3,364 research outputs found

    Wind turbine condition monitoring : technical and commercial challenges.

    Get PDF
    Deployment of larger scale wind turbine systems, particularly offshore, requires more organized operation and maintenance strategies to ensure systems are safe, profitable and cost-effective. Among existing maintenance strategies, reliability centred maintenance is regarded as best for offshore wind turbines, delivering corrective and proactive (i.e. preventive and predictive) maintenance techniques enabling wind turbines to achieve high availability and low cost of energy. Reliability centred maintenance analysis may demonstrate that an accurate and reliable condition monitoring system is one method to increase availability and decrease the cost of energy from wind. In recent years, efforts have been made to develop efficient and cost-effective condition monitoring techniques for wind turbines. A number of commercial wind turbine monitoring systems are available in the market, most based on existing techniques from other rotating machine industries. Other wind turbine condition monitoring reviews have been published but have not addressed the technical and commercial challenges, in particular, reliability and value for money. The purpose of this paper is to fill this gap and present the wind industry with a detailed analysis of the current practical challenges with existing wind turbine condition monitoring technology

    Damage identification in structural health monitoring: a brief review from its implementation to the Use of data-driven applications

    Get PDF
    The damage identification process provides relevant information about the current state of a structure under inspection, and it can be approached from two different points of view. The first approach uses data-driven algorithms, which are usually associated with the collection of data using sensors. Data are subsequently processed and analyzed. The second approach uses models to analyze information about the structure. In the latter case, the overall performance of the approach is associated with the accuracy of the model and the information that is used to define it. Although both approaches are widely used, data-driven algorithms are preferred in most cases because they afford the ability to analyze data acquired from sensors and to provide a real-time solution for decision making; however, these approaches involve high-performance processors due to the high computational cost. As a contribution to the researchers working with data-driven algorithms and applications, this work presents a brief review of data-driven algorithms for damage identification in structural health-monitoring applications. This review covers damage detection, localization, classification, extension, and prognosis, as well as the development of smart structures. The literature is systematically reviewed according to the natural steps of a structural health-monitoring system. This review also includes information on the types of sensors used as well as on the development of data-driven algorithms for damage identification.Peer ReviewedPostprint (published version

    Structural health monitoring of offshore wind turbines: A review through the Statistical Pattern Recognition Paradigm

    Get PDF
    Offshore Wind has become the most profitable renewable energy source due to the remarkable development it has experienced in Europe over the last decade. In this paper, a review of Structural Health Monitoring Systems (SHMS) for offshore wind turbines (OWT) has been carried out considering the topic as a Statistical Pattern Recognition problem. Therefore, each one of the stages of this paradigm has been reviewed focusing on OWT application. These stages are: Operational Evaluation; Data Acquisition, Normalization and Cleansing; Feature Extraction and Information Condensation; and Statistical Model Development. It is expected that optimizing each stage, SHMS can contribute to the development of efficient Condition-Based Maintenance Strategies. Optimizing this strategy will help reduce labor costs of OWTs׳ inspection, avoid unnecessary maintenance, identify design weaknesses before failure, improve the availability of power production while preventing wind turbines׳ overloading, therefore, maximizing the investments׳ return. In the forthcoming years, a growing interest in SHM technologies for OWT is expected, enhancing the potential of offshore wind farm deployments further offshore. Increasing efficiency in operational management will contribute towards achieving UK׳s 2020 and 2050 targets, through ultimately reducing the Levelised Cost of Energy (LCOE)

    Self-tuning routine alarm analysis of vibration signals in steam turbine generators

    Get PDF
    This paper presents a self-tuning framework for knowledge-based diagnosis of routine alarms in steam turbine generators. The techniques provide a novel basis for initialising and updating time series feature extraction parameters used in the automated decision support of vibration events due to operational transients. The data-driven nature of the algorithms allows for machine specific characteristics of individual turbines to be learned and reasoned about. The paper provides a case study illustrating the routine alarm paradigm and the applicability of systems using such techniques

    A global condition monitoring system for wind turbines

    Get PDF

    Use of advanced analytics for health estimation and failure prediction in wind turbines

    Get PDF
    Tesi en modalitat de tesi per compendiThe energy sector has undergone drastic changes and critical revolutions in the last few decades. Renewable energy sources have grown significantly, now representing a sizeable share of the energy production mix. Wind energy has seen increasing rate of adoptions, being one of the more convenient and sustainable mean of producing energy. Research and innovation have helped greatly in driving down production and operation costs of wind energy, yet important challenges still remain open. This thesis addresses predictive maintenance and monitoring of wind turbines, aiming to present predictive frameworks designed with the necessities of the industry in mind. More concretely: interpretability, scalability, modularity and reliability of the predictions are the objectives —together with limited data requirements— of this project. Of all the available data at the disposal of wind turbine operators, SCADA is the principal source of information utilized in this research, due to its wide availability and low cost. Ensemble models played an important role in the development of the presented predictive frameworks thanks to their modular nature which allows to combine very diverse algorithms and data types. Important insights gained from these experiments are the beneficial effect of combining multiple and diverse sources of data —for example SCADA and alarms logs—, the easiness of combining different algorithms and indicators, and the noticeable gain in predicting performance that it can provide. Finally, given the central role that SCADA data plays in this thesis, but also in the wind energy industry, a detailed analysis of the limitations and shortcomings of SCADA data is presented. In particular, the ef- fect of data aggregation —a common practice in the wind industry— is determined developing a methodological framework that has been used to study high–frequency SCADA data. This lead to the conclusion that typical aggregation periods, i.e. 5–10 minutes that are the standard in wind energy industry are not able to capture and maintain the information content of fast–changing signals, such as wind and electrical measurements.El sector energètic ha experimentat importants canvis i revolucions en les últimes dècades. Les fonts d’energia renovables han crescut significativament, i ara representen una part important en el conjunt de generació. L’energia eòlica ha augmentat significativament, convertint-se en una de les millors alternatives per produir energia verda. La recerca i la innovació ha ajudat a reduir considerablement els costos de producció i operació de l’energia eòlica, però encara hi ha oberts reptes importants. Aquesta tesi aborda el manteniment predictiu i el seguiment d’aerogeneradors, amb l’objectiu de presentar solucions d’algoritmes de predicció dissenyats tenint en compte les necessitats de la indústria. Més concretament conceptes com, la interpretabilitat, escalabilitat, modularitat i fiabilitat de les prediccions ho són els objectius, juntament amb els requisits limitats per les de dades disponibles d’aquest projecte. De totes les dades disponibles a disposició dels operadors d’aerogeneradors, les dades del sistema SCADA són la principal font d’informació utilitzada en aquest projecte, per la seva àmplia disponibilitat i baix cost. En el present treball, els models de conjunt tenen un paper important en el desenvolupament dels marcs predictius presentats gràcies al seu caràcter modular que permet l’ús d’algoritmes i tipus de dades molt diversos. Resultats importants obtinguts d’aquests experiments són l’efecte beneficiós de combinar múltiples i diverses fonts de dades, per exemple, SCADA i dades d’alarmes, la facilitat de combinar diferents algorismes i indicadors i el notable guany en predir el rendiment que es pot oferir. Finalment, donat el paper central que SCADA l’anàlisi de dades juga en aquesta tesi, però també en la indústria de l’energia eòlica, una anàlisi detallada de la es presenten les limitacions i les mancances de les dades SCADA. En particular es va estudiar l’efecte de l’agregació de dades -una pràctica habitual en la indústria eòlica-. Dins d’aquest treball es proposa un marc metodològic que s’ha utilitzat per estudiar dades SCADA d’alta freqüència. Això va portar a la conclusió que els períodes d’agregació típics, de 5 a 10 minuts que són l’estàndard a la indústria de l’energia eòlica, no són capaços de capturar i mantenir el contingut d’informació de senyals que canvien ràpidament, com ara mesures eòliques i elèctriquesPostprint (published version

    Condition Monitoring of Wind Turbines Using Intelligent Machine Learning Techniques

    Get PDF
    Wind Turbine condition monitoring can detect anomalies in turbine performance which have the potential to result in unexpected failure and financial loss. This study examines common Supervisory Control And Data Acquisition (SCADA) data over a period of 20 months for 21 pitch regulated 2.3 MW turbines and is presented in three manuscripts. First, power curve monitoring is targeted applying various types of Artificial Neural Networks to increase modeling accuracy. It is shown how the proposed method can significantly improve network reliability compared with existing models. Then, an advance technique is utilized to create a smoother dataset for network training followed by establishing dynamic ANFIS network. At this stage, designed network aims to predict power generation in future hours. Finally, a recursive principal component analysis is performed to extract significant features to be used as input parameters of the network. A novel fusion technique is then employed to build an advanced model to make predictions of turbines performance with favorably low errors

    Fault Diagnosis and Fault Tolerant Control of Wind Turbines: An Overview

    Get PDF
    Wind turbines are playing an increasingly important role in renewable power generation. Their complex and large-scale structure, however, and operation in remote locations with harsh environmental conditions and highly variable stochastic loads make fault occurrence inevitable. Early detection and location of faults are vital for maintaining a high degree of availability and reducing maintenance costs. Hence, the deployment of algorithms capable of continuously monitoring and diagnosing potential faults and mitigating their effects before they evolve into failures is crucial. Fault diagnosis and fault tolerant control designs have been the subject of intensive research in the past decades. Significant progress has been made and several methods and control algorithms have been proposed in the literature. This paper provides an overview of the most recent fault diagnosis and fault tolerant control techniques for wind turbines. Following a brief discussion of the typical faults, the most commonly used model-based, data-driven and signal-based approaches are discussed. Passive and active fault tolerant control approaches are also highlighted and relevant publications are discussed. Future development tendencies in fault diagnosis and fault tolerant control of wind turbines are also briefly stated. The paper is written in a tutorial manner to provide a comprehensive overview of this research topic

    Investigating parallel multi-step vibration processing pipelines for planetary stage fault detection in wind turbine drivetrains

    Get PDF
    This paper proposes a signal processing approach for wind turbine gearbox vibration signals based on employing multiple analysis pipelines. These so-called pipelines consist of combinations of various advanced signal processing methods that have been proven to be effective in literature when applied to wind turbine vibration signals. The performance of the pipelines is examined on vibration data containing different wind turbine gearbox faults in the planetary stages. Condition indicators are extracted from every pipeline to evaluate the fault detection capability for such incipient failures. The results indicate that the multipronged approach with the different pipelines increases the reliability of successfully detecting incipient planetary stage gearbox faults. The type, location, and severity of the fault influences the choice for the appropriate processing method combination. It is therefore often insufficient to only utilize a single processing pipeline for vibration analysis of wind turbine gearbox faults. Besides investigating the performance of the different processing techniques, the main outcome and recommendation of this paper is thus to employ a diversified analysis methodology which is not limited to a sole method combination, to improve the early detection rate of planetary stage gearbox faults
    corecore