439,169 research outputs found

    Unitization during Category Learning

    Get PDF
    Five experiments explored the question of whether new perceptual units can be developed if they are diagnostic for a category learning task, and if so, what are the constraints on this unitization process? During category learning, participants were required to attend either a single component or a conjunction of five components in order to correctly categorize an object. In Experiments 1-4, some evidence for unitization was found in that the conjunctive task becomes much easier with practice, and this improvement was not found for the single component task, or for conjunctive tasks where the components cannot be unitized. Influences of component order (Experiment 1), component contiguity (Experiment 2), component proximity (Experiment 3), and number of components (Experiment 4) on practice effects were found. Using a Fourier Transformation method for deconvolving response times (Experiment 5), prolonged practice effects yielded responses that were faster than expected by analytic model that integrate evidence from independently perceived components

    Feedback can be superior to observational training for both rule-based and information-integration category structures

    Get PDF
    The effects of two different types of training on rule-based and information-integration category learning were investigated in two experiments. In observational training, a category label is presented, followed by an example of that category and the participant's response. In feedback training, the stimulus is presented, the participant assigns it to a category and then receives feedback about the accuracy of that decision. Ashby, Maddox, and Bohil (2002) reported that feedback training was superior to observational training when learning information-integration category structures, but that training type had little effect on the acquisition of rule-based category structures. These results were argued to support the COVIS dual-process account of category learning. However, a number of non-essential differences between their rule-based and information-integration conditions complicate interpretation of these findings. Experiment 1 controlled, between category structures, for participant error rates, category separation, and the number of stimulus dimensions relevant to the categorization. Under these more controlled conditions, rule-based and information-integration category structures both benefitted from feedback training to a similar degree. Experiment 2 maintained this difference in training type when learning a rule-based category that had otherwise been matched, in terms of category overlap and overall performance, with the rule-based categories used in Ashby et al. These results indicate that differences in dimensionality between the category structures in Ashby et al. is a more likely explanation for the interaction between training type and category structure than the dual-system explanation they offered

    A Neural Model of Multidigit Numerical Representation and Comparison

    Full text link
    The Extended Spatial Number Network (ESpaN) is a neural model that simulates processing of high-level numerical stimuli such as multi-digit numbers. The ESpaN model targets the explanation of human psychophysical data, such as error rates and reaction times, about multi-digit (base 10) numerical stimuli, and describes how such a competence can develop through learning. The model suggests how the brain represents and processes an open-ended set of numbers and their regularities, such as the place-value structure, with finite resources in the brain. The model does that by showing how a multi-digit spatial number map forms through interactions with learned semantic categories that symbolize separate digits, as well as place markers like "tens," "hundreds," "thousands," etc. When number-stimuli are presented to the network, they trigger learning of associations between specific semantic categories and corresponding spatial locations of the spatial number map that together build a multi-digit spatial representation. Training of the network is aimed at portraying the process of development of human numerical competence during the first years of a child's life. The earlier SpaN model proposed a spatial number map, which both human and animal possess in their Where cortical processing stream, that can explain many data about analog numerical representation and comparison. The ESpaN model shows how learned cognitive categories in the What cortical processing stream can extend numerical competence to multi-digit numbers with a place-value structure. The ESpaN model hereby suggests how cortical cognitive and spatial processes can utilize a learned What-and-Where interstream interaction to control the development of multidigit numerical abilities.National Science Foundation (IRI-97-20333); Defense Advanced Research Projects Agency and the Office of Naval Research (NOOOI4-95-I-0409

    Creating proactive interference in immediate recall: building a dog from a dart, a mop and a fig

    Get PDF
    [Abstract]: Phonemic codes are accorded a privileged role in most current models of immediate serial recall, although their effects are apparent in short-term proactive interference (PI) effects as well. The current research looks at how assumptions concerning distributed representation and distributed storage involving both semantic and phonemic codes might be operationalized to produce PI in a short-term cued recall task. The four experiments reported here attempted to generate the phonemic characteristics of a non-rhyming, interfering foil from unrelated filler items in the same list. PI was observed when a rhyme of the foil was studied or when the three phonemes of the foil were distributed across three studied filler items. The results suggest that items in short-term memory are stored in terms of feature bundles and that all items are simultaneously available at retrieval

    EU accession and Poland's external trade policy

    Get PDF
    No description supplie

    Reevaluating evaluative conditioning: A nonassociative explanation of conditioning effects in the visual evaluative conditioning paradigm

    Get PDF
    In 2 studies, the authors investigated whether evaluative conditioning (EC) is an associative phenomenon. Experiment 1 compared a standard EC paradigm with nonpaired and no-treatment control conditions. EC effects were obtained only when the conditioned stimulus (CS) and unconditioned stimulus (UCS) were rated as perceptually similar. However, similar EC effects were obtained in both control groups. An earlier failure to obtain EC effects was reanalyzed in Experiment 2. Conditioning-like effects were found when comparing a CS with the most perceptually similar UCSs used in the procedure but not when analyzing a CS rating with respect to the UCS with which it was paired during conditioning. The implications are that EC effects found in many studies are not due to associative learning and that the special characteristics of EC (conditioning without awareness and resistance to extinction) are probably nonassociative artifacts of the EC paradigm

    Analytic frameworks for assessing dialogic argumentation in online learning environments

    Get PDF
    Over the last decade, researchers have developed sophisticated online learning environments to support students engaging in argumentation. This review first considers the range of functionalities incorporated within these online environments. The review then presents five categories of analytic frameworks focusing on (1) formal argumentation structure, (2) normative quality, (3) nature and function of contributions within the dialog, (4) epistemic nature of reasoning, and (5) patterns and trajectories of participant interaction. Example analytic frameworks from each category are presented in detail rich enough to illustrate their nature and structure. This rich detail is intended to facilitate researchers’ identification of possible frameworks to draw upon in developing or adopting analytic methods for their own work. Each framework is applied to a shared segment of student dialog to facilitate this illustration and comparison process. Synthetic discussions of each category consider the frameworks in light of the underlying theoretical perspectives on argumentation, pedagogical goals, and online environmental structures. Ultimately the review underscores the diversity of perspectives represented in this research, the importance of clearly specifying theoretical and environmental commitments throughout the process of developing or adopting an analytic framework, and the role of analytic frameworks in the future development of online learning environments for argumentation

    Sequence effects in categorization of simple perceptual stimuli

    Get PDF
    Categorization research typically assumes that the cognitive system has access to a (more or less noisy) representation of the absolute magnitudes of the properties of stimuli and that this information is used in reaching a categorization decision. However, research on identification of simple perceptual stimuli suggests that people have very poor representations of absolute magnitude information and that judgments about absolute magnitude are strongly influenced by preceding material. The experiments presented here investigate such sequence effects in categorization tasks. Strong sequence effects were found. Classification of a borderline stimulus was more accurate when preceded by a distant member of the opposite category than by a distant member of the same category. It is argued that this category contrast effect cannot be accounted for by extant exemplar or decision-bound models of categorization. The effect suggests the use of relative magnitude information in categorization. A memory and contrast model illustrates how relative magnitude information may be used in categorization

    A Neural Model of How the Brain Represents and Compares Multi-Digit Numbers: Spatial and Categorical Processes

    Full text link
    Both animals and humans are capable of representing and comparing numerical quantities, but only humans seem to have evolved multi-digit place-value number systems. This article develops a neural model, called the Spatial Number Network, or SpaN model, which predicts how these shared numerical capabilities are computed using a spatial representation of number quantities in the Where cortical processing stream, notably the Inferior Parietal Cortex. Multi-digit numerical representations that obey a place-value principle are proposed to arise through learned interactions between categorical language representations in the What cortical processing stream and the Where spatial representation. It is proposed that learned semantic categories that symbolize separate digits, as well as place markers like "tens," "hundreds," "thousands," etc., are associated through learning with the corresponding spatial locations of the Where representation, leading to a place-value number system as an emergent property of What-Where information fusion. The model quantitatively simulates error rates in quantification and numerical comparison tasks, and reaction times for number priming and numerical assessment and comparison tasks. In the Where cortical process, it is proposed that transient responses to inputs are integrated before they activate an ordered spatial map that selectively responds to the number of events in a sequence. Neural mechanisms are defined which give rise to an ordered spatial numerical map ordering and Weber law characteristics as emergent properties. The dynamics of numerical comparison are encoded in activity pattern changes within this spatial map. Such changes cause a "directional comparison wave" whose properties mimic data about numerical comparison. These model mechanisms are variants of neural mechanisms that have elsewhere been used to explain data about motion perception, attention shifts, and target tracking. Thus, the present model suggests how numerical representations may have emerged as specializations of more primitive mechanisms in the cortical Where processing stream. The model's What-Where interactions can explain human psychophysical data, such as error rates and reaction times, about multi-digit (base 10) numerical stimuli, and describe how such a competence can develop through learning. The SpaN model and its explanatory range arc compared with other models of numerical representation.Defense Advanced Research Projects Agency and the Office of Naval Research (N00014-95-1-0409); National Science Foundation (IRI-97-20333
    • 

    corecore