32 research outputs found

    Accuracy of prediction of infarct-related arrhythmic circuits from image-based models reconstructed from low and high resolution MRI.

    Get PDF
    Identification of optimal ablation sites in hearts with infarct-related ventricular tachycardia (VT) remains difficult to achieve with the current catheter-based mapping techniques. Limitations arise from the ambiguities in determining the reentrant pathways location(s). The goal of this study was to develop experimentally validated, individualized computer models of infarcted swine hearts, reconstructed from high-resolution ex-vivo MRI and to examine the accuracy of the reentrant circuit location prediction when models of the same hearts are instead reconstructed from low clinical-resolution MRI scans. To achieve this goal, we utilized retrospective data obtained from four pigs ~10 weeks post infarction that underwent VT induction via programmed stimulation and epicardial activation mapping via a multielectrode epicardial sock. After the experiment, high-resolution ex-vivo MRI with late gadolinium enhancement was acquired. The Hi-res images were downsampled into two lower resolutions (Med-res and Low-res) in order to replicate image quality obtainable in the clinic. The images were segmented and models were reconstructed from the three image stacks for each pig heart. VT induction similar to what was performed in the experiment was simulated. Results of the reconstructions showed that the geometry of the ventricles including the infarct could be accurately obtained from Med-res and Low-res images. Simulation results demonstrated that induced VTs in the Med-res and Low-res models were located close to those in Hi-res models. Importantly, all models, regardless of image resolution, accurately predicted the VT morphology and circuit location induced in the experiment. These results demonstrate that MRI-based computer models of hearts with ischemic cardiomyopathy could provide a unique opportunity to predict and analyze VT resulting for from specific infarct architecture, and thus may assist in clinical decisions to identify and ablate the reentrant circuit(s)

    Personalized Cardiac Computational Models: From Clinical Data to Simulation of Infarct-Related Ventricular Tachycardia

    Get PDF
    In the chronic stage of myocardial infarction, a significant number of patients develop life-threatening ventricular tachycardias (VT) due to the arrhythmogenic nature of the remodeled myocardium. Radiofrequency ablation (RFA) is a common procedure to isolate reentry pathways across the infarct scar that are responsible for VT. Unfortunately, this strategy show relatively low success rates; up to 50% of patients experience recurrent VT after the procedure. In the last decade, intensive research in the field of computational cardiac electrophysiology (EP) has demonstrated the ability of three-dimensional (3D) cardiac computational models to perform in-silico EP studies. However, the personalization and modeling of certain key components remain challenging, particularly in the case of the infarct border zone (BZ). In this study, we used a clinical dataset from a patient with a history of infarct-related VT to build an image-based 3D ventricular model aimed at computational simulation of cardiac EP, including detailed patient-specific cardiac anatomy and infarct scar geometry. We modeled the BZ in eight different ways by combining the presence or absence of electrical remodeling with four different levels of image-based patchy fibrosis (0, 10, 20, and 30%). A 3D torso model was also constructed to compute the ECG. Patient-specific sinus activation patterns were simulated and validated against the patient's ECG. Subsequently, the pacing protocol used to induce reentrant VTs in the EP laboratory was reproduced in-silico. The clinical VT was induced with different versions of the model and from different pacing points, thus identifying the slow conducting channel responsible for such VT. Finally, the real patient's ECG recorded during VT episodes was used to validate our simulation results and to assess different strategies to model the BZ. Our study showed that reduced conduction velocities and heterogeneity in action potential duration in the BZ are the main factors in promoting reentrant activity. Either electrical remodeling or fibrosis in a degree of at least 30% in the BZ were required to initiate VT. Moreover, this proof-of-concept study confirms the feasibility of developing 3D computational models for cardiac EP able to reproduce cardiac activation in sinus rhythm and during VT, using exclusively non-invasive clinical data

    Dynamical anchoring of distant Arrhythmia Sources by Fibrotic Regions via Restructuring of the Activation Pattern

    Get PDF
    Rotors are functional reentry sources identified in clinically relevant cardiac arrhythmias, such as ventricular and atrial fibrillation. Ablation targeting rotor sites has resulted in arrhythmia termination. Recent clinical, experimental and modelling studies demonstrate that rotors are often anchored around fibrotic scars or regions with increased fibrosis. However the mechanisms leading to abundance of rotors at these locations are not clear. The current study explores the hypothesis whether fibrotic scars just serve as anchoring sites for the rotors or whether there are other active processes which drive the rotors to these fibrotic regions. Rotors were induced at different distances from fibrotic scars of various sizes and degree of fibrosis. Simulations were performed in a 2D model of human ventricular tissue and in a patient-specific model of the left ventricle of a patient with remote myocardial infarction. In both the 2D and the patient-specific model we found that without fibrotic scars, the rotors were stable at the site of their initiation. However, in the presence of a scar, rotors were eventually dynamically anchored from large distances by the fibrotic scar via a process of dynamical reorganization of the excitation pattern. This process coalesces with a change from polymorphic to monomorphic ventricular tachycardia.Comment: 16 pages, 7 figure

    Computational modelling of the human heart and multiscale simulation of its electrophysiological activity aimed at the treatment of cardiac arrhythmias related to ischaemia and Infarction

    Full text link
    [ES] Las enfermedades cardiovasculares constituyen la principal causa de morbilidad y mortalidad a nivel mundial, causando en torno a 18 millones de muertes cada año. De entre ellas, la más común es la enfermedad isquémica cardíaca, habitualmente denominada como infarto de miocardio (IM). Tras superar un IM, un considerable número de pacientes desarrollan taquicardias ventriculares (TV) potencialmente mortales durante la fase crónica del IM, es decir, semanas, meses o incluso años después la fase aguda inicial. Este tipo concreto de TV normalmente se origina por una reentrada a través de canales de conducción (CC), filamentos de miocardio superviviente que atraviesan la cicatriz del infarto fibrosa y no conductora. Cuando los fármacos anti-arrítmicos resultan incapaces de evitar episodios recurrentes de TV, la ablación por radiofrecuencia (ARF), un procedimiento mínimamente invasivo realizado mediante cateterismo en el laboratorio de electrofisiología (EF), se usa habitualmente para interrumpir de manera permanente la propagación eléctrica a través de los CCs responsables de la TV. Sin embargo, además de ser invasivo, arriesgado y requerir mucho tiempo, en casos de TVs relacionadas con IM crónico, hasta un 50% de los pacientes continúa padeciendo episodios recurrentes de TV tras el procedimiento de ARF. Por tanto, existe la necesidad de desarrollar nuevas estrategias pre-procedimiento para mejorar la planificación de la ARF y, de ese modo, aumentar esta tasa de éxito relativamente baja. En primer lugar, realizamos una revisión exhaustiva de la literatura referente a los modelos cardiacos 3D existentes, con el fin de obtener un profundo conocimiento de sus principales características y los métodos usados en su construcción, con especial atención sobre los modelos orientados a simulación de EF cardíaca. Luego, usando datos clínicos de un paciente con historial de TV relacionada con infarto, diseñamos e implementamos una serie de estrategias y metodologías para (1) generar modelos computacionales 3D específicos de paciente de ventrículos infartados que puedan usarse para realizar simulaciones de EF cardíaca a nivel de órgano, incluyendo la cicatriz del infarto y la región circundante conocida como zona de borde (ZB); (2) construir modelos 3D de torso que permitan la obtención del ECG simulado; y (3) llevar a cabo estudios in-silico de EF personalizados y pre-procedimiento, tratando de replicar los verdaderos estudios de EF realizados en el laboratorio de EF antes de la ablación. La finalidad de estas metodologías es la de localizar los CCs en el modelo ventricular 3D para ayudar a definir los objetivos de ablación óptimos para el procedimiento de ARF. Por último, realizamos el estudio retrospectivo por simulación de un caso, en el que logramos inducir la TV reentrante relacionada con el infarto usando diferentes configuraciones de modelado para la ZB. Validamos nuestros resultados mediante la reproducción, con una precisión razonable, del ECG del paciente en TV, así como en ritmo sinusal a partir de los mapas de activación endocárdica obtenidos invasivamente mediante sistemas de mapeado electroanatómico en este último caso. Esto permitió encontrar la ubicación y analizar las características del CC responsable de la TV clínica. Cabe destacar que dicho estudio in-silico de EF podría haberse efectuado antes del procedimiento de ARF, puesto que nuestro planteamiento está completamente basado en datos clínicos no invasivos adquiridos antes de la intervención real. Estos resultados confirman la viabilidad de la realización de estudios in-silico de EF personalizados y pre-procedimiento de utilidad, así como el potencial del abordaje propuesto para llegar a ser en un futuro una herramienta de apoyo para la planificación de la ARF en casos de TVs reentrantes relacionadas con infarto. No obstante, la metodología propuesta requiere de notables mejoras y validación por medio de es[CA] Les malalties cardiovasculars constitueixen la principal causa de morbiditat i mortalitat a nivell mundial, causant entorn a 18 milions de morts cada any. De elles, la més comuna és la malaltia isquèmica cardíaca, habitualment denominada infart de miocardi (IM). Després de superar un IM, un considerable nombre de pacients desenvolupen taquicàrdies ventriculars (TV) potencialment mortals durant la fase crònica de l'IM, és a dir, setmanes, mesos i fins i tot anys després de la fase aguda inicial. Aquest tipus concret de TV normalment s'origina per una reentrada a través dels canals de conducció (CC), filaments de miocardi supervivent que travessen la cicatriu de l'infart fibrosa i no conductora. Quan els fàrmacs anti-arítmics resulten incapaços d'evitar episodis recurrents de TV, l'ablació per radiofreqüència (ARF), un procediment mínimament invasiu realitzat mitjançant cateterisme en el laboratori de electrofisiologia (EF), s'usa habitualment per a interrompre de manera permanent la propagació elèctrica a través dels CCs responsables de la TV. No obstant això, a més de ser invasiu, arriscat i requerir molt de temps, en casos de TVs relacionades amb IM crònic fins a un 50% dels pacients continua patint episodis recurrents de TV després del procediment d'ARF. Per tant, existeix la necessitat de desenvolupar noves estratègies pre-procediment per a millorar la planificació de l'ARF i, d'aquesta manera, augmentar la taxa d'èxit, que es relativament baixa. En primer lloc, realitzem una revisió exhaustiva de la literatura referent als models cardíacs 3D existents, amb la finalitat d'obtindre un profund coneixement de les seues principals característiques i els mètodes usats en la seua construcció, amb especial atenció sobre els models orientats a simulació de EF cardíaca. Posteriorment, usant dades clíniques d'un pacient amb historial de TV relacionada amb infart, dissenyem i implementem una sèrie d'estratègies i metodologies per a (1) generar models computacionals 3D específics de pacient de ventricles infartats capaços de realitzar simulacions de EF cardíaca a nivell d'òrgan, incloent la cicatriu de l'infart i la regió circumdant coneguda com a zona de vora (ZV); (2) construir models 3D de tors que permeten l'obtenció del ECG simulat; i (3) dur a terme estudis in-silico de EF personalitzats i pre-procediment, tractant de replicar els vertaders estudis de EF realitzats en el laboratori de EF abans de l'ablació. La finalitat d'aquestes metodologies és la de localitzar els CCs en el model ventricular 3D per a ajudar a definir els objectius d'ablació òptims per al procediment d'ARF. Finalment, a manera de prova de concepte, realitzem l'estudi retrospectiu per simulació d'un cas, en el qual aconseguim induir la TV reentrant relacionada amb l'infart usant diferents configuracions de modelatge per a la ZV. Validem els nostres resultats mitjançant la reproducció, amb una precisió raonable, del ECG del pacient en TV, així com en ritme sinusal a partir dels mapes d'activació endocardíac obtinguts invasivament mitjançant sistemes de mapatge electro-anatòmic en aquest últim cas. Això va permetre trobar la ubicació i analitzar les característiques del CC responsable de la TV clínica. Cal destacar que aquest estudi in-silico de EF podria haver-se efectuat abans del procediment d'ARF, ja que el nostre plantejament està completament basat en dades clíniques no invasius adquirits abans de la intervenció real. Aquests resultats confirmen la viabilitat de la realització d'estudis in-silico de EF personalitzats i pre-procediment d'utilitat, així com el potencial de l'abordatge proposat per a arribar a ser en un futur una eina de suport per a la planificació de l'ARF en casos de TVs reentrants relacionades amb infart. No obstant això, la metodologia proposada requereix de notables millores i validació per mitjà d'estudis de simulació amb grans cohorts de pacients.[EN] Cardiovascular diseases represent the main cause of morbidity and mortality worldwide, causing around 18 million deaths every year. Among these diseases, the most common one is the ischaemic heart disease, usually referred to as myocardial infarction (MI). After surviving to a MI, a considerable number of patients develop life-threatening ventricular tachycardias (VT) during the chronic stage of the MI, that is, weeks, months or even years after the initial acute phase. This particular type of VT is typically sustained by reentry through slow conducting channels (CC), which are filaments of surviving myocardium that cross the non-conducting fibrotic infarct scar. When anti-arrhythmic drugs are unable to prevent recurrent VT episodes, radiofrequency ablation (RFA), a minimally invasive procedure performed by catheterization in the electrophysiology (EP) laboratory, is commonly used to interrupt the electrical conduction through the CCs responsible for the VT permanently. However, besides being invasive, risky and time-consuming, in the cases of VTs related to chronic MI, up to 50% of patients continue suffering from recurrent VT episodes after the RFA procedure. Therefore, there exists a need to develop novel pre-procedural strategies to improve RFA planning and, thereby, increase this relatively low success rate. First, we conducted an exhaustive review of the literature associated with the existing 3D cardiac models in order to gain a deep knowledge about their main features and the methods used for their construction, with special focus on those models oriented to simulation of cardiac EP. Later, using a clinical dataset of a chronically infarcted patient with a history of infarct-related VT, we designed and implemented a number of strategies and methodologies to (1) build patient-specific 3D computational models of infarcted ventricles that can be used to perform simulations of cardiac EP at the organ level, including the infarct scar and the surrounding region known as border zone (BZ); (2) construct 3D torso models that enable to compute the simulated ECG; and (3) carry out pre-procedural personalized in-silico EP studies, trying to replicate the actual EP studies conducted in the EP laboratory prior to the ablation. The goal of these methodologies is to allow locating the CCs into the 3D ventricular model in order to help in defining the optimal ablation targets for the RFA procedure. Lastly, as a proof-of-concept, we performed a retrospective simulation case study, in which we were able to induce an infarct-related reentrant VT using different modelling configurations for the BZ. We validated our results by reproducing with a reasonable accuracy the patient's ECG during VT, as well as in sinus rhythm from the endocardial activation maps invasively recorded via electroanatomical mapping systems in this latter case. This allowed us to find the location and analyse the features of the CC responsible for the clinical VT. Importantly, such in-silico EP study might have been conducted prior to the RFA procedure, since our approach is completely based on non-invasive clinical data acquired before the real intervention. These results confirm the feasibility of performing useful pre-procedural personalized in-silico EP studies, as well as the potential of the proposed approach to become a helpful tool for RFA planning in cases of infarct-related reentrant VTs in the future. Nevertheless, the developed methodology requires further improvements and validation by means of simulation studies including large cohorts of patients.During the carrying out of this doctoral thesis, the author Alejandro Daniel López Pérez was financially supported by the Ministerio de Economía, Industria y Competitividad of Spain through the program Ayudas para contratos predoctorales para la formación de doctores, with the grant number BES-2013-064089.López Pérez, AD. (2019). Computational modelling of the human heart and multiscale simulation of its electrophysiological activity aimed at the treatment of cardiac arrhythmias related to ischaemia and Infarction [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/124973TESI

    Studies on the dynamics of chaotic multi-wavelet reentrant propagation using a hybrid cellular automaton model of excitable tissue

    Full text link
    There is a compelling body of evidence implicating continuous propagation (reentry) sustained by multiple meandering wavelets in the pathology of advanced human atrial fibrillation (AF). This forms the basis for many current therapies such as the Cox MAZE procedure and its derivatives, which aim to create non-conducting lesions in order to "transect" these circuits before they form. Nevertheless, our ability to successfully treat persistent and permanent AF using catheter ablation remains inadequate due to current limitations of clinical mapping technology as well as an incomplete understanding of how to place lesions in order to maximize circuit transection and, more importantly, minimize AF burden. Here, we used a hybrid cellular automaton model to study the dynamics of chaotic, multi-wavelet reentry (MWR) in excitable tissue. First, we used reentry as an exemplar to investigate a hysteretic disease mechanism in a multistable nonlinear system. We found that certain interactions with the environment can cause persistent changes to system behavior without altering its structure or properties, thus leading to a disconnect between clinical symptoms and the underlying state of disease. Second, we developed a novel analytical method to characterize the spatiotemporal dynamics of MWR. We identified a heterogeneous spatial distribution of reentrant pathways that correlated with the spatial distribution of cell activation frequencies. Third, we investigated the impact of topological and geometrical substrate alterations on the dynamics of MWR. We demonstrated a multi-phasic relationship between obstacle size and the fate of individual episodes. Notably, for a narrow range of sizes, obstacles appeared to play an active role in rapidly converting MWR to stable structural reentry. Our studies indicate that reentrant-pathway distributions are non-uniform in heterogeneous media (such as the atrial myocardium) and suggest a clinically measurable correlate for identifying regions of high circuit density, supporting the feasibility of patient-specific targeted ablation. Moreover, we have elucidated the key mechanisms of interaction between focal obstacles and MWR, which has implications for the use of spot ablation to treat AF as some recent studies have suggested

    Multiscale Modeling and Simulation of Human Heart Failure

    Full text link
    Tesis por compendio[EN] Heart failure (HF) constitutes a major public health problem worldwide. Operationally it is defined as a clinical syndrome characterized by the marked and progressive inability of the ventricles to fill and generate adequate cardiac output to meet the demands of cellular metabolism that may have significant variability in its etiology and it is the final common pathway of various cardiac pathologies. Much attention has been paid to the understanding of the arrhythmogenic mechanisms induced by the structural, electrical, and metabolic remodeling of the failing heart. Due to the complexity of the electrophysiological changes that may occur during heart failure, the scientific literature is complex and sometimes equivocal. Nevertheless, a number of common features of failing hearts have been documented. At the cellular level, prolongation of the action potential (AP) involving ion channel remodeling and alterations in calcium handling have been established as the hallmark characteristics of myocytes isolated from failing hearts. At the tissue level, intercellular uncoupling and fibrosis are identified as major arrhythmogenic factors. In this Thesis a computational model for cellular heart failure was proposed using a modified version of Grandi et al. model for human ventricular action potential that incorporates the formulation of the late sodium current (INaL) in order to study the arrhythmogenic processes due to failing phenotype. Experimental data from several sources were used to validate the model. Due to extensive literature in the subject a sensitivity analysis was performed to assess the influence of main ionic currents and parameters upon most related biomarkers. In addition, multiscale simulations were carried out to characterize this pathology (transmural cardiac fibres and tissues). The proposed model for the human INaL and the electrophysiological remodeling of myocytes from failing hearts accurately reproduce experimental observations. An enhanced INaL appears to be an important contributor to the electrophysiological phenotype and to the dysregulation of calcium homeostasis of failing myocytes. Our strand simulation results illustrate how the presence of M cells and heterogeneous electrophysiological remodeling in the human failing ventricle modulate the dispersion of action potential duration (APD) and repolarization time (RT). Conduction velocity (CV) and the safety factor for conduction (SF) were also reduced by the progressive structural remodeling during heart failure. In our transmural ventricular tissue simulations, no reentry was observed in normal conditions or in the presence of HF ionic remodeling. However, defined amount of fibrosis and/or cellular uncoupling were sufficient to elicit reentrant activity. Under conditions where reentry was generated, HF electrophysiological remodeling did not alter the width of the vulnerable window (VW). However, intermediate fibrosis and cellular uncoupling significantly widened the VW. In conclusion, enhanced fibrosis in failing hearts, as well as reduced intercellular coupling, combine to increase electrophysiological gradients and reduce electrical propagation. In that sense, structural remodeling is a key factor in the genesis of vulnerability to reentry, mainly at intermediates levels of fibrosis and intercellular uncoupling.[ES] La insuficiencia cardíaca (IC) constituye un importante problema de salud pública en todo el mundo. Operacionalmente se define como un síndrome clínico caracterizado por la incapacidad marcada y progresiva de los ventrículos para llenar y generar gasto cardíaco adecuado para satisfacer las demandas del metabolismo celular, que puede tener una variabilidad significativa en su etiología y es la vía final común de varias patologías cardíacas. Se ha prestado mucha atención a la comprensión de los mecanismos arritmogénicos inducidos por la remodelación estructural, eléctrica, y metabólica del corazón afectado de IC. Debido a la complejidad de los cambios electrofisiológicos que pueden ocurrir durante la IC, la literatura científica es compleja y, a veces equívoca. Sin embargo, se han documentado una serie de características comunes en corazones afectados de IC. A nivel celular, se han establecido como las características distintivas de los miocitos aislados de corazones afectados de IC la prolongación del potencial de acción (PA), que implica la remodelación de los canales iónicos y las alteraciones en la dinámica del calcio. A nivel de los tejidos, el desacoplamiento intercelular y la fibrosis se identifican como los principales factores arritmogénicos. En esta tesis se propuso un modelo celular computacional para la insuficiencia cardíaca utilizando una versión modificada del modelo de potencial de acción ventricular humano de Grandi y colaboradores que incorpora la formulación de la corriente tardía de sodio (INaL) con el fin de estudiar los procesos arritmogénicas debido al fenotipo de la IC. Los datos experimentales de varias fuentes se utilizaron para validar el modelo. Debido a la extensa literatura en la temática se realizó un análisis de sensibilidad para evaluar la influencia de las principales corrientes iónicas y los parámetros sobre los biomarcadores relacionados. Además, se llevaron a cabo simulaciones multiescala para caracterizar esta patología (en fibras y tejidos transmurales). El modelo propuesto para la corriente tardía de sodio y la remodelación electrofisiológica de los miocitos de corazones afectados de IC reprodujeron con precisión las observaciones experimentales. Una INaL incrementada parece ser un importante contribuyente al fenotipo electrofisiológico y la desregulación de la homeostasis del calcio de los miocitos afectados de IC. Nuestros resultados de la simulaciones en fibra ilustran cómo la presencia de células M y el remodelado electrofisiológico heterogéneo en el ventrículo humano afectado de IC modulan la dispersión de la duración potencial de acción (DPA) y el tiempo de repolarización (TR). La velocidad de conducción (VC) y el factor de seguridad para la conducción (FS) también se redujeron en la remodelación estructural progresiva durante la insuficiencia cardíaca. En nuestras simulaciones transmurales de tejido ventricular, no se observó reentrada en condiciones normales o en presencia de la remodelación iónica de la IC. Sin embargo, determinadas cantidades de fibrosis y / o desacoplamiento celular eran suficientes para provocar la actividad reentrante. En condiciones donde se había generado la reentrada, el remodelado electrofisiológico de la IC no alteró la anchura de la ventana vulnerable (VV). Sin embargo, niveles intermedios de fibrosis y el desacoplamiento celular ampliaron significativamente la VV. En conclusión, niveles elevados de fibrosis en corazones afectados de IC, así como la reducción de acoplamiento intercelular, se combinan para aumentar los gradientes electrofisiológicos y reducir la propagación eléctrica. En ese sentido, la remodelación estructural es un factor clave en la génesis de la vulnerabilidad a las reentradas, principalmente en niveles intermedios de fibrosis y desacoplamiento intercelular. El remodelado electrofisiológico promueve la arritmogénesis y puede ser alterado dependi[CA] La insuficiència cardíaca (IC) constitueix un important problema de salut pública arreu del món. A efectes pràctics, es defineix com una síndrome clínica caracteritzada per la incapacitat marcada i progressiva dels ventricles per omplir i generar el cabal cardíac adequat, per tal de satisfer les demandes del metabolisme cel·lular, el qual pot tenir una variabilitat significativa en la seua etiologia i és la via final comuna de diverses patologies cardíaques. S'ha prestat molta atenció a la comprensió dels mecanismes aritmogènics induïts per la remodelació estructural, elèctrica, i metabòlica del cor afectat d'IC. A causa de la complexitat dels canvis electrofisiològics que poden ocórrer durant la IC, trobem que la literatura científica és complexa i, de vegades, equívoca. No obstant això, s'han documentat una sèrie de característiques comunes en cors afectats d'IC. A nivell cel·lular, com característiques distintives dels miòcits aïllats de cors afectats d'IC, s'han establert la prolongació del potencial d'acció (PA), que implica la remodelació dels canals iònics, i les alteracions en la dinàmica del calci. A nivell dels teixits, el desacoblament intercel·lular i la fibrosi s'identifiquen com els principals factors aritmogènics. Per tal d'estudiar els processos aritmogènics a causa del fenotip de la IC, es va proposar un model cel·lular computacional d'IC utilitzant una versió modificada del model de potencial d'acció ventricular humà de Grandi i els seus col·laboradors, el qual incorpora la formulació del corrent de sodi tardà (INaL). Amb l'objectiu de validar el model es van utilitzar dades experimentals de diverses fonts. A causa de l'extensa literatura en la temàtica, es va realitzar una anàlisi de sensibilitat per tal d'avaluar la influència de les principals corrents iòniques i els paràmetres sobre els biomarcadors relacionats. A més, es van dur a terme simulacions multiescala per a la caracterització d'aquesta patología (fibres i teixits transmurals). El model proposat per al corrent de sodi tardà i la remodelació electrofisiològica dels miòcits de cors afectats d'IC van reproduir amb precisió les observacions experimentals. Una INaL incrementada sembla contribuir de manera important al fenotip electrofisiològic i a la desregulació de l'homeòstasi del calci dels miòcits afectats d'IC. Els resultats de les nostres simulacions en fibra indiquen que la presència de cèl·lules M i el remodelat electrofisiològic heterogeni en el ventricle humà afectat d'IC modulen la dispersió de la durada del potencial d'acció (DPA) i el temps de repolarització (TR). La velocitat de conducció (VC) i el factor de seguretat per a la conducció (FS) també es van reduir en la remodelació estructural progressiva durant la IC. A les nostres simulacions transmurals de teixit ventricular, no s'observà cap reentrada ni en condicions normals ni en presència de la remodelació iònica de la IC. No obstant això, amb determinades quantitats de fibrosi i/o desacoblament cel·lular sí que es provocà l'activitat reentrant. I amb les condicions que produïren la reentrada, el remodelat electrofisiològic de la IC no va alterar l'amplada de la finestra vulnerable (FV). Tanmateix, nivells intermedis de fibrosi i el desacoblament cel·lular sí que ampliaren significativament la FV. En conclusió, nivells elevats de fibrosi en cors afectats d'IC, així com la reducció d'acoblament intercel·lular, es combinen per augmentar els gradients electrofisiològics i reduir la propagació elèctrica. Per tant, la remodelació estructural és un factor clau en la gènesi de la vulnerabilitat a les reentrades, principalment en nivells intermedis de fibrosi i desacoblament intercel·lular.Gómez García, JF. (2015). Multiscale Modeling and Simulation of Human Heart Failure [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/52389TESISCompendi

    Multiscale Cohort Modeling of Atrial Electrophysiology : Risk Stratification for Atrial Fibrillation through Machine Learning on Electrocardiograms

    Get PDF
    Patienten mit Vorhofflimmern sind einem fünffach erhöhten Risiko für einen ischämischen Schlaganfall ausgesetzt. Eine frühzeitige Erkennung und Diagnose der Arrhythmie würde ein rechtzeitiges Eingreifen ermöglichen, um möglicherweise auftretende Begleiterkrankungen zu verhindern. Eine Vergrößerung des linken Vorhofs sowie fibrotisches Vorhofgewebe sind Risikomarker für Vorhofflimmern, da sie die notwendigen Voraussetzungen für die Aufrechterhaltung der chaotischen elektrischen Depolarisation im Vorhof erfüllen. Mithilfe von Techniken des maschinellen Lernens könnten Fibrose und eine Vergrößerung des linken Vorhofs basierend auf P Wellen des 12-Kanal Elektrokardiogramms im Sinusrhythmus automatisiert identifiziert werden. Dies könnte die Basis für eine nicht-invasive Risikostrat- ifizierung neu auftretender Vorhofflimmerepisoden bilden, um anfällige Patienten für ein präventives Screening auszuwählen. Zu diesem Zweck wurde untersucht, ob simulierte Vorhof-Elektrokardiogrammdaten, die dem klinischen Trainingssatz eines maschinellen Lernmodells hinzugefügt wurden, zu einer verbesserten Klassifizierung der oben genannten Krankheiten bei klinischen Daten beitra- gen könnten. Zwei virtuelle Kohorten, die durch anatomische und funktionelle Variabilität gekennzeichnet sind, wurden generiert und dienten als Grundlage für die Simulation großer P Wellen-Datensätze mit genau bestimmbaren Annotationen der zugrunde liegenden Patholo- gie. Auf diese Weise erfüllen die simulierten Daten die notwendigen Voraussetzungen für die Entwicklung eines Algorithmus für maschinelles Lernen, was sie von klinischen Daten unterscheidet, die normalerweise nicht in großer Zahl und in gleichmäßig verteilten Klassen vorliegen und deren Annotationen möglicherweise durch unzureichende Expertenannotierung beeinträchtigt sind. Für die Schätzung des Volumenanteils von linksatrialem fibrotischen Gewebe wurde ein merkmalsbasiertes neuronales Netz entwickelt. Im Vergleich zum Training des Modells mit nur klinischen Daten, führte das Training mit einem hybriden Datensatz zu einer Reduzierung des Fehlers von durchschnittlich 17,5 % fibrotischem Volumen auf 16,5 %, ausgewertet auf einem rein klinischen Testsatz. Ein Long Short-Term Memory Netzwerk, das für die Unterscheidung zwischen gesunden und P Wellen von vergrößerten linken Vorhöfen entwickelt wurde, lieferte eine Genauigkeit von 0,95 wenn es auf einem hybriden Datensatz trainiert wurde, von 0,91 wenn es nur auf klinischen Daten trainiert wurde, die alle mit 100 % Sicherheit annotiert wurden, und von 0,83 wenn es auf einem klinischen Datensatz trainiert wurde, der alle Signale unabhängig von der Sicherheit der Expertenannotation enthielt. In Anbetracht der Ergebnisse dieser Arbeit können Elektrokardiogrammdaten, die aus elektrophysiologischer Modellierung und Simulationen an virtuellen Patientenkohorten resul- tieren und relevante Variabilitätsaspekte abdecken, die mit realen Beobachtungen übereinstim- men, eine wertvolle Datenquelle zur Verbesserung der automatisierten Risikostratifizierung von Vorhofflimmern sein. Auf diese Weise kann den Nachteilen klinischer Datensätze für die Entwicklung von Modellen des maschinellen Lernens entgegengewirkt werden. Dies trägt letztendlich zu einer frühzeitigen Erkennung der Arrhythmie bei, was eine rechtzeitige Auswahl geeigneter Behandlungsstrategien ermöglicht und somit das Schlaganfallrisiko der betroffenen Patienten verringert
    corecore