167 research outputs found

    Simulating collective transport of virtual ants

    Get PDF
    This paper simulates the behaviour of collective transport where a group of ants transports an object in a cooperative fashion. Different from humans, the task coordination of collective transport, with ants, is not achieved by direct communication between group individuals, but through indirect information transmission via mechanical movements of the object. This paper proposes a stochastic probability model to model the decision-making procedure of group individuals and trains a neural network via reinforcement learning to represent the force policy. Our method is scalable to different numbers of individuals and is adaptable to users' input, including transport trajectory, object shape, external intervention, etc. Our method can reproduce the characteristic strategies of ants, such as realign and reposition. The simulations show that with the strategy of reposition, the ants can avoid deadlock scenarios during the task of collective transport

    Thirty-second Annual Symposium of Trinity College Undergraduate Research

    Get PDF
    2019 annual volume of abstracts for science research projects conducted by students at Trinity College

    Learning-based methods for planning and control of humanoid robots

    Get PDF
    Nowadays, humans and robots are more and more likely to coexist as time goes by. The anthropomorphic nature of humanoid robots facilitates physical human-robot interaction, and makes social human-robot interaction more natural. Moreover, it makes humanoids ideal candidates for many applications related to tasks and environments designed for humans. No matter the application, an ubiquitous requirement for the humanoid is to possess proper locomotion skills. Despite long-lasting research, humanoid locomotion is still far from being a trivial task. A common approach to address humanoid locomotion consists in decomposing its complexity by means of a model-based hierarchical control architecture. To cope with computational constraints, simplified models for the humanoid are employed in some of the architectural layers. At the same time, the redundancy of the humanoid with respect to the locomotion task as well as the closeness of such a task to human locomotion suggest a data-driven approach to learn it directly from experience. This thesis investigates the application of learning-based techniques to planning and control of humanoid locomotion. In particular, both deep reinforcement learning and deep supervised learning are considered to address humanoid locomotion tasks in a crescendo of complexity. First, we employ deep reinforcement learning to study the spontaneous emergence of balancing and push recovery strategies for the humanoid, which represent essential prerequisites for more complex locomotion tasks. Then, by making use of motion capture data collected from human subjects, we employ deep supervised learning to shape the robot walking trajectories towards an improved human-likeness. The proposed approaches are validated on real and simulated humanoid robots. Specifically, on two versions of the iCub humanoid: iCub v2.7 and iCub v3

    Pre-computation for controlling character behavior in interactive physical simulations

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 129-136).The development of advanced computer animation tools has allowed talented artists to create digital actors, or characters, in films and commercials that move in a plausible and compelling way. In interactive applications, however, the artist does not have total control over the scenarios the character will experience. Unexpected changes in the environment of the character or unexpected interactions with dynamic elements of the virtual world can lead to implausible motions. This work investigates the use of physical simulation to automatically synthesize plausible character motions in interactive applications. We show how to simulate a realistic motion for a humanoid character by creating a feedback controller that tracks a motion capture recording. By applying the right forces at the right time, the controller is able to recover from a range of interesting changes to the environment and unexpected disturbances. Controlling physically simulated humanoid characters is non-trivial as they are governed by non-linear, non-smooth, and high-dimensional equations of motion. We simplify the problem by using a linearized and simplified dynamics model near a reference trajectory. Tracking a reference trajectory is an effective way of getting a character to perform a single task. However, simulated characters need to perform many tasks form a variety of possible configurations. This work also describes a method for combining existing controllers by adding their output forces to perform new tasks. This allows one to reuse existing controllers. A surprising fact is that combined controllers can perform optimally under certain conditions. These methods allow us to interactively simulate many interesting humanoid character behaviors in two and three dimensions. These characters have many more degrees of freedom than typical robot systems and move much more naturally. Simulation is fast enough that the controllers could soon be used to animate characters in interactive games. It is also possible that these simulations could be used to test robotic designs and biomechanical hypotheses.by Marco Jorge Tome da Silva.Ph.D

    Climbing and Walking Robots

    Get PDF
    Nowadays robotics is one of the most dynamic fields of scientific researches. The shift of robotics researches from manufacturing to services applications is clear. During the last decades interest in studying climbing and walking robots has been increased. This increasing interest has been in many areas that most important ones of them are: mechanics, electronics, medical engineering, cybernetics, controls, and computers. Today’s climbing and walking robots are a combination of manipulative, perceptive, communicative, and cognitive abilities and they are capable of performing many tasks in industrial and non- industrial environments. Surveillance, planetary exploration, emergence rescue operations, reconnaissance, petrochemical applications, construction, entertainment, personal services, intervention in severe environments, transportation, medical and etc are some applications from a very diverse application fields of climbing and walking robots. By great progress in this area of robotics it is anticipated that next generation climbing and walking robots will enhance lives and will change the way the human works, thinks and makes decisions. This book presents the state of the art achievments, recent developments, applications and future challenges of climbing and walking robots. These are presented in 24 chapters by authors throughtot the world The book serves as a reference especially for the researchers who are interested in mobile robots. It also is useful for industrial engineers and graduate students in advanced study

    Computational Methods for Cognitive and Cooperative Robotics

    Get PDF
    In the last decades design methods in control engineering made substantial progress in the areas of robotics and computer animation. Nowadays these methods incorporate the newest developments in machine learning and artificial intelligence. But the problems of flexible and online-adaptive combinations of motor behaviors remain challenging for human-like animations and for humanoid robotics. In this context, biologically-motivated methods for the analysis and re-synthesis of human motor programs provide new insights in and models for the anticipatory motion synthesis. This thesis presents the author’s achievements in the areas of cognitive and developmental robotics, cooperative and humanoid robotics and intelligent and machine learning methods in computer graphics. The first part of the thesis in the chapter “Goal-directed Imitation for Robots” considers imitation learning in cognitive and developmental robotics. The work presented here details the author’s progress in the development of hierarchical motion recognition and planning inspired by recent discoveries of the functions of mirror-neuron cortical circuits in primates. The overall architecture is capable of ‘learning for imitation’ and ‘learning by imitation’. The complete system includes a low-level real-time capable path planning subsystem for obstacle avoidance during arm reaching. The learning-based path planning subsystem is universal for all types of anthropomorphic robot arms, and is capable of knowledge transfer at the level of individual motor acts. Next, the problems of learning and synthesis of motor synergies, the spatial and spatio-temporal combinations of motor features in sequential multi-action behavior, and the problems of task-related action transitions are considered in the second part of the thesis “Kinematic Motion Synthesis for Computer Graphics and Robotics”. In this part, a new approach of modeling complex full-body human actions by mixtures of time-shift invariant motor primitives in presented. The online-capable full-body motion generation architecture based on dynamic movement primitives driving the time-shift invariant motor synergies was implemented as an online-reactive adaptive motion synthesis for computer graphics and robotics applications. The last chapter of the thesis entitled “Contraction Theory and Self-organized Scenarios in Computer Graphics and Robotics” is dedicated to optimal control strategies in multi-agent scenarios of large crowds of agents expressing highly nonlinear behaviors. This last part presents new mathematical tools for stability analysis and synthesis of multi-agent cooperative scenarios.In den letzten Jahrzehnten hat die Forschung in den Bereichen der Steuerung und Regelung komplexer Systeme erhebliche Fortschritte gemacht, insbesondere in den Bereichen Robotik und Computeranimation. Die Entwicklung solcher Systeme verwendet heutzutage neueste Methoden und Entwicklungen im Bereich des maschinellen Lernens und der kĂŒnstlichen Intelligenz. Die flexible und echtzeitfĂ€hige Kombination von motorischen Verhaltensweisen ist eine wesentliche Herausforderung fĂŒr die Generierung menschenĂ€hnlicher Animationen und in der humanoiden Robotik. In diesem Zusammenhang liefern biologisch motivierte Methoden zur Analyse und Resynthese menschlicher motorischer Programme neue Erkenntnisse und Modelle fĂŒr die antizipatorische Bewegungssynthese. Diese Dissertation prĂ€sentiert die Ergebnisse der Arbeiten des Autors im Gebiet der kognitiven und Entwicklungsrobotik, kooperativer und humanoider Robotersysteme sowie intelligenter und maschineller Lernmethoden in der Computergrafik. Der erste Teil der Dissertation im Kapitel “Zielgerichtete Nachahmung fĂŒr Roboter” behandelt das Imitationslernen in der kognitiven und Entwicklungsrobotik. Die vorgestellten Arbeiten beschreiben neue Methoden fĂŒr die hierarchische Bewegungserkennung und -planung, die durch Erkenntnisse zur Funktion der kortikalen Spiegelneuronen-Schaltkreise bei Primaten inspiriert wurden. Die entwickelte Architektur ist in der Lage, ‘durch Imitation zu lernen’ und ‘zu lernen zu imitieren’. Das komplette entwickelte System enthĂ€lt ein echtzeitfĂ€higes Pfadplanungssubsystem zur Hindernisvermeidung wĂ€hrend der DurchfĂŒhrung von Armbewegungen. Das lernbasierte Pfadplanungssubsystem ist universell und fĂŒr alle Arten von anthropomorphen Roboterarmen in der Lage, Wissen auf der Ebene einzelner motorischer Handlungen zu ĂŒbertragen. Im zweiten Teil der Arbeit “Kinematische Bewegungssynthese fĂŒr Computergrafik und Robotik” werden die Probleme des Lernens und der Synthese motorischer Synergien, d.h. von rĂ€umlichen und rĂ€umlich-zeitlichen Kombinationen motorischer Bewegungselemente bei Bewegungssequenzen und bei aufgabenbezogenen Handlungs ĂŒbergĂ€ngen behandelt. Es wird ein neuer Ansatz zur Modellierung komplexer menschlicher Ganzkörperaktionen durch Mischungen von zeitverschiebungsinvarianten Motorprimitiven vorgestellt. Zudem wurde ein online-fĂ€higer Synthesealgorithmus fĂŒr Ganzköperbewegungen entwickelt, der auf dynamischen Bewegungsprimitiven basiert, die wiederum auf der Basis der gelernten verschiebungsinvarianten Primitive konstruiert werden. Dieser Algorithmus wurde fĂŒr verschiedene Probleme der Bewegungssynthese fĂŒr die Computergrafik- und Roboteranwendungen implementiert. Das letzte Kapitel der Dissertation mit dem Titel “Kontraktionstheorie und selbstorganisierte Szenarien in der Computergrafik und Robotik” widmet sich optimalen Kontrollstrategien in Multi-Agenten-Szenarien, wobei die Agenten durch eine hochgradig nichtlineare Kinematik gekennzeichnet sind. Dieser letzte Teil prĂ€sentiert neue mathematische Werkzeuge fĂŒr die StabilitĂ€tsanalyse und Synthese von kooperativen Multi-Agenten-Szenarien

    Generation of whole-body motion for humanoid robots with the complete dynamics

    Get PDF
    Cette thĂšse propose une solution au problĂšme de la gĂ©nĂ©ration de mouvements pour les robots humanoĂŻdes. Le cadre qui est proposĂ© dans cette thĂšse gĂ©nĂšre des mouvements corps-complet en utilisant la dynamique inverse avec l'espace des tĂąches et en satisfaisant toutes les contraintes de contact. La spĂ©cification des mouvements se fait Ă  travers objectifs dans l'espace des tĂąches et la grande redondance du systĂšme est gĂ©rĂ©e avec une pile de tĂąches oĂč les tĂąches moins prioritaires sont atteintes seulement si elles n'interfĂšrent pas avec celles de plus haute prioritĂ©. À cette fin, un QP hiĂ©rarchique est utilisĂ©, avec l'avantage d'ĂȘtre en mesure de prĂ©ciser tĂąches d'Ă©galitĂ© ou d'inĂ©galitĂ© Ă  tous les niveaux de la hiĂ©rarchie. La capacitĂ© de traiter plusieurs contacts non-coplanaires est montrĂ©e par des mouvements oĂč le robot s'assoit sur une chaise et monte une Ă©chelle. Le cadre gĂ©nĂ©rique de gĂ©nĂ©ration de mouvements est ensuite appliquĂ© Ă  des Ă©tudes de cas Ă  l'aide de HRP-2 et Romeo. Les mouvements complexes et similaires Ă  l'humain sont obtenus en utilisant l'imitation du mouvement humain oĂč le mouvement acquis passe par un processus cinĂ©matique et dynamique. Pour faire face Ă  la nature instantanĂ©e de la dynamique inverse, un gĂ©nĂ©rateur de cycle de marche est utilisĂ© comme entrĂ©e pour la pile de tĂąches qui effectue une correction locale de la position des pieds sur la base des points de contact permettant de marcher sur un terrain accidentĂ©. La vision stĂ©rĂ©o est Ă©galement introduite pour aider dans le processus de marche. Pour une rĂ©cupĂ©ration rapide d'Ă©quilibre, le capture point est utilisĂ© comme une tĂąche contrĂŽlĂ©e dans une rĂ©gion dĂ©sirĂ©e de l'espace. En outre, la gĂ©nĂ©ration de mouvements est prĂ©sentĂ©e pour CHIMP, qui a besoin d'un traitement particulier.This thesis aims at providing a solution to the problem of motion generation for humanoid robots. The proposed framework generates whole-body motion using the complete robot dynamics in the task space satisfying contact constraints. This approach is known as operational-space inverse-dynamics control. The specification of the movements is done through objectives in the task space, and the high redundancy of the system is handled with a prioritized stack of tasks where lower priority tasks are only achieved if they do not interfere with higher priority ones. To this end, a hierarchical quadratic program is used, with the advantage of being able to specify tasks as equalities or inequalities at any level of the hierarchy. Motions where the robot sits down in an armchair and climbs a ladder show the capability to handle multiple non-coplanar contacts. The generic motion generation framework is then applied to some case studies using HRP-2 and Romeo. Complex and human-like movements are achieved using human motion imitation where the acquired motion passes through a kinematic and then dynamic retargeting processes. To deal with the instantaneous nature of inverse dynamics, a walking pattern generator is used as an input for the stack of tasks which makes a local correction of the feet position based on the contact points allowing to walk on non-planar surfaces. Visual feedback is also introduced to aid in the walking process. Alternatively, for a fast balance recovery, the capture point is introduced in the framework as a task and it is controlled within a desired region of space. Also, motion generation is presented for CHIMP which is a robot that needs a particular treatment

    A phase-indexed tracking controller for interactive physical simulation of animated characters

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 103-107).In this thesis, I describe a method of animating characters using physical simulation. The main advantage of this approach, verses traditional keyframing methods, is that the animated character can react to physical interactions. These reactions can be synthesized in real-time in interactive applications, such as video games, where traditional approaches can only playback pre-recorded sequences. Physically simulating a character requires a controller, but creating a controller is known to be a challenging task, especially when animation concerns about the style of the motion are taken into consideration. This thesis describes a method of generating a controller automatically and quickly from an input motion. The stylistic aspects of the controller are particularly easy to control, as they are a direct result of the input motion. In order to generate a controller from an input motion, I address two main challenges. First, the input motion must be rectified (minimally modified) to ensure that it is physically plausible. Second, a feedback strategy must be formulated to generate control forces during the simulation. The motion rectification problem is addressed by formulating a fast trajectory optimization that solves for a reference motion. The reference minimally deviates from the input motion to satisfy physical constraints. The second challenge is addressed by employing a novel phase-indexed controller that uses a combination of local and global feedback strategies to keep the character tracking the reference motion. Beyond tracking just a single reference motion, I also demonstrate how variation to a input motion can be automatically synthesized using the same trajectory optimization method used in the rectification process, and how these variations can be sequenced, using optimal control, to accomplish various goals.by Yeuhi Abe.Ph.D

    Biologically-inspired control framework for insect animation.

    Get PDF
    Insects are common in our world, such as ants, spiders, cockroaches etc. Virtual representations of them have wide applications in Virtual Reality (VR), video games and films. Compared with the large volume of works in biped animation, the problem of insect animation was less explored. Their small body parts, complex structures and high-speed movements challenge the standard techniques of motion synthesis. This thesis addressed the aforementioned challenge by presenting a framework to efficiently automate the modelling and authoring of insect locomotion. This framework is inspired by two key observations of real insects: fixed gait pattern and distributed neural system. At the top level, a Triangle Placement Engine (TPE) is modelled based on the double-tripod gait pattern of insects, and determines the location and orientation of insect foot contacts, given various user inputs. At the low level, a Central Pattern Generator (CPG) controller actuates individual joints by mimicking the distributed neural system of insects. A Controller Look-Up Table (CLUT) translates the high-level commands from the TPE into the low-level control parameters of the CPG. In addition, a novel strategy is introduced to determine when legs start to swing. During high-speed movements, the swing mode is triggered when the Centre of Mass (COM) steps outside the Supporting Triangle. However, this simplified mechanism is not sufficient to produce the gait variations when insects are moving at slow speed. The proposed strategy handles the case of slow speed by considering four independent factors, including the relative distance to the extreme poses, the stance period, the relative distance to the neighbouring legs, the load information etc. This strategy is able to avoid the issues of collisions between legs or over stretching of leg joints, which are produced by conventional methods. The framework developed in this thesis allows sufficient control and seamlessly fits into the existing pipeline of animation production. With this framework, animators can model the motion of a single insect in an intuitive way by specifying the walking path, terrains, speed etc. The success of this framework proves that the introduction of biological components could synthesise the insect animation in a naturalness and interactive fashion
    • 

    corecore