, we utilize

the data structure of Adelgren et al. [ABG18] to store and dynamically update the set Ns
throughout the BB process. In [BSW12; BSW16], fathoming rules are checked at a node

s of the BB tree by: (i) using Ns to generate Us by adding a set of local nadir points to

Ns, (ii) selecting the subset R := Us ∩ ((Ys)
ideal + R2

≥0), and (iii) solving auxiliary LPs to

determine whether R and Ls can be separated by a hyperplane. Node s is then fathomed

Author: Branch-and-bound for biobjective MILP
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 23

if R = ∅ or if a separating hyperplane is found. Note that these procedures amount to

comparing each element of the primal bound with the dual bound as a whole by solving

at most one LP for each element of the primal bound.

In this paper, we utilize the opposite approach to fathoming. Rather than comparing

each element of the primal bound with the dual bound as a whole, we compare each

element of the dual bound with the primal bound as a whole. Additionally, instead of

making these comparisons by solving LPs, we exploit the following guarantee of the data

structure of [ABG18]: a point or line segment inserted to the structure is added to the

structure if and only if the point or segment is not dominated by the data already stored

in the structure. Hence, we implement an extra function IsDominated(·) alongside this

data structure which returns 1 if the input is dominated by Ns and 0 otherwise. We then

implement our fathoming rules 1-3 by passing the appropriate sets (Ps,Hλ
s ,D

I
s , H̃

λ
s and

Ls) to IsDominated. If a 1 is returned for any of these sets, we fathom, otherwise we do

not. It is difficult to comment on whether solving LPs or utilizing a function call to a data

structure is more efficient for checking fathoming. However, we have found in practice that

for a particular node s of the BB tree, the primal bound Us typically contains far more

points and segments than the dual bound Ls. Thus, comparing each element of the dual

bound with the primal bound as a set seems to be a more efficient procedure than doing

it the opposite way.

We now discuss the extension of the remaining major aspects of BB to the biobjective

setting.

5. Biobjective BB

In this section we discuss the specifics of how the different components of single objective

BB — presolve/preprocessing, node processing, and branching, can each be extended to

the biobjective setting. We then briefly discuss optional additions to our basic biobjective

BB procedure.

5.1. Branching

In general, any rule for selecting a branching variable is permissible. However, it should be

noted that for BOMILP several y ∈ Y , and consequently several x∈X, may be discovered

while processing a node s. In fact, our implementation requires solving at least three

LPs at each node. Since the variables may take on different values at each solution, it is

Author: Branch-and-bound for biobjective MILP
24 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

possible that an integer variable takes a fractional value at some of these solutions and

not at others. Because of this, we use a scoring scheme for branching in which each integer

variable is given a score. Of the variables with the highest score, the one with the highest

index is selected for branching. The score of xi is increased if: (i) xi is fractional at the LP

solution associated with objective fk, k ∈ {1,2, λs}, (ii) xi changes value at a pivoting step

of Algorithm 4, or (iii) multiple single objective MILPs are solved to optimality at s and

xi takes different values for at least two of the MILP solutions.

After a branching decision has been made we utilize probing, as introduced in Proposition

4, to strengthen bounds on each variable for both of the resulting subproblems. We do

this for several reasons: (i) we may find during this process that our branching decision

results in an infeasible subproblem, in which case we can discard the infeasible subproblem,

enforce that the variable bounds associated with the feasible subproblem be satisfied at

any child node of s, and choose a new branching variable; (ii) because much work in

biobjective BB is dedicated to fathoming, we want to generate the strongest dual bound

possible, which probing helps us to do; (iii) since processing a node in biobjective BB is an

expensive operation, we seek to limit the number of nodes explored and probing aids in this

endeavor by reducing the number of possible future branching decisions. We found during

testing that this probing scheme at each node was extremely powerful, both in reducing

the number of nodes processed during BB as well as overall running time. See Table 1 in

Section 6 for evidence of this.

5.2. Exploiting gaps in OS

Due to the noncontinuous, nonconvex nature of the Pareto set of a BOMILP, there are

occasionally large gaps between Pareto solutions in OS. If this occurs, the likelihood that

Ls ⊆Us is significantly decreased for each node. Hence, this can result in an extreme amount

of computational effort which yields no additional Pareto solutions. One way to combat

this issue is to observe the solutions obtained during Preprocessing and record locations

in OS where large gaps exist between discovered solutions. One can then split OS into a

series of subregions based on the locations of these gaps and solve single objective MILPs

(using objectives f1 and f2) within each subregion in order to remove locations containing

no Pareto solutions. Afterwards BB can be run in each subregion rather than over the

entire OS. To aid in understanding this idea, observe Figure 5. Here Pareto solutions are

shown in blue and subregions in OS are indicated by green dashed lines.

Author: Branch-and-bound for biobjective MILP
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 25

(a) Gaps (b) Slitting OS (c) Reducing the subregions
Figure 5 Large gaps between solutions in OS

5.3. Measuring Performance

In single objective BB, one can terminate the procedure at any time and obtain a measure

of the quality of the best known solution in terms of the gap between this solution and the

best known dual bound. We propose a similar scheme for biobjective BB. Let Os∗ represent

the set of open nodes after a node s∗ has been processed. After processing s∗, the global

dual bound is DBs∗ =ND(∪s∈Os∗Ls). Therefore, if BB is terminated after s∗ is processed,

the performance of BB can be quantified by measuring the distance between DBs∗ and

Us∗. One natural metric to use for measuring this distance is the Hausdorff metric:

dH(DBs∗ ,Us∗) := max

{
sup

i∈DBs∗
inf
j∈Us∗

d(i, j), sup
j∈Us∗

inf
i∈DBs∗

d(i, j)

}
.

Unfortunately the nonconvex nature of Us makes the Hausdorff metric difficult to use since

it cannot be computed using a linear program. In our implementation Us∗ is stored as

the individual line segments and singletons comprising Ns∗ using the data structure of

[ABG18]. DBs∗ is computed by generating the points and line segments comprising its

nondominated subset, which are also stored using the same data structure. Thus, rather

than explicitly computing dH(DBs∗ ,Us∗), we instead compute

Gs∗ := max{dH(DBs∗,S +R2
≥0) : S ∈Ns∗}

via pairwise comparison of the points and line segments comprising DBs∗ and Ns∗. Clearly,

Gs∗ is a upper bound on dH(DBs∗ ,Us∗). Recognize, though, that Gs∗ is an absolute measure-

ment and so it is difficult to use to compare the performance of BB on multiple instances

of BOMILP. Thus, in practice we use a percentage calculated as

Ḡs∗ := 100× |max{y2
1 − y1

1, y
1
2 − y2

2}−Gs∗ |
max{y2

1 − y1
1, y

1
2 − y2

2}
.

Author: Branch-and-bound for biobjective MILP
26 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

We refer to this number as the % duality gap.

Another method for measuring the distance between DBs∗ and Us∗ is to compute a so

called hypervolume gap. Let hv(·) denote the area of subset of R2. Then the hypervolume

gap between DBs∗ and Us∗, as proposed by Zitzler et al. [Zit+03], is

HVs∗ := 100×
hv((DBs∗ +R2

≥0)∩OS)−hv(Us∗ ∩OS)

hv((DBs∗ +R2
≥0)∩OS)

,

A similar measure is used to assess the quality of approximations to the Pareto sets of

BOMILP instances in [BCS15b].

Recognize that the Hausdorff and hypervolume gap measurements play significantly

different roles. The hypervolume gap provides a measure of the proximity of the dual bound

to the primal bound throughout the entirety of OS, while the Hausdorff gap provides a

measure of the proximity of the dual and primal bounds in the location at which they are

furthest apart. Hence, we can interpret the Hausdorff gap as a worst-case measurement and

the hypervolume gap as a sort of average-case measurement. We note that in our initial

tests we utilize both the Hausdorff and hypervolume measurements so that our results

can be compared with other works, such as [BCS15b], which use the hypervolume gap.

However, since the Hausdorff gap provides a worst-case measure and is therefore more

robust, we do not use the hypervolume gap measurement in our final set of experiments.

5.4. Our BB algorithm

A pseudocode of our BB procedure is given in Algorithm 7.

6. Computational Analysis

We implemented Algorithm 7 for our BB scheme using the C programming language and

the ILOG CPLEX optimization package. This implementation, along with the instances we

generated for use in Section 6.6 can be found at https://github.com/nadelgr/BOMILP_

BB. Boland et al. [BCS15b] graciously shared their code with us and so we were able to com-

pare the performance of our BB with the triangle splitting (TS) method, which we recall

is a search method in the objective space. In preliminary tests, we also compared with the

BB method of [BSW12]. However, their implementation was incomplete and so the perfor-

mance of our BB was far superior to theirs. For this reason, we do not include the results of

their BB. All testing described in Sections 6.1–6.5 was conducted using a Dell PowerEdge

R430 server running Fedora Core 27 and which had a Xeon E5-2640 CPU and 64 GB of

https://github.com/nadelgr/BOMILP_BB
https://github.com/nadelgr/BOMILP_BB

Author: Branch-and-bound for biobjective MILP
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 27

Algorithm 7 BB for BOMILP.

Input: An instance I of BOMILP.

Output: The Pareto set of instance I.

1: function BBsolve(I)

2: Set L = ∅.

3: Use primal presolve, biobjective duality fixing and exploitation of singleton and

dominating columns to simplify I.

4: for k ∈ {1,2} do solve the MILP min{fk(x) : x∈XI} to obtain ykI ∈ YI .

5: Select ρ≥ 0 and run either PreprocessingMethod1(y1
I , y

2
I , ρ) or Preprocess-

ingMethod2(y1
I , y

2
I , ρ) to return N0.

6: Perform probing to further simplify I.

7: Add the continuous relaxation of I to L.

8: while L 6= ∅ do select s from L.

9: Run ProcessNode(s).

10: if s is not fathomed then perform OS fathoming.

11: if the nondominated portion of OS consists of disjoint regions then perform

Pareto branching. Add the resulting subproblems to L.

12: else select the variable with highest score for branching.

13: Perform probing to simplify each of the subproblems resulting from the

current branching decision.

14: if probing reveals an infeasible subproblem then impose the restrictions

of the feasible subproblem and select the variable with the next highest score for

branching. Repeat Line 13.

15: else branch on the selected variable. Add the resulting subproblems to

L.

16: Return Ns∗, where s∗ is the last node for which ProcessNode was called.

RAM. For tests described in Section 6.6 we utilized the Extreme Science and Engineering

Discovery Environment (XSEDE) Bridges system at the Pittsburgh Supercomputing Cen-

ter (PSC) through allocation DMS200019. Specifically, these tests were conducted using a

HPE Apollo 2000 server running CentOS Linux 7 and which had a Intel Haswell CPU and

128 GB of RAM.

Author: Branch-and-bound for biobjective MILP
28 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

For experiments described in §6.1–§6.5 we utilized a test set consisting of the instances

examined in Belotti et al. [BSW12] and Boland et al. [BCS14; BCS15b]. The former con-

tained 30 instances with 60 variables and 60 constraints (Belotti60) and 30 instances

with 80 variables and 80 constraints (Belotti80). The latter had 5 instances for each of

the three types Boland80, Boland160, and Boland320 (we do not solve instances with less

than 60 constraints or variables due to their relative ease), and 4 instances for each of the

three types Boland16, Boland25, and Boland50.2

(a) Instance from the Belotti60 set. (b) Instance from the Boland16 set.

Figure 6 Pareto set and boundary of L0 for the two instance families.

Figure 6 depicts the Pareto set and boundary of L0 for one instance from each of the

two instance classes. Note the following structural differences displayed in the two figures

1. The relative gap between the Pareto set and boundary of L0 is greater in Figure 6a

than in Figure 6b.

2. The relative gap between connected subsets of the Pareto set is greater in Figure 6a

than in Figure 6b.

3. The overall number of solutions present in the Pareto set is greater in Figure 6b than

in Figure 6a.

We found that the above differences were typical for these instance families. This pro-

vides some insight into the differences in performance seen for these two instances families

through the rest of this section. Note, in particular, the difference in duality gaps seen

2 These are labelled this way to maintain consistency with the way other instances are labeled although the respective
total number of variables and constraints is approximately 800, 1250 and 2500.

Author: Branch-and-bound for biobjective MILP
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 29

in Experiments 1, 3, and 5 as well as the difference in number of nodes processed when

utilizing OS gap splitting in Experiment 4.

Our final set of experiments are described in §6.6, where we opted to generate a more

difficult test set. For this purpose, we created biobjective variants of instances from MIPLIB

2017 [Gle+19] that were feasible, mixed-integer, marked easy, and contained at most 1000

decision variables. For each such instance, we generated two secondary objective functions

and discarded instances for which: (i) the Pareto set was a singleton, or (ii) the second

objective was unbounded, or (iii) the MILP associated with either f1 or f2 took over 8

hours to solve.

The computational tests with our BB had a maximum solution time of 8 hours. For each

instance, we recorded the computation time in seconds, the number of nodes explored in

our BB tree, and the % duality gap computed after the root node was processed. We report

average values of these numbers for the Belotti* instances, which we recall are thirty of

each type.

We began our tests by turning off all nonessential features of our BB procedure, and

then sequentially turning on various features to test their impact on the overall procedure.

If a particular feature of our BB procedure was deemed effective in reducing the overall

effort required to solve instances of BOMILP, this feature was left on for the remainder of

the tests, otherwise it was turned back off.

Our original implementation included a variety of features which did not prove useful

in either reducing the overall BB time or the number of explored nodes. For the sake

of space, in the sections that follow we focus only on features that proved useful. We

briefly note some of these ideas here to motivate future research into them. Most of our

fruitless features involved adding various cutting planes to the problem formulation. Note

that we are not referring to CPLEX default cut generation – this was left on and did

prove useful. Instead, we are referring to: (i) attempts to add user-generated cuts from

discovered disjunctions, and (ii) attempts to use CPLEX default cut generation at each

node and add the discovered cuts as local cuts. Other attempted features included checks

for early termination of Fathoming Rule 3 and the generation of ND(Ls). Each of these

provided inconsistent results, reducing BB time for some problems but increasing it for

others. Hence, both were abandoned in the end.

Author: Branch-and-bound for biobjective MILP
30 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

6.1. Presolve Techniques

Table 1 contains the results of our first computational experiment. Note that in for this

test we utilized PreprocesingMethod2 with ρ set to zero.

Table 1 Experiment 1 – Measuring the impact of presolve techniques

Instance
All Off Duality Fixing Singleton Columns Dominating Columns

Time Nodes Ḡ0 Time Nodes Ḡ0 Time Nodes Ḡ0 Time Nodes Ḡ0
Belotti60 (30) 4 77 53 4 77 53 4 77 53 4 77 53
Belotti80 (30) 11 96 52 11 96 52 11 96 52 11 96 52

Boland80 16 507 46 15 520 46 18 507 46 16 507 46
9 267 23 6 268 37 10 267 23 9 267 23

26 668 17 21 689 17 26 668 17 27 668 17
16 531 19 11 415 19 17 531 19 17 531 19
14 465 22 11 400 18 14 465 22 13 465 22

16 488 25 13 458 27 17 488 25 17 488 25

Boland160 430 3133 13 387 2944 13 444 3133 13 445 3133 13
564 2543 12 483 2437 12 549 2543 12 544 2543 12
241 1781 13 276 2303 20 233 1781 13 239 1781 13
782 3646 15 814 3768 15 763 3646 15 777 3646 15
302 2021 17 291 2086 13 291 2021 17 301 2021 17

464 2625 14 450 2708 15 456 2625 14 461 2625 14

Boland320 13019 10862 10 16403 17004 63 13009 10862 10 13355 10862 10
22572 15924 8 22102 17575 8 22931 15924 8 22306 15924 8
22006 14403 9 24181 21072 75 21820 14403 9 22153 14403 9
21831 16990 10 22486 18319 12 21837 16990 10 20380 16990 10
15981 13597 9 13840 12569 9 15277 13597 9 14204 13597 9

19082 14355 9 19802 17308 33 18975 14355 9 18480 14355 9

Boland16 2 32 5 1 32 5 2 32 5 2 32 5
3 49 11 2 47 11 2 49 11 2 49 11
7 125 27 5 123 27 7 125 27 6 125 27

10 183 25 8 183 25 10 183 25 10 183 25

5 97 17 4 96 17 5 97 17 5 97 17

Boland25 14 162 14 13 183 14 13 162 14 14 162 14
25 283 15 22 289 15 26 283 15 25 283 15
40 429 13 33 422 13 39 429 13 40 429 13
43 437 20 41 466 20 44 437 20 43 437 20

31 328 16 27 340 16 31 328 16 31 328 16

Boland50 395 1343 14 341 1409 14 397 1343 14 397 1343 14
754 1952 17 606 1890 17 766 1952 17 772 1952 17

1427 2593 9 1249 2437 9 1382 2593 9 1357 2593 9
1740 3386 15 615 1622 15 1754 3386 15 1702 3386 15

1079 2319 14 703 1840 14 1074 2319 14 1057 2319 14

Author: Branch-and-bound for biobjective MILP
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 31

Notice from Table 1 that the results for duality fixing show the opposite pattern for

the Boland320 instances than for all other instances. This is due to the fact that, for an

unknown reason, fixing several variables during presolve had a negative impact on pre-

processing, causing many fewer solutions to be discovered during this phase and therefore

having an overall negative impact on the rest of the BB procedure. We felt though that

the positive impact duality fixing had on the other instances sets warranted leaving this

feature on for the remainder of our tests. Also observe from Table 1 that the exploitation

of neither singleton nor dominating columns had any significant impact on the overall

BB procedure. We found that this was mainly due to the fact that there were very few

occurrences of either of these types of columns. We opted to turn off the exploitation of

singleton columns for the remainder of our tests, but we left on the exploitation of dom-

inating columns. Our reasoning here was that singleton columns have no impact on BB

that extends beyond presolve, while dominating columns result in disjunctions from which

we can generate global cutting planes. Hence, we left on the exploitation of dominating

columns in order to test the impact of generating these cuts in later tests.

6.2. Preprocessing

In our next test we examined the impact of the two preprocessing techniques discussed in

Section 3.1, as well as a hybrid method we derived as a combination of the two presented

procedures. In our initial implementation of this test we used each of these methods with

ρ assigned each integer value in [0,5]. Recognize from Algorithms 1 and 2 that each of

the proposed preprocessing procedures are designed so that the total number of Pareto

solutions computed should have a positive correlation with the value of ρ. We determined

that ProprocesingMethod1 performed poorly for ρ≤ 1, ProprocesingMethod2 per-

formed poorly for ρ≥ 2 and the hybrid method performed poorly in general. Hence, we do

not report results for these procedures. We also discovered that the impact of ρ on overall

solution time varied with the size of the instance solved. As a result, we also implemented

modified preprocessing procedures in which the value of ρ is automatically computed as a

function of the size of an instance. For each family of instance, the average CPU required

to complete BB after employing each of the aforementioned preprocessing strategies is

reported in Table 2. We note that in Table 2 ρ = v indicates that ρ was automatically

computed as a function of instance size.

Author: Branch-and-bound for biobjective MILP
32 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

Table 2 Experiment 2 – Measuring the impact of preprocessing techniques

Instance
Time (s)

PreprocessingMethod1 PreprocessingMethod2
ρ= 2 3 4 5 v ρ= 0 1 v

Belotti60 (30) 4 4 8 8 4 4 5 5
Belotti80 (30) 11 11 18 18 11 11 12 12

Boland80 10 11 10 10 11 15 16 15
5 7 6 7 8 6 7 7

20 18 17 18 22 21 26 25
16 17 16 17 16 11 12 13
7 6 7 7 11 11 12 12

12 12 11 12 13 13 14 14

Boland160 388 299 218 219 298 401 383 393
300 265 266 263 335 487 516 506
177 144 125 125 158 282 291 287
549 552 541 557 548 816 880 862
171 185 158 158 443 302 280 290

317 289 262 264 356 458 470 467

Boland320 11036 8619 6398 6232 9561 16480 16544 16636
15099 16278 16210 16142 14963 22319 21181 21246
9433 10421 9615 9840 10675 24151 21878 21788

14379 16642 16446 16427 16253 22837 24763 24384
10303 10706 10779 10811 10602 14422 14440 14449

12050 12533 11890 11891 12411 20042 19761 19701

Boland16 1 2 2 3 1 2 3 3
2 2 3 3 2 2 3 3
5 5 6 6 5 5 7 7
8 9 10 9 8 8 10 9

4 4 5 5 4 4 6 5

Boland25 11 10 10 10 12 14 16 17
18 19 18 18 18 23 26 25
22 22 22 23 24 31 37 37
50 49 50 53 52 40 44 43

25 25 25 26 27 27 31 31

Boland50 278 293 196 198 335 342 354 356
633 546 456 464 663 583 689 678
990 1110 743 708 945 1250 1848 1852
599 2217 1325 1382 1325 625 2054 2001

625 1042 680 688 817 700 1236 1222

Observe from Table 2 that although variants of PreprocessingMethod2 performed

well for smaller instances, the same is not true for larger instances. Preprocessing-

Method1, on the other hand, performed quite well on all instances. Notice, however,

that values of ρ near two performed quite well for small instances while values near five

performed extremely poorly. On the other hand, for larger instances values of ρ near five

Author: Branch-and-bound for biobjective MILP
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 33

seem to outperform almost every other procedure. Due to the consistent performance of

the variant of PreprocessingMethod1 with ρ = 2, we opted to use this approach for

the remainder of our tests.

6.3. Probing and Pareto Branching

The next test we performed was designed to examine the utility of the variable probing

procedure used directly after preprocessing and at each node prior to branching, and the

Pareto branching that we perform when OS fathoming results in disjoint feasible regions

of OS. The results of this experiment are given in Table 3.

Observe from Table 3 that when utilizing probing directly after preprocessing, in many

cases the total CPU time and number of nodes processed increased. Surprisingly, however,

performing the same probing procedure prior to branching at each node had an extremely

positive impact on the overall performance of BB, significantly lowering total CPU time

and the number of explored nodes. We also found that Pareto branching had an overall

positive impact on BB performance. For the remainder of our tests we opted to cease

probing directly after preprocessing, but to still employ probing during branching as well

as Pareto branching.

6.4. Exploiting OS Gaps and Comparing with Triangle Splitting

We now present the results of an experiment designed to test the performance of our BB

procedure against that of the triangle splitting (TS) method of [BCS15b]. For this exper-

iment we solved all the same instances we used in our previous tests and employed two

variants of our BB procedure, one in which we utilized the OS splitting procedure we

discussed in Section 5.2 and one in which we utilized our standard implementation. The

results of this test are given in Table 4. Our standard BB procedure outperformed the

triangle splitting method on all but one set of instances, while our OS splitting procedure

outperformed the triangle splitting method on all sets of instances except one. Also rec-

ognize that the total CPU times associated with our OS splitting procedure are always

comparable with those of our standard procedure. We point out that there were many more

substantial gaps between solutions to exploit after preprocessing for the Belotti* instances

than for the Boland* instances. This is the reason that there is a drastic reduction in total

number of nodes processed when using OS splitting on the Belotti* instances but not

Author: Branch-and-bound for biobjective MILP
34 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

Table 3 Experiment 3 – Measuring the impact of Probing and Pareto branching

Instance
All Off Initial Probing Probing in Branching Pareto Branching

Time Nodes Ḡ0 Time Nodes Ḡ0 Time Nodes Time Nodes

Belotti60 (30) 4 72 48 4 74 49 3 48 4 72
Belotti80 (30) 11 98 49 11 97 49 8 62 10 94

Boland80 10 368 12 10 366 12 5 160 11 388
5 256 35 6 254 35 5 210 7 260

20 647 19 20 647 19 7 283 17 621
14 598 45 16 581 45 9 393 15 526
7 302 18 7 284 18 5 157 7 332

11 434 26 12 426 26 6 241 11 425

Boland160 393 3185 19 349 2815 19 125 1082 259 2394
309 1713 20 338 1743 20 122 625 290 1948
171 1466 5 178 1433 5 91 651 149 1551
547 2982 8 547 3016 8 201 1249 488 3595
167 1196 28 168 1154 28 78 570 153 1447

318 2108 16 316 2032 16 123 835 268 2187

Boland320 10951 10391 6 11061 10673 6 3099 3882 7120 8292
14601 12827 6 15038 12954 6 5012 5329 11358 12004
9402 7626 12 9316 7598 12 3173 3380 7571 8072

14065 12161 6 14542 12528 6 5583 5679 11685 13181
9991 9900 5 9850 9930 5 2664 3462 6555 8380

11802 10581 7 11962 10737 7 3906 4346 8858 9986

Boland16 1 29 5 1 28 5 1 28 1 47
2 54 12 2 56 12 1 43 2 63
5 128 42 5 124 42 3 104 6 163
7 165 12 7 168 12 5 129 9 199

4 94 18 4 94 18 3 76 4 118

Boland25 11 157 32 11 159 32 7 130 10 175
18 343 36 18 337 36 12 259 23 445
23 370 64 29 505 64 15 284 26 379
50 764 76 52 765 76 33 545 38 580

25 409 52 28 442 52 17 305 24 395

Boland50 278 1501 33 304 1660 33 165 1063 292 1831
614 2318 44 749 2799 44 499 1862 585 2857
948 2966 22 1101 3367 22 600 2188 704 2949
559 2083 60 2038 5349 60 1001 2583 438 2135

600 2217 40 1048 3294 40 566 1924 505 2443

the Boland* instances. We also did a parallel implementation of the OS splitting proce-

dure and observed some reduction in the CPU times, which suggests that parallelising this

procedure can further improve the BB algorithm.

Author: Branch-and-bound for biobjective MILP
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 35

Table 4 Experiment 4 – Measuring the impact of OS Gap Splitting

Instance
Standard BB BB with OS Gaps TS
Time Nodes Time Nodes Time

Belotti60 (30) 3 49 4 33 9
Belotti80 (30) 7 64 8 44 20

Boland80 6 205 5 205 44
3 203 3 138 29
7 326 7 261 46
7 300 6 262 48
3 165 3 165 32

5 240 5 206 40

Boland160 79 914 85 886 320
97 734 105 749 335
67 692 60 668 267

180 1631 188 1626 677
56 691 48 573 258

96 932 97 900 371

Boland320 2048 3391 2055 3371 3800
3213 4568 3333 4743 6219
1981 3135 1957 3164 5035
3239 5429 3328 5385 5421
1755 3461 1912 3697 4293

2447 3997 2517 4072 4954

Boland16 1 39 1 39 4
2 47 1 47 5
2 94 4 128 10
5 133 5 133 13

3 78 3 87 8

Boland25 6 137 6 119 19
14 325 9 215 30
13 258 16 347 39
22 397 24 433 51

14 279 14 279 35

Boland50 158 1156 137 961 159
374 2058 306 1754 262
484 2240 371 1795 346
990 3843 977 3369 475

502 2324 448 1970 311

6.5. Approximations of the Pareto Set

Boland et al. [BCS15b] measured the time it takes the Triangle Splitting method to com-

pute an approximate Pareto set having the property that the hypervolume gap between

valid primal and dual bounds implied by this approximate set is less than 2%. We repeat

this experiment for our BB procedure, though we note that the primal and dual bounds we

Author: Branch-and-bound for biobjective MILP
36 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

utilize are significantly different than those used in [BCS15b]. We measure this gap directly

after the completion of our preprocessing procedure, and then each time 25 nodes are pro-

cessed during BB. We cease the procedure if: (i) BB terminates with the true Pareto set,

or (ii) the hypervolume gap is less than 2%. In this experiment we also report Hausdorff

gap measurements, as described in Section 5.3. Additionally, for comparison we include

certain results as reported in [BCS15b].

The results of this experiment are displayed in Table 5 from which we make several

observations. For the majority of the Boland* instances, the hypervolume gap is already less

than 2% after preprocessing, before BB even begins. This is evidence that these instances

are relatively easy. Recall Figure 6, and notice that for the Boland80 instance the boundary

of the dual bound at the root node is very close to the Pareto set. This is further evidence

of the ease of these instances. In contrast to this, notice from Table 5 that for the Belotti*

instances, it takes over 75% of the total BB time in order to obtain a hypervolume gap of

less than 2%. We note that Table 5 also shows that the triangle splitting method is able to

determine an approximate solution with a hypervolume gap of less than 2% in less time,

relative to the total solution time.

6.6. MIPLIB Instances

Due to the successful results we obtained using our BB procedure on instances from the

literature, we designed our final set of tests to measure the performance of our procedure

on a more realistic set of instances. For this we utilized a set of single objective MILP

instances available from the MIPLIB 2017 library [Gle+19]. We chose only instances that

were feasible, mixed-integer, contained at most 1000 total decision variables, and were

marked easy. For each instance, we generated two secondary objective functions as follows:

(r) For each i∈ {1, . . . ,m+n} the coefficient c2
i is randomly generated using the uniform

distribution over the closed interval [−|maxi c
1
i | , |maxi c

1
i |].

(n) We set c2
i =−c1

i .

After generation of these instances we did some preliminary testing and discarded

instances for which: (i) the Pareto set was a singleton, or (ii) the second objective was

unbounded, or (iii) the MILP associated with either f1 or f2 took over 8 hours to solve.

In the end, 104 instances remained for final testing (2 each, originating from 52 single

objective MILP instances).

Author: Branch-and-bound for biobjective MILP
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 37

Table 5 Experiment 5 – Obtaining approximate Pareto sets

Standard BB TS

Instance
Preprocessing Until HVs∗ ≤ 2%
HV0 Ḡ0 Time % Time Nodes % Nodes HVs∗ Ḡs∗ % Time

Belotti60 (30) 21.7 62.4 3 100 49 98 0.2 4.9 –
Belotti80 (30) 25.7 66.8 7 100 62 98 0.2 3.3 –

Boland80 1.6 12.3 1 18 0 0 1.6 12.3 12
3.5 34.7 3 74 100 49 2.0 16.3 9
2.9 19.0 2 31 25 8 1.8 10.9 4

49.0 67.1 5 74 225 75 1.2 10.7 6
2.2 18.2 1 47 25 15 1.2 11.2 7

11.8 30.3 2 49 75 29 1.6 12.3 7.6

Boland160 2.6 18.6 16 21 75 8 1.2 8.8 2.30
1.9 20.0 8 9 0 0 1.9 20.0 3.85
1.2 4.7 4 6 0 0 1.2 4.7 1.50
0.8 7.9 10 5 0 0 0.8 7.9 0.61
9.2 28.4 20 35 150 22 1.8 8.4 2.90

3.1 15.9 12 15 45 6 1.4 10.0 2.23

Boland320 1.1 6.4 52 3 0 0 1.1 6.4 0.21
0.5 5.9 82 3 0 0 0.5 5.9 0.23
0.5 12.3 78 4 0 0 0.5 12.3 0.26
0.5 5.9 80 2 0 0 0.5 5.9 0.23
0.4 5.5 72 4 0 0 0.4 5.5 0.22

0.6 7.2 73 3 0 0 0.6 7.2 0.23

Boland16 0.6 5.3 1 68 0 0 0.6 5.3 –
1.2 11.9 0 26 0 0 1.2 11.9 –
3.1 42.3 2 74 25 27 1.0 18.6 –
2.2 12.3 2 34 25 19 1.6 11.4 –

1.7 18.0 1 50 13 11 1.1 11.8 –

Boland25 4.0 32.2 5 82 75 55 1.2 9.7 –
67.3 79.4 13 94 175 54 1.8 19.9 –
83.0 87.8 7 55 75 29 1.5 28.5 –
91.2 93.7 11 50 100 25 1.9 22.0 –

61.4 73.3 9 70 106 41 1.6 20.0 –

Boland50 2.6 33.3 15 10 25 2 1.9 28.9 –
3.8 44.3 152 41 325 16 2.0 28.5 –
1.9 21.8 6 1 0 0 1.9 21.8 –

26.6 75.1 191 19 275 7 1.7 24.0 –

8.7 43.6 91 18 156 6 1.9 25.8 –

A primary reason for generating this additional set of instances is the relative ease with

which single objective MILPs were solved throughout the solution process, both during

the execution of triangle splitting and our BB, when using the previously considered test

sets. As such, in our first analysis of these new instances we set a variety of node limits

on single objective MILPs solved during our BB (other than the two specified on line 4

of Algorithm 7, of course). By limiting the number of nodes processed during each single

Author: Branch-and-bound for biobjective MILP
38 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

objective MILP solve, we hoped to increase the speed of the overall BB procedure while

still being able to exploit useful dual bound information at each node. For initial tests,

we set node limits of 10, 102, 103, 104, and ∞ and compared the overall solution time

for BB on all 104 instances, with a maximum execution time of 8 hours. Surprisingly, the

best performing node limits were 104 and∞. Hence, we opted to leave the single objective

MILP node limit off for the remainder of our analysis. We did note, however, that on some

instances, single objective MILPs took significant time to solve even when relatively few

nodes were explored in order to do so. Thus, we opted to solve each instance again, this

time with an overall time limit imposed when solving each single objective MILP. For this

test we utilized time limits of 15, 30, 45, 60, 300, 1800, and ∞ seconds. In this case, the

limits that appeared to produce the best results were 30 and 300 seconds, with 300 seconds

having a slight advantage. We therefore imposed a single objective MILP time limit of 300

seconds when conducting our final round of tests.

Table 6 gives the results of this experiment, where the two lines for each instance corre-

spond to the (r) and (n) methods, respectively, for generating the second objective function.

Of the 104 instances considered, 49 were solved in under 8 hours by the original BB imple-

mentation, 52 by the OS splitting BB variant, and 64 by the triangle splitting method.

Additionally, there were 11 instances which were solved in under 8 hours by at least one

version of BB, but not by the triangle splitting method, and 21 instances solved in under

8 hours by the triangle splitting method, but not by a BB procedure. In all, the results

display comparable performance between the BB approaches and the triangle splitting

method, though for instances in which there was a relative difference in performance, it

was generally large. From what we can tell, these discrepancies in performance seem to

stem from overall structure of the Pareto set in OS. In particular, triangle splitting appears

have superior performance on instances for which either: (i) the total number of Pareto

solutions is small, or (ii) most Pareto solutions are supported, particularly if all Pareto

solutions lie along a single line segment in OS. Both of these properties can be observed

in the Pareto sets of instances beginning with “mik,” for example. On the other hand, BB

appears to have superior performance on instances for which either: (i) the total number of

Pareto solutions is large, or (ii) a relatively large percentage of Pareto solutions are unsup-

ported. We also note that occasionally numerical issues caused early termination of BB

when solving instances for which all Pareto solutions fall on a single line segment in OS. In

Author: Branch-and-bound for biobjective MILP
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 39

Table 6 Experiment 6 – Solution time (sec.) for biobjective instances generated from MIPLIB 2017.

Branch-and-bound Triangle Splitting Branch-and-bound Triangle Splitting

Instance Standard Gap Splitting Instance Standard Gap Splitting

22433 5.53 3.93 5.36 neos-1425699 ∗ 0.04 ∗
21.31 59.43 139.40 ∗ ∗ ∗

23588 60.69 50.60 91.47 neos-1430701 5797.07 27292.20 2086.53
24616.54 25092.16 790.16 1.87 1.90 2.64

assign1-5-8 25599.20 25104.12 1867.39 neos-1442119 ∗ ∗ 22552.6
2035.07 2031.20 1415.81 326.48 328.68 1534.18

b-ball 0.60 0.31 0.06 neos17 ∗ ∗ 25302.70
0.01 0.01 0.02 ∗ ∗ ∗

beavma 4178.27 3615.45 ∗ neos-3610041-iscar 731.45 142.51 8.14
∗ ∗ ∗ 3.37 3.42 3.91

blend2 5232.48 5274.62 ∗ neos-3610051-istra 2002.65 880.83 37.81
∗ ∗ 28405.80 ∗ 0.91 6.34

ci-s4 ∗ ∗ ∗ neos-3610173-itata 12251.52 2.72 75.74
13511.01 15171.00 ∗ ∗ ∗ 25.90

dcmulti 725.25 728.54 173.88 neos-3611447-jijia 2934.49 1354.50 37.68
∗ ∗ 0.76 ∗ ∗ 19.07

exp-1-500-5-5 ∗ ∗ ∗ neos-3611689-kaihu 398.39 9.27 53.70
5.59 5.56 21.36 ∗ ∗ 18.41

fastxgemm-n2r6s0t2 ∗ ∗ 178.48 neos5 285.47 286.68 265.46
1419.83 1414.09 0.6 2613.94 3046.41 273.85

flugpl 0.48 0.44 1.46 Neos-5192052-neckar 0.79 0.79 ∗
0.02 0.02 0.04 9.72 9.71 0.06

gen 72.61 74.01 15.57 Nexp-50-20-1-1 ∗ 145.16 1318.04
∗ ∗ 0.32 1.01 ∗ 28.08

gr4x6 0.69 0.56 1.12 noswot 407.97 198.68 261.77
∗ ∗ 5.29 272.75 195.12 171.7

ic97 potential ∗ ∗ ∗ nsa ∗ 1813.48 ∗
21411.78 21597.36 ∗ ∗ ∗ ∗

ic97 tension ∗ ∗ ∗ opt1217 0.21 0.21 0.15
9.10 9.12 53.19 0.10 0.09 0.02

k16x240b ∗ ∗ ∗ prod1 ∗ 19240.07 978.34
390.86 664.73 ∗ 20.29 23.34 27.52

markshare 4 0 3665.90 112.33 9841.90 prod2 ∗ ∗ 25214.90
27.75 28.49 768.88 283.95 283.36 183.98

markshare 5 0 ∗ ∗ 27098.70 qiu 863.70 1002.68 18267.50
∗ ∗ 6767.01 ∗ ∗ ∗

mas74 27118.70 20170.72 19182.20 r50x360 ∗ ∗ ∗
486.88 489.42 ∗ 921.03 ∗ ∗

mas76 ∗ ∗ ∗ ran12x21 ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

mik 250 20 75 1 ∗ ∗ ∗ ran13x13 8732.94 8420.79 ∗
∗ ∗ 20.57 ∗ ∗ ∗

mik 250 20 75 2 ∗ ∗ ∗ ran14x18-disj-8 ∗ ∗ ∗
∗ ∗ 14.62 ∗ ∗ ∗

mik 250 20 75 3 ∗ ∗ ∗ rout 1191.12 1095.00 2795.34
∗ ∗ 15.60 ∗ ∗ ∗

mik 250 20 75 4 ∗ ∗ ∗ sp150x300d ∗ ∗ ∗
∗ ∗ 139.28 ∗ ∗ 39.27

mik 250 20 75 5 ∗ ∗ ∗ timtab1 ∗ ∗ ∗
∗ ∗ 17.69 ∗ ∗ ∗

misc07 ∗ ∗ 3816.02 timtab1CUTS ∗ ∗ ∗
∗ ∗ 614.38 ∗ ∗ ∗

Author: Branch-and-bound for biobjective MILP
40 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

particular, for some such instances a cutting plane was generated along this line segment

in OS after which BB execution ceased. This phenomenon was observed on the “mark-

share 4 0” instance, for example, which explains the apparent difference in performance

patterns between BB and triangle splitting for the “markshare” instances.

7. Concluding Remarks

In this paper, we have introduced a new BB method for solving BOMILP with general inte-

gers. For each component of single objective BB, we presented procedure(s) for extending

this component to the biobjective setting. We have also conducted numerous computa-

tional experiments. The first several experiments provide insight into the usefulness of each

of the algorithms we proposed. The final few experiments compare the performance of our

BB procedure and the triangle splitting method [BCS15b]. Our BB procedure outperforms

the triangle splitting method on instances from literature, and performs comparably on

large, challenging instances that were developed in this paper.

Most of the algorithms proposed by us have, in theory, straightforward generalizations

to the multiobjective case (MOMILPs). However, having an implementable correct BB

for MOMILPs is far from a trivial extension of this work. We point out some important

questions that need to be answered in this regard.

7.1. Extension to multiobjective MILP

Correct node fathoming is what makes a BB algorithm a correct and exact method. Fath-

oming by bound dominance is how fathoming mostly occurs in BB. For BOMILP, the

bound sets are two-dimensional polyhedra. This greatly simplifies checking bound domi-

nance for BOMILPs since given two line segments, or piecewise linear curves in general,

in R2, one can easily identify the dominated portion through pairwise comparisons. The

data structure [ABG18] stores nondomimated line segments and efficiently checks if a

new line segment is dominated by what is currently stored. This enabled the node pro-

cessing step in this paper to perform fathoming efficiently. Bound sets for MOMILP are

higher-dimensional polyhedra and hence one will require an even more sophisticated data

structure to store these sets. Since the local dual bound set at each node is a polyhedron

and the global primal bound is a finite union of polyhedra, checking dominance requires

checking containment of polyhedra, whose complexity depends on their respective repre-

sentations, and also computing the set difference between the primal and dual bound sets.

Author: Branch-and-bound for biobjective MILP
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 41

The set resulting from this set difference would be nonconvex, in general, which begs the

question: is there a straightforward way to represent this nonconvex set as a union of poly-

hedra whose relative interiors are disjoint? All in all, fathoming and storing nondominated

regions for a MOMILP is even more nontrivial. Once these obstacles are overcome, the BB

proposed in this paper should extend to a implementable BB for MOMILPs.

References

[AW13] T. Achterberg and R. Wunderling. “Mixed integer programming: Analyzing

12 years of progress”. In: Facets of Combinatorial Optimization: Festschrift for

Martin Grötschel. Ed. by M. Jünger and G. Reinelt. Springer, 2013, pp. 449–

481.

[ABG18] N. Adelgren, P. Belotti, and A. Gupte. “Effecient storage of Pareto points in

biobjective mixed integer programming”. In: INFORMS Journal on Comput-

ing 30.2 (2018), pp. 324–338.

[BJV13] C. Bazgan, F. Jamain, and D. Vanderpooten. “On the number of non-

dominated points of a multicriteria optimization problem”. In: Discrete

Applied Mathematics 161.18 (2013), pp. 2841–2850.

[BJV15] C. Bazgan, F. Jamain, and D. Vanderpooten. “Approximate Pareto sets

of minimal size for multi-objective optimization problems”. In: Operations

Research Letters 43.1 (2015), pp. 1–6.

[BSW12] P. Belotti, B. Soylu, and M. M. Wiecek. A Branch-and-Bound Algorithm for

Biobjective Mixed-Integer Programs. Tech. rep. Clemson University, Dec. 2012.

[BSW16] P. Belotti, B. Soylu, and M. M. Wiecek. “Fathoming rules for biobjective mixed

integer linear programs: Review and extensions”. In: Discrete Optimization

22.Part B (2016), pp. 341–363.

[BGP09] J.-F. Bérubé, M. Gendreau, and J.-Y. Potvin. “An exact ε-constraint method

for bi-objective combinatorial optimization problems: Application to the Trav-

eling Salesman Problem with Profits”. In: European Journal of Operational

Research 194.1 (2009), pp. 39–50.

[BP12] V. Blanco and J. Puerto. “A new complexity result on multiobjective linear

integer programming using short rational generating functions”. In: Optimiza-

tion Letters 6.3 (2012), pp. 537–543.

Author: Branch-and-bound for biobjective MILP
42 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

[BCS14] N. Boland, H. Charkhgard, and M. Savelsbergh. “The triangle splitting

method for biobjective mixed integer programming”. In: Integer Programming

and Combinatorial Optimization: IPCO 2014. Ed. by J. Lee and J. Vygen.

Vol. 8494. Lecture Notes in Computer Science. Springer, Cham, 2014, pp. 162–

173.

[BCS15a] N. Boland, H. Charkhgard, and M. Savelsbergh. “A criterion space search

algorithm for biobjective integer programming: The balanced box method”.

In: INFORMS Journal on Computing 27.4 (2015), pp. 735–754.

[BCS15b] N. Boland, H. Charkhgard, and M. Savelsbergh. “A criterion space search

algorithm for biobjective mixed integer programming: The triangle splitting

method”. In: INFORMS Journal on Computing 27.4 (2015), pp. 597–618.

[BCS16a] N. Boland, H. Charkhgard, and M. Savelsbergh. “The L-shape search method

for triobjective integer programming”. In: Mathematical Programming Com-

putation 8.2 (2016), pp. 217–251.

[BCS16b] N. Boland, H. Charkhgard, and M. Savelsbergh. “The Quadrant Shrinking

Method: A simple and efficient algorithm for solving tri-objective integer pro-

grams”. In: European Journal of Operational Research (2016).

[BKR17] R. S. Burachik, C. Y. Kaya, and M. Rizvi. “A new scalarization technique and

new algorithms to generate Pareto fronts”. In: SIAM Journal on Optimization

27.2 (2017), pp. 1010–1034.

[DHK09] J. A. De Loera, R. Hemmecke, and M. Köppe. “Pareto optima of multicriteria

integer linear programs”. In: INFORMS Journal on Computing 21.1 (2009),

pp. 39–48.

[Ehr05] M. Ehrgott. Multicriteria optimization. Springer, 2005.

[Ehr06] M. Ehrgott. “A discussion of scalarization techniques for multiple objec-

tive integer programming”. In: Annals of Operations Research 147.1 (2006),

pp. 343–360.

[EG07] M. Ehrgott and X. Gandibleux. “Bound sets for biobjective combinatorial

optimization problems”. In: Computers & Operations Research 34.9 (2007),

pp. 2674–2694.

[ER08] M. Ehrgott and S. Ruzika. “Improved ε-constraint method for multiobjective

programming”. In: Journal of Optimization Theory and Applications 138.3

(2008), pp. 375–396.

Author: Branch-and-bound for biobjective MILP
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 43

[GNE19] S. L. Gadegaard, L. R. Nielsen, and M. Ehrgott. “Bi-objective Branch-and-Cut

Algorithms Based on LP Relaxation and Bound Sets”. In: INFORMS Journal

on Computing 31.4 (2019), pp. 790–804.

[Gam+15] G. Gamrath, T. Koch, A. Martin, M. Miltenberger, and D. Weninger.

“Progress in presolving for mixed integer programming”. In: Mathematical

Programming Computation 7.4 (2015), pp. 367–398.

[Gle+19] A. Gleixner, G. Hendel, G. Gamrath, T. Achterberg, M. Bastubbe, T.

Berthold, P. M. Christophel, K. Jarck, T. Koch, J. Linderoth, M. Lübecke,

H. D. Mittelmann, D. Ozyurt, T. K. Ralphs, D. Salvagnin, and Y. Shinano.

MIPLIB 2017: Data-Driven Compilation of the 6th Mixed-Integer Program-

ming Library. Technical Report. Optimization Online, July 2019.

[Gra+14] F. Grandoni, R. Ravi, M. Singh, and R. Zenklusen. “New approaches to

multi-objective optimization”. In: Mathematical Programming 146.1-2 (2014),

pp. 525–554.

[JLS12] N. Jozefowiez, G. Laporte, and F. Semet. “A generic branch-and-cut algorithm

for multiobjective optimization problems: Application to the multilabel trav-

eling salesman problem”. In: INFORMS Journal on Computing 24.4 (2012),

pp. 554–564.

[KY83] G. Kiziltan and E. Yucaoğlu. “An algorithm for multiobjective zero-one linear

programming”. In: Management Science 29.12 (1983), pp. 1444–1453.

[KH82] D. Klein and E. Hannan. “An algorithm for the multiple objective integer

linear programming problem”. In: European Journal of Operational Research

9.4 (1982), pp. 378–385.

[LLS14] M. Leitner, I. Ljubić, and M. Sinnl. “A computational study of exact

approaches for the bi-objective prize-collecting steiner tree problem”. In:

INFORMS Journal on Computing 27.1 (2014), pp. 118–134.

[Lei+16] M. Leitner, I. Ljubić, M. Sinnl, and A. Werner. “ILP heuristics and a new

exact method for bi-objective 0/1 ILPs: Application to FTTx-network design”.

In: Computers & Operations Research 72 (2016), pp. 128–146.

[LK13] B. Lokman and M. Köksalan. “Finding all nondominated points of multi-

objective integer programs”. In: Journal of Global Optimization 57 (2013),

pp. 347–365.

Author: Branch-and-bound for biobjective MILP
44 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

[Mar01] A. Martin. “General mixed integer programming: Computational issues for

branch-and-cut algorithms”. In: Computational Combinatorial Optimization:

Optimal or Provably Near-Optimal Solutions. Ed. by M. Jünger and D. Naddef.

Vol. 2241. Lecture Notes in Computer Science. Springer, 2001, pp. 1–25.

[MD05] G. Mavrotas and D. Diakoulaki. “Multi-criteria branch and bound: A vector

maximization algorithm for Mixed 0-1 Multiple Objective Linear Program-

ming”. In: Applied Mathematics and Computation 171.1 (2005), pp. 53–71.

[MF13] G. Mavrotas and K. Florios. “An improved version of the augmented ε-

constraint method (AUGMECON2) for finding the exact pareto set in multi-

objective integer programming problems”. In: Applied Mathematics and Com-

putation 219.18 (2013), pp. 9652–9669.

[Mor+16] D. R. Morrison, S. H. Jacobson, J. J. Sauppe, and E. C. Sewell. “Branch-and-

bound algorithms: A survey of recent advances in searching, branching, and

pruning”. In: Discrete Optimization 19 (2016), pp. 79–102.

[ÖK10] Ö. Özpeynirci and M. Köksalan. “An exact algorithm for finding extreme

supported nondominated points of multiobjective mixed integer programs”.

In: Management Science 56.12 (2010), pp. 2302–2315.

[PT19] S. N. Parragh and F. Tricoire. “Branch-and-bound for bi-objective integer

programming”. In: INFORMS Journal on Computing 31.4 (2019), pp. 805–

822.

[PG17] A. Przybylski and X. Gandibleux. “Multi-objective branch and bound”. In:

European Journal of Operational Research 260.3 (2017), pp. 856–872.

[PGE10] A. Przybylski, X. Gandibleux, and M. Ehrgott. “A two phase method for

multi-objective integer programming and its application to the assignment

problem with three objectives”. In: Discrete Optimization 7.3 (2010), pp. 149–

165.

[RSW06] T. K. Ralphs, M. J. Saltzman, and M. M. Wiecek. “An improved algorithm

for solving biobjective integer programs”. In: Annals of Operations Research

147.1 (2006), pp. 43–70.

[RW07] J. O. Royset and R. K. Wood. “Solving the bi-objective maximum-flow

network-interdiction problem”. In: INFORMS Journal on Computing 19.2

(2007), pp. 175–184.

Author: Branch-and-bound for biobjective MILP
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 45

[RW05] S. Ruzika and M. M. Wiecek. “Approximation methods in multiobjective pro-

gramming”. In: Journal of Optimization Theory and Applications 126.3 (2005),

pp. 473–501.

[Say03] S. Sayin. “A procedure to find discrete representations of the efficient set with

specified coverage errors”. In: Operations Research 51.3 (2003), pp. 427–436.

[Say00] S. Sayın. “Measuring the quality of discrete representations of efficient sets in

multiple objective mathematical programming”. In: Mathematical Program-

ming 87.3 (2000), pp. 543–560.

[SS08] F. Sourd and O. Spanjaard. “A multiobjective branch-and-bound framework:

Application to the biobjective spanning tree problem”. In: INFORMS Journal

on Computing 20.3 (2008), pp. 472–484.

[Soy15] B. Soylu. “Heuristic approaches for biobjective mixed 0–1 integer linear pro-

gramming problems”. In: European Journal of Operational Research 245.3

(2015), pp. 690–703.

[SVS13] M. Stanojević, M. Vujošević, and B. Stanojević. “On the cardinality of the

nondominated set of multi-objective combinatorial optimization problems”.

In: Operations Research Letters 41.2 (2013), pp. 197–200.

[SAD14] T. Stidsen, K. A. Andersen, and B. Dammann. “A branch and bound algo-

rithm for a class of biobjective mixed integer programs”. In: Management

Science 60.4 (2014), pp. 1009–1032.

[Vin+13] T. Vincent, F. Seipp, S. Ruzika, A. Przybylski, and X. Gandibleux. “Multi-

ple objective branch and bound for mixed 0-1 linear programming: Correc-

tions and improvements for the biobjective case”. In: Computers & Operations

Research 40.1 (2013), pp. 498–509.

[Vis+98] M. Visée, J. Teghem, M. Pirlot, and E. Ulungu. “Two-phases Method and

Branch and Bound Procedures to Solve the Biobjective Knapsack Problem”.

In: Journal of Global Optimization 12 (2 1998), pp. 139–155.

[Zit+03] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. G. Da Fon-

seca. “Performance assessment of multiobjective optimizers: An analysis and

review”. In: IEEE Transactions on Evolutionary Computation 7.2 (2003),

pp. 117–132.

	Introduction
	Background on existing methods
	Summary of our work

	Preliminaries
	Definitions and Notation
	Bound sets for BOMILP

	Presolve and Preprocessing
	Dual Presolve
	Preprocessing
	Probing

	Node processing
	Objective space fathoming
	Bound tightening
	Comparison with another BB

	Biobjective BB
	Branching
	Exploiting gaps in OS
	Measuring Performance
	Our BB algorithm

	Computational Analysis
	Presolve Techniques
	Preprocessing
	Probing and Pareto Branching
	Exploiting OS Gaps and Comparing with Triangle Splitting
	Approximations of the Pareto Set
	MIPLIB Instances

	Concluding Remarks
	Extension to multiobjective MILP

