299 research outputs found

    A survey on OFDM-based elastic core optical networking

    Get PDF
    Orthogonal frequency-division multiplexing (OFDM) is a modulation technology that has been widely adopted in many new and emerging broadband wireless and wireline communication systems. Due to its capability to transmit a high-speed data stream using multiple spectral-overlapped lower-speed subcarriers, OFDM technology offers superior advantages of high spectrum efficiency, robustness against inter-carrier and inter-symbol interference, adaptability to server channel conditions, etc. In recent years, there have been intensive studies on optical OFDM (O-OFDM) transmission technologies, and it is considered a promising technology for future ultra-high-speed optical transmission. Based on O-OFDM technology, a novel elastic optical network architecture with immense flexibility and scalability in spectrum allocation and data rate accommodation could be built to support diverse services and the rapid growth of Internet traffic in the future. In this paper, we present a comprehensive survey on OFDM-based elastic optical network technologies, including basic principles of OFDM, O-OFDM technologies, the architectures of OFDM-based elastic core optical networks, and related key enabling technologies. The main advantages and issues of OFDM-based elastic core optical networks that are under research are also discussed

    Generic techniques to improve SVC enhancement layer encoding: digest of technical papers

    Get PDF
    Scalable video coding is an important mechanism to provide different types of end-user devices with different versions of the same encoded bitstream. However, scalable video encoding remains a computationally expensive operation. To decrease the complexity we propose generic techniques. These techniques can also be combined with existing fast mode decision modes. We show that extending these existing techniques yield an average complexity reduction of 87%

    Low-complexity user selection for rate maximization in MIMO broadcast channels with downlink beamforming

    Get PDF
    We present in this work a low-complexity algorithm to solve the sum rate maximization problem in multiuser MIMO broadcast channels with downlink beamforming. Our approach decouples the user selection problem from the resource allocation problem and its main goal is to create a set of quasiorthogonal users. The proposed algorithm exploits physical metrics of the wireless channels that can be easily computed in such a way that a null space projection power can be approximated efficiently. Based on the derived metrics we present a mathematical model that describes the dynamics of the user selection process which renders the user selection problem into an integer linear program. Numerical results show that our approach is highly efficient to form groups of quasiorthogonal users when compared to previously proposed algorithms in the literature. Our user selection algorithm achieves a large portion of the optimum user selection sum rate (90%) for a moderate number of active users

    Robust Data Center Network Design using Space Division Multiplexing

    Get PDF
    With the ever-increasing demand for data transmission in our generation where Internet and cloud concepts play a vital role, it has become essential that we handle data in a most efficient way. A possible solution to overcome the capacity crunch problem which is so evident in future, is applications of Space Division Multiplexing, where we explore the remaining unused domain that is the spatial domain. Space Division Multiplexing using multi-core fibers (MCFs), and few-mode fibers (FMFs) has been studied in our work to enhance the data-carrying capacity of optical fibers while minimizing the transmission cost per bit. The objective of our work is to develop a path protection scheme to handle communication requests in data center (DC) networks using elastic optical networking and space division multiplexing (SDM). Our approach to this problem is to 1) determine a dedicated primary and backup path, 2) possible allocation of spectrum using the flex-grid fixed-SDM model, 3) choose the best possible modulation format to minimize the number of subcarriers needed for data transfer, 4) measure the cost of the resources required to handle the new requests. We propose to evaluate the developed Integer Linear Programming (ILP) formulation based on this scheme, considering the possibility of disasters. We study the impact of the design on the cost of the solution, hence explore whether it promotes significant resource savings

    Optimal RWA for SDM Optical Network under Dynamic Traffic

    Get PDF
    With the rapid increase in demand for data transmission in our generation where Internet and cloud concepts play an essential role, it has become mandatory that we handle data most efficiently. A promising solution to overcome the capacity crunch problem which is so evident in future is applications of Space Division Multiplexing, where we explore the remaining unused domain that is the spectral and spatial domain. Space Division Multiplexing using multi-core fibers (MCF), and few-mode fibers (FMF) has been studied in our work to enhance the data-carrying capacity of optical fibers while minimizing the transmission cost per bit. The objective is to develop a path protection scheme to handle communication requests in the data center (DC) networks using elastic optical networking and space division multiplexing (SDM). Our approach to this problem is to 1) determining the initial allocation of light path on the topology, 2) possible spectrum allocation using the flex-grid flexible-SDM model, 3) choose the best possible route to minimize the number of subcarriers needed for data transfer. We propose to evaluate the developed Integer Linear Programming (ILP) formulation based on this scheme

    Sensor Resource Management: Intelligent Multi-objective Modularized Optimization Methodology and Models

    Get PDF
    The importance of the optimal Sensor Resource Management (SRM) problem is growing. The number of Radar, EO/IR, Overhead Persistent InfraRed (OPIR), and other sensors with best capabilities, is limited in the stressing tasking environment relative to sensing needs. Sensor assets differ significantly in number, location, and capability over time. To determine on which object a sensor should collect measurements during the next observation period k, the known algorithms favor the object with the expected measurements that would result in the largest gain in relative information. We propose a new tasking paradigm OPTIMA for sensors that goes beyond information gain. It includes Sensor Resource Analyzer, and the Sensor Tasking Algorithm (Tasker). The Tasker maintains timing constraints, resolution, and geometric differences between sensors, relative to the tasking requirements on track quality and the measurements of object characterization quality. The Tasker does this using the computational intelligence approach of multi-objective optimization, which involves evolutionary methods

    Numerically Stable Recurrence Relations for the Communication Hiding Pipelined Conjugate Gradient Method

    Full text link
    Pipelined Krylov subspace methods (also referred to as communication-hiding methods) have been proposed in the literature as a scalable alternative to classic Krylov subspace algorithms for iteratively computing the solution to a large linear system in parallel. For symmetric and positive definite system matrices the pipelined Conjugate Gradient method outperforms its classic Conjugate Gradient counterpart on large scale distributed memory hardware by overlapping global communication with essential computations like the matrix-vector product, thus hiding global communication. A well-known drawback of the pipelining technique is the (possibly significant) loss of numerical stability. In this work a numerically stable variant of the pipelined Conjugate Gradient algorithm is presented that avoids the propagation of local rounding errors in the finite precision recurrence relations that construct the Krylov subspace basis. The multi-term recurrence relation for the basis vector is replaced by two-term recurrences, improving stability without increasing the overall computational cost of the algorithm. The proposed modification ensures that the pipelined Conjugate Gradient method is able to attain a highly accurate solution independently of the pipeline length. Numerical experiments demonstrate a combination of excellent parallel performance and improved maximal attainable accuracy for the new pipelined Conjugate Gradient algorithm. This work thus resolves one of the major practical restrictions for the useability of pipelined Krylov subspace methods.Comment: 15 pages, 5 figures, 1 table, 2 algorithm

    Statistical relational learning of semantic models and grammar rules for 3D building reconstruction from 3D point clouds

    Get PDF
    Formal grammars are well suited for the estimation of models with an a-priori unknown number of parameters such as buildings and have proven their worth for 3D modeling and reconstruction of cities. However, the generation and design of corresponding grammar rules is a laborious task and relies on expert knowledge. This thesis presents novel approaches for the reduction of this effort using advanced machine learning methods resulting in automatically learned sophisticated grammar rules. Indeed, the learning of a wide range of sophisticated rules, that reflect the variety and complexity, is a challenging task. This is especially the case if a simultaneous machine learning of building structures and the underlying aggregation hierarchies as well as the building parameters and the constraints among them for a semantic interpretation is expected. Thus, in this thesis, an incremental approach is followed. It separates the structure learning from the parameter distribution learning of building parts. Moreover, the so far procedural approaches with formal grammars are mostly rather convenient for the generation of virtual city models than for the reconstruction of existing buildings. To this end, Inductive Logic Programming (ILP) techniques are transferred and applied for the first time in the field of 3D building modeling. This enables the automatic learning of declarative logic programs, which are equivalent to attribute grammars and separate the representation of buildings and their parts from the reconstruction task. A stepwise bottom-up learning, starting from the smallest atomic features of a building part together with the semantic, topological and geometric constraints, is a key to a successful learning of a whole building part. Only few examples are sufficient to learn from precise as well as noisy observations. The learning from uncertain data is realized using probability density functions, decision trees and uncertain projective geometry. This enables the handling and modeling of uncertain topology and geometric reasoning taking noise into consideration. The uncertainty of models itself is also considered. Therefore, a novel method is developed for the learning of Weighted Attribute Context-Free Grammar (WACFG). On the one hand, the structure learning of façades – context-free part of the Grammar – is performed based on annotated derivation trees using specific Support Vector Machines (SVMs). The latter are able to derive probabilistic models from structured data and to predict a most likely tree regarding to given observations. On the other hand, to the best of my knowledge, Statistical Relational Learning (SRL), especially Markov Logic Networks (MLNs), are applied for the first time in order to learn building part (shape and location) parameters as well as the constraints among these parts. The use of SRL enables to take profit from the elegant logical relational description and to benefit from the efficiency of statistical inference methods. In order to model latent prior knowledge and exploit the architectural regularities of buildings, a novel method is developed for the automatic identification of translational as well as axial symmetries. For symmetry identification a supervised machine learning approach is followed based on an SVM classifier. Building upon the classification results, algorithms are designed for the representation of symmetries using context-free grammars from authoritative building footprints. In all steps the machine learning is performed based on real- world data such as 3D point clouds and building footprints. The handling with uncertainty and occlusions is assured. The presented methods have been successfully applied on real data. The belonging classification and reconstruction results are shown.Statistisches relationales Lernen von semantischen Modellen und Grammatikregeln für 3D Gebäuderekonstruktion aus 3D Punktwolken Formale Grammatiken eignen sich sehr gut zur Schätzung von Modellen mit a-priori unbekannter Anzahl von Parametern und haben sich daher als guter Ansatz zur Rekonstruktion von Städten mittels 3D Stadtmodellen bewährt. Der Entwurf und die Erstellung der dazugehörigen Grammatikregeln benötigt jedoch Expertenwissen und ist mit großem Aufwand verbunden. Im Rahmen dieser Arbeit wurden Verfahren entwickelt, die diesen Aufwand unter Zuhilfenahme von leistungsfähigen Techniken des maschinellen Lernens reduzieren und automatisches Lernen von Regeln ermöglichen. Das Lernen umfangreicher Grammatiken, die die Vielfalt und Komplexität der Gebäude und ihrer Bestandteile widerspiegeln, stellt eine herausfordernde Aufgabe dar. Dies ist insbesondere der Fall, wenn zur semantischen Interpretation sowohl das Lernen der Strukturen und Aggregationshierarchien als auch von Parametern der zu lernenden Objekte gleichzeitig statt finden soll. Aus diesem Grund wird hier ein inkrementeller Ansatz verfolgt, der das Lernen der Strukturen vom Lernen der Parameterverteilungen und Constraints zielführend voneinander trennt. Existierende prozedurale Ansätze mit formalen Grammatiken sind eher zur Generierung von synthetischen Stadtmodellen geeignet, aber nur bedingt zur Rekonstruktion existierender Gebäude nutzbar. Hierfür werden in dieser Schrift Techniken der Induktiven Logischen Programmierung (ILP) zum ersten Mal auf den Bereich der 3D Gebäudemodellierung übertragen. Dies führt zum Lernen deklarativer logischer Programme, die hinsichtlich ihrer Ausdrucksstärke mit attributierten Grammatiken gleichzusetzen sind und die Repräsentation der Gebäude von der Rekonstruktionsaufgabe trennen. Das Lernen von zuerst disaggregierten atomaren Bestandteilen sowie der semantischen, topologischen und geometrischen Beziehungen erwies sich als Schlüssel zum Lernen der Gesamtheit eines Gebäudeteils. Das Lernen erfolgte auf Basis einiger weniger sowohl präziser als auch verrauschter Beispielmodelle. Um das Letztere zu ermöglichen, wurde auf Wahrscheinlichkeitsdichteverteilungen, Entscheidungsbäumen und unsichere projektive Geometrie zurückgegriffen. Dies erlaubte den Umgang mit und die Modellierung von unsicheren topologischen Relationen sowie unscharfer Geometrie. Um die Unsicherheit der Modelle selbst abbilden zu können, wurde ein Verfahren zum Lernen Gewichteter Attributierter Kontextfreier Grammatiken (Weighted Attributed Context-Free Grammars, WACFG) entwickelt. Zum einen erfolgte das Lernen der Struktur von Fassaden –kontextfreier Anteil der Grammatik – aus annotierten Herleitungsbäumen mittels spezifischer Support Vektor Maschinen (SVMs), die in der Lage sind, probabilistische Modelle aus strukturierten Daten abzuleiten und zu prädizieren. Zum anderen wurden nach meinem besten Wissen Methoden des statistischen relationalen Lernens (SRL), insbesondere Markov Logic Networks (MLNs), erstmalig zum Lernen von Parametern von Gebäuden sowie von bestehenden Relationen und Constraints zwischen ihren Bestandteilen eingesetzt. Das Nutzen von SRL erlaubt es, die eleganten relationalen Beschreibungen der Logik mit effizienten Methoden der statistischen Inferenz zu verbinden. Um latentes Vorwissen zu modellieren und architekturelle Regelmäßigkeiten auszunutzen, ist ein Verfahren zur automatischen Erkennung von Translations- und Spiegelsymmetrien und deren Repräsentation mittels kontextfreier Grammatiken entwickelt worden. Hierfür wurde mittels überwachtem Lernen ein SVM-Klassifikator entwickelt und implementiert. Basierend darauf wurden Algorithmen zur Induktion von Grammatikregeln aus Grundrissdaten entworfen
    • …
    corecore