
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Effcient storage of Pareto solutions in biobjective mixed integer
programming

Citation for published version:
Adelgren, N, Belotti, P & Gupte, A 2015, 'Effcient storage of Pareto solutions in biobjective mixed integer
programming', Paper presented at INFORMS Computing Society Conference, Richmond, United States,
11/01/15 - 13/01/15.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 04. Jan. 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/323961795?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.research.ed.ac.uk/portal/en/persons/akshay-gupte(f197d57a-93b9-4afd-918a-480d64bb83c6).html
https://www.research.ed.ac.uk/portal/en/publications/effcient-storage-of-pareto-solutions-in-biobjective-mixed-integer-programming(a80bed42-784c-4c22-8e21-046a2a02553f).html
https://www.research.ed.ac.uk/portal/en/publications/effcient-storage-of-pareto-solutions-in-biobjective-mixed-integer-programming(a80bed42-784c-4c22-8e21-046a2a02553f).html
https://www.research.ed.ac.uk/portal/en/publications/effcient-storage-of-pareto-solutions-in-biobjective-mixed-integer-programming(a80bed42-784c-4c22-8e21-046a2a02553f).html


Computing Society

14th INFORMS Computing Society Conference
Richmond, Virginia, January 11–13, 2015
pp. 000–000

http://dx.doi.org/10.1287/ics.2015.XXXX
Creative Commons License

This work is licensed under a
Creative Commons Attribution 3.0 License

Efficient storage of Pareto solutions in
biobjective mixed integer programming

Nathan Adelgren†, Pietro Belotti‡, and Akshay Gupte†

†Department of Mathematical Sciences, Clemson University, Clemson, SC 29634,
nadelgr@clemson.edu, agupte@clemson.edu
‡FICO, International Square, Starley Way, Birmingham B37 7GN, United Kingdom,
pietrobelotti@fico.com

Abstract Many of the techniques for solving biobjective mixed integer linear programs
(BOMILP) are iterative processes which utilize solutions discovered during early iter-
ations to aid in the discovery of improved solutions during later iterations. Thus, it
is highly desirable to efficiently store the nondominated subset of a given set of solu-
tions. To this end, we present a new data structure in the form of a modified binary
tree. The structure takes points and line segments as input and stores the nondom-
inated subset of the input. We perform two computational experiments. The results
of the first show that this structure processes inserted data faster than alternative
structures currently implemented in the literature. Results of the second experiment
show that when our structure is utilized inside fathoming procedures for biobjective
branch-and-bound (BB), the running times for BB are reduced in most cases.

Keywords biobjective mixed integer, Pareto set, quad-tree, data structure, fathoming.

1. Introduction

Biobjective mixed integer linear programs (BOMILP) have the following form,

minx,y f(x, y) :=
[
f1(x, y) := c>1 x+ d>1 y, f2(x, y) := c>2 x+ d>2 y

]
s.t. (x, y)∈ PI := {(x, y)∈Rm×Zn : Ax+By≤ b} (1)

where PI is a bounded set. Define Ω := {ω ∈R2 : ω= f(x, y) ∀(x, y)∈ PI} the collection of all
points in R2 which can be obtained using the objective function values of feasible solutions
to (1). We refer to the space R2 containing Ω as the objective space.

Unlike single-objective programs, one cannot expect to find a single optimal solution to
biobjective programs since the objective functions are often conflicting. Instead, a set of
solutions which offer an acceptable compromise between the objectives is sought. In order to
determine which solutions are “acceptable,” we provide several notations and definitions. For
two vectors v1, v2 ∈R2 we use the following notation: v1 5 v2 if v1i ≤ v2i for i= 1,2; v1 ≤ v2
if v1 5 v2 and v1 6= v2; and v1 < v2 if v1i < v2i for i= 1,2. Given distinct (x, y), (x′, y′) ∈ PI ,
we say that f(x, y) dominates f(x′, y′) if f(x, y) ≤ f(x′, y′). This dominance is strong if
f(x, y)< f(x′, y′); otherwise it is weak. A point (x, y)∈ PI is (weakly) efficient if @ (x′, y′)∈
PI such that f(x′, y′) (strongly) dominates f(x, y). The set of all efficient solutions in PI is
denoted by XE . A point ω= f(x, y) is called Pareto optimal if and only if (x, y)∈XE . Given
Ω′ ⊆Ω we say that ω′ ∈Ω′ is nondominated in Ω′ if @ ω′′ ∈Ω′ such that ω′′ dominates ω′.
Note that Pareto optimal points are nondominated in PI . A BOMILP is considered solved
when the set of Pareto optimal points ΩP := {ω ∈R2 : ω= f(x, y) ∀(x, y)∈XE} is found.
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Let Y = Projy PI be the set of integer feasible subvectors to (1). Since PI is bounded,
we have Y = {y1, . . . , yk} for some finite k. Then for each yi ∈ Y there is an associated
BOLP, referred to as a slice problem and denoted P(yi), obtained by fixing y = yi in (1).
Problem P(yi) has a set of Pareto solutions Si := {(f1, f2)∈R2 : f2 =ψi(f1)}, where ψi(·) is
a continuous convex piecewise linear function. Then ΩP ⊆∪ki=1 Si and this inclusion is strict
in general. In particular, we have ΩP =∪ki=1

(
Si \∪j 6=i

(
Sj +R2

+ \ {0}
))

. Such union of sets
is not, in general, represented by a convex piecewise linear function. It should be noted that
finding ΩP is not a trivial task in general. In the worst case, ΩP = ∪ki=1Si and one may
have to solve every slice problem to termination, which can have exponential complexity.
For multiobjective IP’s (i.e. m= 0), De Loera et al. [3] prove that ΩP can be enumerated
in polynomial-time for fixed n, which extends the well known result that single-objective
IP’s can be solved in polynomial-time for fixed n. We are unaware of any similar results for
BOMILP.

The works of Belotti et al. [1] and Boland et al. [2] are the only exact procedures that we
know of for solving BOMILP with general integers, though Özpeynirci and Köksalan [9] give
an exact method for finding supported solutions of BOMILP. There are also other techniques
in the literature which have been devoted to specific cases. Many of the solution methods
for BOMILP are based on biobjective branch-and-bound (BB) procedures [1, 7, 14, 17], but
other techniques have also been used [2, 9]. We also note that the pure integer case has
been studied for binary variables [6], general integers [11] and specific classes of biobjective
combinatorial problems [5, 10, 13].

In this paper we present a data structure for efficiently storing a nondominated subset of
feasible solutions to a BOMILP. This structure is useful alongside exact solution procedures
as well as heuristics which aim to approximate the Pareto set. The structure we present is
a modified version of a quad-tree. For a detailed description and background information
on quad-trees, we suggest [12]. Although quad-trees have been used extensively for storing
Pareto points in the past [15, 16], they have been used only in the pure integer case. However,
notice that in the pure integer case all nondominated solutions are singletons while in the
mixed integer case nondominated solutions can consist of line segments as well as singletons.
Therefore, since we consider the mixed integer case in this work, our data structure stores
line segments as well as singletons. Data stored in a quad-tree is organized in such a way
that it can be easily searched to find a desired subset, which is desirable in certain situations.
The algorithms we use to implement this tree force it to remain balanced, because having a
balanced tree reduces the worst case time complexity required to access an individual node.

In Section 2 we describe the structure in detail, provide the algorithms necessary for its
implementation, and discuss the complexity and correctness of each algorithm. Section 3
provides an example of using the structure to determine the nondominated subset of a given
set of solutions. In Section 4 we conduct two experiments. The results of the first experi-
ment show that in the mixed integer case our data structure is able to store nondominated
solutions more efficiently than a dynamic list and can handle the insertion of up to 107

solutions in reasonable time. In the second experiment we utilize our structure alongside the
BB procedure of Belotti et al. [1] to solve specific instances of BOMILP. The results show
that the use of our structure leads to faster solution times for almost all solved instances.

2. Tree data structure

We begin this section by presenting the high-level idea of our data structure. Next we give
a detailed description of the data structure and the algorithms we used to implement it. We
finish by discussing some theoretical results including the complexity of each algorithm, and
thus the overall structure. Throughout this discussion, when we refer to storing solutions we
are referring to points in the objective space. Recall that we will be storing the nondominated
subset of the union of several Pareto sets. One convenient way to store this subset is to store
each of the individual points and line segments in R2 that it comprises.
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(a)Generated solutions (b)Nondominated subset

Figure 1. Example of solutions generated during the solution of an instance of BOMILP.

2.1. Purpose and principle

Figure 1(a) shows an example of solutions that might be generated when solving an instance
of BOMILP. We would like to store the nondominated portion of these points and segments,
as shown in Figure 1(b). Our goal is to have a data structure S which can take points and
line segments as input, and store only the nondominated subset of the input regardless of the
order in which solutions are inserted. Therefore, when a new solution is added to S, it needs
to not only recognize whether or not this new solution is dominated by solutions already
in S, but it must also be able to determine whether or not the new solution dominates any
currently stored solutions. Once these checks have been made, S must be able to update
so that it contains only nondominated solutions. Consider the solutions shown in Figures
1(a) and 1(b) and suppose that the segments connecting (1,17), (2,15), (4,14), and (9,13)
are in S. When inserting the point (5,11), S must recognize that (5,11) dominates a portion
of the segment connecting (4,14) and (9,13), and thus this portion of the segment must be
removed from S before (5,11) is added. Similarly, when the segment connecting (6,16) and
(7,10) is inserted, S must recognize that a portion of this segment is dominated by (5,11)
and only allow the nondominated portion of the segment to be added. The data structure
we use is a modified version of a quad-tree in which each node represents either a singleton
or a line segment associated with a Pareto point or set of Pareto points of (1). Note that a
quad-tree is a data structure specifically designed for storing data in R2. Each node π in a
quad-tree has at most four children, one for each each quadrant of the Cartesian plane. The
four children of π must lie within π + R++, π + R−+, π + R−− and π + R+−, respectively,
where, for example, R++ := {x∈R2 : x1 ≥ 0, x2 ≥ 0}.

2.2. Operations and details

Due to the fact that dominated solutions are not stored in our structure, our modified quad-
tree actually reduces to a modified binary tree. Let Π be the set of nodes in the tree. For
a given π ∈ Π, notice that if solutions are present in π + R++, they are dominated by π
and should not be stored in the tree. Similarly, if solutions are present in π + R−−, these
solutions dominate π and π should be removed from the tree. Thus, for any node π̂ ∈Π the
children of π̂ associated with π̂+R++ and π̂+R−− are unnecessary. Hence, each π̂ ∈Π has
only two children, and thus the tree reduces to a binary tree.

In order to present our structure in a clear, understandable manner, we define the following
terms for each π ∈Π: (1) π.type – Sgmt if π represents a line segment, and Pnt if π represents
a singleton, (2) π.x1, π.x2, π.y1 and π.y2 – π is identified by the point (π.x1, π.y1) if π.type=
Pnt and the extreme points (π.x1, π.y1) and (π.x2, π.y2) if π.type= Sgmt, (3) π.p – parent
node of π, (4) π.l – left child node of π, (5) π.r – right child node of π, (6) π.size – total
number of nodes contained in the subtree rooted at π, (7) π.ideal left = (πnw.x1, π.y1)
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(a)Local ideal points. (b)Partition R2 if π.type= Pnt. (c)Partition R2 if π.type= Sgmt.

Figure 2. Visuals for π.ideal right, π.ideal left, and the partitioning of R2 relative to π.

where πnw is the north-west-most node in the subtree rooted at π, and (8) π.ideal right=
(π.x2, π

se.y2) where πse is the south-east-most node in the subtree rooted at π. We say that
π is the root node if π.p= ∅ and π is instead a leaf node if π.l= π.r= ∅ See Figure 2(a) for
the details of π.ideal left and π.ideal right.

Now, in order to further simplify the descriptions of the algorithms we use in implementing
our data structure, we partition R2 into 4 regions relative to any node π. Figures 2(b) and
2(c) show the details of this partition for each type of node. We denote these regions by
Rα(π) where α∈ {1,2,3,4} represents the number of the region as shown in Figures 2(b) and
2(c). Given distinct nodes π and π∗, we use the notation π∗ ∩Rα(π) to denote any portion
of the point or segment associated with node π∗ that lies in region Rα(π). If no such portion
exists, we say π∗∩Rα(π) = ∅. To ensure that these regions are disjoint we assume that each
region contains its lower and left boundaries, but not its upper or right boundaries. We also
assume that π itself is contained in R2(π) and not Ri(π) for i∈ {1,3,4}. This convention is
taken so that weakly dominated points will not be included in our structure.

This data structure has three main purposes: (i) it should be able to handle the insertion of
several thousand solutions and update itself efficiently, (ii) the structure must be organized
so that it can easily be searched and a desired subset can be obtained, and (iii) it must be
able to return the current set of nondominated solutions. So, the main algorithms needed
for the utilization of this data structure are functions for insertion of new solutions, deletion
of dominated solutions, and rebalancing of the tree. We describe these algorithms next.

2.2.1. Insertion Recall that ΩP ⊆ ∪ki=1Si and is hence a collection of points and seg-
ments. Thus only points or segments will be inserted into the structure. For this purpose we
define the Insert function which takes two inputs: a node π∗ which is being inserted and a
node π which is the root of the tree or subtree where π∗ is inserted. The point or segment
associated with π∗ is compared against π. Consider the following four situations:

(1) If π∗ ⊆R2(π) then π5 π∗ and thus π∗ is discarded.
(2) If π 65 π∗ but π∗ ∩ R2(π) 6= ∅ then a portion of π∗ is either dominated by π or is a

repetition of solutions stored in π. We denote this situation by π 5p π∗. In this case
π∗ ∩R2(π) is discarded.

(3) If π∗ 5 π then π is removed from the tree.
(4) If π∗ 65 π but π ∩R2(π∗) 6= ∅ then π is reduced to π \R2(π∗).

Note that the second possibility above may result in π∗ being split into two disjoint pieces.
Similarly, the final possibility may result in π being split into two nodes. If none of the above
scenarios occur, neither π nor π∗ dominates the other and they can coexist in the tree.

The typical use of the Insert function is to insert a new node π∗ at the root node,
π0. Then π∗ is either discarded or π∗ ∩R1(π) and π∗ ∩R4(π) are inserted at π.l and π.r,
respectively. This process repeats recursively until either (i) π∗ has been fully discarded, or
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(ii) all nondominated portions of π∗ have been added to the tree as new nodes. Note that π∗

is added to the tree if and only if it is inserted at an empty node.Throughout the remainder
of this paper we will use the notation Replace(π′, π̃) to denote the process of replacing the
point or segment associated with π′ ∈ Π with the point or segment associated with π̃ ∈ Π
and leaving the tree structure otherwise unchanged. We use the notation π′← π̃ to denote
the process of replacing π′ and its entire subtree with π̃ and its entire subtree. Algorithm 1
describes the Insert procedure.

Algorithm 1 Inserting a new point or segment, π∗, into the data structure at node π

1: function Insert(π∗, π)
2: if π∗ = ∅ then Return
3: if π = π0 & π0 6= ∅ then Rebalance(π) . π0 represents the root node
4: if π= ∅ then Replace(π,π∗), π.size← 1, Update(π)
5: else Replace(π,π \ cl (R2(π∗)))
6: if π= ∅ then
7: if π.ideal left∩R2(π∗) 6= ∅ then π.l←∅
8: if π.ideal right∩R2(π∗) 6= ∅ then π.r←∅
9: RemoveNode(π)

10: Insert(π∗, π)
11: else
12: if ∃π1, π2 s.t. π= π1 ∪π2 & cl(π1)∩ cl(π2) = ∅ then
13: π1.l← π.l, π2.r← π.r
14: π← π1, π.r← π2

15: Update(π)
16: Insert(π∗ ∩R1(π), π.l)
17: Insert(π∗ ∩R4(π), π.r)

In Algorithm 1, the functions RemoveNode and Rebalance refer to the processes of
deleting nodes from the tree and rebalancing the tree, respectively. These algorithms will be
discussed further in Sections 2.2.2 and 2.2.3, respectively. The recursive Update function
has a node π as input and performs two actions: (i) ensures that π.size = (π.l).size +
(π.r).size+ 1 where (π′).size= 0 if and only if π′ = ∅, and (ii) ensures that π.ideal left

and π.ideal right are updated appropriately. After this, if π.p 6= ∅ then Update(π.p) is
called.

We now introduce a property that is maintained throughout all operations on the tree as
described in the remainder of the paper.

Property 1. Given π ∈Π, all nodes in the subtree of π.l are located completely within
R1(π) and all nodes in the subtree of π.r are located completely within R4(π).

2.2.2. Deletion Removing a dominated node from the tree is the next task that fre-
quently needs to be performed. Notice that when a node is deleted, in order for the tree
structure to be retained, another node must replace it. This is precisely where the difficulty
lies. Usually, when data is deleted from a quad-tree structure, all data contained in the
subtree of the deleted node is reinserted in order to maintain proper organization of the
tree [15, 16]. Since our quad-tree simplifies to a binary tree, however, we propose some-
thing much simpler. Notice that in order for our tree to maintain the appropriate structure,
Property 1 must be met. For any node π that needs to be removed and replaced, there are
precisely two nodes that may replace it and satisfy Property 1. They are the right-most
node in the subtree of π.l and left-most node in the subtree of π.r. For this task we define
the RemoveNode function, which is described in Algorithm 2.
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(a)Original Tree (b)RebalanceLeft1 (c)RebalanceLeft2

Figure 3. Examples of applying rebalancing procedures.

Algorithm 2 Remove a node that has been
shown to be dominated.

1: function RemoveNode(π)
2: if π.size= 1 then π→∅
3: else Define π̃= ∅
4: if (π.l).size> (π.r).size then
5: π̃→FindRightmostNode(π.l)
6: else
7: π̃→FindLeftmostNode(π.r)
8: Replace(π, π̃)
9: RemoveNode(π̃)

10: if π.p 6= ∅ then Update(π.p)

Algorithm 3 Check to ensure that the bal-
ance criterion is met at each node.

1: function Rebalance(π)
2: if (π.l).size> 2 then Rebalance(π.l)
3: if (π.r).size> 2 then Rebalance(π.r)
4: if (π.l).size> π.size

2−δ then

5: if (π.l.l).size≥ (1−δ)π.size
2−δ − 1 then

6: RebalanceRight1(π)
7: else repeat
8: RebalanceRight2(π)
9: until (π.l).size= π.size

2−δ

10: else if (π.r).size> π.size
2−δ then

11: if (π.r.r).size≥ (1−δ)π.size
2−δ −1 then

12: RebalanceLeft1(π)
13: else repeat
14: RebalanceLeft2(π)
15: until (π.r).size= π.size

2−δ

2.2.3. Rebalancing The final task to perform in maintaining our structure is rebalanc-
ing. To maintain balance we use the following strategy of Overmars and Van Leeuwen [8]:
for each non-leaf node π, the subtrees of π.l and π.r must contain no more than 1

2−δk nodes,
where k is the number of nodes in π’s subtree and δ is a preselected value in the open interval
(0,1). Enforcing this requirement causes the depth of the tree to be at most log2−δ t where t is
the number of nodes in the tree. Now, based on this requirement we develop two rebalancing
methods, RebalanceLeft1 and RebalanceLeft2 (and similarly RebalanceRight1
and RebalanceRight2) each of which take a node π as input. In RebalanceLeft2, the
left-most node of the subtree of π.r is found and is used to replace π. Then π is moved to
right-most position of the subtree of π.l. Notice that RebalanceLeft2 moves a single node
from one side of a tree to the other. In certain situations it may be more beneficial to move
several nodes from one side of the tree to the other in a single operation. RebalanceLeft1
is designed for this purpose. In RebalanceLeft1, the nodes of the tree are shifted in the
following fashion: (i) π.r and its right subtree shift up and left to take the place of π and its
right subtree, (ii) π and its left subtree shift down and left to become the new left subtree
of π.r, and (iii) the original left subtree of π.r is then placed as the new right subtree of π.
RebalanceLeft1 and RebalanceLeft2 are illustrated in Figure 3.

Algorithm 3 is used to determine which rebalancing procedure to apply in order to balance
the tree. Its correctness is shown in Proposition 7, which is presented in the next section.
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2.3. Performance Guarantees

We now present results about the correctness and complexity of the insertion, deletion, and
rebalancing procedures. In this section we will use the notation π ∈ Subtree(π̂) to denote
the case in which π is a node contained in the subtree of Π which is rooted at π̂.

Proposition 1. Insert removes any portion of a currently stored node π which is dom-
inated by an inserted node π∗.

Proof Assume π∗ 5p π ∈ Π. Consider any π̂ such that π ∈ Subtree(π̂) and suppose
π∗ is being inserted at π̂. Also, notice that the case in which π = π0 is trivial, so we
can assume WLOG that π ∈ Subtree(π̂.l). Suppose that π∗ 5 π̂.ideal left. In this case
Subtree(π̂.ideal left) is removed from Π. Thus, since π ∈ Subtree(π̂.l), π is also removed
from Π and the proposition is satisfied. Now suppose instead that π∗ 65 π̂.ideal left. If
π∗∩cl (R2(π̂)) = ∅, π∗ will be inserted at π̂.l because otherwise π∗ ⊂R3(π̂) and thus π∗ 65p π
since π ⊂R1(π̂). If, on the other hand, π∗ ∩ cl (R2(π̂)) 6= ∅, there must exist π∗∗ ⊂ π∗ such
that π∗∗ ⊂R1(π̂) and π ∩ cl (R2(π∗∗) = π ∩ cl (R2(π∗). If not, π̂5p π since π∗ 5p π, but this
is a contradiction as it violates Property 1. Therefore π∗∗ will be inserted at π̂.l. Since these
arguments hold for all π̂ ∈Π such that π ∈ Subtree(π̂), one of the following must occur: (i)
π is removed from Π due to a dominated ideal point, or (ii) there exists π̃ ⊂ π∗ such that
π ∩ cl (R2(π̃) = π ∩ cl (R2(π∗) which will be inserted at π. During this insertion π will be
reduced to π \ cl (R2(π∗). �

Proposition 2. Insert adds a portion of π∗ to the tree if and only if it is not dominated
by any node currently stored in the tree.

Proof Notice that the reverse direction is trivial because if π̂ is a portion of π∗ not
dominated by any π ∈ Π, then π̂ will be inserted at one of the children of every node it
is compared against. Thus, since there are a finite number of nodes in the tree, π̂ must
eventually be inserted at an empty node and added to the tree. For the forward direction we
show the contrapositive. Suppose there is π ∈Π such that π 5p π∗. Let π̃ = π∗ ∩ cl (R2(π))
and consider π̂ ∈Π such that π ∈ Subtree(π̂). The case in which π= π0 is trivial, so we can
assume WLOG that π ∈ Subtree(π̂.l). Suppose that π̃ ⊂ cl (R2(π̂)). In this case π̃ will not
be included in any portion of π∗ which is inserted to either child of π̂. Thus the Proposition
is satisfied. Now suppose instead that π̃ 6⊂ cl (R2(π̂)). In this case there must exist π′ ⊂ π̃
such that π′ ⊂R1(π̂) because otherwise π 65p π̃ since π ⊂R1(π̂). Thus π′ is included in the
portion of π∗ that will be inserted at π̂.l. Since these arguments hold for all π̂ such that
π ∈ Subtree(π̂), one of the following must occur: (i) π̃ is completely discarded during an
insertion at some π̌ ∈ Π such that π ∈ Subtree(π̌), or (ii) there exists π∗∗ ⊂ π∗ such that
π∗∗ ∩ π̃= π̃ \∪i :π∈Subtree(πi)cl (R2(πi)) and π∗∗ is inserted at π. �

Proposition 3. The worst case complexity of Insert is O(t), where t is the number of
nodes currently in the tree.

Proof Suppose that π∗ is being inserted and ∃π,π′ ∈Π such that: (i) π > π′, and (ii) π′

is the only node in the subtree of π that is not dominated by π∗. WLOG assume π.l > π′.
Then when π∗ is compared with π the subtree of π.l cannot be deleted. Thus π will be
removed and replaced with another node π̃. This process will repeat until π̃= π′, which will
be when π′ is the only node left in π’s subtree. Thus we can see that it is possible for π∗ to
be compared with every node in a subtree, implying O(t) complexity. �

Proposition 4. Use of the RemoveNode procedure does not violate Property 1.

Proof Notice that if π= π.p.l then π.p is completely within R4(π) and if π= π.p.r then
π.p is completely in R1(π). Thus, if π∗ is the right-most node in the subtree of π′.l for some
node π′, then π∗ is the unique node in the subtree of π′.l for which all other nodes in the
subtree of π′.l are completely within R1(π∗). Similarly, if π∗ is the left-most node in the
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subtree of π′.r for some node π′, then π∗ is the unique node in the subtree of π′.r for which
all other nodes in the subtree of π′.r are completely within R4(π∗). Therefore, by replacing
a deleted node π with either the right-most node in the subtree of π.l or the left-most node
in the subtree of π.r, Property 1 is satisfied even after the replacement. �

Proposition 5. If the tree is perfectly balanced, the worst case complexity of RemoveN-
ode is O(log t), where t is the number of nodes currently in the tree.

Proof Recall that when a node π is removed it is replaced with either the left-most node
in the subtree of π.r or the right-most node in the subtree of π.l. Assuming that the tree
is balanced, finding such a node is clearly an O(log t) process. If π′ is the node replacing
π and π′ is not a leaf node, then its original position must then be filled using the same
process. Note though that in finding the replacement for π′, a path through the tree is
traversed which begins precisely where the path traversed in finding the replacement for π
ended. Thus, even though multiple nodes may need replaced in order for π to be removed,
the overall process must result in the traversal of only one path through the tree, resulting
in an O(log t) procedure. �

Proposition 6. Use of the Rebalance procedure does not violate Property 1.

Proof To show that the proposition holds, we must show that neither RebalanceLeft1
nor RebalanceLeft2 violates Property 1. First consider RebalanceLeft1(π). Note that
after this procedure is carried out, π.r becomes the root node of the subtree that was once
rooted at π. All nodes that were in the subtree of π.r.l remain in their original positions
relative to π.r. Now notice that π becomes the left child of π.r, which does not violate
Property 1 since π is completely within R1(π.r). Finally, the entire subtree of π.r.l becomes
the right subtree of π. Since π is now the left child of π.r, all of these nodes are still located
in the left subtree of π.r. Furthermore, since these nodes were originally located in π’s right
subtree, Property 1 is still satisfied. Now consider RebalanceLeft2(π). In this procedure
π is replaced by the left-most node in the subtree of π.r. We proved that this would not
violate Property 1 in the proof of Proposition 4. After this, π is placed as the right child of
the node that was previously the right-most node in the subtree of π.l. This placement also
does not violate Property 1 since all nodes originally within the subtree of π.l are completely
within R1(π). �

Proposition 7. After one call of Rebalance(π) the balance criterion is satisfied at π.

Proof WLOG assume that (π.r).size> π.size
2−δ . Now, if (π.r.r).size< (1−δ)π.size

2−δ −1 then
the proposition is trivially satisfied since in this case RebalanceLeft2 is repeated until
(π.r).size= π.size

2−δ . Thus, we focus on the case in which (π.r.r).size≥ (1−δ)π.size
2−δ −1. Notice

that by the construction of the Rebalance procedure, the subtrees of π.l and π.r are bal-
anced before that of π. Thus (π.r.r).size≤ π.size

2−δ because otherwise (π.r.r).size> π.size
2−δ >

(π.r).size
2−δ which contradicts the fact that the subtree of π.r is balanced. Now, suppose that

after calling RebalanceLeft1(π), π′ is the new root node of the subtree orignally rooted
at π. Then the subtree of π′.r will be the original subtree of π.r.r. Thus, since (π.r.r).size≤
π.size
2−δ , the balance criterion will be satisfied for π′.r. Also notice that RebalanceLeft1(π)

is only called if (π.r.r).size≥ (1−δ)π.size
2−δ −1⇒ (π.r.r).size≥ (1−δ)π.size+π.size−π.size

2−δ −1⇒
π.size
2−δ ≥ π.size− (π.r.r).size−1. After the procedure is completed, it will be the case that

(π′.l).size= π.size−(π.r.r).size−1 where π.size is the size of the original subtree rooted
at π. Thus, the balance criterion will be satisfied for π′.l. �

Proposition 8. The worst-case complexity of maintaining a balanced tree is O(t2 log t).

Proof As currently implemented, rebalancing requires checking the balance criterion at
every node of the tree. Ensuring that the balance criterion is met at one of these nodes
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(b)Inserting (8,7)-(14,3).

Figure 4.

(a)Tree after inserting (5,11). (b)Tree after rebalancing. (c)Final tree.

Figure 5.

could require repeating the strategy RebalanceLeft2 up to t
2 times. Thus, since Rebal-

anceLeft2 calls FindLeftmostNode, FindRightmostNode, and Update which are
O(log t) procedures, the complexity of rebalancing is O(t2 log t). �

3. Illustrative example

Recall the points and segments specified in Figure 1(a). We use these points and segments
as input to our data structure and show a few of the nontrivial steps of developing our
tree. Assume that the solutions shown in the figure are obtained from five separate slice
problems and that the Pareto sets of these slice problems, listed in respective order, are:
(i) the singleton (1,19), (ii) the piecewise linear curve connecting (1,17) and (9,13), (iii) the
piecewise linear curve connecting (6,16) and (11,4), (iv) the singleton (5,11), and (v) the
piecewise linear curve connecting (8,7) and (17,2). The points and segments which define
these Pareto sets will be inserted into our structure in the order of (iii), (iv), (ii), (v), (i).
Piecewise linear curves will be inserted as individual line segments from left to right.

The reader is encouraged to review the pseudocode given previously (particularly Algo-
rithm 1). To begin we let π∗← (6,16) to (7,10) and call Insert(π∗, π0). Since π0 = ∅ we
replace π0 with π∗. Clearly the current tree structure is now a single node. Next we let π∗←
(7,10) to (10,5) and call Insert(π∗, π0). Notice that π∗ ⊂R4(π0) and should be inserted at
π0.r. Since π0.r = ∅ this insertion results in π∗ being added to the tree. Therefore the tree
now contains the root node which has one child to its right. The insertion of the segment
connecting (10,5) to (11,4) is analogous. Next consider Pareto set (iv). Let π∗← (5,11)
and call Insert(π∗, π0). Observe Figure 4(a). Clearly we can see that π∗ 5p π0 and thus we
remove the dominated portion of π0 by letting π0 = π0 \R2(π∗). After this has been done,
notice that π∗ ⊂R1(π0). Therefore, since π0.l = ∅, π∗ becomes the left child of π0. Figure
5(a) shows the tree structure after π∗ has been inserted. We leave it to the reader to consider
Pareto set (ii). Note, though, that after processing this set the subtree rooted at π0.l needs
to be rebalanced. The resulting tree is shown in Figure 5(b).
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Next we consider the insertion of Pareto set (v). Let π∗ ← (8,7) to (14,3) and call
Insert(π∗, π0). Clearly π∗ ⊂ R4(π0) and will therefore be inserted to π0.r. Observe from
Figure 4(b) that π∗ 5p π0.r. This time, though, the portion of π0.r which is dominated is
the center section of the segment. This means that π0.r must be split into two nodes π1
and π2. Node π1 takes the place in the tree where π0.r originally was, and the left subtree
of π0.r becomes the left subtree of π1. Node π2 becomes the right child of π1 and the right
subtree of π0.r becomes the right subtree of π2. Now, after this process has been completed,
observe that π∗ ⊂R4(π1) and thus π∗ will be inserted to π2 (which is now π0.r.r). Notice
that π0.r.r5p π∗ and that it is the center portion of π∗ that is dominated. Thus the calls to
Insert(π∗∩R1(π0.r.r), π0.r.r.l) and Insert(π∗∩R4(π0.r.r), π0.r.r.r) will each cause a por-
tion of π∗ to be inserted at π0.r.r.l and π0.r.r.r respectively. Since π0.r.r.l= ∅, π∗∩R4(π0.r.r)
will become π.r.r.l. Since π0.r.r.r is the segment (10,5) to (11,4), it is clear that another
portion of π∗ will need to be removed, and then the remainder of π∗ will become π0.r.r.r.r.

We end our example now because the remainder of the insertions result in scenarios which
are analogous to those that we have now observed. Note that if we were to continue, one
more rebalance would be required and the final tree structure would be that found in in
Figure 5(c). Note that this tree structure is dependent on the order of insertion.

4. Computational Experiments

We implemented our data structure in the C programming language and performed two
tests. The first was designed to test the amount of data our structure can effectively store
and how quickly it can be processed. The second was designed to test the utility of our data
structure when used alongside the BB algorithm of Belotti et al. [1]. Both tests were run
using Clemson University’s Palmetto Cluster. Specifically, an HP SL250s server node with
a single Intel E5-2665 CPU core with 16GB of RAM running Scientific Linux 6.4 was used.

4.1. Implementation of Rebalance

Recall from Propositions 3, 5, and 8 that maintaining a balanced tree is the most costly
of the three operations needed to create our structure. It is also the one operation that
is unnecessary in order to ensure that we store the correct solutions. For this reason we
decided to further consider the rebalancing operations in hopes of finding an alternative
implementation that is less computationally costly, but still performs well in practice. We
denote our initial implementation as A1, and develop an alternate implementation A2 in
which rebalance is performed periodically rather than before every insertion at the root
node. We check the entire tree for balance after 100 new solutions are added to the tree and
then again each time the number of stored nodes doubled. We implemented both approaches
in our first experiment, which is described in Section 4.2. We utilize approach A2 when
performing our second experiment, described in Section 4.3, since it provided faster running
times in our first experiment.

4.2. Experiment 1 - Random Data

4.2.1. Setup This test has two main purposes: (i) to compare the efficiency of our data
structure with that of a dynamic list (which updates via pairwise comparison) when storing
nondominated solutions, and (ii) to determine how many solutions our structure can take
as input and process in a reasonable amount of time.

The test consists of repeating the following procedure until N insertions have been made
into our structure or the dynamic list. First, generate a random integer i ∈ [1,6] and a
random number r1 ∈ (0,10). Then, if i > 1, for each j ∈ {2, . . . , i} a random number cj ∈ (0,1)

is generated and we define rj = r1 +
∑j
`=2 c`. Next, for each j ∈ {1, . . . , i} the following are

computed: (i) yj =
(10.5−rj)2

5 −k, and (ii) xj = rj + (5−k). Here k is a dynamic value which
is defined as 1 at the start of the test and increases by µ

N each time the above process is
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(a)µ= 0.1 (b)µ= 1 (c)µ= 10

Figure 6. Example of solutions generated in Experiment 1 with N = 100.

repeated. Here µ ∈ R is a parameter that allows us to determine how much the solutions
should “improve” over the course of the test. If i= 1, the singleton (x1, y1) is inserted into
the structure, otherwise the points (x1, y1), ..., (xi, yi) are arranged in order of increasing
x values and then the line segments connecting each adjacent pair of points are inserted
into the structure. We performed this test 100 times for each combination of the values
N = 104,105,106 and 107 and µ = 0,0.001,0.01,0.1,1 and 10. We used various values for
δ and found that the results were quite similar, but determined to use a value of δ = 0.3.
For each test we recorded the time it took to insert all solutions into our structure and a
dynamic list, and the final number of nodes stored in our tree and the dynamic list.

We now explain the significance of µ. Selecting a small value of µ (close to 0) is intended
to replicate instances of BOMILP in which there is little separation between integer feasible
solutions (i.e., all solutions are close to being Pareto optimal). Alternatively, selecting a large
value of µ is intended to replicate instances of BOMILP in which there is a lot of separation
between integer feasible solution. Figure 6 shows an example of solutions generated during
this experiment for µ= 0.1,1 and 10 and for N = 100. The solutions shown in red are those
that are stored by our structure at the end of the test.

4.2.2. Implementation Details First, recall that as presented, the implementation of
our structure performs a check in order to determine whether or not an entire subtree is
dominated. If a subtree is found to be dominated, the entire subtree is removed. We found
that in practice, however, this implementation does not outperform the implementation in
which no check for dominated subtrees is performed, rather dominated nodes are removed
one at a time. We feel that there are two drawbacks to the former implementation which are
most likely the reasons for this: (i) more information (i.e, an ideal point for each subtree)
is stored in each node, and (ii) when new solutions are added to the tree, the Update
function must ensure that these ideal points are updated appropriately, which can be a
costly procedure. Also notice that the worst case complexity of RemoveNode remains the
same for both implementations. For this reason, we used the latter implementation when
performing our tests.

4.2.3. Numerical Results We present the results obtained from our randomized tests
when implementing the rebalancing approaches discussed in section 4.1.2. Our results are
summarized in Table 1. For each pair of values for µ and N the minumum, maximum, and
average time to process all inserted solutions was recorded for our tree using approaches A1
and A2 and for a dynamic list (L). The average number of stored nodes was also recorded
for each. Note that we terminated individual runs that were not completed in 12 hours and
this is why certain data is missing in the Table. Furthermore, if an individual run took more
than 8 hours to complete, only 5 replications were performed instead of 100. This situation
is indicated in Table 1 by the symbol ~.

There are several things to notice from Table 1. First, in all cases our data structure is
able to process inserted solutions much more quickly than the dynamic list. Furthermore,
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Table 1. Avgerage time to process input and number of nodes stored for Experiment 1.

Rebal Time (s) Number of Rebal Time (s) Number of

µ N Type Min Avg Max Stored Nodes µ N Type Min Avg Max Stored Nodes

0 104 A1 1.76 2.02 2.89 25,730 0.01 104 A1 0.15 0.16 0.17 767
A2 0.29 0.36 0.69 25,758 A2 0.04 0.05 0.05 767
L 243 416 1,156 25,170 L 0.62 0.72 0.77 766

105 A1 479 496 639 198,158 105 A1 3.57 3.82 4.48 2,369
A2 12.9 17.0 42.0 199,361 A2 0.73 0.76 0.81 2,369
L – – – – L 30.4 34.0 38.1 2,365

106 A1 – – – – 106 A1 68.9 102 132 7,209
A2 353 398 558 868,442 A2 10.8 14.6 16.0 7,208
L – – – – L 2,078 2,405 5,596 7,171

107 A1 – – – – 107 A1 2,008 2,259 3,160 22,413
A2 3,696 4,589 7,304 2,170,820 A2 213 258 338 22,338

L – – – – L – – – –

0.1 104 A1 0.05 0.06 0.06 285 10 104 A1 0.03 0.03 0.03 133
A2 0.02 0.02 0.03 286 A2 0.01 0.02 0.02 133
L 0.13 0.15 0.19 285 L 0.06 0.06 0.06 133

105 A1 1.67 1.69 1.73 766 105 A1 0.45 0.46 0.47
A2 0.41 0.42 0.43 767 A2 0.21 0.22 0.22 189
L 7.49 7.68 7.86 765 L 0.92 0.92 0.93 189

106 A1 35.7 38.2 41.3 2,366 106 A1 6.36 6.41 6.62 284
A2 6.66 6.79 6.95 2,367 A2 2.48 2.51 2.60 285
L 306 347 401 2,363 L 14.3 14.4 14.5 284

107 A1 626 653 703 7,212 107 A1 139 140 145 764
A2 92.7 98.9 116 7,209 A2 36.5 36.6 37.6 764
L~ 18,977 19,548 20,446 7,166 L 528 529 543 764

processing time is reduced significantly when rebalancing approach A2 is used instead of
A1. Also notice that for each fixed value of N , the time taken to process inserted solutions
decreases as the value of µ increases. Additionally, the larger the value of µ, the closer the
time needed for the dynamic list to process the input solutions becomes to the time needed
for our tree to process the solutions. From these results we can see that our data structure
can handle the insertion of large sets of solutions, thus we suspect that it can do so without
posing a significant overhead on a solution procedure such as BB or a heuristic method.

4.3. Experiment 2 - Fathoming in BB

4.3.1. Setup We performed tests in which we solved a variety of instances of BOMILP
using the BB technique of Belotti et al. [1]. Each instance was solved three times, once using
our structure in order to generate the upper bound set at each iteration of the BB, once
using a dynamic list in order to generate these sets, and once using a predetermined subset
of ΩP to generate a single upper bound set which was used for fathoming throughout the
BB. More details on each of these types of sets are provided in the following section.

The instances of BOMILP that we solved were taken from [1] and [2]. We present results
on all instances which took over 10 seconds, but under 8 hours to solve. In the following
section we provide a brief background on biobjective BB procedures.

4.3.2. Background on BB Many of the prevalent techniques for solving BOMILP are
based on the branch-and-bound (BB) method, which has been well established in the single-
objective case. For an extensive survey of single-objective BB we suggest [18]. The efficiency
of single-objective BB methods heavily relies on the fact that upper and lower bounds for
the optimal solution can often be determined. Similarly, in the biobjective case subsets of
R2 can often be found which bound the Pareto set above and below. In general these sets
are formed by taking unions of finitely many continuous convex piecewise linear functions.
More detailed discussion on these sets can be found in [1, 4].

During an iteration of a typical BB procedure one solves an LP subproblem at a node
η selected from a list L of open subproblems in the BB enumeration tree. Under certain
conditions the upper and lower bound sets can be used to prove that a particular subproblem
cannot yeild any Pareto solutions. In this case the node η associated with this subproblem
can be cut off or fathomed from the BB enumeration tree. One of the fathoming rules
presented by Belotti et al. [1] states that at iteration s of BB a node ηs can be fathomed if
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Us

(a)η2 can be fathomed. (b)Examples of Ns and Us.
Figure 7. Examples of bound sets and fathoming rules.

the lower bound set Ls is separable from the upper bound set Us, i.e., Lη ∩ (Us−R2
+) = ∅.

Figure 7(a) shows examples of lower bound sets Ls1 and Ls2 . Notice that the locations
of these sets show that ηs1 cannot be fathomed but ηs2 can. Clearly, efficient fathoming
depends on the choice of Ns used to construct Us since good approximations of UG at each
iteration of BB can help fathom a large number of nodes.

At iteration s of BB, let Fs be the set of all ω ∈Ω discovered during iterations 1, . . . , s−1.
Then at iteration s, the upper bound set Us is built using another set Ns, the nondominated
subset of Fs. An example of constructing Us from Ns can be seen in Figure 7(b). Finding
Ns can be cumbersome and until now, there seem to have been only two approaches used:

Dynamic List: Each time ω ∈Ω is found, store it in a list and then remove dominated
points and segments by performing a pairwise comparison between all stored solutions. After
completion of the pairwise comparison the stored solutions are precisely Ns [7, 17].

Predetermined subset of ΩP : Before beginning BB a preprocessing phase is used to
generate a set N ⊂ ΩP . Then at every iteration s of BB, let Ns = N . Therefore a single
upper bound set is used for fathoming throughout the BB [1].

4.3.3. Implementation Details First we point out that when utilizing the predeter-
mined subset of ΩP , the ε-constraint method was used to generate M ≤M∗ points from
ΩP before beginning the BB, where M∗ is a user-selected upper bound on the number of
these points that are generated. Notice, though, that these M points can still be useful in
the cases when either our structure or a dynamic list is being used alongside the BB. By
inserting these points into either structure at the start of the BB, the procedure can be
“warm-started,” increasing the frequency and efficiency of fathoming.

Initially we solved several instances using our structure both with and without warm-
starting. However, the results we obtained without warm-starting were very poor, and are
therefore not reported. Notice that warm-starting allows solutions which are “far” from the
set of Pareto-optimal solutions to be discarded early in the BB, and therefore fewer nodes
of the BB tree are explored. We solved each instance using various values for M∗, ranging
from 10 on small instances to 3000 on large ones. “Good” choices for the value of M∗ seem
to be highly dependent on the size and difficulty of the instance being solved.

4.3.4. Numerical Results The results we obtained from Experiment 2 are summarized
in the performance profile of CPU time shown in Figure 8. We use P, T, and L to represent
the implementations of the Predetermined set of ΩP , our tree structure, and the dynamic
list, respectively. From [1], there were 30 instances available for each problem size and from
[2], there were 5 instances available for each problem size. However, we were unable to solve
instances from [2] which had 320 variables and constraints, because they took longer than
8 hours to solve.

As it is difficult to know ahead of time what value of M∗ is most appropriate for solving
a given BOMILP, we ran each of these instances for a large number of values for M∗, but
for the sake of space only report results for 3 values of M∗ for each problem size. In Figure
8 we use L, M, and H to denote low, medium, and high values for M∗, respectively.
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Figure 8. Performance Profile for solving BOMILP instances from [1, 2].

The profile shown in Figure 8 shows that our structure either outperforms or performs
equally as well as both of the other implementations in almost all cases. We point out that
the BB implemented using the predetermined subset of ΩP for generation of the bound set
does not have the Pareto set readily available upon termination. Instead, the set of all integer
feasible solutions is stored and a post-processing phase is needed in order to determine the
Pareto set. The implementations using our tree and the list data structure, on the other
hand, do have the Pareto set readily available upon termination.

When comparing the results of this experiment to those of our first experiment one may
wonder why our tree structure does not significantly outperform the list in all cases. On
inspecting the number of solutions inserted to our structure versus the final number stored,
we found that a value of µ≈ 100 (cf. §4.3.1 and Figure 6) could be associated with most of
the solved instances. This value of µ indicates that there is a high level of separation amongst
the solutions generated during BB and therefore a large fraction of generated solutions ends
up being dominated and hence not stored. Thus for BB experiments, there is not a significant
difference between our structure and the list in terms of the time needed to process the data.
In fact, the time for either structure to process all inserted solutions was approximately one
order of magnitude less than the time for BB to solve the instance. Thus, the BB had a
much larger impact on overall running time than the data structure used.

5. Conclusion

In this work we have introduced a new data structure, in the form of a modified binary
tree, that is able to efficiently store sets of nondominated solutions of BOMILPs. Until now
similar structures have only been used in the pure integer case. We provide an extension for
the more difficult mixed-integer case. We showed this structure performs with a worst case
guarantee of O(t2 log t) where t is the number of stored nodes. We tested the practical value
of our data structure with two experiments. The results show that our structure provides a
more efficient method for storing solutions to BOMILP than other current techniques. They
also show that our structure is also a very useful tool when used alongside BB methods for
solving BOMILPs.

We recognize that there may be ways to extend our data structure and increase its effi-
ciency. Recall that each node of our structure may store either a point or a line segment.
It is possible that in certain cases our structure stores several segments that all belong to
a single piecewise linear curve. Therefore it may be beneficial to extend the functionality of
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our structure so that entire piecewise linear curves can be stored in a single node. Notice
that in some cases this may allow for a significant reduction of the size of the tree and thus
allow the structure to be populated and maintained more quickly. The reason that we did
not implement our structure in this fashion is that for the BOMILP solution techniques we
are familiar with, segments are generated one at a time and in general connecting segments
are not generated sequentially. Also, for the specific instances we solved, it was not often
that a significant number of connected line segments generated from the same slice problem
were Pareto optimal.

Appendix

Table 2. Timing, fathoming, and storage results for Experiment 2 (reported as geometric aver-
ages). The first set of instances is taken from [1] and the second is taken from [2]. Problem sizes
are reported as number of variables, which in all instances also equalled the number of constraints.

Nodes # of Final # of Final
Time (s) Fathomed Insertions Nodes Stored Depth

Size M P T L P T L T L T L of Tree

60 10 25.0 15.7 15.6 516 342 342 2,191 2,190 75.0 76.3 12.8
25 14.7 12.7 12.7 309 271 271 1,421 1,421 75.8 78.4 13.4
50 13.9 12.8 12.8 273 254 254 1,246 1,246 76.0 79.6 13.4

80 10 54.2 35.0 35.4 705 492 492 2,743 2,743 89.0 90.1 9.6
25 37.1 31.2 31.4 488 428 428 2,102 2,102 89.5 91.6 10.1

50 34.2 31.4 31.6 430 403 403 1,869 1,869 89.6 93.3 9.7

80 50 252 73.1 75.5 5,326 1,820 1,830 67,406 69,343 1,062 1,061 19
158 77.4 76.9 2,758 1,397 1,397 120,402 117,626 673 694 12
236 84.7 87.0 5,474 2,130 2,135 64,902 64,721 933 954 11
189 57.1 58.9 4,058 1,343 1,350 58,425 58,405 928 947 11
125 64.5 69.4 3,645 2,053 2,072 47,867 54,764 746 759 13

200 63.3 47.6 50.2 1,357 1,039 1,040 37,601 37,561 1,052 1,104 15
45.7 34.1 34.7 936 707 705 38,918 38,777 676 720 17
74.3 50.6 51.8 1,608 1,211 1,215 27,527 26,243 916 992 12
64.5 38.8 41.0 1,309 861 861 36,857 36,829 930 990 15
61.7 45.6 46.9 1,763 1,351 1,352 30,833 30,880 757 799 14

300 56.9 43.1 47.6 1,151 986 992 34,527 35,430 1,058 1,132 16
41.3 35.8 36.8 836 700 701 42,148 42,105 676 718 12
65.9 48.5 51.1 1,445 1,143 1,145 24,157 24,231 927 1,031 13
59.5 38.1 40 1,172 806 804 35,296 35,067 938 1,012 13
52.4 43.3 44.3 1,493 1,272 1,272 28,251 28,251 758 823 11

160 500 14,886 13,115 13,244 74,328 61,602 61,618 3,274,710 3,277,481 2,794 2,922 52
24,763 21,427 21,217 154,107 119,310 119,341 2,806,323 2,816,796 2,976 3,079 39
16,390 14,166 15,200 105,371 93,544 93,605 1,857,632 1,864,128 2,725 2,859 17
8,833 6,983 7,324 43,776 36,310 36,385 1,319,040 1,344,686 6,156 6,310 26
3,709 3,520 3,752 19,613 16,879 16,898 572,002 575,330 3,043 3,130 23

2,000 10,617 10,359 10,590 53,375 50,999 51,014 2,484,279 2,486,110 2,802 3,280 28
15,454 16,205 16,064 100,840 94,739 94,759 2,156,450 2,165,352 2,994 3,354 30
13,023 13,233 13,487 88,858 86,171 86,459 1,449,196 1,475,056 2,765 3,214 33
6,102 5,905 6,064 34,129 32,065 32,229 958,695 1,006,657 6,159 6,783 18
2,957 2,846 2,880 14,945 14,110 14,133 461,307 462,446 3,083 3,410 13

3,000 9,429 10,169 10,383 51,686 50,056 50,066 2,417,654 2,418,904 2,796 3,510 24
14,946 15,683 15,978 96,730 92,126 92,225 2,090,566 2,118,231 2,982 3,519 24
12,942 12,437 12,491 87,014 84,997 85,129 1,396,941 1,423,354 2,757 3,432 24
5,978 5,965 5,951 33,273 31,569 31,636 916,966 941,870 6,179 7,110 22
3,015 3,038 3,273 14,446 13,804 13,813 449,401 451,670 3,089 3,560 28
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