37,240 research outputs found

    GPU-based Streaming for Parallel Level of Detail on Massive Model Rendering

    Get PDF
    Rendering massive 3D models in real-time has long been recognized as a very challenging problem because of the limited computational power and memory space available in a workstation. Most existing rendering techniques, especially level of detail (LOD) processing, have suffered from their sequential execution natures, and does not scale well with the size of the models. We present a GPU-based progressive mesh simplification approach which enables the interactive rendering of large 3D models with hundreds of millions of triangles. Our work contributes to the massive rendering research in two ways. First, we develop a novel data structure to represent the progressive LOD mesh, and design a parallel mesh simplification algorithm towards GPU architecture. Second, we propose a GPU-based streaming approach which adopt a frame-to-frame coherence scheme in order to minimize the high communication cost between CPU and GPU. Our results show that the parallel mesh simplification algorithm and GPU-based streaming approach significantly improve the overall rendering performance

    A phantom-node method with edge-based strain smoothing for linear elastic fracture mechanics

    Get PDF
    This paper presents a novel numerical procedure based on the combination of an edge-based smoothed finite element (ES-FEM) with a phantom-node method for 2D linear elastic fracture mechanics. In the standard phantom-node method, the cracks are formulated by adding phantom nodes, and the cracked element is replaced by two new superimposed elements. This approach is quite simple to implement into existing explicit finite element programs. The shape functions associated with discontinuous elements are similar to those of the standard finite elements, which leads to certain simplification with implementing in the existing codes. The phantom-node method allows modeling discontinuities at an arbitrary location in the mesh. The ES-FEM model owns a close-to-exact stiffness that is much softer than lower-order finite element methods (FEM). Taking advantage of both the ES-FEM and the phantom-node method, we introduce an edge-based strain smoothing technique for the phantom-node method. Numerical results show that the proposed method achieves high accuracy compared with the extended finite element method (XFEM) and other reference solutions

    A predictive approach for a real-time remote visualization of large meshes

    Get PDF
    DĂ©jĂ  sur HALRemote access to large meshes is the subject of studies since several years. We propose in this paper a contribution to the problem of remote mesh viewing. We work on triangular meshes. After a study of existing methods of remote viewing, we propose a visualization approach based on a client-server architecture, in which almost all operations are performed on the server. Our approach includes three main steps: a first step of partitioning the original mesh, generating several fragments of the original mesh that can be supported by the supposed smaller Transfer Control Protocol (TCP) window size of the network, a second step called pre-simplification of the mesh partitioned, generating simplified models of fragments at different levels of detail, which aims to accelerate the visualization process when a client(that we also call remote user) requests a visualization of a specific area of interest, the final step involves the actual visualization of an area which interest the client, the latter having the possibility to visualize more accurately the area of interest, and less accurately the areas out of context. In this step, the reconstruction of the object taking into account the connectivity of fragments before simplifying a fragment is necessary.Pestiv-3D projec

    Ordered Statistics Vertex Extraction and Tracing Algorithm (OSVETA)

    Full text link
    We propose an algorithm for identifying vertices from three dimensional (3D) meshes that are most important for a geometric shape creation. Extracting such a set of vertices from a 3D mesh is important in applications such as digital watermarking, but also as a component of optimization and triangulation. In the first step, the Ordered Statistics Vertex Extraction and Tracing Algorithm (OSVETA) estimates precisely the local curvature, and most important topological features of mesh geometry. Using the vertex geometric importance ranking, the algorithm traces and extracts a vector of vertices, ordered by decreasing index of importance.Comment: Accepted for publishing and Copyright transfered to Advances in Electrical and Computer Engineering, November 23th 201

    Discrete curvature approximations and segmentation of polyhedral surfaces

    Get PDF
    The segmentation of digitized data to divide a free form surface into patches is one of the key steps required to perform a reverse engineering process of an object. To this end, discrete curvature approximations are introduced as the basis of a segmentation process that lead to a decomposition of digitized data into areas that will help the construction of parametric surface patches. The approach proposed relies on the use of a polyhedral representation of the object built from the digitized data input. Then, it is shown how noise reduction, edge swapping techniques and adapted remeshing schemes can participate to different preparation phases to provide a geometry that highlights useful characteristics for the segmentation process. The segmentation process is performed with various approximations of discrete curvatures evaluated on the polyhedron produced during the preparation phases. The segmentation process proposed involves two phases: the identification of characteristic polygonal lines and the identification of polyhedral areas useful for a patch construction process. Discrete curvature criteria are adapted to each phase and the concept of invariant evaluation of curvatures is introduced to generate criteria that are constant over equivalent meshes. A description of the segmentation procedure is provided together with examples of results for free form object surfaces

    Subdivision surface fitting to a dense mesh using ridges and umbilics

    Get PDF
    Fitting a sparse surface to approximate vast dense data is of interest for many applications: reverse engineering, recognition and compression, etc. The present work provides an approach to fit a Loop subdivision surface to a dense triangular mesh of arbitrary topology, whilst preserving and aligning the original features. The natural ridge-joined connectivity of umbilics and ridge-crossings is used as the connectivity of the control mesh for subdivision, so that the edges follow salient features on the surface. Furthermore, the chosen features and connectivity characterise the overall shape of the original mesh, since ridges capture extreme principal curvatures and ridges start and end at umbilics. A metric of Hausdorff distance including curvature vectors is proposed and implemented in a distance transform algorithm to construct the connectivity. Ridge-colour matching is introduced as a criterion for edge flipping to improve feature alignment. Several examples are provided to demonstrate the feature-preserving capability of the proposed approach

    Using polyhedral models to automatically sketch idealized geometry for structural analysis

    Get PDF
    Simplification of polyhedral models, which may incorporate large numbers of faces and nodes, is often required to reduce their amount of data, to allow their efficient manipulation, and to speed up computation. Such a simplification process must be adapted to the use of the resulting polyhedral model. Several applications require simplified shapes which have the same topology as the original model (e.g. reverse engineering, medical applications, etc.). Nevertheless, in the fields of structural analysis and computer visualization, for example, several adaptations and idealizations of the initial geometry are often necessary. To this end, within this paper a new approach is proposed to simplify an initial manifold or non-manifold polyhedral model with respect to bounded errors specified by the user, or set up, for example, from a preliminary F.E. analysis. The topological changes which may occur during a simplification because of the bounded error (or tolerance) values specified are performed using specific curvature and topological criteria and operators. Moreover, topological changes, whether or not they kept the manifold of the object, are managed simultaneously with the geometric operations of the simplification process
    • 

    corecore