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We present in this work a low-complexity algorithm to solve the sum rate maximization problem in multiuser MIMO broadcast
channels with downlink beamforming. Our approach decouples the user selection problem from the resource allocation problem
and its main goal is to create a set of quasiorthogonal users. The proposed algorithm exploits physical metrics of the wireless
channels that can be easily computed in such a way that a null space projection power can be approximated efficiently. Based on the
derived metrics we present a mathematical model that describes the dynamics of the user selection process which renders the user
selection problem into an integer linear program. Numerical results show that our approach is highly efficient to form groups of
quasiorthogonal users when compared to previously proposed algorithms in the literature. Our user selection algorithm achieves
a large portion of the optimum user selection sum rate (90%) for a moderate number of active users.

1. Introduction

Multiple-inputmultiple-output (MIMO) systems have a huge
potential to attain high throughput in wireless systems [1, 2].
MIMOsystems can be employed to exploit space-time coding
and spatial multiplexing. When channel state information
(CSI) is known at the transmitter, the overall system through-
put can be increased by beamforming transmission. In the
wireless scenario of interest, a transmitter encodes different
information for different receivers in a common signal, which
is referred to the literature as a broadcast channel (BC). For a
classic deployment with one base station (BS) equipped with
𝑁
𝑡
antennas and𝐾 single antenna users, the overall through-

put for a MIMO system increases by a factor of min{𝑁
𝑡
, 𝐾}

the capacity of a time-division-multiple-access (TDMA)
scheduling system if the transmitted signals are uncorrelated
[1]. The TDMA system cannot exploit the multiple antenna
deployment at the BS which leads to a waste of system
resources and a limited system performance. The natural
solution to this problem is to transmit simultaneously to
more than one user. A strategy to accomplish this goal is to
implement a nonlinear coding scheme called dirty paper

(DPC) which is a multiplexing technique based on coding
known interference [3].TheDPC exploits the full CSIT (at the
transmitter) achieving the same capacity of an interference
free MIMO BC system [2] and when the number of single
antenna users𝐾 is larger than𝑁

𝑡
at the BS, DPC can achieve

a linear capacity increase in𝑁
𝑡
.

DPC is the optimal throughput maximization scheme
in a MIMO BC system. However, it requires huge compu-
tation complexity and feedback information, which rapidly
increases with𝑁

𝑡
. Two reduced-complexity suboptimal solu-

tions to the throughput maximization problem were pro-
posed in [4]. The first solution is the channel inversion zero-
forcing beamforming (ZFBF) which is an orthogonal trans-
mit spatialmultiplexing linear precoding schemewhosemain
objective is to nullify the mutual interference among users
according to perfect CSIT. Despite its simplicity, ZFBF has
been shown to achieve the same asymptotic sum capacity of
DPC when high multiuser diversity is ensured. The second
solution called zero-forcing dirty-paper (ZFDP) is an asymp-
totically optimal beamforming scheme that combines a QR
decomposition of the channel matrix with DPC at the trans-
mitter. In this ranked known interference scheme, the first
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user is not affected by interference while the second user is
only affected by interference coming from the first user. This
procedure is repeated for subsequent users.

The throughputmaximization using ZFBF (e.g., [4–8]) or
ZFDP (e.g., [4, 9, 10]) can be further improved in scenarios
where the number of single antenna users is larger than
the number of antennas at the BS (𝐾 > 𝑁

𝑡
). The users

can be seen as an extra dimension of adaptation which is
referred to in the literature as multiuser diversity. In order
to exploit such diversity, it is necessary to select a set of
active users whose channel characteristics result in a perfor-
mance improvement (e.g., throughput) when they transmit
simultaneously in the same radio resource.The user selection
(scheduling) is a medium access control (MAC) process
that can use information from the adaptive physical-layer
(PHY) design so that temporal dimension (scheduling) and
spatial dimension (multiple antennas) can be fully exploited.
The scheduling is a real time process whose computational
complexity and implementation efficiency affect directly the
performance of upper-layers. Moreover, finding the set of
users that optimizes a given global utility function is a highly
complex combinatorial problem whose optimal solution is
given by an exhaustive search and its associated search space
grows geometrically with the number of users. Since the com-
putation of the optimal solution to the scheduling problem is
prohibited for most practical systems for moderate𝐾 and𝑁

𝑡
,

it is necessary to find efficient suboptimal scheduling schemes
that can provide a good trade-off between performance and
complexity.

2. Related Works and Contributions

A considerable amount of work focused on the asymptotic
sum rate of MIMO BC systems with user selection has been
done over the last ten years (e.g., [5, 6, 8, 9]) and several
published works presented efficient suboptimal algorithms
that attempt to overcome the prohibitively high complexity
of exhaustively searching users. Most of the works that
suboptimally solve the problem of sum rate maximization
inmultiusermultiple-antenna systems implement cross-layer
designs, where the scheduling decisions are made based on
instantaneous CSI or link-level metrics.

Since the aforementioned problem can be tackled in
different ways, we propose a classification of the algorithms
that can be found in the literature based on the methodology
followed to solve the mixed convex and combinatorial prob-
lem of throughput maximization in multiuser MIMO BC
systems. We use this classification to make a clear distinction
between the metrics used by each class and to fairly compare
the performance achieved by algorithms of different classes.

We say that a class-A algorithm is the one that performs
a joint user selection and power allocation optimization. A
new user 𝑘 is added to the set of selected users S only if for
a given utility function 𝑈 the aggregation of 𝑘 to S increases
the value of the utility function; that is, 𝑈(S) < 𝑈(S + {𝑘}).
This kind of greedy algorithms [10–15] are highly effective for

throughput maximization. However, they still employ a high
computational power since the selection process requires the
evaluation of the global utility function (this requires a water-
filling power allocation evaluation and the computation of the
Shannon capacity) for each unselected user in every iteration
of the algorithm.

The algorithm class-B operates in two phases. In the first
phase a set of users is selected based on specific channel char-
acteristics and in the second phase the algorithm evaluates
the global utility function for the previously defined set [5, 6,
8, 9, 16]. This means that the user selection and the resource
allocation (powers and beamforming weights) problems are
carried out independently and the throughput maximization
heavily depends on the channel characteristics of the selected
users. Furthermore, the cardinality of the set of selected users
is fixed in the first phase and it might be modified during
the second phase when the global utility function is evalu-
ated. For instance, if water-filling based power allocation is
performed to evaluate the global utility function, this might
result in zero power allocation for some selected users due
to the channel characteristics of the selected users, the power
constraints, and the SNR regime. In [5] the authors designed
a greedy algorithm that performs a semiorthogonal user
selection (SUS) in order tomaximize the total sum rate imple-
menting ZFBF. In this class-B algorithm the new selected user
maximizes the component of the channel that is orthogonal
to the subspace spanned by the channels of the previously
selected users. The evaluation of that orthogonal component
requires the multiplication of the unselected channel vectors
by a matrix that describes the subspace defined by channels
of the selected users. The authors of [5] showed that the
average sum rate of ZFBF combined with their proposed user
selection technique achieves asymptotically the average sum
rate of DPC when the number of users is infinite (𝐾 → ∞).
Tu and Blum [9] proposed a class-B greedy algorithm for
throughput maximization and ZFDP. The metric for user
selection is based on the channel component projected onto
the null space of the space spanned by the previously selected
user channels. This metric is used to estimate the power
degradation that a new user will experience if it interacts
with the orthogonal subspace spanned by the other selected
users. A statistical analysis of this methodology was done in
[10], where it was shown that the greedy user selection based
on channel component projection is a suboptimal yet highly
efficient way to form groups of quasiorthogonal users that
suboptimally maximize the sum rate.Themain drawbacks of
this approach are the following: one is the computation of a
null space projectormatrix unsing the channels of all selected
users, and two is the multiplication of such projector matrix
by the channels of all unselected users in order to identify the
best unselected user. A similar approach to [9] was presented
in [8] for throughputmaximizationwith ZFBF.Thedifference
between these two approaches lies in the fact that the latter
performs singular value decomposition (SVD) in order to
evaluate null space of the selected user channels. The user
selection of [8] requires for each iteration the multiplication
of the matrix that defines the null space of the selected
channels by all nonselected channels.
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2.1. Contributions. Both classes of algorithms require exten-
sive use of matrix operations to perform the user selection.
Class-A algorithms use matrix inversion in order to perform
power allocation per each possible set of selected users and
class-B algorithms require the computation of either the
projector or the orthogonal projectormatrix [17] per iteration
and amatrix inversion for the final power allocation based on
water-filling.

In this work we design a low-complexity suboptimal
greedy class-B algorithm for throughput maximization that
makes scheduling decisions based on simple physical metrics
of the channels, that is, information extracted from the
channel norms and the orthogonality between channels. We
propose ametric that approximates the one used in [8, 9] with
the advantage that we only require multiplication of scalars
defined by the correlation coefficient between any two
channels. We quantitatively compare the MIMO BC system
performance in terms of the throughput (measured by the
average sum rate) achieved by the proposed algorithm and
several state-of-the-art algorithms (classes A and B).

The nature of the quasiorthogonal user grouping yields
themaximization of the sum projection power of the selected
users. The optimum sum projection power can be approx-
imated as the optimization of a global objective function,
which is given by the sum of individual weighted convex
functions. For this problem the constraints are given by affine
functions and the weights are given by binary variables.
Therefore, we show that it is possible to render the sum pro-
jection power problem into a convex integer program which
can be efficiently solved using available numerical packages.
In contrast to previous works (e.g., [13]) that only provide
a description of the user selection problem as an integer
program (due to the high complexity of the problem for-
mulation), we provide a complete mathematical model for
the integer constrained program based on the derived metric
whose solution asymptotically approximates the optimum
one for moderate values of𝐾.

Numerical results show that our proposed algorithms
can achieve a large portion of the optimum sum rate with a
low-computational complexity price and high performance
for both precoding schemes ZFBF and ZFDP. Moreover,
the proposed algorithms outperform state-of-the-art class-B
algorithms for low values of 𝐾 and achieve asymptotically
optimal behavior for large values of 𝐾.

2.2. Organization. The remainder of the paper is organized as
follows. In Section 3 we present the system model. Section 4
describes the throughput maximization and the user selec-
tion problems and the optimization metric that is studied
along the paper. Section 5 presents the design of a greedy
algorithm that performs quasiorthogonal user selection and a
generalmathematicalmodel that represents the user selection
problem as an integer programming problem. Section 6
shows numerical examples for the assessment of the proposed
algorithms using different performance metrics. The main
conclusions are drawn in Section 7.

Some notational conventions are as follows. Matrices and
vectors are set in boldface. ⟨⋅⟩, (⋅)𝑇, (⋅)𝐻, | ⋅ |, ‖ ⋅ ‖

𝐹
, and E{⋅}

denote the inner product, transpose, hermitian transpose, set
cardinality, Frobenius norm, and the expectation operation,
respectively. Sp(A) denotes the subspace spanned by the
rows of matrix A, rank(A) is the rank of matrix A, and
(𝑥)
+ represents max{𝑥, 0}. diag(x) denotes a diagonal matrix

whose main diagonal is x. [A]
𝑖𝑗
is the element 𝑎

𝑖𝑗
of matrix A

and I is the identity matrix of compatible size.

3. System Model

Consider a single-cell with a single base station equippedwith
𝑁
𝑡
antennas and 𝐾 single antenna active users competing

for resources. We assume perfect CSI at the base station and
the channel coefficients are modeled as independent random
variables with a zero-mean circularly symmetric complex
Gaussian distribution (Rayleigh fading). The signal received
by the 𝑖th user is given by

y
𝑖
= h
𝑖
x + 𝑛
𝑖
, (1)

where x ∈ C𝑁𝑡×1 is the transmitted signal vector from the
base station antennas and h

𝑖
∈ C1×𝑁𝑡 is the channel vector

to the user 𝑖. Each user treats the signals intended for other
users as interference and 𝑛

𝑖
∼CN(0, 𝜎2

𝑛
) is the additive zero-

mean white Gaussian noise with variance 𝜎2
𝑛
. The entries

of the block fading channel H = [h𝐻
1
, . . . , h𝐻

𝐾
]
𝐻 and n =

[𝑛
1
, . . . , 𝑛

𝐾
]
𝑇 are normalized so that they have unitary vari-

ance, and the transmitter has an average power constraint
E{x𝐻x} ≤ 𝑃. Since the noise has unit variance, 𝑃 represents
the total transmit signal-to-noise-ratio (SNR).

For linear spatial processing at the transmitter, the beam-
forming matrix can be defined as W = [w

1
,w
2
, . . . ,w

𝐾
],

the symbol vector as s = [𝑠
1
, 𝑠
2
, . . . , 𝑠

𝐾
]
𝑇, and P =

diag(𝑝
1
, . . . , 𝑝

𝐾
) is the power loading, so that the transmitted

signal is given by x = ∑
𝐾

𝑘=1
√𝑝
𝑘
w
𝑘
𝑠
𝑘
. The signal-to-inter-

ference-plus-noise ratio (SINR) of the 𝑖th user is

SINR
𝑖
=

𝑝
𝑖

󵄨󵄨󵄨󵄨h𝑖w𝑖
󵄨󵄨󵄨󵄨
2

∑
𝑗 ̸= 𝑖

𝑝
𝑗

󵄨󵄨󵄨󵄨󵄨
h
𝑖
w
𝑗

󵄨󵄨󵄨󵄨󵄨

2

+ 𝜎2
𝑛

. (2)

Assuming 𝑁
𝑡
≥ 𝐾, the sum rate maximization problem

using beamforming (BF) can be formulated as

𝑅
BF

= max
W,P

𝐾

∑
𝑘=1

log
2
(1 + SINR

𝑘
)

subject to ‖WP‖2
𝐹
≤ 𝑃.

(3)

3.1. Zero-Forcing Beamforming. In ZFBF the channel matrix
H at the transmitter is processed so that orthogonal channels
between the transmitter and the receiver are created, defining
a set of parallel subchannels. Assuming 𝐾 active users, then
for the case where 𝐾 ≤ 𝑁

𝑡
and rank(𝐻) ≤ 𝑁

𝑡
, the ZF beam-

formingmatrix is given by theMoore-Penrose pseudoinverse
ofH [17, 18] as

W = H† = H𝐻(HH𝐻)
−1

. (4)
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The throughput when ZFBF is applied to (3) is given by
[4]:

𝑅
ZFBF

(H) =

𝐾

∑
𝑖=1

(log (𝜇𝑏
𝑖
))
+

, (5)

where 𝑏
𝑖
= {[(HH𝐻)−1]

𝑖𝑖
}
−1 is the effective channel gain of the

𝑖th user and its allocated power is

𝑝
𝑖
= (𝜇𝑏
𝑖
− 1)
+

, (6)

and the water level 𝜇 is chosen to satisfy

∑
𝑖∈Ω

(𝜇 −
1

𝑏
𝑖

)

+

= 𝑃. (7)

3.2. Zero-Forcing Dirty Paper Beamforming. Suboptimal
throughput maximization in Gaussian BC channels has been
proposed in several works [4, 9, 10] based on the QR-type
decomposition [18] of the channel matrix H = LQ obtained
by applying Gram-Schmidt orthogonalization to the rows of
H.L is a lower triangularmatrix andQhas orthonormal rows.
The beamforming matrix given byW = Q𝐻 generates a set of
interference channels:

𝑦
𝑖
= 𝑙
𝑖𝑖
√𝑝
𝑖
𝑠
𝑖
+ ∑
𝑗<𝑖

𝑙
𝑖𝑗√𝑝
𝑗
𝑠
𝑗
+ 𝑛
𝑖
, 𝑖 = 1, . . . , 𝑘, (8)

while no information is sent to users 𝑘 + 1, . . . , 𝐾. In order
to eliminate the interference component 𝐼

𝑖
= ∑
𝑗<𝑖

𝑙
𝑖𝑗√𝑝
𝑗
𝑠
𝑗
of

the 𝑖th user, the signals √𝑝
𝑖
𝑠
𝑖
for 𝑖 = 1, . . . , 𝑘 are obtained

by successive dirty-paper encoding, where 𝐼
𝑖
is noncausally

known. This precoding scheme was proposed in [4] and the
authors showed that the precoding matrix forces to zero the
interference caused by users 𝑗 > 𝑖 on each user 𝑖; therefore this
scheme is called zero-forcing dirty-paper (ZFDP) coding.The
throughput achieved in (3) under the ZFDP scheme is given
by [4]

𝑅
ZFDP

(H) =

𝐾

∑
𝑖=1

(log (𝜇𝑑
𝑖
))
+

, (9)

where 𝑑
𝑖
= |𝑙
𝑖𝑖
|2 and 𝜇 is the solution to the water-filling

equation

∑
𝑖∈Ω

(𝜇 −
1

𝑑
𝑖

)

+

= 𝑃, (10)

which defines the 𝑖th power as 𝑝
𝑖
= (𝜇𝑑

𝑖
− 1)
+.

4. The User Selection Problem

Let Ω = {1, . . . , 𝐾} be the set of all competing users where
𝐾 is larger than the number of available antennas at the base
station; that is, |Ω| = 𝐾 > 𝑁

𝑡
. Under this condition, user

selection is required and the joint sum rate maximization (3)
and user selection problem can be defined as

R = max
S⊂Ω:|S|=𝑁

𝑡

𝑅
(type)

(H (S)) , (11)

where S ⊂ Ω, H(S) is a row-reduced channel matrix
containing only the channel vectors of the selected users and
type denotes the precoder that is used, either ZFBF or ZFDP.
Observing that in (11) the set of selected users is constrained
to have maximum cardinality, full spatial multiplexing is
sought. For the high SNR regime and ZFBF using water-
filling based power allocation it is possible to achieve a final
subset with cardinality𝑁

𝑡
as long as the given SNR is above a

critical value [4].
The optimum solution to (11) requires an exhaustive

search over a search space of size ( 𝐾𝑁
𝑡
) and for large values

of 𝐾 its computation has prohibitive complexity. Therefore,
low-complexity suboptimal algorithms have been proposed
in the literature in order to maximize the throughput solving
(11) in two phases (class-B approach): first by finding a set S
of quasiorthogonal users (combinatorial search) and second
by allocating resources to such a set (convex optimization)
[5, 6, 8].

4.1. Metric of Orthogonality. In the literature of user selection
for MIMO systems [5, 9, 10], one of the most common
approaches to form the set of selected users S is to find iter-
atively the user that locally maximizes the sum power pro-
jection. This means that given S ̸= 0, the optimum new user
formΩ achieves the largest amount of projection power once
its channel is projected onto the subspace spanned by the
previously selected users Sp(H(S)).

This procedure is optimum when only 1 element from Ω

must be selected to be added toS. In the case of |S| < 𝑁
𝑡
the

aggregation of a new user is required to meet the constraint
of (11) and the aforementioned procedure results in a subop-
timal maximization of the total sum of projection powers.

Let QS be the orthogonal complement projector matrix
of Sp(H(S)) defined as [17]

QS = I
𝑁
𝑡

− PS = I
𝑁
𝑡

−H(S)
𝐻
(H (S)H(S)

𝐻
)
−1

H (S) ,

(12)

where PS is the orthogonal projector matrix of Sp(H(S)).
In [9] Tu and Blum proposed a greedy algorithm originally
designed to be applied to ZFDP coding scheme, which selects
𝑁
𝑡
out of𝐾 rows of the channel matrixH. Such user selection

methodology is based on an iterative null space projection
(NSP) and it achieves the best suboptimal solution to the
problem (11) for a class-B algorithm regardless of the coding
scheme, which will be elaborated upon in the following
sections. In [9] given S ̸= 0 the new selected user is the one
that maximizes the following metric:

𝑟S,𝑖 = h
𝑖
QSh
𝐻

𝑖
= h
𝑖
h𝐻
𝑖
− h
𝑖
PSh
𝐻

𝑖
, (13)

where the term h
𝑖
PSh𝐻𝑖 represents the power loss due to

the imperfect orthogonality between h
𝑖
and Sp(H(S)). In

other words, the metric 𝑟S,𝑖 measures the amount of power
preserved by user 𝑖 when h

𝑖
is projected onto the null space

ofH(S). The same idea of [9] has been applied by Wang and
Yeh [8] for ZFBF calculating the null space ofH(S) via SVD.
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Figure 1: (a) The orthogonal component of vector h
𝑘
to Sp(H(S)).

(b) Physical components of the interaction of two selected users 𝑖

and 𝑗 with third unselected user 𝑘.

This concept is represented in Figure 1(a) where the chan-
nel h
𝑘
of the 𝑘th unselected user is projected onto the null

space Sp(H(S))
⊥ using (12).

Several user selection algorithms (e.g., [5, 6, 11, 16, 19, 20])
attempt to create groups of quasiorthogonal users based on
the information provided by the coefficient of correlation 𝜂

𝑖𝑗

which for two users 𝑖 and 𝑗 is defined as [17, 21]

𝜂
𝑖𝑗
= cos (𝜃

𝑖𝑗
) =

⟨h
𝑖
, h
𝑗
⟩

󵄩󵄩󵄩󵄩h𝑖
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩󵄩
h
𝑗

󵄩󵄩󵄩󵄩󵄩

, 0 ≤ 𝜃
𝑖𝑗
≤ 𝜋, (14)

where the coefficient 0 ≤ |𝜂
𝑖𝑗
| ≤ 1 geometrically represents

the cosine of the angle between the two channel vectors [17].
In [22] the authors presented an algorithm that selects the
best 2 users out of 𝐾. The first user 𝑖 ∈ S is given by the
user with the highest channel norm as in [5, 6, 8, 9], and the
second user 𝑗 ∈ Ω is the one that maximizes the product
‖h
𝑗
‖
2
(1 − 𝜂2

𝑖𝑗
) = ‖h

𝑗
‖
2sin2(𝜃

𝑖𝑗
). In the particular case of [22]

when |S| = 1, h
𝑗
QSh𝐻𝑗 = ‖h

𝑗
‖
2sin2(𝜃

𝑖𝑗
); that is, scaling the

squared norm by the squared sine of the angle between user
𝑖 and 𝑗 is equivalent to projecting h

𝑗
onto the null space of

h
𝑖
[17]. When zero-forcing-based precoding is used, the term

sin2(𝜃
𝑖𝑗
) can be viewed as a projection power loss factor [21].

In the following section we derive a metric to approximate
the projection of a given h

𝑖
, ∀𝑖 ∉ S onto Sp(H(S))

⊥ for the
general case where |S| > 1.

5. Power Projection Based User Selection

In this section we propose a cross-layer design that subopti-
mally solves the sum rate maximization problem.This design
only considers the physical layer model and we ignore the
application level delay effects and assume that all users have
infinite information to transmit when they are scheduled.The
generalization of the user selection problem is modeled as an
integer convex program and we analyze the suboptimality of
the selection metrics.

5.1. Iterative Power Projection (IPP) Algorithm. Based on the
fact that (13) has a fundamental connection to the coefficients
of correlation, we design an algorithm that attempts to find

a quasiorthogonal set of users S using exclusively the infor-
mation provided by the channel norms and the orthogonality
between any two user channels given by (14). Figure 1(b)
exemplifies the required information used to find the set S,
and for two selected users 𝑖 and 𝑗 the figure shows the physical
components that affect the interactionwith a third unselected
user 𝑘.

In order to start the users selection process, we assume
that the base station knows the coefficients of correlation for
all users in Ω = {1, . . . , 𝐾}, which requires (𝐾2 − 𝐾)/2 com-
putations of (14) since 𝜂

𝑖𝑗
= 𝜂
𝑗𝑖
and the computation of the

coefficients (inner product and vector norm operations) can
be done within time O(𝐾). For the sake of notation let 󰜚

𝑖𝑗
=

1 − 𝜂2
𝑖𝑗
, 󰜚
𝑖𝑗
= 1 − |𝜂

𝑖𝑗
| and define the following geometric and

arithmetic means for the elements 󰜚 associated with user 𝑖 ∈
Ω as:

𝑀
𝑔(𝑖)

= ( ∏
𝑗 ̸= 𝑖,𝑗∈Ω

󰜚
𝑖𝑗
)

1/(|Ω|−1)

≤ (
1

|Ω| − 1
) ∑
𝑗 ̸= 𝑖,𝑗∈Ω

󰜚
𝑖𝑗
, (15)

where 𝑀
𝑔(𝑖)

is a lower bound of the arithmetic mean of the
projection power loss factors of user 𝑖. We select the first user
as the one that preserves the highest amount of average power
once it is projected onto all other users, such that

𝑖
∗
= argmax

𝑖∈Ω

󵄩󵄩󵄩󵄩h𝑖
󵄩󵄩󵄩󵄩
2

𝑀
𝑔(𝑖)

, (16)

and the sets of selected and unselected users are updated,
S = {𝑖∗} and Ω = Ω − {𝑖∗}. By selecting the first user
using (16) the goal is assigning priority weights to the channel
norms; that is, users with large channel norms are penalized if
their associated correlation coefficients have a large variance.
Furthermore, the geometric mean 𝑀

𝑔(𝑖)
minimizes the bias

created by the terms 󰜚 with very large or small values, which
would be neglected if the arithmetic mean of the projection
power loss factors were considered in (16).

The following user to be selected must maximize two
criteria at the same time. On the one hand, it must maximize
its own projected power which is affected by the coefficients
󰜚 of the already selected users in S. The effective projected
power of the user 𝑖 ∈ Ω is given by

𝜓
𝑖
=
󵄩󵄩󵄩󵄩h𝑖

󵄩󵄩󵄩󵄩
2

∏
𝑗∈S

󰜚
𝑖𝑗
. (17)

On the other hand, the users in S have already achieved
an effective projected power that is defined as:

𝜙
𝑗
=
󵄩󵄩󵄩󵄩󵄩
h
𝑗

󵄩󵄩󵄩󵄩󵄩

2

∏
𝑘 ̸= 𝑗,𝑘∈S

󰜚
𝑗𝑘
, 𝑗 ∈ S. (18)

For a new user candidate 𝑖 ∈ Ω, its aggregation to the set
S implies a reduction of the total sum of projected powers
of the selected users (∑

𝑗∈S 𝜙
𝑗
) by the factors 󰜚 associated

with the new selected user. Using the arithmetic and geomet-
ric means, lower bounds of the average projected power of
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the selected users in (18) can be defined for the 𝑖th unselected
user as follows:

∏
𝑗∈S

𝜙
𝑗
󰜚
𝑖𝑗
≤ (

1

|S|
∑
𝑗∈S

𝜙
𝑗
󰜚
𝑖𝑗
)

|S|

≤ (
1

|S|
∑
𝑗∈S

𝜙
𝑗
)

|S|

. (19)

The total effective projection power 𝜑̇
𝑖
of the unselected

user 𝑖 takes into account both the average projection power
over the elements inS computed for the lower bound in (19)
and the projection power of user 𝑖 ∈ Ω (17). Consider

𝜑̇
𝑖
= (∏
𝑗∈S

𝜙
𝑗
󰜚
𝑖𝑗
)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
gain∀𝑗∈S

(
󵄩󵄩󵄩󵄩h𝑖

󵄩󵄩󵄩󵄩
2

∏
𝑗∈S

󰜚
𝑖𝑗
)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
gain∀𝑖∈Ω

= (∏
𝑗∈S

𝜙
𝑗
)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
constant∀𝑖∈Ω

(∏
𝑗∈S

󰜚
𝑖𝑗
)(

󵄩󵄩󵄩󵄩h𝑖
󵄩󵄩󵄩󵄩
2

∏
𝑗∈S

󰜚
𝑖𝑗
) .

(20)

By taking the square of the product of the terms 󰜚
𝑖𝑗
, both

effects are considered: the impact of the selected users over
user 𝑖 and the power degradation that the users inSwill have
if user 𝑖 is selected.

Since the effective projected power of the selected users
remains constant for all users in Ω, the metric in (20) can be
normalized as follows:

𝜑
𝑖
=
󵄩󵄩󵄩󵄩h𝑖

󵄩󵄩󵄩󵄩
2

∏
𝑗∈S

󰜚
2

𝑖𝑗
. (21)

Given S, the next selected user is found using the metric
defined in (21) as

𝑖
∗
= arg max

𝑖∈Ω

𝜑
𝑖
, (22)

where the selection of the locally optimum 𝜑(𝑛) in a given
iteration 𝑛 is conditioned on the choice of 𝜑(1), . . . , 𝜑(𝑛 − 1).

As𝐾 → ∞ the number of total operations to solve prob-
lem (11) becomes computationally costly and a more efficient
update of the setΩ can be performed. By selecting a new user
using (22), each iteration requires the comparison of |Ω|

elements in order to select the user whose projection power
is maximum. Considering that the cardinality of the final set
must be 𝑁

𝑡
, without modifying Ω, this algorithm would

require a total of 𝐿 = 𝑁
𝑡
(𝐾 − (𝑁

𝑡
− 1)/2) comparison

operations. For our case, the projection power evaluations for
the metric used in (21) will use all coefficients 󰜚 associated
with the elements of S. The algorithms proposed in [6, 8, 9]
also require 𝐿 comparison operations versus the elements of
S. However, the computational complexity is quite different
since each comparison requires a matrix multiplication,
whilst the metric used in (21) is a multiplication of real
positive numbers.

In [5, 20, 22] after a new user 𝑖 is added to S, the set of
unselected userΩ is reduced by keeping the users whose cor-
relation factors are above a threshold 𝛼th; that is,Ω(𝑛) = {𝑗 ∈

Ω(𝑛 − 1) : 𝜂
𝑖𝑗
< 𝛼th}, where 𝑛 stands for the iteration number

and 𝑖 is the selected user of iteration 𝑛 − 1. This subselection

within the algorithm has the drawback that the value of the
parameter 𝛼th is fixed which might result in a drastic reduc-
tion of the size of Ω and the degradation of the multiuser
diversity. According to [5] there exists an optimum value
of the threshold 𝛼th for each value of 𝐾 and 𝑁

𝑡
, but the

mathematical relationship between these terms is not given
in a closed form. The statistical dependence of the average
throughput due to 𝛼th has been established only for the case
where the cardinality of the set of selected users is constrained
to be 2; that is, |S| = 2 in [21].

We propose a dynamic reduction of the setΩ considering
two factors to discard users at each iteration. The first crite-
rion is related to the statistics of the projection powers regard-
ing the users that have been selected. The second criterion
weights the first criterion based on the number of active users
and the number of antennas 𝑁

𝑡
. Let us define the arithmetic

mean of the projected powers given the new selected user 𝑖∗
as

𝑀
𝑎(𝑖
∗
)
=

1

|Ω|
∑
𝑗∈Ω

󵄩󵄩󵄩󵄩󵄩
h
𝑗

󵄩󵄩󵄩󵄩󵄩

2

󰜚
𝑖
∗
𝑗
. (23)

Notice that the power projection computation is per-
formed considering only the power projection loss factors
associated with 𝑖

∗, and each term of the sum in (23) is the
multiplication of two real numbers. The metric defined in
(23) is used to discard users whose projection powers are
below the arithmetic mean which results in a reduction of the
number of comparisons for the next iteration. Nevertheless,
when the number of total users is low (𝐾 ≈ 𝑁

𝑡
) the number

of users in Ω should not be reduced drastically in order to
preserve enoughmultiuser diversity and to achieve full spatial
multiplexing. We define a weight factor based on the number
of antennas𝑁

𝑡
and the size of the sets S andΩ as follows:

𝑤
(𝑁
𝑡
,S,Ω) = 1 − (

𝑁
𝑡
− |S|

|Ω|
)

1/(𝑁
𝑡
−|S|)

. (24)

The objective of 𝑤
(𝑁
𝑡
,S,Ω) is to scale 𝑀

𝑎(𝑖
∗
)
in iteration 𝑛

taking into account the degrees of freedom available at the
base station (rank(H(S))) and the current size ofΩ. Given the
new selected user 𝑖∗ and weighting (23) by (24), the modified
set of users that will compete to be scheduled in the next
iteration 𝑛 + 1 is defined as

Ω (𝑛 + 1) = {𝑗 ∈ Ω (𝑛) :
󵄩󵄩󵄩󵄩󵄩
h
𝑗

󵄩󵄩󵄩󵄩󵄩

2

󰜚
𝑖
∗
𝑗
≥ 𝑤
(𝑁
𝑡
,S,Ω)𝑀𝑎(𝑖∗)} . (25)

The procedure to generate the quasiorthogonal set of user
that solves problem (11) is described in Algorithm 1.

5.2. User Selection as an Integer Linear Program (ILP). The
optimization performed in Algorithm 1 can be described as a
greedy search over a tree structure [23] where the tree’s root
is given by the element of Ω that preservers a higher average
projected power (16). Similar approaches are implemented in
[5, 6, 8, 9] considering the user with the maximum channel
norm as the root of tree. The greedy Algorithm 1 makes a
sequence of decisions in order to optimize the metric in (22).
However, this local optimization might not lead to a global
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(1)Ω = {1, . . . , 𝐾}, S = 0, 𝑛 = 0

(2)while |S| < 𝑁
𝑡
do

(3) if 𝑛 = 0 then
(4) Compute 𝑖∗ by (16)
(5) else
(6) Compute 𝑖∗ by (22)
(7) end if
(8) 𝑛 = 𝑛 + 1, S(𝑛) = S(𝑛 − 1) ∪ {𝑖∗},Ω(𝑛) = Ω(𝑛 − 1) − {𝑖∗}

(9) Update Ω(𝑛) by (25)
(10) end while
(11)Power Loading Principle: water-filling

Algorithm 1: Iterative power projection (IPP).

optimal solution. Moreover, since the first user is found
by (16), the correlation of such a user with the future
selected users is neglected when S is initialized. A general
mathematical model of the interaction of all elements in S
that exploits themetrics used in (16) and (22) can be designed.
Due to the structure of (16) and (22) which maximizes the
squared channel norm weighted by the product (interaction)
of the correlation coefficients, we canmodel a relaxed version
of the user selection problem (11) as an integer programming
problem.

Let us define the interaction of the user 𝑖 ∈ Ωwith the rest
of the users as a function 𝑓

𝑖
considering the structure of (21)

as

𝑓
𝑖
=
󵄩󵄩󵄩󵄩h𝑖

󵄩󵄩󵄩󵄩
2

∏
𝑗 ̸= 𝑖

󰜚
2

𝑖𝑗
, ∀𝑖, 𝑗 ∈ Ω, (26)

and by applying a change of variables, the function 𝑓
𝑖

=

log(𝑓
𝑖
) is given by

𝑓
𝑖
= 𝑎
𝑖
+ ∑
𝑗 ̸= 𝑖

𝑏
𝑖𝑗
, (27)

where 𝑎
𝑖
= 2 log(‖h

𝑖
‖) and 𝑏

𝑖𝑗
= 2 log(󰜚

𝑖𝑗
). Our objective

is to maximize the total sum of the projected powers which
is a function of two factors, the orthogonality between the
selected channels and the amount of remaining power after
a projection. Therefore, (11) can be thought of as the maxi-
mization of ∑

𝑖
𝑓
𝑖
with the constraint that |S| = 𝑁

𝑡
. In order

to introduce such constraint, we define the following binary
variable 𝑦

𝑖
as

𝑦
𝑖
= {

1 if user 𝑖 is selected
0 otherwise.

(28)

In the same way we can define a set of binary variables 𝑥
𝑖𝑗

that relate to the common coefficient 󰜚
𝑖𝑗
of two users as

𝑥
𝑖𝑗
= {

1 if both users 𝑖 and 𝑗 are selected
0 otherwise.

(29)

Themathematicalmodel for the user selection problembased
exclusively on the channel norms and correlation coefficients
is given by

maximize ∑
𝑖

𝑎
𝑖
𝑦
𝑖
+ 2∑
𝑖

∑
𝑗=𝑖+1

𝑏
𝑖𝑗
𝑥
𝑖𝑗

subject to ∑
𝑖

𝑦
𝑖
= 𝑁
𝑡

𝑦
𝑖
+ 𝑦
𝑗
≤ 1 + 𝑥

𝑖𝑗
, ∀𝑖, 𝑗

𝑥
𝑖𝑗
≤ 𝑦
𝑖
, ∀𝑖, 𝑗

𝑥
𝑖𝑗
≤ 𝑦
𝑗
, ∀𝑖, 𝑗

𝑦
𝑖
∈ {0, 1} , ∀𝑖

𝑥
𝑖𝑗
∈ {0, 1} , ∀𝑖, 𝑗

variables 𝑦
𝑖
, 𝑥
𝑖𝑗
,

(30)

where (30) is a binary programming problem that general-
izes the objective function optimized by Algorithm 1. The
advantage of this formulation is that the order in which the
users are selected has no impact on the orthogonality of the
elements ofH(S); that is, the negative effects of selecting local
optimum users in each iteration are canceled. The solution
to the user selection problem is given by the binary variables
𝑦
𝑖
and power allocation based on water-filling is performed

over the set of selected users according to the employed
precoding scheme. Observe that a conversion from 𝑓

𝑖
to 𝑓
𝑖

is not required, because the relevant information to form
the set S is given by the variables 𝑦

𝑖
that have achieved a

value of one. Since the objective function is convex and the
constraints are given by affine functions, this problem can be
solved by the pseudodual simplex method [24] for integer
programs or by using standard optimization packages [25,
26]. Moreover, problem (30) always has a feasible solution
because the only constraint that might lead to infeasibility is
the equality constraint that is always met due to the fact that
𝐾 ≥ 𝑁

𝑡
. Problem (30) is a relaxed version of (11) and it finds

a suboptimal solution to the user selection problem owing
to the nature of the coefficients 𝑏

𝑖𝑗
which is analyzed in the

following subsection.



8 The Scientific World Journal

5.3. Suboptimality of the User Selection Process. The projec-
tion power found by (13) has a direct relationship with the
correlation coefficients 𝜂 of the users in S and the channel
vector h of the candidate user in Ω. The normalized power
loss of such user once it is projected onto PS is called the
coefficient of determination and is given by [17]

𝑅
2

S,h =
hPSh𝐻

hh𝐻
, (31)

where𝑅2S,h measures howmuch the vector h can be predicted
(correlated) from the selected vectors of H(S). Notice that
from (13) and (31) the projection of h onto the null space of
Sp(H(S)) is equivalent to 1 − 𝑅2S,h which can be evaluated
from the correlation coefficients 𝜂 as follows [17]:

1 − 𝑅
2

S,h

= (1 − 𝜂
2

h𝜋(1)) (1 − 𝜂
2

h𝜋(2)|𝜋(1)) ⋅ ⋅ ⋅ (1 − 𝜂
2

h𝜋(𝑘)|𝜋(1)⋅⋅⋅𝜋(𝑘−1)) ,

(32)

where 𝜋(𝑖) is the 𝑖th ordered element of H(S) and
𝜂h𝜋(𝑘)|𝜋(1)⋅⋅⋅𝜋(𝑘−1) is the partial correlation between the can-
didate vector h and the ordered channel vector h

𝜋(𝑘)
∈

H(S) associated with 𝜋(𝑘) eliminating the effects due to
𝜋(1), 𝜋(2), . . . , 𝜋(𝑘−1).The exact computation of the last 𝑘−1
partial correlation coefficients in (32) requires the implemen-
tation of recursive algorithms whose analysis and efficient
implementation are a subject of future research. It can be
observed that the product that scales the squared channel
norm of user 𝑖 in (21) contains all the information of the
correlation coefficients of elements ofS which resembles the
product (32). However, (21) considers redundant information
of how all elements in H(S) interact with h which results
in a suboptimal evaluation of (32). Notice that as 𝐾 grows,
the probability that basis of Sp(H(S)) can describe a new
candidate user’s channel h decreases. Therefore, the gap
between the correlation and the partial correlation factors
reduces as well. This characteristic is used in [6] to prove that
for 𝐾 → ∞ the performance of an SVD-based scheduling
algorithm that generates a quasiorthogonal set of users by
approximating (31) achieves asymptotical optimal user selec-
tion performance.

The optimum metric for user selection varies according
to the precoding scheme that is implemented. For the case
of ZFDP, the fact that (21) considers redundant information
when all terms 󰜚 are multiplied can be compensated by the
elimination of the noncausally known interference. In the
case of ZFBF the orthogonality among selected channels plays
a more important role in terms of throughput maximization.
In order to compensate the lack of knowledge of the partial
correlation coefficients in (32), we consider larger values of
the power loss factors; that is, the procedure for user selection
is the one described inAlgorithm 1with the difference that for
the ZFBF scheme we use 󰜚

𝑖𝑗
instead of 󰜚

𝑖𝑗
. Due to the fact that

󰜚
𝑖𝑗

≤ 󰜚
𝑖𝑗
(with equality when the channels are uncorrelated)

the projection power loss factor increases its value, and in this
way the poor orthogonality between channels has a higher
impact when the squared channel norms are scaled in (21).

6. Numerical Results

We compare the proposed user selection algorithm with sev-
eral state-of-the-art algorithms, namely the semiorthogonal
user selection (SUS) proposed in [5] with threshold parame-
ter𝛼th and the null space projection based approach (NSP) [8,
9]. The upper bound of the sum rate is given by the expected
value of the solution of (11) found by an exhaustive search.
In order to highlight the contribution of multiuser diversity
we compare performance with respect to two simplistic user
selection approaches, one based on the maximum channel
gain (MCG) criterion (selecting the 𝑁

𝑡
users with higher

channels norms), and a second approach performing round
robin user scheduling (RRS) policy. We also compare the
performance of the proposed Algorithm 1 (IPP) with two
greedy class-A algorithms, one proposed by Dimić and
Sidiropoulos [10], and the other proposed by Karachontzitis
and Toumpakaris [11]. The solution of the integer linear
program (ILP) optimization in (30) is presented and used as
an upper bound of the performance of Algorithm 1 (IPP) and
compared to the optimum solution of (11). The simulations
consider perfect CSIT; fading channels are generated follow-
ing a complex Gaussian distribution with unit variance and
the average sum rate is given in [bps/Hz]. Since we evaluate
system performance via Shannon capacity by means of (5)
and (9), the results are independent of the specific imple-
mentation on the coding and modulation schemes, which
provides us with a general design insight.

6.1. Throughput (𝑅) versus Number of Active Users (𝐾). In
Figures 2 and 3, we compare the throughput performance of
different user selection strategies and Algorithm 1 regarding
the number of competing users𝐾. The performance of ZFBF
is highly susceptible to the characteristics of the set of selected
usersS. IPP algorithm performs the user selection exploiting
the information of the terms 󰜚. Since 󰜚

𝑖𝑗
≤ 󰜚
𝑖𝑗
, the conse-

quence is a more drastic reduction in the power projection
in (21) due to the value of the correlation coefficient 𝜂

𝑖𝑗
.

Figure 2 shows that IPP achieves a considerable portion of
the average sum rate of the optimum selection; in the case
when 𝐾 = 5 the performance gap regarding the optimum
user selection is about 11%. For 𝐾 = 10, IPP achieves 90%
of the optimum users selection’s sum rate and outperforms
SUS (𝛼th = 1). It is worth mentioning that the parameter 𝛼th
has the function of dropping users whose correlation factor is
below its value as described in Subsection 5.1. In this case we
select 𝛼th = 1 in order to guarantee that the set constraint in
(11) is not violated.Theobjective of IPP algorithm is to achieve
the performance of the greedy user selection based on the
null space projection (NSP). The performance of the IPP
algorithm has an asymptotic behavior regarding the NSP
approach as 𝐾 grows. For 𝐾 = 20, IPP achieves roughly 97%
of the sum rate of the NSP based algorithms [8, 9].

A comparison of the IPP algorithm to the ILP optimiza-
tion shows that the latter exploits more efficiently the user
diversity as 𝐾 grows. It is interesting that for 𝐾 ≥ 20 the
ILP optimization achieves better performance than the NSP
approach in Figure 2. This result suggests that there exists a
critical value of 𝐾 for which the user selection of the ILP
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Figure 2: Average sum rate as a function of the number of users 𝐾
for the ZFBF scheme with SNR = 18 [dB] and𝑁

𝑡
= 4.

optimization overcomes the selection performed using the
metric defined in (13). For 𝐾 = 20, the performance gap
between the optimum user selection and the ILP optimiza-
tion is less than 5%. This means that for given deployment
𝑁
𝑡
, there exists a finite value 𝐾

0
for which ∀𝐾 > 𝐾

0
the

sum rate gap between the exhaustive search and the model
(30) is negligible. However, the complexity of computing
the solution of (30) grows exponentially with 𝐾 which is
impractical (infeasible) for online implementations, but it is
still an appealing approximation to (11) compared to the large
search space size of the optimumsolution formoderate values
of𝐾.

The performance of the IPP is determined by the pre-
coding scheme that is used. For ZFDP in Figure 3, it can be
observed that IPP performs as well as SUS but there is still a
performance gap compared to theNSP approach. For𝐾 = 20,
IPP achieves the same performance of the greedy selection
of [11] and 98% and 99% of the sum rate of the optimum
selection and the NSP approach, respectively. For ZFDP and
𝐾 ≥ 8, the ILP optimization achieves better performance
than IPP but is not effective enough to reach the performance
of the NSP approach for low values of 𝐾. Nevertheless, for
𝐾 = 20, the ILP optimization achieves 98% of the sum rate
of the optimum selection. IPP shows an asymptotic perfor-
mance as𝐾 → ∞ with respect to the NSP approach and the
optimum selection for both precoding schemes.

6.2. Throughput (𝑅) versus SNR (𝑃). For zero-forcing-based
beamforming, we know from [4] that for a given SNR (𝑃) the
maximum throughput R under the constraint |S| ≤ 𝑁

𝑡
in

(11) might be achieved by a set of selected users of cardinality
strictly less than rank(H(S)). Nevertheless, from the proper-
ties of water-filling power allocation in (5), there exists a finite
value 𝑃

0
(which depends on H(S)) for which ∀𝑃 ≥ 𝑃

0
, R is
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achieved by a subset of cardinality 𝑁
𝑡
. Notice that since the

greedy class-A algorithms in [10, 11] obey the constraint |S| ≤

𝑁
𝑡
, the sum rate that they achieve for 𝑃 < 𝑃

0
is higher than

the capacity of the optimal solution in (11) but the number
of scheduled users is less. This phenomenon can be observed
in Figure 4 where for a given number of user 𝐾 = 10, the
value of 𝑃

0
≈ 10 [dB] and the optimum solution of (11) are

always better than the solution of the algorithms in [10, 11]. It
is worthy to point out that the optimum user selection here
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presented is found in a search space of size ( 𝐾𝑁
𝑡
) in a class-

B algorithm, whilst the search space in class-A algorithms
[10, 11] has a size of∑𝑁𝑡

𝑛=1
( 𝐾
𝑛
), which has no constraints on the

minimum number of selected users. Therefore, the optimum
solution shown in our results is valid only for class-B algo-
rithms and presenting class-A algorithms have as objective
to highlight the difference between classes. Considering the
high SNR regime (10 ≤ 𝑃 ≤ 20) in Figure 4, the performance
gap between IPP and the optimum solution ranges from 14%
to 9% and for the NSP approach the performance gap goes
from 9% to 4% in the same SNR range. For the case of
ZFBF, the ILP optimization achieves a better approximation
to NSP than the IPP approach. However, in the case of
ZFDP in Figure 5, the performance gap between IPP and
the ILP optimization is about 1%, and both approaches
achieve roughly 98% of the optimum selection capacity for
SNR of 20 dB. An interesting fact is that the MCG selection
achieves 93% the optimum selection capacity for 𝐾 = 10

and 𝑃 = 20 dB under ZFDP. This indicates that for the
high SNR regime, channel gains play a more important role
for the user selection process in scenarios where nonlinear
precoding can be implemented. This can result in the design
of novel low-complexity user selection algorithms for specific
nonlinear precoding schemes. Still, the performance of a
class-B algorithm depends on the multiuser diversity and the
SNR regime.

6.3. Cardinality of S and Ω. The cardinality of the set S is
conditioned by the class of the algorithm that is implemented,
its parameters, and the type of precoding that is used. In
Figure 6 we analyze in percentage the average value of the
ratio |S|/𝑁

𝑡
for (a) ZFBF and (b) ZFDP. Such ratio indicates

if full spatial multiplexing is achieved. In the case of ZFBF, we

can see that both class-A algorithms [10, 11] require𝐾 ≥ 20 in
order to achieve the maximum cardinality ofS. To exemplify
the inconvenience of designing an algorithm dependent of
nondynamic parameters, notice that setting a wrong value
to the parameter 𝛼th of the SUS algorithm might lead to a
degradation of both the cardinality of the set of selected users
and the sum rate. For the case of ZFDP we can see that the
robustness of the precoder allows us to schedule 𝑁

𝑡
user in

both classes of algorithms. This has a direct impact in the
achieved fairness owing to the large cardinality ofS. The rate
distribution among the users is improved since more users
achieve a portion of the sum rate regardless of the fact that
throughput maximization is the main objective of (11).

With the reduction of the set Ω each iteration becomes
relevant for high values of 𝐾 and 𝑁

𝑡
. The effects of (25) on

the cardinality of the set of unselected users Ω per iterations
are presented in Figure 7 for (a) 𝑁

𝑡
= 3 and (b) 𝑁

𝑡
= 4. The

figures show the average number of users kept in the setΩ of
each iteration of Algorithm 1 for different number of users.
The first iteration always considers all 𝐾 users to find the
initial selected user. As the size of S increases the number
of required users to achieve |S| = 𝑁

𝑡
reduces and (24) takes

into account such decrement to give more or less priority to
𝑀
𝑎(𝑖
∗
)
.

6.4. Complexity Analysis and Implementation Limitations.
The complexity of solving (11) can be analyzed in two parts.
The first one is the complexity required to implement each
one of the precoders and the second one is the complexity of
IPP. For the case of ZFBF, the precoding requires an 𝑁

𝑡
× 𝑁
𝑡

matrix inversion W = H† and for ZFDP the evaluation of
the beamforming weights requires a QR-type decomposition.
For both coding schemes, this process is carried out after IPP
finished the user selection process.Themost costly operation
in IPP is the evaluation of (𝐾2−𝐾)/2 inner products to define
the correlation coefficients that can be done in time O(𝐾).
Since this values does not change along the selection process,
they must be computed once and can be stored in memory.
Notice that the evaluation of (16) requires a time O(𝐾) since
onlymultiplications of real positive numbers are required and
a sort operation (ordering) performed in time O(𝐾 log

2
(𝐾)).

For the case where the set Ω reduces in one element per
iteration and a total of 𝑁

𝑡
iterations are required the total

complexity is O(𝐾𝑁
𝑡
+ 𝑁
𝑡
𝐾 log
2
(𝐾)) ≈ O(𝐾𝑁

𝑡
). However,

for the following iterations the time complexity of computing
(22) is a function of the set of unselected user that is
modified according the statistics of the projection power
given by𝑀

𝑎(𝑖
∗
)
and theweight𝑤

(𝑁
𝑡
,S,Ω).This implies that each

iteration will require a time O(|Ω|(1 + log
2
(|Ω|))) ≈ O(|Ω|)

andΩ changes for each iteration according to (25).
The solution of (30) requires the optimization over 𝐿 ILP =

(1/2)𝐾(𝐾+3) binary variables in the objective function.This
means that a total of 2𝐿ILP configurations of those variables are
available and the number of valid configurations depends on
the constraints imposed over the binary variables. Regardless
of the existence of pseudopolynomial algorithms that solve
integer programs avoiding the evaluation of all configura-
tions [24], real time computation of the solution of (30) is
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Table 1: Complexity comparison of user selection algorithms.

Class A Class B
[10] [11] SUS [5] NSP [9] IPP
O (𝐾𝑁3

𝑡
) O (𝐾𝑁2

𝑡
) O (𝐾𝑁3

𝑡
) O (𝐾𝑁3

𝑡
) O (𝐾𝑁

𝑡
)

prohibited for large values of𝐾. Table 1 summarizes the time
complexity of different user selection algorithms.

The proposed algorithms assume perfect CSIT. However,
in practical systems it is difficult to guarantee this condition.
Even if channel estimation is very accurate, there is an
error in the channels at the transmitter due to mobility
and feedback delays. Several works (e.g., [5, 8, 27]) showed
that outdated CSIT destroys the quasiorthogonality of the
selected channels which degrades the performance of zero-
forcing-based transmission schemes. Orthogonality can be
fully exploitedwhen there is near to perfect CSIT.The authors
in [27] showed that a significant fraction of the sum rate
with perfect CSIT can be achieved if the ratio between the
outdated channel at the transmitter and the estimation error
is kept above a threshold. Therefore, as the frame lengths are
designed so thatmagnitude of the real channels and the errors
due to outdated estimates maintain a given average ratio, the
proposed user selection techniques are effective.

7. Conclusions

In this paper, we presented a low-complexity algorithm that
finds a quasiorthogonal set of users that maximizes the
system throughput forMIMOBC channels using linear ZFBF
and nonlinear ZFDP beamforming schemes. We exploited
a fundamental relation between the projection power loss
factors related to the correlation coefficients and the orthog-
onal complement projector matrix related to the null space
of the selected channels. Our algorithm approximates the
projected power using a metric that is based exclusively on
the physical characteristics of the channels whose accuracy
increases with the number of competing users. However, the
dependence of the multiuser diversity is not critical and for
a moderate number of users the algorithm achieves a good
trade-off between performance and complexity. We com-
pared the proposed algorithm to different state-of-the-art
algorithms and numerical results show a small performance
gap between the optimum user selection and the proposed
algorithm. We also presented an integer program model that
approximates the performance of the exhaustive search when
the number of users is large and it provides an upper bound
of the performance of the proposed algorithm. The results
obtained by numerical simulation indicate that an efficient
and low-complexity cross-layer scheduling design can profit
from fundamental information that characterizes the relation
between wireless channels without implementing extensive
matrix operations for the user selection process.
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