
Building a Semi-Autonomous Sociable Robot

Platform for Robust Interpersonal

Telecommunication OF TEHNOCOGy E

NOV 1 3 2008
by

Robert Lopez Toscano U RARIES
S.B. Computer Science and Engineering, M.I.T., 2007

Submitted to the Department of Electrical Engineering and Computer Science in Partial

Fulfillment of the Requirements for the Degree of Master of Engineering in Electrical

Engineering and Computer Science at the Massachusetts Institute of Technology

May, 2008

@2008 Massachusetts Institute of Technology

lI l rightsry e..

Author_

D tment of Electrical Engineering and Computer Science

May 26, 2008

Certified by

Dr. Cynthia Breazeal

Associate Professor of MAS, MIT Media Lab

Thesis Supervisor

Accepted by_

Artnur C. Smith

Professor of Electrical Engineering

Chairman, Department Committee on Graduate Theses

ARCL s
M9- ' v v

Building a Semi-Autonomous Sociable Robot Platform for Robust Interpersonal

Telecommunication

by

Robert Lopez Toscano

Submitted to the Department of Electrical Engineering and Computer Science

May 25, 2008

In Partial Fulfillment of the Requirements for the Degree of Master of Engineering in

Electrical Engineering and Computer Science

ABSTRACT

This thesis presents the design of a software platform for the Huggable project. The
Huggable is a new kind of robotic companion being developed at the MIT Media Lab for
health care, education, entertainment and social communication applications. This work
focuses on the social communication application as it pertains to using a semi-autonomous
robotic avatar in a remote environment. The software platform consists of an extensible and
robust distributed software system that connects a remote human puppeteer to the
Huggable robot via internet. The paper discusses design decisions made in building the
software platform and describes the technologies created for the social communication
application. An informal trial of the system reveals how the system's puppeteering interface
can be improved, and pinpoints where performance enhancements are needed for this
particular application.

Thesis Supervisor: Dr. Cynthia Breazeal

Title: Associate Professor in MAS, MIT Media Lab

Table of Contents

I.Introduction Page 5

a. Physical Communication 5

b. Robot-Mediated Communication 6

c. The Huggable 8

II.Problem Statement 9

a. Social Communication Requirements 10

b. Software System Requirements 11

III.Choosing a Robotic Software Platform 12

IV.Hardware System Details 15

a. Robotic Hardware 15

b. Computer Hardware 16

V.Software System Details 17

VI.Designing a Robust and Extensible Framework 19

a. Use of MSRS in the Huggable Platform 19

b. System Layout 20

i. Multi-Computer Services 22

ii. Embedded Computer Services 22

iii. User Computer Services 24

iv. Puppeteer Computer Services 26

c. Design Considerations 26

d. The HuggableServiceBase Class 29

e. The Dashboard Service 31

f. The IRCPInterface Service 35

g. The C++/CLI Wrapping Method 36

h. Custom Calibration and Monitoring Web Page Interfaces 36

VII.Technologies for the Social Robotic Avatar Application 38

a. Local Technologies 39

i. Face Detection 39

ii. IMU Stabilization of Video 40

iii. 3D Virtual Robot Model 41

iv. IMU Motion Classification 42

v. Skin Technology 43

b. Remote Technologies 45

i. Stale Panorama 45

ii. Object Labeling 51

iii. Web Interface for Puppeteering 51

iv. Audio Chatting 54

v. Embodied Puppeteering 54

VIII.Evaluation 56

a. Puppeteering Related Performance Statistics 56

b. Informal User Trial 58

i. Web Interface Usage 59

ii. Stale Panorama and 3D Virtual Robot Model 60

iii. Puppeteering and the Sympathetic Interface 61

iv. A Testament to Telepresence 62

v. Future Formal User Testing 63

IX.Improvements to the Huggable System 64

a. Improving the Framework 64

b. Improving the Social Avatar 65

X.Near-Future Applications 66

a. Health Care 67

b. Education 67

c. Entertainment 68

d. Industrial Robots 69

XI.Conclusion 69

XII.Acknowledgments 72

XIII. Bibliography 73

Introduction

As the world's markets grow people need to travel farther and stay for longer away from

their friends and families. Soldiers, away in foreign countries, are separated from their

families for months at a time. Through our desire to stay in touch with our loved ones,

telephones and cell phones were developed. However, just being able to hear the person on

the other end of this communication channel was not enough. With the advent of the

internet and its wide adoption, video conferencing software like NetMeeting, Yahoo

Messenger, and Skype have been able to connect people through audio and video. Even

still, these technologies lack a fundamental part of human communication--sharing a

physical space. Humans can share a physical space in many ways. They can embrace each

other, give each other objects, or point at things in the same space. So far, these purely

software based communication applications have not achieved this. However, a series of

physical communication technologies have been developed to fill this fundamental gap.

Physical Communication

The Hug Shirt is a wearable shirt with embedded sensors that can sense strength of touch,

skin warmth, and heart rate and can send this data over a distance to another Hug Shirt

wearer where built-in actuators recreate the sensation of touch, warmth, and emotion of the

hug. It works by sending the sensor data via Bluetooth to one's cellular phone and then

sends that information to another cellular phone to be recreated as a hug [7]. In this

product we see an attempt to improve electronic communication between humans by

sending not just knowledge but human gestures.

The Hug is a conceptual robotic product designed to facilitate intimate communication

across distance, emphasizing the physical aspects of that communication. The Hug was

developed at Carnegie Mellon University to experiment with the design of "robotic

products". A major motivation of this project was the realization that the form of a "robotic

product" has major effects on its capabilities and context of use. For example shaping this

product like a child could invoke feelings similar to that of hugging a real child [8].

The inTouch project is a device that is a medium for haptic interpersonal communication.

The idea behind the project is to create a device that would allow two users to feel like they

are manipulating the same object. The object chosen for their prototype was a set of rollers

that could move when a user or her partner moved their respective rollers. There are two

sets of rollers connected by cabling yet they move as one. Informal user testing illustrated

that users indicated interest in the shared manipulation of the device and often described

the interaction as playful [3]. This is another attempt at conveying the physical aspects of

communication through technology.

Robot-Mediated Communication

The field of social robotics has introduced the robot as a social player. Robots are now being

designed to interact in the same social space as humans do. In Cynthia Breazeal's book,

Designing Sociable Robots [4], she writes about building Kismet, a robot that was designed

to evoke an emotional and sympathetic response from people who interacted with it. In the

industry of communication, robots can provide us with the idea of telepresence.

Telepresence consists of technologies enabling a user to feel his or her presence in a

different location from his or her true location. Using robots to mediate communication

between two human parties, researchers can leverage both of these ideas--social

engagement and telepresence--in order to create a rich communication experience. Work

building on these ideas has been done with a variety of different types of robots.

Cory D. Kidd's (a Ph.D. student at the MIT Media Lab) thesis, "Sociable Robots: The Role of

Presence and Task in Human-Robot Interaction", explores the idea of robots as social

partners. His thesis analyzes robotic applications in entertainment, education, and

healthcare where the robot can be perceived to be trusting, helpful, reliable, and engaging.

His observations of human interactions with a robot, animated character, and another

human show that interaction with a robot is qualitatively more alive, more real, more

engaging, and produces more real emotions in a user than an animated character, but less

so than for a real human. He concludes that the physical existence of the robot causes

feelings of engagement and social presence [15]. These findings suggest that a robotic

interface for human-computer interaction is more effective at social communication than a

virtual or animated character.

Hiroshi Ishiguro, a senior researcher at ATR Intelligent Robotics and Communication

Laboratories outside Kyoto, Japan, has created an android (Geminoid HI-1) who looks and

moves just as Ishiguro does. The android has the capability of being remotely controlled

from his home where he can give his class lessons through the android while skipping the

commute to work. Ishiguro's intent was to explore the idea of "tele-interaction" and give the

robot "presence". People who have interacted with the android hesitate to even poke the

machine's rubbery hands and cheeks [14]. While this thesis will not attempt to create a

human-like robot, it will further investigate the idea of "telepresence" that has already been

explored in Ishiguro's work.

Other robots designed to investigate the idea of telepresence include Robonaut [11], Sony's

AIBO [23], Quasi [13], and Disney Imagineering's Muppet Mobile Labs [33]. Goza et al. had

developed a teleoperation system for Robonaut consisting of VR helmet displays, body

posture tracking Polhemus TM sensors, and a finger tracking CybergloveTM . Although, Goza's

system provides a full puppeteering system for the robot, it is inappropriate to use in

people's homes, unlike common video conferencing software.

These research projects suggest that there is substantial grounding for the pursuit of using

robots or robotic devices to facilitate the physical aspects of communication as well as

engage the user through social expression. While these are all sophisticated robot systems,

their use in a communication scenario relies primarily upon only two senses - vision and

audio. I believe that the social communication aspects of these systems can be greatly

improved by allowing the puppeteer to see more than just vision and audio, but also

understand how the robot is being physically touched, held, or interacted with. Additionally,

by adding layers of autonomy on top of the traditionally teleoperated robot we can reduce

the cognitive load of the puppeteer while improving the overall interaction experience for

the user. This puppeteered robot then becomes a semi-autonomous robotic avatar that

serves to establish the puppeteer's presense in a remote space.

The Huggable

For the past three years, the Personal Robotics Group at the MIT Media Lab have been

developing the Huggable robot platform described in [25]. The Huggable, shown in figure 1,

is a new type of robotic companion designed to function both as a fully autonomous robot as

well as a semi-autonomous robot avatar.

Figure 1: A photograph of the concept plush teddy-bear (left) and the robot in

development (right). Notice the microphones in the robot's ears, pin-hole cameras for its

eyes, and speaker in its snout.

Underneath its soft plush teddy bear exterior and silicone skin, the Huggable is being

designed with a full-body, multi-modal "sensitive skin" [26], two cameras in its eyes--one

color and one black and white, a microphone array in its head and ears, an inertial

measurement unit (IMU) in its body [25], a speaker in its snout, potentiometers to detect

joint angle positions, and an embedded PC with wireless networking. The robot has a total

of 8 degrees of freedom (DOFs) : a 3 DOF neck (for nodding, tilting, and rotating), a 2 DOF

shoulder motion (up/down and in/out) per arm, and a 1 DOF ear mechanism for expression.

The Huggable also uses a hybrid belt-gear mechanical drive system which allows for smooth

and quiet motion. Currently, the robot is tethered to a 12V power supply, but ultimately will

run on battery power.

For the sake of clarity I'd like to define the participants in this application. The Huggable

system consists of three entities--the robot, the puppeteer, and the human that is

interacting face-to-face with the robot. This last person I will call the user. I make no

assumptions about the level of skill that the puppeteer possesses and the user can be

anyone from a child to an adult. The puppeteer is situated in a remote location given only a

computer with microphone, web camera, and internet connection. The puppeteer is

intended to be remote enough from the physical locality of the robot that the puppeteer can

not see, hear nor otherwise naturally sense the robot. The puppeteer's only input from the

robot is given through the user interface on his or her computer. The user is situated near

the robot (usually in the same room) and can physically interact with it.

For this thesis, I designed and implemented a software platform that would multiplex and

process the data from the multitude of hardware sensors on the robot as well as present

this processed information to the puppeteer of the robot. While the platform was designed

to be general enough to function in many applications other than the social communication

one, some of the technologies designed and implemented on top of the Huggable software

platform were specifically designed to tackle problems in the social communication

application.

Problem Statement

In the following section, I outline two sets of requirements for the Huggable's software

system. The first deals with requirements for the social communication application and the

second concerns the computer engineering problems associated with building a robotic

software platform.

Social Communication Requirements

The social communication application necessitates six requirements of its underlying

implementation. First, the robot must feature systems which allow for the remote puppeteer

to direct the attention of the user or be capable of responding to the users' own attempts to

direct the robot's attention. Second, both the puppeteer and user should be able to share

attention easily, i.e. both user and robot can interact with and focus on the same object.

These two features play an important role in our social communication application. When

the user reads a book together with the robot, either the user or the robot may point at a

specific figure or sentence in a book. To enable such features, the embodiment aspect of the

robot combined with the puppeteer's ability to directly control its arms and head allow the

user to recognize where the robot is gazing and/or pointing at.

Third, the robot must provide the puppeteer with real-time multi-modal sensory information

for situational awareness. The data must be presented in a clear, easily understood fashion

that allows the puppeteer to be immersed in the interaction. This real-time sensor

information may include the physical orientation of the robot, where and how the user is

touching the robot, and other descriptive information to improve the interactive experience.

Fourth, the robot must be controlled in such a way that reduces the cognitive load of the

puppeteer while allowing for rich forms of expression (vocalizations, facial expressions,

gestures, etc.). Controlling a robot is still a cumbersome task, especially for elders. Many

current control interfaces for robots remain difficult to learn and non-intuitive. For these

reasons, making the interface as intuitive as possible by alleviating the cognitive load of the

puppeteer is crucial.

Fifth, the robot's expressions and behavior must be readable to the user and convey

personality to make the interaction fun, engaging, and personal. This may entail supporting

the remote puppeteer's ability to convey his or her own personality through the robot

avatar, or to control a robot to convey a consistent character (e.g., a robot that is based on

a familiar comic book character). This might include specific content such as sounds,

gestures, and other behavioral elements typical of that character. Finally, the interface

between puppeteer and the robot must be widely accessible, ideally from anywhere in the

world. For instance, a World Wide Web interface would enable family members to interact

with a child at great distances.

Software System Requirements

In addition to the six elements of design mandated by the specific application, there are a

host of engineering problems associated with building a platform to support such design

elements. Some of the difficult software engineering problems associated with building

software platform for a robotic avatar that is meant to be puppeteered remotely over the

internet are latency, reliability, and security. When connecting to the robotic avatar from a

remote computer, the communication pathway through the internet might experience

slowness due to a number of things ranging from hardware inadequacies to heavy user

traffic. This problem of latency can significantly inhibit the real-time nature of puppeteering

an expressive robot designed to interact with humans. Also, the reliability of the internet is

inherently not guaranteed which leaves the developer with the need to accommodate lost

data and/or out of order data that is communicated over the internet. Communicating over

an internet protocol that does not address these issues might result in data losses in the

visual and auditory feedback channels which might hinder the puppeteering of the robot.

Finally, the openness of the internet creates a security risk of exposing the puppeteering

interfaces that control the robot. The software platform for this type of application should

ensure the privacy of the data transmitted between robot and puppeteer since some of this

data can be personal media such as video and audio.

The final set of engineering problems I explore relates to building a robotic platform that will

be adapted for novel applications in the future. This requirement mandates that the robotic

software platform be extensible, scalable, and maintainable. The Huggable project's first

goal is to produce a robotic platform that can be further developed to fit the need of a semi-

autonomous social application. For this to be achieved, the software platform needs to be

extensible enough to easily build and integrate new technologies as well as adapt existing

technologies such as computer vision and machine learning algorithms. Scalability must

achieved to anticipate any kind of mass usage of the Huggable software platform or any

kind of performance driven applications. Finally, to ensure the longevity of this software

platform, the system must be easily maintained. Robotic software platforms have the

unfortunate disadvantage that they heavily rely on hardware. Diagnostic tools and

monitoring applications are crucial for easy maintenance and rapid development.

This thesis paper will present the research into these engineering problems: the design of

the large-scale systems to be used by this social application, and the development of the

technologies that solve the aforementioned problems in the robot-mediated communication

domain.

Choosing a Robotic Software Platform

In general, a robotic software platform should be chosen to offer the following: a unified

service execution environment, a set of reusable components, and a debugging and

simulation environment [22]. In addition, this semi-autonomous social robotic avatar

application calls for a few more--ability to perform well enough on the difficult platform of

the internet, integrate well with existing technologies, and allow for the extensibility to

other novel applications. Many robotics platforms such as Carnegie Mellon Navigation

(CARMEN) Toolkit described in [26] and [27], Microsoft Robotics Studio (MSRS), and the

software system developed for Stanley (the 2005 DARPA Grand Challenge winner) all

emphasize distributed computing models. These distributed models usually consist of

modeling the software system as a collection of independent services that can all run in the

same process, different processes, or even on different computers across the network. In

the Huggable software architecture, these services usually pertain to different sensors of the

robot, or services that process incoming data from other services. One advantage of the

distributed service approach is the reliability gained by isolating the different services from

each other. Any adversities that any of the services encounter will not affect the other

concurrent services. Another advantage of the distributed approach is the ability to offload

computation to other computers. While the previously mentioned software architectures all

utilize a distributed approach to robotics software, some satisfy more of the other

requirements than others.

A brief survey was conducted comparing the different software platforms: CARMEN, MSRS,

and C5M (descibed in [5] and [2]). The feature sets of each system were reviewed keeping

in mind the following criteria: performance, reliability, knowledge transfer, extensibility, and

integration with existing technologies. Consequently, the MSRS software platform was

chosen to be the basis of the Huggable project's software system according to the following

reasons. Since most of the thesis work was intended for designing the system to fit the

application of social robotic avatars and not trying to learn an entirely new framework, the

primary criterion for choosing a platform was knowledge transfer--transfer of prior

knowledge of a common development platform.

Managed languages such as Java, and Python are making their way into academia as the

primary teaching languages for computer science. Their garbage collectors vastly reduce

programming errors due to memory maintenance. Their virtual machines and just-in-time

compiling have the potential to even surpass some static compile-time optimizations. For

these reasons, a software platform built upon and implemented with a managed language

and associated run-time was preferred. C5M and a particular implementation of CARMEN is

written in Java, and MSRS is written in C#, both of which are managed languages.

Applications built with C# run on Microsoft's .NET framework which is widely adopted for

Windows-based development in the computer software industry. The framework and its

accompanying libraries have been optimized for performance and security. The security

features of the .NET framework are relevant especially to a robot that can be remotely

puppeteered. Protection from common attacks such as stack smashing and buffer overflows

can help secure access to controlling the robot.

One of the key requirements for a robotics software system to be extensible is that the

independent services within the system be as loosley coupled as possible. In MSRS, each

service is compiled into its respective binary file. Dependencies between services are

established via a second binary file called a proxy. This proxy does not contain any of the

implementation code from its respective service but contains stubs of the service's public

application programming interface (API). This allows a service to let other dependent

services make use of its API while maintaining the freedom to change the implementation of

any of its public interfaces without having to recompile any of the dependent services. This

feature is invaluable for parallel development, especially in robotics since there is usually a

wide variety of technologies used in the robot that can sometimes span the collective

expertise of a group of developers. Another advantage to services being loosely coupled

from each other is that services become very plug and play like. Services themselves, not

the overall architecture, become the building blocks of the robotics software system. It

would be very difficult to adapt the C5M behavior system for new applications since services

within it interact closely with each other and would have to be redesigned if needed for

different applications. Another advantage the MSRS architecture has over the C5M and

CARMEN architectures is that the protocol for passing data between each service is well

defined. In C5M and CARMEN, transport of data is controlled by the developer--whether it

be over the network or over shared memory. Because MSRS abstracts the communication

between services, MSRS can automatically switch between implementations of message

transport depending on whether the two communicating services are in the same process,

different processes, or are on different computers and hence need to communicate over the

network layer. This allows services to be used in a variety of new ways that it may have not

originally been intended for.

While many of these robotics software platforms are sufficiently general to support most

imaginable applications of robotics, one arena to begin comparing the platforms further is to

review what services the platform has already implemented for the developer. Examples of

these types of services could range from services that perform some common localization

and mapping algorithms to services that interface with common robot sensors. Since one of

the problem domains of this thesis is designing a robot-puppeteer interface, any kind of

user interface tools that the platform could already provide would make it a much more

attractive one. MSRS has such tools. Since the MSRS communication protocol is built upon

the Hypertext Transport Protocol (HTTP), the architecture integrates nicely with web-based

interfaces. In turn, wide-spread web-based user interface techniques, such as the

asynchronous JavaScript and XML (AJAX) [1] methodology can be employed to create easily

accessible web-interfaces to control the robot from a web browser on one's own computer.

Hardware System Details

Robotic Hardware

The robotic platform for the Huggable project is an eighteen inch furry teddy bear robot. It

has been in development for over three years. The robot has pin-hole cameras in its eyes,

microphones embedded in its ears, a speaker in its mouth, potentiometers in all of its

movable joints to sense joint position, an IMU, an on-board embedded computer running

Windows Embedded with 802.11 wireless capability, and a system of quiet actuated and

back drivable motors that control the eight DOFs in the robot (see figure 2). The robot's

head has three degrees of freedom--it can move its head up or down, left or right, or tilt its

head from side to side. Each arm has two degrees of freedom which allow them to move up

and down and rotate about. And lastly, the robot can wiggle its ears up and down. A full-

body sensate skin is currently in development by other members of the Huggable project

but a demonstrative prototype has been built that consists of a bear-shaped foam doll with

70 basic electric field sensors all over its head, body, arms, and legs.

Figure 2: This figure identifies each of the hardware sensors present in the robot and

approximately where they are located.

Computer Hardware

The Huggable platform uses a set of computers for the development and testing of the

Huggable platform. The embedded computer inside the robot contains a 1.8Ghz Intel

Pentium M processor with 1GB of memory and a 32GB Samsung solid-state drive. It

provides 2 serial and 4 USB ports to gather data from the various sensor's on the robot. The

same model Sager laptop is used to represent the user's and puppeteer's computers. The

Sager laptops contain Intel Core 2 Quad processors at 2.66GHz each and 2GB of DDR2

SDRAM. An Apple laptop is used to run the C5M behavior system. It is an Apple MacBook

Pro with an Intel Pentium Core 2 Duo processor at 2.33GHz and 2GB of memory. The Apple

MacBook Pro runs the OSX operating system and the rest of the computers run Windows XP

Service Pack 2.

The embedded computer and the user's computer (in the current implementation the user's

computer is split into the MacBook Pro and one of the Sager laptops) are on the same

network subnet. The remote puppeteer's computer (a Sager laptop) can be located in the

same subnet or across the internet. For most of my development, the puppeteer's computer

was in the same subnet.

Software System Details

The Huggable features a pair of software sub-systems to achieve its complex behavior. It

uses MSRS version 1.5 running on the embedded computer to handle the gathering of data

from the various sensors on the robot. This data is then forwarded to the user's computer (a

Sager laptop also running MSRS) for heavy real-time processing. Some results of this

processing are sent to the other software sub-system: C5M (running on the MacBook Pro).

The rest of the results are sent to the puppeteer's computer (another Sager laptop), also

running MSRS, to be displayed to the puppeteer. The C5M software sub-system uses the

data it receives to make high-level decisions about the robot's behavior, such as where to

look, or how to move. The custom TCP protocol that MSRS uses allows for communication

with computers beyond the local subnet. This is necessary for communication across the

Internet between a remote puppeteer and the local user.

The C5M behavior system is a toolkit for designing synthetic brains for virtual or robotic

bodies in dynamic, uncertain, complex environments. It supports real-time interaction with

people and other agents, multiple forms of learning within and across subsystems, and

sophisticated motor control for bodies with complex morphologies. The last feature is

heavily used in the Huggable platform. An animator makes life-like animations (e.g. waving,

sleeping, ear flicking) using a 3D virtual model of the robot and C5M is used to playback

those animations on the physical robot using a differential motor controller that runs in a

separate process.

MSRS provides two components for the robotics developer. They are the Concurrency and

Coordination Runtime (CCR) and the Decentralized Software Services (DSS). The CCR

provides a runtime for running highly concurrent services within the same process. DSS

consists of an application model that is based on the REST standard. In this model, each

concurrent service in the runtime is thought of as state machine that accepts messages

from other services which will change its state, and it can send messages to other services

to change their state. These services can run in the same process or be distributed across

many computers.

There are many tools that MSRS provides to help developers build to the DSS application

specification model. These tools are regularly used in the Huggable software platform. One

tool that was mentioned before is the DssProxy tool which produces a proxy binary file

containing only stubs of a service's acceptable messages. This proxy can be given to other

services for compile-time checking of their code that sends messages to the proxy owner.

Another useful tool MSRS provides is the ability to persist and load a service's state from an

XML file. This was especially helpful when storing calibration values for each of the services

that dealt with hardware sensors. Lastly, MSRS provides tools called manifests. These XML

files define the startup state of an application developed for MSRS. In the manifest file, a

developer can specify which services to start up, what their dependencies are (other

services), and what initial state they will startup with. These tools have shaped the design

and implementation of the rest of the Huggable platform.

A subset of the software technologies developed for the Huggable platform form the basis of

this thesis. The first part of the engineering work for this thesis focuses on the technologies

created to aid in the development and maintenance of the robotic software platform. More

specifically, these technologies are designed to allow the developer to quickly diagnose

problems, tune and calibrate the robot during run-time or at least without having to

recompile. The latter part of this thesis focuses on the software developed that collects and

processes the data coming from each of the robot's sensors as well as combining the

processed data to produce a rich multi-modal user experience for both the puppeteer and

the user. It will be shown that the latter thesis part fulfills the requirements for the social

communication application outlined in the problem statement.

Designing a Robust and Extensible Framework

It was an important requirement for the software system of the Huggable project to be very

robust and telling of any errors that it would encounter. MSRS offers a simple service for

centralizing logging of messages within the same Distributed Software Services (DSS) node.

A DSS node is process which hosts the MSRS runtime. Within this node, many services can

run concurrently and independently. Communication between services is standardized--the

same interface is used whether the communicating services are on the same node or on

different ones. A base class offers the ability for any service to send messages to the

logging service for storage. All logging messages from all services are stored in a xml-

format file and can be viewed by a web browser. Another useful feature MSRS offers is that

it runs each service in a sand-boxed type environment. If any one service encounters an

error, or does not handle an exception, failure is isolated to the culprit service. All other

services on that node are unaffected.

Use of MSRS in the Huggable Platform

As was mentioned before, the bulk of this thesis work was done on the MSRS platform. The

atomic unit within the MSRS platform is the service. There are four types of services in the

Huggable project. Some services are built for collecting data from the various sensors

throughout the robot. These services I call the producer services, since they produce data

for the rest of the system to process. The producer services gather data and broadcast it via

MSRS's subscribe and publish API. Processor services then collect these data and perform

computation ranging from filtering to classification. The collected data can either come from

one producer service or can be multiplexed across multiple producer services. The third type

of service, the consumer service, collects processed data from other services. A consumer

service might collect data that belong to specific group, such as video related, or audio

related. The purpose of the consumer services is really to interface with other parts of the

Huggable software platform outside of MSRS. For example, some data collected by

consumer services are shipped off to the C5M behavior system via the Inter-Robot

Communications Protocol (IRCP) [12]. Other consumer services carefully prepare data to be

displayed to remote puppeteer. There are also cases where one particular service acts as

two different types of services (i.e. a producer and a processor). The fourth and final service

type is the diagnostic service. These services provide interfaces for technicians or

developers to diagnose problems within the software at runtime, or calibrate and tweak

sensors and other hardware. Again, these types of services can overlap with other service

types.

Cross-computer communication is done through MSRS's custom communications protocol,

Decentralized Software Services Protocol (DSSP). This allows services running on one

computer to communicate with other services on a different computer in the same way that

these services would communicate with services in the same process. On a side note, this

was a very useful feature of MSRS that allowed us to experiment with different

arrangements of these services to distribute the load as optimally as possible across the

computers involved in the Huggable system. Other parts of the Huggable software system

communicate through IRCP. An IRCP service was implemented to allow communication to

flow from systems using IRCP to services running on MSRS. Figure 3 illustrates the entire

system with all of its services.

System Layout

In this section, I outline all of the services that were developed for the Huggable platform

by describing their function and their relationship to the rest of the services. I divide the

services into three groups. Those that run on the puppeteer's computer, those that run on

the user's computer, and those that run on the embedded computer. This grouping is very

similar to the types of services I outlined earlier--producer, processor, and consumer

services. Each service's relevance to the social communication application will be explained

in later sections.

N

N

0-

C5M Behavior
System

L
II A

w

c

-~

Figure 3: This illustration shows which computers run what services and which services

communicate with which other services. A solid arrow which points from service A to service

B, signifies that A sends messages to B. Dashed arrows are messages sent outside of the

MSRS DSS protocol. Instead, they are sent using the IRCP protocol. The floating Dashboard

service sends messages to all other services but arrows were not drawn for clarity.

Multi-Computer Services

AudioCapture - a producer service that streams raw audio data from the computer's

microphone.

AudioPlayer - a consumer low-level service that receives a stream of raw audio and plays

it on the computer's speaker.

IRCPInterface - a consumer and producer service that can be used to receive or send

IRCP packets including integers, floats, and byte arrays. For performance reasons, I have a

separate instance of this service running on the embedded and the user's computer.

Embedded Computer Services

raw audm data ffno
fobots's mirroPhomne

raw audio data to
robot s srpeaker

extt to y

orenta,. n 6 motion

- cassifications to

mot or ao t
paitions tram

CS M

to C54

publish I' tor
jait ostlons lop

Figure 4: This figure illustrates the services

that run on the embedded computer.

Incoming arrows indicate what sorts of data

the service receives, and outgoing arrows

indicate what sorts of data are sent from the

service.

raw video data
fr Jl camera

pubrlis passive

lotrt anIS i

name of
sound effect

Cereproc - a consumer low-level service that provides text-to-speech functionality via the

Cereproc SDK [6].

IMU - a producer service that provides data from the inertial measurement unit sensor in

the form of robot motion classification (an enumeration including, "bouncing", "rocking",

etc.) and tilt orientation (in degrees).

PhotoCapture - a producer service that grabs, and makes available, frames from the video

camera in the robot's eye.

PotTemp - a producer service that provides the positions of the potentiometers of the robot

and provides a web interface for calibrating them. The "Temp" in the name refers to future

move M",k to
some paotion

~.~._~._...~ .___~.__~_ ~ .__1

I
Lr~
-- - --

1

functionality which will read temperature data from different parts of the robot.

SoundEffectPlayer - a consumer low-level service that receives the name of a sound

effect and plays the corresponding prerecorded .wav file.

User Computer Services

rdr.t c ss ed sudio (,:
rotot ; er rtiL, raI:,-

t ~: nntcin
(i.V.%itntIn

iuc1 d,1t.a

o I U-n d f -It n -
brh~~r ~yuTt r

tLXt~ to "ay
.auic: effrr t

w J'Ad ddtd tu

fate lamrepad
0t)Ma PA

ro~v neck
to V-sttion

data to

ff ct

sp a'-

robot mr ~~n

Ml l ;t ib ,,(iorlI

I
k :r, -i, ;lion

I
IeI, joint posit ,.

Inertial or t tation

Irom caera

4are Ior"it ois

rom ¢v v:r u
from :.armv-r

_1

]

!br-l%

prrors'w-1 video
fa: teddy wr %

cyp rameca

Figure 5: This figure illustrates which

services run on the user's computer.

fC e Ioc:ations to
be~hAvior System

'vida of 1tl
virtux modrl, -*o of 3D

ir l mCSdel
frUns C511

BearVisualizer - a producer service responsible for receiving, and making available, the

frames of the virtual huggable video feed streaming from the C5M behavior system.

~

"-~..

I

I

-----,

BehaviorControl - a processor service responsible for mediating input from the remote

puppeteer destined for the robot's lower level services and making some of the state of the

robot available for reading.

Ear - a processor service that mediates input from the AudioCapture service on the

embedded computer and the rest of the system.

Eye - a processor service responsible for taking input from the PhotoCapture (raw video),

FaceDetection (face locations), IMU (robot tilt orientation), MotorController (neck

position),and WebPublishing (switch between upright vs. relative view) services and

combining them to form a data-rich video feed for the remote puppeteer.

FaceDetector - a processor service that performs a face detection algorithm implemented

by Intel's OpenCV library [19] on video frames, and returns the resulting locations and sizes

of each face are returned to the requesting service.

Mouth - a processor service that multiplexes access to the robot's audio speaker including

requests for the playing of raw audio, text-to-speech, and sound effects.

WebPublishing - a consumer and interface service which is a small web server serving the

status of the huggable and accepting input from the user in the form of AJAX style get

requests. From this website, a remote puppeteer can cause the robot to play sound effects,

send it text to speak, view how the robot is being moved, change the camera upright/

relative view, flip the axis of the XBox 360 controller's joystick, choose what level of

puppeteering they would like to perform (semi-autonomous/fully-autonomous), and label

positions of the robot's neck for later recall.

Puppeteer Computer Services

raw audo from
.oppeteer's n'mcfo)O')e

proreed audio f m

robot- microphon

prucessed video
fro"I robot's amera

yvdeo data of
virtual bear

first, hird person
cuntro toQge

vibrate gamepad
command

vibrate gamepad
C(.rvand

vra audia data for

puppeteer to hear

Figure 6: This figure illustrates which

services run on the puppeteer's computer.

gameptd romrand
to btehavr y tr

tav 94dtecpdd
coummrd.

GamePadListener - a processor service that takes input from the XInputGamepad service

and forwards it to the C5M behavior system (via IRCPInterface running on the user's

computer) to control the robot's motors, aswell as transforming this data based on the point

of view of control specified by the website interface (see WebPubilishing), and receiving

vibration requests for the game controller.

Gramps - a consumer and interface service that displays video feeds from the robot's eye

camera, and from the virtual robot model from the C5M behavior system. "Gramps" is an

affectionate alias for the puppeteer.

XInputGamepad - a producer service bundled with MSRS that provides an interface to the

XBox 360 controller.

Design Considerations

During the development of the Huggable software platform. I came across several

frequently posed design questions that had to be answered with respect to the social

communication application. The first is, which services should run on which computers?

What made the most logical sense was to place all data gather services (e.g. IMU, PotTemp,

PhotoCapture, etc.) on the embedded computer since it would have all of the hardware

devices plugged into it. It then made sense to put processing services (e.g. Eye, Mouth,

FaceDetector, etc.) on the user's computer. This way, the embedded computer, which was

the computational bottle-neck in our system, would have all of the computationally

intensive processing offloaded to the user's computer. In addition to increasing the overall

performance of the system, it also reduced the load on the embedded computer which in

turn lowered power consumption, which could prolong battery life. The rest of the services,

those concerned with presenting data to the puppeteer, ran on the puppeteer's computer.

In practice, however, the embedded computer was overwhelmed with reading from the

serial and USB ports. In order for the system to work at usable performance levels (i.e. the

puppeteer can share and direct the user's attention, they can receive data fast enough to

understand how the robot is being interacted with, etc.) I built throttling mechanisms in

each of the producer services. This prevented streaming data like IMU orientation and

potentiometer readings from overwhelming the CPU and allowing other services to run such

as the playback of sound effects and text-to-speech. Also, some of the producer services

were changed from a publish model to a only-on-request model, which brings me to the

next design question.

The second design question that was frequently encountered was, under what

circumstances should services adopt a push (or publish) rather than a pull (only-on-request)

model for sending their data to other services. One advantage to the pull model would be

that the producer would only have to do work when it was requested to by another service.

This would help performance on the computer that was hosting the producer. The

disadvantage would be that the producer needs to do some computation to retrieve the

latest data from a sensor thus injecting more latency into the system. On the other hand,

an advantage to the push model is that the producer does not get overwhelmed with

requests from various services for its data. In the push model, when ever the data is ready,

it is broadcast to all listening services. A disadvantage to the push model is that the service

is always working at full capacity--at whatever rate data becomes available, hence

increasing the computational load it contributes to the host computer. In the end, this

design decision was made on a case by case basis given the nature of the data coming from

the producer, and given the restrictions of the environment that the producer was in. For

example, I adopted the pull model for the PhotoCapture service for several reasons.

Grabbing a frame from the camera was an expensive operation that taxed the CPU of the

embedded computer. Also, and probably more influential, was the fact that the puppeteer

could tolerate loss of video frames. This is not true for data such as audio, in which data

gaps are harder to tolerate [23].

The C5M and MSRS platforms overlap in their functionality and scope. Another design

question that was frequently encountered was, under what circumstances should a feature

be implemented in C5M over MSRS and vice-versa. Like the other design questions, several

issues had to be considered. Since the puppeteering interface could be located on a

computer across the internet from the robot's network, any technology that needed to reach

the puppeteer would have to communicate on a protocol that was reliable over the internet.

This meant that DSSP (MSRS) was chosen over IRCP (C5M) since IRCP is designed for

communication between modules on the same network subnet. Another consideration was

latency. Since any data that needed to reach the puppeteer needed to go through DSSP, the

easiest way to get to data from a feature in C5M to the puppeteer was to communicate the

data to MSRS via IRCP, and then to the puppeteer via DSSP. Furthermore, the sensor data

are collected by MSRS services, which meant that these data would have to be sent to C5M

via IRCP for processing. These extra indirections introduced another source of latency

between the robot and puppeteer. Given the above arguments, almost all new technologies

that were built for the social application were developed on the MSRS platform.

The final frequently encountered design decision was never addressed fully in the work of

this thesis. The robot possesses a significant degree of autonomy via the C5M behavior

system but it was unclear when the best time to utilize this autonomy was (within the

context of the social communication application). For example, a reflexive behavior was

implemented that caused the robot to look at its feet when they were touched. During some

early informal testing, it became bothersome that the robot would look away from the

person of interest to its feet when the feet were unintentionally touched, or if something

bumped into the table that the robot was on. In order to solve this specific example, some

mechanism would have had to be developed that could detect when the puppeteer wanted

control and when he or she did not. Initial attempts at this solution involved providing the

puppeteer with a radio button control on the website to allow the puppeteer to select the

degree of control they wanted over the robot. For example, if the puppeteer chose, full

puppeteering, the robot would no longer exhibit the aforementioned reflexive behavior.

However, when the puppeteer wanted to turn the behavior back on, in order to be more

responsive to the user, it was cumbersome to switch the radio button back during an

interaction since the puppeteer's cognitive load was focused on the video feed or controlling

the robot's DOFs. Proposed solutions to these autonomy problems are discussed further in

the Improvements to the Huggable System section.

The HuggableServiceBase Class

While MSRS offers a helpful set of tools and services, it was necessary to additionally build

application specific tools in order to improve the extensibility of the Huggable software

system. The HuggableServiceBase base class is a subtype of the original service base class

provided by MSRS. This base class offers several tools that perform tasks that are common

throughout all services in this project. This base class provides a method that allows any

service to register with the Dashboardservice. Dashboard will be discussed in more detail

later in this section.

The base class also provides services for publishing the service's status to Dashboard by

overriding existing logging methods provided by MSRS. This allows services that were not

initially developed for the Huggable project to work seamlessly along-side existing Huggable

services.

The base class also helps to abstract away the process of connecting to other services (or

partners, as MSRS calls them). Out of the box, it is a lengthy coding process to dynamically

connect one service to a partner in MSRS. One issue that had to be handled was that some

services require some time to start up. There was no existing infrastructure in MSRS for a

service to receive notifications of when a partner service came online, went offline, or halted

due to error. Using this base class, a service can ask the Dashboard to notify the requesting

service if and when its partner came online and when the partner was ready. This makes it

easy to deal with long complicated dependency chains between services. In addition, when

a service has more information about the state of their partners, the service is empowered

to make better decisions on how to procede with its own duties. For example, some services

can work with or without data from its partners. With regard to connecting to other

services, typical design of a Huggable service mandates that the dependent service try to

connect to its partner, or partners, if possible, and if not, turn off its features that depend

on data from those partners. This method of dynamically loading services allows developers

to run services that just need to be tested in isolation or allows services to run even if it is

impossible for a partner to also be running (i.e. the partner might need some unavailable

physical hardware to run).

The HuggableServiceBase base class also handles messages that are sent from the

Dashboard to all services in the Huggable software system, again enabling services

developed for other applications to be integrated with the rest of the Huggable project with

minimal code changes, if any. In short, the HuggableServiceBase class allows for the ease

of creating new technologies for the Huggable project and integrates easily with existing

infrastructure, while providing common functionality across all Huggable services.

The Dashboard Service

The Huggable Dashboard

2 Embedded embedded:50000

l Local local:50000

Rl Remote remote:50000

Stt Up Nodes Shutdown Down Nodes

Stet Stop-

Service Status

Cereproc

AudioPlayer

IRCPInterface

SoundEffectPlayv

AudioCapture

PullPhotoCapture

MotorController

Details

Service Ready Stop

Service Ready Sto

Service Ready

Service Ready

http://local:50000/ear/NotificationTarget

/0014e376-0000-0000-0000-000000000000 successfully subscribed

Service Ready

Service Ready

Figure 7: A screenshot of the Dashboard web interface. A technician can view the overall

status of each of the services running in the Huggable software system from this one

interface. The technician can also start and stop the entire system or just individual

services.

The Dashboard service allows a Huggable project technician or developer to easily diagnose

problems in the system quickly as well as provide an interface for the complicated process

of starting and stopping the entire system (or parts of the system). Figure 7 shows what

this interface looks like. The user interface is implemented using the AJAX method. MSRS

offers tools for interacting with HTTP requests and serving XML as a response. Dashboard

implements a handler for receiving HTTP Get messages (which services treat in the same

way as any other message in MSRS), and returns the status of every service that has

registered with the Dashboard. An XSLT file transforms the XML into HTML and subsequent

asynchronous HTTP Get requests made from a client-side script written in JavaScript, are
sent to the Dashboard to receive updates to the HTML model, local to the browser.

Each service that registers with the Dashboard service is given a unique identifier (UID) that
is composed of the hostname of the computer that the service is running on, the port that
the DSS node is running on, and the name of the service. Figure 8 shows an example of one
such UID.

http://embedded:50000/imul

Figure 8: An example of a UID of a service in the Huggable software system.

It was necessary to include more than just the name of the service as the UID since

instances of the same service can run on different DSS nodes such as the AudioCapture and
AudioPlayer services. It is probably worth noting here that this current design limits the

number of DSS nodes that can run on a given computer to one, since the current UID does

not distinguish between DSS nodes on the same computer. This UID format was chosen

over other candidates because it was the same format used by the rest of MSRS and could

potentially be used by the tools provided by MSRS. Using this UID, services can listen for

status changes of their partners (identifying the partners by their respective UIDs) using a

standard Observer design pattern [10]. A service obtains a UID to a partner by acquiring it

from the manifest file that was used to start up the service.

Besides facilitating the initial connecting of services to one another, the Dashboard also

monitors all services that have registered with it. Each service has a status and detailed

message associated with it within Dashboard. The enumeration of possible states is:

* NOTREGISTERED - has not registered with the Dashboard yet

* STARTINGUP - has registered, but has not completed start up sequence

* READY - ready to accept messages

* OFFLINE - is no longer running and will not accept any messages

* OVERLOADED - has not responded to a Ping message for a specified timeout

* ERROR - has undergone a non-fatal error

* FATAL - has undergone a fatal error, the service can no longer accept any messages

and needs to be restarted

After some time interval (specified in Dashboard's state file), Dashboard sends a Ping

message to all registered services. The HuggableServiceBase class implements a handler for

receiving Ping messages and simply posts a reply containing the service's UID back to

Dashboard. If a service fails to reply to an outgoing Ping message after some time delay

and for a certain number of Ping attempts (both are specified in Dashboard's state file), the

Dashboard alerts the techinician via the web interface that it has lost connection to the

failing service. The timeout and number of Ping attempts should be calibrated to account for

the configuration of the computer setup. For example, the Huggable project's Dashboard

makes 3 ping attempts and times out after 5 seconds. These numbers were arrived at by

looking at the Huggable's computational bottlenecks. The embedded computer on the robot

is the slowest of the system's computers, and it was empiracally measured that when the

system was under normal usage, the services running on the embedded computer took up

to five seconds to respond to a Ping message. If the Dashboard observes that any of the

registered services fail to respond to a Ping message, the Dashboard marks that service's

status as OVERLOADED. If the number of missed replies exceeds the maximum allowed, the

service's status is changed to ERROR. This failure process is usually observed for a group of

services if the computer that those services reside on shuts down or loses its connection to

the network. Figure 9 illustrates what this would look like to a Huggable system developer.

This feature of Dashboard was very useful in diagnosing these types of errors as well as

quickly identifying where errors originated from. Several times, the Dashboard reminds the

developer that certain hardware devices were forgotten to be plugged in or given power as

is true in figure 10. Having this dynamic interface is much more convenient than reviewing a

log file when the system is not working correctly. It also works better than watching print

statements from console windows which is more difficult when on a multi-computer platform

like the Huggable's.

AudioPlayer

AudioCapture

Service Ready

Service Ready

IRCPlnterface OVERLOADED I Service Ready

PotTemp OVERLOADED Service Ready

Irnu OVERLOADED Service Ready

AudioPlayer

AudioCapture

IRCPnterface

P Tetm

Iniu

Service Ready

Service Ready

Service is unreachable

Service is unreachable

Service is unreachable

Figure 9: If a computer goes offline, the services that reside on that computer can no

longer be Pinged. The Dashboard will first assume that the services are busy and set their

status to OVERLOADED, but after a few retries, Dashboard sets their status to ERROR.

AudioCapture

PullPhotoCapture

MotorController

BearVisualizer

Mouth

Ear

FaceDetector

WebPublishing

BehaviorControl

GamePadListener

.LyJl~1Ut-.JuIVVV l ZIL- VLUUtLLaVI1. CUP

)0147067-0000-0000-0000-000000000000 successfully subscribed

ailed to initialize capture device: System.Exception: No video capture devices

ound at that index! at
IT. Huggable.PullPhotoCapture.DirectShowLibBWCamera.InitializeCa amera(Int 32

eviceNum, Int32 frameRate, Size resolution) in C:\huggable-project\source

PullPhotoCapture\DirectShowLibBWCamera.cs:line 48 at

IT.Huggable.PullPhotoCapure.PuPhotoCapturehtCat ervice.d_2.MoveNext in

3:\huggable-proje ct\s ourc ePullPhotoCapture\PullPhoto Capture.c s:line 98

ervice Ready

ervice Ready

'ervice Ready Sp

-ould not connect to PhotoCapture partner: Partner, http:/local:50000

3ervice Ready t

Service Ready ISt

Service Ready Sto

Figure 10: This instance of the Dashboard interface shows that the PullPhotoCapture

service has halted because no camera was detected. Consequently, the Eye service, which

depends on the PullPhotoCapture service, has halted as well.

Dashboard's last notable feature is its ability to start and stop the entire multi-computer

system. A small custom program called DssHostSpawner, runs on all involved computers

and listens on a fixed TCP port for network messages from the Dashboard service. When

signaled, DssHostSpawner spawns a new process running a DSS node. That DSS node is

then used to run all of the services that need to be run on that computer. An analogous stop

signal causes the DssHostSpawner program to kill the DSS node process. The reason that a

separate process is used to start and stop the DSS node process is that even when services

are terminated by sending them a Drop message (which is standard procedure in MSRS),

file locks on the service's binaries were not released, and so the binaries could not be

replaced with a more updated version while the system was still running. Another reason

was that during development, some services that use operating system resources would

sometimes crash and corrupt the DSS node process, requiring that it be restarted. This

Dashboard ability was crucial in speeding up the testing and development cycle.

The IRCPInterface Service

The IRCPInterface service plays a key role in making the Huggable software system

extensible because it allows MSRS technologies to integrate with other technologies not built

for MSRS but that support IRCP for their communication. My research group has developed

several technologies for social applications of robots. All of these technologies were built

using IRCP as the communication layer. They include the C5M behavior system and the

Motor Controller. The Motor Controller is responsible for driving the motors of the robot and

is implemented as a separate application that communicates over IRCP. A C#

implementation of IRCP is wrapped in the IRCPInterface service and the service provides a

MSRS-message-based interface for sending and receiving IRCP packets. To the MSRS

services in the Huggable project, IRCP packets are seen as MSRS messages. The

functionality that this service provides is invaluable since it frees the developer to use

whatever platform he or she prefers and still be able to integrate with the Huggable

software platform. However, it is encouraged to develop on the existing Huggable platform

built on MSRS to utilize some of its tools that contribute to robustness and extensibility.

The C++/CLI Wrapping Method

Many vision-based and machine learning algorithms are written in the C or C++

programming languages such as Intel's OpenCV. Since these algorithms are used in the

Huggable project a method was used to, as easily as possible, incorporate native C and

C++ code from these algorithms and applications into the .NET runtime on which MSRS

runs. The way this was accomplished was by using Microsoft's C++/CLI programming

language. This programming language is visual C++ supplemented with .NET constructs in

order for it to work with the memory managed and hightened security nature of a virtual

machine like .NET. The killer feature of this language is the ability to mix native code and

managed code in the same source file. This feature alleviates the tasks of creating stubs for

each of the native code functions used in the managed code--effectively reducing the

amount of code a developer needs to write. The method is to create a custom C++/CLI

interface that takes in as inputs .NET constructs and outputs .NET constructs as well. The

code within the body of the interface functions usually consists of converting the constructs

into whatever native constructs the native library requires, calling the native functions with

these parameters, converting the result back into .NET constructs and returning them.

Using this method, I easily incorporated many of the functions of OpenCV into the platform

as well as a native implementation of IRCP (which was later swapped for a C#

implementation because of errors in the original C implementation).

Custom Calibration and Monitoring Web Page Interfaces

In order to quickly calibrate sensors and/or monitor the state of a service, separate custom

web page interfaces were created for each service. For example, the IMU service has a web

page interface (accessible from any modern browser) that shows the readings from each of

the IMU device's axes. The technician can zero out these values and save them to a state

file at the click of a button on the website. AJAX technologies, like the ones used for the

Dashboard service, dynamically update the website in real-time. This design pattern is

common across all of the real-time data sensors in the Huggable robot and is abstracted

away into JavaScript and CSS libraries available for use by any service. Other web page

interfaces allow the technician or developer to observe service performance statistics that

are calculated at run-time. Figure 11 show some examples of these web page interfaces.

Potentiometer Calibration

Raw Potentiometer Values

IMU Calibration

Variables

Body Part

LArAMe
RAnkle

LFBHip

RFBHip

LSHip

RSHip

Delay i100

Orientation

xA)is 2 calibate
yAxis 0

zCeibrate Atl

Pot Value (0.0 -> 1.0)

0.65625

0.7216796875

0.6650390625

0.669921875

0.6591796875

0.662109375

Offset Potentiometer Values

Body Part

LAnkle

RAnkle

LFBHip

RFBHip

LSHip

RSHip

Pot Value (0.0 -> 1.0)

0.6259765625

0.49609375

0.611328125

0.611328125

0.625

0.625

Figure 11: These screen-shots are examples of custom calibration web page interfaces.

Developers can zero out sensor values at run-time at the push of a button and can persist

those calculated offsets across system restarts.

The reason why the process of transmitting data to the web page interface from the service

and sending commands to the service from the web page is the only thing that is abstracted

away via JavaScript libraries, and not any other kind of visualization, is because it has been

found in the Huggable system that sensors vary in the nature of the data that they provide.

Some data are better visualized one way, while others are visualized better in another way.

_ _ _. ~_ ~1

k. ,Clrtibrot~. 1

-~~~

Standardizing the presentation of the data would restrict the freedom to visualize the data

in different ways.

There are four reasons why web pages were chosen to create the interfaces for monitoring

and calibrating sensor data as opposed to the traditional desktop GUI application. One, the

reason why the web has become such a popular platform for developing applications is

because the programming languages used to build these client-side applications are

relatively easy to learn. Typically, these web-associated languages (JavaScript and XML) are

easier to become familiar with than enterprise level programming languages (Java or C#).

Second, experts in these web-associated languages can specialize in developing the

presentation of the sensor data and not worry about issues of operating system differences

or the complexities of desktop GUI frameworks. Third, all it takes to view any one of the

web page interfaces is a browser. The monitoring and calibration interface need not run on

any one computer. A technician could use his or her own laptop with his or her own choice

of browser to interface with any of the robot's sensors and would not have to terminal in to

the computer that would be running the sensor service. Lastly, MSRS already provides

libraries for accepting HTTP Get requests from web browsers and returning XML content.

These reasons make it clear why web pages were chosen for monitoring and calibrating the

robot's sensors.

Technologies for the Social Robotic Avatar

Application

There are a series of technologies that were developed in order to satisfy the requirements

of the social communication application. Again, in general, these technologies aim to

provide the puppeteer with sensor feedback so that he or she can have a good

understanding of their remote environment, and remove cognitive load from the puppeteer

so that he or she can focus on the interaction. In this section, I divide these technologies

into two types: technologies that run local to the robot, and technologies specifically

targeted for remote puppeteers.

Local Technologies

The following technologies run locally on the robot. This means that the technology runs

either on the embedded computer located inside the robot or on the user's home computer

(or any computer on the same subnet as the embedded computer). In addition, these local

technologies do more than just aid the puppeteer--they can be reused for other applications

besides the robotic avatar. As such, the puppeteer is not necessary in any of these

technologies. However, the following technologies do provide benefits to the puppeteer such

as presenting data to the puppeteer, relieving him or her of the cognitive load associated

with puppeteering, and orienting the puppeteer in the remote environment.

Face Detection

The face detection technology integrated with the Huggable system helps a remote

puppeteer handle the task of maintaining eye-contact with a user. The technology can

detect upright and frontal faces in a video feed and denotes them by drawing squares

around each face in the video feed. The robot can use the location of a face in the image to

move its head so that the face appears in the center of the video feed, effectively making

the robot track faces. Eye-contact is crucial in a social communication setting and this

technology allows the robot to handle this social cue to free the puppeteer of cognitive load

to allow him or her to concentrate more on the interaction. Figure 12 illustrates what the

puppeteer sees in the video feed with this technology enabled.

Figure 12: The face detection technology helps reduce the cognitive load of the puppeteer

by maintaining robot eye contact with the user.

IMU Stabilization of Video

The video stabilization technology helps to keep the puppeteer oriented in the remote

environment while the robot may be being picked up and rotated about. This multi-modal

technology makes use of both the camera feed and the IMU. Every video frame from the

video camera of the robot is coupled with the roll position of the robot given by the on-

board IMU. The video frame is then rotated by the negative of the roll value. So if, for

example, the robot is rolled 20 degrees, the video frame captured at that moment would be

counter rotated by -20 degrees. This counter rotation has the effect of keeping objects

upright in the video frame instead of being rotated with the robot. Figure 13 shows a time-

sequence of this technique. This idea was modeled after the fact that while humans may tilt

their heads at different angles, and hence tilt what they see, their brains allow them to

realize that what they see is not actually tilted. This technology also helps other vision

dependent technologies function, such as the face detector. One current limitation in the

face detector is that it only detects faces that are portrait and upright with respect to the

image. Faces that are tilted or in profile are less likely to be detected. Similarly, if the robot

was placed on its side, no faces would be detected unless the faces were tilted in the same

orientation of the robot. However, the robot is able to detect faces in this kind of image

because of the multi-modal use of the robot's camera and IMU sensors.

Figure 13: When the robot is tilted on its side, the reading from the IMU device is used to

counter-rotate the incoming video stream such that the spatial orientation of objects in the

video remains constant.

3D Virtual Robot Model

The C5M behavior system features a 3D virtual model of the robot. Potentiometers in each

of the robot's degrees of freedom broadcast their current position and subsequently update

the joints of the virtual model. By virtue of this coupling, moving a joint on the real robot

moves the joint of the virtual one, and vice-versa. This potentially allows for the puppeteer

to easily see how much range of motion is left as they move the robot's joints. It also

provides a virtual mirror to what the user sees as they look at the robot. Besides visualizing

the positions of each of the actuated joints of the robot, the virtual model also displays the

joint positions of the passive limbs such as the legs and feet. It also visualizes the data from

the skin sensors of the robot by highlighting portions of the 3D model's surface texture and
the data from the IMU by rotating the virtual robot. Figure 14 shows an example of the
model. Because this 3D model is rich in information and illustrates sensor data in a

graphical and spacial representation, it is sent to the remote puppeteer to aid him or her in
understanding how the robot is being interacted with.

Figure 14: This is a screenshot of

the virtual 3D model of the robot. In

addition to showing the orientations

of each of the robot's DOFs, the 3D

model can also serve as a display of

spatial data such as where the robot

is being touched via the skin sensors,

or the orientation of the robot with

respect to the ground by rotating the

model appropriately.

IMU Motion Classification

In the case of the data from the IMU sensor, visualizing the raw data from the sensor on the

3D virtual model (as described above) does not convey all of the information that would be

relevant for this social communication application. For example, if the robot is being

bounced up and down, while not changing its orientation with respect to gravity, the 3D

model would not be able to illustrate this to the puppeteer and neither would looking at the

video feed, unless the puppeteer pays very careful attention to the way the incoming video

changes, but this would potentially not allow the puppeteer to concentrate on the

conversation with the user. This is remedied by a technology that runs locally on the robot

to classify how the robot is being moved. Algorithms that process the data from the IMU are

capable of identifying whether the robot is being picked up, bounced, or rocked [25]. These

algorithms are based on training a neural network on IMU data and using it to classify the

motion. Presenting this processed information in the form of a simple cartoon animation

greatly aids the puppeteer in identifying how the robot is being interacted with, with respect

to motion. This is because it is easier for a user to recognize an idea by seeing it rather than

making a symbolic jump from a word to an idea via recall [18]. Figure 15 shows some

examples of the graphical representations of the robot motion that are presented to the

puppeteer.

Figure 15: These stylized cartoons of the robot's detected motion are easier to recognize

than tracking the motion in the 3D model or reading a keyword description of the motion.

The motions shown here (from left to right) are no motion, bouncing, pick up, rocking, and

over stimulated. Animations courtesy of Lily Liu.

Skin Technology

While the full body sensate skin has not yet been completed and integrated with the robot,

some of the preliminary visualization work has been done and can be provided to the

puppeteer. The skin technology is designed to make use of hundreds of electric sensors that

cover the entire exterior of the robot. Each sensor is capable of sensing touch, and high-

level algorithms are capable of detecting how the robot is being touched (tickled, grabbed,

slapped, etc.). More information on the skin technology can be found in [26]. An MSRS

service called Skin and a corresponding web page interface were created for this

10

JinY

technology. The web page displays a cartoon image of the robot and different parts of the

cartoon are highlighted when the user touches the robot. The web page interface makes use

of the same AJAX technologies developed for other services and can provide the puppeteer

with an idea of where the robot is being touched. Just like the IMU, providing the puppeteer

with just a cartoon image of where the robot is being touched might not be enough

information for the puppeteer to fully understand how the robot is being interacted with. A

solution to this problem is discussed in the Future Improvement section. Figure 16 shows

the preliminary implementation of visualizing the touch data from the skin sensors.

Figure 16: A prototype visualization of how the robot is being touched. Contiguous pink

regions represent an activated touch sensor on the robot. Touch classifications, such as

touch, pet, or tickle, are not represented here. From the visualization, the puppeteer might

speculate that the robot is being held by the arm while patted on the head. Drawings

courtesy of Heather Knight.

Remote Technologies

The next set of technologies exist on the puppeteer's side of the interaction. Like the

technologies that run on the local side of the interaction, these technologies serve to

present data to the puppeteer, relieve him or her of the cognitive load associated with

puppeteering an eight DOF robot, and orient the puppeteer in the remote environment.

able
average teddy bear.

ERelabve View 2Fit-Person Control
BJuns Puppeteer Sytem Enabled
RFace Detcc Enabled

Play Idle Sounds

No Puppeteeng
(7,Head Only Puppeteer"'

Motion &ats

6

Bouncin

Acrtinsu
NodHead Stak.H.a

Le*Hwd Pointj oin

I PoinLIMUdd sd.

| ShowCofusion]

I We. Goodbye la

I H 3o IS suldPanoramesinznds gle

f By Sn_.ns r

Text to sy. Hello I e th
e

Huggablef

Label:

Sawd Head Orie ons:

WM)oe

Figure 17: A screenshot of the puppeteer's interface. This interface contains three main

components: the stale panorama (top left), the 3d virtual model (bottom left), and the web

interface (right).

Stale Panorama

One phenomenon of teleoperation is the fact that the robot's video feed presents the

puppeteer with tunnel vision. Humans not only depend on their high-resolution fovea for

Ij 7- _" ?1 tat :_I~l":YDD1*obb~dAN

localizing themselves in an environment, but also on their peripheral vision. It is more

difficult to localize oneself if the only data is from the fovea, or in our puppeteer's case, a

320x240 video feed. One method to cope with this phenomenon is to use a camera with a

wide viewing angle (or a "fish-eye" lens). However, this type of camera could then not be

used for face detection nor some forms of motion detection because of the distorted nature

of the video image. I considered using two cameras (one in each eye of the robot)--one for

sending video to the user (the wide view angle camera) and the other for capturing video

for the video dependent services (the regular camera). This had three drawbacks: it

increased power consumption due to the addition of the second camera, it increased the

cost of the robot, and it complicated the mapping between locations in the regular camera

feed and in the wide angle camera feed. Instead, I chose to implement what I call the stale

panorama, shown in figure 18. This involves the robot autonomously looking around the

room, capturing video frames and storing them with the associated position of the robot's

head. As these frames are collected, they are superimposed on a much larger canvas at a

location corresponding to the position of the robot's head at the time the frame was

captured. The robot chooses to look at parts of the environment that it has not seen yet and

eventually fills in the entire canvas. The result is a collage of still images that are positioned

so that they build a stale panorama of the environment. The only non-stale part of the

canvas is the current position of the robot's head, which is instead a streaming video feed.

The completed stale panorama is then used as a pointing device, enabling the puppeteer to

click on a point in the panorama and causing the robot to autonomously handle looking in

that direction.

Figure 18: A time-sequence of the process of building the stale panorama. The blue box

represents where the puppeteer would like the robot to look and the yellow box indicates

where the robot is currently looking. During the building of the stale panorama, the robot

ignores any gaze direction requests, hence the discrepancy between the blue and yellow

boxes. Note that simple affine transformations of the video frames based on the position of

the neck is a rough attempt to build a panorama of the remote environment.

47

The stale panorama technology is no longer relevant if the scene in the panorama

drastically changes (i.e. the robot becomes surrounded by people) or if the robot is picked

up and moved. The way I cope with the former is by continually updating the stale

panorama with frames captured while the robot's head is not in motion during some time-

interval. While in some cases the stale panorama might not be very accurate in reflecting

what is in the remote space for constantly changing environments, it does work well for

relatively static environments, such as a bedroom. The above technique fails to solve the

relevance problem in the case where the robot is picked up and moved. It fails to work in

this case since while the stale panorama is being updated constantly, the rest of the

panorama would be completely incorrect (assuming the robot has been placed in a new

environment or is now facing a different direction). The solution to this problem is to

completely remove the existing stale panorama when the robot is picked up or moved and

only start building a new one when the robot has been placed back on a stable surface. The

IMU sensor offers us the classification of these types of movements. What the puppeteer

will end up seeing is when the robot is picked up and is in motion, the live video feed is

zoomed in such that it takes up the entire panorama window. When the IMU detects that

the robot is no longer in motion, the live video feed is zoomed out and the panorama no

longer exists, but instead is just filled with a black color. The robot then begins to build the

stale panorama as before. Figure 19 shows a time sequence of this process.

Figure 19: A time-sequence of what

happens when the robot is picked up and

moved to a new location. The first image

IIUL.. dL~c lf Li l au thI
ilUSLrates Lthe sle11 panor1 am1a Ce ore Ie

robot has been picked up, the second is

when the robot is in motion (i.e. being

carried), and the third image illustrates

what the panorama looks like when no

motion is detected by the IMU. In the

third image, the stale panorama is

cleared out since tne old panorama no

longer reflects the new remote

environment. A new stale panorama

would then be subsequently built.

From figure 18, we can see that simple affine transformations of the video frames according

to the robot's neck position at the time the frame was taken results in inconsistencies at the

edges of these images. These inconsistencies can hinder the intended effect of orienting the

puppeteer in the remote environment. Crystal Chao (a graduate of M.I.T.) has begun testing

stitching algorithms to accurately transform these images so that they align much better

and improve the overall clarity of the stale panorama. She uses an implementation of the

SIFT algorithm [17] to identify scale-invariant keypoints in the video frames, and then

applies the RANSAC algorithm [9] to find a non-affine transformation matrix. She then uses

OpenCV's algorithm for warping images to apply the non-affine transforms to the frames in

I _ _I_ _-

the panorama. Figure 20 illustrates this technique for improving the clarity of the stale

panorama technology. The process for stitching together two images takes about 15

seconds which means that this technique can not be used in real-time. Instead, Images are

collected in the background, and the panorama eventually is constructed and presented to

the puppeteer as an asynchronous task. One way to improve the running time of the

algorithm would be to use the neck joint potentiometer data of the robot to help the

RANSAC algorithm find the best match between two images. It is important to note here

that the stitching aspect of the stale panorama is being developed independently of the

Huggable project and will be integrated when we develop our own versions of the RANSAC

and SIFT algorithms, because we have filed several patents for the Huggable platform

before the inclusion of the these copyrighted algorithms.

Figure 20: This figure illustrates the image stitching process. The top two images are the

inputs to the process and the bottom image is the result. The red dots indicate the input

images' best matching SIFT features found via RANSAC. The resulting non-affine transform

then is applied on the right input image and superimposed on the left input image.

The stale panorama technology helps the puppeteer in three ways. One, it alleviates the

burden of having to manually control the individual motors of the neck joints in order to

look around the remote environment by providing a point and click interface. Two, by

removing this burden, the robot also helps with issues of latency across the internet since it

is cheaper in time to send just one message containing coordinates of where the puppeteer

would like the robot's head to be pointing at, instead of sending individual move commands

which could result in overshooting the visual target due to latency. And finally, it gives the

puppeteer a better understanding of the remote environment by removing the tunnel vision

problem.

Object Labeling

A technology was created to aid the puppeteer in the task of quickly moving the robot's

head to look at various objects or people in the remote environment. This technology is

especially useful if the puppeteer is talking to several people through the robot or if the

puppeteer needs to repeatedly shift the robot's vision between a person and a open book.

The way it works is that the puppeteer can "take a snapshot" of the current neck position of

the robot and associate a label with it. The puppeteer can then recall the position of the

robot's head at the click of a button. Currently, the interface to this technology is provided

on the main Huggable web page interface described below.

Web Interface for Puppeteering

The WebPublishing service within the Huggable software system acts as a control panel to

the robot for the remote puppeteer by providing a webserver on which to serve HTML,

JavaScript, CSS, and other web-related content. This web page, supplemented with AJAX

technologies, presents information to the puppeteer as well as provides controls for

initiating various robot behaviors. Figure 21 presents a screen-shot of this interface while it

is in use. The interface provides buttons for sending commands to the C5M behavior system

to play back various animations. These animations include waving, wiggling of the ears,

nodding, etc. A puppeteer can use these prerecorded animations to make the robot more

engaging through its life like motions. In turn, this can enhance the interaction between

puppeteer and user [15]. It also has buttons to play prerecorded sounds on the robot (e.g.

cute bear noises) and a text field to send a phrase to the Cereproc text-to-speech engine.

As mentioned before, the web interface also provides some controls on adding or removing

object labels. Figure 21 shows an example of what these labels would like to the puppeteer.

The web interface also allows the puppeteer to change how much autonomy he or she

wishes the robot to have. In Huggable system, there are currently only three degrees of

autonomy and they refer only to motor control. They are: no puppeteering, head only

puppeteering, and full puppeteering. There are check boxes that allow the puppeteer to

enable or disable other technologies in the Huggable system such as face detection, IMU

stabilization of video (shown as "Relative View" in figure 21), the embodied puppeteering

system (shown as "Jun's Puppeteering System Enabled"), and the of playing sound effects

when the robot is idle.

THE

Figure 21: This is the web page

interface that is accessible to the

puppeteer from a web browser.

The interface provides controls for

play back of prerecorded

animations, prerecorded sounds,

custom speech, and complex

behaviors such as building the

stale panorama. It also shows

processed data coming from the

robot's sensors such as the IMU

(shown as the bouncing cartoon)

and the joint potentiometers

(shown as the left and right feet of

the right-most cartoon highlighted

in red).

Motion State lRRelative View RFirst-Person Control

SIJun's Puppeteering System Enabled
[BFace Detection Enabled
2 Play Idle Sounds

@No Puppeteering
0 Head Only Puppeteering
OFull Puppeteering

Bouncing

Actions
SNod Head f Shake Head

I Left-Hand Point I Right-Hand Point

Point Left Middle Point Left Far

WakeUp Goto Sleep

Pick Me Up Side-to-Side

SRaiseArms Ge

Show Confusion ['-]
[Wave Goodbye]

Flick Ears

I Build Panorama

Sounds

Text to say: Hello am the Huggabl SMI

LabeL Mark

ntations:

ave

The web page interface also serves as a conduit for data incoming from the robot. One goal

of this interface was to make sure that the data coming in would not be too complex, but

instead, easy to recognize. Since most of the puppeteer's attention is spent looking at the

video feed, he or she might have little remaining cognitive attention to monitor how the

robot is being moved or touched. The website currently displays the motion classification

detected by the IMU device, as well as a cartoon doll showing which limbs are currently

being activated via monitoring the of potentiometers in each of the robot's joints.

uggable
imarter than your average teddy bear.

/

Searching for the right animation or sound to play in the sea of prerecorded items can take

an inconvenient amount of time. This search time can greatly interfere with the ongoing

interaction between puppeteer and user. For example, if the puppeteer wants to convey

affirmation by making the robot nod its head, the time that it would take for the puppeteer

to find the button and press it might not be short enough for the user to associate the

affirmation with some event that had just happened. I believe that the way the interface is

layed out is currently unusable for a sustained interaction as made evident in the evaluation

section of this paper. In the Improvements to the Huggable System section, I discuss new

ways of allowing the puppeteer to control the robot's behavior.

Audio Chatting

A duplex audio channel is streamed to and from the puppeteer to the robot. Microphones in

the robot's ears and a speaker located in the robot's snout record and play audio,

respectively. The audio streaming component is modularized into MSRS services which

allows for the reuse of code on both the embedded computer and the puppeteer's computer.

The audio that the microphones pick up are sampled at 22,050Hz. The frequencies in

human speech are rarely above 10kHz, except for some fricatives such as the "S" sound

[30]. A sampling rate of double 10kHz was chosen to account for aliasing effects. The lowest

possible sampling rate was chosen in order to reduce the latency between puppeteer and

user while maintaining enough clarity to understand the spoken word. Each sample is 8 bits

in resolution and only one channel is sampled. A small audio buffer size of 500 bytes was

chosen to also minimize the amount of latency between puppeteer and robot.

Embodied Puppeteering

Jun Ki Lee, also a researcher in the Personal Robotics Group at the MIT Media Lab, has

developed an embodied puppeteering system. This is a wearable set of sensors that detect

movement and orientation of the arms and head in order to control an avatar [16]. Figure

22 illustrates what kind of sensors are worn by the puppeteer. I helped integrate his system

along side the rest of the MSRS services in order to provide the puppeteer with another

mode of puppeteering. His system currently allows a puppeteer to control an avatar in two

ways: via direct manipulation or via gesture recognition. The direct manipulation method

streams the data captured from the worn accelerometers and magnetometers to the C5M

behavior system. These data are then translated into motor commands for the robot. The

end result is when the puppeteer moves his or her arm, the robot's subsequently moves its

arm. While this method is a natural way to control the robotic avatar, the latency and

throughput restrictions that are imposed by the internet might make it impossible to control

the robot via this method.

Figure 22: The wearable puppeteering interface includes worn accelerometers and

magnetometers at the head and elbow joints as well as the hand-held Wii remote and

Nunchacku. The development of this interface is not a part of this thesis.

The second method, gesture recognition, allows the puppeteer to make deliberate gestures

to invoke animations to be played back on the robot. For example, if the puppeteer makes a

waving gesture, his system recognizes this gesture and sends it to the C5M behavior system

where it is played back on the robot. Therefore, there is a one-to-one correspondence

between the gestures that the puppeteer makes, and the prerecorded animations provided

by the robot. While sending only one message with the type of gesture to be invoked on the

robot is more robust with regards to the internet, the actual classification of the gesture is

difficult and the gesture is only recognized once it has been completed, hence injecting

another source of delay between when the puppeteer intends to act, and when the robot

acts. In either case, we are looking forward to performing user eva luations comparing the

web page interface and the embodied puppeteering system. The best system will most likely

be a combination of both interfaces.

Evaluation

A lot of work went into building the technologies to solve many of the engineering problems

associated with building a software platform for a semi-autonomous robotic avatar for the

social communication application. Unfortunately, no full-scale user study could be conducted

due to time constraints but there was enough time for some basic performance

measurements and an informal user trial.

Puppeteering Related Performance Statistics

In order to gain an understanding of the performance of the system and where performance

improvements might be best suited, I instrumented certain services within the Huggable

platform with performance statistics gathering code. The performance results of some of

these services are actually output in real-time to their respective web page interfaces. For

example, the Gramps service's web page interface provides a real-time reading of the

frame-rates of the video from the virtual 3D model, and of the video camera feed. The

following statistics were gathered during a typical usage scenario of the robot (all systems

on, moving the robot's limbs, playing sounds, and speaking through the microphones). All

but one of the computers involved in the Huggable system were connected via ethernet on

a closed private network. The MacBook Pro laptop was the only computer connected

wirelessly to the private network.

Variable Value

Framerate of video from robot's camera 10.3 frames per second

Framerate of video from virtual 3D model 8.1 frames per second

Face detection rate (when face is present) 2.7 frames per second

Audio latency 0.45 seconds

Robot animation latency 1-5 seconds

Text-to-speech latency 2.5 seconds

IMU motion classification 0.9 - 2 seconds (assuming true positive)

Joint potentiometer activation latency* 0.2 seconds

* the time it takes from when the puppeteer presses a button on the web interface to when

the robot physically performs the animation

the time it takes from when the user wiggles the foot of the robot to when the puppeteer

is notified via the web interface

From my research group's own informal usage of the system and in the informal user trial

decribed below, many of these values are reasonable in that they satisfy the six

requirements outlined in the Problem Statement for the social communication application.

However, the statistics that inhibit a smooth interaction between puppeteer and user

through the robot include the audio latency and the robot animation latency. While the

audio comes out clear on either end, there is the problem that the puppeteer can hear him

or herself when he or she speaks, due to feedback from the microphones on the robot.

Humans hear themselves all the time when speaking, but when a delay is introduced

between when something is spoken and when it is heard by the same person, it can be

confusing and difficult to continue speaking. Since the latency for the streaming audio is

0.45 seconds, the delay is apparent and there were complaints of difficulty and confusion

while speaking through the puppeteering interface.

While the audio echo problem can be tolerated by some puppeteers, the latency in the robot

animation can really hinder social communication. In the cases where the puppeteer

intended to nod the robot's head in affirmation to the user, the latency was so great that

sometimes the user would repeat the question or the puppeteer would think that their initial

command did not go through and hit the button a second time. In the current

implementation of the Huggable system, repeated animation button clicks results in

repeated animation playbacks, which means that the robot would execute two nods, when

the nod animation was clicked twice. The problem with this is that in the current

implementation of C5M, an animation cannot be interrupted, so a queued up series of

animations would render the puppeteer without control of the robot until all animations

completed.

Another performance related drawback is the disparity in latency between the motor joint

positions and the video feed. This is most noticable in the stale panorama. The incoming

video feed is placed at a location on the stale panorama that corresponds to the position of

the robot's neck, if these data are not synchronized, the panoramic effect is lost. The

software system developed for Stanley uses a time-stamping mechanism to synchronize

data from all of the sensors of its autonomous vehicle. This would be one way to establish

synchronization for the Huggable system since it does not already have this feature.

Informal User Trial

In April 2008, my research group filmed a video demonstrating the capabilities of the robot.

A script was written in which I puppeteered the robot to interact with a few of my lab mates

while participating in various activities ranging from reading a book together to coloring a

drawing together. The robot was situated at one end in our lab and I was seated in a closed

office across the lab where I could not hear nor see the robot or the user. This experience

proved to be a valuable informal evaluation of the puppeteering interface.

Figure 23: A scene from the

demonstration video my research

group filmed of the Huggable

robot. The top image is of the

user interacting with the robot.

The bottom image is of the

puppeteer and his interface.

Web Interface Usage

The first thing I noticed when trying to do a simple greet animation on the robot was the

fact that there are so many available animations. Reading each button took some time, and

since there are so many animations, their button size must be kept small to leave enough

screen real-estate for other interface elements. Fitts's law shows that it will also take a long

time just to click any of the buttons because of their small size [31]. Perhaps fewer options

should be presented to the puppeteer so that the buttons could be bigger and possibly

labeled with an illustration of the animation instead of text. Another idea might be to use a

touch-based device to select the animation--this would remove the minimum mouse cursor

travel time mandated by Fitts's law. Also, since my attention was mainly focused on the

video feed, and hence was the location of my mouse cursor, it took some time moving my

mouse cursor from the stale panorama over to the web interface where the buttons were. In

some cases, the opportunity to respond to the user with a pre-recorded sound in the

context of the interaction was missed due to this delay.

One surprising thing I encountered was my preference for using the stale panorama over

the object labeling technology for looking back and forth between the user and an open

book. This preference may be due to the unwanted initial effort required to label each of the

head poses. This effort, however, is not applicable in the stale panorama's case. Another

reason might have been that the buttons to move the robot's head to a given label were

located on the web interface, to the right of the stale panorama. Again, this distance to

travel with the mouse cursor would hinder the social communication.

Stale Panorama and 3D Virtual Robot Model

I came to exclusively rely on the stale panorama technology for controlling the robot's gaze.

Consequently, I spent about 90% of my time during the filming looking at the stale

panorama, and rarely glancing at the 3D virtual model or the web interface. I believe that

the stale panorama was essential for orienting myself in the remote environment, and thus I

was extremely dependent on it for locating objects in the remote environment (such as

finding a book to read) and maintaining the robot's gaze (maintaining eye contact, shifting

the robot's gaze from the book to the user and back). Since most of my attention was on

the stale panorama, I could have potentially missed data coming from the robot's other

sensors, such as the joint potentiometers or the IMU. One suggestion might be to

superimpose a "heads up display" (HUD) on the stale panorama. This would involve

superimposing some of the elements presented on the website, around the borders of the

stale panorama display. The HUD has been a very successful user interface element in first

person shooter computer and video games, in which the user's attention is highly dependent

on vision in the virtual environment (or in my case, the remote physical environment).

When I did look at interface elements that were not the stale panorama, it was usually for a

specific and reoccurring purpose. For example, when I wanted to say, "Hi so-and-so!", while

making the robot wave, I had to monitor the 3D virtual robot video feed for signs that the

robot started to wave so that I could time my speech accordingly. The robot animation

latency, discussed in the Puppeteer Related Performance Statistics section, made this timing

process even more difficult. Another example of not looking at the stale panorama was

when the robot was picked up by the user. Since I recognized from the video feed that the

user was approaching and picked the robot up, I looked to the web interface to see what

kind of motion was detected via the IMU motion classification technology.

Puppeteering and the Sympathetic Interface

I came to notice that what I was physically doing in the office was not the same as what the

robot was doing. For example, when the robot waved, I was not also waving. This is due to

some obvious reasons. One, my hands were occupied puppeteering the robot and so I could

not wave. Two, I knew that my gestures were invisible to the user and felt no need to wave.

And third, the interaction was scripted and so the gesture was not as spontaneous as it

would normally be. However, this was still the case when I made the robot perform a

subtler animation such has nodding its head. It was my initial hypothesis that the puppeteer

would feel the need to perform some of the gestures that he or she was making the robot

perform, since they were controlling an extension of themselves, but this did not happen

with me. I believe that this gestural disconnect led to the problem that the robot was not

being lively enough during filming. On most occasions, I forgot to keep the robot's ears

flicking in response to comments, or to nod the robot's head in addition to saying, "yes" or

"OK".

This gestural disconnect problem might be solved by Lee's embodied puppeteering interface

since the gestures that the puppeteer physically performs will be sent to the robot (see

Embodied Puppeteering in the Technologies for the Social Robotic Avatar Application

section). This might result in the robot being more life like. But another idea would be to

use a sympathetic interface robot (SIR) for controlling the Huggable robot's gaze and

gestures. The SIR would consist of a robot which contained only potentiometers in each of

the joints to detect and broadcast joint positions. These positions could then be sent to the

Huggable robot for processing. So for example, if the head of the SIR was moved to the left,

the Huggable robot's head would move to the left, or if the SIR's arm was moved in a

waving gesture, the gesture would be detected by a classifier and the Huggable robot would

invoke the waving animation. Using the SIR, I believe that the puppeteer will be more

aware of the robot's idle gesturing and will be able to more naturally control the robot. One

drawback of Lee's puppeteering system is that if the gaze of the robot is controlled by

movement of the pupeteer's head (via an accelerometer located in a hat that the puppeteer

wears on his or her head), then when the puppeteer wants to move the robot's gaze to the

left, the puppeteer might no longer be able to see the screen, since his or her own head

would be pointed to the left, away from the computer screen. Use of a SIR would allow

enough gestural disconnect to perform non-embodied actions such as directing robot gaze,

but not so much so as to overwhelm the puppeteer with the complexity of a completely

non-embodied puppeteering interface such as the website interface.

A Testament to Telepresence

Perhaps the most interesting result of filming this interaction demonstration happened when

I was not trying to puppeteer the robot for the purposes of the film. In between takes, the

director of the film began to speak to the actors about what needed to be changed and

which parts went well. When he began to speak to me, he looked at the robot in the eyes

and spoke to it as if it were me. He did not have to look at the robot when he spoke, he

could have just as easily spoke facing any other direction since the robot's microphone was

of good quality. He gestured at objects in the same space and he even nodded his head at

me for confirmation that I understood his directions.

We agreed later that the fact that I moved the robot's gaze back and forth between

speakers (the actor and the director) solicited the need for eye contact when speaking to

the robot. In addition, since I moved the robot's gaze to look at whatever they were

pointing at convinced them that I understood the physicality of my remote environment.

When these factors became commonplace, telepresence was working in its truest form.

Future Formal User Testing

In the the future, a formal user trial could be conducted by allowing certain groups of users

to use the puppeteering interface in two types of settings. The groups of people that I would

like to target are elerly people--those who haven't had much experience with computers or

the internet, age 50 or older; adults--over the age of 30 who may not be as familiar as the

younger generation with the latest web technologies and the associated understanding of

those technologies; and finally, expert users--those who will be puppeteering a robot as

their full-time job. My interest in the last group is to verify that the puppeteering interface is

efficient to use by someone who is fully-trained in all of the robot's capabilities.

The two types of settings that I would like to target are to have these puppeteers attempt

to read a story with one of two people. First they will read a story to a child actor who is

trained in the interaction and then read a story to a child that the puppeteer agrees to bring

in themselves. The two different settings ensure that the puppeteer is able to use the

puppeteering interface at all with someone who is patient and that the puppeteer is able to

interact with a user who has never interacted with the Huggable robot before.

A standard user test will be conducting that will include filming of both the puppeteer and

user, data recording of all the data captured by the robot (including video, audio, and

actions), and note taking. There will be a brief introductory session that will include an

explanation of the puppeteering interface and the robot's capabilities (except in the expert's

case where this training session will be much longer and contain some practice runs). The

task that the puppeteer is instructed to perform will be step-by-step and he or she will be

requested to fill out a survey at the end to assess how visceral the interface is, how much

they understood their remote environment, how well they understood how the robot was

being interacted with, and other qualitative questions on the interaction experience. There

would be an analogous survey for the users that their respective puppeteers bring in. The

results from the study will be used to improve the puppeteering interface's existing

technologies as well as add new ones (and possibly new sensors) to address the needs

presented by the user trial.

Improvements to the Huggable System

Just as the work in this thesis was divided between work done to develop an extensible

platform and work done to create the necessary components for the social communication

application, the suggested improvements to the Huggable system will be so divided.

Improving the Framework

When my research group begins to conduct user studies and user testing with the Huggable

robot, they will need a logging mechanism. This service would go beyond the logging

service provided by MSRS. It would provide a clean API for logging a variety of data types.

Each log entry would be timestamped not only with the current time, but perhaps also with

session data such as which aspects of the applications were being tested during a given user

study, etc. The logging service would be as invisible as possible to the rest of the Huggable

platform so as to make it easy for developers to build future MSRS services. Ideally, it

would be mediated through the HuggableServiceBase class and all of its logged data would

be stored in an ACID [29] type database instead of a simple XML file. Finally, it would also

be able to accept logging requests from systems outside of MSRS, such as any system that

supports IRCP.

On many occasions during development, my group spent an unnecessary amount of time

tracking down hardware malfunctions. While the custom calibration web interfaces for many

of the services do display some low-level sensor readings to help a technician deduce a

hardware problem, this mode of display truncates the temporal part of the data. In other

words, we cannot examine how the sensor misbehaves over time. One improvement to

remedy this would be to create an API that allows for the real-time drawing of dynamic

graphs via JavaScript and HTML. The reason why this improvement should use web

technologies is so that we can leverage the advantages of having a web-based interface to

the diagnostic pages for the various Huggable sensors. These advantages were enumerated

in the Custom Calibration and Monitoring Web Page Interfaces section.

When the developers remove the robot's tether, close the robot up, and begin running the

robot on battery power, power consumption and heating will become issues that will have to

be addressed. An improvement to the Huggable platform would be the addition of another

Dashboard-like service that would monitor the "health" of the robot's electrical components.

This type of service would be invaluable to diagnosing the early engineering problems

associated with moving to an untethered robot.

One issue that will become very apparent once this platform is ready to be tested in

people's homes is security. One of the reasons that the MSRS platform was chosen over

others was for its security capabilities. MSRS allows a developer to restrict which messages

certain services can send and the messages' associated authentication levels. While this

security capability has not been utilized for this thesis, it is absolutely necessary if this

platform needs to be able to transmit sensitive data across unsecured channels. It would be

worse if someone other than an authorized person could gain control of the robot remotely.

Improving the Social Avatar

It was apparent during the informal testing of the robot that switching between levels of

autonomy was too cumbersome a task to handle while in the middle of puppeteering a robot

and interacting with someone. Recall the example of the unwanted reflexive feet-look-at

behavior while speaking with a person through the robot. One improvement we could make

would be to create a suggestion system that would suggest reflexive behaviors to the

puppeteer if the puppeteer is controlling the robot. If the puppeteer was away from the

computer (which could be detected by monitoring usage on the interface) then these

reflexive behaviors would be done autonomously, but if the puppeteer was using the

interface, then the system would make suggestions about behaviors to execute. The

puppeteer then could confirm the suggestion at the click of a button. Another way to

describe this interface would be that the autonomous behaviors are sensitive to the context

of whether the puppeteer is using the interface or not.

Many times during demos, onlookers would try to get the robot's attention by waving their

hands in front of the robot's face. In order for the robot to recognize this sort of attention-

grabbing gesture, motion detection algorithms could be included from the OpenCV library.

When the robot detects highly variable motion in a local area, the robot could move its gaze

to the centriod of the motion (or suggest this to the puppeteer if the suggestion interface

described above is being used).

Another feature that would be invaluable when talking to multiple people is detect and

recognize faces. At the click of a button, the puppeteer could select to track a particular

person interacting with the robot. This way, the robot would ignore any social cues from

other users in the remote environment, and only focus on that one person. Labels identifing

users could float on the stale panorama and would follow the image of the person's face as

they moved about. A multi-modal use of video and sound could even be used to identify the

speaker and allow the robot to always autonomously track the current speaker as is done in

this system [21].

Near-Future Applications

The Huggable project's scope extends beyond just the social communication application.

Because the Huggable project is designed to be a general robotics platform, there are very

few restrictions that prevent it from being tailored to other applications.

Health Care

The Huggable robot could be used in the hospital room setting where it could become an

extension of the nursing staff. Given its small teddy bear form factor, it can serve to calm

and soothe child patients during their hospital stay. With the skin sensors that the robot

offers, a patient who might not be able to vocalize where they feel pain might squeeze the

robot in a location that corresponds to where they feel the pain. The touch classification

algorithms currently in development could detect when this event occurs and the robot

could subsequently alert the nursing staff. Using its puppeteering capabilities, a nurse could

potentially monitor and several patients at once, allowing him or her to take control of any

one of the robots to interact with a patient.

Huggable robots could be taken home from the hospitals to record a patients recovery from

a major operation or treament. These robot's could potentially remind the patient to take

their pills or record their blood pressure. In treaments like chemotherapy, it is important for

patients to record how they are feeling everyday. The Huggable robot could help remind the

patient to record these data, and the robot could even handle sending the data to the doctor

immediately. Thus, providing the hospital staff with more information in order to better the

health care they give to their patients.

Education

Reading with Rover is a program based in the Northwest that helps children with a difficulty

in reading. The way it works is that a child reads stories to a trained dog who sits and

listens. Its success comes from the idea that the children have an easier time reading to a

dog as opposed to their peers. The child feels that the dog does not judge his her reading

ability [20]. I believe the Huggable robot can achieve this same effect with some minimal

autonomous behaviors akin to a pet who sits by the child side and makes some idle

gestures. In fact, the robot's behavior could be enhanced by responding the child's tone of

voice as a measure of the emotion in the story.

The robot could also be used as a conduit for education material. For example, there are

geographic regions where it is difficult for teachers to travel from one region to another and

hence education can not be properly given to children in these hard to reach regions. Such a

region is the Highlands and Islands of Scotland [32]. The community there is interested in

teaching the ancient language of Gaelic to its younger generations. One of the problems

with this endeavor is that the experts in Gaelic are few and usually live far away from these

remote communities. Highlands and Islands Enterprise (HIE), a company invested in the

welfare and social well-being of Scotland, is interested in helping bring Gaelic to more of

these remote communities. HIE has been seeking to invest in new technologies to help

solve this problem. Fortunately, the remote islands and highlands of this region are

connected via broadband internet. This internet connection infrastructure could be

leveraged by the Huggable platform to allow teachers to log into these robots and deliver

educational material.

Children with autism have difficulty adjusting to new teachers when the graduate from one

grade to the next. The Huggable robot could be used to deliver educational material to

these children by allowing teachers to puppeteer the robot. Furthermore, since the child

interacts with only the robot, the constant and familiar form will help the child adjust to

changes in teachers.

Entertainment

Expert puppeteer's could make a theme park come to life by controlling Huggable robots

that greet, give information, and entertain visitors. These robots could come in a variety of

form factors to represent the different characters of the theme park, and yet they would

utilize the same puppeteering technologies developed for this thesis. Furthermore, using the

technologies that allow the puppeteer to understand their remote environment and

understand how they are being interacted with, visitors could even pick up these robots and

take them along as a personal theme park tour guide. Puppeteers, could give advice on

which rides to go on, or what restaurants have the food the visitors crave. These robots

could even listen to all the places the visitors want to go to for the day and plan a shortest

path around the park that would visit each place. And with sophisticated enough semi-

autonomous behaviors, a very skilled puppeteer could even control multiple robots at once.

The Huggable robots could provide the park with a rich and entertaining experience for their

visitors and even the puppeteers.

Robots have long been used in the film industry in movies such as Jurassic Park and Star

Wars. Sometimes these robots can take a team of people to control all of the robot's

degrees of freedom during filming. The puppeteering technologies designed here, such as

the stale panorama and technologies designed by other members of my research group,

such as the embodied puppeteering interface could reduce the size of the team to one.

Industrial Robots

The extensibility of the Huggable platform could be used to provide software for a variety of

industrial robots. The diagnostic and monitoring pages could allow technicians to maintain

their shop floor's robotic workers by providing with the information they need to diagnose

problems quickly. Puppeteer's could use the interfaces of the Huggable platform to have the

robot perform dangerous tasks needed for their job. The intuitive nature of the Huggable

puppeetering technologies could reduce the amount of training these puppeteers would

need. Developers could quickly incorporate new sensors on their robot by designing MSRS

services for them and running them along side the rest of the Huggable platform.

Conclusion

This thesis presents a robotic framework that is designed to be extensible and robust. In

addition, the framework was tailored to fit the requirements of a semi-autonomous robot-

mediated social communication application. I have described the sorts of technologies that

make the platform easy to maintain, extensible, and capable of integrating legacy

technologies. I have also presented a series of technologies that make the remote social

communication activity engaging for the user as well as for the puppeteer. Many of the

technologies described here aid the puppeteer in the complex activity of controlling a

sophisticated robot and helping him or her to understand how the robot is interacted with.

Some interesting engineering problems included designing a framework to work on a

difficult platform such as the internet, designing an intuitive and novel puppeteering user

interface that would not assume any skill of the puppeteer, and exploring the idea of semi-

autonomy with a sociable robot.

Certainly, the performance of this system was not thoroughly tested except in an informal

user trial. However, even an event such the making of a demonstration film produced

insightful knowledge about which parts of the system worked and which ones needed

improvement. In retrospect, it would have been smarter to have developed a defined set of

metrics on which to evaluate the system. While there were requirements defined for the

social communication application, there was no guidance on how to measure the degree of

success in meeting those requirements. Furthermore, the degree of success of the platform

was measured against how well it allowed for the development of the social communication

application.

Nonetheless, the design and development of such a large and complex robotic platform

provided me with countless hours of experience and stretched my knowledge to span over

many different fields outside of computer science and engineering such as mechanical

engineering, electrical engineering, and psychology. The multi-disciplinary nature of robotics

allows me to work with constraints beyond the computer software and internalize the insight

gained from such work to apply in future endeavors. The opportunity to design large

systems such as the one created for this thesis is rare and I am grateful that I was given

such an oppurtunity.

The Huggable project will be an ongoing endevour for many more years. I am happy that

children who have had the chance to briefly interact with the Huggable robot have shown

joy and enthusiasm for it. I believe that the project is a worthy one and necessitates the

need for talented students to continue its success. The aims of this project are universally

supported by communities and governments around the world, and I hope astute and

prudent investors will realize its impact and join in the support of this project for the years

to come.

Acknowledgments

I thank the members of the Personal Robotics Group who have guided and inspired me in

the field of robotics. I thank Allan Maymin for his extensive computer programming talent

and knowledge. I thank Lily Liu for her wonderful teddy bear drawings that made the

puppeteering interface the what it is. And finally, I thank my brother, Steve Toscano, for his

insightful guidance in the field of Computer Science and his constant deep interest in my

studies.

Bibliography

1. Apple, "Dynamic HTML and XML: The XMLHttpRequest Object", The Developer
Connection, http://developer.apple.com/internet/webcontent/xmlhttpreq.html.

2. Blumberg, Bruce, et. al., "Integrated Learning for Interactive Synthetic Characters",
ACM Transactions on Graphics, 2002.

3. Brave, S., Dahley, A., "inTouch: A Medium for Haptic Interpersonal
Communication", http://tangible.media.mit.edu/papers/inTouch_CH197.php, CHI
1997.

4. Breazeal, Cynthia L., Designing Sociable Robots, The MIT Press, 2002.
5. Breazeal, Cynthia L., et. al., "Using Perspective Taking to Learn From Ambiguous

Demonstrations", Journal of Robotics and Autonomous Systems Special Issue on
Robot Programming by Demonstration, 2006.

6. CereProc, http://www.cereproc.com/.
7. CuteCircuit, The Hug Shirt, http://www.cutecircuit.com/projects/wearables/

thehugshirt/.
8. DiSalvo, C., et al., "The Hug: An Exploration of Robotic Form for Intimate

Communication", in Ro-Man 2003.
9. Fischler, Martin A. and Bolles, Robert C. (June 1981), "Random Sample Consensus:

A Paradigm for Model Fitting with Applications to Image Analysis and Automated
Cartography", http://portal.acm.org/citation.cfm?doid=358669.358692, 1981.

10. Gamma, Erich, et. al., Design Patterns: Elements of Reusable Object-Oriented
Software, Addison-Wesley Professional, 1994.

11. Goza, S. M., et. al., "Telepresence control of the NASA/DARPA Robonaut on a
Mobility Platform", Proceedings of the SIGCHI conference on Human Factors in
Computing Systems, Vienna, Austria, ACM, 2004, pp. 623-629.

12. Hancher, M, "A Motor Control Framework for Many-Axis Interactive Robots", MIT
Masters Thesis 2003.

13. Interbots. http://www.etc.cmu.edu/projects/ibi/.
14. Ishiguro, H., et. al., "Andriod as a Telecommunication Medium with a Human-Like

Presence", HRI 2007, Arlington, Virginia, USA, 2007, pp. 193-200.
15. Kidd, C., "Sociable Robots: The Role of Presence and Task in Human-Robot

Interaction", in MIT Media Lab Master's Thesis. 2003, MIT: Cambridge, MA. 2003.
16. Lee, Jun K. and Toscano, Robert L., "The Design of a Semi-Autonomous Robot

Avatar for Family Communication and Education", Accepted in Ro-Man 2008.
17. Lowe, David G., "Distinctive image features from scale-invariant keypoints,"

International Journal of Computer Vision, 60, 2 (2004), pp. 91-110.
http://www.cs.ubc.ca/spider/Iowe/pubs.html, 2004.

18. Nielsen, J., and Molich, R., Heuristic evaluation of user interfaces, Proc. ACM CHI'90
Conf., 1990, Seattle, WA, 249-256.

19. OpenCV, OpenCV Library Wiki, http://opencvlibrary.sourceforge.net/
20. Reading with Rover, http://readingwithrover.org/
21. Siracusa, M., et. al., "A Multi-Modal Approach for Determining Speaker Location and

Focus", ICMI 2003, http://groups.csail.mit.edu/vision/vip/papers/
Siracusa_icmi2003.pdf, 2003.

22. Somby, Michael, "Comparison of Robotic Frameworks",
http://www.linuxdevices.com/articles/AT5739475111.html, Aug. 17, 2007.

23. Sony, Sony Aibo, http://support.sony-europe.com/aibo/1_2_library.asp.
24. Steinmetz, Ralf, "Human Perception of Jitter and Media Synchronization", IEEE

Journal on Selected Areas in Communication, Vol. 14, No. 1, 1996.

25. Stiehl, W. D., et. al., "Design of a Therapeutic Robotic Companion for Relational,
Affective Touch", IEEE International Workshop on Robot and Human Interactive
Communication, RO-MAN 2005, Nashville, TN, USA, 2005.

26. Stiehl, W. D., et. al., "A 'Sensitive Skin' for Robotic Companions Featuring
Temperature, Force, and Electric Field Sensors", IEEE/RSJ International Conference
on Intelligent Robots and Systems, IROS 2006, Beijing, China, 2006.

27. Thrun, S., et, al., "Robust Monte Carlo Localization for Mobile Robots", Aritficial
Intelligence (Journal), 2000.

28. Thrun, S., Robotic Mapping: A Survey, Exploring Artificial Intelligence in the New
Millenium, 2002.

29. Wikipedia, "ACID", http://en.wikipedia.org/wiki/ACID.
30. Wikipedia, "Audio Frequency", http://en.wikipedia.org/wiki/Audio_frequency.
31. Wikipedia, "Fittz's Law", http://en.wikipedia.org/wiki/Fitts%27_law.
32. Wikipedia, "Scottish Highlands", http://en.wikipedia.org/wiki/Scottish_highlands.
33. Yoshino, K., "Disney Re-Animates Theme Park with No Human in Sight", The Seattle

Times, Seattle, WA, 2007.

