476 research outputs found

    Effects of a Social Robot's Autonomy and Group Orientation on Human Decision-Making

    Get PDF
    Social attributes of intelligent robots are important for human-robot systems. This paper investigates influences of robot autonomy (i.e., high versus low) and group orientation (i.e., ingroup versus outgroup) on a human decision-making process. We conducted a laboratory experiment with 48 college students and tested the hypotheses with MANCOVA. We find that a robot with high autonomy has greater influence on human decisions than a robot with low autonomy. No significant effect is found on group orientation or on the interaction between group orientation and autonomy level. The results provide implications for social robot design

    Building a semi-autonomous sociable robot platform for robust interpersonal telecommunication

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.Includes bibliographical references (p. 73-74).This thesis presents the design of a software platform for the Huggable project. The Huggable is a new kind of robotic companion being developed at the MIT Media Lab for health care, education, entertainment and social communication applications. This work focuses on the social communication application as it pertains to using a semi-autonomous robotic avatar in a remote environment. The software platform consists of an extensible and robust distributed software system that connects a remote human puppeteer to the Huggable robot via internet. The paper discusses design decisions made in building the software platform and describes the technologies created for the social communication application. An informal trial of the system reveals how the system's puppeteering interface can be improved, and pinpoints where performance enhancements are needed for this particular application.by Robert Lopez Toscano.M.Eng

    SARSCEST (human factors)

    Get PDF
    People interact with the processes and products of contemporary technology. Individuals are affected by these in various ways and individuals shape them. Such interactions come under the label 'human factors'. To expand the understanding of those to whom the term is relatively unfamiliar, its domain includes both an applied science and applications of knowledge. It means both research and development, with implications of research both for basic science and for development. It encompasses not only design and testing but also training and personnel requirements, even though some unwisely try to split these apart both by name and institutionally. The territory includes more than performance at work, though concentration on that aspect, epitomized in the derivation of the term ergonomics, has overshadowed human factors interest in interactions between technology and the home, health, safety, consumers, children and later life, the handicapped, sports and recreation education, and travel. Two aspects of technology considered most significant for work performance, systems and automation, and several approaches to these, are discussed

    Overcoming barriers and increasing independence: service robots for elderly and disabled people

    Get PDF
    This paper discusses the potential for service robots to overcome barriers and increase independence of elderly and disabled people. It includes a brief overview of the existing uses of service robots by disabled and elderly people and advances in technology which will make new uses possible and provides suggestions for some of these new applications. The paper also considers the design and other conditions to be met for user acceptance. It also discusses the complementarity of assistive service robots and personal assistance and considers the types of applications and users for which service robots are and are not suitable

    Fluency and embodiment for robots acting with humans

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2007.Includes bibliographical references (p. 225-234).This thesis is concerned with the notion of fluency in human-robot interaction (HRI), exploring cognitive mechanisms for robotic agents that would enable them to overcome the stop-and-go rigidity present in much of HRI to date. We define fluency as the ethereal yet manifest quality existent when two agents perform together at high level of coordination and adaptation, in particular when they are well-accustomed to the task and to each other. Based on mounting psychological and neurological evidence, we argue that one of the keys to this goal is the adaptation of an embodied approach to robot cognition. We show how central ideas from this psychological school are applicable to robot cognition and present a cognitive architecture making use of perceptual symbols, simulation, and perception-action networks. In addition, we demonstrate that anticipation of perceptual input, and in particular of the actions of others, are an important ingredient of fluent joint action. To that end, we show results from an experiment studying the effects of anticipatory action on fluency and teamwork, and use these results to suggest benchmark metrics for fluency. We also show the relationship between anticipatory action and a simulator approach to perception, through a comparative human subject study of an implemented cognitive architecture on the robot AUR, a robotic desk lamp, designed for this thesis. A result of this work is modeling the effect of practice on human-robot joint action, arguing that mechanisms that govern the passage of cognitive capabilities from a deliberate yet slower system to a faster, sub-intentional, and more rigid one, are crucial to fluent joint action in well-rehearsed ensembles. Theatrical acting theory serves as an inspiration for this work, as we argue that lessons from acting method can be applied to human-robot interaction.by Guy Hoffman.Ph.D

    Advances in Human-Robot Interaction

    Get PDF
    Rapid advances in the field of robotics have made it possible to use robots not just in industrial automation but also in entertainment, rehabilitation, and home service. Since robots will likely affect many aspects of human existence, fundamental questions of human-robot interaction must be formulated and, if at all possible, resolved. Some of these questions are addressed in this collection of papers by leading HRI researchers

    User-centered design of a dynamic-autonomy remote interaction concept for manipulation-capable robots to assist elderly people in the home

    Get PDF
    In this article, we describe the development of a human-robot interaction concept for service robots to assist elderly people in the home with physical tasks. Our approach is based on the insight that robots are not yet able to handle all tasks autonomously with sufficient reliability in the complex and heterogeneous environments of private homes. We therefore employ remote human operators to assist on tasks a robot cannot handle completely autonomously. Our development methodology was user-centric and iterative, with six user studies carried out at various stages involving a total of 241 participants. The concept is under implementation on the Care-O-bot 3 robotic platform. The main contributions of this article are (1) the results of a survey in form of a ranking of the demands of elderly people and informal caregivers for a range of 25 robot services, (2) the results of an ethnography investigating the suitability of emergency teleassistance and telemedical centers for incorporating robotic teleassistance, and (3) a user-validated human-robot interaction concept with three user roles and corresponding three user interfaces designed as a solution to the problem of engineering reliable service robots for home environments

    Assessing the Decision-Making Process in Human-Robot Collaboration Using a Lego-like EEG Headset

    Get PDF
    Human-robot collaboration (HRC) has become an emerging field, where the use of a robotic agent has been shifted from a supportive machine to a decision-making collaborator. A variety of factors can influence the effectiveness of decision-making processes during HRC, including the system-related (e.g., robot capability) and human-related (e.g., individual knowledgeability) factors. As a variety of contextual factors can significantly impact the human-robot decision-making process in collaborative contexts, the present study adopts a Lego-like EEG headset to collect and examine human brain activities and utilizes multiple questionnaires to evaluate participants’ cognitive perceptions toward the robot. A user study was conducted where two levels of robot capabilities (high vs. low) were manipulated to provide system recommendations. The participants were also identified into two groups based on their computational thinking (CT) ability. The EEG results revealed that different levels of CT abilities trigger different brainwaves, and the participants’ trust calibration of the robot also varies the resultant brain activities

    NASA space station automation: AI-based technology review

    Get PDF
    Research and Development projects in automation for the Space Station are discussed. Artificial Intelligence (AI) based automation technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics. AI technology will also be developed for the servicing of satellites at the Space Station, system monitoring and diagnosis, space manufacturing, and the assembly of large space structures

    Alan Touring, the Campus Tourbot

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.Includes bibliographical references (leaves 125-127).Alan Touring, the Campus Tourbot, is a robotic tour-guide/tourist robot for parts of the MIT campus. Work on the robot began in January 2006, and for the past 31 months, I have devoted thousands of hours to designing, implementing, and testing the robot. This thesis describes the hardware and software systems created for the robot, performs an evaluation of the robot's functionality, and discusses the public's reactions to the robot when they encountered it driving through their world. As with any robotic system, the development of the Tourbot involved trial-and-error. A critique of some major design decisions that were made and how these decisions affected the development of the robot is performed. Suggestions for how the development process could have been improved based on lessons that I learned are then offered.by Collin Eugene Johnson.M.Eng
    • 

    corecore