878 research outputs found

    Towards Assurance for Plug & Play Medical Systems

    Get PDF
    Traditional safety-critical systems are designed and integrated by a systems integrator. The system integrator can asses the safety of the completed system before it is deployed. In medicine, there is a desire to transition from the traditional approach to a new model wherein a user can combine various devices post-hoc to create a new composite system that addresses a specific clinical scenario. Ensuring the safety of these systems is challenging: Safety is a property of systems that arises from the interaction of system components and it’s not possible to asses overall system safety by assessing a single component in isolation. It is unlikely that end-users will have the engineering expertise or resources to perform safety assessments each time they create a new composite system. In this paper we describe a platform-oriented approach to providing assurance for plug & play medical systems as well as an associated assurance argument pattern

    Rationale and Architecture Principles for Medical Application Platforms

    Get PDF
    The concept of “system of systems” architecture is increasingly prevalent in many critical domains. Such systems allow information to be pulled from a variety of sources, analyzed to discover correlations and trends, stored to enable realtime and post-hoc assessment, mined to better inform decisionmaking, and leveraged to automate control of system units. In contrast, medical devices typically have been developed as monolithic stand-alone units. However, a vision is emerging of a notion of a medical application platform (MAP) that would provide device and health information systems (HIS) interoperability, safety critical network middleware, and an execution environment for clinical applications (“apps”) that offer numerous advantages for safety and effectiveness in health care delivery. In this paper, we present the clinical safety/effectiveness and economic motivations for MAPs, and describe key characteristics of MAPs that are guiding the search for appropriate technology, regulatory, and ecosystem solutions. We give an overview of the Integrated Clinical Environment (ICE) – one particular achitecture for MAPs, and the Medical Device Coordination Framework – a prototype implementation of the ICE architecture

    Advancing environmental sustainability assessment in the pharmaceutical industry

    Get PDF

    The Future of Synbiotics: Rational Formulation and Design

    Get PDF
    Synbiotics, mixtures of live microbes and substrates selectively utilized by host organisms, are of considerable interest due to their ability to improve gastrointestinal health. However, formulating synbiotics remains challenging, due in part, to the absence of rational strategies to assess these products for synbiotic activities prior to clinical trials. Currently, synbiotics are formulated as either complementary or synergistic. Complementary synbiotics are made by combining probiotics and prebiotics, with each component acting independently and with the combination shown to provide a clinical health benefit. Most commercial synbiotics as well as those used in clinical trials have been of the complementary type. In contrast, synergistic synbiotics require that the added microbe is specifically stimulated or it’s persistence or activity are enhanced by the cognate substrate. Although several innovative examples have been described in the past few years based on this principle, in practice, relatively few synbiotic studies have tested for synergism. In this review, selected recent examples of complementary and synergistic synbiotics and the rationale for their formulation will be described. In addition, pre-clinical experimental approaches for identifying combinations that provide a basis for satisfying the requirements for synergism will be discussed

    The next Generation of Action Ecology: Novel Approaches towards Global Ecological Research

    Get PDF
    Advances in the acquisition and dissemination of knowledge over the last decade have dramatically reshaped the way that ecological research is conducted. The advent of large, technology-based resources such as iNaturalist, Genbank, or the Global Biodiversity Information Facility (GBIF) allow ecologists to work at spatio-temporal scales previously unimaginable. This has generated a new approach in ecological research: one that relies on large datasets and rapid synthesis for theory testing and development, and findings that provide specific recommendations to policymakers and managers. This new approach has been termed action ecology, and here we aim to expand on earlier definitions to delineate its characteristics so as to distinguish it from related subfields in applied ecology and ecological management. Our new, more nuanced definition describes action ecology as ecological research that is (1) explicitly motivated by the need for immediate insights into current, pressing problems, (2) collaborative and transdisciplinary, incorporating sociological in addition to ecological considerations throughout all steps of the research, (3) technology-mediated, innovative, and aggregative (i.e., reliant on ‘big data\u27), and (4) designed and disseminated with the intention to inform policy and management. We provide tangible examples of existing work in the domain of action ecology, and offer suggestions for its implementation and future growth, with explicit recommendations for individuals, research institutions, and ecological societies

    Biogeosciences Perspectives on Integrated, Coordinated, Open, Networked (ICON) Science

    Get PDF
    This article is composed of three independent commentaries about the state of Integrated, Coordinated, Open, Networked (ICON) principles in the American Geophysical Union Biogeosciences section, and discussion on the opportunities and challenges of adopting them. Each commentary focuses on a different topic: (a) Global collaboration, technology transfer, and application (Section 2), (b) Community engagement, community science, education, and stakeholder involvement (Section 3), and (c) Field, experimental, remote sensing, and real-time data research and application (Section 4). We discuss needs and strategies for implementing ICON and outline short- and long-term goals. The inclusion of global data and international community engagement are key to tackling grand challenges in biogeosciences. Although recent technological advances and growing open-access information across the world have enabled global collaborations to some extent, several barriers, ranging from technical to organizational to cultural, have remained in advancing interoperability and tangible scientific progress in biogeosciences. Overcoming these hurdles is necessary to address pressing large-scale research questions and applications in the biogeosciences, where ICON principles are essential. Here, we list several opportunities for ICON, including coordinated experimentation and field observations across global sites, that are ripe for implementation in biogeosciences as a means to scientific advancements and social progress

    Biogeosciences Perspectives on Integrated, Coordinated, Open, Networked (ICON) Science

    Get PDF
    This article is composed of three independent commentaries about the state of Integrated, Coordinated, Open, Networked (ICON) principles in the American Geophysical Union Biogeosciences section, and discussion on the opportunities and challenges of adopting them. Each commentary focuses on a different topic: (a) Global collaboration, technology transfer, and application (Section 2), (b) Community engagement, community science, education, and stakeholder involvement (Section 3), and (c) Field, experimental, remote sensing, and real-time data research and application (Section 4). We discuss needs and strategies for implementing ICON and outline short- and long-term goals. The inclusion of global data and international community engagement are key to tackling grand challenges in biogeosciences. Although recent technological advances and growing open-access information across the world have enabled global collaborations to some extent, several barriers, ranging from technical to organizational to cultural, have remained in advancing interoperability and tangible scientific progress in biogeosciences. Overcoming these hurdles is necessary to address pressing large-scale research questions and applications in the biogeosciences, where ICON principles are essential. Here, we list several opportunities for ICON, including coordinated experimentation and field observations across global sites, that are ripe for implementation in biogeosciences as a means to scientific advancements and social progress

    Foundations for Safety-Critical on-Demand Medical Systems

    Get PDF
    In current medical practice, therapy is delivered in critical care environments (e.g., the ICU) by clinicians who manually coordinate sets of medical devices: The clinicians will monitor patient vital signs and then reconfigure devices (e.g., infusion pumps) as is needed. Unfortunately, the current state of practice is both burdensome on clinicians and error prone. Recently, clinicians have been speculating whether medical devices supporting ``plug & play interoperability\u27\u27 would make it easier to automate current medical workflows and thereby reduce medical errors, reduce costs, and reduce the burden on overworked clinicians. This type of plug & play interoperability would allow clinicians to attach devices to a local network and then run software applications to create a new medical system ``on-demand\u27\u27 which automates clinical workflows by automatically coordinating those devices via the network. Plug & play devices would let the clinicians build new medical systems compositionally. Unfortunately, safety is not considered a compositional property in general. For example, two independently ``safe\u27\u27 devices may interact in unsafe ways. Indeed, even the definition of ``safe\u27\u27 may differ between two device types. In this dissertation we propose a framework and define some conditions that permit reasoning about the safety of plug & play medical systems. The framework includes a logical formalism that permits formal reasoning about the safety of many device combinations at once, as well as a platform that actively prevents unintended timing interactions between devices or applications via a shared resource such as a network or CPU. We describe the various pieces of the framework, report some experimental results, and show how the pieces work together to enable the safety assessment of plug & play medical systems via a two case-studies

    Harnessing the Benefits of Open Electronics in Science

    Get PDF
    Freely and openly shared low-cost electronic applications, known as open electronics, have sparked a new open-source movement, with much un-tapped potential to advance scientific research. Initially designed to appeal to electronic hobbyists, open electronics have formed a global community of "makers" and inventors and are increasingly used in science and industry. Here, we review the current benefits of open electronics for scientific research and guide academics to enter this emerging field. We discuss how electronic applications, from the experimental to the theoretical sciences, can help (I) individual researchers by increasing the customization, efficiency, and scalability of experiments, while improving data quantity and quality; (II) scientific institutions by improving access and maintenance of high-end technologies, visibility and interdisciplinary collaboration potential; and (III) the scientific community by improving transparency and reproducibility, helping decouple research capacity from funding, increasing innovation, and improving collaboration potential among researchers and the public. Open electronics are powerful tools to increase creativity, democratization, and reproducibility of research and thus offer practical solutions to overcome significant barriers in science.Comment: 20 pages, 3 figure, 2 table
    • 

    corecore