
Simulating Collective Transport of Virtual Ants

Abstract1

This paper simulates the behaviour of collective2

transport where a group of ants transports an3

object in a cooperative fashion. Different from4

humans, the task coordination of collective5

transport, with ants, is not achieved by direct6

communication between group individuals, but7

through indirect information transmission via8

mechanical movements of the object. This9

paper proposes a stochastic probability model10

to model the decision-making procedure of11

group individuals and trains a neural network12

via reinforcement learning to represent the13

force policy. Our method is scalable to different14

numbers of individuals and is adaptable to15

users’ input, including transport trajectory,16

object shape and external intervention etc. Our17

method can reproduce the characteristic strate-18

gies of ants, such as realign and reposition.19

The simulations show that with the strat-20

egy of reposition, the ants can avoid deadlock21

scenarios during the task of collective transport.22

23

Keywords: Character Animation, Collec-24

tive Transport25

1 Introduction26

Collective transport describes the behaviour of27

a group of ants collectively transporting a heavy28

prey, a task which would otherwise be impos-29

sible for a single individual to complete [1, 2].30

This cooperative behaviour saves the effort of31

dissecting a large prey on site and increases32

the overall amount of food supplied [2, 3].33

Natural-looking animations of this behaviour34

could greatly enhance the vividness and immer-35

sion in interactive applications. However simu-36

lating the collective transport of virtual ants is a37

challenging task since it involves a group of in-38

dividuals coordinating in an indirect way. It is39

even more challenging if the animator demands 40

flexible control over the number of individuals, 41

the trajectory, obstacles and other inputs. 42

In spite of the aforementioned challenges, 43

few attempts have been made to model this be- 44

haviour in the field of computer animation. This 45

deficiency is in sharp contrast with the large col- 46

lection of existing work on simulating the inter- 47

action between biped characters [4, 5, 6, 7, 8, 9] 48

and that of swarm behaviour [10, 11, 12]. Col- 49

lective behaviour in humans normally requires 50

intensive information sharing between individ- 51

uals, such as in collaborative or adversarial 52

games. Compared to such behaviours in hu- 53

mans, the collective transport of ants is not 54

achieved by direct communication among in- 55

dividuals, but through indirect information ex- 56

change via the environment. This process is 57

known as stigmergy [13]. Most of the existing 58

work in swarm simulation focuses on navigation 59

and formulation of swarm individuals and does 60

not address the specific problem of force coor- 61

dination in a decentralised scenario. 62

In this paper, we present a model for simulat- 63

ing the behaviour of collective transport of vir- 64

tual ants. The goal of this work is not only to 65

reproduce the phenomenon of collective trans- 66

port, but also to allow animators to author so- 67

phisticated behaviours. The contributions of this 68

work include: 69

• A novel stochastic probability model is in- 70

troduced to simulate the strategies of re- 71

align and reposition, as used by ants during 72

prey transport. This stochastic probability 73

model produces the visually-appealing ran- 74

dom behaviour by adjusting the ants’ body 75

orientation and attachment position during 76

the process of collective transport. 77

• A stigmergy-inspired force policy is pro- 78

posed and modelled as a neural network. 79



The policy is further trained with the Q-80

learning method, a reinforcement learning81

technique, to optimise the weight param-82

eters of the force policy network. With83

this force policy, characters can apply force84

to the object individually and successfully85

complete the task of collective transport86

without direct information from the others.87

• We developed a complete framework to al-88

low users to author the behaviour of col-89

lective transport. Our work is capable of90

scaling from two to a large number of indi-91

viduals and can adapt to different scenarios92

based on user input of trajectories and prey93

weight etc. In the case of external interven-94

tion, individuals can reorganise themselves95

and restart the transport procedure.96

The remainder of this paper is structured as97

follows. Section 2 surveys the existing work in98

related topics including multi-character interac-99

tion and swarm simulation. Section 3 describes100

the design of our framework. Section 4 presents101

the results generated from the proposed frame-102

work and discusses the limitations of our exist-103

ing implementation. The last section, Section 5,104

concludes this paper by summarising and pre-105

senting directions for future research.106

2 Related Work107

2.1 Multi-character Interaction in108

Computer Animation109

Recently there has been a surge of interest110

in modelling the interaction between multiple111

characters, in the field of computer animation112

[4, 5, 6]. Researchers initially focused on the113

interaction between two players by editing ex-114

isting mocap data with an inverted pendulum115

model for each character [6], or by merging two116

existing interacting motion samples and auto-117

matically detecting the space-time relationship118

between them [5]. Game theory has been intro-119

duced to model the interaction of either collab-120

orative or adversarial goals between two play-121

ers [7, 8]. Recent work has expanded to scenar-122

ios involving more than two characters. Based123

on written or verbal descriptions of the action124

scenes, researchers are capable of generating,125

ranking and recommending a small set of inter- 126

action scenarios for multiple characters from a 127

large number of scene candidates [9]. Inspired 128

by language grammars, researchers introduced a 129

symbolic description to represent the interaction 130

amongst individuals [4]. This has successfully 131

generated animations for a group of characters 132

in scenarios such as basketball games, where 133

rules, regulations and planning are critical. 134

The complexity of the strategies, used in the 135

existing work, far outperforms the intelligence 136

of insects and is computationally unnecessary. 137

Our work specifically focuses on the task of col- 138

lective transport of ants and develops tools to 139

simulate such behaviour with sufficient control 140

over the group size, movement trajectory and 141

more. 142

2.2 Swarm Simulation 143

Swarm simulation deals with the problem of 144

generating the animation of a group of indi- 145

viduals. Researchers introduced the concept of 146

navigation fields to direct and control virtual 147

crowds [14]. These fields can be generated via 148

user sketches or 2D videos. Researchers have 149

proposed interactive and scalable frameworks 150

which generate freestyle group formations and 151

transitions via natural and flexible sketching in- 152

teraction [10, 11, 12]. Researchers have also 153

proposed the control of sophisticated group for- 154

mations via heuristic rules with explicit hard 155

constraints [15]. However, users had to man- 156

ually specify exact agent distributions, which 157

was time-consuming and labour intensive if the 158

crowd contained many agents. A recent work 159

[12] is capable of generating group behaviours 160

along with coherent and collision free naviga- 161

tion at interactive frame rates. Their method can 162

also dynamically adapt to the environment and 163

the number, shape, and size of the groups. 164

It is worth noting that there exists little work 165

in the area of swarm simulation which ad- 166

dresses the specific problem as proposed in this 167

work. The majority of existing work focuses on 168

the distribution, navigation and formulation of 169

swarm individuals. However, the main interest 170

of our work is to coordinate the behaviour strat- 171

egy and force policy of group individuals with 172

indirect information sharing between them. 173

Another critical application for simulating 174



collective transport is the field of swarm175

robotics. Tasks which are challenging for a sin-176

gle robot, with limited capabilities, can be con-177

ducted by a group of robots. This not only178

allows for the flexibility of adapting to differ-179

ent tasks with different numbers of robots but180

also increases the system’s robustness with suffi-181

cient tolerance of individual failures [3]. To im-182

plement such a function, robots can be coordi-183

nated in either a centralised [16] or decentralised184

[17] fashion. A centralised structure guarantees185

the optimal solution but suffers from an expo-186

nentially scaling complexity with regards to the187

number of individuals. A decentralised structure188

leads to a sub-optimal result but is scalable to a189

varying number of group individuals. However,190

compared to animation research, this research in191

robotics does not consider the synthesis of full-192

body motion and prioritises stability over other193

factors.194

3 Methodology195

The behaviour engine defines the individual’s196

collection of internal states and the rules for197

switching from one state to another. Intuitively,198

the behaviour engine is modelled as a Finite199

State Machine (FSM) (Figure 1a). A character200

has three states: search, approach and transport.201

• Search. Characters are initialised at ran-202

dom positions in the scene. They indi-203

vidually search for the prey object by dy-204

namically adjusting their movement direc-205

tion. Characters can detect the existence of206

the prey if the distance is within a range207

of 2cm (based on the observations of the208

species Pheidole crassinoda [18]). Once209

the prey object enters their sensory range,210

they switch to the state of approach.211

• Approach. The character will approach di-212

rectly towards the prey object once it is de-213

tected. The state of approach will terminate214

if a collision between the geometric shape215

of the prey and character is detected. In this216

case, the character switches to the state of217

transport.218

• Transport. Once connected, individuals219

determine how to apply force to move the220

prey given the mechanical feedback from 221

the prey and other information (such as the 222

desired trajectory). The transport state is 223

subdivided into three strategies: standard, 224

realign and reposition. During the stan- 225

dard sub-state, the character doest not ad- 226

just its relative position with respect to the 227

object. Inspired by observations of real 228

ants, we propose a Stochastic Probability 229

Model to simulate two typical strategies 230

which ants adopt for collective transport: 231

realign and reposition. 232

When the character is in the state of either 233

search or approach, we directly specify the ve- 234

locity to manipulate the character’s locomotion 235

and synthesise the full-body animation based on 236

a Central Pattern Generator control framework 237

[19]. The following paragraphs explain the two 238

main components of our work: the Stochastic 239

Probability Model as part of the behaviour en- 240

gine and the force policy to determine the drag- 241

ging force when the individual is attached to the 242

prey object. 243

3.1 Stochastic Probability Model 244

3.1.1 Realign 245

The strategy of realign alters the body orienta- 246

tion of the individual without releasing its hold 247

of the prey object [18] (Figure 1b). The in- 248

tuition is that the ant will attempt to align the 249

object with its own orientation so that the ant 250

can pull the object while walking backwards 251

[1, 3]. When a single ant experiences difficulty 252

in pulling the prey object, it attempts to pull 253

from varying directions. The strategy of realign 254

tends to occur before reposition and much more 255

frequently than reposition [13]. 256

Various factors, including object weight, sur- 257

face friction and obstacle obstruction, can all 258

contribute to the resistance which ants experi- 259

ence during transport and thus triggers the strat- 260

egy of realign. Therefore, we choose the term of 261

transport velocity as an abstraction of the prey 262

movement. A score Prealign is computed as: 263

Prealign =
1

1 + exp(0.5− ||~νo||
||~νa||max )

(1)

where ~νo is the velocity of the object. ||~νa||max 264

is the maximum moving speed of the virtual ant. 265



(a) FSM (b) Realign (c) Reposition

Figure 1: (a) Finite State Machine of the behaviour engine. (b) the strategy of realign. (c) the strategy
of reposition.

exp() is the exponential function. This repre-266

sentation states that if the prey object moves at267

a slow speed, the character is more likely to per-268

form the strategy of realign, attempting to ac-269

celerate the movement of the object by adjusting270

the force direction.271

This score is compared against a stochastic272

threshold λa with a normal distribution λa ∼273

N(µa, σa). Parameters µa = 0.5, σa = 0.2 en-274

sure that the probability distribution between [0,275

1] is greater than 98%.276

When the character decides to realign its body277

and pulls from another direction, we compute278

the target angle θ:279

θ = N(θback, σbody) (2)

where θback is the orientation when pulling280

backwards and σbody is set to avoid a geomet-281

ric collision with the prey object.282

3.1.2 Reposition283

If the individual still fails to move the prey after
adjusting the pulling direction, it releases the at-
tachment of the prey object, repositions itself at
another attachment point and repeats the pulling
process [18]. This process is called reposition
(Figure 1c). A score Preposition is represented
as following:

Preposition =
1

1 + exp( t
tmax

− γ)
×

1

1 + exp( ||~νa||
||~νa||max − 0.5)

(3)

where ~νa is the movement velocity of the char- 284

acter. t, tmax are the elapsed time and the max- 285

imum time since the initialisation of current at- 286

tachment. 287

Preposition is also compared against a stochas- 288

tic threshold λp ∼ N(µp, σp). Parameters 289

µp, σp are set to the same values as µa, σa. If 290

the probability is greater than the threshold, the 291

character chooses to reposition itself, otherwise, 292

it does not. 293

The target reposition location is computed as 294

a random point along the exterior shape of the 295

object, which is uniformly parameterised be- 296

tween [0, 1]. The movement trajectory T (t) of 297

reposition behaviour is computed as: 298

T (t) = Co(t)+D(t,Dmin, Dmax)+Cc(t) (4)

where Co(t) is the contour of the object shape in 299

the world coordinate, D(t) is a uniform random 300

distribution between [Dmin, Dmax], producing a 301

displacement distance between the character and 302

the object contour. Cc(t) is a sub-level trajectory 303

to avoid the potential collision with other indi- 304

viduals. Our current implementation produces 305

Cc(t) as a circular curve with a constant radius 306

and with its centre at the location of the other in- 307

dividual to avoid; although other types of curves 308

would also be suitable. 309

3.2 Force Policy 310

How the ants apply force to the prey object is 311

a challenging task, given the absence of com- 312

munication. We introduce a feed-forward neural 313



Figure 2: The framework of the force strategy. The control policy π first determines the force ~F based
on the current state ~S. A Q-value network evaluates the performance of the control policy
with a reward function.

network to define a policy π, which determines314

the force ~F applied on the object to change the315

current state ~S:316

π(~S, ~ω) : ~S → ~F (5)

where ~ω is the parameters of the decision net-317

work. The input ~S = (~νa, ~νo, ~ν
∗
o ) includes the318

velocity of the individual (~νa) and object (~νo),319

and the desired transport velocity of object (~ν∗o ).320

We used the Q-learning method, a reinforce-321

ment learning algorithm, to optimise the param-322

eters of the neural networks. In Q-learning, we323

first define a function Q(~S, ~F, ~θQ) representing324

the maximum discounted future reward when325

we choose ~F in state ~S. We use a separate neu-326

ral network to model the representation of the Q327

function and ~θQ is the parameter of this second328

neural network.329

The total future reward Q is a sum of the re-330

wards r collected at each subsequent time step.331

The reward r at a specific time is computed us-332

ing:333

r = e−cν(~ν
∗
o−~νo)2 + e−cθ(θback−θF )

2
(6)

The first term minimises the difference between334

the actual and desired velocity, while the second335

term prioritises the backwards pulling direction.336

cν , cθ are positive constants for the respective337

terms. A data set <~S, ~F, r, ~S′> is defined as an338

experience, which is collected and stored for lat-339

ter training processes. ~S′ is the simulated state340

after the force ~F is applied in state ~S.341

Therefore, the Q value for a specific time can
be represented as:

Qt(~S, ~F ) = rt + γrt+1 + · · ·+ γn−1γt+n

= rt + γQt+1(~S
′, ~F ′) (7)

Layers Force Policy Q-value Network

Input 9 12

Hidden #1 16 16

Hidden #2 32 32

Hidden #3 16 16

Output 3 1

Table 1: Architecture of the two neural networks
used in this work.

where γ is the discount factor of future reward. 342

rt is the reward at time t computed by Equa- 343

tion 6. If γ is zero, the policy only consid- 344

ers the instant reward and ignores the future re- 345

ward. When γ is one, the policy considers the 346

full effect of future rewards even though they are 347

not deterministic. We choose a value (0.9) as a 348

reasonable balance between these two extremes. 349

Equation 7 is a Bellman equation, which means 350

that the Q-function can be approximated by iter- 351

atively updating this equation until convergence. 352

The force policy π and Q-value network fol- 353

low a similar architecture design. Each network 354

is composed of 5 fully-connected layers. The 355

first and last layer are the linear-weight neurons. 356

The hidden layers are rectified linear units. The 357

number of neurons for each layer are listed in 358

Table 1. 359

The parameters (~ω, ~θ) of the two neural net- 360

works are optimised by the method of Stochas- 361

tic Gradient Descent (SGD). To iteratively opti- 362

mise the parameters of the Q-learning network, 363

we compute the loss function (or objective func- 364



tion) using :365

L =
1

2
[r + γQ(~S′, ~F ′, ~θ)︸ ︷︷ ︸

target

−Q(~S, ~F, ~θ)︸ ︷︷ ︸
prediction

]2 (8)

Therefore, the optimal gradient direction is:366

∂L

∂~θ
= [r+γQ(~S′, ~F ′, ~θ)−Q(~S, ~F, ~θ)]

∂Q(~S, ~F, ~θ)

∂~θ
(9)

For the control policy π, the optimal param-367

eters of ω would produce the maximum reward368

Q. Therefore, the gradient of the optimal policy369

is the direction that most improves Q:370

∂Q

∂~ω
=
∂Q

∂ ~F

∂ ~F

∂~ω
=
∂Q

∂ ~F

∂π

∂~ω
(10)

During runtime use, that is, after learning371

has been completed, the force is determined by372

forward-feeding the input through the decision373

network.374

The force applied to the object is fundamen-
tally related to the friction forces applied to the
ant’s stance legs. A double-tripod gait [20] is in-
troduced to switch the legs between stance and
swing. The front-left, middle-right and back-
left legs are grouped as the Left Tripod while the
other three legs are grouped as the Right Tripod.
When the ant moves, the two groups of legs se-
quentially alternate between stance and swing.
The following equations are used to distribute
the desired dragging force Fi among the stance
legs:[

m~̈p

I~̈θ

]
=

[
ID ID ID

[~ri,1]
T
× [~ri,2]

T
× [~ri,3]

T
×

]~Fi,1~Fi,2
~Fi,3


+

[
−~Fi + ~G

−~Fi × ~ri

]
(11)

where ~Fi,j (j = 1, 2, 3) is the force from the jth375

stance leg of the ith individual. ID is the identity376

matrix. m, I are the mass and inertia of the in-377

dividual. ~p, ~θ are the position and orientation of378

the Center-of-Mass (COM) of each individual.379

~G is the gravitational force. ~ri,j = (rx, ry, rz)380

is the vector connecting the jth footprint to the381

COM of the individual. [~ri,j ]
T
× is the corre-382

sponding skew-symmetric matrix of ~ri,j :383

[~rj ]
T
× =

 0 rz −ry
−rz 0 rx
ry −rx 0

 (12)

Demonstration Task Number of
Characters

Frame Rate

Deadlock (Figure 3) 2 20.5

Crowd (Figure 5a) 4 13.6

Crowd (Figure 5b) 8 9.0

Crowd (Figure 5c) 16 3.9

Crowd (Figure 5d) 60 0.9

Table 2: Experiment data of runtime perfor-
mance of selected demos.

Figure 3: (Left) Using only the strategy of re-
align, two individuals can barely move
the object. This creates the effect of
deadlock. (Right) By repositioning
one of the characters, two individu-
als apply force from a more consistent
direction, thus resolving the issue of
deadlock.

where ~ri is the vector from the attachment point 384

to the COM of the individual. Equation 11 has 385

more than one solution if no further constraints 386

are introduced. We reduce the redundant dimen- 387

sions of the solution space by assuming that the 388

vertical forces are spread equally over the stance 389

legs. 390

4 Results and Discussions 391

The resulting motions from the behaviour en- 392

gine and the trained force policy, are best seen 393

in the supplemental video. The final force pol- 394

icy was resolved using 150k training iterations, 395

collecting about 1 million tuples. The complete 396

training process took approximately 30 hours on 397

an 8-core computer. We use the open source 398

deep learning framework Caffe [21] to build and 399

train the networks. The runtime performance 400

data, after training, is presented in Table 2. The 401

runtime data was collected on a standard laptop 402

with a Core i5-6200U @2.30GHz (CPU) and 403

8GB (RAM). 404



4.1 Realign405

The strategy of realign adjusts the force direc-406

tion applied by the individuals. In extreme cases407

(such as in Figure 3), two individuals drag the408

object from either ends, pulling the object in op-409

posite directions. By adjusting the force direc-410

tions only, the average translational velocity of411

the object is close to zero. In observations of412

real ants, the deadlock resulting from antago-413

nistic pulling is rare and short in duration since414

real ants would soon reposition themselves [18].415

To resolve this deadlock, one of the characters416

would choose to release the object and pick a417

new attachment point. This is illustrated on the418

right side of Figure 3.419

4.2 Reposition420

The strategy of reposition adjusts the point from421

which the individuals apply force. This strategy422

reduces the possibility of deadlock. This is fur-423

ther verified in the case of collective transport424

by a group of individuals (Figure 4). Six char-425

acters are initialised with even spacing around426

the object. Since the force policy is trained with427

the preference of dragging the object in a back-428

wards direction, it is highly likely that forces429

with similar magnitude are applied from close-430

to-symmetrical directions. This creates the ef-431

fect of deadlock similar to the case of two in-432

dividuals in Figure 3. When one character re-433

leases the object, the deadlock is broken and434

the applied forces become asymmetrical. This435

re-enforces the probability that individuals who436

are pulling from opposing direction reposition437

themselves. The final result is the reorgan-438

ised formation of the individual spacing. When439

a character approaches the target position and440

finds it occupied by another agent, it attempts441

alternative target locations until it finds an avail-442

able one.443

4.3 Adapting to Different Numbers of444

Individuals445

One of the advantages of the decentralised446

paradigm is the scalability to different numbers447

of individuals. This is validated in our work by448

simulating the task of transport with different449

group sizes (Figure 5). In the real world, there450

always exists an optimal group size in order to451

balance between transport speed and energy ef- 452

ficiency. A larger group would recruit more in- 453

dividuals and thus increase the transport speed. 454

However, the transport speed may not increase 455

linearly with the number of individuals. Figure 6 456

plots the average transport speed with respect to 457

the number of individuals. The results show that 458

the linear relationship only exists for small team 459

sizes (2∼3 individuals). For greater numbers of 460

individuals, the speed increases at a slower rate. 461

Based on our simulation observations, the rea- 462

sons for such a nonlinear relationship are two 463

fold. First, when more individuals form a group, 464

the object is generally transported at a higher 465

speed, which in turn increases the probability of 466

individuals repositioning themselves to different 467

attachment points (Equation 3). Second, for an 468

object with a fixed geometric size, an increasing 469

number of individuals would have difficulty in 470

finding an appropriate attachment position and 471

avoiding bodily collisions with existing individ- 472

uals who are already attached to the object. This 473

leads to the fact that a significant proportion of 474

additional individuals’ time would then be spent 475

on looking for an attachment point instead of ac- 476

tually pulling the object. 477

4.4 Following a Curve 478

In the previous examples, individuals know the 479

location of the destination (or the nest). Forces 480

are applied as vectors from their current location 481

towards the final destination. In the real world, 482

ants determine their path back to the nest via 483

pheromone trails, which are chemicals laid by 484

nest members and strengthened as the transport 485

continues. Our method allows modelling com- 486

plex pheromone paths by user-defined curves. 487

The curve is first uniformly parameterised with 488

the value range of [0, 1]. Users can specify the 489

desired transport velocity on different segments 490

of the curve. At time t, the desired location is 491

passed to the controller and our method com- 492

putes the control inputs for the individuals. The 493

capability of following complex trajectories ex- 494

tends to scenarios such as obstacle avoidance 495

(Figure 7). Although this is not the exactly the 496

same as real ants, it is sufficient and flexible 497

enough to allow artists to reproduce such a be- 498

haviour for virtual ants. 499



Figure 4: Collective transport by a team of six individuals. Characters are evenly distributed around
the object during initialisation. As time proceeds, characters break the deadlock and start to
move the object in an uncoordinated but collective fashion.

(a) (b) (c) (d)

Figure 5: Simulating the task of collective transport with different numbers of individuals (from left
to right: 4, 8, 16, 60).

Figure 6: Average transport speed of an object
with respect to the number of individ-
uals.

Figure 7: A group of ants are transporting an ob-
ject along a predefined curve, creating
the effect of obstacle avoidance.

4.5 Adapting to Objects with Different 500

Shapes 501

Our method is also capable of simulating a 502

group of ants transporting objects of arbitrary 503

shape. This is validated in the example of the 504

demo of objects with text-shape (Figure 8). The 505

contour of the objects is represented as a set of 506

connected line segments, which are checked for 507

collisions with the geometry of the individual 508

ants. 509

Figure 8: Ants transport objects of different
shapes.

4.6 External Intervention 510

In the real world, the object could be abruptly 511

relocated to another location by wind or even 512

seized by competitors. We categorise such inci- 513

dences, which cause the sudden relocation of the 514

object, as external intervention. The stability of 515

our method is demonstrated when there exists an 516

external intervention during the process of trans- 517



port. After the intervention is introduced, all in-518

dividuals are forced to release the object. They519

then enter the state of search and start looking520

for the relocated object or an alternative if the521

original object is not found. Each individual522

switches to the state of approach and then trans-523

port if an object is detected within their sensory524

range. With this proposed strategy, the system is525

capable of accommodating external intervention526

(see Figure 9).527

5 Conclusions528

In a classical multi-character system, direct529

communication exists between individuals. The530

problem of stigmery, like the task of collective531

transport of ants, differentiates from classical532

systems because individuals act as if they are533

alone and do not directly share information with534

each other. This paper models the limited intel-535

ligence of real ants in nature and simulates the536

behaviour of collective transport which is com-537

monly observed in ant colonies. This model is538

decentralised, scalable and does not require a539

priori information about the prey object. With540

no explicit communication but only with indi-541

vidual local sensing, this method is able to scale542

to scenarios with different numbers of individu-543

als.544

One future direction for this work would be545

to further validate our model by comparing our546

simulation model with real ants. This would in-547

clude capturing video footage of real ants in-548

volved in the task of collective transport. The549

relevant information, including the timing and550

positioning of group members, could then be ex-551

tracted using techniques from computer vision.552

The comparison could be used to optimise the553

parameters used in our behaviour engine model.554

Another challenge that is not yet fully solved in555

our work is the design of the neural networks.556

The current architecture is constructed based on557

empirical knowledge. Since there is no universal558

guidance on the design of neural networks, and559

compared to the large possibility of network ar-560

chitectures, we can only approach the solution561

via limited experimentation. How to extend this562

controller to scenarios other than the task of col-563

lective transport is one of the future directions564

for this research.565
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