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Abstract

In this thesis, I describe a method of animating characters using physical simulation. The
main advantage of this approach, verses traditional keyframing methods, is that the ani-
mated character can react to physical interactions. These reactions can be synthesized in
real-time in interactive applications, such as video games, where traditional approaches can
only playback pre-recorded sequences.

Physically simulating a character requires a controller, but creating a controller is known
to be a challenging task, especially when animation concerns about the style of the motion
are taken into consideration. This thesis describes a method of generating a controller
automatically and quickly from an input motion. The stylistic aspects of the controller are
particularly easy to control, as they are a direct result of the input motion.

In order to generate a controller from an input motion, I address two main challenges. First,
the input motion must be rectified (minimally modified) to ensure that it is physically plau-
sible. Second, a feedback strategy must be formulated to generate control forces during the
simulation. The motion rectification problem is addressed by formulating a fast trajectory
optimization that solves for a reference motion. The reference minimally deviates from the
input motion to satisfy physical constraints. The second challenge is addressed by employ-
ing a novel phase-indexed controller that uses a combination of local and global feedback
strategies to keep the character tracking the reference motion. Beyond tracking just a single
reference motion, I also demonstrate how variation to a input motion can be automatically
synthesized using the same trajectory optimization method used in the rectification process,
and how these variations can be sequenced, using optimal control, to accomplish various
goals.

Thesis Supervisor: Jovan Popovid
Title: Associate Professor
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Chapter 1

Introduction

The last three decades has seen the emergence of a new art form. This art form, know as

computer animation, was pioneered in the academic realm by computer scientist and then

largely cultivated by commercial movie studios such as Lucas Arts, Pixar, and Disney. The

fruits of this collective effort have been astounding, as any audience of a recent Hollywood

spectacular can attest. Computer animation allows creative story tellers almost limitless

potential for conveying their ideas on the screen.

Although the theoretical bounds of an animated scene are limitless, many animations try

to replicate or enhance aspects of the real world. Arguably one of the most impressive

achievements of this kind is the production of digital characters realistic enough to blend

seamlessly with live actors in a movie scene. These characters can perform dangerous

stunts that a human actor could not attempt, or be of an alien form that would be hard

to achieve through traditional puppetry or costuming techniques. Unfortunately, creating

these animations takes large teams of talented artists and engineers countless hours. Al-

though appropriate for blockbuster movies, this approach is not practical for lower-cost

productions or for interactive applications where animation that reacts to user input must

be synthesized by a computer on-the-fly. For these purposes, a large body of research has

investigated software tools for automatic animation of characters. These tools attempt to

create high quality, realistic animations quickly (or even interactively) with little or no input

17



from an animator.

Many software tools for automatic animation use physical laws as guiding constraints for

creating realistic motion. Not surprisingly, the use of physical principles in animation even

predates the use of computers. For example, early hand animators at Disney espoused the

importance of physics in their "12 Basic Principles of Animation" [33]. Several of these

principles, such as "stretch and squash", "timing", "arcs", and "slow in/slow out" can be

seen as consequences of Newtons laws of physics on a moving body. It has long been

understood that human judgment of realism is linked to the perception of whether a motion

is physical. For this reason, physical simulation is used ubiquitously for the animation of

passive objects, where physical principles alone govern the motion. For example, physical

simulation of flowing fluids, wafting gasses, and blending cloth, has long been a mainstay

of computer animation in movies and video games alike.

This thesis deals with the subject of physically simulating characters. For characters, such

as humans and animals, physics alone is not enough to create convincing animation au-

tomatically. Humans and animals are expected to act with intention and with an array of

complex motor skills not exhibited by passive objects. Stylistic aspects of human motion

are particularly hard to encode in a computer program. Due to these challenges, animation

systems have typically shied away from using physical simulation as a means of generat-

ing motion. In interactive video games, characters are usually animated with a library of

"canned" motions that are carefully sequenced in response to user input. The motions are

either created by artists or they are motion capture of actual human actors, but they must be

created ahead of time and cannot be synthesized on the fly. This results in an overly repeti-

tive animation that lacks the ability to react to objects which are physically simulated. This

is particularly unfortunate, given the increasing use of physical simulation to animate other,

non-sentient objects in a scene.

The challenges involved in physically simulating characters are similar to those involved

in controlling robots in the real world. In addition to forward integrating the equations

of motion for the characters body, the character must be controlled. A controller must

be designed in software that continuously observes the current motion of the simulated
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character and specifies the internal muscle forces that the character should apply to it's

body to achieve desired motions. The controller must also be able to incorporate knowledge

of the surrounding environment, so as to appropriately plan the resulting motion. Most

important for animation purposes, the stylistic aspects of the controllers must be easily

directable and motions must be believable and lifelike.

Since the design of controllers is far from intuitive, this thesis explores an automatic method

for taking a traditional "canned" motion sequence as input, and using that as the basis for

designing a controller. The advantage of this approach is that it allows a traditional animator

to design controllers using tools they are familiar with. Specifying the stylistic aspects of

a controller becomes trivial. The controlled character will mimic the style of the input

sequence closely until some physical interaction occurs. When this happens, the controller

will deviate from the input motion in a physically valid manner, creating interesting and

appropriate variation on the original motion.

Developing the tools and methods for automatic synthesis of a controller that can mimic, or

track, an input sequence is the main topic of this thesis. The various chapters of this thesis

can be seen as contributing toward a unified system for this purpose. There are many facets

to this problem. First, it is important to ensure that the input motions that are used to gener-

ate controllers are physically feasible in a strict mathematical sense. Otherwise, a physical

controller for the motion is impossible. Second, a control strategy must be devised that is

capable determining the muscle forces needed to generate the motion as well as robustly

handle physical disturbances that cause perturbation in the motion. Lastly, for controllers

to be truly useful in an interactive setting, they must be able to switch between different

motion behaviors in an intelligent manner in response to the simulated environment or user

interaction.

The first of these challenges, that of generating feasible motions, is more troublesome than

it might first appear. Animator can create any motion imaginable, but a physical simula-

tion is restricted to those motions that can be produced as a result of forward integration of

physical equations of motion. Even if a animator aims to produce motions that look phys-

ically plausible, small or imperceptible physical inconsistencies are often enough to cause
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Online User
Controller

Input Motion - Animator

Offline Policy Optimization
with Value Iteration (Chapter 5)

Motion Rectification
+ Editing (Chapter 4)

Parametertzed Motion Iamily

Phases-Indexed Tracking
with Double Support

+ Robust Contact Preservation
(Chapter 3)

q14q

Figure 1-1: An overview of the complete system described by this thesis. The system allows
for the automatic design of stylized controllers using only a single motion as input. The
controllers can then be used in conjunction with physical simulation to create interactive
character animations.

trouble in simulation. To address this problem, this thesis discuss the use of trajectory op-

timization to minimally modify motions so as to ensure they are physically valid (Chapter

4). This is presented as a semi-automatic preprocess that an animator could use in order to

ensure physical validity of a motion prior to automatic synthesis of a tracking controller.

However, even when a physically feasible motion is available determining the correct mus-

cle forces to produce the motion is a nontrivial task. A main contribution of this thesis is

a method of addressing this challenge through construction of a carefully considered feed-

back strategy. One of the core components of this strategy is what we call a phase-indexed

tracking controller (Chapter 3). The novel aspect of the phase-indexed tracking controller

is that it eschews the idea of strictly adhering to a specific motion timing. The input motion

is reproduced in terms of overall shape to capture the look and feel of the original, but the
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timing is allows to vary in order to ensure stability and robustness in response to perturba-

tion. The advantage of this approach is two-fold. First, since the timing of the motion is

allowed to vary, the resulting feedback strategy can be shown to be more robust to other

time-indexed motion tracking strategies that lack flexibility in timing. Second, the form of

the controller results in a low-dimensional analog of the full system, called a zero dynam-

ics, in which it is possible to make useful predictions about the future state of character.

We discuss several different ways in which these predictions can be used to enhance the

performance of the controller. In particular, we should how the low-dimensionality of the

zero dynamics enables use of an optimal control approach called value iteration (Chapter

5). Value iteration is used to improve the phase-indexed tracking of complex anthropomor-

phic gait patterns by carefully coordinating forces on the character's feet. Value iteration

is also used to help better sequence controllers to navigate a constrained environment or

respond to user input.

A main goal of this thesis is to outline a working pipeline for animators to create physically

simulated characters. However, many of the methods presented have implications beyond

animation. Tracking controllers for artificial legged creatures have implication in fields

such as robotics and biomechanics. The ability to accurately reproduce biomimetic motion

in simulation may well prove to be a useful tool outside of animation.
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Chapter 2

Background

This chapter will provide the reader with the essential background material needed to ap-

proach the topics discussed in the remainder of the thesis. The material includes a discus-

sion of methods used to model and simulate a human character, an introduction to con-

trollers at large, an derivation of the basic phase-indexed controller approach that we build

upon, and some preliminaries on optimal control methods that are used.

2.1 Physics of Simulated Characters

2.1.1 Equations of Motion

Although the actual physical structure of a human body is vastly complex, a good approx-

imation of the dynamics can be achieved by modeling the various segments of the body

as rigid bodies connected by angular joints. Such structures are know as articulated rigid

bodies. Their configuration can be represented in a reduced coordinate form [4], in terms

of internal joint angles and global orientation and position. Joint angles are given as off-

sets between parent and child segments in a branching tree structure rooted at an arbitrary

segment, at which the root orientation and position is given.The full configuration of the

body can be represented by a vector of numbers q E Q. Instead of modeling actual muscles,
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we directly consider torques that act on the angular joints. These forces are represented

by a generalized force vector u E U. We can write the equations of motion in a standard

form that explicitly delineates the unactuated root coordinates q,. (and forces ur) from the

actuated internal degrees of freedom q (and forces ua):

Mr Mra q'. [br Ur
,+ = (2.1)
Mr a a ba ua

M(q) 4 b(q,q) U

where M denotes the symmetric, positive definite mass matrix and b is a vector of bias

terms.

For the purpose of exposition, let also define both an inverse dynamics function,

u = H(qqq), (2.2)

a forward dynamics function,

4 = F(q,4,u), (2.3)

and partial derivatives, dH dH dH

Note that Equation 2.3 is simply a more general form of Equation 2.1. The specific form of

2.1, simply reflects the fact that character dynamics obey classical Lagrangian mechanics.

It is possible to derive this form by writing down the Lagrangian of the system and taking

partial derivatives (i.e., calculating the "forced" Euler-Lagrangian equations of motions).

2.1.2 Frictional Contact Dynamics

The equations of motion only describe the effect of internal forces acting on an uncon-

strained body in free space. The motion of a body in contact with the environment is

24



Figure 2-1: For full body animation, the physical structure of the human body is approxi-
mated by rigid bodies (blue boxes) connected by angular joints (black dots).

significantly more complex due to the presence of contact forces that push on the body to

prevent interpenetration between the character and the environment. Although in the real

world, contact forces would be the result of many microscopic interactions over the con-

tacting interface between objects, for simulation of characters approximated by idealized

rigid bodies, it is sufficient to consider only the interaction of a small number of contact

points, p () E R3 (i - 1 ... m) (and forcesf ) E R3), that minimally describe the convex hull

of the contact interface (see Figure 2-2).
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fi)

center of V7 iP

pressure

Figure 2-2: Contact dynamics expresses the relationship between the motion (q, 4,q) of
an articulated body, its internal torques, and external forces. We model the contact be-
tween two surfaces with a set of point contacts plI) ... p(m) and the matching contact forces
(1) .(m). Each contact force is restricted by a convex cone K(') according to the well

established Coulomb model offriction.

An analytic model of contact forces can be most intuitively derived by considering a set of

unilateral constraints on the acceleration of contact points [3, 55],

Pn 0, f 0 , f j pl) =0, (2.4)

where the subscript n denotes the component of a vector normal to a contact surface. Start-

(i)ing from any valid, non-interpenetrating contact state with ph = 0, the first constraint

prevents interpenetration of the contact surface by allowing only positive accelerations in

the normal direction. The second constraint prevents the application of forces that pull on

the contact point. The third constraint prevents forces from doing work upon the charac-

ters. This constraint is often called the complimentary condition since it prevents both i

and f(' from being nonzero simultaneously.

Additional constraint can be applied to tangential components of the contact forces to en-
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force a Coulomb model of friction:

| ti)I || P i 'i i) nf l ||) 1 (2.5)
0 if [ ||" =0

where the subscript t denotes the two dimensional vector of tangential components and

y > 0 is a coefficient of friction at the contact point. The first constraint ensures that contact

forces remain within a friction cone while the second constraint allows only dissipative

forces that act counter to the tangential motion along the surface. Together, the constraints

on tangential and normal force components characterize a simple but sufficient description

of frictional contact dynamics.

The constraints provided here only describe necessary conditions for physical validity.

They do not prescribe a method of solving for the contact forces . To solve for the contact

forces it is necessary to first observe that there exists a coupling between joint torques and

contact forces. Cartesian contact forces acting on the character may be equivalently repre-

sented in terms of generalized torques u by transforming them through a well known linear

relationship [16, 65],

u -= [Gi)]Tf E U, (2.6)

p(0)where G') - is known as the Jacobian matrix of the ith contact point. Thus the total

generalized torque acting on the character,

U = U+ EU(, (2.7)

is the sum of both internal muscle forces, u, and external contact forces, u('), coupled

through their Jacobian transpose.

This leads to a linear relationship between contact accelerations, 0), and contact forces,

f (i:
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-G(i)F(q, 4, u + () + ji

-G(i)F(q, 4, u + [G(j)ITf(j) + (2.8)

The relationship is linear because the exact form of the forward dynamics equation F (i.e.,

solving Equation 2.1 for q) is linear in u. It can be more compactly represented as,

p= Af +b, (2.9)

where p = (p(0), ... , p(m)) and f = (f(0),... , f(m)) are vector concatenations of all the con-

tact accelerations and forces, and A and b are both directly computable by substituting the

exact form of F into the equation above. This linear equation, along with the complimen-

tary constraints (Equation 2.4 and 2.5) form a complimentary problem [19] which must be

solved to determine contact forces.

2.1.3 Computational Considerations

This section will discuss two important computational choices in the simulation and control

of characters in this thesis. The first of these choices is the use of efficient algorithms for

the computation of the dynamics functions. These function are used ubiquitously through-

out the thesis to describe forward simulation, online control, and offline optimal control

algorithms. It is to be assumed that the efficient computational approach described below

is used unless noted elsewhere. The second choice discussed is the use of a stable and ef-

ficient velocity-based time-stepping scheme for forward simulation, rather than the classic

acceleration-based approach.
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Efficient Computation of Forward and Inverse Dynamics Functions

When simulating and controlling characters, the forward, F (and often inverse H) dynamics

function must be computed at each time step, thus for interactive simulation, efficiency

becomes an important consideration. Although the form of equation 2.1 provides insight

into the structure of the dynamics, in practice it is wasteful to calculate all the coefficients

of the M matrix in order to compute the inverse dynamics function. Similarly, despite the

fact that the mass matrix M is known to be invertible, performing this inversion to compute

the forward dynamics function is not nearly as efficient as directly evaluating the function

F through other means.

Featherstone provides, in his book [27], a canonical reference on a family of efficient, re-

cursive algorithms for computing both forward and inverse dynamics for articulated bodies.

These methods exploit the tree structure of an articulated rigid body to compute both the

inverse, H, and forward, F, dynamics functions in O(n) time and space, where n is the

number of degrees of freedom in the system. They operate by recursively propagating ve-

locities, accelerations, torques, forces, and inertia tensors up and down the tree structure of

an articulated body using a convenient "spatial" algebra.

Fang and Pollard [26] have shown that by directly differentiating the recursive Newton-

Euler algorithm (described by Featherstone) it is possible to efficiently compute partial

derivatives of H . Further more, if desired, it is possible to differentiate only a partial

subset of the dimensions of H, decreasing the number of operations to a fraction of the

full cost. Finally, if necessary it is also possible to compute a generalized inertia vector,

L = Mg, and its partial derivatives, Lq and Le, using already available byproducts of these

other algorithms. If only the generalized inertia terms are needed, a stripped down version

of the recursive algorithm is straightforward to formulate. It is even simpler to implement

and is faster to compute by an appreciable constant factor.
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Acceleration-based vs. Velocity-based Numerical Simulation

Numerical simulation is the process of approximating the solution to a continuous differ-

ential equation via a discrete time step. In order to perform numerical simulation in an

efficient and stable fashion it is important to consider different numerical approaches. Two

possible approaches to simulation are acceleration-based time stepping and impulse-based

time stepping. Acceleration-based time stepping is perhaps the most intuitive approach.

In this paradigm, the state of the character is forward integrated by formulating a double

integrator system,

x = (2.10)

[. (Al = (2.11)F(q,4, )

Each simulation step consists of two calculations. First, contacts forces, f(), are com-

puted by solving the complementarity problem (2.4 and 2.5). Then i = u + i [G )] Tf(i) is

inserted in the system above and the system is integrated.

However, one issue with this approach is that the contact constraints are only enforced

at the acceleration level. Integration error will inevitable causes the velocity state of the

constraints to drift from zero. The typical solution to this problem is to use a stabilization

method (e.g., Baumgarte stabilization [5]) to correct for deviations from the constraint sur-

face. These methods usually apply a spring-damper-like corrective force to the constraints.

However,the coefficients of the spring-damper are typically hard to tune and often inject

undesirable (and unrealistic) energy into the system [15].

Alternatively, a velocity-based time stepping approach may be formulated [43, 55, 15],

which suggests a different method of handling the contact constraints with some practical

advantages. The velocity-based time step is formulated by making two discretization as-

sumptions. First, that the acceleration 4j at time step j may be approximated by a finite
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difference,

qj ~ (4j+1 -4j)/At, (2.12)

and, second, that the contact forces, f)(0, may be replaced with contact impulses, r('):

r(') = f() ~~ Atf)(0. (2.13)

Under these discretization assumptions, the equations of motion (2.1) may be rearranged

to solve directly for velocities at the next time step:

-j+1 = + M- 1 (At (u - b) + [G()]T r(i)). (2.14)

To find the contact impulses, the acceleration-level complimentary contact constraints are

reformulated at the velocity-level:

]j+1 ?> 0, [(] > 0 [f0i]j[pEi]j+1 = 0, (2.15)

W= G(')j+1- (2.16)

It can be shown that the acceleration-level constraints (2.5) imply the velocity-level con-

straints (and visa-versa) by integrating the acceleration constraints (or, alternatively, taking

a derivative of the velocity-level constraints).

Rather than solving directly for the contact impulses, they are solved implicitly by find ej+
that simultaneously satisfies (2.14), (2.15) and (2.16). This is a complementary problem

that maybe solved efficiently using a fast iterative method such as the one described by

Erleben [24]. Note that this essentially folds the solution of the contact constraints into

the time step. Once the velocity at the next time step are known, the position state can be

updated using a implicit Euler integration step: qj+1 = j+ Atj+ 1.

Since the contact constraints are express directly in terms of velocities at the next time step,

the constraint velocities are always precise and do not suffer from numerical drift due to
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integration error. Due to the dependence of the contact impulses on the velocities at the

next time step this is a semi-implicit form of integration. The implicit nature of the time

step allows for larger time steps to be taken without numerical instability issues [15]. It

has also been noted that when friction terms are included in the contact constraints, this

velocity-level formulation of the complementary problem can be shown to always yield a

solution where, in the acceleration-level version, it is possible to define physically valid

contact configuration for which no there is no solution [55]. Due to these advantages, the

velocity-based approach is used for all forward simulation performed in this thesis.

2.2 Control

So far the equations which govern the motion of characters under the constraints imposed

by frictional contact have been described. However, the method for determining internal

joint torques, u, which will cause the character to move in a desired fashion have not been

discussed. In the broadest sense, this is the role of control.

This section will start by describing the role of a controller, which is the algorithm that acts

online during simulation to determine the correct torques to apply to the character. Next,

a description and derivation of a phase-indexed tracking controller will given. This is the

basic type of controller upon which this thesis builds. The section will end by first giving a

unified view of the concept of optimal control before delving into the preliminaries of two

different kinds of optimal control that are used in Chapters 4 and 5.

2.2.1 Controllers

Controllers act in concert with the simulation. At each simulation step, the controller eval-

uates the current state, (q, q)T = x E TQ of the character in order to determine a control

action u c U to execute. In most cases, controllers are deterministic in the sense that they

correspond to a policy II(x, u) : TQ -+ U, which maps states to control actions. Determining

this mapping is the main challenge in designing a controller.
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Controller Simulation

Figure 2-3: A controller sits in a feedback loop with the simulation. At each simulation
step the controller observes the current state (q, l) of the character model and determines
appropriate internal joint torques u.

Some of the earliest and most versatile controllers in animation used hand-crafted policies

[47, 37, 48, 25, 67] which rely upon clever insights into the character dynamics. Although

this approach has seen great success in the research community, it has been difficult to

develop tools usable by non-experts. Unlike the approach taken in this thesis, these con-

trollers do not mimic a specific input motion, so it is difficult to control the look or style of

the motion. Some [61, 63] have proposed automatic parameter optimization approaches to

help in the design process, but these techniques suffer from long search times and tend to

require carefully tuned objective shaping terms.

The approach taken in this thesis, of designing controllers that track an input motion, has

been previously explored by others in graphics [68, 1, 41, 20, 45]. These previous con-

trollers are best described as time-indexed tracking controllers because they try to mimic

the precise timing of the input motion. By contrast, this thesis explores the idea of a phase-

indexed tracking controller. The phase-indexed tracking controller reparameterizes a time-

indexed reference trajectory in terms of a phase variable. This results in a tracking con-

troller that is time invariant, which has advantages in terms of robustness and versatility.

Others have explored similar ideas along the lines of time-invariant tracking. It has been

used in the context of autonomous helicopter flight [36] as well as for control of humanoid

motion [23, 50].

Most relevant to this thesis is the idea of reparameterizing a time-indexed trajectory in terms

of a phase variable. Westervelt and colleagues [64] have shown how this idea can lead to the

development of a hybrid zero dynamics that can be used to simplify the analysis of biped
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motion. Using their approach, they have developed provably stable gait controllers that

have been successfully applied to a 7 degree of freedom robot. This thesis develops upon

these ideas, applying them to even higher degree of freedom bipeds with more complex gait

patterns. However, creation of a hybrid zero dynamics is only one possible use of a phase

variable. Manchester and colleagues have shown how a phase variable can also be used

to construct a transverse linearization that is used to develop a controller that stabilizes

the dynamics to a nominal trajectory using receding horizon control [42]. This idea has

been successfully implemented on a 2D compass gait robot. In contrast to the hybrid zero

dynamics approach, the transverse linearization approach produces a MIMO linear system

for which feedback gains can be computed optimally and automatically.

2.2.2 Phase-Indexed Tracking Controller

In this section the mathematical preliminaries of the phase-indexed controller will be de-

rived in a general form. We will show how, through the use of a specific kind of feedback

(which we call motion constraints), the dynamics of a high-dimensional system can be ef-

fectively reduced to a low dimensional one. The derivation given below is close to the one

given by Westervelt and colleagues [64], but similar derivations have been done by others

as well (e.g. [51]). The closely related and more general concept of a zero dynamics has

been know to the nonlinear controls community for some time longer [31, 46].

Motion Constraints

The basic mechanism upon which the phase-indexed controller is constructed is the motion

constraint. These constraints are also known as "virtual constraints" in the robotics and

control literature. They are often used in the analysis of nonlinear and underactuated control

systems [10, 51] because they effectively reduce complex systems to simpler ones that are

easier to study. Virtual constraints have been particularly fruitful in the analysis and design

of controllers for simplified biped walkers [64, 11, 51, 42].

A preliminary step in the definition of the motion constraints is to define a differentiable
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and invertible coordinate transformation,

g-'(q) = [hu(q)T,ha(q)T]T : Q R", (2.17)

which maps joint angles to a partitioned set of controlled, ha E Rn, and uncontrolled,

hu C Rn-n, coordinates. The size of ha is assumed to be the same as the number of actuated

degrees of freedom.

In addition to the coordinate transform, a smooth differentiable scalar function

6 (hu) (2.18)

is defined. For motion tracking purposes, 6 is defined such that its expected evolutions in

time 6(t) is smooth and monotonic. This is because 6 is to serve as a replacement for the

time variable in the phase-indexed tracking controller and we must ensure that a smooth

one-to-one mapping exists between 0 and time for the type of motion the controller is to

perform. Due to this restriction, 0 will be referred to as the monotonic phase variable.

The motion constraints y are now given by a relationship of the form

y(q) = ha(q) - c(O) = 0, (2.19)

where c(9) is a differentiable function that is chosen as part of the controller design process.

Since the number of motion constraints y is the same as the number of actuated degrees

of freedom, precise control is possible through a partialfeedback linearization [53] of the

form:

ln AO A' ua dhU[ =I " + (2.20)
yA,0 A, U,. d

A d

where A and d are easily computed by twice differentiating y and hu with respect to q and

plugging in the forward dynamics equation (2.3). The assumption that the root degrees of
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freedom, q,., are unactuated implies that ur = 0. This prevents direct control of both h and

y simultaneously, but the motion constraints can be stabilized around y = 0 by applying

feedback,

ua = (A (2.21)

y* ksy --Ikdj, (2.22)

where ks and kd are gains and E controls the exponential rate of convergence of (yj) to

(0,0).

Reduced System

One of the main advantages of using motion constraints is that they result in a new system

dynamics with reduced dimensionality. When the motion constraints are enforced (i.e.,

y = 0), the state can be expressed solely in terms of the uncontrolled coordinates hu:

q =g(haihu) =_g(c(O(hu)),hu) Aqc(hu), (2.23)

dqc
dhu hu, (2.24)

where qc (hu) is a computable function that reconstructs the full state from only the uncon-

trolled coordinates. The subscript c denotes the dependence upon the motion constraint

function. Note that this reconstruction is only valid when y = 0 and, similarly, the relation-

ship (2.24) is only valid when (yj) = (0,0).

The subset of states that can be represented by qc (ha) (and its tangent space):

S(q,4)e(yh) = 0} C Ta (q,4) (2.25)

is called the zero dynamics set.
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The resulting closed-loop dynamics of the partial feedback linearization (2.20),

hu =f(huhu,haha) +g(huIiu,haia)u,

Y f*(huhu,ha,ha),

may be derived by substitution of (2.21) into (2.20).

However, when the constraints have stabilized to the set (yj) = (0,0), we have that

ha = c(6(hu))

ha dc(6(hu)) d(hu)iu
d6 dhU

and by substituting (2.27) and

in a much reduced form,

(2.28) into (2.26) we find that the dynamics may be written

Nu =f(hu,hu)+ g(hu,huu

y = 0, (2.29)

which only has dependence upon the uncontrolled coordinate state (hu,hu). This system is

called the zero dynamics of the constraints y. Since the number of uncontrolled coordinates

is equal to the number of unactuated degrees of freedom, and this is usually only a small

fraction of the full dimensionality of the character, this system allows for a low dimensional

analysis of the character's behavior under the action of the motion constraints.

2.2.3 Optimal Control

The easiest way to specify a control policy is often to define a cost function that should

(ideally) be minimized by the policy. In many cases, this cost function can be represented

by a sum (or integral) of an instantaneous costs over time:
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C = c(xi^ui, (2.30)

where the instantaneous cost at each time index i is a function of the state and the control.

For example, a tracking controller might define an instantaneous cost function that penal-

izes the deviation of the character's state, x, from a desired state, i:

c(x,u, i) = ||x -1i1 2. (2.31)

However, determining the control policy that minimizes a given cost function for all pos-

sible states is often quite difficult, if not impossible. Further compounding this problem is

the fact that characters (e.g., bipeds) are underactuated, meaning that they possess less con-

trol inputs than degrees of freedom. This deficit of controls may be expressed in terms of

differential constraints on the allowable trajectories of the system. In layman's terms, this

means that not all trajectories are feasible and, furthermore, it is nontrivial to express which

ones are infeasible. An optimal policy must account for this kind of complication. Optimal

control methods attempt to solve this problem using a variety of techniques. Due to the

complexity and dimensionality of the problem, numerical methods are often employed and

the resulting policy, I7(x), is often only an approximation of a local minima in the global

landscape of possible functions.

An important distinction exists between optimal control methods that determine a feedfor-

ward policy and those that determine a feedback policy. Feedforward policies only provide

a partial mapping of H, where the domain is restricted to a 1-dimensional subset of the state

space along a (locally) optimal trajectory. In fact, the output of these methods is typically

just a trajectory in state space along with the corresponding sequence of control actions.

The control actions correspond to the trajectory in the sense that if they are executed start-

ing from a specific initial condition, the system dynamics will proceed along the given
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trajectory. Thus these feedforward methods are often just called trajectory optimizations.

Feedforward trajectory optimizations do not provide a contingency for when the system's

state diverges from the given trajectory. Thus even small disturbances will tend to precip-

itate into larger deviations, which can quickly lead to failure. Feedback policies provide

a larger set of states for which of the optimal (or approximately optimal) policy can be

computed. A global feedback policy provides an optimal control action for every possible

state. However, the dimension of such a policy will inevitably scale with the dimension of

the character. Thus for high-dimensional, non-linear, underactuated systems (as is the case

for characters) it is usually impossible to determine a globally optimal feedback policy,

except in special cases.

A vast literature on the topic of optimal control deals precisely with this problem. A typ-

ical solution is to approximate the optimal policy by reducing the effective dimension of

the system state using clever (and often problem dependent) projections or mappings (e.g.,

[20, 18]). Another trick often employed for nonlinear systems is to compute an approxi-

mately optimal policy in some small local vicinity of an optimal trajectory. This is often

done by computing a Taylor series approximation of the full nonlinear dynamics along the

feedforward trajectory and using this in place of the full dynamics for sufficiently nearby

states. By approximating the nonlinear system as a time varying linear system, and by

integrating the so called Riccati equations [54, 34], a time varying version of the standard

Linear Quadratic Regulator (LQR) [54] may be used to generate linear feedback gains for

a nonlinear system. Another almost identical approach, known as differential dynamic pro-

gramming (DDP) [32, 2], has been explored more recently for robotics control applications.

Such methods are better than a feedforward policy, but still lack convergence guarantees

away from the trajectory upon which they are developed. This has lead to recent efforts

to improve these methods by stitching together many local trajectories in order to define a

policy function on a larger subset of the domain [58, 57].

Feedforward trajectory optimization coupled with linear feedback based upon LQR or DDP

are usually used together. First, an optimal feedforward trajectory is computed. This trajec-

tory is then used as the local set of states upon which Taylor series expansion of the dynam-
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ics and integration of the Riccati equations is performed. Although these approaches show

promise, there are many technical details and complications in the practical implementation

which have so far inhibited their wide application. The work described in this thesis lever-

ages feedforward trajectory optimization, but it avoids the complications of feedback using

LQR or DDP type methods. Instead, a somewhat different approach is developed. Feed-

back is composed of two parts: a local, non-optimal feedback policy based upon motion

constraints and an optimized policy that operates on the resulting zero dynamics. Since the

zero dynamics is of a small enough dimension (n = 2), we apply a different kind of optimal

control, know as value iteration, that attempts to determine a global policy function on the

zero dynamics. In so far as the full dimensional system approximates the zero dynamic,

the global policy will be behave approximately optimally on the full dimensional system

as well. Although we do not find strict approximation bounds on the optimality, in practice

this approach results in reasonable feedback policies on the full system.

The following two section will give the reader general background on the methods used in

this thesis to find optimal feedforward trajectories (direct transcription) and to determine a

global policy on the zero dynamics (value iteration). Further development and application

of these methods to the specific character control problems considered in this thesis will

occur in Chapters 4 and 5.

Direct Transcription Methods

Direct transcription methods are ways of solving optimal feedforward trajectories using

optimization. They solve for optimal trajectories by "transcribing" a control problem into a

standard nonlinear programming problem (NLP). When using a direct transcription meth-

ods, continuous state and control functions are discretized in time. The discrete values

become the free variables in an NLP. The objective function of the NLP represents the cost

function to be minimized by the optimal trajectory. The constraints of the NLP enforce the

physical dynamics of the system as well as other problem specific limits on the state and

the control.
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As an example of a simple direct transcription problem, let us consider the trajectory x(t)

of a particle mass m subject to time varying control forcesf(t). The second-order dynamics

are given by m& =f. If we wish to solve for a minimal force trajectory that transport the

particle from point a to point b while avoiding the unit disc located at the origin, we might

solve the following NLP:

min 1i|[
{xi,.ifili=1...n}

s.t. xo =a

xn= b
X. Xi

Xi At
fi -_i+1 -ti
M At

(x9)2+(xI)2 > 1

The free variables in the problem above represent the discrete positions, velocities, and

forces (resp. xi,.ii,f) along the optimal trajectory. The NLP minimizes the discrete forces

subject to the constraints. The first two constraints enforce the initial and final position

of the particle. The third and fourth constraints enforce a "forward Euler" (or finite dif-

ference) relationship between adjacent positions and velocities and adjacent velocities and

accelerations. The final constraint prevents the trajectory from intersecting the unit disc.

Although the constraints above are formulated using an forward Euler difference equality,

it is equally possible to use any higher order or implicit difference formula. The various

possible difference methods are also called collocation methods, of which there are many.

A comprehensive treatment of the subject can be found in the book by Betts [8].

In computer graphics, direct transcription has been used for motion design and editing

and can be seen as a variant of the spacetime constraints method first introduced to the

field by Witkin [35]. In aeronautics and robotics, direct collocation is a standard tool for

trajectory synthesis because it generalizes well to a broad range of problems and because

there are many mature numerical codes for solving NLP problems. In this thesis, direction

transcription is used to find optimal motions for simulated bipeds. Chapter 4 is devoted to

the description of this method.
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Value Iteration

Value iteration is an optimal control algorithm that is often able to determine globally opti-

mal policies for discrete problems with a small number of dimensions and a finite number

of states. It can also be used to find approximate solutions to continuous problems by dis-

cretizing the state and control spaces. Value iteration works by leveraging the existence

of optimal substructure inherent to many optimal control problems. Optimal substructure

means that the optimal control problem can be divided into smaller subproblems, the so-

lution to which can be used to solve larger subproblems. This process is repeat until the

whole solution is know. In this light, value iteration may be seen as a form of dynamic

programming.

Value iteration operates on a discrete system with state s E S, control actions a E A, and a

transition function T(s, a) : S x A -+ S, which maps state and action pairs to new states. The

goal of value iteration is to find an globally optimal policy, I* : S -+ A, which minimizes

a given cost function.

Value iteration works under the assumption that an instantaneous cost c(s, a) is given for

being in state s and performing action a. The value, V(so), for starting in state so is given

in terms of a sum of all instantaneous costs for so and all subsequent states si, i > 0:

V(so) = -[ac(si, ai), (0 < i > n) (2.32)

where the term a c [0, 1] is a discount factor that is often included to express diminishing

dependence upon states farther into the future.

The optimal substructure inherent in the problem may be made explicit by rewriting the

value function recursively as

V(si) = -- c(si, ai) + aV(si+1). (2.33)
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Note, however, that computing the value function requires knowledge of future states si,

but the sequence of future states will depend upon the policy. If the value function is used

as a criteria to design the policy, this would seem to lead to circular reasoning. However,

Bellman showed that it is often possible to solve for both the value function and the optimal

policy efficiently! This is done by observing a criteria of optimality that must be satisfied

by the value function and policy.

Even without knowing the value function, we can derive the following relationships that

must hold for the optimal policy, U*,

H* (si) = arg max[c(si, a) + V(T(si, a))], (2.34)
aczA

V(si) = c(si, Ul*(si)) + V(T(si, U* (si))

= max[c(si, a) + V(T(si, a))]. (2.35)
aEA

The first equation above shows that once the value function is known, the optimal policy is

simply the greedy one which chooses the action that transitions to the state with maximum

value. The second equation, known as the Bellman equation, expresses a condition of

optimality for the value function. It can be shown (under normally satisfiable conditions)

that the value function for the optimal policy uniquely satisfies the Bellman equation.

Value iteration iteratively refines the solution of the value function by alternately updating

the two equations above. Given an initial guess at the value function, the policy is updated

for each state using equation (2.34). Then the value function is recomputed for each state

using equation (2.35). This process is repeated until convergence. There are many strate-

gies for ordering the updates to the value function. Some strategies update states in an

asynchronous fashion where the same state is updated multiple times before performing an

update to another state. Different strategies many be more advantageous depending upon

the structure of the transition function.

A excellent reference on value iteration, with its many variations, can be found in [7]. In
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particular, one useful variation of the basic algorithm, as outlined here, is to allow for prob-

abilistic transitions between states. In this case, the meaning of the transition function is

modified to be a probability distribution over possible states. The value function is likewise

modified to compute the expected value:

V(si) = -c(si, ai) + a[V(sj)p(sIsi, ai), (2.36)

where p(s Isi, ai) is the probability of transitioning to state sj when starting in state si and

performing action at. Value iteration can be used to optimize this expected value.

44



Chapter 3

Phase-Indexed Tracking Controller

This chapter will describe our implementation and experiments with a phase-indexed track-

ing controller for a simulated 2D biped. It will be shown how the phase-indexed tracking

controller can be used to control a simulated character in a manner that captures the overall

style of a provided input motion.

At the core of the controller is a specific form of the general motion constraints described in

the previous chapter (Section 2.2.2). This specification will involve defining the invertible

coordinate transform g-1 (q), the monotonic phase variable 0, and the constraint functions

c(6). The derivation of the motion constraints will assume a simplified model of the char-

acter with a fixed point foot. However, the motion constraints on the simplified model

are only used as starting point for computing the output to the full character. Additional

calculations augment the basic motion constraint feedback to account for the presence of

feet, double support, and frictional contact constraints. Feet are accounted for by allow-

ing some limited actuation of the (initially assumed unactuated) root degree of freedom of

the simple model. This actuation is calculated by defining an auxiliary control policy that

places the position of the ground reaction force on the foot. The resulting ankle actuation

is coupled back into the feedback on the motion constraints in a principled manner. Double

support stages of motion are handled by a slight modification to the motion constraints,

which accounts for the closed-loop kinematic configuration of the legs. Finally, constraints
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on unilateral and frictional contact dynamics are handled by allowing a graceful degrada-

tion of the motion constraints to occur in extreme situations when these constraints would

otherwise become violated. This degradation is formulated as a constrained, least square

optimization on joint accelerations, which are then mapped back to joint torques as the final

output of the controller.

We demonstrate that the resulting controller is able to perform several different stylized

forms of walking and even a jumping motion (with only slight modification). The controller

is remarkably robust to unexpected disturbances such as uneven ground and external forces

applied to the body of character. We also show that the resulting controller is significantly

more robust to force disturbances than a state-of-the-art time-indexed tracking controller

based upon the Nonlinear Quadratic Regulator (NQR).

3.1 Motion Constraints for 2D Bipeds

We will start by formulating a set of motion constraints for a simplified biped with a fixed

point contact between a foot and the ground. That is to say, initially we ignore the existence

of the feet and only consider the contact between the ground and one of the two legs at any

given moment in time. We also initially ignore the existence of unilateral constraints on

the normal contact forces and frictional constraints on tangential contact forces. This is

somewhat justified by the fact that during normal modes of operation, the control will not

expect to violate these constraints due to the downward pull of gravity. Only for large

disturbances to the motion will we expect these constraints to play a significant role in

recovery. Once the basic formulation for control with a single point foot without friction has

been described, modifications for principled handling of feet, double support, and frictional

contact dynamics will be introduced.

Since contact is initially limited to a single point, without restrictions on contact forces,

we can consider the dynamics of a simplified character with only single root degree of

freedom, q,, which is the angle of the bottom leg segment with respect to the ground (see

Figure 3-1).
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Time-Indexed Trajectory:

Motion Constraints:

qa

0
Figure 3-1: Motion constraints enforce a kinematic relationship between a state variable
6 and the actuated degrees of freedom qa. The parameters of the constraints are fit to
match a specific input motion. They serve a similar function to the trajectories tracked by
time-indexed controllers, but without enforcing a specific timing.

With these assumption in place, we define an invertible coordinate transform (2.17)

g 1 (q) = [hu(q)T,ha(q)T]T

hu - 6, ha = qa.

(3.1)

(3.2)

This particularly simple and effective choice of the coordinate transform was first intro-

duced by Westervelt and colleagues [64].

The choice of the monotonic phase variable 6 depends upon the type of motion being

tracked by the controller, however, two particularly convenient choices that we have ex-

perimented with are the angle between the hip and the point contact with the ground (see

Figure 3-1) and the horizontal displacement of the center of mass and ground.

Given the coordinate transform above, the motion constraints can be expressed as

y(q) = qa- cw(6), (3.3)

where the constraint functions c, are defined by piecewise B-spline curves with control

points w.

Note that since we have defined 6 = hu and hu as a function of q, we may for notational
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convenience express 9 in any of the following equivalent symbolic forms:

6 = h, = 0(hu) = 6(q) = 6(qa,qg)- (3.4)

Furthermore, for notational convenience we will allow the reconstruction function q, (ha)

(2.23) to be written equivalently in any of the following forms:

qc (hu) = qc (0) = q. (e), (3.5)

where the subscript w again expresses the dependence of the reconstruction function on the

B-spline parameters of the constraint functions. An important consequence of the above is

that when (yf) = (0,0) the full state of the character may be reconstructed from 6 and 6

alone:

q =qw(6) (3.6)

4q () d . (3.7)

3.2 Design of Motion Constraints

Motion constraints are designed to mimic the joint configurations of an input motion. This

is done by specifying the motion constraint functions cw(6) (defined by parameters w)

that best fit the motion. In our construction we use piece-wise B-spline curves [21] to

represent the c, functions over the motion. Continuous segments of the curve are given by

individual B-spline curves c,, w = [wo ... w,], where n is the number of segments. Thus

the parameters w for which we must solve correspond to control points of the B-spline

segments.

Given an input motion we wish to track, the process begins by dividing the motion into dif-

ferent stages depending on the contact configuration between the character and the ground.
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The simple point contact model used to develop the motion constraints will vary depending

upon how the character makes contact with the ground (Figure 3-2. During stages where

at least one of the feet is flat, the simple model is rooted at the ankle joint of the flat foot.

Since the foot is flush with the ground and is not expected to move during this stage of the

motion, we need not consider it's motion. During stages when no foot is flat on the ground,

the simple model is rooted at which ever point is making contact with the ground. We must

include the foot link in the simplified point foot model during these stages of the motion.

In between some stages of the motion, impulsive collisions change the velocity state of

the character discontinuously. This happens, for example, when a foot strikes the ground.

Whenever a discontinuity in the velocity state occurs, we transition to a new B-spline seg-

ment to better represent this discontinuity. We also transition to a new B-spline segment

whenever the topology of the simple point foot model changes (Figure 3-2). However

care must be taken to ensure that the end of one B-spline segment is consistent with the

beginning of a new B-spline segment. We refer to this as the consistency condition.

To express the consistency condition, we start with the assumption that contacts occur as a

standard inelastic impulse between the character and the environment

L4~ = 4+, (3.8)

where 4- and 4+ are the joint velocities before and after the impulse and L is a linear

map that depends only on the configuration of q at the impulse event. When no impulsive

contacts occur, L is simply the identity matrix. The form of L is identical to the linear

impulse assumption used by Westervelt [64] and can be derived by solving for the contact

impulses necessary to bring the velocity of the newly formed contact point immediately to

zero.

By substituting (3.7) into (3.8) a consistency condition,

0 = CQwo, wi) = L dw(0) q,(6)d0L (3.9)d0 d 0 dq d 0 '

for adjacent B-spline segments of the constraint curve may be derived, where 0 is the value
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Stage 0: Stage 1: Stage 2: Stage 3:

Cwo(0)
Cw(O) Cw1() Cw2(O)

Double-Support Swing Toe-Off Heel-Strike

Figure 3-2: This figure depicts the four different stages of a typical anthropomorphic
walking gait: double-support, swing, toe-off, and heel-strike. The red lines and dots depict
the contact between the feet and the ground. The black lines depict the topology of the
simple, point foot model used during each stage. At the top is a representation of the B-
spline constraint function. Transitions between different piecewise segments of the B-spline
constraint function occur whenever either the topology of the simple model changes or an
impulsive contact collision occurs, such the heel striking the ground between the toe-off
and heel-strike stages.

of 0 when the switch between B-spline segments occurs and qw (0) and qw (00) are the

motion reconstruction functions (3.6) computed using adjacent B-spline segments cW0 and

cwl evaluated at 6.

Finally, we solve for control points w that satisfy the consistency condition and that mini-

mize y along the trajectory of the input motion. The optimization takes the form

min E(||4a(ti )-cw( $(ti ))||2 +k||- 11w($ 2)}

:=o:

subject to C;(wpwj+1) =0, (3.10)

where n is the number of discrete sample points along the input motion, ti is the time of
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sample point i, q-la(ti) and $(ti) are the nominal values of the actuated degrees of freedom

and 0 at time ti in the input motion, respectively, and C1 is the consistency condition be-

tween B-spline segment j and j + 1. k is a scalar regularization term that helps to avoid

large accelerations in the motion constraints that would make their derivatives poorly con-

ditioned.

The consistency conditions are nonlinear in the parameters w because the impulse map

L depends upon the configuration of the character at the transition between stages. So

we solve the system using nonlinear optimization with finite differencing of the gradients.

We found that solutions could be obtained in less than a minute on a midrange desktop

computer, for a 2D character with 14 degrees of freedom for up to 2 seconds of input

motion.

Although our method of designing the motion constraints differs from prior work, the re-

sulting point-foot walking controller closely resembles the one described by Westervelt and

colleagues [64]. In fact, many of our controllers exhibit the passive stability characteristic

of the walking controllers designed by Westervelt, despite the fact that we do not specifi-

cally strive to design motion constraints with this property. Instead of passive stability, the

focus of our motion constraints design is on accurate reproduction of the configurations of

the input motion.

3.3 Robust Contact and Double Support

This section will describe ways in which the basic feedback provided by the motion con-

straints is augmented to develop a robust controllers that uses the feet advantageously and

that can handle the presence of double support.

3.3.1 FRI Policy and Contact Preservation

In the development of the motion constraints thus far, a fixed connection between a point

foot and the ground has been assumed. This simple model captures the gross dynamics of
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bipedal motion, however, it does not account for the presence of feet on a real character

model. When feet are flat on the ground, they afford the controller extra control potential

through limited actuation of the root (previously assumed unactuated) ankle joint of the

simple point foot model. The actuation is limited because large forces on the ankle joint

would cause the feet to rotate on edge which would result in the character falling down.

To determine the allowable actuation of the root ankle joint, this section will define the

concept of an FRI policy, which is an auxiliary policy that defines how the character uses

the ankle joint advantageously, while avoiding foot to rotate. This section will only define

the concept of the FRI policy and demonstrate how it is used in conjunction with the motion

constraints. Design of useful FRI policies is a different matter all together. In the results

section of this chapter, some simple FRI policies will be defined, but a large portion of

Chapter 5 is devoted to the use of policy optimization to design better FRI policies.

To define the FRI policy, we must first define the notion of the foot rotation indicator point

(or FRI). The FRI is defined as a point on the ground that must remain in the base of support

of the foot to prevent rotation [29] (see Figure 3-3). Formally, FRI is defined as the point

on the ground plane such that

Ur = FRI x GRF, (3.11)

where Ur is the torque on the root ankle joint (and assuming a massless foot). For those

familiar with the similarly purposed zero-moment point (ZMP), it may be convenient to

realize that both the FRI and ZMP are identical when the foot does not rotate. Thus, for the

purpose of the following exposition, they may be treated identically.

Under the feedback of the motion constraints, the instantaneous acceleration of the zero

dynamics system is fully determined by the choice of Ur (cf. Equation 2.29). As the GRF is

solely a function of the acceleration of the center of mass and we may derive the following

linear relationship:

GRF = AGRF( 6)ur +bGRF(0, 6)1 (3.12)
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where AGRF and bGRF are trivially computed by plugging in the reconstruction functions (3.6)

and (3.7) into a equation that computes the ground reaction force. Of course the validity of

this equation depends upon the action of the motion constraints ensuring that y = 0.

In the 2D case, Equation 3.11 reduces to a simplified form:

Ur = (GRFYFRIX - GRFxFRIY). (3.13)

By substituting (3.12) into (3.13) and solving for ur, it can be seen that in order to prevent

the foot from rotating, Ur must be limited to the set

FRIYbx - byRFRIX
{ur = GRF F RIx- < FRIx < FRIx+}, (3.14)

AFFFRIx - 1.0 - FRIY AGRF

where FRIx+ and FRIx- are the upper and lower bounds of the support foot's contact with

the ground. Rather than choosing a value of ur directly, we define an FRI policy,

II(6, 6) : S - [FRIx+, FRI ] E IR, (3.15)

which maps from the reduced state (6,6) E S to a value of FRI in the valid range. Given a

value of FRI from the policy, Ur is computed using equation (3.14) and then ua is computed

using equation (2.21).

This would complete the calculation of the desired joint torques if we choose to ignore

frictional contact constraints that limit the allowable direction of the ground reaction force

vector. This is the case for Westervelt and colleagues [64]. They make the reasonable

assumption that if the disturbances to the character are small, ground reaction forces will

remain valid due to the presence of gravity. Gravity ensures that ground reaction forces

occur mostly in a vertical direction, thus avoiding pulling on the ground or large tangential

forces. However, when disturbances to the character become larger, this assumption is

easily violated. Since a real character cannot pull on the ground with it's feet, attempting

to blindly execute the feedback from the motion constraints would cause the character to

slip or lift its foot off the ground.
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To prevent this, our controller has a mechanism for detecting when such situations will

occur and handling them. Whenever the computed forces from the motion constraints

and the FRI policy would result in a GRF outside allowable friction cones, our controller

projects the GRF back onto the allowable friction cone. The projected version of the GRF is

no longer consistent with the motion constraints, so a least squares minimization is solved

to compute desired joint accelerations:

min ||Y(4) -Y*||2

subject to GRF = GRF*,

FRI = 1(0, 6) (3.16)

where GRF* is the projected version of GRF and j* is the desired acceleration of the motion

constraints given by Equation 2.22. This optimization is formulated as a linear-equality

constrained quadratic program and solved efficiently at runtime. Once q has been deter-

mined, an 0(n) inverse dynamics algorithm (Featherstone's Newton-Euler method [27]) is

used to computes u.

Single Support Double Support

PFRI fRF Ptoe fGRFPtoe

xI I ~I~
x- X Px+ x- XPx+

PFRI PFRI PFRI PFRI

Figure 3-3: The foot rotation indicator point FRI and ground reaction force GRF are de-

picted during double and single support. The horizontal component of the FRI, FRIX, must

remain within the bounds of the support [FRIx+, FRIx] in order to prevent foot rotation.

Our use of the FRI is somewhat overloaded in the sense that we use it to describe valid

placement of ground reaction forces during double support as well as single support. In

the double support cases the FRI can be thought of as describing the placement of ground

reaction force on a large virtual foot rooted at the ankle joint of the stance leg and extend-

ing to cover the base of support of both feet. This is valid because in double support the

swing toe, Ptoe, is constrained to remain in contact with the ground.
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3.3.2 Double Support

The control of a biped during a non-instantaneous double support phase has not been ad-

dressed in prior work using motion constraints. Others [64, 51] have treated the double

support phases as an instantaneous impulse event. This avoids the problem of dealing with

closed loop kinematics during the double support stage of the motion, but it also limits

motions to ones that don't often occur in nature. The walking gait of a human, for example,

involves a non-instantaneous double support phase known as toe-off, where the back foot

pushes off the ground, injecting forward momentum. This phase is critical to injecting en-

ergy into a gait when walking up steep inclines and also helps to make the gait more robust

to force disturbances.

In double support, it is assumed that the toe of the back foot makes contact with the ground.

To ensure that this is the case, even when disturbances occur, the motion constraints (3.3)

are modified by selecting a new invertible coordinate transform,

g-_'(q) = [hu(g)',ha(g)T]T (3.17)

hu = 6, ha = [a,Ptoe]T, (3.18)

where the tilde symbol represents an operation that removes elements from the vector cor-

respond to the heel and knee of the second leg andptoe is the Cartesian position of the toe

of the second foot. The motion constraints are redefined to be

y =(3.19)
LPtoe _ _ $toe _

where ptoe is constant value representing the desired position of the toe on the ground.

This has the effect of adapting the motion constraints so that they explicitly enforce the

ground contact constraint of the second foot. The same FRI control strategy is applied as

in the single support case, except that the bounds on the FRI are expanded to include the

inscribing polygon of both feet (see Figure 3-3).

In the final computation of joint torques, there is still an ambiguity due to redundancy in
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TGRF

Figure 3-4: This figure depicts the redundancy in how the aggregate ground reaction
force may be applied to a simulated character in double support by varying the forces
on each foot. In illustrations A and B, the same aggregate ground reaction force (solid
arrow), originating from the same point on the ground, is the sum of different individual
forces on each foot (dashed arrows). In figure A the aggregate force on each foot is placed
strategically at the center of the foot. In figure B, the aggregate force on the front foot is
placed on the edge of the heel. This is a less stable configuration because even a small
disturbance (small red arrow, illustration C) would cause the front foot to rotate about the
heel, reducing the effective area of support. On the other hand, a small disturbance to the
front foot in A would simply move the point of origination of the foot force slightly toward
the heel, while still keeping the foot stationary. Thus, placing the force at the center of each
foot effectively results in a self-stabilizing contact configuration, which helps in cases when
the foot briefly rolls on edge due to unmodelled disturbances.

the actuation of the closed-loop configuration (see Figure 3-4). This ambiguity corresponds

to a choice of where to place the aggregate linear force on each foot. Previous control

strategies for characters have either ignored this redundancy or resolved it implicitly though

a minimum joint torque criteria. However, we have found that a simple strategy that works

well is to choose an aggregate force near the center of each foot. This corresponds to the

intuitive idea that force should be placed away from the edges of the feet. Empirically we

have found that this results in a control strategy that is more robust to unmodeled force

disturbances that might otherwise cause the feet to rotate on edge .

We use an efficient algorithm for computing the final joint torques during double support.

It involves 4 steps:

1. calcuate a desired set of accelerations 4d by solving the least squares minimization

(3.16) subject to the motion constraints (3.19) and the FRI policy
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2. using 4d, calculate the joint torques, uopen, for an open-loop skeleton rooted at the

first foot using the Newton-Euler O(N) recursive inverse dynamics algorithm

3. determine the vectorsfo,fi and positionsp0 ,pi of aggregate forces on each foot, such

that GRF =fo +fi and the location of the FRI remains the same (i.e.,fo x (po - FRI) +

fi x (p I - FRI) = 0). if possible, place the po and p I at the center of flat feet.

4. calculate the final joint torques as u = Uopen + (4 )Tfi, which projects the aggregate

linear force from the second foot, fl, back into the joint space through the Jacobian

transpose

The control formulation is only slightly more involved than a standard inverse dynamics

calculation and yields a similar 0(n) algorithm. The resulting torque is applied directly to

the simulated character. Pseudo-code for a slightly simplified walking controller with only

two stage (double support and single support) is provided in Algorithm 1.

Algorithm 1 The following pseudo-code is an example of the control algorithm which
executes at each control interval for a simplified walking controller. The simplified walking
controller only has two stages; one single support stage (SINGLE) and one double support
stage (DOUBLE).

stage +- DOUBLE
loop

6, 6 <- ComputeTheta(q,4)
if stage = DOUBLE && 6 > Os then

stage +- SINGLE
else if stage = SINGLE && footContacto then

stage <- DOUBLE
end if
FRI = 1I(6, 6)

(u, GRF) = ComputeTorque(FRI)
if GRFY < 0 then

GRF = 0
u = ComputeLeastSquaresTorque (FRI, GRF)

else if ||GRFx/GRFYJ| > fric. coef then
GRF = sign(GRFx) * GRFY
u = ComputeLeastSquaresTorque(FRI, GRF)

end if
(q, 4) = ForwardSimulate(q, q, u)

end loop

> Eqn. (3.14) and (2.21)

> Eqn. (3.16)

> Eqn. (3.16)
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3.4 Results

Here we will discuss results of using the controller described in this chapter to create in-

teractive simulations of a human biped. We start by describing the process of creating

controllers for walking. It will be demonstrated that our walking controller is extremely

robust to many different kinds of disturbances including uneven ground and force pertur-

bations.

Walking is a particularly well studied motion type that will allow us to easily compare and

contrast our controller method with others tracking [20, 45] and non-tracking [67, 48] gait

controllers in graphics. One advantage of our controller over non-tracking controllers is

the ease with which the style of the walk can be altered by exchanging one input motion

for another. We also will show that our controller is significantly more robust that a state-

of-the-art time-indexed tracking controller based upon the Nonlinear Quadratic Regulator.

We will discuss advantages and disadvantages of each formulation.

Finally, we describe a jumping controller that we have constructed using the phase-indexed

control approach. The jumping controller will demonstrate the potential of the phase-

indexed control approach to handle motion types other than walking. The jumping con-

troller will involve an underactuated take-off phase and an aerial flight phase that will

necessitate slight modifications to the controller described so far.

3.4.1 Walking

To construct our walking controller we start with a recorded motion and apply a spline-

smoothing technique [38] to produce a walk cycle. Next we identify a monotonic variable

6. In the case of walking, a particular convenient choice is the angle of the vector between

the stance ankle and the hip. This choice resulted in robust gaits, however, we also exper-

imented with using the horizontal position of the center of mass. This worked better for

styles of walking where the angle of the swing leg was not monotonic or when the velocity

of the swing leg varied too much over the course of a step. In general we found that the
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larger the accelerations of the 6 variable the less stable the resulting tracking controller.

This is due to the larger forces that are generated in response to sudden changes in the

variable when disturbances occur.

To create a walking controller we start with physically valid motion trajectory. Next, we

partition the input motion into different support stages and fit the parameters of the motion

constraints to the motion using the process described in Section 3.2.

The final step in controller design is to define an FRI policy I. The simplest policy we

tried keeps the FRI constant throughout the entire gait cycle. For some styles of walking,

this policy was sufficient to achieve a constant walking speed. Moving the FRI forward

(or back) resulted in slower (or faster) walks. If the FRI was brought too far forward, the

controller came to a stop, or, in some case, took a backwards step, depending upon the

parameters of the motion constraints.

A constant FRI policy will not robustly combat unexpected perturbation such as deviation

from flat ground. A simple way to regulate the forward walking speed is to incorporate a

PID controller. We found through experimentation that using the integral term alone works

best:

TI(6, 6) = min(fri+, max(fri~, frio + Je(t)dt)), (3.20)

where e(t) = 6 - 6 d is an error between the current and desired velocity of 6.

The walking controllers that we have built using this strategy can consistently withstand a

forward or backward push to the upper torso of up to 350 Newtons for 0.1 seconds at all

points along the walk cycle. These results are comparable to the ones described by other

robust biped walking controllers (e.g., SIMBICON controller [67] which can withstand

600N for 0.1 s) after accounting for the smaller weight of our character (51 vs. 90 kg).
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Robustness

The walking controller we have designed are robust to variations in the terrain as well as

unanticipated pushes applied to the body. The same controller designed to walk over flat

ground also makes forward progress over a sloped ground between -18 and 10 degrees. The

controller is able to sense when contacts are made, but has no notion of ground geometry.
If the phase variable exceeds its range, the controller simply projects the variable back onto

the closest value in the range in order to compute the virtual constraint. We experimented

with other interesting terrain adaptations, including walking over stairs, a spongy ground,

and a moving link bridge. Even without adjusting a single parameter, the basic controller

for walking on flat ground proved remarkably robust to these ground perturbations. The

main failure mode of the basic tracking controllers was when the toe unexpectedly stubbed

the ground. One possible solution would be to check for ground clearance and switch to a

controller with a higher step.

Figure 3-5: Our phase-index walking controller designed for flat ground is remarkably
robust, even when walking over unexpected ground surfaces, such as down steps or over a
moving bridge.

3.4.2 Comparison with Quadratic Regulator

The linear quadratic regulator (LQR) and nonlinear variants [20, 45] have shown promising

results for tracking motions with robustness. They represent the current state-of-the-art in

time-indexed trajectory tracking. For comparison purposes, we have implemented both our

controller and a nonlinear quadratic regulator (NQR) on a simplified 5-link model with

point feet.
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To produce a trajectory for the NQR to track, our controller is run for six steps. Design of

the NQR involves tuning 5 different parameters per model degree of freedom (DOF). To

simplify the tuning process the same 5 parameters are used for all DOFs. Both controllers

are tuned to be as robust as possible while retaining some compliancy. Torques are clamped

to 300 Newton meters to prevent use of large forces. To test the robustness, a force is

applied to the torso midway through the second step.

After tuning the NQR gains for maximum stability the character is able to withstand forces

from -50 to 10 Newtons (in the horizontal direction for 100 milliseconds) without falling

down during the remaining steps. By contrast, our controller could sustain forces between

-500 and 400 Newtons. Table 3.1 summarizes parameter sensitivities of the two controllers

showing the viable range of parameters than could recover from the push.

Qualitatively, the response of our controller to the -50 Newton meter push is notably dif-

ferent to that of the NQR controller. The NQR controller flails a leg outwards in order to

catch up with the original timing of the motion. The motion will often diverge significantly

from the original trajectory which can create exciting, dynamic recoveries. However these

recoveries are not always natural or graceful. We found that the exact response depends

heavily upon the setting of the parameters in a unintuitive manner. For example, increasing

the penalty for deviating from the reference value of the joint angles had the opposite effect

in some case. Our controller recovers in a more predictable manner, while using smaller

torques to do so (see Figure 3-6).

Table 3.1: Our Controller: Parameter range for stable response to a -50 Newton push.

param I value I min I max description

0.05 0.001 0.49 exponential conver-
gence factor

Ks 10 le-2 le4 position and
velocity gain
(Kd=2/VK)
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Our Controller
1

V

-0.81
-0.3 0.5

stance leg angle (rad) time
0 1 2

time

Nonlinear Quadratic Regulator Tracking Controller
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Figure 3-6: Graphs comparing the response of our controller vs. the NQR controller (to
a push of -50 Newtons for lOOms). Black lines indicate the response and red lines are
the unperturbed reference trajectory. Our controller stays close to the original trajectory
(left) by deviating from the original timing (middle). The NQR controller closely tracks the
original timing (middle), but uses larger torques (right) to recover Compared to the NQR
controller; our controller can recover from pushes that are an order of magnitude larger

3.4.3 Broad Jumping with Dynamic Balance

Our broad jump controller performs a sequence of forward jumps. This motion involves

dynamics balance, where the center of mass is not over the base of support, making it

tricky to perform. The key control challenge is in regulating the speed of the landing so

the character is prepared for the next jump. Unlike the case of walking, a simple FRI

policy fails to result in a self-stabilizing motion. Instead an FRI policy is designed using a

discretized value iteration on the reduced state.
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Table 3.2: Nonlinear Quadratic Regulator: Parameter range for stable response to a -50
Newton push.

param, value min max description

Q le6 0 le7 position cost

Q 1e2 6el 6e4 velocity cost

Qend le8 le7 le9 final position cost

Oend le8 le2 le8 final velocity cost
lel leO le4 actuation cost

For this motion, the monotonic variable 6 is the horizontal position of the center of mass

relative to the feet. The jumping controller is divided into 4 stages (INIT, TOEOFF,

FLIGHT, LAND) corresponding to different contact configurations between the charac-

ter's feet and the ground (see Figure 3-7). Switching between stages occurs at designated

values of 6 or, in the case of the transition to LANDING, when the feet are flat on the

ground.

COM

INIT -* TOEOFF -* FLIGHT * LAND
Figure 3-7: Take-off initiates with the character feet flat on the ground. Briefly before
flight, the character pushes off with its toes. In the flight phase there is no contact. The
character enters the landing phase when the feet are flat on the ground again. Finally, the
character transitions back to takeoff
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During the FLIGHT phase, the initial angular and linear momentum fully determines the

trajectory of the character. As such, the controller is highly sensitive to the ground reaction

force through the TOEOFF stage. To better control these forces, motion constraints on the

left knee and ankle are replaced with direct control over the ground reaction forces. In the

design phase, we fit a spline function GRF(9) to the feedforward reference values of these

forces, as a function of 6. Motion constraints in the FLAT, FLIGHT, and LAND phases are

treated the same way as in the double supports stage of walking.

The jump controller is particularly sensitive to the location of the FRI throughout the LAND

and INIT stages. Depending upon the value of the FRI, the jump will either speed up or

slow down resulting in the character falling down after several cycles. Simple FRI policies,

such as the integral controller described for walking, do not work. Instead, we design an

FRI policy using value iteration (Section 5.2.1).

3.5 Comparison to Related Work

The work of Westervelt and colleagues [64], in particular, was influential in the devel-

opment of our phase-indexed controller. Our work is inspired by theirs and many of the

specific design choices are the same. These choices include the use of the stance leg ori-

entation as a monotonic phase variable for walking, the specific form of the constraint

stabilizing feedback (Equation 2.22), and the use of inelastic collision dynamics (Equation

3.9) to model the effect of foot to ground contact events. Westervelt and colleagues have

taken the analysis of these concepts to great depths and have shown precisely the conditions

under which virtual constraints produce provably stable passive gaits. Moreover they have

empirically verified these analyses by running their controller on a planar biped robot with

point feet.

Although the primary focus of their work has been on the study of passive gaits for bipeds

with point feet, they have also described two extensions for actuating the ankle of bipeds

with feet. One extensions they describe controls the evolution of the FRI point path in

a feedforward manner, effectively shaping the passive zero dynamics, without perform-
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ing any active feedback [12]. The other extensions is similar to the simple proportional-

integral controller described in this chapter [64],. However, a key distinction between their

approach and ours is that they use feedback on the ankle actuation only to improve the

convergence rate of gaits which are already passively stable. By contrast, many of the gaits

we have experimented with are not passively stable. Instead, our controllers rely upon the

actuation afforded through an FRI policy to encourage convergence to a limit cycle. We

find this approach works well for most anthropomorphic gaits we have experimented with.

A major limitation of the controllers described by Westervelt and colleagues is the lack of

a finite-duration double support phase. In their controllers, switching between the swing

and stance legs occurs at an instantaneous impulse event. This is limiting since most an-

thropomorphic gaits exhibit some finite period of time when both feet are on the ground.

In fact, it is likely that the extra actuation potential afforded by double support is partially

responsible for the success of our FRI policy in producing stable gaits, despite the lack of

passive stability. Thus, a clear implication of our work is that anthropomorphic gaits with

double support need not be passively stable. In fact, it is likely that many anthropomorphic

gaits, of interest for animation purposes, are not passively stable.

We have compared the stability of our phase-indexed controller to a time-indexed controller

based upon the NQR formulation[45]. Base upon our results (see Section 3.4.2) we have ar-

gued that our controller performs better than the time-indexed controller because it doesn't

try to maintain a specific motion timing. Although our controller uses the positioning of the

FRI to correct the velocity state, it lacks the ability to perform full body corrective motions.

Studies of actual human balance have typically identified two types of balance strategies:

an ankle strategy and a hip strategy [30]. Our control is capable of the first, but not the

second. Using our controller, a bipeds without an ankle or a double support phase cannot

perform any continuous velocity correction of the underactuated degree of freedom over

a single step. Instead, corrections to the velocity for point feet bipeds must be performed

over the course of several steps by taking appropriate transitions. The NQR controller was

able to perform these sorts of corrections, but did so at the expense of being significantly

less stable in response to force disturbances.
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By contrast, a different kind of phase-indexed controller, based upon a linearization about

transverse coordinates [51, 42], is able deviate from the motion constraints in order to per-

form whole-body corrective motion, while not requiring strict timing. Like the NQR con-

troller, transverse coordinate-based controllers rely upon a linearized model of the charac-

ter's dynamics, but these controllers do so without a motion clock, similar to our approach.

These controllers serve as an interesting middle ground between our approach and the NQR

approach. An interesting avenue of future work would be to compare this approach to ours

in terms of robustness and motion style. It is likely that both approaches are appropriate

in different situations. For example, for long or slow continuous motions it is probably

better to attempt to correct velocity state by temporarily deviating from the motion con-

straint surface (e.g., hip strategy). However, for motions with frequent, discrete motion

transitions it may be unnecessary to perform such corrections in a short duration, making

the phase-indexed controller a simple and effective alternative.
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Chapter 4

Motion Rectification and Editing

One key goal of the work presented in this thesis is to suggest a tool by which animators

can easy create stylistic controllers for simulated characters. However, the phase-indexed

controller described in Chapter 3 relies upon the assumption that the input motion being

provided is physically feasible in a strict mathematical sense. This is because a motion

which is not physically feasible will be impossible to perform in simulation. Unfortunately,

it is usually impossible to manually detect whether this is the case for a given motion and

even harder to manually correct if it is not. This is somewhat at odds with the goal of

providing an easy process for animators. Thus in this chapter we describe an optimization

approach which semi-automatically transforms an a motion which is physically plausible

into one that is physically feasible.

The approach taken is to allow animators to create stylistically desirable motion through

whatever means they choose. Then, an optimization is solved that minimally modifies the

motion, with user guidance, to ensure physical feasibility. We call this process motion

rectification. In other words, motion rectification is the process of starting from an input

motion and automatically finding a similar motion which is physically feasible.

The optimization we solve is in the form of a trajectory optimization (see Section 2.2.3) .

In addition to rectifying the original motion we are also able to slightly modify the opti-

mization to create systematic edits to a motion. We call this editing process motion editing.
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Using these edited motions, it is possible to create entire parameterized switching con-

trollers (Chapter 5), starting from only a single input motion.

Speed is a key consideration in the design of our trajectory optimization algorithm because

of the importance of allowing iterative refinements to the solutions through user guidance.

Due to this consideration, we have employed a gradient-based optimization approach. Gra-

dients allow a search direction to be calculated quickly, without the need for time con-

suming point sampling. The down side of this approach, however, is that gradients can be

difficult to calculate robustly. Thus one of the key contributions of the following algorithm

is a robust approach to computing the gradient of important dynamics constraints which

ensure that external forces acting on the character remain within physical bounds.

This chapter will start by discussing the components of the core algorithm used to perform

both rectification and editing. Then variants of the core algorithm for each process will

be discussed, followed by examples of how the algorithm is used to generate reference

trajectories for our phase-indexed controller. Finally a discussion of key considerations in

the design of our algorithm will be presented.

4.1 Trajectory Optimization using Direct Transcription

We solve a trajectory optimization problem using a direct transcription method (see Section

2.2.3). Using this approach, a continuous motion is represented using a discrete time series,

xi = (q;, i), of the character's state. An optimization problem is solved that minimizes a

performance metric p(xo,xI,.. .xn), subject to problem constraints ci(xo,xI,.. .xn). The

problem can be formulated as a sparse, nonlinear program (NLP). The NLP is solved using

the sequential quadratic programming package SNOPT [28].

4.1.1 Constraints

Constraints on the character motion, cj, fall into three categories: kinematic constraints,

collocations constraints, and physicality constraints. The kinematic constraints ensure that
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the placement of the feet are well aligned with the ground and that the monotonic 6 vari-

able, used by the phase-indexed controller, remains strictly increasing. Collocation con-

straints ensure that the time series solution is consistent with a desired numerical differ-

encing scheme. This ensures the correct relationship between the joint positions, q,, and

velocities, 41. Physicality constraints ensure that the forces acting on the character are

physically consistent. As opposed to standard direct transcription formulations, which in-

clude the external and internal forces explicitly as free variables in the optimization, our

approach completely ignores internal forces and only calculates the external forces on the

character as part of a physical constraint. The physical constraints ensure that the external

forces originate from within regions of contact between the feet and the ground and that

these forces lie within the coulomb friction cone of the contact surface to ensure that the

frictional contact dynamics are not violated. The external forces are calculated by finite dif-

ferencing generalized momentum, which can be calculated directly from the state at each

sample point along the trajectory.

Both the kinematic and physicality constraints require some initial information about the

timing and placement of the feet on the ground. In addition to the original motion data,

our problem formulation takes as input a time-based segmentation of the motion data that

describes how feet are in contact with the ground. There are 4 possible contact modes for

each foot: HEEL, TOE, FLAT, and FREE. HEEL and TOE correspond to point contacts

at a desired location on the ground, FLAT includes information about both orientation and

position of the contact, and FREE means the foot is not in contact. The timing of this

segmentation is provided manually by the motion designer, but the location of the contacts

are calculated automatically by projecting the location of the feet from the input motion

onto the ground surface, at the beginning of each segment. In this step, we also compute a

1D convex hull, (ht,h-) of the region of contact between the feet and the ground. This is

used to express the constraints on ground reaction forces more compactly.

In totality, the constraints are:

Kinematic Constraints
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Cj = P-pj 0, (4.la)

cj = (Oi+1 - ei)/At > ko, (4.1b)

where the subscript j denotes the index of the constraint, pj is the current Cartesian location

of the contact point on the foot and pj is the desired location on the ground.

Collocation Constraints

ci = (qi+1 -qi)/At - 4i = 0, (4.2a)

where the subscript j denotes the index of the constraint and At is the finite difference

between trajectory samples.

Physicality Constraints (when in free-flight)

cj = r(xi,xi+1) =0, (4.3a)

c1 =f(xi,xi+) =0, (4.3b)

Physicality Constraints (when in contact)

cj = T(xi,xi+ 1) - (h- - f,) xf(xi,xi+1) >0 (4.4a)

cj = (ht - fr) xf(xi,xi+1) - r(xi,xi+ 1) >0 (4.4b)

6 <cj = tan2(fy, fx) - Aa >-07 (4.4c)

c1 = fy - k >0, (4.4d)

where the subscript j is the index of the constraint, r is the root torque acting on the

character, f is the root force acting on the character (subscripts y and x denote vertical

and horizontal components), r is the Cartesian position of the character's root, Aa is the

angle of the ground plane, 6 is the half angle of the coulomb friction cone, and k is a

small positive constant. The purpose of the last constraint is two fold. It enforces a strictly
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positive ground reaction force and also prevents the second to last constraint from becoming

singular when both fA and fy become small.

4.1.2 Performance Metric

In the trajectory optimization problem, the goal of the performance metric is to encourage

solutions that are close to the input motion. The performance metric is compost of several

different terms that form a weighted sum:

n

P(xo,x, ... Xn) = wjpj

j=1
(4.5)

As with the problem constraints, both value and the derivatives must be computed for all

terms pj. The following table summaries all terms and the range of respective weights, wI,

used.
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Joint Angles (wj = [0.1, 1.0]) P1 = E,(q - qi) 2 is the difference between the

current joint angles and the those from the in-

put motion, excluding root degrees of free-

dom.

Joint Velocities (wj = [0.1, 1.0]) p1 = E(ij -q )2 is the difference between the

current joint velocities and the those from the

input motion, excluding the root degrees of

freedom.

Joint Acceleration (w= 0.1) Pj = E, (4i+1 - i)2/ (At) 2 is the discrepancy

between subsequent joint velocities. This term

encourages small accelerations which keeps

the motion smooth and prevents large forces

from being used. A term is omitted from the

sum above whenever impulsive contact occurs

between subsequent motion samples. Impul-

sive contact is assumed to occur between dif-

ferent segments of the motion where a new

contact begins.

Torso Orientation (w= [0, 100.0]) pj =yEg( - ei) 2 is the difference between the

current global orientation of the torso and that

from the input motion. This term prevents

large deviations of the torso orientation, which

are usually bad stylistically.

Swing Foot Height (wj = [0, 100]) pj = Eg (hi - hi) 2 is the difference between the

current height of the swing foot and the height

of the swing foot from the input motion. The

input motion height hi is offset by the displace-

ment of the ground surface if the motion is be-

ing modified for a different ground surface.
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4.1.3 Cyclic and Symmetric Trajectories

Most gaits, such as walking and running, are cyclic. Additionally, most gaits are symmetric

about the left and right sides of the body. Therefore, when solving for a cyclic and sym-

metric motion trajectories, only the motion for the left or right stance needs to be included

in the optimization. This reduces the number of variables by a half. Additional constraints

and performance metric terms must be added to the problem to ensure that the motion is

cyclic. For example, a collocation constraint,

cj = (s(go) - q,_,)/At - 4,_ i 01 (4.6)

ensures that the velocity of the final motion sample is consistent with the first sample,

where s is an operator that swaps the left and right joint angles symmetrically and n is the

number of motion samples. Similarly, an additional performance metric term ensures that

the accelerations are smooth between the first and last sample:

pi = E(s(go) - 4n-_1)2/ (At)2(47

When optimizing cyclic and symmetric motions, it is assumed that the input motion is also

cyclic and symmetric. Input motions that are close to this, but may have slight discrepan-

cies, such as motions coming from motion capture of an actual human, are processed to

ensure that they are exactly cyclic. This is performed as a preprocess that smoothly blends

the end of the motion into the beginning over the course of the motion.

4.1.4 Motion Transitions

Generating transitions between different motions is also a useful process. Instead of using

an input motion, two existing cyclic motions that have been previously optimized are used
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as input. The first motion is blended into the second using a using a smooth weighting

function. It is assumed that the segmentation of the two motions is the same. However, if

this is not the case, a segmentation can be provided to the system. Similar to the cyclic and

symmetric case, additional constraints and objective terms must be added (or replaced) in

the basic problem formulation in order to ensure that the end and beginning of the motion

transition smoothly into and out of the two input motions.

4.2 Results

In this section we will discuss some the motion results obtained for the both trajectory

rectification and editing.

4.2.1 Rectification

We were able to rectify 4 types of motion: a jumping motion, a running motion, a walking

motion and a standing motion. For walking, we performed rectification on 3 different gait

styles. In all cases, we used a 2D character model with 14 degrees of freedom. The input to

the system was a 2D motion generated by pre-processing motion capture data of a human

subject [52]. The duration of each motion varied between 0.67 and 1.5 seconds, however,

the final sampling rate of each motion varied between 30 Hz and 90 Hz, depending upon

how difficult it was for the solver to converge on a solution.

In most cases the optimization ran to convergence (or failure) within less than half a minute

time and often much faster, on a mid-range desktop computer. This quick turn around time

proved crucial for tuning the parameters of the optimization. The main parameters that

required tuning were the sampling rate and the weights of various performance metric

terms. From an artistic perspective, the main parameters that determined the final outcome

where weightings on the torso orientation and swing foot height objectives. Turning either

of the terms up too high could cause numerical convergence problems, however, turning

them too low resulted in problems as well. Too little weight on the torso orientation often
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caused the rectified motion to exhibit hyperactive torso motions that looked unnatural. Too

little weight on the foot height objective often resulted in the swing foot interpenetrating

the ground. Adjusting these motions was necessary to obtain a natural looking motion.

4.2.2 Editing

We were able to edit walking motions in three different ways. We changed the length

of the step, the height of the step, and the duration of the step. Additionally, we were

able to adjust the angle of the ground plan to create steps up and down a ramped surface.

Changing the length and height of the step was accomplished by adjusting the kinematic

motion constraints on the motion appropriately. Changing the duration was accomplished

by scaling the time-step between samples. These adjustment are performed programmati-

cally by a preprocess in our solver. The user of the system, provided three additional scalar

parameters specifying the desired step height, percentage of the original step length, and

percentage of the original step duration. The system is also able to automatically generate a

family of edited motions by regularly sampling all three parameters simultaneously, within

desired ranges. Once a family of different cyclic steps has been generated, the system

can automatically synthesis transitions between these steps, creating a connected graph

of physically valid motions. See Figure 4-1 for examples of the output from the editing

process.

4.3 Discussion

The trajectory optimization presented here tries to balance accuracy and efficiency in order

quickly generate trajectories that can be reliably tracked by the phase-indexed controller of

Chapter 3. We used a simple finite difference scheme for all optimizations. One advantage

of the finite difference scheme was that it allowed for simple handling of impulsive contact

events, without resorting to modeling these events separately. We simply removed the con-

tributions to the objective on smoothness over steps where impulsive contact was expected
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to occur. This allowed for sudden changes to the velocity to occur over a single step in

order to satisfy a changing set of contacts between the character and the ground. We were

also able to use a relatively large sample frequency (e.g, 30-90 HZ). In general, we found

that using a time-step that was too small resulted in numerical problems due to the division

by the small At.

We tried several different formulations of the trajectory optimization problem before set-

tling on the one presented here. In initial experiments, we tried including the physical

constraints in the objective term, effectively transforming the problem into a unconstrained

minimization. However, we found that we had to increase the objective weight on various

constraint terms to the point where the problem became poorly scaled. By contrasts, the

SNOPT solver handles such scaling problems in a principled manner. In fact, the SNOPT

solver will remove constraints and add them to the objective dynamically when the problem

becomes infeasible or poorly conditioned [28]. This works much better than our heuristic

approach and truly speaks to the necessity of having an optimization code that handles

variable scaling and constraints in a principled manner.

Since the end goal of optimizing the motions is to create motion constraint splines for the

phase-indexed controller, we also tried optimizing the parameters of the constraints (control

points of B-Splines) directly. Success performing trajectory optimization directly on a

spline representation has been reported in the literature [64, 40] and our first impulse was

to try this, rather than the less direct method of fitting a spline to the sampled solution after

the fact. However, we found that we had more trouble with the NLP becoming infeasible

when we optimized spline control points directly. When using splines it is more difficult to

understand the relationship between control points and collocation constraints. Therefore it

is more difficult to determine which constraints are causing a given optimization to fail. For

most splines, the contribution of a given control point to the various derivatives of the spline

will change depending upon the index of the derivative, the time index, and on the number

of control points used, which only serves to further complicate constraint debugging. The

use of a spline does not even reduce the number of free variables in the optimization, since

in either case it must be ensured that there are enough degrees of freedom to satisfy all
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active constraints. At least for our purposes, we determined that using finite samples as the

free variables in the simulation was superior to optimizing spline control points directly.

4.4 Contributions and Comparison to Prior Work

Our trajectory optimization algorithms is most similar to the optimal motion synthesis al-

gorithm of Fang and Pollard [26]. In accordance with their algorithm we have reformulated

the direct transcription method to only include constraints on aggregate, full body forces

and moments. As described in their work, it is possible to compute only these terms, in-

dependent of the internal joint actuations, reducing the number of free variables in the

optimization, and the time it takes to compute the values and gradients. Fang and Pollard

show this results in reduced optimization times, which is consistent with our experience as

well.

Unlike Fang and Pollard, we further simplify the computation by only approximating ag-

gregate forces by finite differencing aggregate momentum. Our experience indicates that

this approach results in a more robust NLP that fails to converge less frequently. We sus-

pect this is due to the fact that the momentum calculations do not involve the square of

velocity terms (due to Coriolis and centrifugal forces) that could lead to greater numerical

sensitivity.

In the work of Fang and Pollard, the aggregate linear force on the body (a.k.a., center of

pressure) is constrained to a fixed point and no friction cone is enforced. This simplifies

the constraints in the optimization and is common practice when optimizing motions for

direct playback (see [49, 56]), presumably because the friction cone violations are avoided

by other means or are small enough to be inpreceptible. By contrast, our motion must be

feasible within simulation, thus necessitating precise friction constraints.

One way to enforce friction constraints in a trajectory optimization is to include additional

force basis vectors as free variables in the optimization (i.e. [39]). This properly constraints

the direction of the aggregate force, but increases the number of variables in the NLP. In
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our optimization, we allow the location of the aggregate linear force (FRI) to vary over a

support region, as well as enforce frictional contact constraints, but do so without increasing

the size of the NLP. However, these constraints must be formulated carefully to prevent

poor conditioning due to division by small numbers. This can occur, for example, when the

aggregate linear force is significantly smaller than the aggregate angular moment. When

this occurs, small changes in the angular momentum result in large jumps in the center

of pressure, which can lead to numerical instability. Further more, when the aggregate

linear force is zero, the center of pressure is not well defined. We have presented a set of

constraints that avoid these situations by formulating the center of pressure constraints in

terms of bounds on the aggregate forces rather than directly computing the location of the

center of pressure (Equations 4.4b and 4.4c), and by preventing the magnitude of aggregate

linear force from becoming too small (Equation 4.4d).

4.5 Conclusion

This chapter has described a method for rectifying and editing motion using a trajectory

optimization with a direct transcription approach. The resulting optimization can be effi-

ciently solved, at nearly interactive rates, using a well implemented sequential quadratic

programming code. Using the methods described here, we were able to generate entire

motion families from a single input motion, which we used as reference motions for our

phase-indexed controller.

One deficiency of our trajectory optimization approach is that it does not allow for changes

in the timing of the different segments of the motion. It is conceivable that certain motion

would not be rectifiable without changing the timing, or that more extreme edits to motions

could be performed with timing as a free variable. However, it is difficult to allow changes

in timing using gradient-based trajectory optimization, since integrations schemes are par-

ticularly sensitive to the At parameter. A stochastic search scheme might be employed [62],

but this would greatly increase the time it takes to optimize motions. Further more, it is

likely the objective function would have to be redefined to allow differences in the timing
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of the trajectory.

We did not try to use our rectification scheme on motions that clearly violated physics.

There would be little point to trying to rectify such motions, as the motions would be

impossible to simulate anyway. In general, the input to our solver must be close to physical.

However, our solver was robust enough to handle motion capture data from a human with

different dimension than the actual character model, even after that data was edited using

simple linear blending techniques that don't preserve physical properties of the motion.
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Original Motion:

Shorter Step (x 0.5):

Longer Step (x .5):

Inclined Step (20 degrees):

Inclined Step (-20 degrees):

Figure 4-1: This figure depicts a basic walking motion rectified and edited in a number of
different ways.
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Chapter 5

Optimizing Policies using Value Iteration

Robust controllers must incorporate prediction so that the best action can be taken to ac-

complish future goals. Prediction must occur at many time-scales. Consider a walking

controller. At the instantaneous time-scale, it must ensure that the foot does not slip. At

the time-scale of an individual step, the controller must guide the joint angles along a

prescribed path while rejecting unanticipated disturbances. At the time-scale of multiple

steps, the controller must ensure that the character reaches its final destination while avoid-

ing obstacles. The high-dimensionality of a character makes reliable prediction difficult to

achieve in practice.

A key advantage of motion constraints is that they restrict the state of the character to the

zero dynamics set (Section 2.2.2). Due to the low-dimensionality of this set it is computa-

tionally feasible to directly sample and tabulate the outcome of actions to provide predic-

tions of future states. These predictions are in the form of transition functions,

T : S x A - S, (5.1)

that map a reduced state, s E S and an action, a E A, to a future reduced state. Based upon

these transition functions it becomes possible to optimize policies that accomplish goals in

an approximately optimal fashion. In particular, we demonstrate the use of value iteration

(see Section 2.2.3) to design optimized FRI policies for the phase-indexed controller as well
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as policies for switching between different sets of motion constraints. The key insight of

this chapter is to demonstrate how policies learned using the low-dimensional transitions

functions can be beneficial for controlling the full character model, under the action of

motion constraints.

5.1 Related Work

Value iteration is a well established method in robotics and other fields for designing op-

timized control policies. Many have applied it to the control of low-dimensional biped

models [9, 14, 6, 44, 22] because computations become intractable in higher dimensions.

One contribution of this thesis is to demonstrate how low-dimensional value iteration may

be applied to more complicated bipeds using motion constraints. Our work is closely re-

lated to the use of reinforcement learning to improve the gait of a passive bipedal walker

[59]. This work is not the first to apply reinforcement learning techniques to the problem

of motion control for animated humans. It has been previously used to develop both kine-

matic [60] and dynamic [17] controllers that exhibit intelligent prediction. In both the case,

a reduced representation of the state-space was used to make computation of the policy fea-

sible. In the dynamic case, a carefully chosen reduced state was chosen but the dynamics

of the reduced space is not known. In order to generate a transition functions, a com-

plex example-based regression technique was required. In contrast, the approach described

here computes the policy on the zero dynamics set where the dynamics can be precisely

computed, without resorting to regression.

5.2 Policies

We demonstrate two types of optimized policies for phase-indexed controllers using value

iteration. The first type of policy we demonstrate is a continuous FRI policy, for determin-

ing the continuous placement of the FRI point during a motion. This policy is evaluated

at every control interval and is designed to regulate the speed of the motion such that the
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controller achieves a steady state or an ideal transition velocity.

The second type of policy we demonstrate is a discrete step sequencing policy. Given a

connected graph of possible stepping controllers, this type of policy determines which step

controller to transition to in order to accomplish certain goals. The individual controllers

that this type of policy acts on are the phase-indexed controllers designed using the motion

rectification and editing method of Chapter 4. These individual controllers may rely on

an FRI policy optimized independently of the discrete stepping policy. In the following

sections, the method for optimizing both types of policies will be described in more detail.

5.2.1 FRI Policies

In this section we describe the method used to designing FRI polices for walking and

jumping.

FRI Policies for Walking

The goal of the FRI policy for walking is to shape the speed profile of a stepping motion

and to ensure that it does not diverge toward a failure state. For some motions, a simple

FRI policy, as described in Chapter 3 (Equation 3.20), is sufficient for controlling the speed.

Other motions are more sensitive to the FRI placement. For these motions we optimize an

FRI policy using the value iteration algorithm.

The first step in formulating the value iteration is to identify the dynamics of interest. The

memory and time complexity of the value iteration algorithm is exponential in the dimen-

sion of the dynamics, thus we must be careful to identify a low dimensional dynamics.

Fortunately, due to the motion constraints (Section 3.1), the dynamics of the character may

be characerized solely in terms of evolution on the low dimensional zero dynamics set.

Let x = (6, 6 )T be the state on the zero dynamics set. Then the closed loop dynamics of

a phase-indexed controller may written as a hybrid system involving both continuous and

impulsive stages:
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continuous dynamics (if 6min < 6 < Omax):

1 (5.2)flx, FRI*)(52

FRI* =fl(x) (5.3)

impulsive dynamics (if 6 = 6max):

x+ Omin (5.4)

LL(x-) J

The impulsive dynamics are in the form of a transport function which instantaneously resets

the phase-variable between symmetric left and right swing phases.

As can be seen from the dynamics, the only control input to the system is the placement

of the FRI. The FRI represents the sole remaining degree of freedom in the control after

accounting for feedback on the motion constraints. However, the allowable values of the

FRI are limited to the base of support, reflecting the underactuated nature of the biped

control problem.

As previously defined (Section 3.3.1) , the FRI policy is a function,

H(6,) : S [FRIx , FRIx+], (5.5)

which maps the zero dynamics state, (6, 6) E S to an FRI value in the range [FRIx , FRIx+].

The limits on the range of the FRI value depend upon the stage of the motion. However the

stage of the motion is defined by the value of the 6 variable, thus the limits can be known

at any point on the zero dynamics. It is the goal of the policy optimization to determine the

best use of this limited control.

The dynamics described so far are for the continuous state variables (6, 6), however, the
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value iteration algorithm requires discrete states. Thus the next step is to approximate the

continuous dynamics with a discrete one. Let (6, 0) E [6min, 6max] X 0, A6max] and FRI C

[FRI-FRI+] be the valid range of continuous states and actions. Then, let S and A be sets

of discrete states and actions corresponding to samples on a grid in these ranges:

5 = {sijl0 < i < m,0 j < n, } (5.6)

sif = (Oi, 6i) = (Omin + i max -min . 6 max )5.7)
M -1I n-(

and

A = {akJ0 < k < p} (5.8)

FRI+ -FRI-
ak = FRI + i( ). (5.9)

p - I

Using these discrete sets, a probabilistic transition function is defined,

T(si, a) : S x A -+ (5 x S x [0, 1]) U {0}, (5.10)

that maps a discrete state and action pair (sij, ak) either to the failure state, 0, or to a pair of

adjacent states and a real number representing the probability of being in one or the other.

T is defined in terms of the continuous dynamics. Starting from discrete state sij and

holding the FRI at ak, the simulation is forward integrated until 0 = Oi+1. After integration,

the simulation will be in the continuous state (6i+ 1, 6f) and the transition function will be

assigned a value,

T(sij,ak) = {si+1,, si+1,+1, w} (5.11)

W .
Oef+1 - o

(where 6f <_ V < 6f+,), (5.12)
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corresponding to a probability of being in either of the two nearest discrete states (si+1,E or

si+I,e+I). However, if at any time during forward integration the simulation leaves the valid

range, or the motion constraints are violated by more than a given amount, the result of the

transition function is marked as the failure state. The transition function is sampled in this

manner for all combinations (sif, ak) c S x A.

Once transitions have been calculated, the final step before performing value iteration is to

define a value function.A simple value function which avoids the failure state and tracks

the original motion speed is given by

v (S-) - (if T(sij, a) = 0)

-c(sij)+a[(1.0-w) *V(sa)+w*V(sb)], (if T(sij,a) = {Sa,Sb,W})

(5.13)

c(sij) = -k 2e-k1(je)2  (5.14)

a = II(sij), (5.15)

where c(sij) is a instantaneous cost that depends on whether the state is a failure state and

0 is a reference value from the input motion.

Finally, the value iteration algorithm solves iteratively for the value function and policy that

satisfy the discrete Bellman equation.

FRI Policy for Jumping

As an example of using phase-indexed tracking to design a controller for a motion other

than walking, we constructed a jumping controller (see Section 3.4.3). We found that man-

ually designed or feedforward strategies for controlling the FRI during the INIT and LAND

stages of the controller fail to adequately regulate the forward speed of the jumping motion.

In this section will describe how an FRI policy is optimized for jumping by attempting to

regulate the desired value of 6 at the beginning of the TOEOFF stage.

The FRI policy is learned in the two dimensional discrete state space S containing states
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si] = (0i, 6j). The discrete states correspond to continuous states discretized into a 100 x

100 grid for a total of 10,000 discrete states. The actions space, A, is also divided into 20

values of the FRI in the range [FRIX~, FRIx+.

A discrete transition function is defined,

T: S x A -+ S UO, (5.16)

where 0 is a failure state. The transition function is sampled by initializing the system to

each discrete state, sij E S, and simulating with a fixed FRI, a c A, until 0 = ei+1- If during

simulation, the motion constraints are violated by more than a specified amount or the

system state leaves the bounds of the discretized state space, the simulation is terminated

and a transition to the failure state is recorded.

A value function is defined,

V(sij) = id (fie) (5.17)
V(T(I(sij)), (otherwise),

(5.18)

where 6e is the value of 6 when the controller switches to the TOEOFF stage, 6 d is the

desired speed at this stage transition, and I : S -+ A is the FRI policy. A value iteration

then determines the value function and policy.

5.2.2 Discrete Stepping Policies

The purpose of a discrete stepping policy is to choose an appropriate sequence of steps

to achieve a given goal. We have experimented with two types of discrete stepping poli-

cies.The first type of stepping policy chooses steps to successfully navigate a ground with

constraints on where the character can step, to reach a desired goal position. The second

type of stepping policy chooses steps in order to transition to a gait pattern that is interac-

tively specified by the user. These are non-trivial tasks since not all gait patterns can be
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Figure 5-1: Depicted is the operation of the constrained stepping controller for a walk
consisting offour steps (at bottom). Arrows represent a fixed choice of motion constraints
over the duration of the next step. Circles represented transition regions between steps. An
optimized stepping policy chooses the best sequence of motion constraints (red arrows) to
navigate a constrained terrain. The figure depicts only 3 possible step types, but we have
successfully sequenced motions with 100 possible step types.

directly transitioned between. The success of a transition depends upon the type of the gait

as well as the rate of the 6 variable at the transition.

The desired behavior for both types of stepping policies may be described in terms of

minimizing a cost function that assigns infinite value to states where the controller fails and

assigns a large negative value to states that reach their goal. Failure states include falling

down, failing to make forward progress, or entering a state where the motion constraints

becomes unstable (i.e. computed joint torques become large or friction constraints are

consistently violated).

Constrained Ground Navigation Stepping Policy

The goal of the ground navigation stepping policy is to choose a sequence of step transitions

so that the character successfully navigates a terrain without stepping in regions designated
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as holes. To construct the policy, an initial set of 100 motion constraints, mk C M, is

created using trajectory optimization. M consists of 10 different stride-lengths and 10

different speeds sampled on a grid at even intervals. An auxiliary set of motion constraints,

nkf E N = M x M, which transition between pairs of the original steps, are also defined.

These motion constraints are implicitly constructed by assuming a smooth-in, smooth-out

blend of the spline parameters between each pair of the original constraints. This results in

100,000 possible step controllers, or 100 viable transitions from each of the original 100

steps (see Figure 5-1). Although not all the blends result in feasible motion constraints,

transitions between steps with similar stride length and speed usually succeed for some

range of initial velocity. The bad transitions are pruned automatically when sampling the

transition function for the policy optimization.

The policy optimization is constructed in a 3-dimensional state space with discrete values

Silk = (Oi, p Mk) C S. The first dimension is the discretized values of the initial state

velocity, t E [0, 6max], the second dimension is the discretized locations of the stance foot

on the ground plane, p C [0, pmax], and the third dimension is the current motion state,

Mik M. In the policies we optimized, the set has size 20 x 500 x 100.

The goal of the value iteration is to optimize a policy function,

TI(sijk) : S -+ A, (5.19)

which maps discrete states to actions. In this case, actions, af E A = M, are drawn from the

same set as the original motion since we start by assuming that all transitions are feasible

(including self transitions).

A transitions function, T : S x A - S U 0U y, is defined which maps state and action pairs to

a new states or, possibly, to the special failure or goal state, 0 or y. The value of T(sijk, at)

is computed by initializing the simulation to the continuous state equivalent of the discrete

zero dynamics state (60, bi) and then performing the motion constraint blend that transitions

from step Mk to me. Transitions to states where the character's foot is on a gap map to the

failure state and transitions to the goal location, Pj = Pgoal, map to a success state. If
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at any time during forward simulation the motion constraints diverge from zero by more

than a specified amount or the character stops making forward progress (i.e., 6 < 0), the

simulation is stopped and the transition is mapped to the failure state. Note that simulated

steps are identical modulo the ground location, pj, thus simulation results may be reused

when computing the transition function at each ground location.

A value function is defined,

V(sij) =(if Pi = Pgoa) (5.20)
-c(sij) + aV(r), (otherwise)

r = T(H(sij)), (5.21)

where # is a large positive reward for reaching the goal state and c(sij) is a per-step cost

that can be used to change how the controller reaches the goal state. For example, if the

per-step cost is proportional to the length of the step, sif, then the resulting value function

will penalize taking long steps and prefer a strategy that reaches the goal using shorter

steps. Similarly, if the per-step cost is proportional to the step duration, the resulting policy

will try to reach the goal as quickly as possible.

User-Guided Stepping Policy

The user-guided stepping policy switches between a connected graph of step transitions

that exhibit variation along the dimensions for which we were able to edit the stepping

motions using the techniques of Chapter 4. The policy is able to choose motion transitions

that switch from the current step type to the user specified step type in a minimal number

of transitions. The user can interactively specify both the desired gait speed and desired

step length and the controller will determine a sequence of transitions to achieve a steady

state gait with those parameters.

The first step in constructing the user-guided stepping policy is to create an action set. The

set is to produced by creating edited versions of a single stepping motion along two dimen-

sion: step length and step speed. In the policies we created, we sampled a grid of 3 step
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lengths and 3 step speeds for a total of 9 step types, mj C M. A set of transition motion con-

straints (Section 4.1.4) are created between each step type for a total of 81 unique motion

constraints, nf C M x M. The trajectory optimization for some of these transitions may fail

to converge or may produce motions that look unnatural. After manually examining the

results of the trajectory optimization and tuning the objective weights, the motions which

still fail to converge or look too unnatural are pruned from the set. The resulting action set,

nf E N C M x M, represents a partially connected graph of possible motion transitions. As

would be expected, transitions between motions with similar parameters tend to succeed

and transitions between motions that differ in more than one dimension tend to fail.

Next, an FRI policy, VIf, is optimized independently for each of the successful step transi-

tions and a discrete step transition function,

T(sij, ak) S x A - S U0, (5.22)

is sampled, with si] = (6i,m) C S and ak E A = M. The process of sampling the transition

function is similar to the one described for ground navigation but without a state dimension

corresponding to the location on the ground plane. Using the sampled transition function, 9

policies, Hmk, are created, each aiming to bring the controller into a steady state gait using

motion constraints mk.

A value function for each policy is defined which takes into account the individual FRI

policies. For policy Jjlmk, the value function takes the form:

-00 (if si; = 0)

V(sij) = -c(sij) + # + aV(r), (if r = M), (5.23)

-c(sij) + aV(r), (otherwise)

c(sij) = -f (0, bi), (5.24)

r = T(lmk(SiI)), (5.25)

where P is a positive constant that rewards transitions to the desired motion constraints.
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5.3 Results

5.3.1 FRI Policies for Walking

We have designed FRI policies for three different styles of walking as well as several adap-

tations of these walks, including variations on the step length, step speed and ground in-

cline. All three gaits failed to function well using heuristically designed FRI policies we

tried. For these gaits, heuristically designed FRI policies exhibited large fluctuations in the

speed profile and often resulted in failure. On the other hand, the optimized policies always

succeeded.

The only walking gaits that functioned well without a optimized FRI policy were those gaits

with a much simpler, flat footed stepping style. The gaits that required an optimized the

FRI policy involved a life-like heel-strike and toe-off phase. These gaits all exhibit a brief

moment before heel-strike when the only contact between the character and the ground is a

point on the stance toe. During this stage of the motion, the FRI is restricted to a point and

the phase-indexed controller has no control over speed. It is likely that this brief moment

of underactuation contributed to the poor performance of manually designed FRI policies.

We found that an optimized FRI policy was especially important for stepping variations

that changed the incline of the ground plane. This is because the FRI is directly related to

insertion or removal of momentum necessary to ascend or descend a slope.

The time it took to optimize an FRI policy was dominated by the time it took to sample

the transition function. For all gaits we chose a state and action discretization with n = 100

values of 6, m = 100 values of 6, and p = 10 values of the FRI. So sampling time was

roughly proportional to the time it takes to simulate m * p full steps. In practice, this took

around 5 to 10 minutes on a desktop computer.

The value iteration itself occurred much faster. One reason for this is that despite the

large number of states, the transition function is highly structured. The transition function

will always transport the state forward along the phase variable 6. Our value iteration

can converge significantly faster than one with an unstructured transition function since
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on each iteration of the algorithm we can always start with the greatest value of & and

move backwards. This ensures that on iteration, i, of the value iteration we are computing

the exact optimal i-step finite horizon policy for the discrete system. In practice, with a

discount parameter a = 0.999, we found that the infinite horizon value function sufficiently

converges (so as to no longer significantly affect the policy) after 1000 iterations. This

process runs to convergence in under half a second.

Figure 5-2 depicts a typical optimized FRI policy and the associated value function. One

consistent feature among all the optimized polices was that they exhibited a quick switch

between extreme values of the FRI along a border in state space.
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Figure 5-2: An optimized FRI policy (left) and value function (right)for a typical forward
walking controller using a cost function that rewards similarity to the speed profile of the
original motion (Equation 5.13). The axis are labelled according to the discrete sample
index of the 6i and b; variable along a regular grid. The color in the policy represents the
discrete index of the FRI action. The red curve on the cost function is the trajectory of the
original motion. The value is highest near the original motion. The policy exhibits a "bang
bang" style of control where the FRI switches quickly from one extreme to the other at a
boundary in state space. The horizontal band in the policy occurs during a stage of the
motion where the FRI is restricted to a point, so all discrete actions are equivalent.

93

Li-100



5.3.2 FRI Policy for Jumping

With a constant FRI policy the jump controller either speeds up or slows down until fail-

ure. This can be seen by examining a return map of the 6 variable (see Figure 5-3). The

FRI policy reshapes the return map, indicating stability of the jump cycle. The jump con-

troller with the learned policy is able to jump indefinitely on flat ground and even up slight

inclines.

Even with the FRI policy the controller is unable to recover when 6 is too small or too

large. When 6 is too small, the character does not generate sufficient momentum to carry

the body forward and falls backwards leading to immediate failure. When 6 is too large,

the the character is unable to generate sufficient braking power to decrease the forward

momentum of the previous jump. The controller will continue to function for a couple

jumps, increasing speed on each one, but will eventually fall forward and fail.

5.3.3 Constrained Ground Navigation Stepping Policy

The main cost in performing the value iteration is in computing the discrete transition func-

tion, as this requires performing a number of simulations equal to the number of discrete

states times the number of discrete actions. But since the steps are identical modulo hori-

zontal translation on the ground plane, the number of simulation that need to be performed

is reduced by a factor of 500. Once the transition function is tabulated, it is relatively quick

to compute an optimized policy. The policy can be adapted for a different sequence of gaps

or a different goal location without having to resample the transition function. Addition-

ally, our action set is rich enough that it is possible to include a secondary criteria. We

demonstrated this by designing stepping policies that preferred to take more or fewer steps

to reach the goal location. These variations on the policy can also be computed without

resampling the transition function (see Figure 5-4).
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5.3.4 User-Guided Stepping Policy

We produced a discrete stepping policy for a character with feet. This policy switches

between a connected graph of step controllers that exhibits variation along the dimensions

for which we were able to edit the motion using the trajectory optimization of Chapter 4.

The user can interactively specify both the desired gait speed and desired step length and

the controller will determine a sequence of transitions to achieve a steady state gait with

those parameters (see Figure 5-5).

5.4 Discussion

In this chapter we have presented four different ways in which value iteration can be used in

conjunction with a phase-indexed tracking controller. It is important to note that although

value iteration aims to produce globally optimal control strategies, the resulting controllers

are only approximately optimal. The FRI policies are approximate due to the fact that the

discrete dynamics only approximates the continuous dynamics. Both the FRI and stepping

polices are approximate due to the fact that transition functions are only accurate if the mo-

tion constraints are precisely satisfied (y = 0). When a controller is perturbed, we can think

of recovery as happening in a two stage process. First, the motion constraints converge

toward zero during which time we have no guarantee that the optimized policy is behaving

well. However, once on the zero dynamics set, the character behaves in an approximately

optimal manner using the optimized policy.

A fundamental challenge we have address is the need to incorporate predictions into policy

design. Prediction is necessary whenever a greedy policy is bound to fail, which is usually

the case for bipeds due to their underactuation. In regards to prediction, we have shown

that by restricting the space of motions (via motion constraints) it becomes tractable to

sample transition functions and use them to optimize policies. Of course the use of motions

constrains in this manner is a double edged sword. While restricting the space of motions

yields easier prediction, it also restricts the set of policies that can be developed. This
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restriction will ultimately result in policies that are suboptimal with respect to the full

capabilities of a character model. A prime example of this is the inability of a phase-

indexed controllers to intentionally use an inverted pendulum-like hip strategy to regain

dynamics balance. Swinging the leg forward or the torso backwards to generate an angular

moment would violate the motions constraints. In general, the lack of any consideration

for what happens when the characters diverge from the motion constraints is problematic

from a theoretical perspective, but in practice, these problems are somewhat mitigated by

the fact that the form of the motion constraints used are surprisingly stable (although no

formal guarantee of this is provided).

Another important issue we have touched on in this chapter is the idea of sampling a simu-

lation. Although sampling of transition function through numerical means might be consid-

ered a less elegant solution than deriving an analytical policy, it offers one clear advantage.

It allows the policies to adapt to the precise dynamics of the simulator. Simulators used for

computer graphics applications often trade accuracy for speed resulting in approximations

of physics that are hard to identify. Even when these approximations are known, they often

involve complex numerical algorithms that do not yield easily differentiable forward dy-

namics functions. This can make the rectification of motions a difficult and slow process.

One possible use of our approach is as a two-step rectification process. First, trajectory op-

timization is used to find motions which are approximately feasible using gradient-based

optimization for speed. Second, a low-dimensional adaptation (the FRI position) is made

using direct sampling of the simulation to ensure true motion feasibility. We have shown

that using this idea an input motion trajectory can be turned into a fully functioning control

strategy within minutes. This should be contrasted with other high dimensional sampling

strategies (e.g., [63, 66]) that require optimization times on the order of hours or days to

produce stylistically pleasing motions in simulation.
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5.5 Conclusion

In this chapter, we have discussed the use of policy optimization to design better control

policies for phase-indexed controllers. We have shown how to optimize a policy for place-

ment of the FRI point in order to regulate the walking speed of gaits and we have shown

how to optimize discrete step transition policies that navigate terrain as well as respond

to user input. In doing so we have touched on several important challenges related to the

design of controllers for simulated characters.
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Return Map (without policy) Return Map (with policy)
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Policy Value function

-0.06 FRI~ -0.06 imin
0 3.0 0 3.0

Figure 5-3: A return map is an indicator of stability. It maps the value of $ just prior to the
INIT stage of one jump to the value of 6 at the same point in the next jump in the sequence.
If the slope of the return map (red line) is less than 1 (green line) at the point of intersection
(circle), then successive jumps will converge toward the intersection and the controller will
be stable. Otherwise the controller will speed up or slow down until failure. We learn an
FRI policy (left-bottom) that results in a stable return map (top-right). Although we allow
for a range of FRI values, the controller chooses to rapidly switch between extreme values
of the FRI. In the policy and value function, white regions correspond to states from which
the controller will fail. The value function predicts, given the current state (9, 6), how
close the controller will be to the desired value of 6 at the beginning of the next jump.
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Figure 5-4: The figure depicts chronologically ordered (left to right) still frames from
simulations using constrained ground navigation stepping policies. The bottom two rows
shows navigation over the same terrain using different value functions that reward taking
either shorter (second row) or longer (third row) steps. Note the difference in body angle
as the controller dynamically prepares to take a larger step (third row, second column).

Figure 5-5: The figure depicts a step sequence (left to right) of the user-guided stepping
policy after a user interactively requests that the controller transition to taking large, fast
steps. The controller selects a sequence of transition by first taking a fast step of the same
length, then a middle length step, and then finally steps of the desired length and speed.
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Chapter 6

Conclusion

We have introduced the concepts of phase-indexed tracking and policy optimization in

a reduced dimensional subspace through the use of motion constraints. Phase-indexed

tracking robustly emulates an input motion while allowing flexibility in the timing. 2D

walking controllers designed in this manner are more robust and can withstand larger force

disturbances using less control effort when compared to time-indexed controllers, such as

the recent non-linear quadratic regulator [45].

Low-dimensional policy optimization addresses the need to incorporate prediction into the

design of control policies. We have demonstrated continuous policies for deciding the

placement of the FRI point in order to regulate the speed of walking and to stabilize a

sequence of broad jumps. We have also demonstrated discrete policies for choosing optimal

steps to guide a walking character over a constrained terrain and to respond to interactive

user input. In the future we envision using optimal policy learning to model the high-level

intentions of simulated characters in a similar fashion to how it has been used in kinematic

motion controllers [60]. Adding physical considerations to these controllers would improve

their versatility.

The robustness of our walking controller is comparable to the best manually-designed feed-

back laws, such as the recent SIMBICON controller [67]. However, it is interesting to note

that the two controllers use contrasting strategies to achieve robustness. The SIMBICON
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controller changes the width of each step based upon a feedback loop whereas our con-

troller only changes the timing. A hybrid strategy could improve both schemes.

6.1 Future Work

A major avenue of future investigation is 3D. Currently our controller have not been ex-

tended to the 3D because 3D motions are inherently less stable and require more complex

feedback schemes. Motion constraints have been used in 3D to generate simplified walkers

with point feet [13], but that approach did not result in controllers that are capable of track-

ing motion data. The next step is to refine this (or similar) ideas to develop 3D tracking

controllers.

One of the main motivations of the work presented in this thesis was to investigate ways in

which controllers could be designed quickly and simply by non-control experts. Although

the methods used in this thesis aim to be automatic, general, and fast, very little has been

done in the way of validating these assumptions on a larger dataset or with non-experts

users. A definite avenue for future work is to design a user interface and workflow that

would allow for further refinement of the proposed methods.

The types of motions explored in this thesis barely scratch the surface of the full range

of behaviors exhibited by real humans. Future works must investigate control strategies

for multiple characters interacting with each other or for characters manipulating objects.

Beyond humans, there is the challenge of simulating and controlling the motions of the

entire animal kingdom. The possibilities for simulation and control are as vast as the real

world itself. There is certainly more work to be done.
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