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Abstract

The effects of two different types of training on rule-based and information-integration

category learning were investigated in two experiments. In observational training, a

category label is presented, followed by an example of that category and the

participant’s response. In feedback training, the stimulus is presented, the participant

assigns it to a category and then receives feedback about the accuracy of that

decision. Ashby, Maddox, and Bohil (2002) reported that feedback training was

superior to observational training when learning information-integration category

structures, but that training type had little effect on the acquisition of rule-based

category structures. These results were argued to support the COVIS dual-process

account of category learning. However, a number of non-essential differences between

their rule-based and information-integration conditions complicate interpretation of

these findings. Experiment 1 controlled, between category structures, for participant

error rates, category separation, and the number of stimulus dimensions relevant to

the categorization. Under these more controlled conditions, rule-based and

information-integration category structures both benefitted from feedback training to

a similar degree. Experiment 2 maintained this difference in training type when

learning a rule-based category that had otherwise been matched, in terms of category

overlap and overall performance, with the rule-based categories used in Ashby et al.

These results indicate that differences in dimensionality between the category

structures in Ashby et al. is a more likely explanation for the interaction between

training type and category structure than the dual-system explanation they offered.

KEYWORDS: COVIS, categorization, implicit, explicit, feedback.
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Ashby and Maddox (2011) stated that many researchers now assume multiple

systems are involved in category learning. To the extent that this claim is accurate, it is

down in no small part to the behavioral dissociations reported by Ashby, Maddox and

colleagues. These studies tend to find a differential effect of a manipulation on the learning

of two types of category structure: rule-based and information-integration. Ashby and

Maddox (2011) argue that these dissociations are predicted by one particular dual-system

model of category learning, COVIS (COmpetition between Verbal and Implicit Systems;

Ashby, Alfonso-Reese, Turken, & Waldron, 1998; Ashby, Paul, & Maddox, 2011), which

assumes the existence of two competing systems of category learning. The strength of the

case for COVIS is, of course, not a function of the number of dissociations that have been

reported, but rather of the number that prove to be reliable and valid. Indeed, there is a

growing body of work that casts doubt on the validity or interpretation of a high

proportion of these dissociations (e.g. Dunn, Newell, & Kalish, 2012; Newell, Dunn, &

Kalish, 2010; Newell, Moore, Wills, & Milton, 2013; Stanton & Nosofsky, 2007, 2013). In

light of this accumulation of critiques, it becomes particularly important to assess the

remaining dissociations. In the current article, we report a re-examination of an influential

dissociation reported by Ashby, Maddox, and Bohil (2002), which has not been previously

re-examined.

Ashby et al. (2002) compared the effect of observational and feedback training on

categorization performance. On each trial in observational training, participants were

shown the correct category label, followed by the stimulus, and then made a classification

response. In feedback training, participants were shown the stimulus, made a classification

response and then received feedback on the accuracy of that response. The stimuli were

lines that varied in length and orientation. Two different category structures were

considered: a unidimensional rule-based structure, such as Figure 1(a), and a

two-dimensional diagonal information-integration structure, such as Figure 1(b). Ashby et

al. found that participants’ performance in the unidimensional rule conditions were similar



TRAINING TYPE AND CATEGORIZATION. 4

regardless of training type, whereas participants in the information-integration conditions

were less accurate with observational training than those with feedback training. They

argued that these findings support the COVIS model of category learning (Ashby et al.,

1998, 2011).

Figure 1 about here

Ashby et al.’s (2002) dissociation is predicted by COVIS because the model assumes

that rule-based and information-integration category structures are most effectively learned

via dissociable neural systems that utilize feedback differently (Ashby et al., 1998). The

Verbal System relies on explicit, logical reasoning and excels at learning rule-based

categories by testing simple verbal rules such as “short lines belong to Category A and long

lines belong to Category B”, such as Figure 1(a), or conjunctive rules such as “large,

horizontal lines belong to Category A, otherwise they belong to Category B”, illustrated in

Figure 1(c). The Verbal System operates via a process of hypothesis generation and testing

that utilises working memory to maintain representations of the stimulus and the current

rule long enough to learn regardless of the order in which the information is presented

(Ashby et al., 2002). Consequently, as found by Ashby et al., COVIS predicts that training

type should have little effect on the learning of rule-based categories. In contrast, the

Implicit System integrates information from the multiple stimulus dimensions

pre-decisionally and associates this representation with a particular motor response. The

Implicit System is proposed to be responsible for learning “information-integration”

category structures, illustrated in Figure 1(b), where the perceptual boundary between the

categories is difficult or impossible to describe verbally and therefore cannot be optimally

learned by the verbal system (Ashby et al., 1998). The Implicit System is hypothesised to

be sensitive to how feedback is presented. It relies on unexpected reward to learn, so

should learn more effectively when feedback follows a response than when the category

label precedes the response (Ashby & Maddox, 2003). This means that COVIS predicts, as
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found by Ashby et al. (2002), that learning of information-integration categories should be

impaired with observational training relative to feedback training.

In terms of COVIS, the critical difference between the rule-based and

information-integration categories is that the former structure is readily verbalizable

whereas the latter is not (Ashby et al., 1998). This is because verbalizability determines

which system is responsible for optimum responding. Therefore, an ideal test of COVIS’s

predictions about the effect of training type on category learning should vary

verbalizability while holding other potential confounds constant. However, Ashby et al.’s

(2002) study contained three superfluous factors that varied between the rule-based and

information-integration categories. First, the number of dimensions required to accurately

learn each category varied: the information-integration structure required participants to

utilise both stimulus dimensions, whereas the rule-based category structures only required

one. Single-dimension classification has been shown to sometimes require less cognitive

resources (as indexed by the effects of concurrent load and time pressure) than

multi-dimension classification (Milton, Longmore, & Wills, 2008; Wills, Milton, Longmore,

Hester, & Robinson, 2013). Therefore, training type may be less critical in the rule-based

conditions than the information-integration conditions because it is a less demanding

category structure.

Second, participants in Ashby et al.’s (2002) first experiment made very few errors

in the rule-based conditions, but rather more in the information-integration conditions,

raising the possibility that the observed dissociation was the result of a ceiling effect. Ashby

et al. partially addressed this possibility by running a second study in which the rule-based

structure was made harder to learn by reducing the between-category separation. Although

the overall performance of participants decreased, there was still no statistically significant

difference between observational and feedback training for rule-based categories under these

conditions, supporting Ashby et al.’s interpretation. That being said, performance was

marginally better with feedback training compared to observational training. In addition,
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difficulty was only increased for one of the two combined counterbalance conditions, and

there were only five participants per condition. Thus, the lack of a significant difference in

Ashby et al.’s Experiment 2 might be attributable to a lack of statistical power.

Third, in both of Ashby et al.’s (2002) experiments, the rule-based structures had

lower category separation than the information-integration structures. Category separation

is the mean distance between category items as plotted in stimulus space, divided by the

within-category variance along the direction of the comparison. Given that differences in

category separation were shown by Stanton and Nosofsky (2007) to be responsible for the

dissociation in another paper purported to support COVIS (Maddox, Ashby, Ing, &

Pickering, 2004), it seems important to control for this factor in future investigations of

Ashby et al.’s (2002) dissociation.

Although it is difficult to simultaneously control all three of these factors (number

of relevant dimensions, error rates and category separation) while maintaining the essential

difference in verbalizability, this goal has been achieved in other COVIS-related studies.

Specifically, Filoteo, Lauritzen, and Maddox (2010) in their study of the effects of

concurrent load on rule-based and information-integration category learning, employed the

category structures illustrated in Figures 1(b) and 1(c). Filoteo et al.’s rule-based structure

is a conjunctive rule and so requires participants to be sensitive to both stimulus

dimensions. Furthermore, Filoteo et al.’s study establishes empirically that these

rule-based and information-integration structures are well matched on participant error

rates. They are also closely matched on category separation.

For these reasons, Experiment 1 re-examined the effect of feedback compared to

observational training using the category structures utilized by Filoteo et al. (2010). For

this experiment, COVIS predicts that feedback training should be superior to observational

training for the information-integration structure, but that training type should matter

relatively little for the rule-based structure. However, Ashby et al.’s data is also consistent

with the hypothesis that feedback is superior to observation for both rule-based and
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information-integration category structures. This is because the dissociation observed by

Ashby et al. may be due to one or more of the superfluous factors for which they did not

control (participant errors, category separability, problem dimensionality). Under this

latter hypothesis, the current experiment should show a similar feedback advantage for

both category structures, because these superfluous factors have been better controlled.

In addition to an examination of response accuracy, we also asked participants, at

the end of the experiment, to describe their classification strategies. Not only does previous

evidence indicate that reported strategy use can be informative when comparing the effect

of feedback and observational training on a probabilistic category learning task (Newell,

Lagnado, & Shanks, 2007), but it can also directly assesses whether participants can

verbalize the category structure. If the rule-based, conjunction category structure is more

verbalizable than the information-integration category structure, then participants should

be more successful at describing the underlying structure in the rule-based condition than

the information-integration condition. Also, the use of model-based analysis of

participants’ responses, based around General Recognition Theory (GRT; Ashby & Gott,

1988), is standard practice within experiments inspired by the COVIS model. Although we

have some reservations about this procedure, we have presented these analyses to facilitate

comparison with other work in this field.

Experiment 1

Method

Participants and apparatus 80 participants (47 female) were recruited from the

University of Exeter community and were not rewarded for their participation.

The experiment was run using MATLAB with the Psychophysics Toolbox

(Brainard, 1997; Pelli, 1997) extensions on a MacBookPro with a 15-inch screen.
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Design The experiment had a 2 (category structure: rule-based,

information-integration) x 2 (training type: observation, feedback) between-subjects,

factorial design. 20 participants were randomly assigned to each condition. Category

learning was measured by the percentage of correct responses in each block.

Stimuli We used the same stimuli as in the two-dimensional

information-integration, Figure 1(b), and rule-based, Figure 1(c), conditions of Filoteo et

al. (2010). Each stimulus was a single black line on a white background that varied on two

dimensions: line length and orientation. In both conditions, maximum accuracy was 95%

as 5% of the stimuli overlapped the optimal category boundary.

Procedure Participants in all conditions were informed that they would be shown

a series of lines that varied in length and orientation, that their task was to assign the lines

to either Category A or Category B and that approximately half the lines were in each

category. They were also told that at the beginning they may have to guess but by the end

they should be able to reach high levels of accuracy. They were further informed of the

structure of the experiment, the format of the trials, the position of feedback within the

trial (which varied between conditions) and the response keys.

The experiment consisted of 10 blocks of 60 trials, with 600 trials in total.

Participants assigned stimuli to either Category A (by pressing the ‘Z’ key) or Category B

(by pressing the ‘/’ key). Starting with a training block, the blocks alternated between

training and test. This was to provide a measure of performance during learning for both

observational and feedback conditions as well as to facilitate comparison with Ashby et al.

(2002). The training trials of the feedback learning conditions consisted of displaying the

stimulus for 500ms, followed by a blank screen for 500ms, followed by a self-paced

classification response. Finally the correct category label was displayed for 500ms. In the

observational learning condition training trials consisted of first displaying the correct

category label for 500ms, followed by a blank screen for 500ms, followed by the stimulus for



TRAINING TYPE AND CATEGORIZATION. 9

500ms to which the participant made a self-paced response. The test trials in both

feedback and observational training conditions included no information about the correct

category assignment and consisted of a stimulus displayed for 500ms followed by a

self-paced response. The inter-trial interval in all conditions was 500ms.

At the end of the experiment, participants were presented with a questionnaire that

asked them to describe whether they had a specific strategy when classifying the items

and, if so, to describe it, using either words or pictures.

Data archiving The trial-level raw data are archived at

www.willslab.co.uk/exe201201/ with md5 checksum

3a294887e14de59dc09bab76c27a91621.

Results

Following Ashby et al. (2002), analyses were conducted on the final test block of the

data from all participants. Conducting the analyses across all test blocks led to the same

conclusions, as did excluding participants failing to reach 50% on the final block (the

analysis method and exclusion criterion applied by Filoteo et al., 2010). Figure 2 shows

mean accuracy for each condition in just the last test block, Figure 2(a), and across all test

blocks, Figure 2(b).

Figure 2a) and 2b) about here

An ANOVA revealed a significant main effect of training type, F (1, 76) = 7.68,

η2 = 0.09, p = .007, but not of category structure, F (1, 76) = 1.89, η2 = 0.02, p = .175.

Hence, participants learned more in the feedback training condition than in the

observational training condition when learning both rule-based and information-integration

categories. The interaction between training type and category structure was also

1Publication of an MD5 checksum allows the reader to independently confirm that the raw data in the
archive is unchanged.
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non-significant, F (1, 76) = 0.058, η2 = 0.00, p = .811.

Bayesian analysis The standard statistical analyses above indicate that, unlike in

Ashby et al. (2002), there appears to be no difference between rule-based and

information-integration categories in the effect of training type on learning. However, in

null-hypothesis significance testing, non-significant results are ambiguous; they could either

be due to insufficient statistical power or due to the null hypothesis being correct (Dienes,

2011). As the interaction between training type and category structure formed the basis of

the conclusions drawn by Ashby et al. (2002), it is important to determine whether the

reason the current study failed to find an effect was because it lacked power. One way of

determining this is to calculate Bayes Factors for the relevant comparisons (Dienes, 2011).

Briefly, if the Bayes Factor is over three then the experiment has found evidence for the

experimental hypothesis whereas if the Bayes Factor is less than a third, the experiment

finds evidence for the null hypothesis (Jeffreys, 1961). A Bayes Factor of one indicates that

the evidence is exactly neutral with respect to the experimental and null hypotheses

(Dienes, 2011). Values between a third and three are typically interpreted as indicating

that the experiment was not sensitive enough and no conclusions can be drawn.

To calculate the Bayes Factor for the interaction between category structure and

learning type we followed the procedure recommended by Dienes (2011). This requires the

expected average difference between the two differences to be specified. In Ashby et al.

(2002), the observed mean difference of differences between the information-integration

conditions in Experiment 1 and the rule-based conditions in Experiment 2 were

approximately 15%, and we used this figure in our analyses. This cross-experimental

difference was used as the rule-based structure in Experiment 2 was better controlled for

differences in overall error rates. Following the recommendations of Dienes (2011), we

assumed a normal distribution around this mean with standard deviation of half the mean

(i.e. 7.5, representing the experimental hypothesis that differences as small as zero are

unlikely). These calculations result in a Bayes Factor of 0.18. As the Bayes Factor is less
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than a third, it indicates that the data provides support for the null hypothesis, i.e. that

there is no difference between rule-based and information-integration category learning in

the effect of varying training type. These conclusions held even if the expected average

difference between the rule-based and information-integration conditions was

underestimated by up to a third of that reported by Ashby et al.

State-trace plot The analyses above indicate that there are no differences between

the acquisition of rule-based and information-integration categories. However, these

analyses do not consider the qualitative pattern of learning throughout the experiment. As

the key conceptual claim of COVIS is that there are two mechanisms of learning, it could

be argued that these analyses have failed to identify multiple systems only because the

difference in learning between training types just happened to be the same for rule-based

and information-integration learning by the end of training. To examine the validity of this

claim, we used state-trace analysis (Bamber, 1979; Loftus, Oberg, & Dillon, 2004), which

has previously been used with great success on this type of category learning data (Newell

et al., 2010; Dunn et al., 2012).

State-trace analysis is an alternative to dissociation logic that allows experimenters

to determine whether multiple systems are required to explain an experimental result. This

is accomplished by drawing a state-trace plot. To do this, two dependent variables, in this

case performance on the rule-based and information-integration category structures, are

plotted on the x and y axes. Then, a trace is plotted for each training type condition, with

each point being the accuracy from each test block. The state-trace plot is then inspected

to determine whether the traces are consistent with a single- or multiple-system account. If

the two traces overlap to form a single monotonic function, then there is an absence of

evidence that a multiple-process account is required to explain the observations. If the

traces form two monotonic functions, then this is often interpreted as being more

supportive of a multi-process account, although the question of what the term

“multi-process” means in the context of state-trace analysis has been the topic of recent
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debate (Dunn, Kalish, & Newell, 2014). In brief, both Yeates and colleagues (Yeates, Wills,

Jones, & McLaren, 2012, in press) and Ashby (2014) have identified situations where

models typically considered to be single-system accounts can produce two functions on a

state-trace plot through variation in a single parameter (specifically, attention weight in

the Generalized Context Model, Nosofsky, 1986, and learning rate in the Simple Recurrent

Network, Elman, 1990).

Figure 3 about here

From visually inspecting Figure 3, the data from the current experiment forms a

single monotonic curve. This suggests an absence of evidence that a multi-process account

such as COVIS is required to account for the current results. However, it is worth noting

that to conclusively infer this, the plot should be statistically tested for a significant

departure from monotonicity.

Model-based analyses The COVIS-based predictions for this data set (see

Introduction) are contingent on the assumption that the category type manipulation

corresponds to a change in the learning system that controls responding. Practically, this

means that there should be more people using the verbal system in the rule-based category

conditions than in the information-integration conditions, and vice-versa for the implicit

system. Experimental studies within the COVIS framework utilize model-based analysis

constructed from GRT (Ashby & Gott, 1988) to examine this assumption. For each

participant, this analysis determines the optimum decision boundary in stimulus space that

separates the stimuli judged by each participant to be in Category A from those in

Category B. Each participant is then assigned a strategy type, such as unidimensional, on

the basis of characteristics of their optimum boundary. The assumption that the category

type manipulation has resulted in a change of category learning system is argued to be

valid if more participants are using the optimum decision bound for the category structure

they have been assigned to, such as a diagonal decision boundary in the
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information-integration conditions, than are using that strategy in the inappropriate

category structure, such as a diagonal decision boundary in the rule-based conditions.

The GRT-based analysis determines which of a pre-defined set of decision-boundary

models best describes the classification each participant has produced. The set of models

considered in this analysis were as follows:

The unidimensional models assume that the participant determines a criterion

along one of the stimulus dimensions, either orientation or length. They then make a

decision about the category membership of each stimulus by comparing the appropriate

stimulus attribute with the criterion value. As an example, for length, this corresponds to

a rule of the type: ‘Assign to Category A if the stimulus is long, or Category B if short’.

The unidimensional models have two parameters: the value of the criterion and the

variance of internal (criterial and perceptual) noise.

The conjunction model assumes that the participants make two judgements, one for

each stimulus dimension, and then combine these to make a judgement about category

membership. The conjunction rule in the current analysis was of the type: ‘Assign to

Category A if the stimulus is short and upright, otherwise assign to Category B’. The

conjunction model had three parameters: the two criterion values and internal noise.

The General Linear Classifier (GLC) model assumes that the decision boundary

between the categories can be described by a straight line that can vary in gradient and

intercept. The unidimensional models are therefore special cases of the GLC model. The

GLC model has three parameters: the intercept and slope of the decision bound, plus noise.

The random model assumes that participants are responding randomly; it has no

parameters.

For each participant, the best fit of each of these models was calculated, and the

best-fitting model selected using Akaike’s information criterion (Akaike, 1974). The results

from this analysis, which was performed using the grt package in the R environment

(Matsuki, 2014), are reported in Table 1. Within the COVIS framework, the
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unidimensional and conjunction models are considered to represent explicit, rule-based

strategies, while the GLC is considered to represent an implicit, information-integration

strategy.

Table 1 about here.

In ordinal terms, the results of this analysis are consistent with the intended effects

of the experimental manipulation, as seen through the lens of the COVIS model and

GRT-based model analysis. Specifically, the proportion of participants best fit by a

conjunction model is higher in the rule-based condition than the information-integration

condition, and the proportion of participants best fit by the GLC model is higher in the

information-integration condition than in the rule-based condition.

It is perhaps not particularly surprising that some participants are best fit by a

unidimensional model, as a single-dimension strategy can optimally achieve approximately

75% accuracy in both the rule-based and the information-integration conditions. From a

COVIS perspective, it is not particularly problematic if some participants in the rule-based

condition are in fact employing a unidimensional rule, as this is still a rule-based strategy

and readily verbalizable. It is potentially more problematic from a COVIS perspective that

there are a reasonable proportion of participants best fit by unidimensional models in the

information-integration condition, potentially implying the presence of significant

rule-based responding in these conditions. A similar result was observed in Ashby et al.

(2002), although the proportion is higher in the current study. The presence of

unidimensional responders in an information-integration condition is typically

accommodated within COVIS by assuming that some participants have not yet transitioned

from the explicit system to the implicit system. The lower proportion of participants best

fit by unidimensional models in Ashby et al. (2002) may be due to the fact that Ashby et

al., in their modelling of their information-integration condition, constrained the GLC

model to have the gradient and intercept defined by the category structure. This
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constrained version of the model has just one parameter, while the unconstrained version

we employed has three parameters. In an AIC model-selection procedure, reducing the

number of free parameters of a model will, other things being equal, increase the

proportion of participants best fit by that model. Somewhat surprisingly, Ashby et al.

state that they employed the unconstrained version of the GLC in their fits of their

rule-based condition. This difference in fitting procedure between experimental conditions

seems odd, and may have contributed to the higher proportion of unidimensional classifiers

in their rule-based conditions compared to their information-integration conditions.

In summary, the model-based procedures that are standard in this field broadly

support the supposition that participants in the rule-based conditions classify the stimuli

differently to participants in the information-integration conditions. The fact that a

conjunction model best fits more participants in the rule-based condition than the

information-integration condition, and a GLC model best fits more participants in the

information-integration condition than the rule-based condition, is broadly consistent with

the predictions of the COVIS model. Of course, what is not consistent with the COVIS

model is that, despite these differences, there is no difference in the size of the feedback

advantage in the rule-based and information-integration conditions.

Although seldom reported within the COVIS literature, it is also informative to look

at the performance of the best-fitting model relative to the performance of the competing

models. If the winning model performs much better than its competitors, we can be fairly

confident that this model provides the best description of the participant’s behavior, from

among the pre-specified alternatives. On the other hand, if the competing models perform

almost as well as the winning model, our confidence that the winning model provides the

best description should probably be lower.

One principled way of evaluating the model-based analysis is by calculating the

normalized probability that a conjunction model is preferred to the GLC for each

participant (or vice versa). This is done by calculating the Akaike weight, wi(AIC), for



TRAINING TYPE AND CATEGORIZATION. 16

each model for each participant (Wagenmakers & Farrell, 2004). This is defined as the

probability that model i is the best, in terms of minimising the Akaike information

criterion, given the data and the set of competing models. From the Akaike weights, the

normalized probability that Model i is to be preferred over Model j is calculated using

wi(AIC)

wi(AIC) + wj(AIC)
(1)

where wi(AIC) and wj(AIC) are the Akaike weights for models i and j respectively.

For the rule-based category structure conditions the probability of the ‘best’ model

being a conjunction, rather than the GLC, is 0.635 in the feedback training condition and

0.668 in the observational training condition. This provides additional support that

participants are genuinely using orthogonal decision boundaries to make decisions.

However, for the information-integration category structures the probability of the best

model being the GLC, rather than a conjunction, is much lower: 0.297 for the feedback

training condition and 0.382 for the observational training condition. Clearly, confidence in

the results of GRT-based model fitting in the information-integration conditions should be

low. We would be interested to see comparable information for Ashby et al. (2002), or any

other COVIS-relevant study, and suggest this or a similar measure be included in future

research.

Verbal report analysis An alternative explanation of these findings from within

the COVIS framework might be that the majority of participants in both the rule-based

and information-integration category structure conditions were using the implicit system.

It is possible that by increasing the number of relevant dimensions in the rule-based

structure, participants found this too difficult and so resorted to using the implicit system.

To investigate this possibility we examined the strategies reported by participants as

summarized in Table 2.

The verbal reports were independently coded by two of the authors (CERE and
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AJW) and any discrepancies that were not due to human error were easily resolved through

discussion. First, each verbal report was examined to determine whether the participant

had reported an explicit categorisation strategy or not. The inter-rater reliability for this

was perfect, κ = 1, p < .001. Second, the available strategy descriptions were sorted into

groups of three main kinds: unidimensional, two-dimensional and miscellaneous.

Participants were placed in the unidimensional length or unidimensional orientation

groups if they described categorizing stimuli based solely on line length or line orientation

respectively.

Participants were placed in the conjunction group if they used both stimulus

dimensions and described categorizing stimuli using a logical conjunction rule such as

‘short, upright lines were in Category A, otherwise they were in Category B.’

Participants were placed in the information-integration group if they described

attempting to make the stimulus dimensions commensurable, such as ‘Stimuli for which the

line was longer than it was upright should be assigned to category A’ or if they said

anything that could be reasonably interpreted as a statement that they based their

classification on overall similarity. Note that overall similarity descriptions are commonly

found in other studies, not within the COVIS-framework, in which we have elicited verbal

reports (e.g., Wills et al., 2013).

Participants were placed in the two-dimensional group if they described using both

stimulus dimensions but with descriptions that were too unclear to be assigned to more

specific categories.

All remaining participants were assigned to the other group, which included

participants whose descriptions were too vague to be assigned to another group.

Inter-rater reliability for strategy assignment was high, κ = .813, p < .001, with the

majority of discrepancies appearing to be due to human error in applying the strategy

definitions, rather than any inherent ambiguity in the definitions themselves (as all

discrepancies were rapidly resolved by reference to the strategy descriptions). There were
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no significant differences between all conditions in the number of participants who did not

report a strategy, χ2(1) = 0.12, p = .730. With respect to the types of strategy reported,

there are very different patterns of responding between the rule-based and

information-integration category structure conditions. For the rule-based conditions,

although there is clearly some variability, the modal strategy correctly described the

conjunction structure. In addition, none of the participants in these conditions reported

using an overall similarity or information-integration strategy, and only 20.1% reported

using unidimensional strategies.

In contrast, no participant in the information-integration category structure

conditions reported any strategy that could be interpreted as describing the structure of

the information-integration category they had been presented. In these conditions,

participants were equally likely to report a unidimensional strategy as they were to report

a conjunction rule, although strategies employing both dimensions were the majority

indicating a sensitivity to the fact that both dimensions were relevant. This summary is

supported by the fact that the number of participants in the rule-based category conditions

who reported the optimal strategy for the categorization problem they had been presented

(44.8% of the people who reported strategies) was significantly different from those in the

information-integration conditions who identified the correct strategy (0% of the people

who reported strategies), χ2(1) = 15.20, p < .001.

In sum, although participants found neither category structure trivial to verbalize,

participants in the rule-based category structure conditions were more able to verbalize the

underlying category structure than those in the information-integration conditions. Thus,

these analyses largely support the assertion that the rule-based category structure is more

readily verbalizable than the information-integration category structure.

Table 2 about here.
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Comparing model-based analyses with verbal reports The model-based

analyses and verbal reports used here are complementary approaches that both aim to

determine how participants are completing the task. However, from the summaries of these

analyses above, it appears that they are partially inconsistent with each other. To examine

the degree of correspondence between these approaches, we compared the strategy each

participant was assigned using the model-based analysis with the one they reported using

after the experiment (Table 3).

As can be seen, for the rule-based strategies (unidimensional, two-dimensional and

conjunction) the model-based analyses and verbal reports match reasonably well. This is

not the case for the GLC and reports of implicit or overall similarity responding; all

participants that were assigned to the GLC strategy in the model-based analysis reported

using an explicit rule-based strategy. One possible explanation for this disparity is that

participants were using an implicit, GLC based, strategy but were unable to describe it

correctly. Although, this may be unsurprising given that it is implicit, it seems unlikely

given that in previous, different but related, work participants were able to report this type

of strategy (Wills et al., 2013). Alternatively, it may be that the GLC is more inclusive

than the other models, and so results in participants that are using a rule-based strategy

being assigned to the GLC merely because they could not be assigned to another type of

strategy. This later hypothesis is supported by the Akaike weight for the GLC; this model

wins by a much lower margin than the others (see model-based analysis section).

Table 3 about here.

Discussion

Ashby et al. (2002) reported, as predicted by COVIS, that performance with

feedback training was superior to observational training when learning an

information-integration category structure, whereas for a unidimensional rule-based

category they found that these training types resulted in comparable performance. In
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contrast, we found that learning performance in Experiment 1 was better with feedback

training than observational training to a similar degree for both category structures. The

Bayesian Analysis verifies that there is truly no difference in learning performance between

the two category structures. This pattern of performance is not consistent with the claim

that there are two systems of category learning that are differentially affected by training

type. The state-trace analysis shown in Figure 3 also does not provide any evidence for a

dual-system approach. It consists of a single, monotonically increasing curve, which is

interpreted as evidence that performance in this experiment can be described by a single

system of category learning.

COVIS could encompass the pattern of performance found in Experiment 1, if

participants resorted to using the implicit system for both category structures. However,

this hypothesis is not supported by the verbal report analysis that found that participants

were equally likely to be able to report a strategy in all conditions, but that fewer

participants were able to describe the optimal strategy in the information-integration

conditions than in the rule-based conditions. Similarly, the model-based analysis indicates

that the conjunction model best fits more participants in the rule-based condition than the

information-integration condition, and a GLC model best fits more participants in the

information-integration condition than the rule-based condition. Therefore, the results of

Experiment 1 appear inconsistent with COVIS.

Experiment 2

Ashby et al. (2002) found an interaction between training type and category

structure. They argued that this pattern of results supported COVIS. However, Ashby et

al. included several confounds in their design that complicates interpretation of their

results: the number of stimulus dimensions relevant to categorization, category separation

and error rates. When these were controlled for in our Experiment 1, feedback training was

superior to observational training when learning both rule-based and
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information-integration categories—a pattern of results not consistent with COVIS. The

key difference between Experiment 1 and Ashby et al.’s findings is the appearance of a

feedback training advantage for rule-based categories. Experiment 2 of the present paper

aimed to determine which of the controlled for confounds might have resulted in this

difference in the effects of training type.

The number of dimensions relevant to classification seemed to be the most likely

cause of the difference between our Experiment 1 and Ashby et al. (2002). This is because

Ashby et al. (2002) manipulated category separation and error rates in a second

experiment and still did not find a statistically significant difference in performance due to

training type. Therefore, in Experiment 2 of the current paper, to discriminate

dimensionality from the other factors, the number of relevant dimensions in the category

structure were maintained whilst category separation and error rates were varied. Category

separation was increased. Error rates were reduced by scaling the length dimension to

increase perceptual discriminability along that dimension and on each trial the stimulus,

category label and inter-trial interval were increased to 1000ms.

If increased error rates or reduced category separation are the cause of the difference

in learning rule-based categories between our first experiment and Ashby et al. (2002) then

the difference between training type should disappear in this experiment. However, if the

locus of the difference is the number of relevant dimensions for the rule then the advantage

for feedback training over observational training should remain.

Method

Participants and apparatus 40 participants (10 male) were recruited from the

Plymouth University paid pool and were paid £8 for their participation.

The experiment was run on a desktop computer on a 21.5-inch screen using

MATLAB 2012b with the Psychophysics Toolbox extensions (Brainard, 1997; Pelli, 1997).
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Design The experiment had 2 between-subjects conditions (training type:

observation, feedback). 20 participants were randomly assigned to each condition.

Category learning was measured by the percentage of correct responses in each test block.

Stimuli This version of the experiment still utilised a conjunction category

structure. However, the category structure was altered to make learning easier (Figure 4).

To generate the category structure, four sets of points, 300 from the Category A

distribution and 100 each from the other three, were randomly selected from bivariate

normal distributions defined using the parameters listed in Table 4. Any points that were

over 2.25 standard deviations away from the mean of the distribution in the direction of the

category boundary were resampled. Then, as Experiment 1 indicated that the orientation

of the line stimuli appeared more salient than line length to participants, the distribution

was scaled so that the lines varied between 20 and 350 points in arbitrary units.

Table 4 and Figure 4 about here.

Procedure The only change to the procedure of Experiment 1 was that inter-trial

interval, as well as the duration of the stimulus and category label presentation were

increased from 500ms to 1000ms.

After the experiment, participants again completed a questionnaire to identify the

strategy they used. The format of this varied slightly from the one used in Experiment 1,

based on our experience of coding the Experiment 1 responses, and in an attempt to elicit

clearer descriptions. They were asked to “Imagine that another participant was asked to

complete the experiment exactly as you did. What instructions would you give them so

that they could exactly copy your pattern of responding? Please try to be as precise as

possible.”

Data archiving The trial-level raw data are archived at www.willslab.co.uk/ply27/

with md5 checksum 7beb8e5354548f9852a5412b8ac0dbd9.
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Results

Following Ashby et al. (2002) and Experiment 1, analyses were conducted on the

final test block of the data from all participants. Conducting the analyses across all test

blocks led to the same conclusions. No participant failed to reach 50% accuracy by the final

test block. Figure 5 shows mean percentage accuracy in each condition for all test blocks.

Overall performance, as expected, was higher than for the participants in the

rule-based condition in Experiment 1. An ANOVA revealed a statistically significant effect

of training type, F (1, 38) = 4.61, η2 = .108, p = .038. Hence, as in Experiment 1,

participants learned consistently more in the feedback training condition than in the

observational training condition (see Figure 5).

Figure 5 about here.

Model-based analysis The proportions of participants using each model in each

condition are in Table 5. From this we can see that the majority of participants in both

conditions have been identified by the analysis as using either the correct conjunction

strategy or another rule-based one. This supports the hypothesis that the participants are

using an explicit, rule-based strategy. However, the proportions of participants in each

condition that were assigned to the correct conjunction strategy are statistically different,

χ2(1) = 5.63, p = .018. This indicates that participants were more successful at

determining the underlying category structure in the feedback training condition than in

the observational training condition.

Table 5 about here.

We also looked at the performance of the best-fitting model relative to the

performance of the competing models in terms of the Akaike weights. For the participants

in the feedback training condition the mean normalized probability of using a rule-based

strategy compared to information-integration or random strategies is 0.931, whereas for the
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observational training conditions the normalized probability is 0.770. This demonstrates

that, as expected, participants are most likely to use rule-based strategies in these

rule-based conditions and that these strategies were clear winners.

Verbal reports The verbal reports were independently coded by one of the authors

(CERE) and an independent rater (ABI). Any discrepancies that were not due to human

error were easily resolved through discussion.

Inter-rater reliability for judging whether or not each participant reported a

strategy was high, κ = .844, p < .001, whereas judgements as to which strategy they were

reporting were reasonable, κ = .595, p < .001. The majority of discrepancies were due to

different interpretations of how participants might be expected to describe a conjunction

category structure. The coded strategies described by participants are shown in Table 6.

There were no significant differences between conditions in the number of

participants who did not report a strategy, χ2(1) = 0.36, p = .548. There was also no

significant difference between conditions in those who reported the correct conjunction

category, χ2(1) = 0.96, p = .327. Therefore, participants in both conditions were capable of

not only coming up with a strategy, but the majority were also able to correctly describe

the category structure.

Table 6 about here.

Comparing model-based analyses with verbal reports As before, we also

looked at the degree of correspondence between the verbal reports given by participants

and the model that best fit their responses as determined by the model-based analysis

(Table 7).

In this experiment, the verbal reports matched the model-based analysis reasonably

well; the majority of participants that reported using a conjunction strategy were also

assigned to this in the model-based analysis. Furthermore, as might be expected in learning

a rule-based category structure, no participants reported using implicit or overall similarity
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responding or were best described, in the model-based analysis, by the GLC model.

Table 7 about here.

Discussion

The key difference between Experiment 1 and Ashby et al. (2002) was the

appearance of an advantage for feedback training over observational training when learning

a rule-based category structure. Experiment 2 aimed to determine which of the factors

that varied between these two experiments was responsible for this difference. To do this,

Experiment 2 compared performance with feedback and observational training when

learning a two-dimensional category, with reduced error rates and increased category

separation compared with the category structure used in Experiment 1. Under these

conditions, the advantage of feedback training over observational training remained. In

addition, the model-based and verbal reports indicate that the majority of participants in

both conditions were able to use and verbally describe a conjunction strategy. This

indicates that the interaction between training type and category structure in Ashby et al.

(2002) appears to be due to differences in dimensionality between the category structures.

General Discussion

Ashby et al. (2002) reported that feedback training was superior to observational

training for an information-integration category structure, but that the two training types

were comparable for a rule-based category structure. This dissociation has widely been

taken as support for the COVIS dual-process theory of category learning (Ashby et al.,

1998, 2011) and is the most cited, un-critiqued behavioral support for this model.

According to the COVIS framework, the critical manipulation in Ashby et al. (2002) is

that rule-based category structures are easily verbalizable, while information-integration

categories are not and that this results in participants learning these two types of category

structures using different category learning systems. These two systems incorporate
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feedback differently, therefore accounting for the Ashby et al. findings. However, there were

several non-essential differences between the category structures used by Ashby et al.,

which casts doubt on whether verbalizability is the key factor in eliciting a differential

effect of training type on learning performance.

In Experiment 1, we successfully maintained the between category structure

difference in verbalizability while matching them for (a) the number of relevant stimulus

dimensions, (b) category separation, and (c) overall performance. We did this by

combining the procedures of Ashby et al. with two-dimensional category structures

adopted from more recent work in the COVIS framework (specifically Filoteo et al., 2010).

Once these extraneous factors were controlled for, the category structure by training type

interaction found by Ashby et al. did not appear; learning of both category structures was

better with feedback training than observational training. Experiment 2 also found a

training type difference in learning the two-dimensional rule-based structure when this

structure was broadly matched, in terms of category overlap and overall performance, with

the rule-based structures used by Ashby et al. This indicates that the appearance of a

differential effect of training type on rule-based learning in these experiments appears to be

due to the two-dimensional nature of the conjunction structure; these experiments

demonstrated an advantage for feedback training over observational training for not only

information-integration categories, but also for two-dimensional rule-based categories.

Alternative explanations

Our findings have implications for the COVIS theory of category learning because

they are not predicted by COVIS. In Experiment 1, COVIS predicts a greater feedback

advantage for the information-integration structure than the rule-based structure, but both

conditions benefit from feedback training to a similar degree. In Experiment 2, COVIS

does not predict a feedback advantage, yet one is observed. How, then, might the results of

both Ashby et al. (2002) and the current paper be explained?
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First, we need to explain why feedback training is superior to observational training.

Any theory that presumes learning is driven by prediction error (see e.g. Wills et al., 2009,

for a review) should be able to accommodate this result because, in observational training,

there is nothing to predict. The ALCOVE model (Kruschke, 1992) is one of several

possible category learning models in which learning is driven by prediction error, as is the

striatal pattern classifier (Ashby & Waldron, 1999) that forms the basis of Ashby’s

explanation of why a feedback advantage is sometimes observed.

Second, we need to explain why a benefit of feedback training is sometimes not

observed. One possibility is that such findings represent absence of evidence rather than

evidence of absence. In Ashby et al.’s first experiment, performance on the harder,

observational, training condition is close to ceiling, potentially obscuring the effect. In

addition, Ashby et al. report a significant feedback advantage for the unidimensional

category structure in the first test block (Ashby et al., 2002, p. 673), which smoothly

reduces throughout training until it disappears in the final block (Ashby et al., 2002,

Figure 3). Ashby et al.’s conclusions are based on the final block. In Ashby’s second

experiment, there is a numerical trend in the direction we predict, sample sizes are small,

and only one of the two counterbalance conditions were below ceiling. Thus, one possibility

is that feedback is always advantageous in rule-based category learning, but that some

experiments fail to reveal this due to methodological issues.

Another possibility is that the feedback advantage is genuinely absent for

single-dimension rule-based category structures, or at least much smaller than it is for

multi-dimensional category structures (rule-based or otherwise). Although further research

would be required to make this claim securely, it is interesting to speculate how such an

effect might be explained if it were to be confirmed. One possibility is that the size of the

feedback advantage is related to how effortful the classification is. Dimensional Summation

theory (Milton & Wills, 2004) predicts that single-dimension classification is less effortful

than multi-dimensional classification, and this prediction has been supported in multiple
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studies (e.g. Milton et al., 2008; Wills et al., 2013).

In summary, COVIS predicts that there should be an interaction between training

type and category structure, with a smaller difference between training types when

learning a readily verbalizable category structure compared to a hard to verbalize one.

However, the available evidence (from both Ashby et al. and the current studies) indicates

that the pattern of performance on these tasks might be better explained by an interaction

of training type and the number of dimensions relevant to classification. Of course, these

experiments have not completely disentangled verbalizability from dimensionality. In order

to do this, one would have to examine the effect of training type on a unidimensional,

difficult to verbalize category. This would be difficult as it is hard to conceive of a

unidimensional category structure that would be hard to verbalize without redefining what

is meant by a stimulus dimension.

More generally, although there is reasonable support for the idea that providing an

opportunity for error improves learning (Grimaldi & Karpicke, 2012; Kornell, Hays, &

Bjork, 2009; Potts & Shanks, 2013), such an effect is not always seen even in

multidimensional category structures (Newell et al., 2007) and, in some memory tasks, the

effect is even reversed (Haslam, Hodder, & Yates, 2011). Neither COVIS, nor our

alternative explanation, fully captures these results. Further empirical work is required to

clearly identify the conditions under which feedback training is superior to observational

training.

Dimensionality

As discussed above, it seems likely that it is the problem dimensionality, rather than

the problem verbalizability, that drives the results of Ashby et al. (2002) and the current

paper. The comparison of a unidimensional rule-based category structure with a 45-degree

rotation of that structure in stimulus space has formed the basis of a large number of

experiments by Ashby and colleagues. The comparison is initially appealing, because the
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two structures are in various formal senses identical (e.g. an optimal classifier performs

equally well on both structures), yet one is easy to verbalize while the other is hard to

verbalize. However, the two structures are not matched on the number of psychological

stimulus dimensions relevant to the classification. This raises the broader question of

whether a failure to control problem dimensionality underlies other apparently

COVIS-supporting dissociations.

A reviewer suggested that dimensionality is unlikely to be driving the difference of

our results and those of Ashby et al. (2002) on the basis that pigeons find the two

problems equally difficult (Smith et al., 2011), the implication being that if a nonverbal

species finds these two problems equally difficult then it must be the verbalizability of the

problems rather than their dimensionality that is important. However, even in nonverbal

species, a necessary condition of a unidimensional problem being easier than a

two-dimensional problem is that the stimulus dimensions are psychologically separable.

Without separability, there is no meaningful psychological sense in which the two problems

differ in dimensionality. Smith et al. provide no compelling evidence that their stimuli are

separable for pigeons.

Another possible response to our claim that dimensionality is the critical factor is to

point out that many of the more recent COVIS-supporting dissociations make use of a

two-dimensional rule-based structure, thus equating problem dimensionality between

rule-based and information-integration problems (e.g. Maddox, Bohil, & Ing, 2004;

Maddox, Filoteo, Hejl, & Ing, 2004; Maddox, Filoteo, & Lauritzen, 2007; Maddox & Ing,

2005; Maddox, Love, Glass, & Filoteo, 2008; Zeithamova & Maddox, 2006) and

dissociations, predicted by COVIS, still emerge. However, this evidence is not, perhaps, as

compelling as it first appears and in recent years it has attracted substantive critiques on a

variety of bases from separate labs (e.g Dunn et al., 2012; Newell et al., 2010, 2013;

Stanton & Nosofsky, 2013; Zaki & Kleinschmidt, 2013). Our explanation is, therefore,

entirely compatible with the existing evidence.
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Model-based analysis

Another interesting question raised by this research pertains to the limitations of

the GRT informed model-based analysis which is ubiquitously used in analysing

experiments within the COVIS framework. This model-based analysis aims to determine

how participants are approaching the categorization task, and from this make inferences as

to which system is guiding responding. This model-based analysis is commonly interpreted

by Ashby, Maddox and colleagues to demonstrate that the category structure factor has

successfully manipulated the learning system in control of responding if, for each category

structure condition, more participants are assigned the correct strategy than the one

appropriate for the other condition. The current work found this between-condition shift in

strategies. However, the current work also utilized verbal reports and a state-trace

analysis, which, although consistent with each other, are not consistent with the

model-based analysis or its interpretation as supporting a dual-system approach. Visual

inspection of the state-trace plot does not provide any evidence for multiple systems.

Similarly, participants in all conditions were equally able to provide verbal reports. In

addition, when examining the goodness-of-fit of each type of model in the model-based

analysis using Akaike weights, there seems to be a disparity in the confidence the analysis

places in the conjunction and GLC models that might also cast doubt on whether an

actual switch between systems has taken place. This is obviously not the place for a

detailed discussion and investigation of the conditions under which the model-based

analysis is useful. However, future work might determine whether this type of model-based

analysis is merely ineffective in this study, or whether it is more generally capturing

something different than previously thought.

Evidence for COVIS

This paper adds to the growing body of literature that has critiqued the

experimental dissociations argued to support COVIS (Newell, Dunn, & Kalish, 2011).
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However, it is also important to note that there are a number of other dissociations that

provide support for COVIS that have not yet been challenged. For example, switching

response location part-way through training has been found to impact learning

information-integration categories, while this manipulation does not affect rule-based

category learning (e.g. Ashby, Maddox, Glass, O’Brien, & Filoteo, 2010). Deferring

feedback has been found to have a similar impact on learning these two types of category

structure (Smith et al., 2014). One might also point to imaging studies that show different

neural substrates for rule-based and information-integration category learning (Ashby &

Maddox, 2011, but see Milton & Pothos, 2011). Clearly, more work is needed to assess the

strength of these and other dissociations taken to support COVIS.

Conclusion

In summary, the current paper casts doubt on the interpretation of the dissociation

found by Ashby et al. (2002). The current experiments demonstrated an advantage for

feedback training over observational training not only for information-integration

categories, but also for two-dimensional rule-based categories. Therefore, category

structure dimensionality, rather than verbalizability, appears to be the key factor driving

the appearance of an interaction between category structure and training type in the

original study. This paper, therefore, adds to the growing literature (e.g. Dunn et al., 2012;

Newell et al., 2010, 2013; Stanton & Nosofsky, 2007, 2013) that casts doubt on the validity

or interpretation of the experimental evidence for the COVIS model of category learning.
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Strategies
CJ UDO UDL GLC RND

RB-FB 0.35 0.3 0.15 0.15 0.05
RB-Obs 0.4 0.2 0.1 0.2 0.1
RB Overall 0.375 0.25 0.125 0.175 0.075
II-FB 0.15 0.45 0.1 0.3 0
II-Obs 0.3 0.3 0.05 0.35 0
II Overall 0.225 0.375 0.075 0.325 0

Table 1. The proportion of participants in each condition according to the
model-based analysis in Experiment 1. Conditions: RB-FB=Rule-based/feedback,
RB-Obs=Rule-based/observation, II-FB=Information-integration/feedback, II-
Obs=Information-integration/observation condition. Strategies: CJ=conjunction,
2D=generic two-dimensional strategy, UDO=unidimensional strategy based on orien-
tation, UDL=unidimensional strategy based on length, GLC=general linear classifier.

Strategies
CJ 2D UD II/OS Other None

RB-FB 0.45 0.05 0.1 0 0.1 0.2
RB-Obs 0.2 0.15 0.2 0 0.2 0.25
RB Overall 0.325 0.1 0.15 0 0.15 0.225
II-FB 0.4 0.25 0.25 0 0.15 0
II-Obs 0.2 0.15 0.35 0 0.05 0.25
II Overall 0.3 0.15 0.3 0 0.025 0.125

Table 2. The proportion of participants in each condition that reported using each
strategy in Experiment 1. Conditions: RB-FB=Rule-based/feedback, RB-Obs=Rule-
based/observation, II-FB=information-integration/feedback, II-Obs=Information-
integration/observation condition. Strategies: CJ=conjunction, 2D=generic two-
dimensional, UD=unidimensional, II/OS=information-integration or overall similarity.
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Verbal strategy reports
Model-based Rule-based Information-integration
strategies UD CJ 2D II/OS UD CJ 2D II/OS
UD 6 1 3 0 8 1 5 0
CJ 4 10 0 0 4 5 0 0
GLC 2 2 3 0 2 6 4 0

Table 3. Comparison of the models assigned to each participant in the model-based analysis
with those they reported using in Experiment 1. UD=unidimensional, CJ=conjunction,
GLC=general linear classifier, 2D=two-dimensional strategy, II/OS=either an information-
integration or overall similarity strategy.

Parameters
Category µl µo σl σo
A 100 200 20 20
B 100 100 20 20
B 200 100 20 20
B 200 200 20 20

Table 4. Parameters used to generate the initial stimulus distribution for Experiment 2.
Each row describes a set of points in stimulus space generated by a bivariate normal distri-
bution with means (µl, µo) and standard deviations σl and σo for the length and orientation
dimensions respectively.

Strategies
Condition CJ UDR UDL GLC RND
Feedback 0.9 0 0 0.05 0.05
Observation 0.65 0 0.1 0.05 0.2

Table 5. Proportions of participants best described by each model according to the model-
based analysis in Experiment 2. CJ=conjunction, UDO=unidimensional based on orienta-
tion, UDL=unidimensional based on length, GLC=general linear classifier, RND=random.

Strategies
CJ 2D UD II/OS Other None

RB-FB 0.70 0.20 0.05 0 0 0.05
RB-Obs 0.55 0.20 0.15 0 0 0.10
RB Overall 0.625 0.20 0.10 0 0 0.075

Table 6. The strategies reported by each participant in Experiment 2. Conditions: RB-
FB=Rule-based/feedback, RB-Obs=Rule-based/observation. Strategies: CJ=conjunction,
2D=generic two-dimensional, UD=unidimensional, II/OS=information-integration or over-
all similarity.
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Verbal strategy reports
Model-based UD CJ 2D II/OS
UD 0 1 2 0
CJ 2 22 6 0
GLC 0 0 0 0
RND 2 2 0 0

Table 7. Comparison of the models assigned to each participant in the model-based analysis
with those they reported using. UD=unidimensional, CJ=conjunction, GLC=general linear
classifier, 2D=two-dimensional strategy, II/OS=either an information-integration or overall
similarity strategies.

Figure 1. Stimulus space representations of (a) a unidimensional category structure, (b)
a diagonal or information-integration category structure, and (c) a conjunction category
structure. Filled circles represent Category A and unfilled circles represent Category B.
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Figure 2. (a) Percentage of correct responses by condition in the final (fifth) test block. (b)
The average proportion of correct responses for each block in Experiment 1. Error bars are
one standard error.
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Figure 3. State-trace plot with rule-based and information-integration performance on each
block on the axes. Error bars are one standard error.
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Figure 4. The conjunction category structure used in Experiment 2. Filled circles represent
Category A and unfilled circles represent Category B.
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Figure 5. The average proportion of correct responses for each block in Experiment 2. Error
bars are one standard error.


