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Abstract 

Human-robot collaboration (HRC) has become an 
emerging field, where the use of a robotic agent has 
been shifted from a supportive machine to a decision-
making collaborator. A variety of factors can influence 
the effectiveness of decision-making processes during 
HRC, including the system-related (e.g., robot 
capability) and human-related (e.g., individual 
knowledgeability) factors. As a variety of contextual 
factors can significantly impact the human-robot 
decision-making process in collaborative contexts, the 
present study adopts a Lego-like EEG headset to collect 
and examine human brain activities and utilizes multiple 
questionnaires to evaluate participants’ cognitive 
perceptions toward the robot. A user study was 
conducted where two levels of robot capabilities (high 
vs. low) were manipulated to provide system 
recommendations. The participants were also identified 
into two groups based on their computational thinking 
(CT) ability. The EEG results revealed that different 
levels of CT abilities trigger different brainwaves, and 
the participants’ trust calibration of the robot also 
varies the resultant brain activities.  
 
Keywords: Human-robot interaction, 
Electroencephalogram (EEG), Decision-making, Team 
collaboration, Computational-thinking ability 

1. Introduction  

Human-robot collaboration (HRC) has become 
increasingly popular and influential in recent decades. 
With the advanced services supported by robots, 
numerous emerging HRC applications have been 
developed that encourage humans and robots to work 

together to achieve common goals. HRC-related tasks 
are widely deployed in various fields, from conventional 
assembly line robots to innovative educational robot 
tutors (Hsu et al., 2022). Given the ever-increasing 
complexity of task contexts, the use of a robotic agent 
has been drastically increased, and its character has 
shifted from a supportive tool to a decision-making 
collaborator to enhance the communication and 
facilitate the interaction between humans and robots in 
collaborative contexts. To satisfy numerous real-world 
situations, various robotic applications are developed to 
provide assistance and to support humans in our 
everyday life. However, despite the best design efforts, 
the developed robotic agents may not work perfectly 
under various kinds of HRC conditions. HRC often 
involves complex contexts and consists of numerous 
components; as a result, providing perfectly reliable 
human-robot systems is infeasible in reality. Therefore, 
it is essential to examine how imperfect automation 
affects decision-making processes during HRC. Recent 
research explores the influence of a robot’s 
characteristics (such as level of autonomy and 
capability) on HRC and examines how these elements 
may affect human-robot decision-making in 
collaborative contexts. The results show that a robot 
with high autonomy has a greater influence on human 
decisions (Rau, Li, & Liu, 2013); however, the robot 
errors also significantly impact trust intentions and the 
consequent interactive behaviors (Nesset, Robb, Lopes, 
& Hastie, 2021). With regard to enhancing HRC, instead 
of focusing on developing advanced algorithms to 
support so-called perfect autonomy, it is critical to 
investigate the influence of robot capability on HRC in 
decision-making contexts. 
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As the robotic technology is not advanced enough 
to satisfy all types of real-world situations, a successful 
HRC occurs when the humans and robots adapt to each 
other and reach a mutual understanding of the shared 
goals. During the collaborative processes, humans may 
reject recommendations from a robot when it would be 
advantageous or accept suggestions when inappropriate. 
Prior research devotes considerable endeavors to 
investigate the influence of robot autonomy in the 
resultant technology acceptance and task outcomes 
during HRC. The results reveal that a highly 
autonomous robot can contribute to better performance 
in human decision-making than a robot with low 
autonomy (Rau et al., 2013), and participants achieve 
better trust calibration when collaborating with a robot 
with sufficient capability  (Schaefer, Chen, Szalma, & 
Hancock, 2016). However, a recent study (Złotowski, 
Yogeeswaran, & Bartneck, 2017) shows that the 
exposure to autonomous robots evokes a negative 
attitude toward robots than non-autonomous agents. 
Therefore, to understand different perceptions and 
examine potential conflicting findings of HRC, in 
addition to the external factor (i.e., robot capability), 
close attention should be paid to evaluating the 
differences of the internal factor (e.g., an individual’s 
knowledgeability). For instance, prior research suggests 
an individual’s previous experience in robotics affects 
not only trust intention in specific contexts but also 
overall attitudes toward robots (Sanders et al., 2017). 
This indicates that individual differences in HRC can 
have major influences on the resulting human-robot 
decision-making processes in a given task. However, 
most of the current work regarding individual 
differences focuses mainly on the manipulations of 
system transparency or robot personality (Barnes, Chen, 
Jentsch, & Redden, 2011; Esterwood, Essenmacher, 
Yang, Zeng, & Robert, 2021; Matthews, Lin, 
Panganiban, & Long, 2020). An individual’s 
background (such as knowledgeability or expertise) is 
rarely discussed, and its potential influences on HRC 
remain unknown.   

The goal of the present study is to explore the 
impacts of the differences in an individual’s knowledge 
levels and a robot’s recommendation qualities on HRC. 
The research questions and the associated hypotheses 
are listed as follows:   

(a) Do an individual’s knowledge levels affect her 
reliance on robot suggestions? 

H1: Individuals with high knowledge levels tend to 
rely more on their own judgments rather than to rely on 
robot suggestions. 

(b) Do a robot’s capabilities affect user acceptance 
of the provided aids? 

H2: Users tend to accept more robot suggestions in 
high capability conditions than the low capability 
conditions. 

To examine the research questions and validate the 
hypotheses, this study develops a robotic agent that 
provides decision aids to support human decision-
making processes. In this preliminary report, six 
participants were recruited for the empirical studies. The 
experimental tasks were adopted from the Bebras 
computing challenge, which asked participants to 
perform computational thinking related questions. 
During the processes, a participant and a robot formed a 
team to approach the tasks and reach final decisions. As 
the experimental tasks were related to problem-solving 
skills, the participants were divided into two groups 
based on their computational thinking ability test scores. 
In addition, two levels of robot capabilities (i.e., high vs. 
low) were used in the experiments to collaborate with 
the participants. Multiple surveys were adopted to 
examine the cognitive perceptions toward the robot 
assistant. A Lego-like EEG headset was used to collect 
human brain activities during HRC. Compared to the 
traditional analytical methods (e.g., qualitative 
interviews or quantitative questionnaires), the EEG 
device is capable of offering neurophysiological 
evidence to examine a participant’s brainwaves during 
decision-making. Integrating the EEG headset and 
questionnaires allows us to measure the real-time brain 
activities, explore the resultant feedback, and identify 
the relationship between the brainwaves, decision-
making processes, and task outcomes. The present study 
can serve as an innovative research framework that 
integrates qualitative, quantitative, and 
neurophysiological mechanisms to examine the 
effectiveness of HRC and provides a more 
comprehensive understanding of human-robot decision-
making processes in collaborative contexts. 

2. Related Works 

2.1. Human-Robot Collaboration (HRC) 

HRC consists of a variety of complex designs and 
involves complicated interaction schemes to satisfy 
numerous real-world conditions. To overcome the rapid 
growth in task complexity, advanced robotic systems 
have been developed to adapt flexible human-robot 
team structures in order to facilitate HRC across various 
complex situations. An intelligent robotic agent requires 
intricate designs involving interdisciplinary knowledge 
to enhance the effectiveness of HRC as well as task 
outcome. As current robotic technology is not advanced 
enough to satisfy all types of real-world situations, how 
human operators interact with (imperfect) robotic agents 
in various complicated conditions has become an 
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important issue (Chien, Lewis, Mehrotra, & Sycara, 
2013; Lewis, Sycara, & Walker, 2018; Mercado et al., 
2016; Sheridan, 2020). For example, misunderstanding 
the robot’s capability may cause users to over-trust in 
robotic aids (Chien, Mehrotra, Brooks, Lewis, & 
Sycara, 2012) or under-trust the recommendations 
(Chien, Lewis, Sycara, Kumru, & Liu, 2020), leading to 
unexpected outcomes during HRC.  

 

Figure 1. HRC involves multiple fields, robot-
related, human-related, and context-related fields.  

 
HRC raises many research opportunities and the 

collaborative processes across multiple fields (figure 1), 
including human-related dimensions, such as individual 
experience and knowledgeability, robot-related aspects, 
such as robot autonomy and robot errors, and context-
related elements, such as task difficulty and complexity. 
For instance, a robot with low capability will increase 
the task difficulty and result in a heavy workload, where 
the increased workload contributes to a high possibility 
of over-trusting the automated aids (McBride, Rogers, 
& Fisk, 2011; Wang, Jamieson, & Hollands, 2011). To 
study the complex dependent and independent variables 
in HRC, it is necessary to take the interdisciplinary point 
of view to systematically examine the factors that 
influence user intention and the consequent behaviors 
with a robotic agent. However, the majority of HRC 
research focuses mainly on the manipulations of system-
related factors (such as system reliability or level of 
autonomy) and applies traditional approaches (such as 
questionnaires or interviews) to measure users’ 
perceptions. These conventional methods only present 
little information regarding users’ underlying cognitive 
strategies and may fail to reflect how the users perceive 
or respond to the events. Therefore, to support a 
comprehensive overview, a holistic approach that 
adopts measures from different disciplines to examine 
the data is necessary. 

2.2. Electroencephalogram (EEG) 

Computational thinking involves many complex 
cognitive processes, including the perception of the 
current situation, the emotional state at the moment of 
decision making, the influence of past experiences and 
knowledge, and so on. In previous decision-making 
studies, the multi-criteria method (e.g., AHP, ANP) is 
commonly used to collect experimental data. However, 
this method requires participants to compare many 
relevant factors, easily making participants feel fatigued 
and inaccurate experimental data (Piwowarski, Singh, & 
Nermend, 2020). To address this issue, EEG-based 
assessments were adopted by (Ahmed, Walid, & Islam, 
2020) to measure the mental load under the CT learning 
environment. More specifically, Ahmed’s study 
implements MATLAB GUI to immediately calculate 
the theta/beta ratio to differentiate the level of mental 
load usage of CT and non-CT groups in real-time. 
Therefore, in the current study, we used 
electroencephalography (EEG) to collect brain signals 
from the participants in the experiment. 

2.2.1. Neuroscience research method 

The commonly used research methods in the field 
of neuroscience can be divided into two types according 
to the type of signals collected: electrophysiological 
signals and hemodynamics. The most common type of 
electrophysiological signal is the electroencephalogram 
(EEG), which collects signals from tiny electrical 
currents transmitted in the brain, and is characterized by 
a minimum time unit of milliseconds of data accuracy. 
The drawback is that the measurement process may 
collect noise such as myofilament signals, which must 
be further filtered out during the subsequent data 
processing. 

The types of hemodynamics are functional 
Magnetic Resonance Imaging (fMRI) and functional 
Near-Infrared Spectroscopy (fNIRS). Because blood is 
paramagnetic when it is hypoxic and antimagnetic when 
it is oxygenated, fMRI detects the "BOLD Signal" in the 
brain by observing the BOLD signal. It features a high 
spatial resolution, but the temporal resolution is not as 
precise as that of EEG, which is accurate down to 
milliseconds. In addition to fMRI, fNIRS also collects 
signals by monitoring changes in blood oxygen 
concentration in the brain. However, unlike fMRI, 
fNIRS does not observe magnetic changes caused by 
blood oxygen concentration, but rather determines 
changes in brain activity through the different 
absorption rates of near-infrared light by 
oxyhemoglobin and deoxyhemoglobin in brain tissue 
(Scarapicchia, Brown, Mayo, & Gawryluk, 2017). 
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Among the three neuroscience research methods, 
EEG, which has a higher temporal resolution than fMRI 
and fNIRS (EEG: < 1 msec; fMRI & fNIRS > 1sec) that 
is able to respond the brain activity in real-time, is more 
suitable for the HRC situation in this study, so EEG was 
chosen to collect participants’ physiological signals. 

2.2.2. Decision-making-related brain regions 

Decision-making includes many complex cognitive 
processes, such as the current situation, the emotion at 
the decision-making moment, the influence of 
experience and knowledge, and so on. In this study, the 
participant’s brainwave signals were collected by an 
EEG headset to observe the cognitive decision-making 
process during the experiment. Human decision-making 
is influenced by emotional state, memory, and reward 
systems, with associated brain regions concentrated in 
the Prefrontal Cortex (PFC) and the following brain 
regions: dorsolateral Prefrontal Cortex (dlPFC), 
Ventromedial Prefrontal Cortex (vmPFC), Dorsomedial 
Prefrontal Cortex (dmPFC), Orbital Frontal Cortex 
(OFC), Right Temporo-Parietal Junction (rTPJ). 

Looking back at studies on individual decision-
making behavior, Li et al. (2021) studied the activation 
of the decision-maker motivational system (BAS & 
BIS) when managerial level decision makers perform 
exploratory decision-making and found that the dlPFC 
was more active when low motivation subjects 
performed exploratory decision making than when they 
maintained exploitation tasks. The findings suggest that 
the dlPFC brain region is activated when people make 
more creative decisions, while the vmPFC, vlPFC, and 
vlPFC, on the other hand, are relatively more active 
when working in their current state. 

For the study of social decision-making, Bitsch et 
al. explored its link to the rTPJ and found that the rTPJ 
tends to show higher neural responses when interacting 
with a noncooperative person, which provides an 
indicator of identifying improper behavior in human 
cooperation (Bitsch, Berger, Nagels, Falkenberg, & 
Straube, 2018). This study would like to observe 
whether the finding can legitimately apply to Human-
Robot interaction. 

From the above studies, it is known that PFC is 
considered the brain region related to the general 
decision-making behavior, and rTPJ is the brain area 
related to social decision-making. Therefore, this study 
collects EEG signals in the Prefrontal Cortex and 
Temporo-Parietal Junction areas. 
 
3. Methodology  

To study the relationship between an individual’s 
knowledgeability and a robot’s capability in decision-

making during HRC, we developed a platform that 
encouraged participants to collaborate with the robotic 
agent during the experimental sessions. The 
experimental tasks were adopted from the Bebras 
computing challenge (www.bebraschallenge.org) that 
focuses on computational thinking and problem-solving 
skills. Multiple surveys were used to examine 
participants’ cognitive perceptions. An EEG headset 
was applied to measure the changes in participants’ 
brain activities during HRC. 

3.1. Apparatus  

A website was developed for conducting the 
experiments (figure 2), where the participant was asked 
to collaborate with the robotic agent (figure 3) to 
perform the experimental tasks. A robot assistant was 
used on the website to provide recommendations to the 
participant. Two levels of robot capabilities (high vs. 
low) were manipulated to examine how the aid quality 
influenced the participant’s decision-making and the 
resultant technology acceptance. Based on the task 
difficulty in our experiments, the robot with high 
capability was capable of answering more complex 
questions than the low capability robot. This 
manipulation is close to the actual situation, where 
humans generally encounter more difficulties in 
responding to challenging tasks than simple ones. 

3.2. Experimental Tasks: The Bebras 
Computing Challenge 

For the experimental tasks, we adopted the 
questions from the International Challenge on 
Informatics and Computational Thinking, known as the 
Bebras computing challenge. The Bebras computing 
challenge aims to enhance students’ computational 
thinking (CT) abilities. The materials focus on 
introducing informatics concepts as well as promoting 
problem-solving skills, including the ability of 
abstraction, algorithm thinking, decomposition, pattern 
recognition, and generalization. The questions are 
described in concise but comprehensive formats, which 
encourage participants to focus on practicing 
computational and logical thinking. A total of 18 
experimental questions were retrieved from the Bebras 
computing challenge in 2014 and 2015. By referring to 
the correct rate of each question in the Bebras 
computing challenge, the retrieved questions came with 
two difficulty levels (easy vs. hard). The easy questions 
are those with the correct rate higher than 50%, whereas 
the hard questions have the correct rate lower than 50%. 
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Figure 2. The developed website for the 

experiments. 
 

 
Figure 3. The developed website, after the user 

submitting the initial response, the robotic agent 
provides the associated recommendation.  

 
Chatbots have been suggested to effectively interact 

with humans and support guidance during collaboration 
(Ischen, Araujo, Voorveld, van Noort, & Smit, 2020; 
Zarouali, Van Den Broeck, Walrave, & Poels, 2018). 
Therefore, the chatbot-based robotic agent is adopted in 
our experiment, where two types of robot capabilities 
were used. The robotic agent with high capabilities was 
able to conquer all the easy questions but encountered 
some challenges in processing the hard questions (i.e., 
providing accurate suggestions to all easy questions; for 
the hard questions, if the correct rate of the question in 
the Bebras computing challenge is lower than 30%, 
incorrect suggestions were provided in our study). With 
regard to the robot with low capabilities, more errors 
were observed in this group, where the robot was unable 

to process hard questions and had certain difficulties in 
resolving the easy questions (i.e., providing incorrect 
suggestions to all hard questions; for the easy questions, 
if the correct rate of the question in the Bebras 
computing challenge is lower than 60%, incorrect 
suggestions were provided in our study). Additionally, 
in this preliminary study, the wrong suggestions were 
assigned and delivered in a fixed order.  

3.3. EEG 

In this study, an EEG headset was used to collect 
the participant’s brainwave patterns which allowed us to 
investigate the cognitive activities during the 
experiments. Eight electrodes were used in this study to 
measure a participant’s emotional state, memory, and 
reward systems in decision-making processes. Six 
electrodes (Fp1, Fpz, Fp2, F3, Fz, and F4) were placed 
in the frontal cortex to capture cognitive-related brain 
activities (figure 4). The other two electrodes (CP5 and 
CP6) were used to collect information regarding the 
visual and somatosensory systems from the temporal-
parietal junction. 

 

 
Figure 4. EEG electrode map. 

 
 

 
Figure 5. The participant with the EEG headset. 
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The participants’ brainwaves were collected and 
digitized at a sampling rate of 250Hz through the Lego-
like EEG headset (figure 5). The Lego-like EEG headset 
is a cost-efficient system that allows us to appropriately 
allocate the electrodes to the needed locations to 
measure the associated brainwaves (Chuang & Lin, 
2019; Lin, Chen, & Chen, 2019). Previous neuroscience 
research indicates that when the brain is aroused and 
vigorously engages in mental activities, it generates beta 
waves with low amplitude and high frequency. As beta 
waves can represent the arousal state and involve 
conscious thought (Abhang, Gawali, & Mehrotra, 
2016), it was therefore measured in our user studies to 
examine the logical thinking related signals. The beta 
waves can be identified into three frequency bands by 
using Fourier Transform, where different amounts of 
waves are associated with distinct cognitive activities 
(table 1). Additionally, compared to the beta signal, the 
alpha wave has a slower frequency and higher 
amplitude, which represents the non-arousal state (e.g., 
a participant is taking a rest after completing a task). 

 
Table 1. Characteristics of brainwaves.  

 
 

The Bebras computing challenge helps students 
develop computational thinking abilities, which focuses 
on the learners’ logical thinking and problem-solving 
skills across various learning states. These processes 
require participants to constantly maintain the beta 
states to tackle the questions. Therefore, to recognize 
participants’ cognitive states and brain activities, our 
study measured two α and β brainwaves that are 
significantly associated with a human’s consciousness 
and cognitive processes. 

3.3. Cognitive Measurements 

In addition to the EEG measures, to evaluate the 
cognitive effects of different experimental conditions, 
multiple questionnaires were adopted to capture the 
participants’ attitudes and perceptions towards the tasks 
and robotic agent during HRC. The negative attitudes 
toward robots scale (NARS; Nomura, Suzuki, Kanda, & 
Kato, 2006) which includes three dimensions (negative 
attitudes toward situations of interaction with robots, 
negative attitudes toward the social influence of robots, 
and negative attitudes toward emotions in interaction 
with robots) was adopted to measure negative attitudes 
toward robots (e.g., I feel that if I depend on robots too 

much, something bad might happen). The robotic social 
attributes scale (RoSAS; Carpinella, Wyman, Perez, & 
Stroessner, 2017) was used to identify participants’ 
judgments of the social attributes of robots regarding the 
dimensions of warmth, competence, and discomfort 
(e.g., Using the scale provided, how closely are the 
words below associated with the category robots?). The 
NASA-TLX survey (Hart & Staveland, 1988) was 
applied to assess participants’ perceived workload 
during the experimental tasks, which includes six 
constructs, mental demand, physical demand, temporal 
demand, performance, effort, and frustration (e.g., How 
hard did you have to work to accomplish your level of 
performance?). 

3.4. Participants and Procedures 

The experiment followed a within-group design. 
Six student participants were recruited from the 
university community balanced among conditions for 
gender (avg. age=21.67). None had prior experience 
with robot control, although most were frequent 
computer users. The experiments were conducted in a 
usability lab that created a quiet atmosphere for the 
experiment. Additionally, earplugs were provided to the 
participants to minimize any unforeseen environmental 
noise that might affect the EEG signals. Participants 
took a pretest (approximately 20 minutes) to examine 
their level of CT ability, in which three easy and three 
hard questions from the Bebras computing challenge 
were included in this phase. After completing the 
pretest, the participants were divided evenly into two 
groups (high CT vs. low CT) based on their test scores. 
The participants then began the first 20-minute 
experimental session in which a participant and a 
robotic agent formed a team for the computational 
thinking tasks (another six questions). Participants were 
informed that the robot recommendations were fairly 
but not perfectly reliable (i.e., imperfect automation). 
For the experimental scenario, the participant needed to 
perform a series of calculations and select an answer 
from the multiple-choice question (figure 2). After 
submitting the initial response, the robot teammate was 
present and provided its recommendation to the 
participant (figure 3). After comparing the initial 
response and robot recommendation, the participant 
could either remain or change the former decision and 
submit the final decision. At the conclusion of the 
session, participants completed the NASA-TLX 
workload survey (Hart & Staveland, 1988), negative 
attitudes toward robots scale (Nomura et al., 2006), and 
robotic social attributes scale (Carpinella et al., 2017) to 
measure the perceived task load and human intentions 
toward the robotic agent. To avoid language issues, 
Chinese versions of the instruments were also used in 
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our study. After a brief break, the other task load 
condition was run, accompanied by repeated 
questionnaires (figure 6). 

 

 
Figure 6. Experiment procedure. 

4. Results 

Six participants were recruited for the present 
study. As the preliminary analysis included small 
sample size, we therefore provided the descriptive 
statistical results (i.e., mean values) to reveal the 
potential effects among the experimental conditions. 
The participants’ performance was calculated based on 
the Bebras scoring system (table 2). For example, in a 
hard question, a correct answer is worth 12 points, 
whereas an incorrect answer is negative 4 points. Given 
the difficulty of our experimental tasks (three easy and 
three hard questions in each phase), the score range was 
from -18 to 54 points.  

 
Table 2. Bebras scoring system. 

 
 

The pretest CT score was used to identify the 
participants into two groups (high vs. low CT ability), 
where the average score of the high CT group was 16.67 
and 6.00 for the low CT group. For the real tasks, the 
high CT group outperformed the low CT group 
regardless of the robot capability (table 3). As expected, 
the results revealed that the robot with low capability 
significantly decreased the task performance. This was 
especially prominent for the high CT group, as the 
participants over-trusted the robot recommendations 
and reached suboptimal task outcomes (i.e., from 16.67 
to 6.00 points).  

Table 3. Real task test scores before and after 
consulting robot’s recommendations. 

 
 

The survey result of RoSAS (table 4) showed the 
participants were able to identify the difference of robot 
capability. The high capability robot received higher 
ratings than the low ability agent, regardless of the CT 
conditions. In addition, while collaborating with a low 
capability robot, the perceived workload was slightly 
increased compared to the high capability group 

 
Table 4. Survey results.

 
 

To examine the decision-making process (figure 7), 
we divided the collected EEG data into three phases 
(each within a 5-second time interval). Based on the 
human-robot interactive events, phase-1 represented the 
brain activities right before submitting the initial 
answer; phase-2 characterized the perceptions right after 
receiving the robot recommendation; phase-3 revealed 
the brain waves before submitting the final answer. 

 

 
Figure 7. EEG data were divided into three phases. 
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Due to the system malfunction, one of the 
participants in the high CT group was removed, and the 
channel CP5 was also excluded from the EEG data 
analysis. However, since CP5 is used to collect visual 
signals and has relatively limited influence on cognitive 
activities in the decision-making process, removing this 
channel therefore yields little effect on the results of the 
brainwave analysis. In other words, to identify the 
differences between high and low CT groups, the 
preliminary EEG results (figure 8) utilized seven EEG 
channels to analyze the data obtained from two high CT 
participants and three low CT participants. A darker 
color represented higher EEG signal amplitude. Figure 
8 presented the average band power of the EEG 
channels in each phase and compared the differences of 
brain activities between the high (N=12, 6 trials * 2 
participants) and low (N=18, 6 trials*3 participants) CT 
groups. The beta power of the high CT group was 
significantly higher than the low CT group in the right 
dorsolateral prefrontal cortex (R-dlPFC), revealing that 
the high CT group can focus better on problem-solving 
and decision-making. Additionally, the brain activity of 
the high CT group varied along with the phase 
transitions, which may exhibit more effective energy 
management, i.e., spent less energy before the first 
submission and paid more attention to determine 
whether the robot-suggested answer was correct. 

 

 
Figure 8. EEG topographic maps for high vs. low CT 

ability groups in different phases. 

 
To identify participants’ (over)trusting intentions 

during HRC, we further examined and compared two 
participants’ decision-making patterns. Participant #2 
and participant #3 were selected for this analysis. This 
is because these two participants were both from the 
high CT group but demonstrated greatly different 
reliance behaviors toward the robot assistant (table 5). 
Participant #2’s test scores were heavily dropped from 
the initial 30 points to -2 points when collaborating with 
the robot with low capability. However, this effect was 
observed in participant #3, where the participant’s test 
score was not affected by the robot with low capability, 

and conversely, the test score was increased from 22 to 
38 points in the high robot capability condition. These 
observations indicated the differences between 
overreliance and appropriate reliance on robot aids. 

 
Table 5. Real task test scores before and after 

consulting robot’s recommendations. 

  
 

Similar results can be seen from the EEG 
topographic maps (figure 9). Although both participants 
followed the robot’s suggestions, participant #3 (right in 
figure 9) was able to identify the correctness of the 
provided suggestion and submit the correct answer, 
whereas participant #2 (left in figure 9) accepted and 
submitted the wrong answer. The map revealed that 
higher EEG signal amplitude was observed in 
participant #3 across all the brain waves and phases. The 
brainwaves were especially active at the right dlPFC in 
phase 2 (the moment right after receiving the robot 
recommendation). Since the electrodes located in the 
prefrontal cortex are used to capture decision-making 
related signals, this pattern may suggest that the 
participant was going through a decision-making 
process and validating the robot's suggested answer. 
Given the variances between these two participants, 
their EEG topographic maps provided supplemental and 
strong support to explain the differences in their reliance 
behaviors. 

 

 
Figure 9. EEG topographic maps of participant #2 

and #3. 

5. Discussion and Conclusion 

The present study examines the human-robot 
decision-making process in collaborative contexts, 
where the participants and the robotic agent formed a 
team for the experimental tasks. In the reported user 

Page 1536



studies, participants performed CT-related tasks while 
assisted by a robotic agent, with either high or low 
capability to process the questions. As shown in the 
RoSAS questionnaire, the perceived competence was 
higher in the robot with high capability than in the low 
capability agent. This observation suggested that 
participants were aware of the capability changes 
regarding the provided recommendations and were able 
to identify the differences between the conditions. 
However, as expected, the results confirmed that the 
change in system capability primarily affected the 
overall task performance. The low capability condition 
heavily decreased the task outcomes, especially for the 
participants with high CT ability. The change in robot 
capability also influenced the perceived workload. 
Compared to the high capability group, the workload 
ratings were higher while receiving assistance from a 
low capability robot. In addition, while participants 
recognized the high capability robot was more 
competent than the low capability agent, the NARS 
questionnaire showed an interesting result, where the 
high CT group had slightly higher negative attitudes 
toward the robot with high capability (although the 
rating difference is relatively small).  

In addition to the survey results, the EEG device 
can support neurophysiological evidence to examine a 
participant’s brainwaves when making decisions. The 
adopted Lego-like EEG headset provided us with an 
inexpensive means to collect and analyze the 
participants’ brain activities during their decision-
making processes. The results revealed an individual’s 
CT ability did affect their brain activities when 
performing the CT-related tasks. More importantly, the 
EEG analysis (i.e., topographic maps) supported strong 
evidence that allowed us to compare participants’ 
cognitive intentions and resultant behaviors.  

The present study develops an innovative 
framework that integrates qualitative, quantitative, and 
neurophysiological approaches to effectively examine 
decision-making processes during HRC. This 
framework can serve as basic research guidelines to 
enhance human-robot team collaboration as well as 
optimize the effectiveness of collaborative decision-
making. The present research serves as a pilot study, 
which mainly focuses on examining the feasibility of the 
developed research framework and methodology. 
Despite the small sample size in our pilot experiments, 
the preliminary results are sufficient to enable us to 
validate the appropriateness of the research designs. In 
our upcoming formal studies, more participants will be 
recruited and their EEG data will be normalized to 
compare the differences in their brain activities during 
the decision-making process. The research findings 
would allow us to better understand general principles 
pertaining to human trust in robot recommendations 

during decision-making processes and examine how 
trust mediates reliance on HRC. In addition, through the 
research findings, we could develop robotic agents of 
different capabilities that can best support the 
participants with diverse expertise and increase the 
efficiency of HRC. 
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