
Clemson University Clemson University

TigerPrints TigerPrints

All Dissertations Dissertations

12-2021

An Algorithm for Biobjective Mixed Integer Quadratic Programs An Algorithm for Biobjective Mixed Integer Quadratic Programs

Pubudu Jayasekara Merenchige
pwijesi@clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations

 Part of the Operational Research Commons, Other Applied Mathematics Commons, and the Other

Mathematics Commons

Recommended Citation Recommended Citation
Jayasekara Merenchige, Pubudu, "An Algorithm for Biobjective Mixed Integer Quadratic Programs" (2021).
All Dissertations. 2938.
https://tigerprints.clemson.edu/all_dissertations/2938

This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been
accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information,
please contact kokeefe@clemson.edu.

https://tigerprints.clemson.edu/
https://tigerprints.clemson.edu/all_dissertations
https://tigerprints.clemson.edu/dissertations
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F2938&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/308?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F2938&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/122?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F2938&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/185?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F2938&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/185?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F2938&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations/2938?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F2938&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

Clemson University Clemson University

TigerPrints TigerPrints

All Dissertations Dissertations

12-2021

An Algorithm An Algorithm for Biobjectivfor Biobjective Mixe Mixed Integer ed Integer QuadrQuadratic Pratic Progrogramsams

Pubudu Jayasekara Merenchige

Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations

 Part of the Operational Research Commons, Other Applied Mathematics Commons, and the Other
Mathematics Commons

https://tigerprints.clemson.edu/
https://tigerprints.clemson.edu/all_dissertations
https://tigerprints.clemson.edu/dissertations
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/308?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/122?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/185?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/185?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages

An Algorithm for Biobjective Mixed Integer
Quadratic Programs

A Dissertation
Presented to

the Graduate School of
Clemson University

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy
Mathematical Sciences

by
Pubudu L. W. Jayasekara

December 2021

Accepted by:
Dr. Margaret M. Wiecek, Committee Chair

Dr. Pietro Belotti
Dr. Yuyuan Ouyang

Dr. Matthew Saltzman
Dr. Boshi Yang

Abstract

Multiobjective quadratic programs (MOQPs) are appealing since convex

quadratic programs have elegant mathematical properties and model important ap-

plications. Adding mixed-integer variables extends their applicability while the result-

ing programs become global optimization problems. Thus, in this work, we develop

a branch and bound (BB) algorithm for solving biobjective mixed-integer quadratic

programs (BOMIQPs). An algorithm of this type does not exist in the literature.

The algorithm relies on five fundamental components of the BB scheme:

calculating an initial set of efficient solutions with associated Pareto points, solving

node problems, fathoming, branching, and set dominance. Considering the prop-

erties of the Pareto set of BOMIQPs, two new fathoming rules are proposed. An

extended branching module is suggested to cooperate with the node problem solver.

A procedure to make the dominance decision between two Pareto sets with limited

information is proposed. This set dominance procedure can eliminate the dominated

points and eventually produce the Pareto set of the BOMIQP. Numerical examples

are provided.

Solving multiobjective quadratic programs (MOQPs) is fundamental to our

research. Therefore, we examine the algorithms for this class of problems with dif-

ii

ferent perspectives. The scalarization techniques for (strictly) convex MOPs are re-

viewed and the available algorithms for computing efficient solutions for MOQPs are

discussed. These algorithms are compared with respect to four properties of MOQPs.

In addition, methods for solving parametric multiobjective quadratic programs are

studied. Computational studies are provided with synthetic instances, and examples

in statistics and portfolio optimization. The real-life context reveals the interplay

between the scalarizations and provides an additional insight into the obtained para-

metric solution sets.

iii

Dedication

To my beloved family.

iv

Acknowledgments

First and foremost I would like to thank my Ph.D. advisor, Dr. Margaret

M. Wiecek for her constant support, guidance, encouragement, and patience during

my Ph.D. study. Her immense knowledge and experience have encouraged me in all

the time of my academic and personal life. She has inspired me and has helped shape

me into who I am today.

I would like to thank my committee members Dr. Pietro Belotti, Dr. Yuyuan

Ouyang, Dr. Matthew Saltzman, and Dr. Boshi Yang for their great help during

my Ph.D. research. Their suggestions made my research so much richer, and my

dissertation something I can be proud of having written. I also thank Dr. Akshay

Gupte and Dr. Georges Fadel for their time commitment for my comprehensive exam.

My sincere thanks go to Dr. Nathan Adelgren for his support with the coding

and the implementation. Without his precious support, it would not be possible to

conduct this research. I would also like to thank Andrew Pangia for his work and

willingness to help as a co-author of my paper.

I would like to express my sincere gratitude to the Office of Naval Research

for funding my research through grant number N00014-16-1-2725. Also, I thank the

v

School of Mathematical and Statistical Sciences for providing me financial support

during my stay at Clemson.

Last but not the least, I would like to thank my family. To my parents

Mala Senevirathne and Sunil Wijesiri, for believing in me and supporting me in this

endeavor. To my beloved wife Shalika Marasinghe, for her tremendous support along

this long path sacrificing her own career to encourage and support me. To my loving

son Binula Jayasekara, for brightening my world. To my brother Malindu Wijesiri,

for his continuous great patience and encouragement. Without all your support, this

hard work would not have been possible.

vi

Table of Contents

Title Page . i

Abstract . ii

Section 1 . iv

Acknowledgments . v

List of Tables . ix

List of Figures . xi

1 Introduction . 1
1.1 Motivation . 1
1.2 Basic Concepts and Notations . 2
1.3 A Review of Branch and Bound Algorithms for Solving Multiobjective

Discrete Optimization Problems . 5
1.4 Research Needs . 10
1.5 Completed Research Objectives . 14
1.6 Linear Complementarity Problem Formulation of the Quadratic Pro-

gram . 16
1.7 Dissertation Overview . 19

2 A Branch and Bound Algorithm for Biobjective Mixed Integer
Quadratic Programs . 21
2.1 Introduction . 21
2.2 Problem Statements and Solution Methods 24
2.3 Algorithm Overview . 35
2.4 Branching . 38
2.5 Fathoming . 40
2.6 Dominance Between Sets . 48
2.7 Complete BB Algorithm and Numerical Experiments 64
2.8 Conclusion . 71

vii

3 Multiobjective Programs with Application to Portfolio Optimization 96
3.1 Introduction . 96
3.2 A Parametric Optimization Perspective on Convex MOPs 99
3.3 State-of-the-Art Algorithms for Convex MOQPs 109
3.4 Portfolio Optimization with Multiple Quadratic Objective Functions . 118
3.5 Conclusion . 135

4 On Solving Parametric MOQPs with Parameters in General Lo-
cations . 146
4.1 Introduction . 146
4.2 Problem Statement . 149
4.3 Generalized weighted sum scalarization 152
4.4 Parametric Quadratic Programs with Linear Constraints 159
4.5 Applications . 177
4.6 Conclusion . 188

5 Conclusions and Future Research 206
5.1 Summary of Contributions . 206
5.2 Future Research . 209

Appendices . 211
A Fathoming Rules: The Case with One Nadir Point 212
B Example . 218

Bibliography . 223

viii

List of Tables

2.1 Summary of the results for BOMIQP instances solved with a rudimen-
tary implementation of Algorithm 1 71

2.2 Efficient solution functions for P̃ 1 . 76
2.3 Efficient solution functions for P̃ 2 . 76
2.4 Efficient solution functions for P̃ 3 . 77
2.5 New branching nodes for invariancy intervals 3 and 4 in P̃ 3 77
2.6 New branching nodes for invariancy intervals 2 and 3 in P̃ 1 78
2.7 Efficient solution functions for P̃ 1 . 79
2.8 Efficient solution functions for P̃ 2 . 79
2.9 Efficient solution functions for P̃ 3 . 80
2.10 Efficient solution functions for P̃ 4 . 81
2.11 Efficient solution functions for P̃ 5 . 82
2.12 Efficient solution functions of BOMIQP (2.27) 85

3.1 Efficient solution functions for Example 2 and γ̄ = 0.5 in IR2 129
3.2 Efficient solution functions for Example 2 and ε̄nor = 0.3284 in IR2 . 130
3.3 Coordinates of four Pareto points for Example 2 computed with the

modified hybrid method and the weighted-sum method 134
3.4 Invariancy regions and efficient solution functions for Example 1 scalar-

ized with the weighted-sum method 140
3.5 Invariancy regions and efficient solution functions in the parameter

space for Example 2 scalarized with the modified hybrid method (ε =
εnor.) . 142

3.6 Invariancy regions and efficient solution functions for Example 2 scalar-
ized with the weighted-sum method 144

4.1 Initial Tableau TB0(λ) . 168
4.2 Efficient solutions to Example (4.25) obtained with the spLCP method 176
4.3 Efficient solutions to Example (4.25) obtained with the mpLCP method176
4.4 Statistics for the CPU times for BOQPs solved with the spLCP and

mpLCP methods. 178
4.5 Coordinates of four Pareto points in Figure 4.5 for portfolio problem

(4.34) . 186

ix

4.6 Invariancy regions (I R) and efficient solution functions for TOQP
(4.30) with data (4.31) solved as (4.32) with the mpLCP method. . . 201

4.7 Invariancy regions (I R) and efficient solution functions for TOQP
(4.30) with data (4.31). 203

4.8 Invariancy region (I R) and efficient solution functions for Example
(4.34) scalarized with the modified hybrid method (θ = θnor, ε = εnor,
and the parameter space Ω = Θnor × Λ′ ×E nor) 205

1 The parametric solutions of the four BOQPs associated with Example
(1). 222

x

List of Figures

2.1 Objective Space and Pareto Sets of P , and Pareto Sets of P̃ s. 30
2.2 Fathoming Rules. 45
2.3 Flowchart for the fathoming module 47
2.4 Dominance and weak dominance between two Pareto sets. 48
2.5 Two cases of Proposition 2.6.9(ii): Ỹ s

P ≤p Ỹ l
P 55

2.6 Two cases of Proposition 2.6.10(i): Pareto sets intersect, Ỹ s
P 5p Ỹ l

P

and Ỹ l
P 5p Ỹ s

P . 55
2.7 Flowchart for the set dominance procedure 57
2.8 Subprocedure 2: (a) Ỹ l

P ∩ Ỹ s
P = ∅, (b) Ỹ l

P ∩ Ỹ s
P 6= ∅. 61

2.9 Y 0
P . 83

2.10 Y 0
P and Ỹ `

P , ` = 1, · · · , 5 of slice problems 83
2.11 Pareto points . 83
2.12 Pareto set, YP , of BOMIQP (2.27) 85
2.13 Two instances of Case 2 - node s can be fathomed 86
2.14 Node s cannot be fathomed since Y s

a ∩ CsW = ∅ or Y s
a ∩ CsS = ∅ . . 86

2.15 The fathoming decision is not immediate when the nadir point implied
by the closest nondominated points to ỹsI is not in T s 87

2.16 Node s cannot be fathomed since ŷs1 ≯ yκ,η1 or ŷs2 ≯ yκ,η2 for at least one
yκ,η . 87

2.17 Proposition 2.6.9(i): Ỹ l
P < Ỹ s

P . 88
2.18 Two cases of Proposition 2.6.10(ii): Pareto sets intersect (a) ỹsI ∈ C lW

and ỹl1 ∈ Ỹ s
P + R2

>, (b) ỹsI ∈ C lS and ỹl2 ∈ Ỹ s
P + R2

>. 89
2.19 Two cases of Proposition 2.6.10(iii): Pareto sets intersect (a) ỹsI ∈ C lW

and ỹl1 ∈ Ỹ s
P − R2

>, (b) ỹsI ∈ C lS and ỹl2 ∈ Ỹ s
P − R2

>. 89

2.20 Proposition 2.6.11: Ỹ l
P 5 Ỹ s

P . 90
2.21 Proposition 2.6.12: Ỹ l

P ≤P Ỹ s
P . 90

2.22 Two cases of T l ∩ T s = ∅ and Ỹ sl
N = Ỹ s

P ∪ Ỹ l
P (a) T s ∈ {ỹl1}−R2

≷, (b)

T s ∈ {ỹl1}+ R2
≷. 91

2.23 One Pareto set dominates the other. 91
2.24 Subprocedure 1: T s ⊂ T l, Ỹ l

P ≤ Ỹ s
P and Ỹ sl

N = Ỹ l
P 92

2.25 Subprocedure 1: (a) Ỹ l
P ∩ Ỹ s

P = ∅, (b) Ỹ l
P ∩ Ỹ s

P 6= ∅. 93
2.26 Subprocedure 2: (a) Ỹ l

P ∩ Ỹ s
P = ∅, (b) Ỹ l

P ∩ Ỹ s
P 6= ∅. 93

2.27 Subprocedure 1: (a) Ỹ l
P ∩ Ỹ s

P = ∅, (b) Ỹ l
P ∩ Ỹ s

P 6= ∅. 94

xi

2.28 Subprocedure 2: T s 6⊂ T l, ỹsI /∈ T l, Ỹ l
P ≤P Ỹ s

P and Ỹ s
P ≤P Ỹ l

P 94
2.29 Subprocedure 2: (a) Ỹ l

P ∩ Ỹ s
P = ∅, (a) Ỹ l

P ∩ Ỹ s
P 6= ∅. 94

2.30 Subprocedure 3: ỹs1, ỹs2 ∈ Ỹ l
P + R2

> (a) Ỹ l
P ∩ Ỹ s

P = ∅, (b) Ỹ l
P ∩ Ỹ s

P 6= ∅. 95

3.1 Invariancy regions in the parameter space for Example 1 118
3.2 The Pareto set in the three-dimensional objective space for Example 1 119
3.3 (a) Four invariancy regions IRi, i = 1, . . . , 4, in the parameter space

of Example 2 scalarized with the modified hybrid method (ε = εnorm);
(b) Enlarged IR3. 127

3.4 Minimum weighted risk function for γ̄ = 0.5 and ε ∈ IR2 ∩ Θ(γ̄) for
Example 2 scalarized with the modified hybrid method 132

3.5 Invariancy regions in the parameter space of Example 2 scalarized with
the weighted-sum method . 133

3.6 The Pareto set for Example 2 solved with the modified hybrid method 135
3.7 The Pareto set for Example 2 solved with the weighted-sum method . 136
3.8 Optimal objective value function (minimum weighted risk) σ̂(γ, εnor)

for problem (3.32) . 137
3.9 Pareto objective value function −pT3 x̂(γ, εnor) for problem (4.34) . . 138
3.10 Efficient solution function x̂1(γ, εnor) for problem (4.34) 139
3.11 Efficient solution function x̂2(γ, εnor) for problem (4.34) 139
3.12 Efficient solution function x̂3(γ, εnor) for problem (4.34) 140

4.1 Partition of the parameter space into six invariancy regions for elastic
net problem (4.30) obtained by the mpLCP method on problem (4.32). 182

4.2 Pareto set for elastic net problem (4.30) obtained by the mpLCP
method on problem (4.32). 182

4.3 minSE computed by the mpLCP method on problem (4.32) 183
4.4 Partition of the parameter space for portfolio problem (4.34) obtained

with the mpLCP method on problem (4.35). 185
4.5 Pareto sets YP (15),YP (16),YP (17) ⊂ YP for portfolio problem (4.34)

obtained with the mpLCP method on problem (4.35). 186

1 Location 1 - node s can be fathomed 213
2 Two instances of Location 2 Case 1 - node s can not be fathomed . . 215
3 Two instances of Location 2 Case 2 - node s can not be fathomed . . 215
4 Two instances of Location 2 Case 3 - node s can be fathomed 215
5 Flowchart for the fathoming module with one nadir point 217
6 The decision space of example (1) with continuous variables x1 and x2 219
7 The objective space of Example (1) 221

xii

Chapter 1

Introduction

1.1 Motivation

Multiobjective programming (MOP) is a branch of mathematical optimiza-

tion involving several conflicting objective functions. Unlike the single objective pro-

grams (SOPs) that typically have a unique optimal solution in objective space, mul-

tiobjective programs have a solution set from which decision makers select the best

solution based on their preference and experience. MOPs occur frequently in many

application areas including finance [106, 134, 115, 68], economics [83, 9], engineering

[11, 112], statistics [1, 122], nanotechnology [129] and others. Many of those problems

require all or a subset of decision variables to be described using discrete quantities,

meaning there are two subclasses of problems with discrete variables: (i) multiobjec-

tive integer programs (MOIPs), in which all decision variables take on integer values,

and (ii) multiobjective mixed integer programs (MOMIPs), in which some of the

decision variables take on integer values.

1

In our work, we primarily focus on biobjective mixed integer quadratic prob-

lems (BOMIQPs) with linear constraints. There are several applications for this class

of problems such as portfolio optimization [111] and electronics [121]. Our goal is

to develop an algorithm for computing the set of Pareto efficient solutions to the

BOMIQP. To achieve this goal, we propose an approach based on a branch and

bound (BB) algorithm. According to our knowledge this is the first ever method to

solve this class of problems. To aid in the description of BOMIQP we first introduce

properties of multiobjective programs with linear constraints.

1.2 Basic Concepts and Notations

In this section, we introduce definitions and notations explaining the basic

concepts of MOPs before we introduce BOMIQPs. However, these concepts are also

valid for BOMIQPs. The reader may refer to Ehrgott [42] and Steuer [116] for a

detailed description of MOPs.

Let Rn, Rr, Rp be Euclidean vector spaces such that n, r, p ∈ N, Z be the set of integers

and Q be the set of rational numbers. For any two vectors y1,y2 ∈ Rr, we use the

notation y1 < y2 if and only if y1
i < y2

i for all i = 1, · · · , r, y1 5 y2 if and only if

y1
i ≤ y2

i for all i = 1, · · · , r, and y1 ≤ y2 if and only if y1
i ≤ y2

i for all i = 1, · · · , r and

y1 6= y2. Further, we define Rr= = {y ∈ Rr : y = 0} and the sets Rr≥,Rr> are defined

accordingly. We also define R2
T

= {y ∈ R2 : y1 ≥ 0, y2 ≤ 0}, R2
R

= R2
T
\ {0} and

R2
≷ = {y ∈ R2 : y1 > 0, y2 < 0}. For any, subset S ⊆ R2, we define S= = S+R2

=. The

sets S≥ and S> are defined accordingly. In addition, conv(S), int(S), bd(S) and |S|

denote the convex hull, interior, boundary and the cardinality of set S, respectively.

2

Consider the following multiobjective program (MOP):

min f(x) = [f1(x), f2(x), · · · , fr(x)]

s.t. x ∈ X ,
(1.1)

where fi : Rn −→ R, i = 1, · · · , r and X ⊆ Rn is a feasible set. Throughout this disser-

tation we assume fi(x) is twice continuously differentiable and the MOP is (strictly)

convex, that is, all objective functions fi(x) , i = 1, · · · , r are (strictly) convex and

unless specified otherwise the feasible set X is nonempty, convex, and compact. The

spaces Rn and Rr serve as the solution (decision) space and the objective (perfor-

mance) space respectively. The attainable set in the objective space for the MOP is

defined as the image of the feasible set X under the vector-valued objective function

mapping f.

Y := f(X) =
{
y ∈ Rr : y = f(x),x ∈ X

}
.

Definition 1.2.1. Let y1,y2 ∈ Y . If y1(5) ≤ y2, then y1 is said to (weakly)

dominate y2.

Definition 1.2.2. Let y1 ∈ Y . We say that y1 is Pareto to MOP (1.1) if there does

not exist y2 ∈ Y such that y2 ≤ y1. The set of all Pareto points is denoted by YP

and is called the Pareto set.

Solving MOP (1.1) is understood as finding its efficient solutions.

Definition 1.2.3. Let xi ∈ X and yi = f(xi) for i = 1, 2. Then x1 is called a (weakly)

efficient solution to MOP (1.1) if there does not exist x2 such that y2(<) ≤ y1. The

set of (weakly) efficient solutions is denoted by (XwE)XE.

The solution to MOP (1.1) determines (XwE) XE along with YP .

3

The following proposition is one of the main results of our work. It specifies the

properties of the (weakly) efficient set and the attainable set when the MOP is strictly

convex.

Proposition 1.2.4. Let MOP (1.1) be strictly convex. Then the following holds:

1. XE = XwE;

2. The set Y + Rr> is strictly convex.

Proof. 1. Refer to [24].

2. We show that Y +Rr> is strictly convex, that is, for z1, z2 ∈ Y +Rr> such that

z1 6= z2, z = λz1 + (1− λ)z2 ∈ int(Y + Rr>) for λ ∈ (0, 1).

Let z1, z2 ∈ Y + Rr>, such that z1 6= z2 where zk = yk + dk, yk ∈ Y and

dk ∈ Rr>, yk = f(xk) for some xk ∈ X and for k = 1, 2. For λ ∈ (0, 1) calculate

z = λ(y1 + d1) + (1− λ)(y2 + d2)

= λy1 + (1− λ)y2 + λd1 + (1− λ)d2

= λf(x1) + (1− λ)f(x2) + λd1 + (1− λ)d2

> f(λx1 + (1− λ)x2) + λd1 + (1− λ)d2

where the last inequality results from the fact that f is composed of strictly

convex real-valued functions. Since λx1 + (1− λ)x2 ∈ X , f(λx1 + (1− λ)x2) =

ȳ ∈ Y , and d̄ = λd1 + (1− λ)d2 ∈ Rr>, we obtain

z > ȳ + d̄ where ȳ ∈ Y , d̄ ∈ Rr>,

4

which can be converted to an equality

z = ȳ + d̄ + ∆z where ∆z ∈ Rr>.

We obtain

z = ȳ + d, where d = d̄ + ∆z ∈ Rr>, or equaivalently, z ∈ Y + Rr>.

Since Y + Rr> is an open set, z ∈ int (Y + Rr>). Hence, Y + Rr> is strictly

convex.

Our main focus in this research is to solve BOMIQPs. Therefore, first we

consider a broad area, the multiobjective discrete optimization problems. As men-

tioned earlier, there are two different types of discrete optimization problems: either

all decision variables are discrete (x ∈ Zn), or only a subset of decision variables is

discrete while the other subset is continuous (x ∈ Rp × Zn−p).

1.3 A Review of Branch and Bound Algorithms for

Solving Multiobjective Discrete Optimization

Problems

In this section, we summarize earlier work on multiobjective pure or mixed

integer programs using a variation of the BB technique. Some of these algorithms

5

were developed to solve a specific optimization problem, for example, the biobjective

spanning tree problem, while some of this research addressed a certain class of op-

timization problems such as mixed binary linear programs and mixed integer linear

programs.

1.3.1 Multiobjective Mixed Binary Linear Programs (MOMBLPs)

Early studies on multiobjective discrete linear programming began 30 years

ago when Bitran and Rivera [18] and Kızıltan and Yucaoglu [71] developed BB al-

gorithms specifically for the multiobjective binary case. A decade later, Mavrotas

and Diakoulaki [86] introduced a BB algorithm for the generation of the efficient set

for a MOMBLP using a node fathoming procedure. However, their method was not

capable of obtaining the complete set of Pareto points. They obtained only a subset

of Pareto points throughout the solution process. Vincent et al. [125] improved this

method by proposing a new algorithm to obtain the complete Pareto set. In addi-

tion, this new algorithm introduced refinements such as an improved fathoming rule,

a branching strategy, and bound sets. Stidsen et al. [118] proposed a new BB method

for solving a biobjective mixed binary problem with one of the two objectives having

binary variables only. This proposed method is able to find the complete set of Pareto

points.

Based on these general purpose mixed binary integer BB algorithms, later

researchers focused on solving a specific type of problem. For example, Sourd and

Spanjaard [114] proposed a set of fathoming rules and developed a BB procedure for

solving a biobjective spanning tree problem. A key aspect of this work is that the

bounding is performed using a set of points rather than a single ideal point. In addi-

6

tion, Delort and Spanjaard [37] proposed a BB technique for solving the biobjective

mixed binary knapsack problem.

1.3.2 Biobjective Mixed Integer Linear Programs (BOMILPs)

Two techniques for solving general BOMILPs have been developed. The

Triangle Splitting method suggested by Boland et al. [19] is an iterative method

in which the objective space is partitioned into smaller rectangular or triangular

search regions, and then various scalarization techniques for solving biobjective linear

programs are employed to obtain the Pareto points.

The second is a variation of the BB technique. Adelgren [5] presented a

generic BB method for finding all efficient solutions for BOMILPs along with new

algorithms for obtaining dual bounds at a node, checking node fathoming, presolving

the problem and obtaining duality gap measurements. In that work, the reader can

find a concise review of methods to solve BOMILPs. In addition, Adelgren [4] used

a new data structure to store and dynamically update the primal bound set at each

node throughout the BB process and to compare each element of the dual bound set

with the primal bound set. The author suggests that this procedure is more efficient

than comparing each element in the primal bound set with the dual bound set since, in

practice, for a particular node of the BB tree, the primal bound set typically contains

far more points and segments than the dual bound set.

Belotti et al. [14] introduced two new practical fathoming rules that can

be used to solve BOMILPs. These fathoming rules are implemented by solving an

auxiliary LP to determine whether the upper bound and the lower bound can be

7

separated by a hyperplane.

Przybylski and Gandibleux [99] reviewed BB algorithms for solving multi-

objective linear optimization problems with binary variables and mixed binary vari-

ables. Parragh and Tricoirea [93] proposed a new branch-and-bound algorithm to

solve BOMIQPs with new branching rule. The developed algorithm is applied to

biobjective facility location problems, biobjective set covering problem, and the biob-

jective team orienteering problem. Perini et al. [96] proposed a new criterion space

search method called the boxed line method for solving the BOMILPs. The pro-

vided computational results demonstrate the relative strengths and weaknesses of

this method.

The reader may refer to [5] for a concise review of these methods. Also,

Dächer and Klamroth [33], Alves and Costa [6], Boland et al. [20], Rasmi and Türkay

[103], Forget et al. [54], and Rasmiet al. [104] studied the mixed/pure integer programs

with more than two objectives.

1.3.3 Multiobjective Mixed Integer Nonlinear Programs

(MOMINLPs)

Martin et al. [85] discussed the use of constraint propagation in interval

BB for biobjective mixed integer nonlinear optimization problems and proposed a

generic BB algorithm. In addition to this algorithm, they introduced a mechanism

that exploits an upper bound set using dominance relations.

Cacchiani and D’Ambrosio [26] proposed a heuristic BB algorithm enhanced with a

8

refinement procedure to derive an approximated set of Pareto points for convex

MOMINLPs. The proposed algorithm obtains an initial set of feasible points and its

image set in the objective space by solving ε-constraint problems. Lower bounds at

each node in the BB tree are considered as the ideal point of the relaxed problem. A

simple fathoming rule is implemented where a node can be fathomed if its lower

bound vector is dominated by the points currently identified as nondominated. To

obtain an improved nondominated set, a weighted sum problem is solved at each

leaf node and the current set of nondominated points is updated by applying a

pairwise comparison. In addition, a refinement procedure is suggested for discarding

the dominated points. The idea behind this method can be specialized for solving

BOMIQPs. Since the authors solve an SOP each time, a general purpose quadratic

program (QP) solver can be used for solving this QP. In addition, the proposed

fathoming rule is easy to implement and no assumptions on the number of objective

functions or on the type of the variables are made. However, this work suggests that

for solving a large number of SOPs, the time complexity could be high and the

exact solution may not be obtained.

De Santis et al. [35] presented a branch and bound algorithm to solve MOMINLPs.

They use both convex relaxation and the linear approximations of the objective

space to compute the efficient solutions and the Pareto set. This method is the first

non scalarization based deterministic algorithm devised to handle this class of

problems.

Diessel [39] proposed a new algorithm for approximating the Pareto set of

biobjective mixed integer problems with convex constraints. Computational results

are provided with convex biobjective quadratic programs and convex biobjective

linear/ nonlinear programs.

9

Burachik et al. [25] developed algorithms to solve MOMINLPs based on methods

which were originally designed to solve continuous problems. They illustrated how

to use different scalarization techniques to find or approximate the Pareto sets of

this class problems. The proposed algorithms are tested with instances up to four

objective functions.

We also note that multiobjective mixed integer quadratic programs with one

quadratic function were studied by Dua et al. [41], Romanko [106] and Sawik [111],

while Buchheim [23] studied a biobjective mixed integer portfolio optimization

problem. De Santis and Eichfelder [34] presented a branch and bound algorithm for

MOQPs with strictly convex quadratic objective functions over integer variables.

However, this algorithm is not capable of finding the complete Pareto set but only

finds a finite set of Pareto points.

1.4 Research Needs

Currently, multiobjective mixed integer quadratic programming models have

seen widespread use, particularly fields such as finance, engineering, economics, busi-

ness, and management. Developing a tool to solve such problems is in demand.

Although some studies have been conducted on MOMILPs, research on the nonlinear

programs with integer variables is limited. Based on this limited research, we propose

to develop a BB algorithm for solving BOMIQPs. To the best of our knowledge, this

study is the first attempt at proposing a general purpose BB algorithm for this class

of problems.

Consider the BOMIQP in the form:

10

P : min f(x) =
[
f1(x) = 1

2
xTQ1x + pT1 x, f2(x) = 1

2
xTQ2x + pT2 x

]
s.t. x ∈ X = {x ∈ Rp × Zn−p : Ax 5 b,x = 0},

(1.2)

where n > 1, 0 ≤ p < n,A ∈ Qm×n,b ∈ Qm, Q1, Q2 ∈ Qn×n and p1,p2 ∈ Qn. Each

quadratic function contains the quadratic term xTQix with a symmetric positive

definite matrix Qi, i = 1, 2 and the linear term pTi x, i = 1, 2.

In addition, the problem (1.2) contains discrete and continuous variables and has a

convex feasible set when the integrality of the variables is relaxed, and two objectives

are strictly convex quadratic functions. These features make the determination of

the Pareto points to BOMIQP (1.2) very challenging. The main contribution of this

work is the design and development of a BB algorithm, which allows deriving the set

of Pareto points for BOMIQP (1.2). In general, this Pareto set is the union of single

points and (open/close) convex curves in the objective space. In addition, this set

may not be connected, which brings even more challenges to the task of developing

a technique for solving BOMIQPs. Refer to the examples in Section B in Chapter 2

and Appendix B to get an idea of the structure of the Pareto set. A BB algorithm

for solving BOMIQPs should have the following five components:

1. computing an initial set of efficient solutions and Pareto outcomes

2. solving the node problem

3. bounding and fathoming rules

4. branching

5. set dominance

We discuss these components in the context of BOMIQPs and the work we propose.

The BB algorithm starts with an initial set of Pareto points that evolves toward

11

the Pareto set of the BOMIQP. These initial points are computed by solving the

weighted sum problem for fixed weights. This weighted sum problem is a mixed

integer quadratic program (MIQP) and a commercial package, GUROBI is used to

solve the program.

Within the BB algorithm, the initial Pareto set (being a subset of the true

Pareto set of the BOMIQP) evolves towards the true Pareto set. This evolving set is

referred to as the incumbent set (working set). The evolution of the incumbent set

involves adding new nondominated points and discarding dominated points. The new

points added to the incumbent set are obtained from solving the biobjective quadratic

programs (BOQPs) associated with the nodes of BB tree.

At each node of the BB tree, we solve a BOQP, a relaxed BOMIQP, to

obtain the Pareto set. This set is used to construct the lower bound set for the

algorithm. Either the mpLCP method [3] or the spLCP method [124, 69] can be used

to solve the BOQP. These methods compute the complete Pareto set of the node

problem under some assumptions. However, the spLCP method is not used in our

work since the assumptions are hard to satisfy and it is computationally expensive

relative to the mpLCP method [69]. Note that the node problem solver plays a key

role in our BB algorithm. There are several other methods available to solve BOQPs.

However, the mpLCP method emerges as the best approach to solve BOQPs in our

work. The efficient solution and the Pareto set are available as a function of the

weight parameter λ.

In the single objective case, the objective function value associated with the

fractional solution to the node problem provides a lower bound while the objective

function value of any integer feasible solution is an upper bound for every node

12

problem of the BB tree. In the biobjective case, these bounds are no longer singletons

in R. Instead, they are subsets of R2. At each node, the lower bound set is obtained

by adding the set R2
= to the Pareto set of the node problem while the upper bound

set is obtained by adding the set R2
= to the set of points and curves implied by the

Pareto points to the problem P in the current nondominated set.

The next important component of the BB algorithm is fathoming rules. A

good set of fathoming rules make the BB algorithm effective. If the node problem

is infeasible or the solution to the node problem is feasible to the problem P , then

the node can be fathomed immediately. If a node cannot be fathomed due to the

above reasons, then the fathoming rules based on the previously defined bound sets

become relevant. Two fathoming rules are implemented in a new way to align with

the properties of the Pareto set of the BOMIQP. If a node cannot be fathomed or the

node is fathomed by integer feasibility, either the complete Pareto set or a subset of

the Pareto set of the node problem should be stored in the evolving nondominated

set of the BOMIQP (1.2). A detailed description of the fathoming rules and bound

sets is given in Chapter 2.

The idea of the branching operation in our BB algorithm is similar to the

idea of the branching in the single objective case. If a node of the BB tree cannot be

fathomed, we need to branch on an integer variable that has a fractional value. If a

variable xl takes a fractional value φl in an optimal solution to the node problem, a

branching process is performed. Within branching operation, two new node problems

are created by adding the constraints xl ≥ dφle and xl ≤ bφlc, respectively, to the

current node problem. This regular branching idea is extended to be applicable to

BOMIQPs and is integrated with the mpLCP method. Because the solution with

mpLCP is available as a function of the weight parameter λ. Therefore, we first need

13

to find the range of the values that the fractional integer variable can take. Then

we create child node problems adding the additional constraint. Reader may refer to

Chapter 2 for more details.

A method to discard the dominated points from the incumbent set is required

in our BB algorithm. We introduce a set dominance procedure to fulfill this task.

The Pareto sets or subsets of the Pareto sets to relaxed node problems are tested in

the set dominance procedure with respect to the elements in the current incumbent

set. In every iteration of the algorithm, the incumbent set is updated using this

procedure. Our procedure can be easily extended to the MOPs producing strictly

convex Pareto sets. According to our knowledge, there is very little research in this

area.

1.5 Completed Research Objectives

Our primary research objective is to develop a BB algorithm for BOMIQPs

by combining the five necessary components presented in Section 1.4.

All the theoretical tasks addressing the components 1,3,4, and 5 have been

accomplished and are presented in Chapter 2. The node problem solver, component 2

has been introduced and implemented by Adelgren [3, 2]. This solver is integrated

with the proposed BB algorithm. Also, we have proved that our algorithm finds

the complete Pareto set and efficient solutions. The algorithm is implemented in

MATLAB and tested for randomly generated BOMIQP instances.

Finding a good node problem solver to solve BOQPs in the BB algorithm

14

is a major challenge. In [68], we have reviewed algorithms for computing efficient

solutions to multiobjective quadratic programs (MOQPs) and concluded that the

mpLCP method [3] is currently the best method for computing exact solutions to

convex MOQPs. In addition, we reviewed some well-established scalarizations in

MOPs from the perspective of parametric optimization. A new scalarization for

MOPs, modified hybrid scalarization is proposed. This is useful for a class of specially

structured convex MOPs when the objective functions of the MOP come in two

groups with different real-life scenarios. Then we used the mpLCP method and

the newly introduced modified hybrid scalarization to solve multiobjective portfolio

optimization problems with three or more quadratic objective functions, a class of

problems that has not been solved before. Computational examples are provided to

illustrate the new scalarization. The work is included in Chapter 3.

The spLCP method [124] is proposed to solve BOQPs as an alternative to

the mpLCP method due to its implementation limitations. This method was proposed

in 1993 however, to the best of our knowledge, was never implemented. Note that

the spLCP method can solve linear complementarity problems with one parameter.

Therefore we can only use this method to solve BOQPs. We compared mpLCP and

spLCP methods in the paper [69]. We anticipated that the spLCP method would be

more efficient than the mpLCP method, due to its special assumptions but discovered

otherwise. Also, the mpLCP method turned out to be superior to the spLCP method

in the current MATLAB environment. Consequently, we conclude that the mpLCP

method determines the state-of-the-art in solving BOQPs with linear constraints and

hence is used as the node problem solver in the proposed BB algorithm.

A Pareto set dominance module is proposed in Chapter 2 as a major com-

ponent of the BB algorithm. However, this module can be generalized to make the

15

set dominance decision with two strictly convex Pareto sets. In this module, we an-

alyze the mutual location of two Pareto sets in R2 to conclude about the (partial)

dominance between them, assuming each Pareto set is a strictly convex curve. We

use the parametric description of the efficient set and the end points of the Pareto

sets in this work. The set dominance module is implemented in MATLAB.

A preliminary numerical experiment is performed for the proposed BB al-

gorithm. In this rudimentary implementation ten instances of BOMIQPs are tested

and the results are discussed in Chapter 2.

The spLCP and mpLCp methods are broadly studied in our work. These

methods are based on the linear complementarity problem (LCP). Therefore, we

discuss the relationship between QPs and LCPs briefly in the following section.

1.6 Linear Complementarity Problem Formulation

of the Quadratic Program

The linear complementarity problem (LCP) approach was conceived as a

unifying formulation for quadratic programs (QPs). Several effective algorithms for

solving QPs are based on the LCP formulation. For more details about these algo-

rithms, the reader may refer to [31]. In this section, we discuss how to obtain the

associated LCP by applying the Karush-Kuhn-Tucker (KKT) optimality conditions

to the QP. We also give some preliminary information on the LCP.

16

Consider a single objective QP in the form:

min
x

f(x) =
1

2
xTQx + pTx

s.t. Ax 5 b

x = 0

(1.3)

where x ∈ Rn, Q ∈ Rn×n, p ∈ Rn, A ∈ Rm×n and b ∈ Rm.

Assumption 1.6.1. Matrix Q is a symmetric positive definite (PD) matrix. There-

fore, problem (1.3) is strictly convex.

To obtain the LCP, the inequality constraints in (1.3) are first converted into

equality constraints Ax + s = b by adding a slack variable s = 000. Let u and r be the

Lagrange multipliers (dual variables) associated with the constraints s = 0 and

x = 0, respectively. The KKT necessary conditions for optimality of problem (1.3)

are

r − Qx−ATu = p

s + Ax = b

rTx = 0

sTu = 0

x, s,u, r = 0.

(1.4)

Proposition 1.6.2. If Q is PD in (1.3), the KKT necessary conditions (1.4) are

sufficient for optimality of problem (1.3).

Proof. The reader may refer to Bazaraa et al. [12].

17

We can rewrite system (1.4) in matrix form:

r

s

−
 Q AT

−A 0


x

u

 =

p

b


[
r s

]x

u

 = 0

r

s

 ,
x

u

 = 0.

(1.5)

Let n+m = h and then let M =

 Q AT

−A 0

 ∈ Rh×h, q =

p

b

 ∈ Rh, w =

r

s

 ∈ Rh,
and z =

x

u

 ∈ Rh.
For a given M and q, the LCP is to find vectors w and z which satisfy:

w−Mz = q

wT z = 0

w, z = 0.

(1.6)

Proposition 1.6.3. The matrix M in LCP (1.6) is PD.

18

Proof. Let y =

y1

y2

 ∈ Rh such that y1 6= 0. Then,

yTMy = yT

 Q AT

−A 0

y

=

[
yT1 yT2

] Q AT

−A 0


y1

y2


= yT1Qy1 − yT2Ay1 + yT1A

Ty2

= yT1Qy1

> 0 from Assumption 1.6.1

Proposition 1.6.4. A solution to LCP (1.6) provides an optimal solution to QP

(1.3).

Proof. The proof is immediate with Proposition 1.6.2

1.7 Dissertation Overview

The remainder of the dissertation is organized as follows. In Chapter 2 we

discuss the proposed branch and bound algorithm for solving biobjective quadratic

programs. The content of this chapter include material from a paper entitled “A

Branch and Bound Algorithm for Biobjective Mixed Integer Quadratic Programs” by

Pubudu L.W. Jayasekara and Margaret M. Wiecek which will be soon submitted for

19

publication.

In Chapter 3 we review methods for solving convex quadratic multiobjective

programs with an application to the portfolio optimization problem. The contents

of this chapter include material from a paper entitled “On Convex Multiobjective

Programs with Application to Portfolio Optimization” by Pubudu L.W. Jayasekara,

Nathan Adelgren and Margaret M. Wiecek which has been published in the Journal

of Multi Criteria Decision Analysis.

In Chapter 4 we study multiparametric quadratic programs (mpQPs) and

discuss algorithms for solving mpQPs. The contents of this chapter include material

from a paper entitled “On Solving Parametric Multiobjective Quadratic Programs

with Parameters in General Locations” by Pubudu L.W. Jayasekara, Andrew C.

Pangia and Margaret M. Wiecek which has been submitted in the Annals of Opera-

tions Research. A modified version of the paper is included in Chapter 4 and consists

of the work related to spLCP and mpLCP methods.

The conclusion of the dissertation is included in Chapter 5 where we also

discuss possible directions for future research.

20

Chapter 2

A Branch and Bound Algorithm

for Biobjective Mixed Integer

Quadratic Programs

[The contents of this chapter include material from a paper entitled “A

Branch and Bound Algorithm for Biobjective Mixed Integer Quadratic Program”

which will soon be submitted for publication and the authors are Pubudu L.W.

Jayasekara and Margaret M. Wiecek.]

2.1 Introduction

Multiobjective programs (MOPs) with mixed-integer variables have recently

been the objects of numerous studies since they model decision-making problems aris-

ing in many areas of human activity and their Pareto sets have interesting mathe-

21

matical properties. Consequently, the development of algorithms for computing these

sets has been the main goal of those studies. Multiobjective mixed-integer linear

programs is a class of MOPs for which various algorithms have already been devel-

oped (refer to [5] for a concise review of these methods). Despite the linear case, the

research have been performed mainly in the biobjective setting, while problems with

more objectives have been addressed only in a few recent studies [6, 103, 104].

A natural next research step to study multiobjective mixed-integer convex

programs has already been initiated. Branch and bound (BB) methods to approxi-

mate the Pareto set for such problems are proposed in [26, 105, 35], while the biob-

jective case is examined in [39]. A decomposition algorithm to compute an enclosure

of the Pareto set is designed in [47] and a report on its implementation is contained

in [48]. Some authors go further and assume nonconvexity of the functions on top of

variable integrality. In [91], a branch-and-bound (BB) type algorithm is proposed for

MOPs with nonconvex objectives and convex constraints, while in [25] the general

case of bounded objective functions and disconnected feasible sets is addressed.

In this paper we continue the research direction to compute the Pareto set for

the convex quadratic case. Multiobjective quadratic programs (MOQPs) are appeal-

ing since they have elegant mathematical properties and model important applications

such as regression analysis [1], portfolio optimization [106, 134, 68], predictive control

[15], and others. Integer variables are added in [34], while mixed-integer variables in

the context of portfolio optimization are included in [111] and the original MOQP is

scalarized and solved as a single objective problem.

We design and implement a BB algorithm for biobjective mixed-integer

quadratic programs (BOMIQPs). In contrast to the studies above, in which the

22

Pareto set is approximated or represented by computing specific points, the proposed

algorithm provides the exact Pareto set in closed form. We emphasize that there

have been so far three classes of MOPs whose exact Pareto set can be computed

in closed form, namely, multiobjective linear programs (e.g., [116, 81]) including the

case of mixed-integer variables, and multiobjective quadratic programs (refer to [68]

for a review). BOMIQPs now join this “elite” group of MOPs as the current paper

appears to be the first study making it possible.

The algorithm relies on three fundamental modules of the BB scheme: solv-

ing node problems, branching, and fathoming; and a newly developed module of set

dominance. Continuous relaxation of the BOMIQP are solved at the BB nodes with

the recently developed mpLCP method, which solves MOQPs as multiparametric lin-

ear complementarity problems (mpLCPs) and provides the exact efficient solutions to

MOQPs in parametric form [3]. The branching module is extended to be applicable

to BOMIQPs and is integrated with the mpLCP method. Selected fathoming rules

are implemented in a new way to account for the properties of the Pareto set of the

BOMIQP. In the module of set dominance, Pareto sets are compared under incom-

plete information to yield the resulting nondominated set and eventually produce the

Pareto set of the BOMIQP.

The paper consists of eight sections and an appendix. In Section 2.2, the

BOMIQP is formulated and accompanied by related auxiliary biobjective quadratic

programs (BOQPs), and the methods for solving these BOQPs are reviewed in the

context of the BB algorithm. An overview and the modules of the algorithm are

presented in Sections 2.3-2.6, while the complete algorithm and numerical results are

given in Section 2.7. The paper is concluded in Section 2.8. In the appendix an

example BOMIQP is solved with the BB algorithm and other supporting information

23

is included.

2.2 Problem Statements and Solution Methods

We begin with basic notation and define nondominated points in an arbitrary

set. We then formulate the BOMIQP, define the concepts, and present auxiliary

optimization problems and solution methods that are needed for the BB algorithm.

Let n, p ∈ N, Rn,Rp ⊂ Rn, 0 ≤ p ≤ n,R2 be Euclidean vector spaces,

and Zn−p ⊂ Rn be the set of all integer vectors. For y1,y2 ∈ R2 the follow-

ing binary relations are defined: y1 5 y2 if and only if y1
k ≤ y2

k for k = 1, 2; y1 ≤

y2 if and only if y1
k ≤ y2

k for k = 1, 2 and y1 6= y2; y1 < y2 if and only if y1
k < y2

k for k =

1, 2.

Definition 2.2.1. Let S ⊂ R2. A point y1 ∈ S is said to dominate a point y2 ∈ S

provided y1 ≤ y2. A point y1 ∈ S is said to be nondominated provided there does not

exist y2 ∈ S such that y2 ≤ y1. Let SN denote the set of nondominated points in S

and N(·) denote the operator on a set such that SN = N(S).

We define R2
= = {y ∈ R2 : y = 0} and the sets R2

≥,R2
> are defined ac-

cordingly. We also define R2
T

= {y ∈ R2 : y1 ≥ 0, y2 ≤ 0}, R2
R

= R2
T
\ {0} and

R2
≷ = {y ∈ R2 : y1 > 0, y2 < 0}. For a subset S ⊆ R2 we define S= = S + R2

=.

The sets S≥ and S> are defined accordingly. In addition, bd(S) and |S| denote the

boundary and cardinality of S, respectively.

24

Consider the BOMIQP:

P : min f(x) =
[
f1(x) = 1

2
xTQ1x + pT1 x, f2(x) = 1

2
xTQ2x + pT2 x

]
s.t. x ∈ X = {x ∈ Rp × Zn−p : Ax 5 b,x = 0},

(2.1)

where f : Rn → R2, Q1, Q2 ∈ Qn×n, p1,p2 ∈ Qn, A ∈ Qm×n, and b ∈ Qm. The

spaces Rp×Zn−p and R2 are referred to as the decision space and the objective space

to BOMIQP (2.1), respectively. Problem P (2.1), which includes p continuous and

n− p integer variables, is referred to as the original problem. We make the following

assumptions.

Assumption 2.2.2. 1. The set X is nonempty and compact.

2. The function fi is strictly convex, i.e., matrix Qi, i = 1, 2, is positive definite

(PD).

3. Each integer variable is bounded, i.e., ali ≤ xi ≤ aui, for some ali , aui ∈ Z, i =

p+ 1, · · · , n.

For BOMIQP (2.1), the outcome (attainable) set in the objective space is defined as

the image of the feasible set X under the vector-valued mapping f.

Y = f(X) =
{
y ∈ R2 : y = (f1(x), f2(x)),x ∈ X

}
.

The elements of Y are referred to as outcome or criterion vectors. Solution to

BOMIQP (2.1) is understood as finding its efficient solutions in X and Pareto out-

comes in Y .

Definition 2.2.3. A feasible solution x1 ∈ X is said to be an efficient solution to

BOMIQP (2.1) provided there does not exist x2 ∈ X such that f(x2) ≤ f(x1). The

25

outcome y1 = f(x1) is said to be a Pareto (or nondominated) outcome in Y . The

sets of efficient solutions and Pareto outcomes to (2.1) are denoted by XE and YP ,

respectively.

Because the Pareto set of BOMIQP (2.1) is a nonconvex and disconnected

curve that is neither open nor closed, the BOMIQP is a global optimization problem.

More details on the structure of this set are given in the next section. For (2.1),

the notions of Pareto and nondominated outcomes in Y is used interchangeably and

therefore YP = N(Y). We also require the following definitions:

Definition 2.2.4. The point yI = (yI1 , y
I
2) ∈ R2, where yIk := minx∈X fk(x) =

miny∈Y yk, for k = 1, 2, is called the ideal point of BOMIQP (2.1).

Definition 2.2.5. The point yN = (yN
1 , y

N
2) ∈ R2, where yN

k := maxx∈XE fk(x) =

maxy∈YP yk, for k = 1, 2, is called the nadir point of BOMIQP (2.1).

In the next section we formulate auxiliary BOQPs for which we also define

the efficient and Pareto sets. We maintain the notation we use in Definition 2.2.3. For

each BOQP we denote the efficient set and the Pareto set, respectively, by attaching

a subscript E to the symbol denoting this problem’s feasible set and by attaching a

subscript P to the symbol denoting this problem’s image of the feasible set.

2.2.1 Auxiliary Biobjective Quadratic Programs

Given BOMIQP (2.1), four BOQPs, which are of interest for the BB algorithm, are

introduced. Each of these four problems has the same two quadratic objective

functions but a different feasible set that is a subset or a superset of the set X .

26

First, consider first Problem P̃ being the continuous relaxation of BOMIQP (2.1).

P̃ : min f(x)

s.t. x ∈ X̃ = {x ∈ Rn : Ax 5 b,x = 0}.
(2.2)

Problem P̃ is referred to as the relaxed BOMIQP. Based on the definition of X̃ and

Assumption 2.2.2.3, it is a strictly convex problem. Let Ỹ = f(X̃) denote the outcome

set of P̃ .

Second, we introduce the so-called slice problem which is also a continuous

BOQP obtained by fixing all the integer variables at some feasible values. Let x̄ ∈

X ∩ (Rp= × Z
n−p
=), then the slice problem of BOMIQP (2.1) can be written as

P (x̄) : min f(x)

s.t. x ∈ X (x̄) = {x ∈ Rp × Zn−p : Ax 5 b,x = 0, xi = x̄i, i = p+ 1, · · · , n}.
(2.3)

The set X (x̄) is referred to as a slice of the set X . The slice problem is equivalent

to a leaf node problem in the BB tree, because all integer variables have been fixed

and no branching is necessary. Let Y (x̄) = f(X (x̄)) denote the outcome set of P (x̄).

Figure 2.1a depicts the sets Y (x̄i) for three slice problems P (x̄i) formulated for three

different points x̄i, and the ideal point and nadir point for BOMIQP (2.1). Each P (x̄)

is a BOQP and its Pareto set is a strictly convex curve. The bold (red), nonconvex,

and discontinuous curve is the Pareto set, YP , for (2.1). This example reveals that

the Pareto set to (2.1) can be constructed as the nondominated set of the union of the

Pareto sets of all the slice problems. Consequently, a naive method to compute this

Pareto set is to solve all the slice problems and perform this construction. The goal

of this work is to design an algorithm to compute this Pareto set in a more efficient

27

way.

The BB tree recursively subdivides the feasible set and creates new BOMIQPs.

The third problem considered here is the BOMIQP that is associated with a node s

of the BB tree and can be written as

P s : min f(x)

s.t. x ∈ X s = {x ∈ Rp × Zn−p : Asx 5 bs,x = 0}.
(2.4)

P s is referred to as the node problem. The matrix As and vector bs are obtained by

augmenting the original linear constraints with additional constraints in the form of

bounds on integer variables according to a branching rule.

Although P s is associated with a node s, the continuous relaxation, P̃ s, of

this problem is the BOQP that is repetitively solved and therefore plays the role of

the engine of the BB algorithm. P̃ s is the fourth problem we consider and formulate

as follows:

P̃ s : min f(x)

s.t. x ∈ X̃ s = {x ∈ Rn : Asx 5 bs,x = 0}.
(2.5)

P̃ s is a strictly convex BOQP and is referred to as the relaxed node problem. Let

Ỹ s = f(X̃ s), X̃ s
E and Ỹ s

P = N(Ỹ s
P) be the outcome set, efficient set, and Pareto set

of P̃ s, respectively. Ỹ s
P is a continuous strictly convex curve with the end points

ỹs1 =
(
ỹs11 = f1(x̃s1), ỹs12 = f2(x̃s1)

)
and ỹs2 =

(
ỹs21 = f1(x̃s2), ỹs22 = f2(x̃s2)

)
, where

x̃si = argmin
x∈X̃ s

fi(x) for i = 1, 2 (see Figure 2.1b). Let ỹsI and ỹsN be the ideal point

and the nadir point of the relaxed node s problem, respectively, where ỹsI = (ỹsI1 =

ỹs11 , ỹ
sI
2 = ỹs22), ỹsN = (ỹsN1 = ỹs21 , ỹ

sN
2 = ỹs12).

The slice problem P (x̄) and relaxed node problem P̃ s are convex BOQPs

28

with continuous variables. The reader may refer to [68] for the properties of such

MOQPs. In particular, the following property is immediate.

Proposition 2.2.6. [68] The set Ỹ s is R2
>-convex, i.e., the set Ỹ s + R2

> is convex.

For P̃ s we define additional sets in the objective space R2. The set of all

convex combinations of the points ỹs1,ỹs2 and ỹsI is defined as

T s = {λ1ỹ
s1 + λ2ỹ

s2 + λ3ỹ
sI :

3∑
i=1

λi = 1, λi ≥ 0 for all i = 1, 2, 3}, (2.6)

and creates a closed triangle in R2. Two subsets in R2 for κ = s, l are defined as

CκW = ({ỹκ1}< \ {ỹκI}5) ∪ L(ỹκ1, ỹκI),

CκS = ({ỹκ2}< \ {ỹκI}5) ∪ L(ỹκ2, ỹκI),

(2.7)

where L(ỹs1, ỹsI) and L(ỹs2, ỹsI) are open line segments joining the ideal point with

each end point of the Pareto set. Figure 2.1b depicts the Pareto set with two end

points, ideal point, nadir point, and triangle T s for P̃ s.

2.2.2 Solving Biobjective Quadratic Programs

The traditional approach to solve MOPs is by scalarization in which the

problem is reformulated into a single objective program whose optimal solution is ef-

ficient to the original problem. In the BB algorithm we employ three well-established

scalarizations to solve problems P and P̃ s. This section can be safely skipped by the

reader who has the knowledge of scalarization techniques in multiobjective optimiza-

tion.

29

(a) Outcome sets Y (x̄i), i = 1, 2, 3; ideal
point, nadir point and Pareto set for
BOMIQP (2.1).

(b) Pareto set with end points,
ideal point, nadir point, triangle
T s for P̃ s (2.5).

Figure 2.1: Objective Space and Pareto Sets of P , and Pareto Sets of P̃ s.

2.2.2.1 The Weighted-Sum Problem associated with BOMIQP(2.1)

Consider the following weighted-sum problem associated with BOMIQP(2.1).

P (λ) min 1
2
xTQ(λ)x + p(λ)Tx

s.t. x ∈ X ,
(2.8)

where λ ∈ [0, 1], Q(λ) = λQi + (1− λ)Qj and p(λ) = λpi + (1− λ)pj, i 6= j.

Proposition 2.2.7. [56] Let λ ∈ (0, 1). If x̌ = x̌(λ) is an optimal solution to problem

(2.8), then x̌ is efficient to BOMIQP(2.1).

In the BB algorithm, problem (2.8) is solved for a fixed set of values of the parameter

λ to obtain an initial set of Pareto points of BOMIQP(2.1). For a fixed weight,

problem (2.8) is a single objective mixed integer quadratic program (SOMIQP) and

commercial software such as GUROBI can be used to solve it. We emphasize that

these SOMIQPs are solved only at the initialization of the BB algorithm.

30

2.2.2.2 The Weighted-Sum Problem associated with BOQP(2.5)

Let λ ∈ [0, 1]. In the algorithm, the relaxed weighted-sum problem associ-

ated with problem (2.5).

P̃ s(λ) : min 1
2
xTQ(λ)x + p(λ)Tx

s.t. x ∈ X̃ s = {x ∈ Rn : Asx 5 bs,x = 0},
(2.9)

is solved for a fixed parameter λ and also as a parametric optimization problem.

Let x̂(λ) denote an optimal solution x̂(λ) to (2.9) and ŷ(λ) denote its image in the

objective space of BOQP (2.5).

In the parametric case, the optimal solutions to (2.9) are functions of λ. De-

spite being a convex parametric optimization problem, (2.9) is a challenging problem

because it has a parameter in the quadratic term of the objective function. In the lit-

erature, only two independently developed methods exist to solve (2.9) for its optimal

parametric solutions, the spLCP method [124], and the mpLCP method [3, 2] with a

MATLAB implementation available [2]. Both these methods rely on the well-known

reformulation of the KKT conditions for quadratic programs into an LCP problem

[12], which converts (2.9) into a single-parametric linear complementarity problem

(spLCP). In both methods the parameter space [0, 1] is partitioned into invariancy

intervals over which the solutions to the mpLCP are computed prividing also optimal

solution to (2.9).

The spLCP method is applicable to a specific class of spLCPs meaning that

it can solve BOQPs satisfying certain assumptions. The solutions to the spLCP

are computed at the end points of the invariancy intervals. The mpLCP method is

applicable to a broad class of mpLCPs and therefore can solve all convex MOQPs.

31

The solutions to the mpLCP are computed over the entire parameter space meaning

that a parametric solution as a function λ is computed for each invariancy interval.

The spLCP method has been implemented and compared to the mpLCP method in

[68]. Based on this comparison and the earlier comparisons in [68], the latter emerged

as the most universal method to solve MOQPs and is used as a solver for (2.9) in the

BB algorithm.

2.2.2.3 The Achievement Function Problem associated with BOQP (2.5)

An achievement function can be used to scalarize BOQP (2.5) [131, 130].

Consider the following problem that is formulated for the relaxed node s problem

with a reference point yR ∈ R2:

P̃ (yR) : min
x

max
k=1,2

{fk(x)− yRk }

s.t. x ∈ X̃ s.

(2.10)

Theorem 2.2.8. [131, 130] Let x̂ ∈ X̃ s. If x̂ = x̂(yR) is an optimal solution to

problem P̃ (yR) (2.10), then x̂ is efficient to problem P̃ s (2.5).

Problem P̃ (yR), known as the achievement function problem, is used in the

fathoming and set dominance modules of the BB algorithm to check the location of

a reference point yR with respect to the Pareto set of a relaxed node problem. The

following result is immediate based on Proposition 2.2.6 (ii) and Theorem 2.2.8.

Theorem 2.2.9. Let yR ∈ R2 = (yR1 , y
R
2). Let x̂s(yR) be an optimal solution to

(2.10) and ŷs(yR) =
(
f1(x̂s(yR)), f2(x̂s(yR))

)
= (ŷs1, ŷ

s
2), and let Ỹ s

P be the Pareto set

of problem (2.5).

32

(i) If ŷs(yR) ≥ yR then yR ∈ Ỹ s
P − R2

>;

(ii) If ŷs(yR) 5 yR then yR ∈ Ỹ s
P + R2

=;

(iii) If ŷs1 < yR1 and ŷs2 > yR1 then yR ∈ Ỹ s
P − R2

≷;

(iv) If ŷs1 > yR1 and ŷs2 < yR1 then yR ∈ Ỹ s
P + R2

≷.

Problem P̃ (yR) is a SOQP and commercial software such as MATLAB can

be used to solve it.

2.2.2.4 The εεε-Constraint Problem associated with BOQP (2.5)

Another commonly used scalariztion technique to solve MOQPs is the εεε-

constraint problem [59]. We use it for BOQP (2.5), where one quadratic objective

function is minimzed while the other objective function generates an inequality con-

straint with a fixed parameter εj ∈ R in the right-han-side (RHS). The ith εεε-constraint

problem, i = 1, 2, can be formulated as:

P̃ (εj) : min fi(x)

s.t. fj(x) ≤ εj j = {1, 2}, j 6= i

x ∈ X̃ s.

(2.11)

Theorem 2.2.10. [59] Let εj ∈ R be fixed and x̂ ∈ X̃ s(εj) = {x ∈ X̃ s : fj(x) ≤

εj, j = {1, 2}, j 6= i}. If x̂ = x̂(εj) is an optimal solution to problem P̃ (εj) (3.3), then

x̂ is efficient to problem P̃ s(2.5).

Note that at optimality of P̃ (εj) (3.3) the ε constraint is active, i.e., fj(x̂(εj)) =

33

εj. Let ŷ(εj) denote the image of x̂(εj) in the objective space of BOQP (2.5), i.e.,

ŷ(εj) = (f1(x̂(εj)), f2(x̂(εj))).

Problem P̃ (εj) (3.3) is used in the set dominance module to discard the

points of a Pareto set that are dominated by another Pareto set. The parameter

ε is selected as a coordinate of an end point of one of the two Pareto sets. For

i, j = {1, 2}, i 6= j and ν, ω = {s, l}, ν 6= ω, we formulate a quadratically constrained

single objective quadratic program

P̃ (ỹνjj) : min fi(x)

s.t. fj(x) ≤ ỹνjj j = {1, 2}, j 6= i

x ∈ X̃ ω,

(2.12)

where ỹνjj is the jth coordinate of the jth end point of the νth node problem. Com-

mercial software such as MATLAB can solve problem P̃ (ỹνjj). Let x̂(ỹνjj) denote an

optimal solution to (2.12) and ŷ(ỹνjj) denote its image in the objective space of BOQP

(2.5). The following proposition shows how to retrieve the weight λ to be used in

problem P̃ s(λ) (2.9) and obtain the same efficient solution that is obtained by solving

P̃ (ỹνjj)(2.12).

Proposition 2.2.11 ([76]). Let x̂ = x̂(ỹνjj) be an optimal solution to P̃ (ỹνjj)(2.12) and

û = û(ỹνjj) > 0 be the Lagrange multiplier associated with the constraint fj(x) ≤ ỹνjj .

Then x̂ is also an optimal solution to problem P̃ s(λ) (2.9) for λ = û
û+1

.

Having prepared the foundations for the development of the BB algorithm,

in the next section we give its overview and then focus on its modules.

34

2.3 Algorithm Overview

The following definitions and notations are used to develop the BB algorithm

for BOMIQP (2.1).

1. Let Ya ⊂ Y be the set of points and curves found so far by the BB algorithm

as candidates to be the elements in the Pareto set, YP , for (2.1). Ya is referred

to as the incumbent (or provisionally nondominated) set.

2. Let X a ⊂ X be the set of preimages of the points in Ya.

3. Let Y 0
P ⊂ YP denote an initial subset of YP and X 0

a ⊂ XE be the set of preimages

of the points in Y 0
P .

4. Let yi = (yi1, y
i
2) ∈ Ya and yj = (yj1, y

j
2) ∈ Ya. The point yi,j = (yj1, y

i
2) is said

to be the nadir point and the point y̌i,j = (yi1, y
j
2) is said to be the ideal point

implied by the points yi,yj ∈ Ya. The set of all nadir points generated by some

selected points in Ya is denoted by Y N .

5. Points yi,yj ∈ Ya are said to be adjacent in Ya if their nadir point yi,j and ideal

point y̌i,j satisfy (
{yi,j}<

)
∩
(
{y̌i,j}>

)
∩ Ya = ∅. (2.13)

A nadir point yi,j ∈ Y N is said to be adjacent if it is implied by two adjacent

points yi,yj ∈ Ya.

6. Let Y s
a ⊂ Ya be defined as

Y s
a = Ya ∩ (T s − R2

=). (2.14)

35

7. Let the set Rs be defined as the open rectangle spanned between ỹsI and yi,j,

Rs = {ỹsI}> ∩ {yi,j}5

where yi,j ∈ Y N .

In general, the BB algorithm consists of the initialization and the main step.

The following information is available after the initialization step has been completed:

(i) An initial subset of Pareto points Y 0
P . These points are computed by solving the

weighted sum problem (2.8) with a set of predetermined weights. Then Ya = Y 0
P at

the initialization, and Y 0
P ⊂ Ya ∩ YP during the execution of the algorithm. (ii) The

set of nadir points implied by the adjacent Pareto points in Y 0
P .

At every main step of the algorithm the relaxed BOQP (2.5) associated

with a node s is solved for its efficient set, X̃ s
E = {xs(λ) ∈ Rn : λ ∈ [λ′, λ′′]}0≤λ′,λ′′≤1,

which is as a collection of parametric efficient solution functions with the associated

invariancy intervals. The Pareto set Ỹ s
P = f(X̃ s

E) (or its subset ys(λ) = f(xs(λ))), is a

strictly convex curve (or a strictly convex subcurve) that is available parametrically in

the form (f1(x(λ)), f2(x(λ))) for λ ∈ [0, 1] (or for λ ∈ [λ′, λ′′]). Both sets, X̃ s
E and Ỹ s

P ,

are stored. The coordinates of specific points in Ỹ s
P : (i) the end points ỹs1 = f(xs(1))

and ỹs2 = f(xs(0)); (ii) the points ỹs(λ′) = f(xs(λ′)) and ỹs(λ′′) = f(xs(λ′′)) associated

with the end points of the invariancy intervals [λ′, λ′′] for 0 < λ′, λ′′ < 1, are actively

used during the execution of the algorithm.

The algorithm proceeds differently depending on the properties of X̃ s
E and

Ỹ s
P . If the entire set X̃ s

E is feasible for (2.1), i.e., X̃ s
E ⊂ X s

E, then its image, Ỹ s
P , is

added to Ya and the resulting nondominated set is computed , i.e., Ya = N(Ya∪ Ỹ s
P).

36

This latter step is performed in the set dominance module. Additionally, if Ỹ s
P satisfies

certain conditions executed in the fathoming module, then node s is fathomed. The

set Y N of all nadir points generated by selected points in Ya is used in this module.

In a similar way, if an efficient solution function xs(λ) ∈ X̃ s
E for some

λ ∈ [λ′, λ′′] is feasible for (2.1), i.e., xs(λ) ∈ XE for λ ∈ [λ′, λ′′], then its image,

ys(λ) = f(xs(λ)) for λ ∈ [λ′, λ′′], is added to Ya and the resulting nondominated set

is computed in the set dominance module.

If there exists an interval [λ′, λ′′] in the collection such that the corresponding

parametric solution is not feasible for (2.1), then the algorithm initiates the branching

module.

The incumbent set Ya is a union of points and strictly convex curves. The

objective space images of the newly obtained efficient solutions to relaxed node prob-

lems that are feasible for (2.1) are added to Ya while this set remains nondominated.

Because of the nondominance test, an interval [λ′, λ′′] associated with the subcurve

y(λ) for λ ∈ [λ′, λ′′] may be partitioned into subintervals such that a subcurve y(λ)

for λ ∈ [λL, λR] is nondominated in Ya, where λL and λR are the parameter values

associated with the end points of the subcurve that passed the test. Consequently,

we have

Ya = Y 0
P ∪ {y(λ) ∈ R2 : λ ∈ [λL, λR]}0≤λL,λR≤1 and Ya = N(Ya) (2.15)

As the algorithm progresses, Ya keeps changing. As new curves or points are added,

some curves, subcurves, or points that have been elements of Ya so far may be

dropped.

37

In the fathoming module, a subset Ȳa ⊂ Ya containing only specific points

in Ya is used because the information about only these points is sufficient to run this

module. We define

Ȳa = Y 0
P ∪ {y(λ) ∈ R2 : λ = λL, λR}0≤λL,λR≤1 and Ȳa = N(Ȳa) (2.16)

In the subsequent sections, the three modules of the algorithm are presented

in detail.

2.4 Branching

In the branching module the following strategy is used. At the parent node s,

the mpLCP method solves BOQP (2.5) for the efficient set, X̃ s
E = {x(λ) : λ ∈ [λ′, λ′′]}0≤λ′,λ′′≤1.

If this efficient set is not feasible to the original problem (2.1), i.e., there

exists an interval [λ′, λ′′] and the corresponding parametric solution with an integer

variable xi(λ), for some i ∈ {p + 1, . . . , n}, to which a function λ for λ ∈ [λ′, λ′′]

has been assigned, then this variable is selected for branching. In the next step,

the range of values this variable takes for λ ∈ [λ′, λ′′] is computed. Let x̄mini and

x̄maxi be the smallest and largest value the variable xi(λ) respectively assumes for

λ ∈ [λ′, λ′′]. To obtain these bounds we solve x̄mini = min{xi(λ) : λ ∈ [λ′, λ′′]} and

x̄maxi = max{xi(λ) : λ ∈ [λ′, λ′′]}. Since xi(λ) are rational functions of λ, these

optimization problems are not easy to solve and we explain a solution approach later

in this section.

Let φ′i = bx̄mini c and φ′′i = dx̄maxi e. Then the constraints of problem P s(λ)(2.9)

38

are extended with bounds on the integer variable xi, and two new node problems,

P s+1(λ) and P s+2(λ), are created and solved for each integer φi ∈ [φ′i, φ
′′
i].

P s+1(λ) : min 1
2
xTQ(λ)x + p(λ)Tx

s.t. x ∈ X̃ s = {x ∈ Rn : Asx 5 bs, xi ≤ φi,x = 0}

λ ∈ [0, 1].

(2.17)

P s+2(λ) : min 1
2
xTQ(λ)x + p(λ)Tx

s.t. x ∈ X̃ s = {x ∈ Rn : Asx 5 bs, xi ≥ φi + 1,x = 0}

λ ∈ [0, 1].

(2.18)

The first child node problem that is associated with the values in the interval [φ′i, φ
′′
i]

has the constraint xi ≤ φ′i while the last child node problem has the constraint

xi ≥ φ′′i . Using these additional constraints we ensure that no efficient solution to the

original problem (2.1) is excluded.

This procedure is applied to every invariancy interval in the collection that

carries the infeasibility. Once all such invariancy intervals associated with a node

problem have been processed, the efficient set of another node problem is checked for

feasibility and if needed, the above process is repeated. Note that a newly generated

node problem may be identical to a previously obtained node problem. If so, such a

new node problems is discarded. The branching process is started at the root node

with problem (2.2) and may continue until leaf nodes have been reached with slice

problem (2.3).

To obtain the bounds x̄mini and x̄maxi by solving x̄mini = min{xi(λ) : λ ∈

[λ′, λ′′]} and x̄maxi = max{xi(λ) : λ ∈ [λ′, λ′′]}, we proceed as follows. Recall that

the solution xi(λ) obtained from the mpLCP method is a rational function of λ, i.e.,

39

xi(λ) = Ni(λ)
Di(λ)

, where Ni(λ) and Ni(λ) are the numerator and denominator func-

tions respectively. If the denominator Di(λ) is a constant function, then it is likely

that the optimization problems are solvable with the fmincon function in MATLAB.

Otherwise, when D(λ) is not a constant function, a specialized solution method for

polynomial fractional optimization should be used [40]. Since adopting that method

into the BB algorithm requires further research, in this first implementation the opti-

mization problems are solved by discretization. The interval [λ′, λ′′] is discretized, the

values of xi(λ) are computed for each value of λ, and the minimum and the maximum

values, x̄mini and x̄maxi , are found.

2.5 Fathoming

In the fathoming module it is not of interest to find efficient points to

BOMIQP (2.1). Rather, it is of interest to decide whether a node problem can be dis-

carded. A fathoming rule gives a condition for discarding a subset of the feasible set

that contains no efficient points to (2.1). Until the termination of the BB algorithm,

one may not know whether an efficient solution to a node problem, which is feasible

to (2.1), is also efficient to (2.1). Regardless of whether that solution is efficient or

not, one can still use the feasibility of that solution for dominance purposes.

Fathoming rules make use of the feasibility or infeasibility of a node problem

and of dominance between bound sets. The first fathoming rule uses infeasibility. If

node problem (2.5) is infeasible, then the corresponding mixed-integer problem (2.4)

has no efficient solutions, i.e., if X̃ s = ∅ then X s = ∅. The second fathoming rule is

based on the slice problem. If the node problem is a slice problem, then this node

40

problem can be fathomed. If these two rules are not applicable, the fathoming rules

based on bound sets become relevant.

2.5.1 Bound Sets

In the biobjective case the bound sets are subsets of the objective space R2

and determine a region within which the Pareto set to BOMIQP (2.1) is located.

In the literature, different bound sets have been proposed and generally presented

as pairs (UB, LBs) where UB ⊆ R2 stands for the upper bound set and LBs ⊆ R2

stands for the lower bound set at node s. Reviews of bound sets in multiobjective pro-

gramming are contained in [43, 99, 14]. Having examined the bound sets introduced

in the literature, we select the pair in which the upper bound set is first proposed in

[18], while the pair is also used in [14, 99, 26, 5]

UB = Y = and LBs = Ỹ s=
P where Ỹ s=

P = Ỹ s
P + R2

= (2.19)

A general sufficient condition for a node s to be fathomed is that that node’s

lower bound set does not contains Pareto points of BOMIQP (2.1) [14]. In our work,

using the sets in (2.19) we apply the equivalent condition [5]:

If LBs ⊂ UB, then node s can be fathomed. (2.20)

Other similar conditions have been used for fathoming a node. The condition LBs ∩

UB = ∅ is checked in [14], while a hyperplane to separate the sets LBs and UB is

used in [37].

41

In the next section, we discuss how to make a fathoming decision based on

bound sets (2.19). Since obtaining the lower bound set using Ỹ s
P is a challenging task,

we introduce a method to make a fathoming decision without obtaining the complete

Ỹ s
P .

2.5.2 Practical Fathoming Rules

We develop fathoming rules based on the condition in (2.20), which, in the

context of the BOMIQP, can be written as Ỹ s=
P ⊂ Y =

a , or equivalently, Ỹ s=
P ⊂ Y s=

a

meaning that each point in Ỹ s
P is dominated by at least one point in Y s

a [5].

Recall that Ȳa is a set of points including the initial Pareto points in Y 0
P

and the end points of the strictly convex curves and subcurves stored in Ya. Given

the set Ȳa ⊂ Ya we define the set Ȳ s
a ⊂ Y s

a as Ȳ s
a = Ȳa ∩ (T s − R2

=) and use it for

fathoming.

Let yi = (yi1, y
i
2) ∈ Ȳ s

a ∩ CsW and yj = (yj1, y
j
2) ∈ Ȳ s

a ∩ CsS. The points

yi and yj are said to be the closest points to the point ỹsI = (ỹs11 , ỹ
s2
2) if yi1 =

min
y∈(Ȳ s

a ∩CsW)
(ỹs11 − y1) and yj2 = min

y∈(Ȳ s
a ∩CsS)

(ỹs22 − y2). Since Ȳ s
a contains a finite number

of points, we have the fathoming rule:

If Ỹ s
P ⊂

 ⋃
y∈Ȳ s

a

{y}=
, then node s can be fathomed. (2.21)

Based on this rule, two practical fathoming rules are now introduced.

Rule 1: If there exists yi ∈ Ȳ s
a such that yi ∈ {ỹsI}5, then node s can be fathomed.

42

In Rule 1, Ỹ s
P ⊂ {yi}= ⊂

(⋃
y∈Ȳ s

a

{y}=
)

(see Figure 2.2a). Note that if Rule 1 does

not hold and Ȳ s
a ∩ CsW = ∅ or Ȳ s

a ∩ CsS = ∅, then node s cannot be fathomed (see

Figure 2.14).

Rule 2 is constructed using the following information. Assume Y N ∩ T s 6=

∅. Let the nadir point yi,j ∈ Y N be implied by the points yi ∈ Ȳ s
a ∩ CsW and

yj ∈ Ȳ s
a ∩ CsS that are the closest points to the point ỹsI . Note that these closest

points yi and yj do not have to be adjacent because there might be other points

y ∈ Ȳ s
a located in Rs. We examine the adjacent nadir points yκ,η in Rs implied by

the adjacent points yκ,yη ∈
(
Ȳ s
a ∩Rs

)
∪{yi}∪{yj}. Note that the nadir point yi,j is

also included in Rs. Using these nadir points in Rs, Rule 2 can be written as follows

(see Figure 2.13).

Rule 2: If yκ,η ∈
(

Ỹ s
P − R2

=

)
for all nadir points yκ,η ∈ Rs, then node s can be fathomed.

However, if there is at least one nadir point such that yκ,η ∈
(

Ỹ s
P + R2

>

)
then node

s cannot be fathomed. Implementing Rule 2 is not straightforward as the complete

set Ỹ s
P is not available. To check the location of the nadir points with respect to Ỹ s

P ,

we solve the achievement function problem (2.10) P̃ (yR) with yR = yκ,η, where yκ,η

is a nadir point in Rs. A fathoming decision is then made based on the following

proposition.

Proposition 2.5.1. Let yi = (yi1, y
i
2) ∈ Ȳ s

a ∩ CsW and yj = (yj1, y
j
2) ∈ Ȳ s

a ∩ CsS

be the points that are the closest to the point ỹsI , yκ,η = (yκ,η1 , yκ,η2) ∈ Rs be a nadir

point, x̂s(yR) be an optimal solution to (2.10) P̃ (yR) with yR = yκ,η, and ŷs(yR) =(
f1(x̂s(yR)), f2(x̂s(yR))

)
. If ŷs(yR) ∈ {yκ,η}≥ for all yκ,η ∈ Rs then node s can be

fathomed.

43

Proof. Assume ŷs(yR) ∈ {yκ,η}≥ for all yκ,η ∈ Rs, then by Theorem 2.2.9(i) yκ,η ∈

Ỹ s
P − R2

> for all yκ,η ∈ Rs. Therefore,

Ỹ s
P ⊂

{yi}= ∪ {yj}= ∪ ⋃
y∈Ȳ s

a ∩Rs
{y}= ∪

⋃
yκ,η∈Rs

{yκ,η}≥
 (2.22)

Note that (⋃
yκ,η∈Rs

{yκ,η}≥
)
⊂

{yi}= ∪ {yj}= ∪ ⋃
y∈Ȳ s

a ∩Rs
{y}=

 (2.23)

From (2.22) and (2.23) we have

Ỹ s
P ⊂

{yi}= ∪ {yj}= ∪ ⋃
y∈Ȳ s

a ∩Rs
{y}=

 (2.24)

and then

Ỹ s
P ⊂

⋃
y∈Ȳ s

a

{y}=. (2.25)

Hence by the rule in (2.21), node s can be fathomed.

Based on Proposition 2.5.1, problem (2.10) has to be solved with each nadir

point yκ,η ∈ Rs. Consequently, there are many but a finite number of optimization

problems to be solved for one node. Although these problems are single objective

problems, solving them may be time-consuming. The following strategy may allow

one to speed up this process by solving fewer problems.

Consider the points yi ∈ Ȳ s
a ∩ CsW and yj ∈ Ȳ s

a ∩ CsS, which we have

already identified as the points closest to the point ỹsI , and the nadir point yi,j

implied by these two points. If yi,j ∈ T s, then we check whether yi,j ∈
(

Ỹ s
P − R2

=

)
.

If this holds, then without considering the other nadir points we can conclude that

44

(a) Rule 1 - node s can be fathomed.

(b) The case which requires to
solve only one achievement func-
tion problem to make a fathoming
decision.

Figure 2.2: Fathoming Rules.

node s can be fathomed. To check whether yi,j ∈
(

Ỹ s
P − R2

=

)
, we solve achievement

function problem (2.10) with yR = yi,j (see Figure 2.13). Otherwise, if yi,j /∈ T s

or yi,j /∈
(

Ỹ s
P − R2

>

)
, the process cannot be sped up and problem (2.10) has to be

solved with each nadir point in Rs.

A flowchart 5 of the resulting fathoming module is given bellow. The points

in Y s
a and the points ỹs1 and ỹs2 in Ỹ s

P are the input to this module. Using the

input, the adjacent nadir points implied by the points in Ȳ s
a , the ideal point for node

problem, ỹsI , and the sets T s, CsW , CsS, Rs are computed. The condition follows a

sequence of conditions that are checked.

First, by Rule 1, if there exists a point yi in Ȳ s
a such that yi ∈ {ỹsI}5, then

node s can be fathomed. Otherwise, the sets CsW or CsS are checked whether they

contain points in Ȳ s
a . If Ȳ s

a ∩ CsW = ∅ or Ȳ s
a ∩ CsS = ∅, then node s cannot be

fathomed. Figures 2.14a and 2.14b depict this case.

45

If Ȳ s
a ∩ CsW 6= ∅ and Ȳ s

a ∩ CsS 6= ∅, then the points in Ȳ s
a ∩ CsW and

Ȳ s
a ∩CsS that are the closest to ỹsI are found. Let yi ∈ Ȳ s

a ∩CsW and yj ∈ Ȳ s
a ∩CsS

be the closest points to ỹsI . The nadir point yi,j = (yi,j1 , y
i,j
2) implied by yi and yj

is computed and its location with respect to the set T s is checked. If yi,j ∈ T s, the

achievement function problem (2.10) P̃ (yR) is solved with yR = yi,j. Let ŷs(yR) be

the image of an optimal solution to problem (2.10). If ŷs(yR) > yi,j, then node s

can be fathomed. If this condition does not hold or yi,j /∈ T s (see Figures 2.15a and

2.15b), problem (2.10) is solved with all adjacent nadir points yκ,η = (yκ,η1 , yκ,η2) ∈ Rs

and the condition ŷs(yR) > yκ,η for all yκ,η ∈ Rs, where ŷs(yR) is the image of an

optimal solution to problem (2.10) for a given nadir point. If this condition holds for

every nadir point, then by Rule 2, node s can be fathomed. Otherwise, node s cannot

be fathomed (see Figure 2.16).

46

Flowchart - Fathoming Rules

Not Fathom

Solve problem (2.10) with each nadir point 𝒚𝒚𝑅𝑅 = 𝒚𝒚𝜅𝜅,𝜂𝜂 ∈ 𝑅𝑅𝑠𝑠.

Check whether 𝒚𝒚�𝑠𝑠(𝒚𝒚𝑅𝑅) > 𝒚𝒚𝜅𝜅,𝜂𝜂 for
all 𝒚𝒚𝜅𝜅,𝜂𝜂. Fathom

Yes

Find all adjacent nadir points 𝒚𝒚𝜅𝜅,𝜂𝜂 ∈ 𝑅𝑅𝑠𝑠.

No

Solve problem (2.10) with 𝒚𝒚𝑅𝑅 = 𝒚𝒚𝒊𝒊,𝒋𝒋 and obtain an optimal

solution 𝒙𝒙�𝑠𝑠 and 𝒚𝒚�𝑠𝑠(𝒚𝒚𝑅𝑅) = (𝑓𝑓1(𝒙𝒙�𝑠𝑠), 𝑓𝑓2(𝒙𝒙�𝑠𝑠)) ∈ .

Fathom Check whether 𝒚𝒚�𝑠𝑠(𝒚𝒚𝑅𝑅) > 𝒚𝒚𝑖𝑖,𝑗𝑗.
Yes

Yes

No

Find 𝒚𝒚𝑖𝑖 ∈ ∩ 𝐶𝐶𝑠𝑠𝑠𝑠 and 𝒚𝒚𝑗𝑗 ∈ ∩ 𝐶𝐶𝑠𝑠𝑠𝑠 that are the closest
points to point 𝒚𝒚�𝑠𝑠𝑠𝑠. Obtain 𝒚𝒚𝒊𝒊,𝒋𝒋.

Yes

No

Fathom

Not Fathom

Check whether there exists

𝒚𝒚𝑖𝑖 ∈ such that 𝒚𝒚𝑖𝑖 ∈ {𝒚𝒚�𝑠𝑠𝑠𝑠}≦.

Check whether ∩ 𝐶𝐶𝑠𝑠𝑠𝑠 = ∅
or ∩ 𝐶𝐶𝑠𝑠𝑠𝑠 = ∅.

Yes

No

Check whether 𝒚𝒚𝒊𝒊,𝒋𝒋 ∈ 𝑇𝑇𝑠𝑠.

No

Input: All points in , 𝒚𝒚�𝑠𝑠1,𝒚𝒚�𝑠𝑠2 ∈

Obtain: Adjacent nadir points implied by points in , ideal point 𝒚𝒚�𝑠𝑠𝑠𝑠, sets 𝑇𝑇𝑠𝑠,𝐶𝐶𝑠𝑠𝑠𝑠,𝐶𝐶𝑠𝑠𝑠𝑠,𝑅𝑅𝑠𝑠

Figure 2.3: Flowchart for the fathoming module

47

2.6 Dominance Between Sets

The goal of this section is to address the dominance between two Pareto sets,

Ỹ l
P and Ỹ s

P in R2, that are associated with the corresponding relaxed node problems

as given in (2.5). We start with general definitions pertaining to two sets S1 and S2 in

R2. Assume N(Si) 6= ∅ for i = 1, 2. Following [61, 141, 142], the following definitions

of (non)dominance for sets are used.

Definition 2.6.1. Let S1 and S2 be two nonempty sets in R2. S1 is said to (strictly,

weakly) dominate S2 ⊂ R2, or equivalently, S2 is said to be (strictly, weakly) domi-

nated by S1, denoted by S1(<,5) ≤ S2, provided for each point y2 ∈ S2 there exists a

point y1 ∈ S1, such that y1(<,5) ≤ y2.

For two Pareto sets Ỹ l
P , Ỹ s

P , Figures 2.4(a) and 2.4(b) depict the dominance

and the weak dominance, respectively while Figure 2.17 depicts the strict dominance.

(a) Ỹ l
P ≤ Ỹ s

P . (b) Ỹ l
P 5 Ỹ s

P .

Figure 2.4: Dominance and weak dominance between two Pareto sets.

Definition 2.6.2. Let S1 and S2 be two nonempty sets in R2. S1 is said to be

nondominated with respect to S2 provided there does not exists a point y2 ∈ S2 such

that y2 ≤ y1 for each y1 ∈ S1.

48

For our purposes we introduce a definition of partial dominance between two

sets.

Definition 2.6.3. Let S1 and S2 be two nonempty sets in R2. S1 ⊂ R2 is said to

partially (weakly) dominate S2 ⊂ R2, or equivalently, S2 is said to be partially (weakly)

dominated by S1, denoted by S1(5p) ≤p S2, provided there exists a nonempty subset

S ′2 ⊂ S2 such that S1(5) ≤ S ′2 and the subset S2 \ S ′2 is nondominated with respect to

S1.

The partially strictly dominated sets are not defined as if there exists a

subset S ′2 ⊂ S2 such that S1 < S ′2, then there does not exist a subset S2 \ S ′2 that is

nondominated with respect to S1. For two Pareto sets Ỹ l
P , Ỹ s

P , Figures 2.5 and 2.6

depict the partial dominance and partial weak dominance, respectively.

The subsets that are associated with the partially dominated sets and non-

dominated are defined as follows.

Definition 2.6.4. Let S1, S2 ⊂ R2, and N(S1 ∪ S2) 6= ∅. A set SiN ⊂ Si is called a

nondominated subset of Si for i = 1, 2 provided SiN = N(S1 ∪ S2) ∩N(Si).

Based on these definitions the following properties hold.

Proposition 2.6.5. Let S ⊂ R2, N(S) 6= ∅ and externally stable [42]. Then N(S) 5

S.

Proof. By Definition 2.6.1 we show for each y ∈ S there exists y1 ∈ N(S) such that

y1 5 y. Since y ∈ S, we consider two cases: (1) Let y ∈ N(S). Then y 5 y. (2) Let

y ∈ S \N(S). Then since N(S) is externally stable, there exists y1 ∈ N(S) such that

y1 5 y. Hence N(S) 5 S.

49

Proposition 2.6.6. Let S1, S2 ⊂ R2, N(Si + R2
=) 6= ∅ and externally stable for

i = 1, 2.

(i) The set S1 dominates the set S2, S1 ≤ S2, if and only if S2 + R2
= ⊂ S1 + R2

≥.

(ii) The set S1 weakly dominates the set S2, S1 5 S2, if and only if S2 + R2
= ⊆

S1 + R2
=.

(iii) The set S1 strictly dominates the set S2, S1 < S2, if and only if S2 + R2
= ⊂

S1 + R2
>.

We prove part (i) of Proposition 2.6.6 here. The proofs of parts (ii) and

(iii) are similar to the proof of part (i) and omitted.

Proof. ⇒ Assume S1 ≤ S2. By Definition 2.6.1, for each y2 ∈ S2 there exists y1 ∈ S1

such that y1 ≤ y2. Let z2 ∈ S2 + R2
= such that z2 = y2 + d2 where y2 ∈ S2 and

d2= 0. We have y1 + d2 ≤ y2 + d2 = z2, which implies z2 = y1 + d2 + d̄
2

where

d̄
2 ≥ 0. Then z2 = y1 + d1, where d1 = d2 + d̄

2 ≥ 0. Then z2 ∈ S1 + R2
≥ and hence

S2 + R2
= ⊂ S1 + R2

≥. Note that by Definition 2.6.1, S2 + R2
= 6= S1 + R2

≥.

⇐ Assume S2 + R2
= ⊂ S1 + R2

≥. By Proposition 2.6.5, N(S1 + R2
=) 5 S1 + R2

=, or

equivalently, for each y ∈ S1 + R2
= there exists y1 ∈ N(S1 + R2

=) such that y1 5 y.

Then for each y ∈ S1 + R2
≥ there exists y1 ∈ N(S1 + R2

=) such that y1 ≤ y. By

Proposition 2.3 in [42], we have N(S1 + R2
=) = N(S1). Then for each y ∈ S1 + R2

≥

there exists y1 ∈ N(S1) such that y1 ≤ y. Because S2 + R2
= ⊂ S1 + R2

≥, for each

y ∈ S2 + R2
= there exists y1 ∈ N(S1) such that y1 ≤ y. Because S2 ⊂ S2 + R2

=, for

each y ∈ S2 there exists y1 ∈ N(S1) such that y1 ≤ y. Since N(S1) ⊆ S1, for each

y ∈ S2 there exists y1 ∈ S1 such that y1 ≤ y and thus S1 ≤ S2.

50

2.6.1 Dominance Between Two Pareto Sets: Theory

We now analyze the mutual location of two Pareto sets, Ỹ l
P and Ỹ s

P , in R2 to

conclude about the (partial) dominance between them. We assume that each Pareto

set is a strictly convex curve for which only limited information is available in the

form of the end points ỹκ1 and ỹκ2, and the ideal point ỹκI /∈ Ỹ κ
P , κ = l, s, l 6= s. We

therefore define the triangles T κ, κ = l, s, l 6= s, as given in (2.6).

The first result is associated with the efficient and Pareto sets of relaxed

node problems of the same branch in the BB tree but pertain to the case a general

multiobjective problem with the original set reduced to its subset.

Proposition 2.6.7. Let P̃ s, P̃ l be two relaxed node problems (2.5) such that X̃ l ⊆ X̃ s.

1. If X̃ s
E ∩ X̃ l = ∅, then

(i) X̃ s
E ∩ X̃ l

E = ∅,

(ii) Ỹ s
P ≤ Ỹ l

P .

2. If X̃ s
E ∩ X̃ l 6= ∅,

(i) then X̃ s
E ∩ X̃ l ⊆ X̃ l

E,

(ii) and X̃ s
E ∩ X̃ l ⊂ X̃ l

E, then Ỹ s
P ≤p Ỹ l

P .

Proof. 1. (i) By definition X̃ l
E ⊆ X̃ l, but X̃ s

E ∩ X̃ l = ∅, therefore X̃ s
E ∩ X̃ l

E = ∅.

(ii) From (i), if x ∈ X̃ l
E, then x /∈ X̃ s

E. By Definition 2.2.3, there exists

x1 ∈ X̃ s such that f(x1) ≤ f(x) and then there exists x2 ∈ X̃ s
E such that

f(x2) ≤ f(x) with f(x2) = y2 ∈ Ỹ s
P . Since x ∈ X̃ l

E, f(x) = y ∈ Ỹ l
P and

therefore y2 ≤ y. Since x ∈ X̃ l
E is arbitrary, so is y ∈ Ỹ l

P . Then for each

51

y ∈ Ỹ l
P there exists a point y2 ∈ Ỹ s

P such that y2 ≤ y. Therefore by

Definition 2.6.1, Ỹ s
P ≤ Ỹ l

P .

2. (i) By contradiction, assume x ∈ X̃ s
E ∩ X̃ l and x /∈ X̃ l

E. The former implies

x ∈ X̃ s
E and x ∈ X̃ l. The latter implies either (a) x /∈ X̃ l, which is a con-

tradiction, or (b) x ∈ X̃ l and there exists x1 ∈ X̃ l
E such that f(x1) ≤ f(x).

Then x1 ∈ X̃ l and hence x1 ∈ X̃ s. This implies x /∈ X̃ s
E, a contradiction.

(ii) We need to show Ỹ s
P ≤p Ỹ l

P . By Definition 2.6.3, we show there exists a

nonempty subset Ỹ l1

P ⊂ Ỹ l
P such that (a) Ỹ s

P ≤ Ỹ l1

P ; and (b) Ỹ l
P \ Ỹ l1

P is

nondominated with respect to Ỹ s
P . By Definition 2.6.1, part (a) becomes

that for each y1 ∈ Ỹ l1

P there exists y ∈ Ỹ s
P such that y ≤ y1. By Definition

2.6.2, part (b) becomes that there does not exist y ∈ Ỹ s
P such that y ≤ y′

for each y′ ∈ Ỹ l
P \ Ỹ l1

P . Below we continue part (a) and (b) separately.

(a) From (i), if x ∈ X̃ s
E ∩ X̃ l then x ∈ X̃ l

E, and therefore if f(x) = y ∈

Ỹ s
P ∩ Ỹ l then y ∈ Ỹ l

P . Because of the strict containment in the

assumption, (a1) there exists x1 ∈ X̃ l
E such that x1 /∈ X̃ s

E∩X̃ l; and (a2)

we can define Ỹ l1

P = Ỹ l
P \(Ỹ s

P ∩Ỹ l
P) 6= ∅ and f(x1) = y1 ∈ Ỹ l1

P . In (a1),

the former implies x1 ∈ X̃ l which contradicts the latter. We are left

with x1 /∈ X̃ s
E meaning there exists x2 ∈ X̃ s such that f(x2) ≤ f(x1).

Then there also exists x3 ∈ X̃ s
E such that f(x3) ≤ f(x1), which using

(a2) can be written that there exists f(x3) = y3 ∈ Ỹ s
P such that

y3 ≤ y1. Since x1 ∈ X̃ l
E \ (X̃s

E ∩ X̃ l) is arbitrary, so is y1 ∈ Ỹ l1
P .

Therefore, for all y1 ∈ Ỹ l1
P there exists y3 ∈ Ỹ s

P such that y3 ≤ y1.

(b) Using the identities of relative complements [60] in the set theory,

Ỹ l
P \ Ỹ l1

P = Ỹ l
P \ (Ỹ l

P \ (Ỹ s
P ∩ Ỹ l

P)) = Ỹ s
P ∩ Ỹ l

P . Then, by Definition

2.2.3, there does not exist a point y ∈ Ỹ s
P such that y ≤ y′ for each

52

y′ ∈ Ỹ s
P ∩ Ỹ l

P , as desired.

The subsequent results do not refer to the decision space but address nu-

merous mutual locations of two Pareto sets in the objectve space.

Proposition 2.6.8. Let T l∩T s = ∅. The triangle T l (strictly) dominates the triangle

T s, T l(<) ≤ T s, if and only if the Pareto set Ỹ l
P (strictly) dominates the Pareto set

Ỹ s
P , Ỹ l

P (<) ≤ Ỹ s
P .

Proof. ⇒ Assume T l(<) ≤ T s. Then for each ys ∈ T s there exists yl ∈ T l such that

yl(<) ≤ ys. We have Ỹ l
P ⊂ T l and Ỹ s

P ⊂ T s and therefore for each ỹs ∈ Ỹ s
P there

exists ỹl ∈ Ỹ l
P such that ỹl(<) ≤ ỹs. Thus, by definition Ỹ l

P (<) ≤ Ỹ s
P .

⇐ Assume Ỹ l
P (<) ≤ Ỹ s

P . Then from Proposition 2.6.6 (Ỹ s
P + R2

= ⊂ Ỹ l
P + R2

>)

Ỹ s
P +R2

= ⊂ Ỹ l
P +R2

≥. Because T l ∩ T s = ∅, we have (T s +R2
= ⊂ T l +R2

>) T s +R2
= ⊂

T l + R2
≥. Then from Proposition 2.6.6((iii)) (i) we have T l(<) ≤ T s.

In the following propositions, the cases conceiving the possible mutual loca-

tions of Ỹ l
P and Ỹ s

P are listed. Although the statements are immediate and therefore

not proved, they are helpful in the development of a set dominance procedure.

Proposition 2.6.9. Let Ỹ l
P , Ỹ s

P be the Pareto sets of two instances of BOQP (2.5).

(i) If ỹsI ∈ Ỹ l
P + R2

=, then Ỹ l
P ≤ Ỹ s

P (Figure 2.17).

(ii) If ỹs2 ∈ C lW or ỹs1 ∈ C lS, then Ỹ s
P ≤p Ỹ l

P (Figure 2.5).

53

Proposition 2.6.10. Let Ỹ l
P , Ỹ s

P be the Pareto sets of two instances of BOQP (2.5).

If one of the following holds

(i) ỹsi ∈ Ỹ l
P − R2

> and ỹsj ∈ Ỹ l
P + R2

> for i, j ∈ {1, 2}, i 6= j (Figure 2.6),

(ii) ỹsI ∈ C lW (C lS), ỹs2(ỹs1) ∈ Ỹ l
P + R2

> and ỹl1(ỹl2) ∈ Ỹ s
P + R2

> (Figure 2.18),

(iii) ỹsI ∈ C lW (C lS), ỹs1 ∈ ỹl1 − R2
≷(ỹs2 ∈ ỹl2 + R2

≷), ỹs2(ỹs1) ∈ Ỹ l
P − R2

> and

ỹl1(ỹl2) ∈ Ỹ s
P − R2

> (Figure 2.19),

then the Pareto sets intersect and each Pareto set is partially weakly dominated by

the other one.

The following two propositions cover special cases. Proposition 2.6.11 addresses a

special case of Proposition 2.6.10 (i).

Proposition 2.6.11. Let Ỹ l
P , Ỹ s

P be the Pareto sets of two instances of BOQP (2.5).

If ỹsi ∈ Ỹ l
P , ỹsj ∈ Ỹ l

P + R2
> and

(
Ỹ s
P \ ỹsi

)
∩ Ỹ l

P = ∅ for i, j ∈ {1, 2}, i 6= j, then

Ỹ l
P 5 Ỹ s

P (Figure 2.20).

Proposition 2.6.12. Let Ỹ l
P , Ỹ s

P be the Pareto sets of two instances of BOQP (2.5).

If ỹs1 ∈ bd
(

ỹl2 + R2
R

)(
ỹs2 ∈ bd

(
ỹl1 − R2

R

))
, then Ỹ l

P ≤p Ỹ s
P (Figure 2.21).

54

Figure 2.5: Two cases of Proposition 2.6.9(ii): Ỹ s
P ≤p Ỹ l

P .

Figure 2.6: Two cases of Proposition 2.6.10(i): Pareto sets intersect, Ỹ s
P 5p Ỹ l

P and
Ỹ l
P 5p Ỹ s

P .

2.6.2 Set Dominance Procedure

In this section, we develop a set dominance procedure to make the dominance

decision between two Pareto sets and compute the resulting nondominated set. We

first give an overview of this procedure and then presents its components. Optional

improvements to this procedure are given in the Appendix.

55

2.6.2.1 Overview

A parametric representation of each efficient set in the form of rational

functions is available from the mpLCP method before the set dominance procedure

is started. One could use this representation and solve the resulting polynomial

equations to find the intersection points between two Pareto sets or decide there is

none. However, solving polynomial equations is computationally costly while finding

the intersection points is not sufficient to determine the nondominated set resulting

from two Pareto sets. Additionally, there are many cases of mutual location of these

sets with no intersection points and solving the polynomial equations is obviously

unnecessary. Keeping this mind, in the proposed dominance procedure we postpone

solving the polynomial equations and first investigate the mutual location of the

Pareto sets. When the existence of the intersection point is confirmed or at least is

highly probable, we solve the polynomial equations.

The inputs to the procedure are ỹl1, ỹl2 ∈ Ỹ l
P and ỹs1, ỹs2 ∈ Ỹ s

P . We then

obtain the associated ideal points ỹlI , ỹsI , and the triangles T l and T s. In this

description, we assume the Pareto set Ỹ l
P has already been stored in the set Ya, while

the Pareto set Ỹ s
P is being introduced to the set Ya.

We use the achievement function problem (2.10) to check the location of a

point with respect to the Pareto set of (2.5) and the ε−constraint problem (2.12) to

recognize the nondominated subsets to store. If the Pareto sets are partially domi-

nated, then only their nondominated subsets are stored in Ya and the ε−constraint

problem (2.12) is used to identify these subsets. In general, the nondominated set to

store is the nondominated set of the union of the two original Pareto sets. Let Ỹ sl
N

denote the nondominated set obtained after applying the set dominance procedure

56

to Pareto sets Ỹ s
P and Ỹ l

P . Then Ỹ sl
N = N(Ỹ s

P ∪ Ỹ l
P).

The set dominance procedure leads to one of the three decisions, one Pareto

set (strictly, weakly) dominates the other, or one Pareto set partially (weakly) dom-

inates the other, or both Pareto sets are nondominated. The nondominated set re-

sulting from the first decision is Ỹ sl
N = Ỹ κ

P with κ = s or κ = l. The second decision

is made either with Ỹ l
P ∩ Ỹ s

P = ∅ or Ỹ l
P ∩ Ỹ s

P 6= ∅. The nondominated set associated

with the latter decision is Ỹ sl
N = Ỹ l

P ∪ Ỹ s
P .

To report the subset of the Pareto set to store, the following notation is

used. For any two points y1, y2 and the associated Pareto set Ỹ κ
P , κ = s, l, let

Zκ[y1,y2] ⊆ Ỹ κ
P denote the closed strictly convex curve and Zκ(y1,y2) ⊆ Ỹ κ

P denote

the open strictly convex curve from y1 to y2. Also, let Zκ(y1,y2] = Zκ[y1,y2] \ {y1}

and Zκ[y1,y2) = Zκ[y1,y2] \ {y2} such that Zκ(y1,y2],Zκ[y1,y2) ⊆ Ỹ κ
P .

Figure 2.7: Flowchart for the set dominance procedure

The set dominance procedure consists of four subprocedures as depicted in

Figure 2.7 and starts with checking whether the triangles T s and T l intersect or

not. If the triangles do not intersect, then a dominance decision is made accord-

ingly. Otherwise, the mutual locations of the end points of the Pareto sets Ỹ s
P and

57

Ỹ l
P are examined in Subprocedures 1-3 that are independently initiated and rely on

solving the achievement function problem. In some cases, a dominance decision can

be made directly from Subprocedure 1. Otherwise, the three subprocedures continue

to Subprocedure Intersect to check for and compute intersection points between the

two Pareto sets. In all cases at the end of the entire process, a dominance deci-

sion is made and the resulting nondominated set is computed based on solving the

ε-constraint problem.

2.6.2.2 Subprocedures

In this section, the subprocedures of the set dominance procedure given in

Figure 2.7 are presented in detail. These subprocedures are leading to several different

cases based on the locations of the end points of two Pareto sets. In each case, the

locations of end points, the associated dominance decision, and the nodminated set

Y sl
N are discussed.

1. Let T l ∩ T s = ∅.

I. If T s ∈ {ỹl1}−R2
≷ or T s ∈ {ỹl2}+R2

≷, then both Ỹ s
P and Ỹ l

P are nondomi-

nated. Hence Ỹ sl
N = Ỹ l

P ∪ Ỹ s
P . Figure 2.22 depicts this case. In particular,

if ỹs2 ∈ bd
(
ỹl1 − R2

R

) (
ỹs1 ∈ bd

(
ỹl2 + R2

R

))
, then by Proposition 2.6.12,

Ỹ l
P ≤p Ỹ s

P and Ỹ sl
N = (Ỹ s

P \ ỹs2) ∪ Ỹ l
P

(
Ỹ sl
N = (Ỹ s

P \ ỹs1) ∪ Ỹ l
P

)
. Figure

2.21 depicts this case.

II. Otherwise, if T s ⊂ T l + R2
≥ (T l ⊂ T s + R2

≥), then T l ≤ T s (T s ≤ T l),

and by Proposition 2.6.8, Ỹ l
P ≤ Ỹ s

P (Ỹ s
P ≤ Ỹ l

P). Then Ỹ sl
N = Ỹ l

P (Ỹ s
P) and

Ỹ s
P (Ỹ l

P) is discarded. Figure 2.23 depicts this case.

58

III. If the above conditions do not hold, then by Proposition 2.6.9(ii), Ỹ s
P ≤p

Ỹ l
P . Figure 2.5 depicts this case. The complete Pareto set Ỹ s

P and a subset

of the Pareto set Ỹ l
P are stored as the nondominated set. To obtain this

subset of Ỹ l
P , P (ỹs22) (2.12) is solved and the point ŷ(ỹs22) is obtained.

Then Ỹ sl
N = Ỹ s

P ∪Zl(ŷ(ỹs22), ỹl2]. Alternatively, P (ỹs11) (2.12) is solved and

Ỹ sl
N = Ỹ s

P ∪ Zl[ỹl1, ŷ(ỹs11)) is stored.

2. Let T l ∩ T s 6= ∅.

I. Without loss of generality, first check whether T s ⊂ T l. If this holds, apply

Subprocedure 1.

II. Otherwise, check whether ỹsI ∈ T l. If this does not hold, continue to

Subprocedure 2. If this condition holds, check whether ỹsI ∈ Ỹ l
P + R2

=

by solving problem (2.10) with point yR = ỹsI . If ỹsI ∈ Ỹ l
P + R2

=, then

by Proposition 2.6.9(i), Ỹ l
P ≤ Ỹ s

P . Figure 2.17 depicts this case. Then

Ỹ sl
N = Ỹ l

P and Ỹ s
P is discarded. Otherwise, apply Subprocedure 3.

Subprocedure 1: Let T s ⊂ T l.

Solving problem (2.10) with yR = ỹsI , first check whether ỹsI ∈ Ỹ l
P + R2

=.

If this holds, by Proposition 2.6.9(i), Ỹ l
P ≤ Ỹ s

P . Then Ỹ sl
N = Ỹ l

P and Ỹ s
P is discarded.

Figure 2.24 depicts this case. Else, check whether ỹsi ∈ Ỹ l
P + R2

> for i = 1, 2. If

both ỹs1, ỹs2 ∈ Ỹ l
P + R2

>, then continue directly to Subprocedure Intersect. Figure

2.25 depicts this case. If an intersect point does not exist, that is, Ỹ l
P ∩ Ỹ s

P = ∅,

then Ỹ sl
N = Ỹ l

P . (Figure 2.25(a)). Otherwise, report the set Ỹ sl
N accordingly with the

intersection points (Figure 2.25(b)).

If ỹsi ∈ Ỹ l
P − R2

> and ỹsj ∈ Ỹ l
P + R2

> for i 6= j, then by Proposition 2.6.10(i), Ỹ l
P

59

and Ỹ s
P intersect and each Pareto set is partially weakly dominated by the other

one. That is, Ỹ l
P 5p Ỹ s

P and Ỹ s
P 5p Ỹ l

P . Figures 2.6 (a) and (b) depict this case.

Problem P (ỹs11)(2.12) or P (ỹs22)(2.12) is solved to identify the nondominated subsets

of Ỹ l
P . Subprocedure Intersect is used to find an intersection point. Otherwise, that

is, if both ỹs1, ỹs2 ∈ Ỹ l
P − R2

>, then continue directly to Subprocedure Intersect.

Figure 2.27 depicts this case. If Subprocedure Intersect concludes Ỹ l
P ∩ Ỹ s

P = ∅,

then Ỹ s
P ≤p Ỹ l

P . For the case depicted in Figure 2.27(a), problems P (ỹs11)(2.12) and

P (ỹs22)(2.12) are solved and the points ŷ(ỹs11), ŷ(ỹs22) in Ỹ l
P are obtained, respectively.

Then Ỹ sl
N = Zl[ỹl1, ŷ(ỹs11))∪ Ỹ s

P ∪Zl(ŷ(ỹs22), ỹl2]. If Subprocedure Intersect concludes

Ỹ l
P ∩ Ỹ s

P 6= ∅, then Ỹ s
P 5p Ỹ l

P and Ỹ l
P 5p Ỹ s

P . For the case depicted in Figure

2.27(b), problems P (ỹs11)(2.12) and P (ỹs22)(2.12) are solved and the set Ỹ sl
N is reported

accordingly with the two intersection points.

Subprocedure 2: Let T s 6⊂ T l and ỹsI 6∈ T l.

I. Let ỹsI , ỹs1 ∈ C lW (ỹsI ỹs2 ∈ C lS).

i. If ỹs2(ỹs1) ∈ Ỹ l
P +R2

>, then by Proposition 2.6.10(i), the Pareto sets inter-

sect and each Pareto set is partially weakly dominated by the other one.

Figure 2.28 depicts this case. Subprocedure Intersect is used to find the

intersection point;

ii. else, that is, ỹs2(ỹs1) ∈ Ỹ l
P − R2

>, continue to Subprocedure Intersect.

Figure 2.8 depicts this case. If Subprocedure Intersect concludes Ỹ l
P ∩

Ỹ s
P = ∅, then Ỹ s

P ≤p Ỹ l
P . For the case depicted in Figure 2.8(a), problem

P (ỹs22)(2.12) is solved and point ŷ(ỹs22) in Ỹ l
P is obtained. Then Ỹ sl

N =

Ỹ s
P ∪ Zl(ŷ(ỹs22), ỹl2]. If Subprocedure Intersect concludes Ỹ l

P ∩ Ỹ s
P 6= ∅,

then each Pareto set is partially weakly dominated by the other one. For

60

Figure 2.8: Subprocedure 2: (a) Ỹ l
P ∩ Ỹ s

P = ∅, (b) Ỹ l
P ∩ Ỹ s

P 6= ∅.

the case depicted in Figure 2.8(b), problem P (ỹs22)(2.12) is solved and the

set Ỹ sl
N is reported accordingly with the two intersection points.

II. Let ỹsI ∈ C lW (ỹsI ∈ C lS) and ỹs1 ∈ Ỹ l
P − R2

≷(ỹs2 ∈ Ỹ l
P + R2

≷).

i. If
(
ỹl1(ỹl2) ∈ Ỹ s

P + R2
> and ỹs2(ỹs1) ∈ Ỹ l

P + R2
>

)
or(

ỹl1(ỹl2) ∈ Ỹ s
P − R2

> and ỹs2(ỹs1) ∈ Ỹ l
P − R2

>

)
, then by Propositions 2.6.10(ii)

and (iii), the Pareto sets intersect and each Pareto set is partially dom-

inated by the other one. Figures 2.18 and 2.19 depict these cases. Sub-

procedure Intersect is used to find the intersection points. For the case

depicted in Figure 2.19 (a), problems P (ỹl11)(2.12) and P (ỹs22)(2.12) are

solved, while for the case depicted in Figure 2.19 (b), problems P (ỹs11)(2.12)

and P (ỹl22)(2.12) are solved to identify the nondominated subsets of Ỹ l
P ;

ii. else continue to Subprocedure Intersect. Figures 2.26 and 2.29 depict some

of these cases. If Subprocedure Intersect concludes Ỹ l
P ∩ Ỹ s

P = ∅, and

(i) Ỹ s
P ≤p Ỹ l

P , then for the case depicted in Figure 2.26(a), problem

P (ỹs22)(2.12) is solved and point ŷ(ỹs22) in Ỹ l
P is obtained. Then Ỹ sl

N =

Ỹ s
P ∪ Zl(ŷ(ỹs22), ỹl2].

61

(ii) Ỹ l
P ≤p Ỹ s

P , then for the case depicted in Figure 2.29(a), problem

P (ỹl11)(2.12) is solved and point ŷ(ỹl11) in Ỹ s
P is obtained. Then Ỹ sl

N =

Zs[ỹs1, ŷ(ỹl11)) ∪ Ỹ l
P .

If Subprocedure Intersect concludes Ỹ l
P∩Ỹ s

P 6= ∅ (Figures 2.26(b), 2.29(b)),

then each Pareto set is partially weakly dominated by the other one. Prob-

lem P (ỹl11)(2.12) or P (ỹs22)(2.12) is solved and the set Ỹ sl
N is reported ac-

cordingly with the intersection points.

Subprocedure 3: Let T s 6⊂ T l, ỹsI ∈ T l and ỹsI ∈ Ỹ l
P − R2

>.

Check the locations of ỹs1 and ỹs2 with respect to Ỹ l
P by solving problem

(2.10) with yR = ỹs1 and yR = ỹs2. If both conditions ỹsi ∈ Ỹ l
P + R2

> for i = 1, 2

are satisfied, then proceed directly to Subprocedure Intersect. Figure 2.30 depicts

this case. If Subprocedure Intersect concludes Ỹ l
P ∩ Ỹ s

P = ∅, then Ỹ sl
N = Ỹ l

P (Figure

2.30(a)). If Subprocedure Intersect concludes Ỹ l
P ∩ Ỹ s

P 6= ∅, then each Pareto set

is partially weakly dominated by the other one (Figure 2.30(b)) and the set Ỹ sl
N is

reported accordingly with the intersection points. Otherwise, i.e., if ỹsi ∈ Ỹ l
P + R2

>

for i ∈ {1, 2}, then by Proposition 2.6.10 (i) the Pareto sets intersect and each Pareto

set is partially weakly dominated by the other one. Subprocedure Intersect is used

to find the intersection point.The case in which both points satisfy ỹsi ∈ Ỹ l
P −R2

> for

i = 1, 2 is addressed in Subprocedure 1.

When the dominance decision taken in Subprocedures 1-3 implies that two

Pareto sets intersect or are likely to intersect, Subprocedure Intersect is called.

Subprocedure Intersect: This subprocedure is used to compute the intersection

points between two Pareto sets. When this subprocedure is initiated, the existence

62

of these points may be unknown. Each of the two Pareto sets, Ỹ s
P and Ỹ l

P , being the

input to this suprocedure, is available parametrically in the form (f1(x̃(λ)), f2(x̃(λ)))

for λ ∈ [0, 1], where x̃(λ) is the parametric optimal solution to problem (2.9) provided

by the mpLCP method for each invariancy interval in [0, 1].

Since an intersection point may be located in any invariancy interval of each

Pareto set, all pairs of invariancy intervals shall be checked. Let [λl1, λ
l
2] ⊆ [0, 1] and

[λs1, λ
s
2] ⊆ [0, 1] be two invariancy intervals found for Ỹ l

P and Ỹ s
P , respectively. For

the pair ([λl1;λl2], [λs1;λs2]), the following system of two polynomial equations is solved

to identify the parameter values, λl ∈ [λl1;λl2] and λs ∈ [λs1;λs2], that determine the

intersection point(s).

fi(x̃(λs))− fi(x̃(λl)) = 0 i =, 1, 2

λs ∈ [λs1, λ
s
2], λl ∈ [λl1, λ

l
2]

(2.26)

Let (λ̂s, λ̂l) be a solution to system (2.26). Then the intersection point is given by

ỹint =
(
f1(x̃(λ̂κ)), f2(x̃(λ̂κ))

)
for κ = s, l. Note that one invariancy interval may

contain more than one intersection point or even infinitely many intersection points

if the two curves (partially) coincide.

The polynomial equation solver roots in MATLAB is used to solve (2.26).

While the solutions to (2.26) can be real or complex numbers, only the real solutions

are reported. If a real solution to (2.26) is not found or all solutions found are complex

numbers for the examined pair of invariancy intervals, we conclude that the Pareto

sets do not intersect in that pair [119].

With the intersection points found from Subprocedure Intersect, the non-

dominated set Ỹ sl
N can be constructed. For example, consider the case depicted in

63

Figure 2.28 which has one intersection point and let ỹint denote that point. Then

Ỹ sl
N = Zs[ỹs1, ỹint] ∪ Zl[ỹint, ỹl2].

2.7 Complete BB Algorithm and Numerical Ex-

periments

Algorithm 1 The branch-and-bound algorithm for BOMIQPs.

1: INPUT: Problem P
2: S = ∅, Λ` = ∅, Xa = ∅, Ya = ∅
3: Calculate X 0

E and Y 0
P (solve (2.8))

4: Xa ← X 0
E , Ya ← Y 0

P

5: Compute X̃ 0
E and Ỹ 0

P (solve (2.2))

6: if xi(λ) ∈ Z ∀ i = p + 1, · · · , n, λ ∈ [0, 1] then

7: XE = X̃ 0
E , YP = Ỹ 0

P

8: else
9: Add all invariancy intervals to Λ0

10: while Λ0 6= ∅ do

11: Select an invariancy interval [λ′, λ′′] ⊆ Λ0

12: if xi(λ) ∈ Z ∀ i = p + 1, · · · , n, λ ∈ [λ′, λ′′] then

13: Ya ← y(λ), Ya = N(Ya)

14: Xa ← x(λ) for λ ∈ [λL, λR] ⊆ [λ′, λ′′]

15: else
16: Branch: Create node problems on each xi(λ) ∈ X̃ 0

E for i = {p + 1, · · · , n} s.t. xi(λ) /∈ Z
17: Add new node problems to S

18: end if
19: Delete the invariancy interval

20: end while
21: while S 6= ∅ do

22: Select problem P̃ s from S and compute X̃ s
E , Ỹ s

P

23: if P̃ s infeasible then
24: Delete P̃ s from S
25: Goto line 21
26: else if node fathomed due to rule (2.21) then

27: Delete P̃ s from S
28: Goto line 21
29: else if xs

i (λ) ∈ Z, ∀ i = p + 1, · · · , n, λ ∈ [0, 1] then

30: Ya ← ys(λ), Ya = N(Ya)

31: Xa ← xs(λ) for λ ∈ [λL, λR] ⊆ [0, 1]

32: Delete P̃ s from S
33: Goto line 21
34: else
35: Add all invariancy intervals to Λs

36: while Λs 6= ∅ do

37: Select an invariancy interval from [λ′, λ′′] ⊆ Λs

38: if xs
i (λ) ∈ Z ∀ i = p + 1, · · · , n, λ ∈ [λ′, λ′′] then

39: Ya ← ys(λ), Ya = N(Ya)

40: Xa ← xs(λ) for λ ∈ [λL, λR] ⊆ [λ′, λ′′]

41: else
42: Branch: Create node problems on each xsi (λ) ∈ X̃ s

E for i = {p + 1, · · · , n} s.t. xsi (λ) /∈ Z
43: Add new node problems to S

44: end if
45: Delete the invariancy interval

46: end while
47: end if
48: end while
49: end if
50: OUTPUT: XE = Xa and YP = Ya

64

The four modules presented in the prior sections are now integrated into

a BB Algorithm 1 that computes efficient solutions and Pareto points to BOMIQP

(2.1). The algorithm is presented in the form of pseudo-code, its properties and

complexity are discussed, and numerical results are presented. In the Appendix the

steps of Algorithm 1 are applied to an example BOMIQP.

2.7.1 Algorithm 1

The data of problem P is the input to Algorithm 1. Four sets are initiated:

the set S contains all new node problems, the set Λ` contains all invariancy intervals

associated with the solution to node ` problem, and the incumbent sets, X a and Ya,

in the decision and objective space respectively, as defined in Section 2.3 (line 2).

The BB algorithm begins by computing an initial set of efficient and Pareto

solutions, X 0
E and Y 0

P , as described in Section 2.3 (line 3).

At the root node 0, all integer variables are relaxed and problem P̃ 0 is solved

for the parametric sets X̃ 0
E and Ỹ 0

P (line 5). If the set X̃ 0
E is feasible to P , then P

has been solved: XE = X̃ 0
E and YP = Ỹ 0

P (lines 6-7).

Else, all the invariancy intervals of P̃ 0 are added to Λ0 and examined one

at a time (lines 10-19). Consider an invariancy interval [λ′, λ′′], and the associated

solution x(λ) and its image y(λ) for λ ∈ [λ′, λ′′]. If this solution is feasible to P , then

y(λ) is added to the set Ya that is updated in the set dominance module to satisfy

Ya = N(Ya). Due to this update, Ya may contain y(λ) for λ ∈ [λL, λR] ⊆ [λ′, λ′′].

The set X a is then updated accordingly to contain the preimage of the current Ya.

65

Otherwise, the branching is performed, i.e., node problems are created for

all variables xi(λ) /∈ Z, i = {p+ 1, · · · , n} and added to the set S. If there are more

than one candidate for a branching variable, one can select a variable based on the

index of that variable choosing the one with the lowest (or the largest) index.

In the main step, a node problem, say node s problem from the set S, is

solved for X̃ s
E and Ỹ s

P (line 22). The fathoming is applied next (lines 23-33). If the

node is fathomed due to infeasibility or based on rule (2.21), then it is deleted from

S. Rule (2.21) is implemented using Rule 1 and Rule 2 (see Section 2.5).

If the node is fathomed due to integer feasibility, then ys(λ) for λ ∈ [0, 1]

is added to the set Ya that is updated in the set dominance module to satisfy Ya =

N(Ya). Due to this update, Ya may contain ys(λ) for λ ∈ [λL, λR] ⊆ [0, 1]. The set

X a is then updated accordingly to contain the preimage of the current Ya and the

node is deleted from S.

If the node is not fathomed, all the invariancy intervals of P̃ s are added

to Λs and examined one at a time (lines 35-45). Consider an invariancy interval

[λ′, λ′′], and the associated solution xs(λ) and its image ys(λ) for λ ∈ [λ′, λ′′]. If this

solution is feasible to P , then ys(λ) is added to the set Ya that is updated in the set

dominance module to satisfy Ya = N(Ya). Due to this update, Ya may contain ys(λ)

for λ ∈ [λL, λR] ⊆ [λ′, λ′′]. The set X a is then updated accordingly to contain the

preimage of the current Ya.

Else, the branching is performed on fractional variables (line 42). The cur-

rent node is deleted from S and the new node problems are added to S (lines 43-45).

This process is repeated until all the node problems in S have been examined. At

termination, the current sets X a and Ya yield the solution sets, XE and YP , to P

66

respectively.

2.7.2 Properties of Algorithm 1

We now prove that all Pareto points to BOMIQP (2.1) are computed upon

termination of Algorithm 1.

Theorem 2.7.1. Upon termination, the BB Algorithm 1 returns the complete Pareto

set for P (2.1), i.e., YP = Ya.

Proof. The proof is based on the properties of the three main modules of Algorithm

1, the branching, fathoming and set dominance, which are responsible for performing

the steps of the BB scheme. During the execution of the algorithm, the incumbent sets

Ya and X a are dynamically updated by adding elements that are feasible to problem

P . These elements are computed by solving the node problems that are created by

the branching and fathoming modules.

At the initialization of the algorithm, an initial set of of efficient solutions,

X 0
E, and their images, Y 0

P , are computed and stored in the incumbent sets X a and

Ya, respectively.

Note that the root node 0 is a special node of the BB tree. The following

discussion addresses the main step of the algorithm in which an arbitrary node s

(including node 0) of the BB tree is examined. At node s, problem P̃ s is solved and

the fathoming module is applied.

If the node problem is infeasible or the set Ỹ s
P satisfies the condition in rule

(2.21), then this node can be fathomed. This guarantees that the infeasible solutions

67

or the solutions dominated by the incumbent set are excluded from the search.

If the set (a subset of) X̃ s
E is feasible to P , then Ỹ s

P (a subset of Ỹ s
P) is

added to Ya so that Ya remains nondominated. X̃ s
E is added to X a that is updated

to be the preimage of the current Ya. This guarantees that no efficient solutions or

the associated Pareto points are excluded from the search.

If the node is not fathomed, the branching module is applied to all invariancy

intervals whose integer variables xi, i ∈ {p+ 1, · · · , n}, have fractional values. While

this module creates more node problems, some of them are new and some others may

have been obtained earlier. Only the new node problems are considered.

The branching and fathoming procedures are repeated until all the node

problems have been examined. Since every node is generated through branching, no

feasible solutions to P are eliminated during the search. Each time new elements are

added to Ya, the set dominance module is executed to filter and discard the dominated

points in Ya and keep Ya = N(Ya).

The three main modules guarantee that only the Pareto points to P remain

in Ya and thatYa contains all Pareto points to P . The associated set X a is also

updated accordingly to contain only the efficient solutions to P .

The complexity of Algorithm 1 originates mainly from solving three types

of single objective quadratic programs (QPs).

First, the mpLCP method employed at the nodes as the solver for P̃ s solves

parametric QPs and primarily contributes to the complexity. As recognized in [3],

the number of invariancy intervals is exponential in (n + m), where n and m are

68

the numbers of variables and constraints in P̃ s respectively, and a polynomial-time

algorithm can never be developed to solve the node problem. The total number of

node problems can be determined before the algorithm runs based on the number of

slice problems, while the actual number of these problems being solved results from

the branching module and remains unknown.

Second, mixed integer QPs are solved to compute an initial set of Pareto

points and efficient solutions at the initialization of Algorithm 1, and it can take

exponential time to solve them [97]. The number of these problems is decided by the

user.

Third, quadratically constrained QPs (QCQPs) are solved in the fathom-

ing and set dominance modules. The number of such problems is unknown at the

beginning of the algorithm. QCQP is NP-hard [80].

Additionally, single-variable fractional optimization problems are solved in

the branching module and systems of two polynomial equations with two-variables

are solved in the set dominance module. Solving all these problems contributes to

the total run time of Algorithm 1. Single-variable fractional optimization problem is

NP-hard [98].

2.7.3 Preliminary numerical experiments

A variation of Algorithm 1 is implemented in the MATLAB programming

language and preliminary numerical experiments are performed. The node problem

solver, which has been implemented by Adelgren [2], is integrated with the algorithm.

69

In this rudimentary implementation, the initialization follows lines 3-4 of the

pseudo-code, i.e., an initial set of Pareto points to the BOMIQP instance is computed.

However, the four modules of the BB algorithm do not follow the pseudo-code because

they have not been integrated with each other in the main step but are performed

sequentially. The root node problem is first solved and its efficient solutions in all

invariancy intervals are examined to identify the integer variables with fractional

values. The naive branching method (see the Appendix) is used to create and solve

all slice problems at the leaf nodes. The fathoming module is then executed. At the

last stage, the set dominance procedure is applied to the incumbent set to delete the

dominated points and find the complete Pareto set of the instance.

Since BOMIQPs have previously been unsolved, there are no instances in

the literature to use, and there is no other algorithm to compare with. A set of

randomly generated strictly convex BOMIQPs are generated and solved and the ob-

tained numerical results are summarized in Table 2.1. The tests have been performed

on a Lenovo Ideapad FLEX 4 with a 256 GB SSD storage, 6th Generation Intel Core

i5-6200U, 2.30GHz, 2401 Mhz, 2 Cores, 4 Logical Processors and 8GB memory.

The results are reported in Table 2.1. In the columns from the first to the

last one the following items are displayed: the instance number, dimension of the

decision space, number of integer or binary variables, number of invariancy intervals

(IIs) in the root node problem, total number of nodes in the BB tree without the root

node, total number of invariancy intervals observed, and the CPU time for solving

the instances. This time aggregates the total CPU time it takes for the rudimentary

implementation to solve an instance.

Since the implementation of the mpLCP method is recent and still at the

70

Instance n n− p No. of IIs Total Total no. Time
in no. off IIs (seconds)

root node of nodes examined
1 2 1 2 2 3 101.59
2 2 1 3 2 3 81.07

3 3 1 2 2 4 96.31
4 3 1 2 2 4 110.64
5 3 1 3 2 4 90.37
6 3 1 3 3 9 115.39
7 3 1 3 5 16 276.53
8 3 2 2 4 6 150.64
9 3 2 4 4 7 196.42
10 3 2 4 8 15 398.39

Table 2.1: Summary of the results for BOMIQP instances solved with a rudimentary
implementation of Algorithm 1

stage of being rudimentary, it is sensitive to adding branching constraints. Therefore

only small-sized instances with 1 or 2 binary or integer variables out of 2 or 3 all

variables have been solved. One can observe that as the number of integer variables

increases, the total computation time also increases as expected. Because solving the

node problems takes a big portion of the total computational time, as the number

of node problems increases, the run time of the algorithm also increases. However,

the total number of node problems seems to be related to the number of examined

invariancy intervals.

2.8 Conclusion

We have developed the first algorithm to compute the complete Pareto set

of BOMIQP (2.1). The algorithm computes two solution sets in parametric form: the

Pareto set in the objective space and its pre-image, the efficient set, in the decision

71

space. Since (2.1) is a global optimization problem, the algorithm follows the BB

scheme. The branching module is integrated with the mpLCP method, a state-of-

the-art algorithm employed as a node problem solver. The new practical fathoming

rules introduced in the fathoming module are based on the bound sets established in

a multiobjective setting. The new set domination module filters the incumbent set

to become the Pareto set of (2.1) at termination of the algorithm.

The appealing and valuable feature of providing the exact solution sets to

BOMIQPs is contrasted with exponential complexity of the algorithm. This com-

plexity is reflected in a numerical study showing an increase in computational time

with an increase of the number of integer variables as well as node problems even for

BOMIQPs with 2 or 3 variables. This study is based on a rudimentary implementa-

tion of a variation of the pseudo-code given in Section 2.7.

This work immediately opens up several avenues for future research. While

the complexity of the mpLCP method cannot be reduced, it is desirable to make its

implementation more stable when solving the node problems along a branch of the

BB tree and adding constraints. Adopting methods to solve fractional programs will

enhance the performance of the branching module, while using a more robust solver

for polynomial equations will improve the set dominance module. More numerical

studies are needed to determine the tradeoff in the set dominance module between

solving the polynomial equations to determine intersection points between two Pareto

sets and solving single objective quadratic programs to examine their mutual location.

A reverse research direction is also possible since the set dominance pro-

cedure can be applicable to biobjective nonconvex programs that are decompsoed

into biobjective convex subproblems such as the location problem in [73]. In general,

72

since the proposed algorithm relies on solving four types of optimization problems

as well as systems of polynomial equations, improvements in each of the five direc-

tions will affect not only the algorithm performance but will also advance polynomial,

mixed-integer, integer, and fractional optimization.

Supporting Information

This section contains additional information in support of the methodology

presented in the paper. We first describe a branching approach based on slice prob-

lems (2.3) associated with BOMIQP (2.1). In the second part we present the steps

of Algorithm 1 on an example BOMIQP.

A Slice branching

Branching based on slice problems is a branching strategy that is used in

the example problem. In this strategy all slice problems associated with the original

BOMIQP are created. Since the integer variables are bounded from below and above,

there is a finite number of combinations of the integer values these variables may

assume so that the linear constraints hold, and therefore there is a finite number of

slice problems that are the leaf node problems of the BB tree in Algorithm 1.

Since in this method all combinations of feasible values for integer variables

are checked, this method of branching seems naive and is clearly not suitable for

BOMIQPs with many variables. However, for instances with few variables the number

of such combinations is small, which makes this method useful during algorithmic

73

developments and testing, as indicated in [26]. In fact, we observe that for small

instances the number of leaf nodes may be less than or equal to the number of nodes

created in the branching module of Algorithm 1. We refer to this strategy as “slice

branching”. Since the example solved in the next section lends itself to slice branching,

we include it in the description.

In the context of the pseudo-code of Algorithm 1, if the slice branching is

used, the number of nodes in the set S is known. The node problems are solved and all

their solutions are feasible to (2.1) because the constraint xi ∈ Z for i = p+ 1, · · · , n

is always satisfied. All these solutions can be passed to the set dominance module to

compute the solution sets Yp and XE. However, to reduce the computational effort in

the set dominance module, we first pass these solutions to the fathoming module to

check whether a node can be fathomed. If so, that node’s solutions will be discarded

and will not be passed to the dominance module.

B Example

Consider the following BOMIQP with one integer variable.

P : min f(x) =

[
f1(x) = 1

2
xTQ1x + pppT1 x, f2(x)1

2
xTQ2x + pppT2 x

]
s.t. x ∈ X = {x ∈ R2 × Z : Ax 5 b,x = 000, x2 ∈ Z, x2 ≤ 4},

(2.27)

where

Q1 =


6 −6 6

−6 14 −10

6 −10 8

 , ppp1 =


0

−3

0

 , Q2 =


2 −4 2

−4 16 −2

2 −2 4

 , ppp2 =


−1

−1

1

 ,

74

A =

1 0 0

0 1 0

 , and b =

3

4

 .
Initialization The set Y 0

P for λ = 0, 0.1, 0.2, · · · , 1 where |Y 0
P | = 11, is first com-

puted. Figure 2.9 depicts the set Y 0
P . The sets Ya = Y 0

P and X a = X 0
E are initialized.

Solving the root node problem The relaxed BOQP of (2.27), which is the root

node problem of the BB tree, assumes the form:

P̃ 1 : min f(x)

s.t. x ∈ X̃ = X̃ 1 = {x ∈ R3 : Ax 5 b,x = 000},
(2.28)

The weighted-sum problem associated with (2.28) is formulated

P̃ 1(λ) : min λf1(x) + (1− λ)f2(x)

s.t. x ∈ X̃ 1 = {x ∈ R3 : Ax 5 b,x = 000},

λ ∈ [0, 1].

(2.29)

and solved with the mpLCP method that provides the optimal solution functions and

the associated invariancy intervals. At optimality of (2.29), the parameter space is

partitioned into three invariancy. These intervals and the optimal solution functions,

which are also efficient solution functions to (2.28), are given in Table 2.2.

Branching Consider first the solution function in the first invariancy interval, [0, 0.6747].

To obtain the range of the values for the integer variable x2, the following polynomial

fractional programs need to be solved; xmin2 = min{x2 = 8λ+3λ2+1
3(−6λ2+2λ+5)

: λ ∈ [0, 0.6747]}

and xmax2 = max{x2 = 8λ+3λ2+1
3(−6λ2+2λ+5)

: λ ∈ [0, 0.6747]}. Using discretization of the in-

tervals, xmin2 = 0.5902 and xmax2 = 0.75 are obtained and therefore x2 ∈ [0.5902, 0.75].

Then [φ′2, φ
′′
2] = [0, 1]. With this range of x2, two new node problems are created.

75

Table 2.2: Efficient solution functions for P̃ 1

x̂(λ) =

x ∈ R3 :

x1 = 3λ2−4λ+10
−3λ2+11λ+4

x2 = 3λ2+3λ+3
−3λ2+11λ+4

x3 = 0

for λ ∈ [0, 0.6747]



x̂(λ) =

x ∈ R3 :

x1 = 4λ3−λ−14λ2+8
−6λ3+5λ+1

x2 = 12λ3−7λ2−λ+5
−6λ3+5λ+1

x3 = 3λ3+34λ2−8λ−11
3(−6λ3+5λ+1)

for λ ∈ [0.6747, 0.8182]



x̂(λ) =

x ∈ R3 :

x1 = 0

x2 = 8λ+3λ2+1
3(−6λ2+2λ+5)

x3 = 7λ2+15λ−7
3(−6λ2+2λ+5)

for λ ∈ [0.8182, 1]


The first one, P̃ 2, with the feasible set X̃ 2 = {x ∈ R3 : Ax 5 b, x2 ≤ 0,x = 000}, and

the second one, P̃ 3, with the feasible set X̃ 3 = {x ∈ R3 : Ax 5 b, x2 ≥ 1,x = 000}.

Both problems are solved with the mpLCP method. The solution to P̃ 2 is given in

Table 2.3 while the solution to P̃ 3 is given in Table 2.4. In Table 2.3, x2 = 0 and

Table 2.3: Efficient solution functions for P̃ 2

x̂(λ) =

x ∈ R3 :

x1 = 1−λ
2λ+1

x2 = 0

x3 = 0

for λ ∈ [0, 1]


hence the entire efficient set to P̃ 2 is feasible to P . Based on the feasibility, this node

is fathomed and the associated Pareto points are saved in the set Ya. Then the set

dominance procedure is applied to satisfy the condition Ya = N(Ya). Note also that

this node is a leaf node and branching cannot continue.

The solutions to P̃ 3 in Table 2.4 are now examined. In the first two invari-

ancy intervals x2 = 1 and hence the associated efficient solutions to P̃ 3 are feasible to

76

Table 2.4: Efficient solution functions for P̃ 3

x̂(λ) =

x ∈ R3 :

x1 = 3
2λ+1

x2 = 1

x3 = 0

for λ ∈ [0, 0.6]


x̂(λ) =

x ∈ R3 :

x1 = 3
2λ+1
− (5λ− 3)

x2 = 1

x3 = 5λ− 3

for λ ∈ [0.6, 0.7974]



x̂(λ) =

x ∈ R3 :

x1 = 4λ3−14λ2−λ+8
−6λ3+5λ+1

x2 = 12λ3−7λ2−λ+5
−6λ3+5λ+1

x3 = 3λ3−34λ2−8λ+11
3(−6λ3+5λ+1)

for λ ∈ [0.7974, 0.8182]


x̂(λ) =

x ∈ R3 :

x1 = 0

x2 = 8λ2+3λ+1
3(−6λ2+2λ+5)

x3 = 7λ2+15λ−7
3(−6λ2+2λ+5)

for λ ∈ [0.8182, 1]


problem P . These efficient solutions and the associated Pareto outcomes are saved in

sets XE and Ya, respectively. Then the set dominance procedure is applied to satisfy

the condition Ya = N(Ya). Branching is applied to the third and fourth invariancy

intervals and is summarized in Table 2.5.

Table 2.5: New branching nodes for invariancy intervals 3 and 4 in P̃ 3

Branching process
Invariancy intervals [λ′, λ′′] [0.7974, 0.8182] [0.8182, 1]

x2
12λ3−7λ2−λ+5
−6λ3+5λ+1

8λ2+3λ+1
3(−6λ2+2λ+5)

xmin2 1 1.1858
xmax2 1.1651 3.9861

New child node problem constraints x2 ≤ 1, x2 ≥ 2
x2 ≤ 1, x2 ≥ 2
x2 ≤ 2, x2 ≥ 3
x2 ≤ 3, x2 ≥ 4

In Table 2.5, the second row shows the invariancy intervals [λ′, λ′′]; the third

77

row shows the solution function x2; the third and fourth rows show the minimum and

maximum values assumed by x2(λ) in each invariancy interval; the last row shows

the pairs of branching constraints that are generated for x2 ∈ [xmin2 , xmax2]. There

are eight child node problems but two pairs have identical constraints, which makes

six new node problems.

Going back to P̃ 1, the first invariancy interval in Table 2.2 has been explored.

The second and third invariancy intervals, [0.6747, 0.8182] and [0.8182, 1], are now

examined and a summary is given in Table 2.6.

Table 2.6: New branching nodes for invariancy intervals 2 and 3 in P̃ 1

Branching process
Invariancy intervals [λ′, λ′′] [0.6747, 0.8182] [0.8182, 1]

x2
12λ3−7λ2−λ+5
−6λ3+5λ+1

8λ+3λ2+1
3(−6λ2+2λ+5)

xmin2 0.6355 1.0986
xmax2 1.121 3.918

New child node problem constraints
x2 ≤ 0, x2 ≥ 1
x2 ≤ 1, x2 ≥ 2

x2 ≤ 1, x2 ≥ 2
x2 ≤ 2, x2 ≥ 3
x2 ≤ 3, x2 ≥ 4

In this table there are ten child node problems. Among them the node

problems associated with the constraints x2 ≤ 0 and x2 ≥ 1 for λ ∈ [0.6747, 0.8182]

have already been added to the BB tree as problems P̃ 2 and P̃ 3. The remaining eight

problems are identical to those in Table 2.5. Based on Tables 2.5 and 2.6 and to

avoid duplication, the following six new node problems are formulated: P̃ 4 with the

feasible set X̃ 4 = {x ∈ R3 : Ax 5 b, x2 ≤ 1,x = 000}; P̃ 5 with X̃ 5 = {x ∈ R3 : Ax 5

b, x2 ≥ 2,x = 000}; P̃ 6 with X̃ 6 = {x ∈ R3 : Ax 5 b, x2 ≤ 2,x = 000}; P̃ 7 with X̃ 7 =

{x ∈ R3 : Ax 5 b, x2 ≥ 3,x = 000}; P̃ 8 with X̃ 8 = {x ∈ R3 : Ax 5 b, x2 ≤ 3,x = 000};

and P̃ 9 with X̃ 9 = {x ∈ R3 : Ax 5 b, x2 ≥ 4,x = 000}.

78

Slice branching The slice branching strategy is now illustrated on Example (2.27).

Because the range of feasible values of the integer variable x2 is [0, 4], five node

problems are created by fixing x2 at each integer value while the linear constraints

remain feasible: P̃ 1 with the feasible set X̃ 1 = {x ∈ R3 : Ax 5 b, x2 = 0,x ≥ 0};

P̃ 2 with X̃ 2 = {x ∈ R3 : Ax 5 b, x2 = 1,x ≥ 0}; P̃ 3 with X̃ 3 = {x ∈ R3 : Ax 5

b, x2 = 2,x ≥ 0}; P̃ 4 with X̃ 4 = {x ∈ R3 : Ax 5 b, x2 = 3,x ≥ 0}; and P̃ 5 with

X̃ 5 = {x ∈ R3 : Ax 5 b, x2 = 4,x ≥ 0}. Note that the superscripts denoting

these node problems are the same as those used for the problems emerging from the

first branching method but the node problems are different. The solutions to these

problems are given Table 2.7, 2.8, 2.9, 2.10 and 2.11, respectively.

Table 2.7: Efficient solution functions for P̃ 1

x̂(λ) =

x ∈ R3 :

x1 = 1−λ
2λ+1

x2 = 0

x3 = 0

for λ ∈ [0, 1]


Table 2.8: Efficient solution functions for P̃ 2

x̂(λ) =

x ∈ R3 :

x1 = 3
2λ+1

x2 = 1

x3 = 0

for λ ∈ [0, 0.6]


x̂(λ) =

x ∈ R3 :

x1 = 3
2λ+1
− 5λ+ 3

x2 = 1

x3 = 5λ− 3

for λ ∈ [0.6, 1]



Figure 2.10 depicts the points in Y 0
P and the Pareto points of the five slice

problems. The sets Y 0
P and Ỹ `

P , ` = 1, · · · , 5 can be passed to the set dominance

module to compute the final solution sets. However, we first pass these sets to the

fathoming module to check whether a node can be fathomed and its solution set can

79

Table 2.9: Efficient solution functions for P̃ 3

x̂(λ) =

x ∈ R3 :

x1 = 3

x2 = 2

x3 = 0

for λ ∈ [0, 0.4]


x̂(λ) =

x ∈ R3 :

x1 = λ+5
2λ+1

x2 = 2

x3 = 0

for λ ∈ [0.4, 0.5]



x̂(λ) =

x ∈ R3 :

x1 = −16λ2+λ+9
2λ+1

x2 = 2

x3 = 8λ− 4

for λ ∈ [0.5, 0.7819]



x̂(λ) =

x ∈ R3 :

x1 = 0

x2 = 2

x3 = 9λ+1
2(λ+1)

for λ ∈ [0.7819, 1]


be discarded.

Fathoming The fathoming module is now applied to all the node problems obtained

from the slice branching. Since the solutions to all the node problems are feasible to

P , fathoming based on bound sets with rule 2.21 is used and the procedure presented

in Figure 5 is followed.

We have Ya = Ȳa = Y 0
P . First, consider Ỹ 1

P , the Pareto set associated with

P̃ 1. The ideal point ỹ1I = (0,−0.25) for P̃ 1 is computed and the triangle T 1 with

vertices ỹ11 = (0, 0), ỹ12 = (0.75,−0.25), and ỹ1I = (0,−0.25) is constructed. Here

ỹ11, ỹ12 are the end points of Ỹ 1
P for λ = 1 and λ = 0, respectively. Then the set

Ȳ 1
a = Ȳa∩(T 1−R2

=) is obtained. Now Rule 1 (cf. Section 2.5) is checked. Since there

does not exist a point yi ∈ Ȳ 1
a such that yi ∈ {ỹ1I}5, Rule 1 does not hold. Then

80

Table 2.10: Efficient solution functions for P̃ 4

x̂(λ) =

x ∈ R3 :

x1 = 3

x2 = 3

x3 = 15λ+1
2(λ+1)

for λ ∈ [0, 0.5947]



x̂(λ) =

x ∈ R3 :

x1 = −34λ2+λ+18
2λ1+1

x2 = 3

x3 = 17λ− 7

for λ ∈ [0.5947, 0.7425]



x̂(λ) =

x ∈ R3 :

x1 = 0

x2 = 3

x3 = 21λ+4
2(λ+1)

for λ ∈ [0.7425, 1]


the conditions Ȳ 1

a ∩C1W = ∅ and Y 1
a ∩C1S = ∅ are checked. We have Y 1

a ∩C1S = ∅.

Therefore, node 1 cannot be fathomed.

Similarly, the triangles T ` for Ỹ `
P (Pareto set of P̃ `), and consequently the

sets Ȳ `
a for ` = 2, · · · , 5, are constructed. Rule 1 does not hold for nodes 2 and 3, but

Y `
a ∩ C`S = ∅ for ` = 2, 3 and nodes 2 and 3 cannot be fathomed. However, Rule 1

holds for nodes 4 and 5 and they are fathomed, i.e., dropped from the BB tree. We

now proceed with nodes 1,2, and 3 to the set dominance module.

Set Dominance The goal of this module is to add the sets Ỹ `
P , ` = 1, · · · , 3, to Ya and

have Ya = N(Ya). Due to the structure of the set Y 0
P , which is depicted in Figure 2.9,

this module is executed as follows. Initially, Ya = Y 0
P and the associated X a = X 0

a .

Based on Figure 2.9, three clusters of the Pareto points in Y 0
P can be identified. These

clusters are associated with the integer solutions x2 = 0 (southeast cluster), x2 = 1

(middle cluster) and x2 = 3 (northwest cluster). Let Y SE
P ,Y M

P ,Y NW
P ⊂ Y 0

P denote

the sets of points that are contained in the southeast, middle and northwest cluster,

81

Table 2.11: Efficient solution functions for P̃ 5

x̂(λ) =

x ∈ R3 :

x1 = 3

x2 = 4

x3 = 0

for λ ∈ [0, 0.5714]



x̂(λ) =

x ∈ R3 :

x1 = −28∗λ2+λ+15
2λ+1

x2 = 4

x3 = 14λ− 6

for λ ∈ [0.5714, 0.75]



x̂(λ) =

x ∈ R3 :

x1 = 0

x2 = 4

x3 = 17λ+3
2(λ+1)

for λ ∈ [0.75, 1]


respectively. We have Ya = Y 0

P = Y SE
P ∪ Y M

P ∪ Y NW
P .

Recall that triangles T ` for ` = 1, 2, 3 have already been constructed. To

add Ỹ 1
P to Ya and have Ya = N(Ya), the location of Ỹ 1

P and T 1 with respect to the

current Ya is examined. By solving P̃ (yR) (2.10) with yR = y for all y ∈ Y SE
P , we

obtain that all y ∈ Y SE
P are in Ỹ 1

P . By solving P̃ (yR) (2.10) with yR = y for all

y ∈ Y M
P , and later for all y ∈ Y NW

P , we discover that the points in Y M
P ,Y NW

P , and

Ỹ 1
P are nondominated. Therefore, Ya is updated as Ya = Y M

P ∪ Y NW
P ∪ Ỹ 1

P , and the

set X a is updated accordingly.

To add Ỹ 2
P to Ya and have Ya = N(Ya), the location of Ỹ 2

P and T 2 with

respect to the current Ya is examined. By solving P̃ (yR) (2.10) with yR = y for all

y ∈ Y M
P , we obtain that all y ∈ Y M

P are in Ỹ 2
P . Because Ỹ 1

P ⊂ Ya, the mutual

location of T 1 and T 2 is checked to obtain T 1 ∩ T 2 = ∅. Since ỹ11 ∈ C2s, based

on Proposition 2.6.9(ii), Ỹ 1
P ≤p Ỹ 2

P . To find the nondominated set resulting from

Ỹ 1
P and Ỹ 2

P , P (ỹ11
1) (2.12) is solved using the first coordinate of the northwest end

82

Figure 2.9: Y 0
P

Figure 2.10: Y 0
P and Ỹ `

P , ` = 1, · · · , 5 of slice problems

Figure 2.11: Pareto points

83

point, ỹ11, of Ỹ 1
P obtained for λ = 1, and the point ŷ(ỹ11

1) = (0, 3.7008) ∈ Ỹ 2
P is

obtained. This point is dominated by the northwest end point, ỹ11, of Ỹ 1
P . Then

Ỹ 12
N = N(Ỹ 1

P ∪ Ỹ 2
P) = Ỹ 1

P ∪ Z2[ỹ21, ŷ(ỹ11
1)) is obtained, where ỹ21 is the northwest

end point of Ỹ 2
P with λ = 1 and Z2[ỹ21, ŷ(ỹ11

1)) is a subset of Ỹ 2
P . Ya is updated as

Ya = Y NW
P ∪ Ỹ 12

N . To update X a, by Proposition2.2.11, the parameter λ = 0.85 is

calculated. This value of λ allows to calculate the efficient solution x(λ = 0.85) for

P̃ 2 such that f(x(λ = 0.85)) = ŷ(ỹ11
1) = (0, 3.7008). This solution is used to update

X a.

To add Ỹ 3
P to Ya and have Ya = N(Ya), the location of Ỹ 3

P and triangle

T 3 with respect to the current Ya is now examined. By solving P̃ (yR) (2.10) with

yR = y for all y ∈ Y NW
P , we obtain that all y ∈ Y NW

P are in Ỹ 3
P . A similar processes

to that at node 2 follows. Using the first coordinate of the northwest end point, ỹ21
1 ,

of Ỹ 2
P , P (ỹ21

1) (2.12) is solved to obtain the point ŷ(ỹ21
1) = (−2.25, 31.9457) ∈ Ỹ 3

P .

Then Ỹ 123
N = N(Ỹ 12

N ∪ Ỹ 3
P) = Ỹ 12

N ∪ Z3[ỹ31, ŷ(ỹ21
1)) is obtained, where ỹ31 is the

northwest end point of Ỹ 3
P with λ = 1 and Z3[ỹ31, ŷ(ỹ21

1)) is a subset of Ỹ 3
P . The

incumbent set is updated as Ya = Ỹ 123
N . To update X a, by Proposition2.2.11, the

parameter λ = 0.7317 is calculated and used to identify the efficient solutions whose

images are in the updated Ya.

Since all the nodes have been examined, YP = Ỹ 123
N and XE = X a. Table

2.12 contains the efficient solutions making the set XE and Figure 2.12 depicts the

Pareto set, YP for example (2.27). Note that in XE, only one invariancy interval comes

from each P̃ 1 and P̃ 2, while two invariancy intervals come from P̃ 3. As expected, the

Pareto set is a disconnected nonconvex curve consisting of convex subcurves. Two of

the three subcurves are neither open nor closed.

84

Table 2.12: Efficient solution functions of BOMIQP (2.27)

x̂(λ) =

x ∈ R3 :

x1 = 1−λ
2λ+1

x2 = 0

x3 = 0

for λ ∈ [0, 1] in P̃ 1


x̂(λ) =

x ∈ R3 :

x1 = 3
2λ+1
− 5λ+ 3

x2 = 1

x3 = 5λ− 3

for λ ∈ (0.85, 1] in P̃ 2



x̂(λ) =

x ∈ R3 :

x1 = −16λ2+λ+9
2λ+1

x2 = 2

x3 = 8λ1− 4

for λ ∈ (0.7317, 0.7819] in P̃ 3


x̂(λ) =

x ∈ R3 :

x1 = 0

x2 = 2

x3 = 9λ+1
2(λ1+1)

for λ ∈ [0.7819, 1] in P̃ 3



Figure 2.12: Pareto set, YP , of BOMIQP (2.27)85

C Figures: Fathoming Rules

Figure 2.13: Two instances of Case 2 - node s can be fathomed

(a) (b)

Figure 2.14: Node s cannot be fathomed since Y s
a ∩ CsW = ∅ or Y s

a ∩ CsS = ∅

86

(a) Can be fathomed (b) Cannot be fathomed

Figure 2.15: The fathoming decision is not immediate when the nadir point implied
by the closest nondominated points to ỹsI is not in T s

Figure 2.16: Node s cannot be fathomed since ŷs1 ≯ yκ,η1 or ŷs2 ≯ yκ,η2 for at least one
yκ,η

87

D Figures: Set Dominance

Figure 2.17: Proposition 2.6.9(i): Ỹ l
P < Ỹ s

P .

88

Figure 2.18: Two cases of Proposition 2.6.10(ii): Pareto sets intersect
(a) ỹsI ∈ C lW and ỹl1 ∈ Ỹ s

P + R2
>, (b) ỹsI ∈ C lS and ỹl2 ∈ Ỹ s

P + R2
>.

Figure 2.19: Two cases of Proposition 2.6.10(iii): Pareto sets intersect
(a) ỹsI ∈ C lW and ỹl1 ∈ Ỹ s

P − R2
>, (b) ỹsI ∈ C lS and ỹl2 ∈ Ỹ s

P − R2
>.

89

Figure 2.20: Proposition 2.6.11: Ỹ l
P 5 Ỹ s

P .

Figure 2.21: Proposition 2.6.12: Ỹ l
P ≤P Ỹ s

P .

90

Figure 2.22: Two cases of T l ∩ T s = ∅ and Ỹ sl
N = Ỹ s

P ∪ Ỹ l
P

(a) T s ∈ {ỹl1} − R2
≷, (b) T s ∈ {ỹl1}+ R2

≷.

(a) T s ⊂ T l + R2
=, Ỹ l

P ≤ Ỹ s
P and Ỹ sl

N = Ỹ l
P (b) T l ⊂ T s + R2

=, Ỹ s
P ≤ Ỹ l

P and Ỹ sl
N = Ỹ s

P

Figure 2.23: One Pareto set dominates the other.

91

Figure 2.24: Subprocedure 1: T s ⊂ T l, Ỹ l
P ≤ Ỹ s

P and Ỹ sl
N = Ỹ l

P .

92

Figure 2.25: Subprocedure 1: (a) Ỹ l
P ∩ Ỹ s

P = ∅, (b) Ỹ l
P ∩ Ỹ s

P 6= ∅.

Figure 2.26: Subprocedure 2: (a) Ỹ l
P ∩ Ỹ s

P = ∅, (b) Ỹ l
P ∩ Ỹ s

P 6= ∅.

93

Figure 2.27: Subprocedure 1: (a) Ỹ l
P ∩ Ỹ s

P = ∅, (b) Ỹ l
P ∩ Ỹ s

P 6= ∅.

Figure 2.28: Subprocedure 2: T s 6⊂ T l, ỹsI /∈ T l, Ỹ l
P ≤P Ỹ s

P and Ỹ s
P ≤P Ỹ l

P .

Figure 2.29: Subprocedure 2: (a) Ỹ l
P ∩ Ỹ s

P = ∅, (a) Ỹ l
P ∩ Ỹ s

P 6= ∅.

94

Figure 2.30: Subprocedure 3: ỹs1, ỹs2 ∈ Ỹ l
P +R2

> (a) Ỹ l
P ∩ Ỹ s

P = ∅, (b) Ỹ l
P ∩ Ỹ s

P 6= ∅.

95

Chapter 3

Multiobjective Programs with

Application to Portfolio

Optimization

[The contents of this chapter include material from the paper entitled “On

Convex Multiobjective Programs with Application to Portfolio Optimization” which

has been published in the Journal of Multi Criteria Decision Analysis and the authors

are Pubudu L.W. Jayasekara, Nathan Adelgren and Margaret M. Wiecek.]

3.1 Introduction

Multiobjective programs (MOPs) have proven to be an important modeling

and methodological tool to solve a variety of decision making problems. On top of

abundant applications in business and management [46, 44], applications of multicrite-

96

ria decision making (MCDM) can be found in chemical engineering [102], engineering

design [10], environmental engineering [66, 139], energy systems [66, 89], financial

engineering [138], and other domains of human activity. Among various MOPs, con-

vex problems play a specific role due to their elegant mathematical properties, easier

solvability, and relevance to real-life applications. A major class within convex MOPs

is made up by multiobjective quadratic programs (MOQPs) that have come as an

extension of well-established and useful single objective quadratic programs (QPs).

QPs have a special structure that is amenable to analytical derivations and algorith-

mic developments, but more importantly, to mathematical and real-life applications.

MOQPs model decision making problems in science, business, and engineering such

as regression analysis [1], finance [138], predictive control [15], and others.

In finance, biobjective portfolio optimization was initiated by Markowitz [84]

who proposed to minimize the predicted variance of portfolio return as a measure of

risk and to maximize the expected value of the portfolio return. Since then many

researchers have been studying portfolio optimization in a multiobjective setting from

various perspectives. Zopounidis et al. [143], Xinodas and Mavrotas [135, 136], and

Smimou [113] propose various models of this problem. Sawik [111] concentrates on

mixed-integer models and uses different risk measures. Li and Xu [77] account for

uncertainty with a fuzzy approach, while Xinodas et al. [137] use a robust approach.

Some authors choose to compute the best efficient solution but many others address

the computation of the efficient set (also known as the efficient frontier), which is

done with evolutionary or exact algorithms. Reviews of evolutionary algorithms ap-

plied to portfolio optimization are provided by Anagnostopoulos and Mamanis [7] and

Metaxiotis and Liagkouras [88]. Hirschberger et al. [63] and Romanko et al. [107]

apply parametric optimization, while Utz et al. [123] develop an inverse optimization

97

framework. Steuer et al. [117] solve large-scale problems and conclude that para-

metric quadratic programming is the best technique for the efficient set computation.

Approximation of the Pareto set and a search in the regions of investors’ interests are

suggested by Juszczuk et al. [70].

Another group of papers contains analytical derivations of the efficient set.

The first one is perhaps the derivation for the biobjective case by Merton [87], which

is followed by Qi et al. [101] for the triobjective case with one quadratic and two linear

objective functions. This work is extended by Qi [100] to any number of quadratic

and linear functions and is the first analytical study addressing the multiobjective

portfolio optimization problem (MOPOP) with more than one quadratic objective

function. This goes along with Boyd et al. [22] and Salas-Molina et al. [109] who

recognize the need to model different types of risk measures, which naturally may

lead to several quadratic functions in the MOPOP model. We are not aware of any

study addressing the computation of the efficient set for MOPOPs with more than

one quadratic objective function.

In this chapter, we recognizing the importance of convex MOPs, and collect

their theoretical properties from the perspective of parametric convex optimization.

We also propose a new scalarization suitable for a class of specially structured convex

MOPs. Recognizing also the wide applicability of convex MOQPs, we review available

exact algorithms for computing their efficient solutions and choose one of them that

suits our needs best. We merge these two lines of investigation to solve the MOPOP

with two or more quadratic objective functions, a class of problems that has not been

solved before.

In Section 3.2 we recast three well-established scalarizations for convex

98

MOPs and propose the new one, while in Section 3.3 we review the algorithms for

convex MOQPs. The multiobjective portfolio problem is solved in Section 3.4. We

include numerical examples and conclude the paper in Section 4.6. A Supporting

Information section contains detailed numerical and graphical results.

In the next section, we discuss the properties of (strictly) convex MOPs from

the point of view of parametric optimization.

3.2 A Parametric Optimization Perspective on Con-

vex MOPs

Scalarization, which involves reformulation of the original MOP into a single

objective program (SOP) by means of scalarizing parameters such as weights, right-

hand-side values, etc., is a common and well-established methodology for computing

efficient solutions to MOPs [128]. It is expected that the optimal solutions to the SOP

are (weakly) efficient solutions to the MOP. When solving the SOP, the scalarizing

parameters may be known and therefore assume specific values for which the (weakly)

efficient solutions are computed. Alternatively and more generally, these parameters

may remain unknown and the optimal solutions to the SOP may be determined as

functions of these parameters. The latter setting leads to parametric optimization

that involves two groups of unknowns: the optimization variables for which the SOP is

solved and the parameters that represent unknown problem data. An optimal solution

and the optimal objective value to a parametric SOP (par-SOP) come in the form of

functions of the parameters, and the solution to a par-SOP also includes a partition

of the parameter space into invariancy regions for which a specific optimal solution

99

function and the optimal objective value function are valid. Refer to Bank et al. [8]

and Fiacco [52] who provide in-depth studies of parametric nonlinear optimization.

In the context of multiobjective optimization, the obtained optimal solutions

to the par-SOP become parametric (weakly) efficient solutions to the MOP and come

as functions of the scalarizing parameters, while the partition of the parameter space

provides a full range of the (weakly) efficient solutions for a full range of potential

values of the scalarizing parameters. Refer to [50] for a study of the weighted-sum

method in the context of parametric optimization.

In this section, we review three well-established scalarization techniques from

the perspective of parametric convex optimization and emphasize their applicability

to (strictly) convex MOPs. For a specially structured class of convex MOPs, we

propose a scalarization whose applicability is demonstrated in Section 3.4.

3.2.1 The weighted-sum problem

One of the most common scalarizing approaches is the weighted-sum method

that reformulates the MOP into a single objective problem (SOP) by using a convex

combination of the objective functions. The weighted-sum problem assumes the form:

min
∑r

i=1 λifi(x)

s.t. x ∈ X ,

(3.1)

where λλλ ∈ Λ is a vector of weights that can be considered as parameters.

100

The weight or parameter space Λ ⊆ Rr is defined as

Λ = {λλλ ∈ Rr : λλλ ≥ 0,
r∑
i=1

λi = 1} (3.2)

Problem (3.1) is a convex par-SOP whose optimal solution x̂ is a function of the

parameter λλλ, x̂ = x̂(λλλ). The following result is well-known.

Theorem 3.2.1. [56] Let MOP (1.1) be convex. Then x̂ is weakly efficient to MOP

(1.1) if and only if x̂ = x̂(λλλ) is an optimal solution to problem (3.1) for some λλλ ∈ Λ.

In view of the properties of strictly convex MOPs, this result can be rewritten as

follows.

Corollary 3.2.1.1. Let MOP (1.1) be strictly convex and λλλ ∈ Λ. Then x̂ is efficient

to MOP (1.1) if and only if x̂ = x̂(λλλ) is an optimal solution to problem (3.1).

3.2.2 The εεε-constraint problem

Another common approach to solving MOPs is the εεε-constraint problem

that involves minimizing an objective considered as primary and expressing the other

objectives in the form of inequality constraints with a parameter εεε ∈ Rr−1. The ith

εεε-constraint SOP is formulated as:

f̂≤i (εεε) = min fi(x)

s.t. fj(x) ≤ εj j = 1, . . . , r and j 6= i

x ∈ X .

(3.3)

101

Let X ≤(εεε) =

{
x ∈ X : fj(x) ≤ εj, j = 1, . . . , r, ; j 6= i

}
and X̂ ≤(εεε) =

{
x ∈

X ≤(εεε) : fi(x) = f̂≤i (εεε)

}
. A suitable choice of εεε ensures that a feasible solution to this

SOP exists. Let E≤ be the set of all εεε for which problem (3.3) is feasible, that is,

E≤ = {εεε ∈ Rr−1 : X ≤(εεε) 6= ∅}. (3.4)

Problem (3.3) is a convex par-SOP whose optimal solution x̂ is a function of the

parameter εεε, x̂ = x̂(εεε), and the optimal objective value, f̂≤i (εεε), is also a function of

this parameter. The following result is also well-known.

Theorem 3.2.2. [59] Let εεε ∈ E≤. If x̂ = x̂(εεε) is a unique optimal solution to problem

(3.3) then x̂ is an efficient solution to MOP (1.1).

Since for strictly convex MOPs, the second order necessary and sufficient

conditions for optimality [12] hold for problem (3.3), this result can be rewritten as

follows.

Corollary 3.2.2.1. Let εεε ∈ E≤ and x̂ = x̂(εεε) be a an optimal solution to problem

(3.3).

1. Let MOP (1.1) be convex. If the second order sufficient conditions for optimality

hold at x̂ then x̂ is an efficient solution to MOP (1.1).

2. Let MOP (1.1) be strictly convex. Then x̂ is an efficient solution to MOP (1.1).

Proof. 1. If the second order necessary and sufficient conditions for optimality hold

at x̂ then x̂ is a unique optimal solution to MOP (1.1), which gives the desired

result.

102

2. Under the strict convexity, the second order optimality conditions hold.

Treating problem (3.3) as a par-SOP, we obtain more insight into the prop-

erties of its solution.

Corollary 3.2.2.2. Let εεε ∈ E≤. The optimal value function f̂≤i (εεε) to problem (3.3)

is nonincreasing on E≤.

Proof. Refer to page 260 in [12] .

Corollary 3.2.2.3. Let MOP (1.1) be convex, the set E≤ be convex, and f̂≤i (εεε) be

the optimal value function to problem (3.3).

1. Then f̂≤i (εεε) is convex on E≤.

2. If fi is strictly convex, the set X̂ ≤(εεε) 6= ∅ for all εεε ∈ E≤, and X̂ ≤(ε1ε1ε1) 6= X̂ ≤(ε2ε2ε2)

for ε1ε1ε1, ε2ε2ε2 ∈ E≤, ε1ε1ε1 6= ε2ε2ε2, then f̂≤i (εεε) is strictly convex on E≤.

Proof. Parts 1 and 2 follow from Corollary 2.2 and Proposition 2.10, respectively, in

[53].

3.2.3 The proper equality constraint problem

The proper equality constraint method is a modification of the εεε-constraint

method. The main difference between these two methods is that the additional εεε-

constraints are equalities rather than inequalities. The ith proper equality constraint

103

SOP is formulated as:

f̂=
i (εεε) = min fi(x)

s.t. fj(x) = εj j = 1, . . . , r and j 6= i

x ∈ X .

(3.5)

Let X =(εεε) =

{
x ∈ X : fj(x) = εj, j = 1, . . . , r, ; j 6= i

}
and X̂ =(εεε) =

{
x ∈

X =(εεε) : fi(x) = f̂=
i (εεε)

}
. A suitable choice of εεε ensures that a feasible solution to this

SOP exists. Let E= be the set of all εεε for which problem (3.5) is feasible, that is,

E= = {εεε ∈ Rr−1 : X =(εεε) 6= ∅}. (3.6)

Problem (3.5) is a convex par-SOP whose optimal solution x̂ is a function of the

parameter εεε, x̂ = x̂(εεε) and the optimal objective value, f̂=
i (εεε), is also a function of

this parameter. The following result is also well-known.

Theorem 3.2.3. [78] Let εεε ∈ E= and x̂i = x̂i(ε̂̂ε̂ε) be an optimal solution to problem

(3.5). Then x̂i is efficient for MOP (1.1) if and only if

f̂=
i (εεε) ≥ f̂=

i (ε̂̂ε̂ε) for any εεε ∈ E= such that εεε 5 ε̂εε (3.7)

and

f̂=
i (εεε) > f̂=

i (ε̂̂ε̂ε) for any εεε ∈ E= such that εεε ≤ ε̂εε. (3.8)

104

While conditions (3.7) and (3.8) are difficult to check to verify efficiency, it

is possible to establish a relationship between problems (3.3) and (3.5) to get more

insight. Let E≤ = E=. If at optimality of problem (3.3) all εεε-constraints are active,

then this problem assumes the form of problem (3.5) and the properties of the former

carry over to the latter.

Corollary 3.2.3.1. Let ε̂̂ε̂ε ∈ E≤ = E= and x̂i = x̂i(ε̂̂ε̂ε) be an optimal solution to

problem (3.3) with all ε̂̂ε̂ε-constraints active at optimality. Then

1. x̂i is an optimal solution to problem (3.5);

2. x̂i is an efficient solution to MOP (1.1) if and only if f̂≤i (εεε) > f̂≤i (ε̂̂ε̂ε) for all εεε ∈

E≤ such that εεε ≤ ε̂εε.

Proof. 1. Under the given assumption, x̂i is feasible and optimal to (3.5).

2. Refer to Theorem 3.1 in [79].

Under the assumptions of Corollary 3.2.3.1, Theorem 3.2.2 and Corollary

3.2.2.1 are valid for problem (3.5). A corollary for problem (3.5) that is analogous

to Corollary 3.2.2.3 for problem (3.3) can be obtained when the objective functions

creating the inequality constraints in (3.5) are affine.

Corollary 3.2.3.2. Let MOP (1.1) be convex, the objective functions fj, j = 1, . . . , r, j 6=

i, be affine, the set E= be convex, and f̂=
i (εεε) be the optimal value function to problem

(3.5).

105

1. Then f̂=
i (εεε) is convex on E=.

2. If fi is strictly convex, the set X̂ =(εεε) 6= ∅ for all εεε ∈ E=, and X̂ =(ε1ε1ε1) 6= X̂ =(ε2ε2ε2)

for ε1ε1ε1, ε2ε2ε2 ∈ E=, ε1ε1ε1 6= ε2ε2ε2, then f̂=
i (εεε) is strictly convex on E=.

Proof. Parts 1 and 2 follow from Corollary 2.2 and Proposition 2.10, respectively, in

[53].

3.2.4 The modified hybrid problem

We now combine the concepts of the three scalarizations above into an SOP

that we refer to as the modified hybrid problem. Consider a scalarization of the

original MOP (1.1) by means of a partial weighted-sum applied only to the first s

objective functions:

min f(x) =
[∑s

i=1 γifi(x), fs+1(x), . . . , fr(x)
]

s.t. x ∈ X ,

(3.9)

where γγγ ∈ Rs such that
∑s

i=1 γi = 1 and γi ≥ 0 for i = 1, . . . , s. Let

(XwE(γγγ))XE(γγγ) denote the set of (weakly) efficient solutions to MOP (3.9).

The following result is immediate.

Theorem 3.2.4. Let MOP (1.1) be convex. A solution x̂ ∈ X is weakly efficient to

MOP (1.1) if and only if x̂ = x̂(γγγ) is weakly efficient to MOP (3.9) for some γγγ ≥ 000.

Proof. Let x̂ ∈ XwE to MOP (1.1). Equivalently, x̂ is an optimal solution to the

106

weighted-sum problem (3.1) for some λλλ ∈ Λ. Choose ρ and ρi, i = s+ 1, . . . , r, where

ρρρ = (ρ, ρs+1, . . . , ρr) ≥ 000, and γγγ ∈ Rs, γγγ ≥ 000 such that

ργi = λi, i = 1, . . . , s, ρi = λi, i = s+ 1, . . . , r, ρ+
r∑

i=s+1

ρi = 1. (3.10)

The objective function in (3.1) can equivalently be rewritten using the new parameters

so this problem assumes the form

min ρ
∑s

i=1 γifi(x) +
∑r

i=s+1 ρifi(x)

s.t. x ∈ X ,

(3.11)

where
∑s

i=1 γi = 1. Hence x̂ is also an optimal solution to the weighted-sum-problem

(3.11) for some ρρρ ≥ 000 and γγγ ≥ 000, and also a weakly efficient solution to MOP (3.9).

For strictly convex MOPs, this result can be rewritten as follows.

Corollary 3.2.4.1. Let MOP (1.1) be strictly convex. A solution x̂ ∈ X is efficient

to MOP (1.1) if and only if x̂ = x̂(γγγ) is efficient to MOP (3.9) for some γγγ ≥ 000.

MOP (3.9) can be scalarized in the same way as MOP (1.1). Applying the

εεε-constraint (or the proper equality constraint) approach to (3.9), we obtain two types

of the modified hybrid problem for MOP (1.1)

f̂≤(=)(γγγ, εεε) = min
∑s

i=1 γifi(x)

s.t. fi(x) ≤ (=)εi i = s+ 1, s+ 2, . . . , r

x ∈ X ,

(3.12)

107

where γi ∈ Γ = {γγγ ∈ Rs : γi ≥ 0,
∑s

i=1 γi = 1}. Define X ≤(=)
h (εεε) =

{
x ∈ X : fj(x) ≤

(=)εj, j = s + 1, . . . r}, and let E≤(=)
h be the set of all εεε ∈ Rr−s for which problem

(3.12) is feasible, E≤(=)
h =

{
εεε ∈ Rr−s : X ≤(=)

h (εεε) 6= ∅
}

. Problem (3.12) is a convex

par-SOP whose optimal solution x̂ is a function of the parameters (γγγ, εεε), x̂ = x̂(γγγ, εεε),

and the optimal objective value, f̂≤(=)(γγγ, εεε), is also a function of these parameters.

Having established the equivalence between MOP (1.1) and MOP (3.9),

the results for MOP (1.1) presented earlier in this section are applicable to MOP

(3.9). In particular, the efficient solutions to MOP (1.1) are found in the following

circumstances.

Corollary 3.2.4.2. Let γγγ ∈ Γ, εεε ∈ E≤h , and x̂ = x̂(γγγ, εεε) ∈ X be a an optimal solution

to problem (3.12) with the inequality εεε-constraints.

1. Let MOP (1.1) be convex. If the second order sufficient conditions for optimality

hold at x̂ then x̂ is an efficient solution to MOP (1.1).

2. Let MOP (1.1) be strictly convex. Then x̂ is an efficient solution to MOP (1.1).

Proof. Parts 1 and 2 follow from Corollary 3.2.2.1 and Theorem 3.2.4.

Problem (3.12) with the inequality constraints is similar to the formulation of

Wendell and Lee [126] and Corley [28] known in the literature as the hybrid problem.

The latter combines the weighted-sum method with the εεε-constraint method with

the distinctions that all objectives are put into the weighted-sum as well as into the

additional inequality constraints.

The modified hybrid problem is useful when the objective functions of the

original MOP come in two groups with different real life meanings. One group is

108

associated with a parameter γγγ ∈ Γ while the other group with a parameter εεε ∈ E,

which allow the decision maker for an independent analysis of tradeoffs among the

criteria within each group. A multiobjective portfolio optimization problem in which

the objectives associated with the risk of a portfolio are minimized while maximizing

the portfolio’s return or liquidity is an example of MOPs with two groups of objec-

tives. In Section 3.4 we discuss this case in more detail. However, since portfolio

optimization involves quadratic objective functions that are typically (strictly) con-

vex, in the next section we turn our attention to convex MOQPs as a broad class of

problems to which the results of this sections can be applied.

3.3 State-of-the-Art Algorithms for Convex MO-

QPs

In this section, we review and compare the algorithms for solving (strictly)

convex MOQPs. Considering MOP (1.1) with its assumptions and with quadratic

objective functions, we have the following MOQP:

min f(x) = [f1(x) = 1
2
xTQ1x + pT1 x, . . . , fr(x) = 1

2
xTQrx + pTr x]

s.t. x ∈ X

(3.13)

where Qi ∈ Rn×n, pppi ∈ Rn for i = 1, . . . , r, x ∈ Rn, X ⊆ Rn.

Assumption 3.3.1. Matrix Qi ∈ Rn×n is a symmetric positive semidefinite (PSD)

matrix for all i = 1, . . . , r. Therefore, MOQP (3.13) is convex.

109

Since we are concerned with the algorithms for solving MOQPs and the

state-of-the-art methods use the weighted-sum scalarization, we provide the formula-

tion below.

min 1
2
xTQ(λλλ)x + pT (λλλ)x

s.t. x ∈ X ,

(3.14)

where Q(λλλ) =
∑r

i=1 λiQi,p(λλλ) =
∑r

i=1 λipi and the set of parameters is rewritten as

Λ′ = {λλλ ∈ Rr−1 : λi ≥ 0,
r−1∑
i=1

λi ≤ 1} with λr = 1−
r−1∑
i=1

λi ≥ 0. (3.15)

Proposition 3.3.2. Under Assumption 3.3.1, matrix Q(λλλ) is PSD for every λλλ ≥ 0.

Proof. For all nonzero x ∈ Rn, calculate

xTQ(λλλ)x = xT
(r∑
i=1

λiQi

)
x

=
r∑
i=1

λix
TQix

≥ 0 since Qi is a PSD matrix for all i = 1, . . . , r.

Based on the proposition above, matrix Q(λλλ) is PSD for every λλλ ∈ Λ′.

We have found four prominent algorithms to solve MOQP (3.13) with a

polyhedral feasible set X . We present them chronologically in the order they have

been published. All algorithms but one make use of the Karush-Kuhn-Tucker (KKT)

optimality conditions applied to problem (3.14) that is treated as a par-SOP with the

110

parameter λλλ. Since this par-SOP is convex, the KKT conditions are also sufficient

and guarantee the optimality. However, in each of the three algorithms, the KKT

conditions are differently processed.

In this section, to stay in agreement with the terminology used by the au-

thors of the presented algorithms, we use the term “multiparametric” whenever we

refer to a vector parameter.

3.3.1 The active set method [57]

In the active set method the MOQP has the feasible set in the form

X = {x ∈ Rn : A1x− b1 5 000, A2x− b2 = 000},

where A1 ∈ Rm1×n, A2 ∈ Rm2×n, and x is a free variable. It is assumed that the matrix

Q(λλλ) is positive-definite (PD) for each λλλ ∈ {λλλ ∈ Rr−1 : λi > 0,
∑r−1

i=1 λi < 1} and

the rows of matrix [AT1 AT2]T are linearly independent. Using the KKT conditions,

the explicit analytical primal and dual parametric solutions to problem (3.14) are

computed for any value of λλλ ∈ Λ′, and the initial set of active constraints at the

primal solution is identified. A new set of active constraints is found by computing

an allowable increase in λλλ which determines a subset of Λ′ for which new explicit

analytical primal and dual parametric solutions are computed.

111

3.3.2 The multiparametric pivoting method [64]

The multiparametric pivoting method can be applied to MOQPs with one

quadratic objective function and any number of linear objective functions. The fea-

sible set comes in the form

X = {x ∈ Rn : A1x− b1 5 000, A2x− b2 = 000,x− xu 5 0,x− xl = 0},

where xu and xl ∈ Rn are upper and lower bounds respectively. The KKT optimality

conditions applied to the original SOP are reduced to a system of linear parametric

equations whose solutions are functions of λλλ ∈ Λ′ and also the (weakly) efficient

solutions of the original MOQP. The system is solved with a parametric pivoting

procedure that requires a basis matrix to be constant rather than parametric and

therefore this method cannot handle more than one quadratic objective function.

3.3.3 The approximation method [92]

In the approximation method, MOQPs have the feasible set of the form

X = {x ∈ Rn : Ax− b 5 000},

where A ∈ Rm×n and b ∈ Rm. In this method, matrices Qi, i = 1, . . . , r are assumed

to be PD and r−1 objective functions are approximated by auxiliary affine functions

that are constructed based on the first order Taylor expansion of the original r − 1

functions. The original MOQP is scalarized with the εεε-constraint method in which

the affine functions are put in the εεε-constraints.

112

3.3.4 The mpLCP method [3]

The multiparametric linear complementarity problem (mpLCP) method solves

the MOQP by solving the mpLCP resulting from applying the KKT conditions to

problem (3.14) with the feasible set defined as

X = {x ∈ Rn : Ax− b 5 000,x = 000}. (3.16)

To obtain the mpLCP one proceeds as follows. The inequality constraints in

X are first converted into equality constraints Ax + s = b by adding a slack variable

s = 000. The KKT conditions yield the following system of equations with nonnegative

variables:  s

u2u2u2

−
 000 −A

AT Q(λλλ)


u1u1u1

x

 =

 b

p(λλλ)


[
s u2u2u2

]u1u1u1

x

 = 000

 s

u2u2u2

 ,
u1u1u1

x

 = 000,

(3.17)

where u1u1u1 and u2u2u2 are the dual variables associated with the linear constraint and

the nonnegativity constraint respectively. Defining M(λλλ) =

 0 −A

AT Q(λλλ)

, q(λλλ) =

 b

p(λλλ)

, w =

 s

u2u2u2

, z =

u1u1u1

x

, we obtain the mpLCP

113

w−M(λλλ)z = q(λλλ)

wTz = 0

w, z = 000,

(3.18)

where the elements of matrix M(λλλ) ∈ Ω(n+m)×(n+m) and vector q(λλλ) ∈ Ω(n+m) are

affine functions of λλλ, λλλ ∈ Λ′, from a set Ω = {αααTλλλ + β : ααα ∈ Rr−1, β ∈ R}. Since

Qi are PSD for all i = 1 . . . , r, it is easy to verify that M(λλλ) is PSD for each λλλ ∈

Λ′. Solving the MOQP reduces to solving the mpLCP with parameters in general

locations. The first ever algorithm to solve this class of LCPs was only recently

developed in [3]. In the algorithm, the parameter space Λ′ is partitioned into r − 1

dimensional invariancy regions over which the mpLCP solution functions w(λλλ) and

z(λλλ) are computed as functions of λλλ. The method consists of two phases. In Phase I,

an initial r−1 dimensional invariancy region in Λ′ is found. In Phase II, a partition of

Λ′ is found by considering the invariancy regions only of dimension (r− 2) or (r− 1).

Given the mpLCP optimal solution functions, (w(λλλ), z(λλλ)), for the invariancy regions

discovered, the optimal solution functions x(λλλ) to problem (3.14), and at the same

time, the (weakly) efficient solution functions to MOQP (3.13) are obtained.

3.3.5 Comparison

To compare the four methods we apply the following criteria: (i) the num-

ber of quadratic objective functions in (3.13); (ii) special assumptions made; (iii) the

type of solutions, exact or approximate, computed; and (iv) the type of scalarization

used. We note that all but the multiparametric pivoting method can handle MO-

QPs with any number of quadratic functions. However, the active set method uses

114

explicit formulas for the primal and dual parametric solutions of problem (3.14) and

is numerically very costly. The approximation method is flexible since it can also be

used with the εεε-constraint scalarization but, by design, it does not yield the exact so-

lutions. The active set method works under the linear independence condition which,

for example, may not allow one to include nonnegativity constraints in the feasible

set. As a result, we conclude that the mpLCP method emerges as a winner across

all four categories and the most universal approach to solving MOQPs. We use this

method to solve MOQPs in the remaining part of this paper.

3.3.6 Example 1

We illustrate the mpLCP method on an example problem. Consider MOQP

(3.13) with three quadratic objective functions and the feasible set in form (3.16)

with the following data:

Q1 =


1 −1 −1

−1 7 −1

−1 −1 3

 , Q2 =


7 −5 0

−5 5 1

0 1 1

 , Q3 =


4 3 1

3 4 0

1 0 2

 .

p1 =


−1

1

1

 , p2 =


0

0

1

 , p3 =


−1

−2

0

 .

A =

−1 1 0

2 −2 1

 , b =

0

1

 .
115

We calculate

Q(λλλ) = λ1Q1 + λ2Q2 + (1− λ1 − λ2)Q3

=


−3λ1 + 3λ2 + 4 −4λ1 − 8λ2 + 3 −2λ1 − λ2 + 1

−4λ1 − 8λ2 + 3 3λ1 + 2λ2 + 4 −λ1 + λ2

−2λ1 − λ2 + 1 −λ1 + λ2 λ1 − λ2 + 2

 .

p(λλλ) = λ1p1 + λ2p2 + (1− λ1 − λ2)p3

=


λ2 − 1

3λ1 + 2λ2 − 2

λ1 + λ2

 .

116

where Λ′ = {λλλ ∈ R2 : λ1, λ2 ≥ 0, λ1 +λ2 ≤ 1}. The associated mpLCP given in (3.18)

is as follows:

w−



0 0 1 −1 0

0 0 −2 2 −1

−1 2 −3λ1 + 3λ2 + 4 −4λ1 − 8λ2 + 3 −2λ1 − λ2 + 1

1 −2 −4λ1 − 8λ2 + 3 3λ1 + 2λ2 + 4 −λ1 + λ2

0 1 −2λ1 − λ2 + 1 −λ1 + λ2 λ1 − λ2 + 2


z =



0

1

λ2 − 1

3λ1 + 2λ2 − 2

λ1 + λ2



wT z = 0

w, z = 0.

Using the mpLCP method coded in MATLAB [3], four invariancy regions in the

parameter space and the associated efficient solutions are computed and given in

Supplementary Table 3.4. Figure 3.1 depicts the invariancy regions in the parameter

space Λ′ for the efficient solution functions x(λ1, λ2), and Figure 3.2 depicts the Pareto

set in the three-dimensional objective space. In Figure 2 (as well as in Figures 3.6

and 3.7 in Section 3.4), the points in the Pareto set were obtained by mapping the

points in the parameter space into the decision space and then into the objective

space. The colors help to see the parts of the Pareto set that are associated with

particular invariancy regions in Figure 3.1 (or Figure 3.5 in Section 3.4).

In the next section, we merge the two lines of investigation presented in

Sections 3.2 and 3.3 to study multiobjective portfolio optimization. We use the mod-

ified hybrid problem for scalarization, solve the resulting par-SOP with the mpLCP

method and discuss the benefits of this approach in comparison to the classical

weighted-sum approach.

117

λ1

λ2

Figure 3.1: Invariancy regions in the parameter space for Example 1

3.4 Portfolio Optimization with Multiple Quadratic

Objective Functions

The Markowitz mean-variance portfolio optimization problem [84] can be

formulated as an MOQP. The problem involves minimizing quadratic objective func-

tions modeling the variance of return and other measures of risk [22] and maximizing

linear functions such as the expected return, liquidity, growth in sales, sustainability,

and others [45, 64]. The goal is to find the set of efficient portfolios and the set of

their Pareto performances.

Consider the multiobjective portfolio optimization problem (MOPOP) with

s quadratic functions and r − s linear functions:

min
[

1
2
xTQ1x,

1
2
xTQ2x, . . . ,

1
2
xTQsx,−pppTs+1x,−pppTs+2x, . . . ,−pppTr x

]

s.t. x ∈ X = {x ∈ Rn : 1Tx− 1 = 0,x = 000},

(3.19)

118

Figure 3.2: The Pareto set in the three-dimensional objective space for Example 1

where Qi ∈ Rn×n, i = 1, . . . , s, pj ∈ Rn, j = s + 1, . . . , r, 1 ∈ Rn is a vector of ones.

The components of decision variable x ∈ Rn are defined as the proportions of capital

to be allocated to different securities, and the linear constraint models the investment

of the entire capital.

As discussed in Section 3.1, in the literature, the MOPOP (3.19) with only

one quadratic function has been solved so far, that is, the efficient and Pareto sets

have been computed. Using the mpLCP method, we can now solve this problem with

any number of quadratic functions. To apply the mpLCP method, MOPOP needs to

be scalarized, which can be accomplished with any of the scalarizations presented in

Section 3.2. In Section 3.4.1, we apply the modified hybrid method and, in order to

gain more insight into the MOPOP, we first solve the resulting par-SOP analytically.

In Section 3.4.2, we solve this par-SOP numerically with the mpLCP method. We

119

then scalarize the MOPOP with the weighted-sum method and solve the resulting

par-SOP also with the mpLCP method. Finally, we compare the numerical solutions

obtained from solving the two par-SOPs.

3.4.1 Analytical Solution to the Modified Hybrid Problem

for the MOPOP

To obtain an analytical solution to MOPOP (3.19) we make the following

assumptions.

Assumption 3.4.1. 1. Matrix Qi is symmetric and PD for all i = 1, . . . , s.

2. Vectors pppj and 1 are linearly independent for all j = s+ 1, . . . , r.

The modified hybrid problem with the inequality constraints for MOPOP

(3.19) assumes the form of a parametric QP (par-QP)

σ̂(γγγ, εεε) = min 1
2
xTQ(γγγ)x

s.t. x ∈ X ≤h (εεε) =
{
x ∈ Rn : −pppTj x ≤ εj, j = s+ 1, . . . , r,1Tx = 1,x = 000

}
,

(3.20)

where γγγ ∈ Γ′ =
{
γγγ ∈ Rs−1 : γγγ ≥ 000,

∑s−1
i=1 γi ≤ 1

}
, εεε ∈ E≤h =

{
εεε ∈ Rr−s : X ≤h (εεε) 6= ∅

}
,

and Q(γγγ) =
∑s−1

i=1 γiQi +
(
1−

∑s−1
i=1 γi

)
Qs is an n× n symmetric PD matrix for γγγ ∈

Γ′.

By definition of E≤h , par-QP (3.20) is feasible for all (γγγ, εεε) ∈ Γ′ × E≤h . The

optimal solution to (3.20) includes a partition of the parameter space Γ′ × E≤h into

invariancy regions, and the optimal solution function x̂̂x̂x = x̂̂x̂x(γγγ, εεε) and the optimal

120

objective value functions σ̂(γγγ, εεε) for each region. Due to Assumption 3.4.1.1 and

based on Corollary 3.2.4.2.2, an optimal solution to problem (3.20) is efficient to

problem (3.19).

To keep the analysis simple, we assume that at optimality of problem (3.20)

for a subset Θ of the parameter space Γ′ × E≤h , all the inequality εεε-constraints are

active (i.e., all the investments bring the anticipated level of expected return) and all

the nonnegativity constraints are inactive (i.e., there are no zero investments).

Θ = {(γγγ, εεε) ∈ Γ′ × E≤h : x̂(γγγ, εεε) > 000,−pppTj x̂ = εj, j = s+ 1, . . . , r} (3.21)

Having the εεε-constraints active, based on Corollary 3.2.3.1.1, the optimality

of problem (3.20) with equality constraints x ∈ X =
h (εεε) =

{
x ∈ Rn : −pppTj x = εj, j =

s + 1, . . . , r,1Tx = 1,x = 000
}

has also been achieved. Applying the KKT optimality

conditions to par-QP (3.20) treated as a proper equality constrained problem (3.5),

we obtain the following system of parametric linear equations:

Q(γγγ)x−
∑r

j=s+1 wj(−pppj)− v1 = 000 (3.22)

εj − (−pppj)Tx = 0 j = s+ 1, . . . , r (3.23)

1− 1Tx = 0, (3.24)

where wj, j = s+ 1, . . . , r, and v are the dual variables associated with εεε-constraints

121

and the linear constraint respectively. Solving (3.22) for x, we get

x =
∑r

j=s+1wjQ(γγγ)−1(−pppj) + vQ(γγγ)−11. (3.25)

Substituting (3.25) into (3.23) and (3.24) yields another system of paramet-

ric linear equations

Ψ(γγγ)



ws+1

...

wr

v


=



ε1
...

εr

1


, (3.26)

where

Ψ(γγγ) =



pppTs+1Q(γγγ)−1ppps+1 pppTs+1Q(γγγ)−1ppps+2 . . . pppTs+1Q(γγγ)−1pppr −pppTs+1Q(γγγ)−11

pppTs+1Q(γγγ)−1ppps+2 pppTs+2Q(γγγ)−1ppps+2 . . . pppTs+2Q(γγγ)−1pppr −pppTs+2Q(γγγ)−11

...
...

. . .
...

...

pppTs+1Q(γγγ)−1pppr pppTs+2Q(γγγ)−1pppr . . . pppTr Q(γγγ)−1pr −pppTr Q(γγγ)−11

−pppTs+1Q(γγγ)−11 −pTs+2Q(γγγ)−11 . . . −pppTr Q(γγγ)−11 1TQ(γγγ)−11


is an (r − s+ 1)× (r − s+ 1) matrix, which we show is PD.

Proposition 3.4.2. Matrix Ψ(γγγ) is PD for γγγ ∈ Γ′.

Proof. Note that Ψ(γγγ) = MTQ(γγγ)−1M withM = [−ppps+1,−ppps+2, . . . ,−pppr,1] ∈ Rn×(r−s+1).

122

Let t ∈ Rr−s+1 such that t 6= 0, then

tTΨ(γγγ)t = tTMTQ(γγγ)−1Mt

= (Mt)TQ(γγγ)−1(Mt)

> 0,

where the inequality results from the facts that, under Assumption 3.4.1.2, Mt ∈

Rn \ {0}, and Q(γγγ)−1 exists and is PD for γγγ ∈ Γ′.

The solution to system (3.26) is given as



ŵs+1

...

ŵr

v̂


= Ψ(γ)−1



ε1
...

εr

1


(3.27)

and can be substituted into (3.25) to obtain a unique optimal solution x̂̂x̂x = x̂̂x̂x(γγγ, εεε)

to problem (3.20) and an efficient solution to MOPOP (3.19) in explicit parametric

form. Notice that x̂, ŵww and v̂ obtained from (3.25) and (3.27) are linear functions of

εεε and polynomial functions of γγγ.

We calculate the value of the objective function σ̂(γγγ, εεε) at the optimal solu-

tion x̂̂x̂x. Multiplying (3.22) by 1
2
xT we have

1
2
xTQ(γγγ)x = 1

2

(∑r
j=s+1 wjx

T (−pj) + vxT1
)
, (3.28)

123

and then using (3.23) and (3.24) we obtain

σ̂(γγγ, εεε) =
1

2

(r∑
j=s+1

ŵj(γγγ, εεε)εj + v̂(γγγ, εεε)

)
. (3.29)

Rewriting equation (3.29) we have σ̂(γγγ, εεε) = 1
2

[
εεε 1

]ŵww
v̂

 , and using (3.26) we cal-

culate

σ̂(γγγ, εεε) =
1

2

[
εεε 1

]
Ψ(γ)−1

εεε
1

 , (3.30)

which gives the value of the minimum weighted risk associated with the efficient

portfolio x̂̂x̂x = x̂̂x̂x(γγγ, εεε) for every (γγγ, εεε) ∈ Θ.

Note that σ̂ is a strictly convex quadratic function of εεε since Ψ(γ)−1 is PD.

Equating to zero the partial derivative of σ̂(γγγ, εεε) with respect to εj, j = s+1, . . . , r, we

calculate ε̂j from ∂σ̂(γγγ,εεε)
∂εj

= 0 and obtain ε̂j = ε̂j(γγγ), j = s+1, . . . , r, which is a function

representing the relationship between the parameters γi, i = 1, . . . , s−1, weighing the

risk objective functions and the parameters εj, j = s+ 1, . . . , r, determining the level

of the expected return.

Our analysis leads to two corollaries describing the meaning of the optimal

parametric solutions to par-QP (3.20) in the context of MOPOP (3.19).

Corollary 3.4.2.1. Let Assumption 3.4.1 hold and γγγ = γ̄γγ. The function x̂(γ̄γγ, εεε) is

the efficient portfolio to MOPOP (3.19) yielding the expected return εεε ∈ Θ(γ̄γγ) =

{(γγγ, εεε) ∈ Θ : γγγ = γ̄γγ} and generating the minimum weighted risk σ̂(γ̄γγ, εεε). The portfolio

x̂(γ̄γγ, ε̂εε), ε̂εε = arg minεεε∈Θ(γ̄γγ) σ̂(γ̄γγ, εεε), is the efficient portfolio that generates the lowest

minimum weighted risk σ̂(γ̄γγ, ε̂εε).

124

Corollary 3.4.2.2. Let Assumption 3.4.1 hold and εεε = ε̄εε. The function x̂(γγγ, ε̄εε) is the

efficient portfolio to MOPOP (3.19) yielding the expected return ε̄εε and generating the

minimum weighted risk of σ̂(γγγ, ε̄εε) for every γγγ ∈ Θ(ε̄εε) = {(γγγ, εεε) ∈ Θ : εεε = ε̄εε}.

We illustrate our observations on a triobjective example having the form of

MOPOP (3.19).

3.4.2 Example 2: A Triobjective Portfolio Optimization Prob-

lem

We apply the mpLCP method [3] to a portfolio optimization problem that we

scalarize with the modified hybrid method and with the weighted-sum method, and

compare the obtained efficient solutions. Consider the following triobjective portfolio

example with two quadratic objectives modeling two different types of risk and one

linear objective modeling the expected return.

min

[
f1(x), f2(x), f3(x)

]
=

[
1
2
xTQ1x,

1
2
xTQ2x,−pppT3 x

]
s.t. x ∈ X ,

(3.31)

where X = {x ∈ R3 : 1Tx− 1 = 0,x = 000}, and

Q1 =


1 0 −1

0 2 0

−1 0 2.5

 , Q2 =


3 −1 0

−1 4 1

0 1 3.5

 , ppp3 =


−13.5

20

16

 .

125

3.4.2.1 Solution with the modified hybrid method

Applying the modified hybrid method with the inequality constraint, the

resulting par-SOP assumes the form:

σ̂(γγγ, εεε) = min 1
2
xTQ(γ)x

s.t. x ∈ X ≤h (ε),
(3.32)

where X ≤h (ε) = {x ∈ R3 : −pppT3 x ≤ ε, 1Tx = 1,x = 000}, Q(γ) =


3− 2γ γ − 1 −γ

γ − 1 4− 2γ 1− γ

−γ 1− γ 7/2− γ

 ,
γ ∈ Γ′ = [0, 1] and ε ∈ E≤h = {ε ∈ R : X ≤h (ε) 6= ∅}.

To be able to solve this problem with the mpLCP method, we reformulate

the equality constraints into inequalities to have the form of Ax ≤ b(ε), where A =[
−ppp3 1 −1

]T
,b(ε) =

[
ε 1 −1

]T
, and 1 ∈ R3. We emphasize that any choice

of epsilon such that E≤h 6= ∅ is good since, by Corollary 3.2.2.1 (2), the optimal

solutions to (3.32) are efficient to (4.34). To obtain the bounds for ε that are consistent

with γ we use normalization such that εnor = ε−εmin
εmax−εmin , where εmin and εmax are

computed by solving two linear programs: εmin = min{−pT3 x : 1Tx = 1,x = 0}

and εmax = max{−pT3 x : 1Tx = 1,x = 0}. We obtain εmin = −20 and εmax = 13.5

and E≤h = {ε ∈ R : −20 ≤ ε ≤ 13.5} which models a maximum average gain of

20 and a maximum average loss of 13.5. Hence, εnor = ε+20
33.5

and E≤h can be written

as E = {εnor ∈ R : 0 ≤ εnor ≤ 1}. The parameter space can now be written as

Γ′ × E = {(γ, εnor) : γ ∈ [0, 1] and εnor ∈ [0, 1]}.

At optimality of problem (3.32), the parameter space is partitioned into four

126

invariancy regions IRi, i = 1, . . . , 4, that are depicted in Figure 3.3a. Since region IR3

is not visible, it is enlarged in Figure 3.3b (the colors in Figure 3.3b are lighter than in

Figure 3.3a due to the magnification). The analytical descriptions of the invariancy

regions and the efficient solution functions are given in Supplementary Table 3.5. In

Figures 3.3a, 3.3b, and Supplementary Table 3.5, to keep the notation simple we write

ε but mean εnor. Note that in this example the reported optimal solution functions in

the invariancy regions IR3 and IR4 are identical, while the optimal solution functions

(ŵ(γ, εnor), ẑ(γ, εnor)) to the solved mpLCP, which are not reported, are not identical.

γ

ε

(a)

γ

ε

(b)

Figure 3.3: (a) Four invariancy regions IRi, i = 1, . . . , 4, in the parameter space of
Example 2 scalarized with the modified hybrid method (ε = εnorm); (b) Enlarged IR3.

Based on Corollaries 3.4.2.1 and 3.4.2.2 we analyze the obtained solutions in

two decision-making scenarios to examine the role of the parameters. The corollaries

can only be used for (γ, ε) ∈ Θ. Based on the obtained results reported in Supple-

mentary Table 3.5, x̂i(γ, ε
nor) > 0, i = 1, 2, 3 in the invariancy regions IR1, and IR2

but not in IR2 ∩ IR3. To check whether the ε−constraint is active we can proceed

in two different ways. We may quickly check the optimal value of the slack variable

s that was added to the the ε−constraint when problem (3.32) was reformulated to

an mpLCP, as described in Section 3.3.4. The ε−constraint is active in an invari-

127

ancy region if ŝ(γ, εnor) = 0 at optimality in this region. Alternatively, we adjust the

ε−constraint for εnor as follows

−pT3 x ≤ 33.5εnor − 20 (3.33)

and use the optimal solution functions listed in Supplementary Table 3.5 to examine

whether the inequality in (3.33) becomes active. We observe that the ε−constraint is

active in the invariancy regions IR2, IR3 and IR4. We obtain Θ = {(γ, ε) ∈ Γ′ × E :

(γ, ε) ∈ IR2 \ (IR2 ∩ IR3)}.

In the invariancy region IR1, ε is large enough so that the ε−constraint is not

active while the optimal solution in this region rightly does not depend on ε. How-

ever, Corollary 3.2.2.1 applies and this optimal solution is efficient to (4.34). We also

solved (3.32) for ε in the smaller interval of −20 ≤ ε ≤ 0.04 that we obtained by calcu-

lating f3(arg minx∈X f1(x)) = f3(0.56, 0.12, 0.32) = 0.04 and f3(arg minx∈X f2(x)) =

f3(0.46, 0.33, 0.21) = −3.66 and dropping −3.66 because the interval [−20,−3.66]

would not contain 0.04. The resulting partition of the parameter space is almost

the same as that depicted in Figure 3.3a with the only difference that the invariancy

regions cover proportionally different portions of this space because of a different

normalization formula ε+20
20.04

.

Due to the normalization we also have to adjust formula (4.36) to later

correctly calculate the optimal objective function. We have

σ̂(γ, εnor) = 1/2

[
(33.5εnor − 20) 1

]
Ψ(γ)−1

(33.5εnor − 20)

1

 , (3.34)

128

where Ψ(γ) =

 pppT3Q(γ)−1ppp3 −pppT3Q((γ)−11

−pppT3Q(γ)−11 1Q(γ)−11


and Ψ(γ)−1 = 2

(3314γ−41955)

 2(6γ2 + 36γ − 67) (192γ2 + 301γ − 491)

(192γ2 + 301γ − 491) (1415γ2 + 17977γ − 24029)

.

In the first scenario, assume that the decision maker (DM) applies equal

weights to both risk measures, that is, γ̄ = 0.5. Based on the solutions reported

in Figure 3.3a and Supplementary Table 3.5, the associated optimal solution x̂ =

x̂(0.5, εnor) passes through IR2 and is given in Table 3.1.

Table 3.1: Efficient solution functions for Example 2 and γ̄ = 0.5 in IR2

x̂(0.5, εnor) =

x ∈ R3 :

x1 = (21105εnor)/20149− 1116/20149

x2 = 23837/40298− (26197εnor)/40298

x3 = 18693/40298− (16013εnor)/40298

 for εnor ∈ (0.0529; 0.5051] in IR2.

Using (3.34), we calculate the optimal objective function:

σ̂(0.5, εnor) = 0.5

[
(33.5εnor − 20) 1

]95/20149 131/9024

131/9024 527/723


(33.5εnor − 20)

1


= (426455(εnor)2)/161192− (215405εnor)/80596 + 163947/161192,

which gives the minimum weighted risk assumed by the efficient solution x̂(0.5, εnor)

for each εnor ∈ (0.0529, 0.5051]. By Corollary 3.4.2.1, among these efficient portfo-

lios we find the one that yields the lowest minimum risk. We calculate ε̂nor(γ̄) =

ε̂nor(0.5) = 0.5051, and note that this efficient portfolio is located on the boundary

of IR2 with IR1 and is given by (x̂1, x̂2, x̂3) = (9/19, 5/19, 5/19). We then obtain

ε̂ = −3.0789 and the lowest minimum risk value of σ̂(γ = 0.5, ε̂ = −3.0789) = 0.3421.

The DM concludes that weighing the two types of risk equally, the proportions of the

129

capital allocated to the three securities (9/19, 5/19, 5/19) give the expected return of

3.0789 and assume the lowest minimum weighted risk of 0.3421. The DM can repeat

this scenario by weighing the risk with any value of γ̄ available in Θ and comput-

ing the associated efficient solution functions x̂(γ̄, ε) and the minimum weighted risk

value σ̂(γ̄, ε) for all ε ∈ Θ(γ̄), and identifying the efficient portfolio x̂(γ̄, ε̂) that yields

the lowest minimum risk.

In the second scenario, assume that the DM wants to investigate the model

hoping to make a much higher expected return of 9 which makes ε̄ = −9 and ε̄nor =

0.3284. The corresponding efficient solutions are located in IR2 and are listed in Table

3.2.

Table 3.2: Efficient solution functions for Example 2 and ε̄nor = 0.3284 in IR2

x̂(γ, 0.3284) =

x ∈ R3 :

x1 = (1204γ − 12230)/(3314γ − 41955)

x2 = (3080γ − 16775)/(3314γ − 41955)

x3 = (−970γ + 12950)/(3314γ − 41955)

 for γ ∈ [0, 1] in IR2.

We again use (3.34) to calculate the optimal objective function:

σ̂(γ, 0.3284) = −(1069γ2 − 18391γ + 26045)/(3314γ − 41955) for γ ∈ [0, 1],

(3.35)

which, by Corollary 3.4.2.2, gives the minimum risk of the efficient solution x̂(γ, 0.3284)

for each γ ∈ [0, 1]. The DM concludes that assuming the expected return of 9, the

proportions of the capital allocated to the three securities in the efficient portfolio

x̂(γ, 0.3284) give the minimum weighted risk calculated in (3.35) for γ ∈ [0, 1]. For

example, for γ̄ = 0.5, the minimum risk σ̂(0.5, 0.3284) = 0.4248, which is higher than

the risk in the first scenario, as expected. The DM can repeat the second scenario

130

by fixing the expected return at any value of ε̄ available in Θ and computing the

associated efficient solution functions x̂(γ, ε̄) and the minimum weighted risk value

σ̂(γ, ε̄) for any γ ∈ Θ(ε̄).

The Supporting Information section includes figures depicting the graphs of

all optimal solution functions for Example 2 solved with the modified hybrid method.

In all these figures, the colors match the colors used in Figure 3.3a to help the reader to

associate the invariancy regions with the corresponding parts of the function graphs.

The graph of the optimal objective function σ̂(γ, εnor) of problem (3.32), which is

the minimum weighted risk function for the efficient solutions to problem (4.34), is

depicted in Supplementary Figure 3.8. The graph of the optimal constraint function

−pT3 x̂(γ, εnor) for problem (3.32), which is a Pareto expected return function for prob-

lem (4.34), is depicted in Supplementary Figure 3.9. These graphs can be analyzed by

fixing one of the two parameters, either γ or ε and tracing the resulting path to obtain

the Pareto expected return for a given weighted risk or to get the minimum weighted

risk for a given expected return. One can also observe that for a fixed γ, the weighted

risk and expected return remain constant in IR1 (cf. x̂(0.5, εnor) = (9/19, 5/19, 5/19)

in IR1) but they both increase in the other regions, as expected. Figure 3.4 depicts

the graph of the optimal objective value function for problem (3.32) for γ̄ = 0.5 and

ε ∈ IR2 ∩ Θ(γ̄), which is a subset of the Pareto set of the biobjective problem for

which (3.32) is the ε-constraint scalarization. Supplementary Figures 3.10, 3.11, and

3.12 show the graphs of the optimal solution functions to problem (3.32), which are

the efficient portfolios to problem (4.34). In Supplementary Figures 3.8, 3.11, and

3.12, parts of the graphs have very steep gradients that cause numerical difficulties

and incomplete coloring.

131

ε

σ̂
(γ

=
0.

5,
ε)

Figure 3.4: Minimum weighted risk function for γ̄ = 0.5 and ε ∈ IR2 ∩ Θ(γ̄) for
Example 2 scalarized with the modified hybrid method

3.4.2.2 Solution with the weighted-sum method

Applying the weighted-sum scalarization to problem (4.34), the resulting

par-SOP assumes the form

min 1
2
xTQ(λλλ)x− (1− λ1 − λ2)pppT3 x

s.t. Ax 5 b

x = 000

(3.36)

with

Q(λλλ) =


λ1 + 3λ2 −λ2 −λ1

−λ2 2λ1 + 4λ2 λ2

−λ1 λ2 (5λ1)/2 + (7λ2)/2

 ,
λλλ ∈ Λ′ = {λλλ ∈ R2 : λ1, λ2 ≥ 0, λ1 + λ2 ≤ 1},

A =

 1 1 1

−1 −1 −1

 , and b =

 1

−1

 .

132

Solving problem (3.36) with the mpLCP method, we obtain the solution to

problem (4.34) in the form of four invariancy regions in the parameter space of (λ1, λ2)

(see Figure 3.5) and the associated efficient solution functions x(λ1, λ2). The analyti-

cal descriptions of the invariancy regions and the efficient solution functions are given

in Supplementary Table 4.8. Similar to the previous case, the reported optimal solu-

tions functions in the invariancy regions IR2 and IR3 are identical, while the optimal

solution functions (ŵ(λλλ), ẑ(λλλ)) to the solved mpLCP, which are not reported, are not

identical. Given these results, the DM may choose any feasible values of the weight-

ing parameters and compute the resulting efficient portfolio and its optimal objective

which, however, is not meaningful because different types of objective functions have

been aggregated into one objective. Obviously, the weighted-sum formulation does

not support the decision making process at the level the modified hybrid formulation

does.

λ1

λ2

Figure 3.5: Invariancy regions in the parameter space of Example 2 scalarized with
the weighted-sum method

133

3.4.2.3 Comparison

We now compare the results obtained when solving problem (4.34) with the

modified hybrid method and the weighted-sum method. Comparing Figures 3.3a and

3.5, and Supplementary Tables 3.5 and 4.8, we observe that the two partitions of

the parameters space and the analytical description of the efficient solution functions

are very different. Figures 3.6 and 3.7 depict the Pareto set in the three-dimensional

objective space of problem (4.34) obtained by solving problem (3.32) and problem

(3.36), respectively. To provide some evidence that the two graphs depict the same

Pareto set, we selected points A, B, C, and D in each graph (see Figures 3.6 and 3.7)

and report their coordinates in Table 3.3. Due to different computations the numbers

are not identical but very close to each other.

In Supplementary Table 4.8 we additionally observe that the denominator of

the efficient solutions x(λ) can reach zero for λ1 = λ2 = 0. To overcome this situation

when making the objective space graph using the weighted-sum method, we assumed

that λ1 = λ2 = δ > 0 where δ is a relatively small number.

Table 3.3: Coordinates of four Pareto points for Example 2 computed with the mod-
ified hybrid method and the weighted-sum method

Pareto point Modified hybrid method Weighted-sum method
A (1, 2, -20) (1, 2, -20)
B (0.557, 1.226, -18.32) (0.5558, 1.216, -18.27)
C (0.1728, 0.5299, -3.664) (0.1728, 0.5298, -3.664)
D (0.12, 0.6496, 0.04) (0.12, 0.6496, 0.04001)

134

Figure 3.6: The Pareto set for Example 2 solved with the modified hybrid method

3.5 Conclusion

In this Chapter, we focused on (strictly) convex MOPs and reviewed proper-

ties of three scalarization methods for such problems. Treating the resulting (strictly)

convex SOPs as parametric problems, we carried over the results from parametric

optimization that are relevant to the MOPs. We also proposed a modified hybrid

method, a variation of the hybrid scalarization, which is useful for MOPs whose ob-

jective functions come in groups. Believing that MOQPs make up an important class

of MOPs, we reviewed the-state-of-the-art-algorithms for solving convex MOQPs and

concluded that the mpLCP method [3] is currently the best method for computing

exact solutions to convex MOQPs.

Finally, we applied the modified hybrid scalarization and the mpLCP method

to a multiobjective portfolio optimization problem. The scalarization allows for a

135

Figure 3.7: The Pareto set for Example 2 solved with the weighted-sum method

parametric analysis that reveals interplay between two independent parameters: one

of them aggregates the quadratic risk functions and the other sets a level of the ex-

pected return. The mpLCP method can solve the portfolio problem with any number

of quadratic risk functions, a feature that has not yet been reported in the literature.

In our future research, we intend to apply the modified hybrid scalarization

and the mpLCP algorithm to other real-life decision problems that are modeled as

convex MOQPs and are likely to benefit from two independent scalarizing parameters.

136

Supporting Information

A Graphs of the optimal objective value functions for Exam-

ple 2 solved with the modified hybrid method

Figure 3.8: Optimal objective value function (minimum weighted risk) σ̂(γ, εnor) for
problem (3.32)

137

Figure 3.9: Pareto objective value function −pT3 x̂(γ, εnor) for problem (4.34)

138

B Graphs of the efficient solution functions for Example 2

solved with the modified hybrid method

Figure 3.10: Efficient solution function x̂1(γ, εnor) for problem (4.34)

Figure 3.11: Efficient solution function x̂2(γ, εnor) for problem (4.34)

139

Figure 3.12: Efficient solution function x̂3(γ, εnor) for problem (4.34)

C Parametric solutions for Example 1 and Example 2

Table 3.4: Invariancy regions and efficient solution functions for Example 1 scalarized
with the weighted-sum method

IR 1 =


λλλ ∈ Λ :

−(λ2 − 1)/(3λ2 − 3λ1 + 4) ≥ 0

(5λ2 − 3λ1 + 2)/(3λ2 − 3λ1 + 4) ≥ 0

−(λ2 − 1)/(3λ2 − 3λ1 + 4) ≥ 0

(14λ1 − 9λ2 + 7λ1λ2 − 9λ2
1 + 14λ2

2 − 5)/(3λ2 − 3λ1 + 4) ≥ 0

(2λ1 + 2λ2 + 2λ1λ2 − 3λ2
1 + 4λ2

2 + 1)/(3λ2 − 3λ1 + 4) ≥ 0



x̂(λλλ) =


x ∈ R3 :

x1 = −(λ2 − 1)/(3λ2 − 3λ1 + 4)

x2 = 0

x3 = 0


for λλλ ∈ IR 1

140

IR 2 =

λλλ ∈ Λ :

3λ1 − 5λ2 − 2 ≥ 0

λ2 − λ1 + 1 ≥ 0

3λ1 − 3λ2 ≥ 0



x̂(λλλ) =

x ∈ R3 :

x1 = 1/2

x2 = 0

x3 = 0

 for λλλ ∈ IR 2

IR 3 =



λλλ ∈ Λ :

−(28λ1λ2 − 10λ2 − 34λ1 + 21λ2
1 + 3λ2

2 + 7)/(24λ1 + 64λ2

−58λ1λ2 − 25λ2
1 − 61λ2

2 + 7) ≥ 0

−(44λ1 − 44λ2 + 2λ1λ2 − 17λ2
1 + 55λ2

2 − 21)/(24λ1 + 64λ2

−58λ1λ2 − 25λ2
1 − 61λ2

2 + 7) ≥ 0

−(35λ1λ2 − 19λ2 − 20λ1 + 12λ2
1 + 17λ2

2 + 2)/(24λ1 + 64λ2

−58λ1λ2 − 25λ2
1 − 61λ2

2 + 7) ≥ 0

−(14λ1 − 9λ2 + 7λ1λ2 − 9λ2
1 + 14λ2

2 − 5)(24λ1 + 64λ2

−58λ1λ2 − 25λ2
1 − 61λ2

2 + 7) ≥ 0

−(28λ1λ2 − 33λ2 − 26λ1 + 43λ1λ
2
2 − 15λ2

1λ2 + 14λ2
1 + 10λ3

1 − 37λ2
2

+58λ3
2 + 2)/(24λ1 + 64λ2 − 58λ1λ2 − 25λ2

1 − 61λ2
2 + 7) ≥ 0



x̂(λλλ) =


x ∈ R3 :

x1 = −(35λ1λ2 − 19λ2 − 20λ1 + 12λ2
1 + 17λ2

2 + 2)/(24λ1

+64λ2 − 58λ1λ2 − 25λ2
1 − 61λ2

2 + 7)

x2 = −(14λ1 − 9λ2 + 7λ1λ2 − 9λ2
1 + 14λ2

2 − 5)/(24λ1

+64λ2 − 58λ1x− 25λ2
1 − 61λ2

2 + 7)

x3 = 0


for λλλ ∈ IR 3

IR 4 =


λλλ ∈ Λ :

−(28λ1λ2 − 10λ2 − 34λ1 + 21λ2
1 + 3λ2

2 + 7)/(2(4λ1 + 6λ2 − 7)) ≥ 0

(3(λ1 + λ2 − 1))/(2(4λ1 + 6λ2 − 7)) ≥ 0

(3(λ1 + λ2 − 1))/(2(4λ1 + 6λ2 − 7)) ≥ 0

−(2λ1 + 11λ2 − 11λ1λ2 + λ2
1 − 12λ2

2 + 3)/(2(4λ1 + 6λ2 − 7)) ≥ 0


x̂(λλλ) =

x ∈ R3 :

x1 = (3(λ1 + λ2 − 1))/(2(4λ1 + 6λ2 − 7))

x2 = (3(λ1 + λ2 − 1))/(2(4λ1 + 6λ2 − 7))

x3 = 0

 for λλλ ∈ IR 4

141

Table 3.5: Invariancy regions and efficient solution functions in the parameter space
for Example 2 scalarized with the modified hybrid method (ε = εnor.)

IR 1 =


γ, ε ∈ [0, 1]× [0, 1] :

(1139γ + 4489ε− 2412γε− 402γ2ε+ 48γ2 − 2189) ≥ 0

(15γ2 − 86γ + 6γ3 + 71) ≥ 0

−17γ + 31 ≥ 0

−19γ + 22 ≥ 0

−3γ2 + 7 ≥ 0



x̂(γ, ε) =

x ∈ R3 :

x1 = (17γ − 31)/(36γ + 6γ2 − 67)

x2 = (19γ − 22)/(36γ + 6γ2 − 67)

x3 = (2(3γ2 − 7))/(36γ + 6γ2 − 67)

 for (γ, ε) ∈ IR 1

IR 2 =


γ, ε ∈ [0, 1]× [0, 1] :

−(1139γ + 4489ε− 2412γε− 402γ2ε+ 48γ2 − 2189) ≥ 0

−(23914γ − 32897ε+ 20167γε+ 12864γ2ε
−4850γ2 − 28418) ≥ 0

(688γ + 45091ε− 5762γε− 2576) ≥ 0

(1760γ − 18827ε− 14740γε+ 22957) ≥ 0

−(43γ + 196ε− 153γε− 161) ≥ 0



x̂(γ, ε) =


x ∈ R3 :

x1 = −(688γ + 45091ε− 5762γε
−2576)/(3314γ − 41955)

x2 = −(1760γ − 18827ε− 14740γε
+22957)/(3314γ − 41955)

x3 = (134(43γ + 196ε− 153γε
−161))/(3314γ − 41955)


for (γ, ε) ∈ IR 2

IR 3 =


γ, ε ∈ [0, 1]× [0, 1] :

(67γε)/32− (737ε)/64− γ/4 + 3/4 ≥ 0

3γ + (3283ε)/16− (67γε)/2− 11 ≥ 0

(2881γε)/64− (45091ε)/128− (43γ)/8 + 161/8 ≥ 0

1− (67ε)/8 ≥ 0



x̂(γ, ε) =

x ∈ R3 :

x1 = 0

x2 = 1− (67ε)/8

x3 = (67ε)/8

 for (γ, ε) ∈ IR 3

142

IR 4 =


γ, ε ∈ [0, 1]× [0, 1] :

(67γε)/32− (737ε)/64− γ/4 + 3/4 ≥ 0

(67γε)/32− (3283ε)/64− 3γ + 11 ≥ 0

(2881γε)/64− (45091ε)/128− (43γ)/8 + 161/8 ≥ 0

1− (67ε)/8 ≥ 0



x̂(γ, ε) =

x ∈ R3 :

x1 = 0

x2 = 1− (67ε)/8

x3 = (67ε)/8

 for (γ, ε) ∈ IR 4

143

Table 3.6: Invariancy regions and efficient solution functions for Example 2 scalarized
with the weighted-sum method

IR 1 =

λλλ ∈ Λ :

20− 24λ2 − 22λ1 ≥ 0

67/2− (77λ2)/2− (71λ1)/2 ≥ 0

4− 7λ2 − 6λ1 ≥ 0


x̂(λλλ) =

x ∈ R3 :
x1 = 0
x2 = 1
x3 = 0

 for λλλ ∈ IR 1

IR 2 =


λλλ ∈ Λ :

−(197λ1λ2 − 98λ2 − 82λ1 + 87λ2
1 + 111λ2

2) ≥ 0

−(1350λ1λ2 − 673λ2 − 587λ1 + 615λ2
1 + 735λ2

2) ≥ 0

−(3λ1 + 3λ2 − 8) ≥ 0

12λ1 + 14λ2 − 8 ≥ 0


x̂(λλλ) =

x ∈ R3 :
x1 = 0
x2 = −(3λ1 + 3λ2 − 8)/(9λ1 + 11λ2)
x3 = (12λ1 + 14λ2 − 8)/(9λ1 + 11λ2)

 for λλλ ∈ IR 2

IR 3 =


λ ∈ Λ :

(197λ1λ2 − 98λ2 − 82λ1 + 87λ2
1 + 111λ2

2) ≥ 0

−(1350λ1λ2 − 673λ2 − 587λ1 + 615λ2
1 + 735λ2

2) ≥ 0

−(3λ1 + 3λ2 − 8) ≥ 0

6λ1 + 7λ2 − 4 ≥ 0


x̂(λλλ) =

x ∈ R3 :
x1 = 0
x2 = −(3λ1 + 3λ2 − 8)/(9λ1 + 11λ2)
x3 = (12λ1 + 14λ2 − 8)/(9λ1 + 11λ2)

 for λλλ ∈ IR 3

144

IR 4 =


λ ∈ Λ :

1426λ1λ
2
2 − 681λ1λ2 + 791λ2

1λ2 + 2λ2
1 + 10λ3

1 − 491λ2
2 + 633λ3

2 ≥ 0

1350λ1λ2 − 673λ2 − 587λ1 + 615λ2
1 + 735λ2

2 ≥ 0

−(732λ1λ2 − 281λ2 − 501λ1 + 495λ2
1 + 237λ2

2) ≥ 0

−(211λ1λ2 − 196λ2 − 43λ1 + 35λ2
1 + 182λ2

2) ≥ 0



x̂(λλλ) =


x ∈ R3 :

x1 = (1350λ1λ2 − 673λ2 − 587λ1

+615λ2
1 + 735λ2

2)/(2(98λ1λ2 + 25λ2
1 + 67λ2

2))
x2 = −(732λ1λ2 − 281λ2 − 501λ1

+495λ2
1 + 237λ2

2)/(2(98λ1λ2 + 25λ2
1 + 67λ2

2))
x3 = −(211λ1λ2 − 196λ2 − 43λ1

+35λ2
1 + 182λ2

2)/(98λ1λ2 + 25λ2
1 + 67λ2

2)


for λλλ ∈ IR 4

145

Chapter 4

On Solving Parametric MOQPs

with Parameters in General

Locations

[The contents of this chapter include material from the paper entitled “On solving

parametric multiobjective quadratic programs with parameters in general locations” which

has been submitted to Annals of Operations Research, and the authors are Pubudu L.W.

Jayasekara, Andrew Pangia and Margaret M. Wiecek.]

4.1 Introduction

Many real-life problems in engineering, business, and management are character-

ized by multiple conflicting criteria such as cost, performance, reliability, safety, productiv-

ity, affordability, and the field of multiobjective optimization provides models, theories and

146

methods to address these types of applications [44]. In addition to conflict between objective

functions, uncertainty (from unknown or imprecise data, inaccurate measurements, or inad-

equate models) is another important characteristic of many real-life decision problems. In

the operations research literature, there are three classical paradigms to model uncertainty:

probabilistic, possibilistic, and deterministic. The latter approach, using crisp sets to define

domains within which uncertainties vary, has given foundation to robust optimization and

parametric optimization.

In addition to constants and variables, a parametric optimization problem also

contains parameters which model uncertainty because their values are neither known nor

unknown, and not being solved for. Parameters fundamentally change the problem: the

parametric single objective program (mpSOP) is solved to obtain a solution vector-valued

function and the corresponding optimal value function, both of which map the parameters to

the solution space. In contrast, the nonparametric SOP is solved to obtain a specific solution

vector and corresponding optimal value. Similarly, the parametric multiobjective program

(mpMOP) is solved to obtain a parametrized collection of efficient (Pareto) sets, as opposed

to a specific efficient (Pareto) set. Parametric multiobjective optimization offers a bridge

to robust multiobjective optimization, which uses various concepts to yield robust efficient

solutions arguably preferred under the conditions of uncertainty. Since robust efficient

solutions correspond to specific values of uncertainty, the robust approach is subsumed in

the parametric approach and the latter emerges as a more universal methodology [127].

Studies on mpMOPs go back to 1979 when Naccache [90] examined the stability

of solution sets due to perturbations in the feasible set. Since then, researchers have worked

on parametrization of feasible sets, objective functions and domination structures, and

related stability properties [13, 49, 67, 82, 94, 95, 110]. Parametric linear programs are

analyzed in [16, 17], while the polyhedral structure of the efficient set for such problems is

more recently examined in [51, 120]. Theoretical works have been accompanied by applied

147

studies. Methods to compute a family of solution sets for unconstrained problems with a

scalar parameter are developed in [36, 132, 75] and applied to mechatronic systems in which

the parameter plays the role of time [133]. The theoretical framework for a solution method

based on a technique which subdivides the solution and parameter spaces is proposed in

[108]. In engineering design, genetic algorithms are tailored to the parametric case to allow

for design exploration in the presence of exogenous factors [55, 62].

Independently of parametric multiobjective optimization, parametrization of the

efficient set of MOPs can be conducted as a result of treating scalarized MOPs as mpSOPs

[128]. This point of view is theoretically examined in [50, 58] and used for computational

work in [63, 65, 68, 107, 117] to obtain different types of parametric descriptions of the

efficient set for MOPs arising in portfolio optimization. In [92], such a description is obtained

for multiobjective quadratic programs (MOQPs) whose objective functions are linearized.

While theoretical and computational studies on mpMOPs have been steadily pro-

gressing, the latter have been rather limited despite the fact that parametric optimization

can provide a complete parametric description of the efficient set regardless of uncertainty

in the model. Because mpMOPs can be solved before their efficient sets are actually needed,

in time-sensitive situations, the only computations required are function evaluations at the

specific parameter values stemming from the situation. This benefit, however, comes at

the cost of the increased computational complexity which parametric optimization causes.

This paper puts forward the premise that parametrization of the efficient set can naturally

be combined with solving mpMOPs because the algorithms performing the former can also

be used to achieve the latter. The purpose is to examine the state-of-the-art in algorith-

mic development for parametric multiobjective quadratic programs (mpMOQPs). Based

on this premise, mpMOQPs are scalarized to be solved as parametric (single objective)

quadratic programs by means of suitable algorithms designed for this class of problems.

We develop a generalized weighted-sum scalarization method that subsumes several estab-

148

lished scalarizations and leads to several related SOPs that can be matched with different

solution algorithms. In a computational study, we compare the performance of three para-

metric optimization algorithms on mpQPs with linear and/or quadratic constraints that

result from different scalarizations. The algorithms are also applied to mpMOQPs model-

ing decision-making problems in statistics and portfolio optimization. By means of these

applications, the interplay between the scalarizations is disclosed and additional insight into

the parametric efficient solution sets is obtained.

The paper is structured as follows. In Section 4.2, we formulate the mpMOQP and

define solution concepts. The generalized weighted-sum method and related scalarizations

for MOPs are developed in Section 4.3. In the subsequent two sections we present algorithms

for solving different types of mpQPs that result from various scalarizations of mpMOQPs.

In Section 4.4 we provide algorithms for mpQPs with linear constraints and results from

computational tests performed on synthetic problems are included. Section 4.5 contains the

applications and the paper is concluded in Section 4.6.

4.2 Problem Statement

We define the mpMOQP and the solution concepts used to solve this class of

problems. We also introduce the assumptions that are needed by the solution algorithms

we present in the subsequent sections.

Let κ, n, r, r̃ ∈ N, r̃ ≤ r, and Rκ,Rn,Rr be Euclidean spaces that are related to the

parameter space, decision or solution space, and objective or outcome space, respectively.

Let Θ ⊆ Rκ be a parameter space, X : Rκ → Rn be a point-to-set map such that X (Θ) ⊆ Rn

149

and X (θθθ) 6= ∅ for all θθθ ∈ Θ. We investigate the following mpMOQP:

min
x

f(x;θθθ) = [f1(x;θθθ) =
1

2
xTQ1(θθθ)x + pT1 (θθθ)x + c1(θθθ), . . . , fr̃(x;θθθ) =

1

2
xTQr̃(θθθ)x + pTr̃ (θθθ)x + cr̃(θθθ),

fr̃+1(x;θθθ) = pTr̃+1(θθθ)x + cr̃+1(θθθ), . . . , fr(x;θθθ) = pTr (θθθ)x + cr(θθθ)]

(MOQP(θθθ))

s.t. x ∈ X (θθθ) = {x ∈ Rn : A(θθθ)x 5 bbb(θθθ),x = 0}

θθθ ∈ Θ,

where A : Θ → Rm×n, bbb : Θ → Rm. The vector valued-objective f : Rn × Θ → Rr

is composed of functions fi : Rn × Θ → R such that Qi : Θ → Rn×n, pi : Θ → Rn

and ci : Θ → R for all i = 1, . . . , r. The vector of parameters θθθ models quantities that

are unknown due to lack of knowledge at the time of the MOP construction. Examples

include road capacity, interest rate, selling price, air humidity, material density or other

application-specific values. Throughout this paper we make the following assumptions.

Assumption 4.2.1. 1. The parameter space Θ ⊆ Rκ is a nonempty compact and poly-

hedral set.

2. The feasible set X (θθθ) for all θθθ ∈ Θ is nonempty compact and convex set.

To perform optimization, we need to be able to compare the outcomes of MOQP(θθθ).

Definition 4.2.2. 1. Let θθθ ∈ Θ and x1,x2 ∈ X (θθθ). Then f(x1;θθθ)(<)(5) ≤ f(x2;θθθ)

if and only if fi(x
1;θθθ)(<) ≤ fi(x

2;θθθ) for all i = 1, . . . , r, where ≤ requires strict

inequality for at least one index i, while 5 allows equality for all i.

2. Let x1,x2 ∈ X (Θ) and i ∈ {1, . . . , r}. Then fi(x
1;θθθ) ≤ fi(x

2;θθθ) if and only if

fi(x
1;θθθ) ≤ fi(x2;θθθ) for all θθθ ∈ Θ.

3. Let x1,x2 ∈ X (Θ). Then f(x1;θθθ)(<)(5) ≤ f(x2;θθθ) if and only if f(x1;θθθ)(<)(5) ≤

f(x2;θθθ) for all θθθ ∈ Θ.

150

Solving MOQP(θθθ) for a fixed parameter θθθ = θ̄θθ ∈ Θ is defined as finding the set of (weakly)

efficient solutions.

Definition 4.2.3. A feasible solution x̂ ∈ X (θ̄θθ) is called (weakly) efficient to MOQP(θθθ) for

θθθ = θ̄θθ ∈ Θ if there exists no other solution x ∈ X (θ̄θθ) such that f(x; θ̄θθ)(<) ≤ f(x̂; θ̄θθ). Let

X (w)E(θ̄θθ) denote the set of (weakly) efficient solutions for θθθ = θ̄θθ.

We assume that XE(θ̄θθ) 6= ∅ for each θ̄θθ ∈ Θ. Solving MOQP(θθθ) for all θθθ ∈ Θ is defined as

finding the (weakly) efficient set XE(θθθ) ⊆ X (θθθ) for each θθθ ∈ Θ.

Definition 4.2.4. The set X (w)E ⊆ X (Θ), defined as the collection of the (weakly) efficient

sets X (w)E(θθθ), X (w)E := {X(w)E(θθθ)}θθθ∈Θ, is called the set of (weakly) efficient solutions to

MOQP(θθθ) for all θθθ ∈ Θ.

For each θθθ ∈ Θ, we define the attainable set, Y (θθθ), as the image of the feasible

set X (θθθ) under the vector-valued objective function mapping f

Y (θθθ) := {y ∈ Rr : y = f(x, θθθ),x ∈ X (θθθ)}.

The image of a (weakly) efficient solution to MOQP(θθθ) for θθθ = θ̄θθ ∈ Θ is called a (weak)

Pareto outcome. Let Y(w)P (θ̄θθ) denote the set of all (weak) Pareto outcomes for θθθ = θ̄θθ ∈ Θ.

Definition 4.2.5. The set Y(w)P ⊆ Rr, defined as the collection of the (weak) Pareto sets

Y(w)P (θθθ), Y(w)P := {Y(w)P (θθθ)}θθθ∈Θ, is called the set of (weak) Pareto outcomes to MOQP(θθθ)

for all θθθ ∈ Θ.

Scalarization methods can reformulate MOQP(θθθ) into mpSOPs using parameters

that are specific to each method. In effect, the resulting mpSOPs have two types of param-

eters, those from the original model, θθθ, and the auxiliary parameters, εεε and λλλ, needed for

scalarization. We refer to the former as modeling parameters and to the latter as scalar-

ization parameters. We further discuss the scalarization parameters in Section 4.3. The

151

mpSOPs are solved with parametric optimization algorithms that partition the augmented

parametric space into subsets called invariancy regions (critical regions or validity sets) and

compute optimal solution functions defined on these regions. Under some conditions, the

latter can provide the efficient solution functions making up the set X(w)E for the original

MOQP(θθθ).

Based on the state of the art in parametric optimization, we believe that the

weighted-sum scalarization, epsilon-constraint scalarization, and their variations are the

most useful for solving mpMOQPs. In the next section, therefore, we propose a generalized

weighted sum scalarization for the nonparametric MOP and reduce it to a variety of SOPs

whose optimal solutions are at least weakly efficient to the MOP. We then apply these

scalarizations to mpMOQPs with suitable parametric optimization algorithms.

4.3 Generalized weighted sum scalarization

[This section is written jointly with Andrew Pangia and Margaret M. Wiecek.]

In this section, to keep the notation simple we depart from the parametric setting,

and deal with a standard (nonparametric) MOP to prepare the ground for the algorithms

we present in subsequent sections. We develop a weighted-sum scalarization encompassing

several other scalarizing approaches. This scalarization employs several sets of parameters

whose interplay allows for formulating variants of SOPs that will be useful for scalarizing

mpMOQPs.

In this section only, let g : Rn → Rr denote the vector-valued objective function

and let X ⊆ Rn denote the feasible set. Then consider the MOP

min
x∈X

[g1(x), g2(x), . . . , gr(x)] (MOP)

152

and define the following sets and parameters for the index set {1, . . . , r}.

Definition 4.3.1. Let t ∈ N, t ≤ r. Let the index set {1, . . . , r} be given. Define t+ 1 sets

J , J1, . . . , Jt, where J ⊆ {1, . . . , r}, Jj ⊆ {1, . . . , r} for j = 1, . . . , t. Define the sets of

parameters

Λ :=

{
λλλ ∈ R|J | : λi ≥ 0, i ∈ J,

∑
i∈J

λi = 1

}

and

M j :=

µµµj ∈ R|Jj | : µji ≥ 0, i ∈ Jj ,
∑
i∈Jj

µji = 1


for all j = 1, . . . , t. For convenience, also define

µµµ :=

[
µµµ1, . . . ,µµµt

]
∈M := M 1 × · · · ×M t.

Making use of Definition 4.3.1, consider another MOP in which every objective

function is a weighted sum of the objective functions corresponding to each subset:

min
x∈X

∑
i∈J

λigi(x),
∑
i∈J1

µ1
i gi(x), . . . ,

∑
i∈Jt

µtigi(x)

 (MOP’)

These two MOPs have the following relationship.

Proposition 4.3.2. Let (MOP) be convex. Then x̂ ∈ X is a weakly efficient solution to

(MOP) if and only if x̂ is a weakly efficient solution to (MOP’) for some λλλ ∈ Λ and µµµ ∈M .

Proof. Let x̂ ∈ X be a weakly efficient solution to (MOP). Then, by [56], x̂ is an optimal

solution to the SOP

min
x∈X

r∑
i=1

γigi(x) (4.1)

for some γγγ ∈ Γ, where Γ := {γγγ ∈ Rr : γi ≥ 0, i = 1, . . . , r,
∑r

i=1 γi = 1} . Consider now the

153

following weighted sum problem which derives from (MOP’):

min
x∈X

ρ0

∑
i∈J

λigi(x) + ρ1

∑
i∈J1

µ1
i gi(x) + · · ·+ ρt

∑
i∈Jt

µtigi(x), (4.2)

where

ρρρ := [ρ0, ρ1, . . . , ρt] ∈ P :=

{
ρρρ ∈ Rt+1 : ρi ≥ 0, i = 1, . . . , t+ 1,

t∑
i=0

ρi = 1

}
. (4.3)

If one can find ρρρ, λλλ, and µµµ such that x̂ is an optimal solution to (4.2), then, by [56], x̂ will

equivalently be weakly efficient to (MOP’). Similar to the proof of Theorem 4 in [68], take

ρ0λi = γi, i ∈ J

ρjµ
j
i = γi, i ∈ Jj , j = 1, . . . , t

which ensures that ρρρ ∈ P as defined in (4.3). Then, x̂ is an optimal solution to (4.2), and

equivalently, it is a weakly efficient solution to (MOP’).

Depending on the definitions of the sets J and Jj , j = 1, . . . , t, different variants

of (MOP’) can be formulated and different SOPs obtained, which may be useful depending

on the needs of the optimization solver being used or the context of the decision situation

being modeled. Below six scalarizations are listed among which the first four are already

established in the literature and whose optimal solutions are known to be (weakly) efficient

to (MOP’) and, by Proposition 4.3.2, are also weakly efficient to (MOP). Because scalar-

izations (4.8) and (4.9) are new, in the subsequent propositions their relationships with

(MOP) are examined.

Corollary 4.3.2.1. Let (MOP) and (MOP’) be given, and the sets J and Jj, j = 1, . . . , t

be defined as in Def. 4.3.1. Let E be a hypercube contained in a Euclidean space of the

dimension as specified below.

154

1. Taking J = {1, . . . , r} converts (MOP’) into the weighted sum SOP associated with

(MOP) [56]:

min
x∈X

r∑
i=1

λigi(x) (4.4)

s.t. λλλ ∈ Λ ⊆ Rr.

2. Let J = {i}, Jj = {j} for all j = 1, . . . , r, j 6= i. Then the ε-constraint scalarization

converts (MOP’) into the εεε-constraint SOP i, i = 1, . . . , r, associated with (MOP)

[59]:

min
x∈X

gi(x)

s.t. gj(x) ≤ εj , j = 1, . . . , r, j 6= i (4.5)

εεε ∈ E ⊆ Rr−1.

3. Let J = {1, . . . , r}, Jj = {j} for all j = 1, . . . , r. Then the ε-constraint scalarization

converts (MOP’) into the hybrid SOP associated with (MOP) [58]:

min
x∈X

r∑
i=1

λigi(x)

s.t. gj(x) ≤ εj , j = 1, . . . , r (4.6)

λλλ ∈ Λ ⊆ Rr, εεε ∈ E ⊆ Rr.

4. Let p ∈ N, p < r, J ⊂ {1, . . . , r}, |J | = p, Jj = {j} for all j /∈ J . Then the ε-

constraint scalarization converts (MOP’) into the modified hybrid SOP associated

155

with (MOP) [68]:

min
x∈X

∑
i∈J

λigi(x)

s.t. gj(x) ≤ εj , j /∈ J (4.7)

λλλ ∈ Λ ⊆ Rp, εεε ∈ E ⊆ Rr−p.

5. If 0 ≤ t < r, and J and Jj are defined as in Def. 4.3.1, then the ε-constraint

scalarization converts (MOP’) into a variant of the hybrid SOP called the weighted

hybrid SOP:

min
x∈X

∑
i∈J

λigi(x)

s.t.
∑
i∈Jj

µjigi(x) ≤ εj , j = 1, . . . , t (4.8)

λλλ ∈ Λ ⊆ R|J |, µµµ ∈M , εεε ∈ E ⊆ Rt.

6. Let p ∈ N, p < r, J ⊆ {1, . . . , r}, |J | = p, Jj = {j} for all j /∈ J . Then the

ε-constraint scalarization converts (MOP’) into a variant of the ε-constraint SOPi

called the reduced εεε-constraint, SOPi, i /∈ J :

min
x∈X

gi(x)

s.t.
∑
j∈J

λjgj(x) ≤ ε (4.9)

gj(x) ≤ εj , j /∈ J, j 6= i

λλλ ∈ Λ ⊆ Rp, εεε ∈ E ⊆ Rr−p.

The weighted hybrid SOP (4.8) allows for weighing all objective functions in the

new objective and constraints.

156

Proposition 4.3.3. Let x̂ = x̂(λλλ,µµµ,εεε) be an optimal solution to the weighted hybrid SOP

(4.8) for some λλλ ∈ Λ, µµµ ∈M , and εεε ∈ E . Then x̂ is a weakly efficient solution to (MOP).

Proof. Let x̂ = x̂(λλλ,µµµ,εεε) be an optimal solution to (4.8). Therefore, x̂ is feasible to (4.8),

that is, ∑
i∈Jj µ

j
igi(x) ≤ εj , j = 1, . . . , t. (4.10)

Assume x̂ /∈ XwE . Then there exists a point x̄ ∈ X such that

gi(x̄) < gi(x̂) for all i = 1, . . . , r. (4.11)

Applying µji ≥ 0 not all 0, we have µjigi(x̄) ≤ µjigi(x̂), i ∈ Jj with at least one strict

inequality, for j = 1, . . . , t. Then

∑
i∈Jj

µjigi(x̄) <
∑
i∈Jj

µjigi(x̂)

for j = 1, . . . , t, which makes x̄ feasible to (4.8) with εj =
∑

i∈Jj µ
j
igi(x̂), j = 1, . . . , t. From

(4.11), we obtain λigi(x̄) ≤ λigi(x̂) for i ∈ J with at least one strict inequality, and then

∑
i∈J

λigi(x̄) <
∑
i∈J

λigi(x̂),

which contradicts the optimality of x̂. Therefore x̂ is weakly efficient to (MOP).

The reduced ε-constraint scalarization (4.9) is motivated by the difficulty caused

by the ε-constraint approach. When it is applied to (MOP), this method requires r − 1

right-hand-side (rhs) values for the ε-constraints so that the resulting SOP is feasible. In

(4.9), some or all of the r − 1 ε-constraints are replaced with one constraint for which

only one rhs value is needed, and therefore the resulting SOP is referred to as the reduced

εεε-constraint SOPi, i = 1, . . . , r.

157

Proposition 4.3.4. If x̂ = x̂(λλλ,εεε) is an optimal solution to the reduced ε-constraint SOPi

(4.9) for some λλλ ∈ Λ, εεε ∈ E and some i /∈ J , then x̂ is a weakly efficient solution to (MOP).

Proof. Let x̂ = x̂(λλλ,εεε) be an optimal solution to (4.9) for some i /∈ J . Therefore, x̂ is

feasible to (4.9), that is, ∑
j∈J λjgj(x̂) ≤ ε (4.12)

gj(x̂) ≤ εj j /∈ J, j 6= i. (4.13)

Assume x̂ /∈ XwE . Then there exists a point x̄ ∈ X such that

gj(x̄) < gj(x̂) for all j = 1, . . . , r. (4.14)

Applying λj ≥ 0 not all 0, we have λjgj(x̄) ≤ λjgj(x̂), j ∈ J with at least one strict

inequality; therefore
∑

j∈J λjgj(x̄) <
∑

j∈J λjgj(x̂). Using (4.12), we obtain

∑
j∈J

λjgj(x̄) < ε, (4.15)

while from (4.13) and (4.14),

gj(x̄) < εj j /∈ J, j 6= i. (4.16)

Since x̄ ∈ X , (4.15) and (4.16) make x̄ feasible to (4.9). From (4.14), gi(x̄) < gi(x̂), which

contradicts the optimality of x̂. Therefore, x̂ is weakly efficient to (MOP).

The final proposition in this section reveals that the modified hybrid and reduced

ε-constraint SOPs jointly determine the efficiency of a feasible solution to a strictly convex

(MOP).

158

Proposition 4.3.5. Let (MOP) be strictly convex. A feasible solution x̂ ∈ X is efficient to

(MOP) if and only if x̂ = x̂(λλλ,εεε) is an optimal solution to the modified hybrid SOP (4.7)

such that gj(x̂) = εj , j /∈ J , and is also an optimal solution to the reduced ε-constraint SOPi

(4.9) such that
∑

j∈J λjgj(x̂) = ε and gj(x̂) = εj, j /∈ J , j 6= i, for some λλλ ∈ Λ ⊆ Rp and

εεε = (ε, εj1 , . . . , εjr−p) ∈ E ⊆ Rr−p+1, where jk /∈ J , j 6= i for all k = 1, . . . , r − p for each

i /∈ J .

Proof. From Corollary 7 in [68], a solution x̂ ∈ X is efficient to (MOP) if and only if

x̂ = x(λλλ) is efficient to minx∈X
(∑

j∈J λjgj(x), gj1(x), . . . , gjr−p(x)
)

for some λλλ ∈ Λ ⊆ Rp.

Theorem 4.1 in [27] then yields the desired result.

In the next two sections we present algorithms for solving MOQP(θθθ) that is scalar-

ized with the approaches presented in this section.

4.4 Parametric Quadratic Programs with Linear

Constraints

In this section we present methods to solve a variation of mpMOQPs in which

the quadratic objective functions do not carry parameters and are given as

min
x

f(x;θθθ) = [f1(x) =
1

2
xTQ1x + pT1 x, . . . , fr̃(x) =

1

2
xTQr̃x + pTr̃ x,

fr̃+1(x;θθθ) = pTr̃+1(θθθ)x, . . . , fr(x;θθθ) = pTr (θθθ)x] (MOQP1(θθθ))

s.t. x ∈ X (θθθ) = {x ∈ Rn : A(θθθ)x 5 bbb(θθθ),x = 0}

θθθ ∈ Θ,

159

where Qi, i = 1, . . . , r̃, are positive (semi-)definite n×n matrices, and elements in pi(θθθ), i =

r̃+ 1, . . . , r, A(θθθ), and bbb(θθθ) are affine functions of θθθ. Under these assumptions and Assump-

tion 4.2.1, MOQP1(θθθ) is a convex problem for every θθθ ∈ Θ . This class of mpMOQPs can be

reformulated into mpQPs, that is, parametric programs with quadratic objective functions

and linear constraints. Scalarizing MOQP1(θθθ) with the weighted (4.4) or modified hybrid

(4.7) approaches becomes relevant to this solution approach if the linear objectives are put

into the ε-constraints that are included in the feasible set X (θθθ) while all the quadratic ob-

jectives are combined in the weighted sum objective. In effect, we obtain an mpQP that is

still challenging to solve due to the parameters present in the quadratic objective function

and constraints.

In [68], four state-of-the-art methods to solve mpQPs are compared. Only one

of these methods, the mpLCP method [3] based on the linear complementarity problem

(LCP) reformulation of the original problem, can solve mpQPs with parameters in general

locations. The study in [68] does not include a method that has been developed much

earlier in [124] but has only few citations. It solves specially structured single-parametric

QPs (spQPs) with a parameter in a general location and is therefore suitable to solve (non-

parametric) biobjective quadratic programs (BOQPs) with the weighted-sum SOP. Because

this method is also based on the LCP reformulation, it is referred to as the spLCP method.

Since both the spLCP method and the mpLCP method have the same mathematical roots,

but the efficiency of the former is unknown, it is of interest to compare their performance

on solving spQPs that emerge from BOQPs.

Leading to the mpLCP method, below we review the LCP reformulation for

MOQP1(θθθ) assuming it has been scalarized with the modified hybrid SOP (4.7). We then

focus on the spLCP method, giving its algorithms and presenting their application to a

BOQP example. We compare the efficiency of both methods on a collection of BOQP

instances.

160

4.4.1 The mpLCP method

Redefining the set Λ as Λ′ =
{
λλλ ∈ Rr̃ : λi ≥ 0, i = 1, . . . , r̃,

∑r̃−1
i=1 λi ≤ 1, λr̃ = 1−

∑r̃−1
i=1 λi

}
and applying (4.7) to MOQP1(θθθ), the resulting mpQP can be written as:

min
x

f(x;λλλ) =
1

2
xTQ(λλλ)x + p(λλλ)Tx

s.t. Ã(θθθ)x 5 b̃bb(θθθ, εεε)

x = 0

θθθ ∈ Θ,λλλ ∈ Λ′, εεε ∈ E ,

(4.17)

where Q(λλλ) =
∑r̃

i=1 λiQi and p(λλλ) =
∑r̃

i=1 λipi for λλλ ∈ Λ′, and Ã : Θ →∈ Rm̃×n, b̃bb :

Θ → Rm̃, m̃ = m + r − r̃. The linear inequality constraints have been modified to include

the εεε-constraints of the form pTi (θθθ)x 5 εi for i = r̃ + 1, . . . , r, where εεε ∈ E ⊆ Rr−r̃ is a

new parameter introduced into the model so that the problem remains feasible. When the

KKT conditions for optimality are applied to (4.17), the multiparametric LCP (mpLCP) is

constructed, which consists in finding a solution (w, z) = (w(θθθ,λλλ,εεε), z(θθθ,λλλ,εεε)) that satisfies

the following parametric system:

w−M(θθθ,λλλ)z = q(θθθ,λλλ,εεε)

wT z = 0

w, z = 0

θθθ ∈ Θ,λλλ ∈ Λ′, εεε ∈ E

(4.18)

where M(θθθ,λλλ) =

 Q(λλλ) Ã(θθθ)T

−Ã(θθθ) 0

 ∈ Rh×h, q(θθθ,λλλ,εεε) =

 p(λλλ)

b̃(θθθ, εεε)

 ∈ Rh, h = n + m̃, and

w =

r

s

, z =

x

u

, where s = 000 is a slack variable associated with the linear inequality

constraints and u and r are the dual variables associated with the linear and nonnegativity

161

constraints respectively. Since Qi, i = 1, . . . , r̃, are assumed to be positive (semi-)definite,

so is Q(λλλ) for every λλλ ∈ Λ′. Consequently, matrix M(θθθ,λλλ) is also positive (semi-)definite

for every θθθ ∈ Θ and λλλ ∈ Λ′, and therefore it is sufficient [32].

Definition 4.4.1. Let θθθ ∈ Θ,λλλ ∈ Λ′, εεε ∈ E and B be a basis of the linear system in (4.18).

1. The associated solution (w, z) = (w(θθθ,λλλ,εεε), z(θθθ,λλλ,εεε)) = 000 to the linear system in

(4.18) is a basic solution.

2. A basis B is complementary if |{i, i+ h} ∩B| = 1 for i = 1, . . . , h.

3. A complementary basis B is feasible if the associated basic solution is feasible, i.e.,

w, z = 000.

4. For a feasible complementary basis (FCB), the associated basic feasible solution (w, z)

to (4.18) is called the basic feasible complementary solution (BFCS).

The reader is referred to [3] for a state-of-the art study on mpLCPs or to [29, 30,

31, 32, 72] for theory and algorithms for LCPs. The solutions to mpLCP (4.18) are related

to the efficient solution to MOQP1(θθθ) in the following proposition.

Proposition 4.4.2. Let Qi, i = 1, . . . , r̃, be positive-definite in MOQP1(θθθ).

If (w(θθθ,λλλ,εεε), z(θθθ,λλλ,εεε)) =

(r(θθθ,λλλ,εεε)

s(θθθ,λλλ,εεε)

 ,
x(θθθ,λλλ,εεε)

u(θθθ,λλλ,εεε)

) is a BFCS to mpLCP (4.18) for

some θθθ ∈ Θ,λλλ ∈ Λ′, εεε ∈ E then x = x(θθθ,λλλ,εεε) is an efficient solution to MOQP1(θθθ).

Proof. Since MOQP1(θθθ) is a convex problem for every θθθ ∈ Θ, so is mpQP (4.17) for every

θθθ ∈ Θ,λλλ ∈ Λ′, εεε ∈ E . Therefore, the KKT necessary optimality conditions for (4.17), which

assume the form of mpLCP (4.18), are also sufficient. For some θθθ ∈ Θ,λλλ ∈ Λ′, εεε ∈ E ,

vector (w(θθθ,λλλ,εεε), z(θθθ,λλλ,εεε)) =

(r(θθθ,λλλ,εεε)

s(θθθ,λλλ,εεε)

 ,
x(θθθ,λλλ,εεε)

u(θθθ,λλλ,εεε)

) is a BFCS to (4.18) if and only

162

if x(θθθ,λλλ,εεε) is an optimal solution to (4.17). Since Qi, i = 1, . . . , r̃, are positive-definite, the

second order sufficient conditions for optimality also hold at x. Then, by Cor. 8(1) in [68],

x = x(θθθ,λλλ,εεε) is an efficient solution to MOQP1(θθθ).

The mpLCP method is the first and only method to solve mpLCPs (4.18) with

multiple parameters in general locations, i.e., in matrix M or vector q, under the assumption

that M is a sufficient matrix for all values of the parameters [3]. The parameter space

Θ×Λ′×E is partitioned into possibly nonconvex invariancy regions over which the mpLCP

solution (w(θθθ,λλλ,εεε), z(θθθ,λλλ,εεε)) is computed. The method consists of two phases. In Phase

I, an initial invariancy region is found, while in Phase II, the invariancy regions making

up the partition are identified. The method performs symbolic computation and provides

a closed-form parametric description of the invariancy regions in the form of polynomial

inequalities and the associated solutions in the form of rational functions. Using Proposition

4.4.2, these solutions provide the efficient solutions to MOQP1(θθθ).

4.4.2 The spLCP method

The theory for the spLCP method was developed by Väliaho [124] but the pro-

posed algorithm has not been implemented. It is the first ever method to solve spLCPs

with a scalar parameter in the matrix M . The spLCP method solves the BOQP of the form

min
x

[1
2xTQ1x + pT1 x, 1

2xTQ2x + pT2 x] (BOQP)

s.t. x ∈ X := {x ∈ Rn : Ax 5 bbb,x = 0},

where Qi ∈ Rn×n, i = 1, 2, is positive definite, pi ∈ Rn, A ∈ Rm×n, and bbb ∈ Rm. Note that

(BOQP) has to fulfill additional assumptions that are given in Assumption 4.4.3 below.

163

Redefining Λ′ = {λ ∈ R : λ ∈ [0, 1]} and applying (4.4) to (BOQP), the resulting spQP is

min
x

f(x;λ) = 1
2xTQ(λ)x + p(λ)Tx (4.19)

s.t. x ∈ X ,

where Q(λ) = λQ1 + (1− λ)Q2 and p(λ) = λp1 + (1− λ)p2.

Problem (4.19) leads to an spLCP that this method solves. The parameter space

Λ′ is partitioned into subintervals, say [λ′, λ′′], such that (w(λ), z(λ)) is a BFCS for the

spLCP for λ ∈ [λ′, λ′′]. The method is based on a pivoting scheme and solving nonparametric

LCPs obtained when λ is fixed at some values in the interval [0, 1] starting with 0. Once a

BFCS has been obtained for a specific value of λ, the invariancy interval for λ for which this

solution remains feasible is found. The method consists of two phases. Phase I is designed

to find an initial BFCS. If such a solution is available, Phase II is conducted. In this phase

the parameter λ and the associated FCB get updated until λ = 1. The method outputs a

list of λ values in the interval [0, 1] and the associated BFCS. In the subsequent sections

we present the spLCP method as a collection of algorithms to complement the theoretical

exposition in [124].

4.4.2.1 Reformulation of spLCP

Given (4.19) and the resulting spLCP with Λ′ = [0, 1], rewrite matrix Q(λ) and

vector p(λ) as Q(λ) = Q2 + λ(Q1 −Q2), and p(λ) = p2 + λ(p1 − p2). Then matrix M(λ)

and vector q(λ) can be decomposed as:

M(λ) = M + λ∆M, q(λ) = q +λ∆ q,

164

where M =

Q2 AT

−A 0

 ∈ Rh×h,∆M =

Q1 −Q2 0

0 0

 ∈ Rh×h, q =

p2

b

 ∈ Rh, and

∆ q =

p1 − p2

0

 ∈ Rh. The spLCP can be written as:

w−
(
M + λ∆M

)
z = q +λ∆ q

wT z = 0

w, z = 0.

(4.20)

and is referred to as the spLCP(M(λ),q(λ)) or simply the spLCP if the context is known.

The method is developed under the following assumptions that determine the

class of spQPs (4.19) (and also BOQPs) that can be solved:

Assumption 4.4.3. 1. Q1 −Q2 is positive definite.

2. p1 − p2 is in the column space of Q1 −Q2.

3. Q2 − δ(Q1 −Q2) is positive semidefinite for some δ > 0.

Based on Assumption 4.4.3(1), rank(∆M) = n. This assumption also assures that the

Cholesky decomposition can be applied to matrix ∆M , which produces auxiliary matrices

used in the spLCP method.

4.4.2.2 Full Rank Factorization of Matrix ∆M

The method is equipped with matrix factorization needed to modify spLCP (4.20)

into an augmented spLCP. Consider a full rank matrix factorization of matrix ∆M

∆M = ΨΨT ,

165

where Ψ ∈ Rh×n is a lower triangular matrix with positive diagonal elements. Given

∆M =

Q1 −Q2 0

0 0

, matrix Ψ is composed of two matrices such that Ψ =

 Ψ1

0

 ,
where Ψ1 ∈ Rn×n is a lower triangular matrix and 0 is a zero matrix of size m× n . Then

Q1 −Q2 0

0 0

 = ∆M = ΨΨT =

 Ψ1

0

[ΨT
1 0T

]
=

 Ψ1ΨT
1 0

0 0

 .

Note that only the matrix Q1−Q2 in the block (1, 1) of ∆M is decomposed, i.e., Q1−Q2 =

Ψ1ΨT
1 , and the Cholesky decomposition is used to obtain Ψ1.

In the spLCP method, the parameter λ is updated in every iteration. In this

update, further discussed in Section 4.4.2.6, a vector κκκ ∈ Rn, which is computed below, is

used. Let

∆ q = Ψκκκ, (4.21)

or equivalently p1 − p2

0

 =

Ψ1

0

κκκ,
which is simplified to

p1 − p2 = Ψ1κκκ. (4.22)

System (4.22) is solved for κκκ using the forward substitution method. Having computed Ψ

and κκκ, an augmented spLCP is constructed.

166

4.4.2.3 Initialization and Overview

Let λ ∈ [0, 1] be fixed in spLCP (4.20). Given Ψ and κκκ from the factorization,

and letting v ∈ Rh and vκκκ ∈ Rn, the augmented spLCP is formulated:


I1 0

0 I2

−
M(λ) −Ψ

ΨT 0



vB

vκκκ

 =

q(λ)

κκκ


vB = 0

vκκκ free,

(4.23)

where I1 is an h × h identity matrix and I2 is an n × n identity matrix. For the linear

system in (4.23), let E = {1, . . . , h, h+n+ 1, . . . , 2h+n}, a set B ⊂ E be a complementary

basis for the linear system in (4.20), i.e., if |B| = h, then the set N = E \ B is such that

|N | = h. Then vB = vB(λ) = {vi(λ) : i ∈ B} and vN = vN (λ) = {vi(λ) : i ∈ N} are the

vectors of basic and nonbasic variables respectively in (4.20) and (4.23). Both these vectors

consist of the variables in w = w(λ) and z = z(λ). The vector vκκκ consists of the variables

that are always basic for (4.23) but are considered dummy with no meaning in the solution

to (4.20).

Since the goal is to solve (4.23) for vB(λ) for a fixed λ ∈ [0, 1], for the initial

basis B0 = {1, . . . , h} in (4.20), the entire problem (4.23) is saved in an initial Simplex-type

Tableau TB0(λ) as given in Table 4.1. Tableau TB0(λ) has h + n rows and 2(h + n) + 1

columns. Let E′ = {1, 2, . . . , 2h+n} be the set of indices of 2h+n columns starting from the

second column and ending at the (2h+n)th column, and let K = {2h+n+ 1, . . . , 2h+ 2n}

be the set of indices of the last n columns of Tableau 4.1. Note that neither E′ nor K

contain the first column, ggg.0. At the beginning of Phase I, the right hand side of the linear

system in (4.23), q(λ), is stored in the first h rows of column ggg.0. The last n rows of ggg.0

contain the vector κκκ obtained by solving (4.21). At the end of both phases, the solution

vector vB(λ) is retrieved from the first h rows of column ggg.0.

167

Table 4.1: Initial Tableau TB0(λ)

ggg.0 ggg.1, . . . ,ggg.h ggg.(h+1), . . . ,ggg.(h+n) ggg.((h+n)+1), . . . ,ggg.(2h+n) ggg.((2h+n)+1), . . . ,ggg.(2h+2n)

v1
...
vh

q(λ) I1 0 M(λ) −Ψ

vκ1

...
vκn

κκκ 0 I2 ΨT 0

The pivoting operations in the tableau convert a complementary basis into another

complementary basis. Two types of pivotal operations are defined but neither of them

guarantees a new FCB.

Definition 4.4.4. For index i ∈ E′, the complementary index of i is defined as

ī =


i+ n+ h if i ≤ h

i− n− h otherwise

Definition 4.4.5. 1. Replacing a single element of a basis with its complement is called

a diagonal pivot.

2. Replacing two elements of a basis with their complements is called an exchange pivot.

Phase I is executed to find an initial BFCS for spLCP (4.20) for the case when

λ = 0 and q � 0. When λ = 0 and q ≥ 0, the method starts with Phase II in which a

nonparametric LCP is solved for a specific value of the parameter λ that is subsequently

updated. The pseudocode for solving spLCP (4.20) is given in Algorithm 2. In the initial

Tableau TB0(λ), λ = 0.

Let TB0(λ)i,0 be the element in the ith row and the first column of Tableau TB0(λ). If

TB0(λ)i,0 < 0 for at least one i ∈ {1, . . . , h}, Phase I is executed before Phase II. However,

168

if all those elements are nonnegative, the algorithm begins directly with Phase II.

Algorithm 2 spLCP Method

1: INPUT: Initial Tableau TB0(λ)
2: if TB0(λ)i,0 < 0 for at least one i ∈ {1, . . . , h} then
3: Goto Phase I (apply Algorithm 3)
4: Goto Phase II (Algorithm 4)
5: else
6: Goto Phase II (Algorithm 4)
7: end if
8: OUTPUT: Solution (z(λ),w(λ)) for each λ.

4.4.2.4 Phase I

In Phase I, the Criss-Cross Method (given in Algorithm 3) is used to find an

initial BFCS for spLCP (4.20) for the case when λ = 0 and q � 000. The Criss-Cross Method

solves the nonparametric LCP obtained from the spLCP with a fixed λ [38]. Let λ = λ̄ be

fixed, B0 be an initial complementary basis, vB0(λ̄) = w(λ̄) be a vector of basic variables,

and vN (λ̄) = z(λ̄) be a vector of nonbasic variables. If q(λ̄) ≥ 0, i.e., if TB0(λ̄)i,0 ≥ 0

for all i = 1, . . . , h, then the algorithm stops immediately and (w(λ̄) = q(λ̄), z(λ̄) = 0)

is the initial BFCS for spLCP (4.20). Otherwise q(λ̄) � 0 and pivoting is used to obtain

a complementary basis B′ which is adjacent to the current basis B by replacing at most

two elements in B. If the pivot element is negative, the diagonal pivot is executed, and

if the pivot element is zero, the exchange pivot is executed. Let TB(λ̄)r,r̄ be the element

in Tableau TB(λ̄) associated with index r ∈ B and its complementary index r̄ ∈ N . The

element TB(λ̄)r,r̄ becomes the pivot element if the index r ∈ B is chosen as the smallest

index with a negative entry in the first column in the Tableau TB(λ̄), and r̄ ∈ N . If there

is no such r, i.e., TB(λ̄)i,0 ≥ 0 for all i = 1, . . . , h, the algorithm stops; thus, B is a FCB

and a BFCS for spLCP (4.20) has been found.

169

Algorithm 3 Criss-Cross Method

1: INPUT: TB0(λ̄), B0

2: if TB0(λ̄)i,0 ≥ 0 for all i = 1, . . . , h then
3: STOP, a BFCS has been found.
4: else
5: Set B = B0.
6: while TB(λ̄)i,0 ≤ 0 for at least one i ∈ {1, . . . , h} do
7: Let r = min{i ∈ B : TB(λ̄)i,0 < 0}
8:

9: if TB(λ̄)r,r̄ < 0 then
10: make diagonal pivot, new basis B′ = B \ {r} ∪ {r̄}
11: else if TB(λ̄)r,r̄ = 0 then
12: Let k = min{j : TB(λ̄)r,j < 0 or TB(λ̄)j,r > 0}
13: if TB(λ̄)r,k × TB(λ̄)k,r < 0 then
14: make exchange pivot, new basis B′ = B \ {r, k} ∪ {r̄, k̄}
15: else
16: STOP. LCP is infeasible
17: end if
18: else
19: STOP. LCP is infeasible
20: end if
21: end whileSet B = B′ and TB(λ̄) = TB′(λ̄)
22: end if
23: OUTPUT: BFCS to spLCP (4.20) with λ = λ̄

170

4.4.2.5 Phase II

In Phase II, the parameter λ and basis B are consecutively updated. Let B be a

complementary basis in (4.20). For a given λ, let TB(λ) denote the tableau with h+ n+ 1

columns consisting of the first (0th) column, h columns associated with the current nonbasic

variables, and the last n columns of the tableau in Table 4.1.

For each i = 1, . . . , h and K, define the following auxiliary vector

Bi0 =

(
TB(λ)i,0, (−1)1TB(λ)i,KTB(λ)n,0, (−1)2TB(λ)i,KTB(λ)n,KTB(λ)n,0, (4.24)

. . . , (−1)nTB(λ)i,KTB(λ)n−1
n,KTB(λ)K,0

)
,

where the terms in (4.24) denote the following elements in tableau TB(λ).

� TB(λ)i,0 - the element in the ith row and the first (0th) column,

� TB(λ)i,K - the vector of elements in the ith row and all columns associated with the

index set K,

� TB(λ)n,0 - the vector of elements in the last n rows and the first (0th) column,

� TB(λ)n,K - the matrix of elements in the last n rows and all columns associated with

the index set K.

To continue we need the following definition.

Definition 4.4.6. Let υυυ ∈ Rh. We say that

1. υυυ is lexicographically positive (negative), υυυ � 0 (υυυ ≺ 0), if its first nonzero component

is positive (negative).

171

2. υυυ is lexicographically nonnegative (nonpositive), υυυ � 0 (υυυ � 0), if υυυ = 0 or υυυ � 0 (

υυυ = 0 or υυυ ≺ 0).

Phase II is presented in Algorithm 4 that runs until a BFCS is obtained for λ = 1.

If a vector Bi0 � 0 for some i = 1, . . . , h, the parameter λ is updated using Algorithm 5.

Otherwise, the current complementary basis is updated using Algorithm 7.

Algorithm 4 Phase II

1: INPUT: Current Tableau TB(λ) s.t. TB(λ)i0 ≥ 0 for i = 1, . . . , h, B
2: while λ ≤ 1 do
3: if Bi0 � 0 for all i = 1, . . . , h then
4: else
5: Update λ (Algorithm 5)
6: end if
7: end while
8: OUTPUT: Solution (z(λ),w(λ)) to spLCP (4.18)

4.4.2.6 Updating Parameter λ

Parameter λ is updated in Algorithm 5. Two types of polynomial equations,

Pi1(τ) = 0, for i = 1, . . . , h, and P2(τ) = 0, are solved to obtain an increment τ of the

parameter λ, which is at some current value between 0 and 1. Let αi denote the smallest

positive root of the polynomial equation Pi1(τ) = 0 for each i = 1, . . . , h. Then the smallest

αi value is recorded as ρ1. Similarly, the smallest positive root of P2(τ) = 0 is recorded as

ρ2. If the roots of the polynomial equations are not positive, we set ρ1 = ∞ or ρ2 = ∞

accordingly. Then the smallest value among 1 − λ, ρ1 and ρ2 is recorded and denoted as

ρ, i.e., ρ = min{1 − λ, ρ1, ρ2}. Based on the value of ρ, one of three strategies is applied

to update λ. If ρ = 1 − λ, the current tableau is feasible for the invariancy interval [λ, 1].

If the condition Bi0 � 0 holds for TB0(1), the algorithm stops and spLCP (4.20) has been

solved for λ ∈ [0, 1]. Otherwise, the basis has to be updated. If ρ = ρ1, the current tableau

172

is feasible for the invariancy interval [λ, λ + ρ1] and the initial tableau is updated using

Algorithm 6. If ρ = ρ2, set λ = λ + ρ2 in the initial Tableau TB0(λ) and the condition

Bi0 � 0 is subsequently checked.

Algorithm 5 Updating λ

1: INPUT: Current Tableau TB(λ) such that Bi0 � 0 for all i = 1, . . . , h
2: for i = 1, . . . , h do
3: solve

Pi1(τ) =
(
det
(
TB(λ)n,K + τ−1I

)) (
TB(λ)i,0−TB(λ)i,K(TB(λ)n,K+τ−1I)TB(λ)n,0

)
= 0

4: Let αi =

{
min{τ |Pi1(τ) = 0} if τ > 0

∞ o.w.

5: set ρ1 = min{α1, . . . , αh}
6: end for
7: Solve P2(τ) = det

(
TB(λ)n,K + τ−1I

)
= 0

8: set ρ2 =

{
min{τ |P2(τ) = 0} if τ > 0

∞ o.w.

9: Set ρ = min{1− λ, ρ1, ρ2}
10: if ρ = 1− λ then
11: STOP; the Tableau TB(λ) is feasible for [λ, 1]. Obtain TB0(1). Go to Phase

II (Algorithm 4)
12: else if ρ = ρ1 then
13: the tableau TB(λ) is feasible for [λ, λ+ ρ1]. Set λ = λ+ ρ1

14:

15: if there exists some i ∈ {1, . . . , h} for which TB0(λ)i,0 � 0 then
16: Update the initial Tableau TB0(λ) using Algorithm 6. Go to Phase II

(Algorithm 4)
17: else
18: Go to Phase II (Algorithm 4)
19: end if
20: else
21: Set λ = λ+ ρ2 and update the Tableau TB0(λ). Go to Phase II (Algorithm 4)
22: end if
23: OUTPUT: new λ

173

4.4.2.7 Updating the Initial Tableau when ρ = ρ1

Algorithm 6 is designed to provide a new initial tableau when ρ = ρ1 in Algorithm

5. Let I be an n × n identity matrix. First, the matrix −ρ−1
1 I is added to the matrix

TB0(λ)n,K . Then pivotal operations are performed on all variables in the last n rows. In the

third step, multiply elements in the last n rows by −ρ−1
1 and then the columns j ∈ K by

ρ−1
1 of TB(λ). In the last step, the matrix −ρ−1

1 I is added to the matrix TB0(λ)n,K . These

operations provide an initial tableau for the next iteration with the initial basis B0. The

first column of the starting Tableau TB0(λ+ρ1) is independent of all the steps in Algorithm

6.

Algorithm 6 Updating the initial tableau

1: INPUT: The initial Tableau TB0(λ+ ρ1)
2: Add −ρ−1

1 I to TB0(λ)n,K
3: Perform the pivotal operation on all variables in the last n rows.
4: Multiply elements in the last n rows by −ρ−1

1 and then columns j ∈ K by ρ−1
1 of

TB0(λ).
5: Add −ρ−1

1 I to TB(λ)n,K .
6: Go to Phase II (Algorithm 4) with current Tableau TB0(λ).
7: OUTPUT: new Tableau TB0(λ)

4.4.2.8 Updating Basis B

Let TB(λ) be the current tableau for a complementary basis B and for a parameter value

λ, as defined in Phase II. If Bi0 ≺ 0 for at least one i ∈ {1, . . . , h} in Algorithm 4, then the

basis B is not feasible for system (4.23) for the current value of λ. Then Algorithm 7 is

run and the Criss-Cross Method (Algorithm 3) is invoked to find a FCB for the current

value of λ.

174

Algorithm 7 Updating B

1: INPUT: Current Tableau TB0(λ) such that Bi0 ≺ 0 for at least one i ∈ {1, . . . , h}
2: while Bi0 ≺ 0 do
3: Run Criss-Cross Method (Algorithm 3)
4: end while
5: OUTPUT: new Tableau TB(λ) such that Bi0 � 0

4.4.3 Example

We illustrate the spLCP and mpLCP methods on the following BOQP:

min

[
1
2

[
x1 x2

]6 0

0 14


x1

x2

+

[
9 −5

]x1

x2

 , 1
2

[
x1 x2

]2 0

0 5


x1

x2

+

[
−1 1

]x1

x2

]

s.t.

[
3 5

]x1

x2

 ≤ 15

x1, x2 ≥ 0,

(4.25)

and the associated spLCP:


w1

w2

w3

−



2 0 3

0 5 5

−3 −5 0

+ λ


4 0 0

0 9 0

0 0 0




z1

z2

z3

 =


−1

1

15

+ λ


10

−6

0


wizi = 0 i = 1, 2, 3,

wi, zi ≥ 0 i = 1, 2, 3,

(4.26)

where λ ∈ [0, 1]. We have n = 2,m = 1, and h = n + m = 3. The iterations of Phase I

and II of the spLCP method are given in the Appendix while the obtained solutions are

given in Table 4.2. Four efficient solutions are computed, each of them for a specific value of

λ ∈ [0, 1]. For comparison, Table 4.3 shows the solutions obtained by the mpLCP method

for the same example. The two methods provide the same invariancy intervals but the

solutions are available in different forms. The spLCP method gives the efficient solutions

175

at the end points of the invariancy intervals while the mpLCP method gives the efficient

solutions as functions of the parameter λ for each interval.

Table 4.2: Efficient solutions to
Example (4.25) obtained with the
spLCP method

λ x1 x2

0 1/2 0
1/10 0 0
1/6 0 0
1 0 5/14

Table 4.3: Efficient solutions to Exam-
ple
(4.25) obtained with the mpLCP
method

λ x1 x2

0 ≤ λ ≤ 1/10 (1−10λ)
(2+4λ)

0

1/10 ≤ λ ≤ 1/6 0 0

1/6 ≤ λ ≤ 1 0 (−1+6λ)
(5+9λ)

4.4.4 Numerical Results

To compare the efficiency of the spLCP and mpLCP methods, we implement them

in the MATLAB programming language and apply them to randomly generated strictly

convex BOQPs satisfying Assumption 4.4.3. The code of the mpLCP method is available

online [2]. The tests have been performed on a Lenovo Ideapad FLEX 4 with a 256 GB

SSD storage, 6th Generation Intel Core i5-6200U, 2.30GHz, 2401 Mhz, 2 Cores, 4 Logical

Processors and 8GB memory.

The results of the numerical experiments are collected in Table 4.4 in which the

first column shows the dimension of the decision space, n, and the second column displays

the number of instances that have been run for each n. The third column specifies the

statistics given in the subsequent columns. The 4th and 5th columns report CPU times for

diagonal positive definite matrices, Q1, Q2 ∈ Rn×n while the 6th and 7th columns report

the CPU times for general positive definite matrices, Q1, Q2 ∈ Rn×n. The times in each

row are given for the same set of instances that are solved using both methods.

The MATLAB function rand randomly generates the matrices Qi and vectors pi,

176

i = 1, 2, for the BOQPs. Generating instances that satisfy Assumption 4.4.3 for the spLCP

method is time-consuming and the time it takes to generate each instance is not included

in the table.

There are two major computational tasks that affect the efficiency of each method:

the type of computations being performed, and the way polynomial equations are solved.

Because the spLCP method relies on a pivoting scheme with real numbers rather than

on symbolic computation as used in the mpLCP method, we expected that the former

might be superior to the latter. However, the spLCP method uses the MATLAB function

solve to solve the polynomial equations in Algorithm 5, while the mpLCP method solves

SOPs with linear objective functions and polynomial constraints by means of the MATLAB

function fmincon with the interior-point algorithm. We suspect that the difference in the

effectiveness of these two MATLAB functions may influence each method.

We observe in Table 4.4 that, as the number of decision variables, n, increases for

both types of BOQPs, the mpLCP method becomes more efficient relative to the spLCP: its

mean, median, and standard deviations times get consistently smaller than the respective

times for the spLCP method. The function fmincon emerges as a significantly more effective

tool than the function solve because it offsets the time spent on the symbolic pivoting by

the mpLCP method. As a result, given the current MATLAB environment, the mpLCP

method remains the state-of-the art method for MOQPs.

4.5 Applications

In this section we apply the scalarizations (4.4) and (4.7) presented in Section 4.3

and the algorithms examined in Sections 4.4 to specific mpMOQPs resulting from applica-

tions in statistics and portfolio optimization.

177

Table 4.4: Statistics for the CPU times for BOQPs solved with the spLCP and
mpLCP methods.

n
no. of

instances
statistics

diagonal diagonal+off-diagonal
spLCP mpLCP spLCP mpLCP

2 10
mean 10.492 9.239 13.569 10.840
median 7.793 7.954 12.971 9.800
std. dev. 6.692 2.618 4.301 3.370

3 10
mean 16.491 9.885 54.782 42.269
median 15.843 9.708 57.167 39.439
std. dev. 5.582 3.086 25.947 24.258

4 5
mean 113.167 116.000 163.269 117.658
median 95.871 110.780 156.310 127.808
std. dev. 44.842 22.892 74.853 34.983

5 4
mean 216.483 146.758 517.849 199.559
median 228.215 152.844 491.297 205.487
std. dev. 84.863 22.144 158.765 105.393

4.5.1 The Elastic Net Problem

We show that the presented methodology can enhance linear regression when

the elastic net problem is solved to select regression parameters. Let the data set have n

observations with k predictors. Consider the standard linear regression model in which the

response y ∈ Rk is predicted by

ŷ = Φx, (4.27)

where Φ =

[
φ1φ1φ1 φ2φ2φ2 . . . φnφnφn

]
∈ Rk×n is the design matrix with predictors φiφiφi ∈ Rk and

x ∈ Rn is the vector of “parameters” to be estimated. Here the word “parameters” has

a different meaning than in parametric optimization. In statistics, the response and the

predictors are both known, while the vector of parameters (typically denoted by β̂) remains

unknown and needs to be estimated so that the residual squared error is minimized. In the

context of optimization, the unknown parameters become variables to be determined in the

178

process of minimizing the squared error, which is modeled as the QP

minx∈Rn f1(x) = 1
2xTQx + pTx + c, (4.28)

where Q = 2ΦTΦ is positive-definite, p = −2ΦTy and c = yTy. To avoid confusion, we

refer to these parameters x as coefficients of (4.27). Because model (4.27) performs poorly

in both prediction and interpretation when the estimated coefficients are computed from

(4.28), this QP has been augmented by two penalty terms: the ridge term imposes an `2-

penalty while the lasso term imposes an `1-penalty on x [140]. This leads to the elastic net

problem.

minx∈Rn felastic-net(x;α, β) = 1
2xTQx + pTx + c+ α

2 xTx + β
∑n

i=1 |xi|

α, β ≥ 0,

(4.29)

where α, β play the role of modeling parameters (in agreement with the terminology intro-

duced in Section 4.2). Because these parameters strongly affect the performance of model

(4.27), they require tuning.

In [21], the parameter tuning is modeled as a bilevel optimization problem involv-

ing minimization of the squared error on the efficient set of the triobjective QP (TOQP)

minx∈Rn [f1(x) = 1
2xTQx + pTx + c, f2(x) = 1

2xTx, f3(x) =
∑n

i=1 |xi|], (4.30)

for which (4.29) is the associated weighted-sum SOP. Since the optimization over the efficient

set remains challenging [128], an algorithm is proposed to compute the minimum squared

error (minSE) with respect to continuously changing values of β but on a user-selected-grid

of fixed values of α. Because of the grid, an optimal solution to the bilevel problem may

not be achieved.

179

The methodology presented in this paper can further facilitate parameter tuning

because (4.30) can now be solved for its complete parametric efficient set which then can

be used to find α, β yielding the smallest squared error. We demonstrate this application

on a simple example with n = 3, k = 5, the following data

Φ =



1 2 1

1 3 2

1 2 2

1 4 5

1 3.5 2.5


y =



0.55

0.623

0.587

0.569

0.758


, (4.31)

and by solving (4.30) in three ways.

4.5.1.1 The weighted-sum SOP

Applying the weighted-sum (4.4) to (4.30) yields the following mpQP:

minx∈R3 λ1(1
2xTQx + pTx + c) + λ2

2 xTx + (1− λ1 − λ2)
∑n

i=1 |xi|

λ ∈ Λ′,

(4.32)

where Λ′ = {λλλ ∈ R2 : λ1, λ2 ≥ 0, λ1 + λ2 ≤ 1}. The problem is reformulated to make all

variables nonnegative which at the same time transforms f3 into a linear function. Having

solved (4.30) with the mpLCP method, we obtain a partition of Λ′ into 6 invariancy regions

(IR) and the optimal solution functions x̂i(λ1, λ2), i = 1, 2, 3 to (4.32) in each region that

are all listed in Table 4.6. To return to the original parameters, we substitute

λ1 =
1

1 + α+ β
and λ2 =

α

1 + α+ β
(4.33)

180

in Table 4.6 and obtain the invariancy regions and the optimal solutions x̂i(α, β), i = 1, 2, 3

for α, β ≥ 0 in Table 4.7. The partitions of both parameter spaces are depicted in Figure

4.1a and 4.1b. For all λλλ ∈ Λ′ \ {(0, 0)}, by Cor. 1 in [68], all optimal solutions to (4.32) are

efficient to (4.30). In the case of λλλ = (0, 0), note that f3(x) has a unique minimizer which

is also efficient.

The Pareto set for (4.30) is depicted in Figure 4.2, while Figure 4.3a shows the

points (α, β, f̂1(α, β)) = (α, β, f1(x̂(α, β)) for (4.32), where f1(x̂(α, β)) is the minSE. In all

four figures the same colors are consistently used for the same regions and the associated

Pareto points. Using the obtained solutions, model (4.27) is available in the parametric

form

ŷ = Φ x̂(α, β)

where x̂(α, β) =

[
x̂1(α, β) x̂2(α, β) x̂3(α, β)

]T
is the efficient solution to (4.30) for α, β ≥

0.

The solutions x̂(α, β) listed in Table 4.7 are rational functions of parameters α

and β and their denominators are polynomial functions of α with a degree of at most 3.

For a fixed α = ᾱ ≥ 0, all these solutions are linear functions of β and the the optimal

squared error f1(x̂(ᾱ, β)) is a quadratic function of β for β ≥ 0 in IRi, i = 2, . . . , 6. These

observations agree with the results in [21].

The decision maker (DM) can examine the invariancy regions and select values

for the tuning parameters to obtain the regression coefficients. While the zero solution

obtained in I R 1 for β > 9.07 is typically ignored in linear regression, the efficient solutions

in the other regions can be of interest. In some regions, the components of the solutions

are explicitly zero which agrees with the intention of keeping the linear regression model

parsimonious [140].

181

(a) Parameters λ1, λ2 ≥ 0, λ1 + λ2 ≤
1. (b) Parameters α, β ∈ [0, 10].

Figure 4.1: Partition of the parameter space into six invariancy regions for elastic net
problem (4.30) obtained by the mpLCP method on problem (4.32).

Figure 4.2: Pareto set for elastic net problem (4.30) obtained by the mpLCP method
on problem (4.32).

For example, with two nonzero components in the efficient solution, IR3 bears

further investigation. Note that for ᾱ = 1 and β̄ = 0.3, x̂ = x̂(1, 0.3) =

[
0.028 0.181 0

]T
is in IR3 with the minSE of f1(x̂) = 0.332. Consider, now, IR3 with ᾱ = 1. Then

x̂ = x̂(1, β) =

[
0.17− 0.472β 0.126β + 0.143 0

]T
for β ∈ [0.134, 0.359] in IR3 and the

minSE is given by the function f1(x̂) = f1(x̂(ᾱ, β)) = 0.107β2 +0.121β+0.064. Computing

β̂ = arg minβ{f1(x̂(ᾱ, β)) : β ∈ [0.134, 0.359]}, the DM can find β̂ = 0.134 that yields the

minSE of f1(x̂(ᾱ, β̂)) = 0.083.

182

Figure 4.3: minSE computed by the mpLCP method on problem (4.32) .

4.5.2 Portfolio Optimization

Consider the parametric triobjective portfolio optimization problem (TOPOP)

with two quadratic objectives being the variances of portfolio return and liquidity and one

parametric linear objective being the expected return,

minx∈R3

[
f1(x) = 1

2xTQ1x, f2(x) = 1
2xTQ2x, f3(x; θ) = −ppp3(θ)Tx

]
s.t. 1Tx = 1

x = 0,

(4.34)

and with the following data

Q1 =


1 0 −1

0 2 0

−1 0 2.5

 , Q2 =


3 −1 0

−1 4 1

0 1 3.5

 , ppp3(θ) =


−13.5

20

θ

 for θ ∈ [15, 17].

A nonparametric version of this problem is solved in [68]. The modeling parameter θ

represents the uncertain expected return on the capital invested in the third security.

Solving this problem requires computing the set of (weakly) efficient solutions X (w)E :=

{X(w)E(θ)}θ∈[15,17] and (weak) Pareto outcomes Y(w)P := {Y(w)P (θ)}θ∈[15,17], as given in

183

Def. 4.2.4 and 4.2.5.

4.5.2.1 The modified-hybrid SOP

Problem (4.34) is reformulated with the modified hybrid method (4.7) that is par-

ticularly suited to this application. The two risk functions are combined using a parameter

λ that allows the DM to weigh these functions differently, while the uncertain expected

return (to be maximized) is bounded from below by another parameter ε. Additionally,

the equality constraint is reformulated into two inequalities. We obtain an mpQP to type

(4.17) with the modeling parameter θ and two parameters λ and ε which, despite their

scalarization role, fit the context of this application very well:

minx∈R3
1
2xTQ(λ)x

s.t. Ã(θ)x 5 b̃(ε)

x = 000

θ ∈ Θ = [15, 17], λ ∈ Λ′ = [0, 1], ε ∈ E = [−20, 13.5],

(4.35)

where Q(λ) = λQ1 + (1− λ)Q2, and

Q(λ) =


3− 2λ λ− 1 −λ

λ− 1 4− 2λ 1− λ

−λ 1− λ 7/2− λ

 , Ã(θ) =


13.5 −20 −θ

1 1 1

−1 −1 −1

 , b̃(ε) =


ε

1

−1

 .

The parameter intervals Θ and E are normalized. Applying θnor = θ−θmin
θmax−θmin =

θ−15
17−15 we have Θnor = [0, 1]. Applying εnor = ε−εmin

εmax−εmin = ε+20
13.5−(−20) , where εmin =

min{−p(θ)T3 x : 1Tx = 1,x = 0, θ ∈ [15, 17]} = −20 and εmax = max{−p3(θ)Tx : 1Tx =

184

Figure 4.4: Partition of the parameter space for portfolio problem (4.34) obtained
with the mpLCP method on problem (4.35).

1,x = 0, θ ∈ [15, 17]} = 13.5, we have E nor = [0, 1].

The mpLCP method Problem (4.35) is solved in the parameter space Θnor × Λ′ ×

E nor = [0, 1]3 with the mpLCP method. At optimality, the parameter space is partitioned

into three invariancy regions, IRi, i = 1, 2, 3, that are depicted in Figure 4.4 and listed in

Table 4.8 along with their respective optimal solution functions x̂i(θ, λ, ε), i = 1, 2, 3 that,

by Proposition 4.4.2, are efficient to (4.35). We have

XE = {x̂i(θ, λ, ε), i = 1, 2, 3 for θ ∈ [15, 17], λ ∈ [0, 1], ε ∈ [−20, 13.5]}.

Note that the efficient solutions in IR1 do not depend on λ and the efficient solutions in

IR3 do not depend on θ and ε. However, in IR2, the efficient solutions depend on all three

parameters. To show the evolution of the parametric Pareto sets YP (θ) in the objective

space w.r.t. θ, three Pareto sets for selected values of θ are depicted in Figure 4.5 and the

coordinates of four points are reported in Table 4.5 for comparison. Note that point A in

IR3 remains Pareto for each value of θ.

185

(a) θ = 15 (b) θ = 16

(c) θ = 17

Figure 4.5: Pareto sets YP (15),YP (16),YP (17) ⊂ YP for portfolio problem (4.34)
obtained with the mpLCP method on problem (4.35).

Table 4.5: Coordinates of four Pareto points in Figure 4.5 for portfolio problem (4.34)

θ 15 16 17

f1(x) f2(x) f3(x) f1(x) f2(x) f3(x) f1(x) f2(x) f3(x)

A 1.000 2.000 −20.000 1.000 2.000 −20.000 1.000 2.000 −20.000

B 0.576 1.276 −18.320 0.556 1.232 −18.320 0.537 1.188 −18.320

C 0.173 0.530 −3.455 0.173 0.530 −3.664 0.173 0.530 −3.873

D 0.120 0.650 0.360 0.120 0.650 0.040 0.120 0.648 −0.280

A similar analysis to that in [68] can be carried out for θnor ∈ [0, 1]. Assume that

(i) the vectors ppp3(θ) and 1 are linearly independent for all θ ∈ Θ and (ii), at optimality of

problem (4.35), the inequality ε-constraint is active and all the nonnegativity constraints are

inactive for a subset of the parameter space. Then the optimal objective value function in

186

(4.35), being the minimum weighted risk (MWR), σ̂(θ, λ, ε), can be obtained in this subset

of the parameter space [68]

σ̂(θ, λ, ε) = 1
2

[
ε 1

]
Ψ(θ, λ)−1

ε
1

 , (4.36)

where

Ψ(θ, λ) =

ppp3(θ)TQ(λ)−1ppp3(θ) −ppp3(θ)TQ(λ)−11

−ppp3(θ)TQ(λ)−11 1TQ(λ)−11

 .
For θ ∈ Θ, λ ∈ Λ′ the matrix Ψ(θ, λ) is PD as is its inverse; therefore, σ̂(θ, λ, ε) is a strictly

convex quadratic function of ε.

Since the assumptions (i) and (ii) above hold in IR2, we further examine the

obtained MWR function and the associated efficient solution functions in this region. From

(4.36), the MWR function is available for normalized parameters,

σ̂(θnor, λ, εnor) = 1
2

[
33.5εnor − 20 1

]
Ψ(θnor, λ)−1

33.5εnor − 20

1

 . (4.37)

Letting λ = 0.5 and assuming a desired gain of 9, i.e., ε = −9 and εnor = 0.328, this function

becomes

σ̂(θnor, 0.5, 0.328) = (368(θnor)2 − 120θnor + 68, 435)/(8(96(θnor)2 + 860θnor + 19, 695)),

which is decreasing for θnor ∈ [0, 1]. Thus, the lowest MWR, σ̂(1, 0.5, 0.328) = 0.416, is

achieved at θnor = 1. The associated efficient portfolio

x̂(θnor, 0.5, 0.328) =


112(θnor)2+1,220.056θnor+10,991.736

192(θnor)2+1,720θnor+39,390

80(θnor)2−319.922θnor+15,373.866

192(θnor)2+1,720θnor+39,390

819.866θnor+13,024.398

192(θnor)2+1,720θnor+39,390

 , θnor ∈ [0, 1],

187

is equal to x̂(1, 0.5, 0.328) =

[
0.298 0.367 0.335

]T
for θnor = 1.

We now analyze the MWR with respect to the bound ε on the negative expected

return that is minimized.

Corollary 4.5.0.1. Let the matrices Q1, Q2 be positive definite and the vectors ppp3(θ) and

1 be linearly independent for all θ ∈ Θ for TOPOP (4.34). At optimality of problem (4.35),

let the inequality ε-constraint be active and all the nonnegativity constraints be inactive for

a subset of the parameter space Θ × Λ′ ×E . Then at the value of the expected return ε̂ =

arg minε∈E ′ σ̂(θ, λ, ε), the lowest MWR w.r.t. ε, σ̂(θ, λ, ε̂), is independent of the parameter

θ.

Proof. Solving ∂σ̂(θ,λ,ε)
∂ε = 0 for ε, we obtain ε̂ = ε̂(θ, λ) = −ppp3(θ)TQ(λ)−11

1TQ(λ)−11
. Substituting ε̂

into (4.36) we get σ̂(θ, λ, ε̂) = 1
21TQ(λ)−11

, which is independent of θ.

We can illustrate Corollary 4.5.0.1 on IR2 because this region satisfies the re-

quired assumptions. The lowest MWR, σ̂(θ, λ, ε̂) = 1
21TQ(λ)−11

= −(6λ3+15λ2−86λ+71)
2(6λ2+36λ−67)

, can

be calculated by the DM for any λ ∈ [0, 1]. For example, if λ = 0.5, then σ̂(θ, 0.5, ε̂) = 0.342.

The corresponding bound, ε̂, can be calculated for a specific value of θ ∈ [15, 17]. For ex-

ample, given λ = 0.5 and choosing θ = 17, we have ε̂(17, 0.5) = −3.342 or ε̂nor = 0.497,

which is the upper end value for εnor in IR2.

4.6 Conclusion

This paper appears to present the first numerical study on solving parametric

MOPs. We showed that the state-of-the art parametric optimization algorithms allow com-

putation of efficient sets for convex mpMOQPs in which parameters model unknown or

uncertain quantities. mpMOQPs are solved by scalarization which introduces additional

188

parameters when transforming the original problem into mpQPs. Because the efficient set

for mpMOQPs is a parametrized collection of the efficient sets, the former can be computed

by the algorithms that have been designed for mpQPs as long as they are able to handle

multiple parameters and work well on mpQPs of different types. To offer flexibility with

mpQPs, we proposed a generalized weighted-sum scalarization that reduces to six SOPs

of the weighted-sum/epsilon-constraint type that can be applied depending on the real-life

context and available solver.

We compared two LCP-based methods for solving spQPs with linear constraints:

the mpLCP method, a recently developed method to solve mpQPs with linear constraints,

and the spLCP method, a method proposed in the 1990s and never implemented. We

anticipated that the latter would be more efficient than the former due to its special features

but discovered otherwise. The mpLCP method, which turned out to be superior to three

other methods in [68], is also superior to the spLCP method in the current MATLAB

environment. Consequently, we conclude that the mpLCP method determines the state-

of-the-art in solving mpMOQPs with linear constraints. Using the elastic net problem

in statistics and portfolio optimization, we showed that matching the two methods with

specific scalarizations provides mutually complementary insight into the real-life context

and therefore supports decision making.

Future research can go in different directions. The spLCP method should not be

ignored because software advances in solving systems of polynomial equations might make

it attractive in the future. More generally, since parametric multiobjective optimization

requires methodologies that are customized at the stage of SOP reformulation and the

stage of algorithmic development, it is advisable to design algorithms for specific classes of

mpSOPs and utilize them for mpMOPs.

189

Supporting Information

A Solving the BOQP in Example (4.25) with the spLCP

method

Below we present the iterations of the spLCP method when solving the BOQP in

(4.25).

Initialization: The full rank factorization of matrix ∆M yields Ψ =


2 0

0 3

0 0

 and κκκ =

 5

−2

.

Let B0 = {1, 2, 3}; for the sake of clarity, we write B0 = {w1, w2, w3}. The initial Tableau

TB0(λ) without the columns associated with the basic variables and columns h+ 1 to h+n

is given below.

Initial Tableau TB0(λ)

ggg.0 ggg.6 ggg.7 ggg.8 ggg.9 ggg.10

w1 -1+10λ -2-4λ 0 -3 2 0

w2 1-6λ 0 -5-9λ -5 0 3

w3 15 3 5 0 0 0

vκ1 5 -2 0 0 0 0

vκ2 -2 0 -3 0 0 0

Iteration 1: Set λ = 0 in the initial tableau and obtain TB0(0).

Tableau TB0(0)

190

ggg.0 ggg.6 ggg.7 ggg.8 ggg.9 ggg.10

w1 -1 −2 0 -3 2 0

w2 1 0 -5 -5 0 3

w3 15 3 5 0 0 0

vκ1 5 -2 0 0 0 0

vκ2 -2 0 -3 0 0 0

Since (TB0(0))1,0 = −1, we have that (TB0(0)).0 6≥ 0. Thus we apply Phase I. Let r =

min{i : (TB0(0))i,0 < 0, i = 1, 2, 3} = 1. Then (TB0(0))r,r̄ = (TB0(0))1,6 = −2 < 0, and a

diagonal pivot is performed.

Tableau TB1(0)

ggg.0 ggg.1 ggg.7 ggg.8 ggg.9 ggg.10

z1 1/2 -1/2 0 3/2 -1 0

w2 1 0 -5 -5 0 3

w3 27/2 3/2 5 -9/2 3 0

vκ1 6 -1 0 3 -2 0

vκ2 -2 0 -3 0 0 0

The obtained complementary basis B1 = {z1, w2, w3} is feasible for λ = 0 since (TB1(0))i,0 >

0 for i = 1, 2, 3. Hence Phase I is terminated. A BFCS is obtained for spLCP (4.26) for

λ = 0 
w1

w2

w3

 =


0

1

27/2



z1

z2

z3

 =


1/2

0

0

 , (4.38)

191

which yields an efficient solution to BOQP (4.25)

x1

x2

 =

1/2

0

 .

Phase II is initiated. Since (TB1(0))i,0 > 0, the condition Bi0 � 0 holds for all i = 1, 2, 3.

Algorithm 5 is used to find an invariancy interval for λ, i.e., the increment τ above 0, in

which (4.38) remains the BFCS. To do so, the polynomial equations, Pi1(τ) = 0 for each

i = 1, 2, 3 and P2(τ) = 0, are solved for their positive roots:

Pi1(τ) = det
(
− TB(λ)KK + τ−1I

)(
TB(λ)i0 − (−TB(λ)iK)(TB(λ)KK + τ−1I)−1TB(λ)K0

)
= 0.

For i = 1, det


2 + τ−1 0

0 τ−1



1/2−

[
1 0

]2 + τ−1 0

0 τ−1


−1  6

−2


 = 0

(
2τ + 1

τ2

)(
1− 10τ

4τ + 2

)
= 0

α1 = τ = 1/10.

For i = 2, det


2 + τ−1 0

0 τ−1



1−

[
0 −3

]2 + τ−1 0

0 τ−1


−1  6

−2


 = 0

(
2τ + 1

τ2

)
(1− 6τ) = 0

α2 = τ = 1/6.

192

For i = 3, det


2 + τ−1 0

0 τ−1



27/2−

[
−3 0

]2 + τ−1 0

0 τ−1


−1  6

−2


 = 0

(
2τ + 1

τ2

)
(2τ + 3) = 0

α3 = τ =∞.

Then ρ1 = min{α1, α2, α3} = min{1/10, 1/6,∞} = 1/10. Equation P2(τ) = 0 is solved:

P2(τ) = det
(
− TB(λ)KK + τ−1I

)
= 0

det


2 + τ−1 0

0 τ−1


 = 0

(
2τ + 1

τ2

)
= 0

Since the roots of equation P2(τ) = 0 are not positive, set ρ2 = τ = ∞. Find ρ =

min{1− λ, ρ1, ρ2} = min{1, 1/10,∞} = ρ1 = 1/10, and the invariancy interval for λ for the

current BFCS (4.38) is [0, 1/10]. The starting tableau for the next iteration is constructed.

Iteration 2: Set λ = 1/10 in the initial tableau and obtain TB0(1/10).

Tableau TB0(1/10)

193

ggg.0 ggg.6 ggg.7 ggg.8 ggg.9 ggg.10

w1 0 -12/5 0 -3 2 0

w2 2/5 0 -59/10 -5 0 3

w3 15 3 5 0 0 0

vκ1 5 -2 0 0 0 0

vκ2 -2 0 -3 0 0 0

The resulting (TB0(1/10))i0 ≥ 0 for i = 1, 2, 3, i.e., the current complementary basis B2 =

B0 = {w1, w2, w3} is feasible for λ = 1/10. A new BFCS is obtained for spLCP (4.26) for

λ = 1/10: 
w1

w2

w3

 =


0

2/5

15



z1

z2

z3

 =


0

0

0

 . (4.39)

which yields an efficient solution to BOQP (4.25)

x1

x2

 =

0

0

 .

Since (TB0(1/10))i,0 > 0, the condition Bi0 � 0 holds for all i = 1, 2, 3. Algorithm 5 is used

to find an invariancy interval for λ, i.e., the increment τ above 1/10, in which (4.39)

remains the BFCS. To do so, polynomial equations, Pi1(τ) = 0 for each i = 1, 2, 3, and

P2(τ) = 0, are solved for their positive roots:

Pi1(τ) = det
(
− TB(λ)KK + τ−1I

)(
TB(λ)i0 − (−TB(λ)iK)(TB(λ)KK + τ−1I)−1TB(λ)K0

)
= 0.

194

For i = 1, det


τ−1 0

0 τ−1



0−

[
−2 0

]τ−1 0

0 τ−1


−1  5

−2


 = 0

(
1

τ2

)
(10τ) = 0

α1 = τ =∞.

For i = 2, det


τ−1 0

0 τ−1



2/5−

[
0 −3

]τ−1 0

0 τ−1


−1  5

−2


 = 0

(
1

τ2

)
(2/5− 6τ) = 0

α2 = τ = 1/15.

For i = 3, det


τ−1 0

0 τ−1



15−

[
0 0

]τ−1 0

0 τ−1


−1  5

−2


 = 0

(
15

τ2

)
= 0

α3 = τ =∞.

Then ρ1 = min{α1, α2, α3} = min{∞, 1/15,∞} = 1/15. Equation P2(τ) = 0 is solved.

P2(τ) = det
(
− TB(λ)KK + τ−1I

)
= 0

195

det


τ−1 0

0 τ−1


 = 0

(
1

τ2

)
= 0

Set ρ2 = τ = ∞. Find ρ = min{1 − λ, ρ1, ρ2} = min{9/10, 1/15,∞} = ρ1 = 1/15, and the

invariancy interval for λ for the current BFCS (4.39) is [1/10, (1/10)+(1/15)] = [1/10, 1/6].

The starting tableau for the next iteration is constructed.

Iteration 3: Set λ = 1/6 in the initial tableau and obtain TB0(1/6).

Tableau TB0(1/6)

ggg.0 ggg.6 ggg.7 ggg.8 ggg.9 ggg.10

w1 4/6 -16/6 0 -3 2 0

w2 0 0 -39/6 -5 0 3

w3 15 3 5 0 0 0

vκ1 5 -2 0 0 0 0

vκ2 -2 0 -3 0 0 0

The resulting (TB0(1/6))i0 ≥ 0 for i = 1, 2, 3, i.e., the current complementary basis B3 =

B0 = {w1, w2, w3} is feasible for λ = 1/6. A BFCS is obtained for spLCP (4.26) for

λ = 1/6: 
w1

w2

w3

 =


4/6

0

15



z1

z2

z3

 =


0

0

0

 , (4.40)

196

which yields an efficient solution to BOQP (4.25)

x1

x2

 =

0

0

 .

Since (TB0(1/6))i,0 > 0, the condition Bi0 � 0 holds for all i = 1, 2, 3 Algorithm 5 is used

to find an invariancy interval, i.e., the increment τ from above 1/6, in which (4.40)

remains the BFCS. To do so, polynomial equations, Pi1(τ) = 0 for each i = 1, 2, 3 and

P2(τ) = 0, are solved for their positive roots.

Pi1(τ) = det
(
− TB(λ)KK + τ−1I

)(
TB(λ)i0 − (−TB(λ)iK)(TB(λ)KK + τ−1I)−1TB(λ)K0

)
= 0.

For i = 1, det


τ−1 0

0 τ−1



4/6−

[
−2 0

]τ−1 0

0 τ−1


−1  5

−2


 = 0

(
1

τ2

)
(4/6 + 10τ) = 0

α1 = τ =∞.

For i = 2, det


τ−1 0

0 τ−1



0−

[
0 −3

]τ−1 0

0 τ−1


−1  5

−2


 = 0

(
1

τ2

)
(−6τ) = 0

α2 = τ =∞.

197

For i = 3, det


τ−1 0

0 τ−1



15−

[
0 0

]τ−1 0

0 τ−1


−1  5

−2


 = 0

(
15

τ2

)
= 0

α3 = τ =∞

Then ρ1 =∞. Equation P2(τ) = 0 is solved.

P2(τ) = det
(
− TB(λ)KK + τ−1I

)
= 0

det


τ−1 0

0 τ−1


 = 0

(
1

τ2

)
= 0

Set ρ2 = τ = ∞. Find ρ = min{1 − λ, ρ1, ρ2} = min{5/6,∞,∞} = 1 − λ = 5/6, and the

invariancy interval for λ for the current BFCS (4.40) is [1/6, 1]. The starting tableau for

the next iteration is constructed.

Iteration 4: Set λ = 1 in the initial tableau and obtain TB0(1):

Tableau TB0(1)

198

ggg.0 ggg.6 ggg.7 ggg.8 ggg.9 ggg.10

w1 9 -6 0 -3 2 0

w2 -5 0 −14 -5 0 3

w3 15 3 5 0 0 0

vκ1 5 -2 0 0 0 0

vκ2 -2 0 -3 0 0 0

The resulting (TB0(1))2,0 = −5 < 0 implying Bi0 ≺ 0. Therefore the current basis B0 =

{w1, w2, w3} is updated using Algorithm 7. Let r = min{i : (TB0(1))i,0 < 0, i = 1, 2, 3} = 2.

Then (TB0(1))r,r̄ = (TB0(0))2,7 = −14 < 0, and a diagonal pivot is performed.

Tableau TB4(1)

ggg.0 ggg.6 ggg.2 ggg.8 ggg.9 ggg.10

w1 9 -6 0 -3 2 0

z2 5/14 0 -1/14 5/14 0 -3/14

w3 170/14 3 5 -25/14 0 15/14

vκ1 5 -2 0 0 0 0

vκ2 -11/14 0 -3 15/14 0 -9/14

The resulting (TB2(1))i0 ≥ 0 for i = 1, 2, 3, i.e., the obtained complementary basis B4 =

{w1, z2, w3} is feasible for λ = 1. A new BFCS is obtained for spLCP (4.26) for λ = 1


w1

w2

w3

 =


9

0

170/14



z1

z2

z3

 =


0

5/14

0

 , (4.41)

199

which yields an efficient solution to BOQP (4.25)

x1

x2

 =

 0

5/14

 .
Since the entire parameter space has been examined, the spLCP method terminates.

B Efficient Solutions to Examples

200

Table 4.6: Invariancy regions (I R) and efficient solution functions for TOQP (4.30)
with data (4.31) solved as (4.32) with the mpLCP method.

I R 1 =


λλλ ∈ Λ′ :

100− 100λ2 − 409λ1 ≥ 0

100− 100λ2 − 1007λ1 ≥ 0

100− 100λ2 − 871λ1 ≥ 0

209λ1 − 100λ2 + 100 ≥ 0

807λ1 − 100λ2 + 100 ≥ 0

671λ1 − 100λ2 + 100 ≥ 0



x̂(λλλ) =

x ∈ R3 :

x1 = 0

x2 = 0

x3 = 0

 for λλλ ∈ I R 1

I R 2 =


λλλ ∈ Λ′ :

−15, 623λ2
1 − 13, 936λ1λ2 + 12, 300λ1 − 400λ2

2 + 400λ2 ≥ 0

1, 007λ1 + 100λ2 − 100 ≥ 0

900λ1 + 200λ2 − 2, 642λ1λ2 + 3, 245λ2
1 − 200λ2

2 ≥ 0

209λ1 − 100λ2 − 29, 203λ2
1 + 2, 900λ1λ2 − 2, 900λ1 ≥ 0

1− λ2 − λ1 ≥ 0

−15, 858λ1λ2 − 200λ2 − 17, 200λ1 + 21, 345λ2
1 + 200λ2

2 ≥ 0



x̂(λλλ) =

x ∈ R3 :

x1 = 0

x2 = 1,007λ1+100λ2−100
4,525λ1+100λ2

x3 = 0

 for λλλ ∈ I R 2

I R 3 =


λλλ ∈ Λ′ :

13, 936λ1λ2 − 400λ2 − 12, 300λ1 + 15, 623λ2
1 + 400λ2

2 ≥ 0

1, 900λ1 − 200λ2 + 114λ1λ2 − 1, 791λ2
1 + 200λ2

2 ≥ 0

−1, 200λ1λ2 − 2, 284λ1λ
2
2 + 2, 020λ2

1λ2 + 7, 500λ2
1 − 6, 423λ3

1 + 400λ2
2 − 400λ3

2 ≥ 0

1− λ2 − λ1 ≥ 0

−38, 716λ1λ
2
2 + 41, 400λ1λ2 − 55, 020λ2

1λ2 + 5, 300λ2
1 − 6, 377λ3

1 + 400λ2
2 − 400λ3

2 ≥ 0



x̂(λλλ) =

x ∈ R3 :

x1 =
13,936λ1λ2−400λ2−12,300λ1+15,623λ2

1+400λ2
2

20,100λ1λ2+6,400λ2
1+400λ2

2

x2 =
1,900λ1−200λ2+114λ1λ2−1,791λ2

1+200λ2
2

10,050λ1λ2+3,200λ2
1+200λ2

2

x3 = 0

 for λλλ ∈ I R 3

201

I R 4 =


λλλ ∈ Λ′ :

−25, 036λ1λ
2
2 + 23, 400λ1λ2 − 82, 622λ2

1λ2 + 44, 700λ2
1 − 51, 879λ3

1 + 400λ2
2 − 400λ3

2 ≥ 0

100λ1 − 200λ2 + 1, 914λ1λ2 + 10, 077λ2
1 + 200λ2

2 ≥ 0

−900λ1 − 200λ2 + 2, 642λ1λ2 − 3, 245λ2
1 + 200λ2

2 ≥ 0

−44, 164λ1λ
2
2 + 45, 000λ1λ2 − 114, 378λ2

1λ2 + 83, 900λ2
1 − 76, 721λ3

1 + 400λ2
2 − 400λ3

2 ≥ 0

1− λ2 − λ1 ≥ 0



x̂(λλλ) =

x ∈ R3 :

x1 = 0

x2 =
100λ1−200λ2+1,914λ1λ2+10,077λ2

1+200λ2
2

17,100λ1λ2+32,150λ2
1+500λ2

2

x3 =
−900λ1−200λ2+2642λ1λ2−3,245λ2

1+200λ2
2

17,100λ1λ2+32,150λ2
1+500λ2

2

 for λλλ ∈ I R 4

I R 5 =


λλλ ∈ Λ′ :

25, 036λ1λ
2
2 − 23, 400λ1λ2 + 82, 622λ2

1λ2 − 44, 700λ2
1 + 51, 879λ3

1 − 400λ2
2 + 400λ3

2 ≥ 0

4, 000λ1λ2 + 28λ1λ
2
2 − 4, 128λ2

1λ2 + 20, 700λ2
1 − 18, 603λ3

1 − 400λ2
2 + 400λ3

2 ≥ 0

1, 200λ1λ2 + 2, 284λ1λ
2
2 − 2, 020λ2

1λ2 − 7, 500λ2
1 + 6, 423λ3

1 − 400λ2
2 + 400λ3

2 ≥ 0

1− λ2 − λ1 ≥ 0



x̂(λλλ) =

x ∈ R3 :

x1 =
25,036λ1λ2

2−23,400λ1λ2+82,622λ2
1λ2−44,700λ2

1+51,879λ3
1−400λ2

2+400λ3
2

36,200λ1λ2
2+88,700λ2

1λ2+17,100λ3
1+400λ3

2

x2 =
4,000λ1λ2+28λ1λ2

2−4,128λ2
1λ2+20,700λ2

1−18,603λ3
1−400λ2

2+400λ3
2

36,200λ1λ2
2+88,700λ2

1λ2+17,100λ3
1+400λ3

2

x3 =
1,200λ1λ2+2,284λ1λ2

2−2,020λ2
1λ2−7,500λ2

1+6,423λ3
1−400λ2

2+400λ3
2

36,200λ1λ2
2+88,700λ2

1λ2+17,100λ3
1+400λ3

2

 for λλλ ∈ I R 5

I R 6 =


λλλ ∈ Λ′ :

35, 036λ1λ
2
2 − 33, 400λ1λ2 + 72, 422λ2

1λ2 − 24, 500λ2
1 + 31, 679λ3

1 − 400λ2
2 + 400λ3

2 ≥ 0

32, 628λ1λ
2
2 − 28, 600λ1λ2 + 46, 472λ2

1λ2 + 2, 700λ2
1 − 603λ3

1 − 400λ2
2 + 400λ3

2 ≥ 0

38, 716λ1λ
2
2 − 41, 400λ1λ2 + 55, 020λ2

1λ2 − 5, 300λ2
1 + 6, 377λ3

1 − 400λ2
2 + 400λ3

2 ≥ 0

1− λ2 − λ1 ≥ 0



x̂(λλλ) =

x ∈ R3 :

x1 =
35,036λ1λ2

2−33,400λ1λ2+72,422λ2
1λ2−24,500λ2

1+31,679λ3
1−400λ2

2+400λ3
2

36,200λ1λ2
2+88,700λ2

1λ2+17,100λ3
1+400λ3

2

x2 =
32,628λ1λ2

2−28,600λ1λ2+46,472λ2
1λ2+2,700λ2

1−603λ3
1−400λ2

2+400λ3
2

36,200λ1λ2
2+88,700λ2

1λ2+17,100λ3
1+400λ3

2

x3 =
−38,716λ1λ2

2+41,400λ1λ2−55,020λ2
1λ2+5,300λ2

1−6,377λ3
1+400λ2

2−400λ3
2

36,200λ1λ2
2+88,700λ2

1λ2+17,100λ3
1+400λ3

2

 for λλλ ∈ I R 6

202

Table 4.7: Invariancy regions (I R) and efficient solution functions for TOQP (4.30)
with data (4.31).

I R 1 =


α, β ≥ 0 :

100β − 309 ≥ 0

100β − 907 ≥ 0

100β − 771 ≥ 0

100β + 309 ≥ 0

100β + 907 ≥ 0

100β + 771 ≥ 0



x̂(α, β) =

x ∈ R3 :

x1 = 0

x2 = 0

x3 = 0

 for (α, β) ∈ I R 1

I R 2 =


α, β ≥ 0 :

−1, 236α + 12, 300β + 400αβ − 3, 323 ≥ 0

−100β + 907 ≥ 0

900β − 1, 542α + 200αβ + 4, 145 ≥ 0

1, 236α + 23, 900β + 400αβ + 3, 323 ≥ 0

1, 542α + 17, 200β + 200αβ − 4, 145 ≥ 0



x̂(α, β) =

x ∈ R3 :

x1 = 0

x2 = −100β+907
100α+4,525

x3 = 0

 for (α, β) ∈ I R 2

I R 3 =


α, β ≥ 0 :

1, 236α− 12, 300β − 400αβ + 3, 323 ≥ 0

1, 814α + 1, 900β − 200αβ + 109 ≥ 0

8, 320α + 7, 500β − 1, 200αβ + 400α2β − 3, 084α2 + 1, 077 ≥ 0

5, 300β − 8, 320α + 41, 400αβ + 400α2β + 3, 084α2 − 1, 077 ≥ 0



x̂(α, β) =

x ∈ R3 :

x1 = 1,236α−12,300β−400αβ+3,323
400α2+20,100α+6,400

x2 = 1,814α+1,900β−200αβ+109
200α2+10,050α+3,200

x3 = 0

 for (α, β) ∈ I R 3

203

I R 4 =


α, β ≥ 0 :

−14, 522α + 44, 700β + 23, 400αβ + 400α2β − 1, 236α2 − 7, 179 ≥ 0

1, 814α + 100β − 200αβ + 10, 177 ≥ 0

−900β + 1, 542α− 200αβ − 4, 145 ≥ 0

14, 522α + 83, 900β + 45, 000αβ + 400α2β + 1, 236α2 + 7, 179 ≥ 0



x̂(α, β) =

x ∈ R3 :

x1 = 0

x2 = 1,814α+100β−200αβ+10,177
200α2+17,100α+32,150

x3 = −900β+1,542α−200αβ−4,145
200α2+17,100α+32,150

 for (α, β) ∈ I R 4

I R 5 =

α, β ≥ 0 :

14, 522α− 44, 700β − 23, 400αβ − 400α2β + 1, 236α2 + 7, 179 ≥ 0

20, 572α + 20, 700β + 4, 000αβ − 400α2β + 3, 628α2 + 2, 097 ≥ 0

−8, 320α− 7, 500β + 1, 200αβ − 400α2β + 3, 084α2 − 1, 077 ≥ 0



x̂(α, β) =

x ∈ R3 :

x1 = 14,522α−44,700β−23,400αβ−400α2β+1,236α2+7,179
400α3+36,200α2+88,700α+17,100

x2 = 20,572α+20,700β+4,000αβ−400α2β+3,628α2+2,097
400α3+36,200α2+88,700α+17,100

x3 = −8,320α−7,500β+1,200αβ−400α2β+3,084α2−1,077
400α3+36,200α2+88,700α+17,100

 for (α, β) ∈ I R 5

I R 6 =

α, β ≥ 0 :

14, 522α− 24, 500β − 33, 400αβ − 400α2β + 1, 236α2 + 7, 179 ≥ 0

20, 572α + 2, 700β − 28, 600αβ − 400α2β + 3, 628α2 + 2, 097 ≥ 0

−5, 300β + 8, 320α− 41, 400αβ − 400α2β − 3, 084α2 + 1, 077 ≥ 0



x̂(α, β) =

x ∈ R3 :

x1 = 14,522α−24,500β−33400αβ−400α2β+1236α2+7179
400α3+36,200α2+88,700α+17,100

x2 = 20,572α+2,700β−28,600αβ−400α2β+3,628α2+2,097
400α3+36,200α2+88,700α+17,100

x3 = 5,300β−8,320α+41,400αβ+400α2β+3,084α2−1,077
400α3+36,200α2+88,700α+17,100

 for (α, β) ∈ I R 6

204

Table 4.8: Invariancy region (I R) and efficient solution functions for Example (4.34)
scalarized with the modified hybrid method (θ = θnor, ε = εnor, and the parameter
space Ω = Θnor × Λ′ ×E nor)

I R 1 =

(θ, λ, ε) ∈ Ω :

−20λ− 737ε− 24θ + 134λε+ 8λθ + 60 ≥ 0

−740λ− 44, 019ε− 808θ + 4, 958λε+ 56λθ − 2, 144εθ + 96λθ2 − 160θ2

+1, 608λεθ + 3, 020 ≥ 0

67ε+ 4θ − 10 ≥ 0



x̂(θ, λ, ε) =

x ∈ R3 :

x1 = 0

x2 = 67ε+4θ−10
4θ−10

x3 = −67ε
4θ−10

 for (θ, λ, ε) ∈ I R 1

I R 2 =



(θ, λ, ε) ∈ Ω :

1, 139λ+ 4, 489ε+ 56θ − 2, 412λε− 402λ2ε− 24λ2θ
+60λ2 − 2, 217 ≥ 0

−31, 021ε+ 21, 562λ− 1552θ − 96λ2θ2 + 20, 167λε+ 4, 512λθ
−3, 752εθ + 12, 060λ2ε+ 384λθ2 − 1, 776λ2θ − 3, 938λ2

−352θ2 + 1, 608λ2εθ − 27, 554 ≥ 0

−740λ− 44, 019ε− 808θ + 4, 958λε+ 56λθ − 2, 144εθ + 96λθ2

−160θ2 + 1, 608λεθ + 3, 020 ≥ 0

20, 167ε− 2, 080λ+ 640θ + 13, 936λε+ 592λθ − 2680εθ + 96λθ2

−128θ2 + 1, 608λεθ − 23, 245 ≥ 0

37λ+ 178ε− 20θ − 141λε+ 12λθ + 36εθ − 24λεθ − 151 ≥ 0



x̂(θ, λ, ε) =

x ∈ R3 :

x1 = −740λ−44,019ε−808θ+4,958λε+56λθ−2,144εθ+96λθ2−160θ2+1,608λεθ+3,020
2,138λ−2,848θ+2,256λθ+192λθ2−288θ2−40,459

x2 = 20,167ε−2,080λ+640θ+13,936λε+592λθ−2,680εθ+96λθ2−128θ2+1,608λεθ−23,245
2,138λ−2,848θ+2,256λθ+192λθ2−288θ2−40,459

x3 = 4,958λ+23,852ε−2,680θ−18,894λε+1,608λθ+4,824εθ−3,216λεθ−20,234
2,138λ−2,848θ+2,256λθ+192λθ2−288θ2−40,459

 for (θ, λ, ε) ∈ I R 2

I R 3 =


(θ, λ, ε) ∈ Ω :

−1, 139λ− 4, 489ε− 56θ + 2, 412λε+ 402λ2ε+ 24λ2θ − 60λ2 + 2, 217 ≥ 0

−15λ2 + 86λ− 6λ3 − 71 ≥ 0

17λ− 31 ≥ 0

19λ− 22 ≥ 0

3λ2 − 7 ≥ 0



x̂(θ, λ, ε) =

x ∈ R3 :

x1 = 17λ−31
36λ+6λ2−67

x2 = 19λ−22
36λ+6λ2−67

x3 = 6λ2−14
36λ+6λ2−67

 for (θ, λ, ε) ∈ I R 3

205

Chapter 5

Conclusions and Future Research

This chapter first provides a summary of our contributions to the field of Mul-

tiobjective Optimization (Operations Research) and then discusses directions for future

research.

5.1 Summary of Contributions

In this dissertation, we have presented our contributions in different areas of multi-

objective programs (MOPs) by introducing methodology which can be used to solve specific

classes of multiobjective and parametric quadratic programs. Particularly, the branch and

bound (BB) algorithm to solve the biobjective mixed integer quadratic programs is the

first-ever method to solve this class of problems. Also, we have studied and compared the

current state-of-the-art algorithms for solving multiobjective quadratic programs (MOQPs).

We have implemented some of the proposed methods and conducted computational experi-

ments. In addition to the generated synthetic instances, the discussed algorithms have been

applied to the decision-making problems in statistics and portfolio optimization.

206

5.1.1 Theoretical/Methodological Contributions

In Chapter 2, we have proposed a BB algorithm for solving biobjective mixed

integer quadratic programs (BOMIQPs). Two new modules have been introduced based on

the structure of the Pareto set of BOMIQPs: (1) a fathoming rule module to eliminate node

problems that do not contain Pareto points to the BOMIQP, (2) a set dominance module

to examine the mutual location of two Pareto sets and determine the nondominated set. In

addition, we have proposed a branching scheme that integrates with the mpLCP method, the

node problem solver. Both of these modules, the branching scheme, and the node problem

solver are combined into a BB algorithm for computing efficient solutions and Pareto points

to BOMIQP with linear constraints. According to our knowledge, an algorithm for solving

BOMIQPs does not exist in the literature. Note that solving MOQPs is crucial to our work

for developing a BB algorithm.

The proposed set dominance module can be used to make the dominance decision

between two strictly convex Pareto sets. The end points of the Pareto sets are the only

inputs for this module. These Pareto sets are coming from biobjective programs with the

same objective functions and different feasible sets. Four subprocedures are designed to

make the dominance decision by comparing the mutual locations of the end points and the

associated ideal points of the Pareto sets.

In Chapter 3, we have reviewed some well-established scalarizations in multiob-

jective programming from the perspective of parametric optimization and have proposed

a modified hybrid scalarization suitable for a class of specially structured (strictly) convex

MOPs. In addition, we have reviewed and compared the algorithms for solving (strictly)

convex MOQPs. As a result, we have concluded that the mpLCP method [3, 2] emerges as

the most universal approach to solve MOQPs. This method has been used as the primary

method to solve MOQPs and parametric quadratic programs (mpQPs) in our work.

207

In Chapter 4, we have discussed how to use the mpLCP method [3, 2] and the

spLCP method [124] to solve the parametric programs with quadratic objective functions

and linear constraints. These methods provide a complete parametric description of the

solution to the mpQPs. The mpQPs were obtained by scalarizing parametric multiobjective

quadratic programs. The weighted-sum or modified hybrid scalarizations were used in this

solution approach.

5.1.2 Implementation/Computational Contributions

In Chapter 2 we have introduced the first-ever BB algorithm designed for solving

BOMIQPs with linear constraints. A variation of this algorithm is implemented in MAT-

LAB programming language and tested with randomly generated BOMIQP instances. Due

to the limitations of the current implementation of the mpLCP method and limitations of

MATLAB environment, the five modules have been executed independently in this rudi-

mentary experiment. Also, the mpLCP method is sensitive to adding branching constraints.

Therefore, small-sized instances with at most two binary/ integer variables out of two or

three total variables, and at most two original linear constraints have been solved. Note

that all the integer variables are bounded. This preliminary implementation of the BB

algorithm has provided the complete set of efficient solutions in the associated invariancy

interval as functions of the weight parameter λ.

In Chapter 4, we have discussed how to use the spLCP method to solve BOQPs

with linear constraints. This method is originally designed to solve a class of single paramet-

ric linear complementarity problems. According to our knowledge, this method has never

been implemented. We have implemented the spLCP method in MATLAB programming

language as a two-phase method to solve the BOQPs. Phase I is designed to find an initial

basic feasible solution and once such a solution is available, Phase II is initialized. Phase

208

II is designed to update the parameter λ, the weight of the weighted sum scalarization of a

BOQP, and finds the associated solution for the current value of λ. We have expected that

the spLCP method would be more efficient than the mpLCP method for solving BOQPs.

A computational experiment has been performed to compare the efficiency of the spLCP

and mpLCP methods with randomly generated strictly convex BOQPs. However, due to

the limitation of some inbuilt functions such as polynomial equation solvers in the current

MATLAB environment, we were not able to gain the expected advantage. That is, the

mpLCP method remains the state-of-the-art method for solving BOQPs. Another disad-

vantage of the spLCP method is that only the BOQPs that satisfy the special assumptions

can be solved.

5.2 Future Research

We have proposed a BB algorithm for solving BOMIQPs. This class of problems

appears in many real-world applications and a method to solve such a problem is in demand.

The proposed algorithm is combined with five modules and finds the complete set of efficient

solutions and the Pareto set. This work immediately opens up several avenues for continued

research. The proposed branching module depends on the solution functions obtained by

the mpLCP method. Therefore, a method to solve single variable fractional programs will

enhance the performance of the branching module.

Two practical bound-based fathoming rules have been proposed and future re-

search will be devoted to improving the current rules and designing new strong fathoming

rules. Both the fathoming rule and the set dominance modules are performed in the objec-

tive space. Therefore, there is a potential of combining these two modules for small-sized

problems. However, a broad numerical experiment will be needed for this modification.

209

In the proposed set dominance module, a system of polynomial equations is solved

to find the intersection points between two Pareto sets. A more robust commercially avail-

able solver can be used to improve this module. In general, the set dominance module can

be generalized to make the dominance decision between two (strictly) convex Pareto sets.

The implementation of the mpLCP method is sensitive to adding more constraints

in the branching step. Therefore, a more stable node problem solver with lower complexity

is suggested to use in the future. However, it seems that in order to develop a truly efficient

solver for BOQPs, one must either propose a new solver without using commercial packages

or wait until the tools of commercial software are incorporated with the current solver.

Unfortunately, neither of these options is very promising in the near future.

The CPLEX optimization software can be used instead of GUROBI to obtain the

initial efficient set and the associated initial Pareto set to BOMIQP. Free versions of both

of these solvers are available for students and researchers.

In addition, computational tests will be performed on BOMIQP instances that

are adapted from the literature. We have not solved any convex biobjective (pure) binary/

integer quadratic programs as it is not our primary goal. However, our algorithm contains

all tools to solve problems in that class and can be modified accordingly.

In general, our algorithm relies on solving four types of optimization problems

and systems of polynomial equations. With our study on BOMIQPs, we understood that,

although there is a good potential of developing an efficient branch and bound algorithms

for BOMIQP, these algorithms are quite difficult and complex to implement efficiently using

the current commercial software packages.

210

Appendices

211

Appendix A Fathoming Rules: The Case with One

Nadir Point

In this section we discuss fathoming rules by considering only two attainable

points yi,yj ∈ Ȳ s
a and the associated nadir point yi,j =

(
yi,j1 = yj1, y

i,j
2 = yi2

)
∈ Y sN . We

analyze the location of these points with respect to the set {ỹsI}=, since we assume that the

points ỹs1, ỹs2, and ỹsI have already been obtained. Consider the following three locations

of yi,yj and yi,j with respect to the set {ỹsI}=. We discuss how to make a fathoming

decision based on these locations for a single nadir point case.

Location 1: yi ∈ {ỹsI}5 or yj ∈ {ỹsI}5.

This implies the Ỹ s
P ⊂ ({yi}=∪{yj}=) and hence node s can be fathomed. Figure 1 depicts

this case.

Location 2: yi,j ∈ T s.

If the nadir point is in the set T s, a fathoming decision is not immediate. We

need to further investigate this case by considering the locations of yi and yj with respect

to T s and the location of yi,j with respect to Ỹ s
P . We consider the following three cases

and make a fathoming decision accordingly.

The first case addresses the instance when all points yi,yj and yi,j are in T s.

Location 2 Case 1: yi or yj ∈ T s.

If yi or yj ∈ T s, then there exists a point ỹs ∈ Ỹ s
P such that ỹs /∈ ({yi}= ∪ {yj}=). Hence,

node s can not be fathomed as depicted in Figures 2a and 2b.

212

Figure 1: Location 1 - node s can be fathomed

The second case depends only on the location of the nadir point yi,j with respect

to the set Ỹ s
P and does not depend on the locations of yi and yj .

Location 2 Case 2: yi,j ∈ Ỹ s
P + R>.

If yi,j ∈ Ỹ s
P +R>, then there exists a point ỹs ∈ Ỹ s

P such that ỹs /∈ ({yi}=∪{yj}=). Hence,

regardless of the locations of the points yi and yj , node s can not be fathomed as depicted

in Figures 3a and 3b.

In the third case we assume yi and yj /∈ T s for yi,j ∈ T s. Then yi must be in

Ȳ s
a ∩ CsW and yj must be in Ȳ s

a ∩ CsS .

Location 2 Case 3: yi,j ∈ Ỹ s
P − R2

=, and yi and yj /∈ T s.

213

Here, Ỹ s
P ⊂ ({yi}= ∪ {yj}=) and hence node s can be fathomed. Figures 4a and 4b depict

this case.

The complete set Ỹ s
P is needed to make a fathoming decision for the second and

the third cases of Location 2. However, this complete set Ỹ s
P is not available and hence

making a fathoming decision is not straightforward as in the other cases we discussed.

We solve an achievement function problem to overcome this issue. That is, we can use the

achievement function problem to make a fathoming decision in cases 2 and 3 under Location

2, without computing the entire Pareto set Ỹ s
P . While this section is concerned so far with

the one nadir point case, the following achievement function problem can be used for any

number of nadir points in T s.

Making a Fathoming Decision with the Solution of the Achievement Function

Problem

Proposition A.1. Let yi ∈ Ȳ s
a ∩ CsW and yj ∈ Ȳ s

a ∩ CsS, the implied nadir point yi,j be

in T s, x̂s be an optimal solution to (2.10) and ŷs = (f1(x̂s), f2(x̂s)). Then node s can be

fathomed if ŷs ∈ {yi,j}≥.

Proof. Assume ŷs ∈ {yi,j}≥. Since yi ∈ (Ȳ s
a ∩ CsW) and yj ∈ (Ȳ s

a ∩ CsS) we have Ỹ s
P ⊂(

{yi}= ∪ {yj}= ∪ {yi,j}≥
)
. Also {yi,j}≥ ⊂

(
{yi}= ∪ {yj}=

)
and then Ỹ s

P ⊂
(
{yi}= ∪ {yj}=

)
.

Therefore, node s can be fathomed based on (2.21).

Note that examining ŷs ∈ {yi,j}≥ is equivalent to checking the condition ŷs1 ≥ y
i,j
1

and ŷs2 ≥ y
i,j
2 . Otherwise, ŷs /∈ {yi,j}≥, and node s can not be fathomed.

Location 3: All points yi,yj and yi,j are not in either Location 1 or Location 2.

The Location 1 and case 3 under Location 2 are the only cases that node s can be fathomed.

214

(a) (b)

Figure 2: Two instances of Location 2 Case 1 - node s can not be fathomed

(a) (b)

Figure 3: Two instances of Location 2 Case 2 - node s can not be fathomed

(a) (b)

Figure 4: Two instances of Location 2 Case 3 - node s can be fathomed

215

If the attainable points or the associated nadir point are not in these locations, then node

s can not be fathomed.

We can summarize all of the above cases as follows:

1. If yi ∈ {ỹsI}5 or yj ∈ {ỹsI}5, then node s can be fathomed.

2. Else if yi,j ∈ T s and the associated yi ∈ (Ȳ s
a ∩ CsW) and yj ∈ (Ȳ s

a ∩ CsS), then we

solve achievement function problem (2.10) and obtain a solution ŷs = (ŷs1, ŷ
s
2) ∈ Ỹ s

P ,

(a) if ŷs1 ≥ y
i,j
1 and ŷs2 ≥ y

i,j
2 , then node s can be fathomed,

(b) else node s can not be fathomed.

3. Else node s can not be fathomed.

Based on this summary, we propose a fathoming procedure with one nadir point. A flowchart

of this procedure is given bellow. Inputs to this procedure are yi,yj , ỹs1 and ỹs2. Using

the inputs, we compute yi,j and ỹsI . First, we check the locations of yi and yj . If at

least one of these points is in {ỹsI}5, then node s can be fathomed. Otherwise, we check

whether the nadir point is not in T s. If this holds, node s can not be fathomed. If the

nadir point is in T s, then we check the locations of the associated nondominated points. If

at least one of these points is also in T s, then node s can not be fathomed. Else, we solve

the achievement function problem with the nadir point yi,j and fathom node s if ŷs1 > yi,j1

and ŷs2 > yi,j2 , where ŷs = (ŷs1, ŷ
s
2) is the image of an optimal solution to the achievement

function problem. If the above condition does not hold, then node s can not be fathomed.

216

Flowchart - One nadir point

 Yes

No

Fathom

Not Fathom

Solve auxiliary problem (2.10) with 𝒚𝒚𝒊𝒊,𝒋𝒋 and obtain an optimal
solution 𝒙𝒙�𝑠𝑠 and 𝒚𝒚�𝑠𝑠 = (𝑦𝑦�1𝑠𝑠 = 𝑓𝑓1(𝒙𝒙�𝑠𝑠), 𝑦𝑦�2𝑠𝑠 = 𝑓𝑓2(𝒙𝒙�𝑠𝑠)) ∈ .

Not FathomFathom

Input: Points 𝒚𝒚𝑖𝑖 = (𝑦𝑦1𝑖𝑖 ,𝑦𝑦2𝑖𝑖),𝒚𝒚𝑗𝑗 = (𝑦𝑦1
𝑗𝑗 ,𝑦𝑦2

𝑗𝑗) ∈

𝒚𝒚�𝑠𝑠1,𝒚𝒚�𝑠𝑠2 ∈

Obtain: Nadir point 𝒚𝒚𝑖𝑖,𝑗𝑗 = �𝑦𝑦1
𝑗𝑗 ,𝑦𝑦2𝑖𝑖 �

Ideal point 𝒚𝒚�𝑠𝑠𝑠𝑠, Set 𝑇𝑇𝑠𝑠

Check whether 𝒚𝒚𝑖𝑖 ∈ {𝒚𝒚�𝑠𝑠𝑠𝑠}≦ or
𝒚𝒚𝑗𝑗 ∈ {𝒚𝒚�𝑠𝑠𝑠𝑠}≦.

Check whether 𝒚𝒚𝑖𝑖𝑖𝑖 ∉ 𝑇𝑇𝑠𝑠.
Yes

No

Check whether 𝑦𝑦�1𝑠𝑠 > 𝑦𝑦1
𝑗𝑗and

𝑦𝑦�2𝑠𝑠 > 𝑦𝑦2𝑖𝑖 .
Yes No

Check whether 𝒚𝒚𝑖𝑖 or 𝒚𝒚𝑗𝑗 ∈ 𝑇𝑇𝑠𝑠. Not Fathom
Yes

No

Figure 5: Flowchart for the fathoming module with one nadir point

217

Appendix B Example

To illustrate the behavior of BOMIQPs, we present an example in this section.

Note that the proposed BB algorithm is not used to solve this example.

Consider the following biobjective mixed binary quadratic program:

min [f1(x) = (x1 − 2)2 + (x2 − 2)2 − 3x1x3 + 5x2x4 + 5x2x5,

f2(x) = x2
1 + (x2 − 3)2 + 3x3 − 5x2x4]

s.t. x2 ≤ 2.25

x1 + x2 ≤ 2.75

2x1 + x2 ≤ 3.75

x1, x2 ≥ 0

x3 + x4 + x5 ≤ 1 (∗)

x3, x4, x5 ∈ {0, 1} (∗∗)

(1)

Notice that in this example, x1, x2 are continuous variables, x3, x4, x5 are binary variables,

and the first four constraints contain only continuous variables. We define the set:

X ′ = {x1, x2 : x2 ≤ 2.25

x1 + x2 ≤ 2.75

2x1 + x2 ≤ 3.75

x1, x2 ≥ 0}.

(2)

This feasible set X ′ is illustrated in Figure 6.

In addition, the last two constraints contain only integer variables for which there

218

are the following four possibilities,

(i) (x3, x4, x5) = (0, 0, 0)

(ii) (x3, x4, x5) = (1, 0, 0)

(iii) (x3, x4, x5) = (0, 1, 0)

(iv) (x3, x4, x5) = (0, 0, 1).

Figure 6: The decision space of example (1) with continuous variables x1 and x2

For each of the above cases, we solve the associated BOQP using the mpLCP

method [3]. Each BOQP contains the continuous variables x1 and x2 only. In the solution,

λ ∈ [0, 1] is the weight parameter of the weighted sum problem associated with each BOQP.

(i) (x3, x4, x5) = (0, 0, 0)

219

BOQP:

min [f1(x) = (x1 − 2)2 + (x2 − 2)2, f2(x) = x2
1 + (x2 − 3)2]

s.t. x1, x2 ∈ X ′
(3)

(ii) (x3, x4, x5) = (1, 0, 0)

BOQP:

min [f1(x) = (x1 − 2)2 + (x2 − 2)2 − 3x1, f2(x) = x2
1 + (x2 − 3)2]

s.t. x1, x2 ∈ X ′
(4)

(iii) (x3, x4, x5) = (0, 1, 0)

BOQP:

min [f1(x) = (x1 − 2)2 + (x2 − 2)2 + 5x2, f2(x) = x2
1 + (x2 − 3)2 − 5x2]

s.t. x1, x2 ∈ X ′
(5)

(iv) (x3, x4, x5) = (0, 0, 1)

BOQP:

min [f1(x) = (x1 − 2)2 + (x2 − 2)2 + 5x2, f2(x) = x2
1 + (x2 − 3)2]

s.t. x1, x2 ∈ X ′
(6)

The solutions of these four BOQPs are given in Table 1, while Figure 7 depicts the objective

space of the four problems.

The Pareto set YP of the biobjective mixed binary quadratic problem can be

found geometrically by taking the lower envelope of the solution curves of the four BOQPs.

220

f1(x)

f 2
(x

)

Figure 7: The objective space of Example (1)

Based on Example (1), we observe that the Pareto set of BOMIQPs is a union

of curves in R2. Each curve being a subset of the Pareto set of the associated BOQP may

be open or closed, or neither open nor closed, and may be reduced to a point. The union

curve may be nonconvex and discontinuous which makes the Pareto set disconnected [74].

221

C
a
se

1
R

eg
io

n
s

0
≤
λ
≤

1/
8

1/
8
≤
λ
≤

17
/2

4
17
/2

4
≤
λ
≤

7/
8

7/
8
≤
λ
≤

1
x

1
4λ

1/
2

−
13
/8

+
3λ

1
x

2
9/

4
9/

4
35
/8
−

3λ
7/

4

C
a
se

2
R

eg
io

n
s

0
≤
λ
≤

1/
14

1/
14
≤
λ
≤

17
/3

6
17
/3

6
≤
λ
≤

7/
12

7/
12
≤
λ
≤

19
/2

2
19
/2

2
≤
λ
≤

1
x

1
7λ

1/
2

−
13
/8

+
9λ
/2

1
−

9/
10

+
11
λ
/5

x
2

9/
4

9/
4

35
/8
−

9λ
/2

7/
4

11
1/

20
−

22
λ
/5

C
a
se

3
R

eg
io

n
s

0
≤
λ
≤

1/
8

1/
8
≤
λ
≤

37
/5

6
37
/5

6
≤
λ
≤

41
/5

6
41
/5

6
≤
λ
≤

13
/1

6
13
/1

6
≤
λ
≤

19
1/

19
2

19
1/

19
2
≤
λ
≤

1
x

1
4λ

1/
2

−
33
/8

+
7λ

1
−

29
/1

0
+

24
λ
/5

15
/8

x
2

9/
4

9/
4

55
/8
−

7λ
7/

4
19

1/
20
−

48
λ
/5

0

C
a
se

4
R

eg
io

n
s

0
≤
λ
≤

1/
8

1/
8
≤
λ
≤

17
/4

4
17
/4

4
≤
λ
≤

21
/4

4
21
/4

4
≤
λ
≤

19
/3

6
19
/3

6
≤
λ
≤

37
/4

4
37
/4

4
≤
λ
≤

1
x

1
4λ

1/
2

−
13
/8

+
11
λ
/2

1
−

9/
10

+
18
λ
/5

15
/8

x
2

9/
4

9/
4

35
/8
−

11
λ
/2

7/
4

11
1/

20
−

36
λ
/5

0

T
ab

le
1:

T
h
e

p
ar

am
et

ri
c

so
lu

ti
on

s
of

th
e

fo
u
r

B
O

Q
P

s
as

so
ci

at
ed

w
it

h
E

x
am

p
le

(1
).

222

Bibliography

[1] Z. Abraham. Multiobjective Regression with Application to the Climate Domain. PhD
thesis, Michigan State University, East Lansing, MI, 2013.

[2] N. Adelgren. https://github.com/Nadelgren/mpLCP_solver, 2019. Accessed
Novenber 3, 2021.

[3] N. Adelgren. Advancing Parametric Optimization On Multiparametric Linear Com-
plementarity Problems with Parameters in General Locations. SpringerBriefs in Op-
timization. Springer International Publishing, 2021.

[4] N. Adelgren, B. Belotti, and A. Gupte. Efficient storage of pareto points in biobjective
mixed integer programming. CoRR, abs/1411.6538, 2014.

[5] N. Adelgren and A. Gupte. Branch-and-bound for biobjective mixed-integer linear
programming. https://doi.org/10.1287/ijoc.2021.1092, 2021. Accessed Noven-
ber 3, 2021.

[6] M.J. Alves and J. Costa. Graphical exploration of the weight space in three-objective
mixed integer linear programs. European Journal of Operational Research, 248(1):72–
83, 2016.

[7] K.P. Anagnostopoulos and G. Mamanis. The mean-variance cardinality constrained
portfolio optimization problem: An experimental evaluation of five multiobjective
evolutionary algorithms. Expert Systems with Applications, 38(11):14208 – 14217,
2011.

[8] B. Bank, J. Guddat, D. Klatte, B. Kummer, and K. Tamer. Non-Linear Parametric
Optimization. Springer Basel AG, 1983.

[9] T.Q. Bao and B.S. Mordukhovich. Set-valued optimization in welfare economics.
In S. Kusuoka and T. Maruyama, editors, Advances in Mathematical Economics,
volume 13. Springer, Tokyo, 2010.

[10] P.D. Barba. Multiobjective Shape Design in Electricity and Magnetism. Springer,
New York, 2010.

223

https://github.com/Nadelgren/mpLCP_solver
https://doi.org/10.1287/ijoc.2021.1092

[11] P. Baroso, T. Coudert, E. Villeneuve, and L. Geneste. Multi-objective optimization
and risk assessment in system engineering project planning by ant colony algorithm.
In 2014 IEEE International Conference on Industrial Engineering and Engineering
Management, pages 438–442, 2014.

[12] M.S. Bazaraa, H.D. Sherali, and C.M. Shetty. Nonlinear Programming. John Wiley
& Sons, 2006.

[13] E. Bednarczuk. Continuity of minimal points with applications to parametric multi-
ple objective optimization. European Journal of Operational Research, 157(1):59–67,
2004.

[14] P. Belotti, B. Soylu, and M.M. Wiecek. Fathoming rules for biobjective mixed integer
linear programs: Review and extensions. Discrete Optimization, 22:341 – 363, 2016.

[15] A. Bemporad and D.M. De la Peña. Multiobjective model predictive control. Auto-
matica, 45(12):2823 – 2830, 2009.

[16] H.P. Benson. Multiple-objective linear programming with parametric criteria coeffi-
cients. Management Science, 31:461–474, 1985.

[17] G.R. Bitran. Linear multi-objective programs with interval coefficients. Management
Science, 26:694–706, 1980.

[18] G.R. Bitran and J.M. Rivera. A combined approach to solve binary multicriteria
problems. Naval Research Logistics Quarterly, 29(2):181–201.

[19] N. Boland, H. Charkhgard, and M. Savelsbergh. A criterion space search algorithm for
biobjective mixed integer programming: The triangle splitting method. INFORMS
Journal on Computing, 27(4):597–618, 2015.

[20] N. Boland, H. Charkhgard, and M. Savelsbergh. The l-shape search method for triob-
jective integer programming. Mathematical Programming Computation, 8(1):217–251,
2016.

[21] H. Bonnel and C. Schneider. Post-Pareto analysis and a new algorithm for the optimal
parameter tuning of the elastic net. Journal of Optimization Theory and Applications,
183:993–1027, 2019.

[22] S. Boyd, E. Busseti, S. Diamond, R.N. Kahn, P. Nystrup, and J. Speth. Multi-period
trading via convex optimization. Foundations and Trends in Optimization, 3(1):1–76,
2017.

[23] C. Buchheim, M. De Santis, F. Rinaldi, and L. Trieu. A frank-wolfe based branch-and-
bound algorithm for mean-risk optimization. Journal Global Optimization, 70:625–
644, 2018.

[24] R.S. Burachik, C.Y. Kaya, and M.M. Rizvi. A new scalarization technique to approx-
imate pareto fronts of problems with disconnected feasible sets. Journal of Optimiza-
tion Theory and Applications, 162:428––446, 2014.

224

[25] R.S. Burachik, C.Y. Kaya, and M.M. Rizvi. Algorithms for generating pareto fronts of
multi-objective integer and mixed-integer programming problems. https://arxiv.

org/abs/1903.07041, 2021. Accessed Novenber 3, 2021.

[26] V. Cacchiani and C. D’Ambrosio. A branch-and-bound based heuristic algorithm
for convex multi-objective MINLPs. European Journal of Operational Research,
260(3):920 – 933, 2017.

[27] V. Chankong and Y.Y. Haimes. Multiobjective Decision Making: Theory and Method-
ology. North-Holland Series in System Science and Engineering. North Holland, 1983.

[28] H. Corley. A new scalar equivalence for pareto optimization. IEEE Transactions on
Automatic Control, 25(4):829–830, 1980.

[29] R.W. Cottle. The principal pivoting method revisited. Mathematical Programming,
48:369 – 385, 1990.

[30] R.W. Cottle and S.M. Guu. Two characterizations of sufficient matrices. Linear
Algebra and its Applications, 170:65 – 74, 1992.

[31] R.W. Cottle, J.S. Pang, and R. Stone. The Linear Complementarity Problem. Society
for Industrial and Applied Mathematics, 1st edition, 2009.

[32] R.W. Cottle, J.S. Pang, and V. Venkateswaran. Sufficient matrices and the linear
complementarity problem. Linear Algebra and its Applications, 114-115:231 – 249,
1989.

[33] K. Dächert and K. Klamroth. A linear bound on the number of scalarizations needed
to solve discrete tricriteria optimization problems. Journal of Global Optimization,
16(1):643–676, 2015.

[34] M. De Santis and G. Eichfelder. A decision space algorithm for multiobjective convex
quadratic integer optimization. Computers and Operations Research, 134:53–96, 2021.

[35] M. De Santis, G. Eichfelder, J. Niebling, and S. Rocktäschel. Solving multiobjec-
tive mixed integer convex optimization problems. SIAM Journal on Optimization,
30(4):3122–3145, 2020.

[36] M. Dellnitz and K. Witting. Computation of robust Pareto points. International
Journal of Computing Science and Mathematics, 2(3):243–266, 2009.

[37] C. Delort and O. Spanjaard. Using bound sets in multiobjective optimization: Ap-
plication to the biobjective binary knapsack problem. SEA 2010: Experimental Al-
gorithms, 6049:253–265, 2010.

[38] D. Den Hertog, C. Roos, and T. Terlaky. The linear complementary problem, sufficient
matrices and the criss-cross method. Combinatorial Optimization. NATO ASI Series
(Series F: Computer and Systems Sciences), 82:253–257, 1992.

225

https://arxiv.org/abs/1903.07041
https://arxiv.org/abs/1903.07041

[39] E. Diessel. An adaptive patch approximation algorithm for bicriteria convex mixed-
integer problems. http://www.optimization-online.org/DB_HTML/2020/07/7935,
2021. Accessed Novenber 3, 2021.

[40] W. Dinkelbach. On nonlinear fractional programming. Management Science,
13(7):492–498, 1967.

[41] V. Dua, N.A. Bozinis, and E.N. Pistikopoulos. A multiparametric programming ap-
proach for mixed-integer quadratic engineering problems. Computers and Chemical
Engineering, 26(4):715–733, 2002.

[42] M. Ehrgott. Multicriteria Optimization. Springer, 2005.

[43] M. Ehrgott and X. Gandibleux. Bound sets for biobjective combinatorial optimization
problems. Computers & Operations Research, 34(9):2674 – 2694, 2007.

[44] M. Ehrgott, S. Greco, and J.R. Figueira. Multiple Criteria Decision Analysis: State
of the Art Surveys. International Series in Operations Research and Management
Science. Springer, 2nd edition, 2016.

[45] M. Ehrgott, K. Klamroth, and C. Schwehm. An mcdm approach to portfolio opti-
mization. European Journal of Operational Research, 155(3):752–770, 2004. Traffic
and Transportation Systems Analysis.

[46] M. Ehrgott and M.M. Wiecek. Multiobjective programming. In M. Ehrgott, S. Greco,
and J.R. Figueira, editors, Multiple Criteria Decision Analysis: State of the Art Sur-
veys, pages 667–722. Springer, 2005.

[47] G. Eichfelder and L. Warnow. A hybrid patch decomposition approach to com-
pute an enclosure for multi-objective mixed-integer convex optimization problems.
http://www.optimization-online.org/DB_HTML/2021/08/8541l, 2021. Accessed
Novenber 3, 2021.

[48] G. Eichfelder and L. Warnow. On implementation details and numerical experiments
for the hypad algorithm to solve multi-objective mixed-integer convex optimization
problems. http://www.optimization-online.org/DB_HTML/2021/08/8538, 2021.
Accessed Novenber 3, 2021.

[49] A.Z.H. El-Banna. A study on parametric multiobjective programming problems with-
out differentiability. Comput. Math. Appl., 26(12):87–92, 1993.

[50] R. Enkhbat, J. Guddat, and A. Chinchuluun. Parametric multiobjective optimiza-
tion. In A. Chinchuluun, P. Pardalos, A. Migdalas, and L. Pitsoulis, editors, Pareto
Optimality, Game Theory and Equilibria, volume 17 of Springer Optimization and Its
Applications, pages 529–538. Springer, 2008.

[51] Y.P. Fang and X.Q. Yang. Smooth representations of optimal solution sets of piecewise
linear parametric multiobjective programs. In Variational Analysis and Generalized
Differentiation in Optimization and Control, volume 47 of Springer Optim. Appl.,
pages 163–176. Springer, New York, 2010.

226

http://www.optimization-online.org/DB_HTML/2020/07/7935
http://www.optimization-online.org/DB_HTML/2021/08/8541l
http://www.optimization-online.org/DB_HTML/2021/08/8538

[52] A. Fiacco. Introduction to Sensitivity and Stability Analysis in Nonlinear Program-
ming, volume 165 of Mathematics in Science and Engineering. Academic Press, 1983.

[53] A. Fiacco and J. Kyparisis. Convexity and concavity properties of the optimal value
function in parametric nonlinear programming. Journal of Optimization Theory and
Applications, 48(1):95–126, 1986.

[54] N. Forget, K. Klamroth, S.L. Gadegaard, A. Przybylski, and L.R. Nielsen.
Branch-and-bound and objective branching with three objectives. http://www.

optimization-online.org/DB_HTML/2020/12/8158.html, 2020. Preprint.

[55] E. Galvan, R.J. Malak, D.J. Hartl, and J.W. Baur. Performance assessment of a multi-
objective parametric optimization algorithm with application to a multi-physical en-
gineering system. Structural and Multidisciplinary Optimization, 58:489–509, 2018.

[56] A.M. Geoffrion. Propr efficiency and the theory of vector maximization. Journal of
Mathematical Analysis and Applications, 22(3):618 – 630, 1968.

[57] C.J. Goh and X.Q. Yang. Analytic efficient solution set for multi-criteria quadratic
programs. European Journal of Operational Research, 92(1):166–181, 1996.

[58] J. Guddat, F.G. Vasquez, K. Tammer, and K. Wendler. Multiobjective and Stochas-
tic Optimization Based on Parametric Optimization, volume 26 of Mathematical Re-
search. Akademie-Verlag, Berlin, 1985.

[59] Y.Y. Haimes, L. Lasdon, and D Wismer. On a bicriterion formulation of the problems
of integrated system identification and system optimization. IEEE Transactions on
Systems, Man, and Cybernetics, SMC-1(3):296–297, 1971.

[60] P.R. Halmos. Naive Set Theory. Undergraduate Texts in Mathematics. Springer New
York, 1974.

[61] M.P. Hansen and A. Jaszkiewicz. Evaluating the quality of approximations to the
non-dominated set. IMM Technical Report IMM-REP-1998-7, 1998.

[62] D.J. Hartl, E. Galvan, R.J. Malak, and J.W. Baur. Parameterized design optimiza-
tion of a magnetohydrodynamic liquid metal active cooling concept. J. Mech. Des.,
138:031402 (11 pages), 2016.

[63] M. Hirschberger, Y. Qi, and R.E. Steuer. Large-scale MV efficient frontier compu-
tation via a procedure of parametric quadratic programming. European Journal of
Operational Research, 204(3):581–588, 2010.

[64] M. Hirschberger, R.E. Steuer, S. Utz, W. Wimmer, and Y. Qi. Computing the non-
dominated surface in tri-criterion portfolio selection. Operational Research, 61:169–
183, 2013.

[65] M. Hirschberger, R.E. Steuer, S. Utz, W. Wimmer, and Y. Qi. Computing the non-
dominated surface in tri-criterion portfolio selection. Operational Research, 61:169–
183, 2013.

227

http://www.optimization-online.org/DB_HTML/2020/12/8158.html
http://www.optimization-online.org/DB_HTML/2020/12/8158.html

[66] B.F. Hobbs and P. Meier. Energy Decisions and the Environment: A Guide to the Use
of Multicriteria Methods. International Series in Operations Research & Management
Science. Springer US, 2012.

[67] N.Q. Huy, B.S. Mordukhovich, and J.C. Yao. Coderivatives of frontier and solution
maps in parametric multiobjective optimization. Taiwanese J. Math., 12(8):2083–
2111, 2008.

[68] P.L.W. Jayasekara, N. Adelgren, and M.M. Wiecek. On convex multiobjective pro-
grams with application to portfolio optimization. Journal of Multi-Criteria Decision
Analysis, 27(3-4):189–202, 2019.

[69] P.L.W. Jayasekara, A.C. Pangia, and M.M. Wiecek. On solving parametric multiob-
jective quadratic programs with parameters in general locations, 2021. Manuscript
submitted for publication.

[70] P. Juszczuk, I. Kaliszewski, and J. Miroforidis. Trade-off guided search for approxi-
mate Pareto optimal portfolios. In T. Trzaskalik, editor, Multiple Criteria Decision
Analysis, volume 12, pages 49–59. The University of Economics in Katowice, 2017.

[71] G. Kiziltan and E. Yucaouglu. An algorithm for multiobjective zero-one linear pro-
gramming. Management Science, 29(12):1444–1453, 1983.

[72] E. Klafszky and T. Terlaky. Some generalizations of the criss-cross method for
quadratic programming. Optimization, 24(1-2):127–139, 1992.

[73] K. Klamroth and M.M. Wiecek. A bi-objective median location problem with a line
barrier. Operations Research, 50(4):670–679.

[74] J. Leverenz. Network Target Coordination for Multiparametric Programming. PhD
thesis, Clemson University, 2016.

[75] J. Leverenz, M. Xu, and M.M. Wiecek. Multiparametric optimization for multidisci-
plinary engineering design. Structural and Multidisciplinary Optimization, 54(4):1–16,
2016.

[76] D. Li, J.B. Yang, and M.P. Biswal. Quantitative parametric connections between
methods for generating noninferior solutions in multiobjective optimization. European
Journal of Operational Research, 117:84 – 99, 1999.

[77] J. Li and J. Xu. Multi-objective portfolio selection model with fuzzy random returns
and a compromise approach-based genetic algorithm. Information Sciences, 220:507
– 521, 2013.

[78] J. G. Lin. Multiple-objective problems: Pareto-optimal solutions by method of proper
equality constraints. IEEE Transactions on Automatic Control, 21(5):641–650, 1976.

[79] J.G. Lin. Proper inequality constraints and maximization of index vectors. Journal
of Optimization Theory and Applications, 21(4):505–521, 1977.

228

[80] C. Lu, Z. Deng, J. Zhou, and X. Guo. A sensitive-eigenvector based global algorithm
for quadratically constrained quadratic programming. Journal of Global Optimization,
73(2):371–388, 2019.

[81] D.T. Luc. Multiobjective Linear Programming. Springer Books. Springer, 2016.

[82] R.E. Lucchetti and E. Miglierina. Stability for convex vector optimization problems.
Optimization, 53(5–6):517–528, 2004.

[83] S.J. Mardle, S. Pascoe, and M. Tamiz. An investigation of genetic algorithms for the
optimization of multi-objective fisheries bioeconomic models. International Transac-
tions in Operational Research, 7(1):33–49, 2000.

[84] H. Markowitz. Portfilio selection. The Journal of Finance, 7(1):77–91, 1952.

[85] B. Martin, A. Goldsztejn, L. Granvilliers, and C. Jermann. Constraint propagation
using dominance in interval branch and bound for nonlinear biobjective optimization.
European Journal of Operational Research, 260(3):934 – 948, 2017.

[86] G. Mavrotas and D. Diakoulaki. A branch and bound algorithm for mixed zero-one
multiple objective linear programming. European Journal of Operational Research,
107(3):530 – 541, 1998.

[87] R.C. Merton. An analytic derivation of the efficient portfolio frontier. The Journal
of Financial and Quantitative Analysis, 7(4):1851–1872, 1972.

[88] K. Metaxiotis and K. Liagkouras. Multiobjective evolutionary algorithms for portfolio
management: A comprehensive literature review. Expert Syst. Appl., 39(14):11685–
11698, 2012.

[89] A. Mostashari. Collaborative Modeling and Decision-Making for Complex Energy
Systems. World Scientific, 2011.

[90] P.H. Naccache. Stability in multicriteria optimization. J. Math. Anal. Appl.,
68(2):441–453, 1979.

[91] J. Niebling and G. Eichfelder. A branch and bound-based algorithm for nonconvex
multiobjective optimization. SIAM Journal on Optimization, 29(1):794–821, 2019.

[92] R. Oberdiecka and N. Pistikopoulos. Multiobjective optimization with convex
quadratic cost functions: A multiparametric programming approach. Computers and
Chemical Engineering, 85:36–39, 2016.

[93] S. N. Parragh and F. Tricoire. Branch-and-bound for bi-objective integer program-
ming. INFORMS Journal on Computing, 31(4):805–822, 2019.

[94] J.P. Penot and A. Sterna-Karwat. Parametrized multicriteria optimization: Continu-
ity and closedness of optimal multifunctions. Journal of Mathematical Analysis and
Applications, 120(1):150–168, 1986.

229

[95] J.P. Penot and A. Sterna-Karwat. Parametrized multicriteria optimization: Order
continuity of the marginal multifunctions. Journal of Mathematical Analysis and
Applications, 144(1):1–15, 1989.

[96] T. Perini, N. Boland, D. Pecin, and M. Savelsbergh. A criterion space method for
biobjective mixed integer programming: The boxed line method. INFORMS Journal
on Computing, 32(1):16–39, 2020.

[97] A.D. Pia, S.S. Dey, and M. Molinaro. Mixed-integer quadratic programming is in NP.
Mathematical Programming, pages 225–240, 2017.

[98] A. Pizzo, A. Zappone, and L. Sanguinetti. Solving fractional polynomial problems by
polynomial optimization theory. IEEE Signal Processing Letters, 25(10):1540–1544,
2018.

[99] A. Przybylski and X. Gandibleux. Multi-objective branch and bound. European
Journal of Operational Research, 260(3):856 – 872, 2017.

[100] Y. Qi. On the criterion vectors of lines of portfolio selection with multiple quadratic
and multiple linear objectives. Central European Journal of Operations Research,
25(1):145–158, 2017.

[101] Y. Qi, R.E. Steuer, and M. Wimmer. An analytical derivation of the efficient surface in
portfolio selection with three criteria. Annals of Operations Research, 251(1):161–177,
2017.

[102] G.P. Rangaiah. Multi-Objective Optimization Techniques and Applications in Chem-
ical Engineering. World Scientific, 2008.

[103] S.A.B. Rasmi, A. Fattahi, and M. Türkay. SASS: slicing with adaptive steps search
method for finding the non-dominated points of tri-objective mixed-integer linear
programming problems. Annals of Operations Research, 296(1):841–876, 2021.

[104] S.A.B. Rasmi and M. Türkay. GoNDEF: an exact method to generate all non-
dominated points of multi-objective mixed-integer linear programs. Optimization and
Engineering, 20(1):89–117, 2019.

[105] S. Rocktäschel. A Branch-and-Bound Algorithm for Multiobjective Mixed-integer Con-
vex Optimization. BestMasters. Springer Spektrum, 2020.

[106] O. Romanko. Parametric and Multiobjective Optimization with Applications in Fi-
nance. PhD thesis, McMaster University, 2010.

[107] O. Romanko, A. Ghaffari-Hadigheh, and T. Terlaky. Multiobjective optimization
via parametric optimization: Models, algorithms, and applications. In T. Terlaky
and F.E. Curtis, editors, Modeling and Optimization: Theory and Applications, pages
77–119. Springer New York, 2012.

[108] G.R. Ruetsch. Using interval techniques to solve a parametric multi-objective opti-
mization problem. United States Patent No. 7.664,622 B2, 2010.

230

[109] F. Salas-Molina, D. Pla-Santamaria, and J.A. Rodŕıguez-Aguilar. Empowering cash
managers through compromise programming. In H. Masri, B. Pèrez-Gladish, and
C. Zopounidis, editors, Financial Decision Aid Using Multiple Criteria, volume 12,
pages 149–173. Springer, 2018.

[110] Y. Sawaragi, H. Nakayama, and T. Tanino. Theory of Multiobjective Optimization.
Academic Press, 1985.

[111] B. Sawik. MultiObjective Portfolio Optimization by Mixed Integer Programming. PhD
thesis, AGH University of Science and Technology, Krakow, Poland, 2011.

[112] S. Sharma and G. P. Rangaiah. Multi-Objective Optimization Applications in Chem-
ical Engineering. John Wiley and Sons, Ltd, 2013.

[113] K. Smimou. International portfolio choice and political instability risk: A multi-
objective approach. European Journal of Operational Research, 234(2):546 – 560,
2014.

[114] F. Sourd and O. Spanjaard. A multiobjective branch-and-bound framework: Appli-
cation to the biobjective spanning tree problem. INFORMS Journal on Computing,
20(3):472–484, 2008.

[115] J. Spronk, R.E. Steuer, and C. Zopounidis. Multicriteria decision aid/analysis in
finance. 2016.

[116] R.E. Steuer. Multiple Criteria Optimization: Theory, Computation, and Application.
Wiley, 1986.

[117] R.E. Steuer, Y. Qi, and M. Hirschberger. Comparative issues in large-scale mean-
variance efficient frontier computation. Decision Support Systems, 51:250–255, 2011.

[118] T. Stidsen, K.A. Andersen, and B. Dammann. A branch and bound algorithm for a
class of biobjective mixed integer programs. Management Science, 60(4):1009–1032,
2014.

[119] J. Stillwell. Complex numbers and curves. In Mathematics and Its History, pages
295–313. Springer-Verlag New York, 2010.

[120] L.V. Thuan and D.T. Luc. On sensitivity in linear multiobjective programming. J.
Optim. Theory Appl., 107(3):615–626, 2000.

[121] L. Trieu. Continuous optimization methods for convex mixed-integer nonlinear pro-
gramming. PhD thesis, Technischen Universität Dortmund, Dortmund, Germany,
2015.

[122] M.G. Tsionas. Multi-objective optimization using statistical models. European Jour-
nal of Operational Research, 276(1):364–378, 2019.

[123] S. Utz, M. Wimmer, M. Hirschberger, and R.E. Steuer. Tri-criterion inverse portfolio
optimization with application to socially responsible mutual funds. European Journal
of Operational Research, 234:491–498, 2014.

231

[124] H. Väliaho. A procedure for the one-parametric linear complementarity problem.
Optimization, 29(3):235–256, 1994.

[125] T. Vincent, F. Seipp, S. Ruzika, A. Przybylski, and X. Gandibleux. Multiple objective
branch and bound for mixed 0-1 linear programming: Corrections and improvements
for the biobjective case. Computers & Operations Research, 40(1):498–509, 2013.

[126] R.E. Wendell and D.N. Lee. Efficiency in multiple objective optimization problems.
Mathematical Programming, 12(1):406–414, 1977.

[127] M.M. Wiecek and G. Dranichak. Robust multiobjective optimization for decision
making under uncertainty and conflict. In J.C. Smith, editor, Optimization Challenges
in Complex, Networked, and Risky Systems, Tutorials in Operations Research, pages
84–114. INFORMS, 2016.

[128] M.M. Wiecek, M. Ehrgott, and A. Engau. Continuous multiobjective programming. In
S. Greco, M. Ehrgott, and J.R. Figueira, editors, Multiple Criteria Decision Analysis:
State of the Art Surveys, pages 738–815. Springer, 2nd edition, 2016.

[129] P. R. Wiecha, A. Arbouet, C. Girard, A. Lecestre, G. Larrieu, and V. Paillard. Evolu-
tionary multi-objective optimization of colour pixels based on dielectric nanoantennas.
Nature Nanotechnology, 12:163–169, 201.

[130] A. P. Wierzbicki. On the completeness and constructiveness of parametric charac-
terizations to vector optimization problems. Operations-Research-Spektrum, 8:73–87,
1986.

[131] A.P. Wierzbicki. A methodological approach to comparing parametric characteri-
zations of efficient solutions. In G. Fandel, M. Grauer, A. Kurzhanski, and A.P.
Wierzbicki, editors, Large-Scale Modelling and Interactive Decision Analysis, volume
273, pages 27–45. Springer Berlin Heidelberg, 1986.

[132] K. Witting, S. Ober-Blöbaum, and M. Dellnitz. A variational approach to define
robustness for parametric multiobjective optimization problems. J. Global Optim.,
57(2):331–345, 2013.

[133] K. Witting, B. Schulz, M. Dellnitz, J. Böcker, and N. Fröhleke. A new approach for
online multiobjective optimization of mechatronic systems. International Journal of
Software Tools and Technology Transfer, 10:223–231, 2008.

[134] P. Xidonas and G. Mavrotas. Multiobjective portfolio optimization with non-convex
policy constraints: Evidence from the Eurostoxx 50. The European Journal of Fi-
nance, 20(11):957–977, 2012.

[135] P. Xidonas and G. Mavrotas. Multiobjective portfolio optimization with non-convex
policy constraints: Evidence from the Eurostoxx 50. The European Journal of Fi-
nance, 20(11):957–977, 2012.

232

[136] P. Xidonas and G. Mavrotas. Comparative issues between linear and non-linear risk
measures for non-convex portfolio optimization: evidence from the S& P 500. Quan-
titative Finance, 14(7):1229–1242, 2014.

[137] P. Xidonas, G. Mavrotas, C. Hassapis, and C. Zopounidis. Robust multiobjective
portfolio optimization: A minimax regret approach. European Journal of Operational
Research, 262(1):299 – 305, 2017.

[138] P. Xidonas, G. Mavrotas, T. Krintas, J. Psarras, and C. Zopounidis. Multicriteria
Portfolio Management. Springer Optimization and Its Applications. Springer New
York, 2012.

[139] M. Zarghami and F. Szidarovszky. Multicriteria Analysis: Applications to Water and
Environment Management. Springer Berlin Heidelberg, 2011.

[140] H. Zhou and T. Hastie. Regularization and variable selection via the elastic net.
Journal of the Royal Statistical Society B, 67(2):301–320, 2005.

[141] E. Zitzler, L. Thiele, and J. Bader. On set-based multiobjective optimization. Trans.
Evol. Comp, 14(1):58–79, 2010.

[142] E. Zitzler, L. Thiele, M. Laumanns, C.M. Fonseca, and V.G. da Fonseca. Performance
assessment of multiobjective optimizers: an analysis and review. IEEE Transactions
on Evolutionary Computation, 7(2):117–132, 2003.

[143] C. Zopounidis, D.K. Despotis, and I. Kamaratou. Profilio selection using the Adelais
multiobjective linear programming system. Computational Economics, 11(3):189–204,
1998.

233

	An Algorithm for Biobjective Mixed Integer Quadratic Programs
	Recommended Citation

	An Algorithm for Biobjective Mixed Integer Quadratic Programs
	Title Page
	Abstract
	Section 1
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Motivation
	Basic Concepts and Notations
	A Review of Branch and Bound Algorithms for Solving Multiobjective Discrete Optimization Problems
	Research Needs
	Completed Research Objectives
	Linear Complementarity Problem Formulation of the Quadratic Program
	Dissertation Overview

	A Branch and Bound Algorithm for Biobjective Mixed Integer Quadratic Programs
	Introduction
	Problem Statements and Solution Methods
	Algorithm Overview
	Branching
	Fathoming
	Dominance Between Sets
	Complete BB Algorithm and Numerical Experiments
	Conclusion

	Multiobjective Programs with Application to Portfolio Optimization
	Introduction
	A Parametric Optimization Perspective on Convex MOPs
	State-of-the-Art Algorithms for Convex MOQPs
	Portfolio Optimization with Multiple Quadratic Objective Functions
	Conclusion

	On Solving Parametric MOQPs with Parameters in General Locations
	Introduction
	Problem Statement
	Generalized weighted sum scalarization
	Parametric Quadratic Programs with Linear Constraints
	Applications
	Conclusion

	Conclusions and Future Research
	Summary of Contributions
	Future Research

	Appendices
	Fathoming Rules: The Case with One Nadir Point
	Example

	Bibliography

