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Abstract. Traditional safety-critical systems are designed and integrated by a
systems integrator. The system integrator can asses the safety of the completed
system before it is deployed. In medicine, there is a desire to transition from the
traditional approach to a new model wherein a user can combine various devices
post-hoc to create a new composite system that addresses a specific clinical sce-
nario. Ensuring the safety of these systems is challenging: Safety is a property of
systems that arises from the interaction of system components and it’s not possi-
ble to asses overall system safety by assessing a single component in isolation. It
is unlikely that end-users will have the engineering expertise or resources to per-
form safety assessments each time they create a new composite system. In this
paper we describe a platform-oriented approach to providing assurance for plug
& play medical systems as well as an associated assurance argument pattern.

Keywords: medical device interoperability, safety assurance, compositional safety

1 Introduction & Motivation

Traditionally, safety-critical systems have been designed and integrated as monolithic
units before they are delivered to the customer. Typically, a prime contractor manages
development of the system from design through final systems integration. Because the
prime contractor manages the entire development process, they are in a unique posi-
tion to assess the completed product for safety: They know what components comprise
the system, how those components interact (e.g., as verified via integration testing), the
intended use of the system and the system-level safety requirements. Very often in reg-
ulated domains, such as aviation and medical systems, the prime contractor must also
construct an assurance case which is an argument that the system satisfies its safety
requirements.

In medicine, clinicians currently deliver therapy by manually coordinating collec-
tions of independently developed devices. Now that many devices marketed today al-
ready include some form of network connectivity (serial ports, Ethernet, 802.11 or Blue-
tooth wireless) clinicians are recognizing the potential to automate device coordination
via external control applications [8]. Ideally, future medical devices would support plug
& play protocols which would allow clinicians to construct networks of medical devices
that automatically interoperate to automate life-critical clinical workflows [7]. The in-
tegration model for plug & play systems would differ from traditional systems because



they would not be supplied or integrated by a single vendor. Instead, a Health Delivery
Organization (HDO) would purchase interoperable devices, infrastructure (i.e., com-
putational platforms) and software applications implementing clinical algorithms (i.e.,
“apps”) from a variety of different vendors. Specific medical systems would then be as-
sembled from devices on-hand to address a particular clinical need. While practical use
of such systems is still in the future, there are emerging interoperability standards [19]
and prototype implementations that aim to support this vision [16, 18]. In this paper,
we study the problem of constructing safety assurance arguments for plug & play med-
ical systems intended to provide life-critical therapy (i.e., where failure of the system
could result in death or serious injury - see the example in Section 2). We describe how
the plug & play integration paradigm has serious implications for safety assurance and
propose an approach for constructing an assurance argument for such systems.

Plug & play medical systems will be assembled by their (non-technical) users which
means that there will not be a single entity with technical competency (e.g., prime con-
tractor) positioned to assess the safety of a specific combination of devices. The lack of
a traditional prime contractor poses a challenge to ensuring the safety of these systems
for two reasons: First, safety is a property of systems that arises from the interactions
between system components [17]. Second, what constitutes safe inter-device interac-
tions will vary considerably between different clinical scenarios. It is critical to ensure
that interactions between devices are predictable and that those interactions satisfy the
safety requirements of the given clinical scenario. Since it will not be known specifi-
cally which devices will be assembled into the composite system a priori, traditional
methods of assessing safety cannot be used.

A number of efforts in academia, industry, and standards groups have studied dif-
ferent aspects and implications of plug & play medical systems. Nearly all of the prior
work has assumed that plug & play medical systems would exist within a “platform-
oriented ecosphere” similiar to what exists in different segments of the consumer elec-
tronics industry (e.g., USB peripherals for personal computers or “apps” for smart-
phones). In the consumer-electronics industry these ecospheres ensure interoperability
between components in the ecopshere. For example, one can reasonably expect a con-
sumer operating system to seamlessly interoperate with a new USB keyboard or that
an “app” downloaded from an official “app store” will be able to access and use smart-
phone hardware.

We believe that, in addition to supporting interoperability, a platform-oriented eco-
sphere for plug & play medical systems could be designed to ensure safety. Such an
ecosphere would need to establish certification processes and criteria such that system-
safety assurance obligations can be appropriately divided between the different system
component manufacturers and ecosphere stakeholders.

The premise of our work is that to establish safety of a plug & play system, ap-
plication vendors should be the ones to produce system-level safety arguments. This
is because the application vendors will know what clinical scenario their application
is targeting (i.e., its intended use) and therefore know the system-level safety require-
ments. These arguments would have to leverage both safety of individual devices and
the assurances provided by the platform ecosphere. Our goal is to establish a sound



way of combining component and ecosphere assurances into an assurance case for the
application.

There are two contributions of this paper. First, we propose a platform-oriented eco-
sphere with specific certification processes designed to support the assurance of plug &
play medical systems. The second contribution is an assurance argument pattern that
exploits the design of our proposed ecosphere. Vendors would use the pattern to con-
struct application assurance cases. We illustrate the use of this pattern by instantiating
it for a particular medical system use-case.

The organization of this paper is as follows: In Section 2 we describe an example
clinician proposed safety-critical medical control system as a use-case for plug & play
medical systems. Section 3 gives an overview of our proposed ecopshere and how that
ecosphere should be managed. Section 4 contains the assurance argument pattern and
its instantiation for an application that implements the system of Section 2. We give an
overview of related work in Section 5 and conclude with some ideas for future work in
Section 6.

2 Motivating Example: Clinical Scenario: Patient Controlled
Analgesia

One common method used to control patient pain in clinical settings is Patient Con-
trolled Analgesia (PCA). PCA therapy provides consistent control of pain by allowing
patients to self-administer doses of an opioid. Typically, a patient is attached to a spe-
cial infusion pump equipped with a “bolus trigger.” When the patient presses the trig-
ger, the pump will deliver a predetermined amount of opioid to the patient. Evidence
from systematic reviews of randomized controlled clinical trials indicate that the use of
IV PCA leads to better pain relief, improved patient outcomes (e.g., reduction in pul-
monary complications) and increased patient satisfaction compared with conventional
nurse administered parenteral opioids [13].

One major opioid side effect is respiratory depression. Respiratory depression in-
creases progressively with dose. If respiratory depression increases to the point that
the patient’s ability to take in oxygen is compromised it is called respiratory distress
and serious injury or death can result. In theory, properly configured PCA provides
some protection from overdose because it is inherently self-limiting: Patients will usu-
ally lose consciousness before respiratory depression reaches dangerous levels which
prevents them from requesting further doses and causing an overdose. Additionally,
modern PCA-pumps allow clinicians to set limits on the total amount infused per hour
as well as lockout intervals between boluses.

Despite these protections, PCA therapy is associated with a large number of adverse
events: There were over 9500 cases of PCA related errors voluntarily reported to the
Institude of Safe Medicine between 2000 and 2004 alone [11] and there continues to
be cases of severe respiratory complications due to PCA [6]. Patients undergoing PCA
therapy can still receive overdoses if the pump is misconfigured, if the pump configurer
overestimates the maximum dose a patient can receive, if the wrong concentration of
drug is loaded into the pump, or if someone other than the patient presses the bolus
trigger (known as PCA-by-proxy).



2.1 A Fail-Safe Device Coordination Protocol

Fig. 1. Control loop with sources of timing
delays [3].

Previously Arney et al. ([3]) developed a fail-
safe device coordination protocol designed to
prevent overdose resulting from PCA therapy.
The control-loop of the system is illustrated
in Fig. 1 and consists of a network-connected
PCA pump, pulse-oximeter, and a supervi-
sory controller. The pulse-oximeter periodi-
cally transmits measurements of the patient’s
blood oxygen saturation (SpO2) to the con-
troller. The controller maintains a “worst-
case” model of patient opioid pharmokinet-
ics. This model relates opioid concentra-
tion levels to SpO2 and respiratory depres-
sion. This model allows the controller to use
SpO2 to infer the patient’s level of respira-
tory depression. Using the inferred level of
respiratory depression, the controller will cal-
culate a control decision and transmit that de-
cision to the PCA pump.

Arney et al.’s control-loop is fail-safe in the sense that failures of omission (e.g.,
dropped messages in the network) will not result in an overdose. Fail-safety is accom-
plished using a ticket-based control strategy. Instead of simply sending the pump activa-
tion or deactivation commands, the controller sends a timed-ticket. This ticket encodes
the maximum amount of time (called ∆tsafe) the pump can continuously run without
pushing the patient into respiratory distress.

The calculation of ∆tsafe must take into account the maximum timing delays
present in each stage of the control loop (see Fig. 1). Pulse-oximeters use a sliding-
window averaging algorithm to calculate SpO2 from raw sensor data. The size of the
window and processing time ensures that the SpO2 measurement is delayed from the
“real” SpO2 value by several seconds. The network adds delay between both the pulse-
oximeter and the controller and between the controller and the PCA pump. The con-
troller introduces some delay because it takes time to calculate the ticket. Finally, there
will be a delay from the moment the pump’s ticket timer times out and the moment
the pump stops because it will take time for the physical pump mechanism to cease
infusion.

Arney et al. modeled their coordination protocol as a network of communicating
Timed Automata [1]: Each component (including network links) illustrated in Fig. 1
were modeled as Timed Automata. Each source of delay was modeled and the network
was allowed to arbitrarily drop messages. SpO2 was used as a proxy for respiratory
distress: The patient model included a state variable representing the patient’s current
SpO2 value. The value of the variable was periodically calculated via a pharmokinetic
model that relates drug concentration in the patient to respiratory rate and SpO2. The
UPPAAL model checker [5] was used to verify that the patient will not experience
overdose.



3 A Platform-Oriented Ecosphere

We believe that a platform-oriented ecosphere of medical components, if appropriately
designed, could be used to ensure the safety of plug & play medical systems. In this
paper, we define an ecosphere as as set of devices, software applications and computa-
tional platforms intended to interact with one another using standardized plug & play
interoperability protocols; the stakeholders that organize, manufacture, and use these
products; as well as the explicitly defined processes that are followed to develop, cer-
tify, and use these products.

Our proposed ecosphere contains three categories of interoperable system compo-
nents. The component categories are device, application, and platform. Devices expose
a logical interface that acts like an API which applications can use to control or receive
data from the device. Applications implement the clinical algorithms used to address a
specific clinical scenario. Applications are not just executable code; they have a require-
ments specification which declares what interfaces compatible devices must implement
and a QoS specification that declares timing requirements (e.g., periods and deadlines
on program execution). Each platform consists of a network, computational resources
(CPU, RAM, etc.), real-time operating system and platform services. The platform’s
job is to act as a trusted base to enforce the correct assembly of on-demand systems:
When the Health Delivery Organization (HDO) plugs a device into the platform the de-
vice will upload its interface specification. Then, when the HDO staff tries to launch an
application with a set of selected devices the platform will (1) check if those devices’
interfaces are compatible with the application requirements and (2) verify that the ap-
plication’s requested QoS can be guaranteed. If either 1 or 2 is false the platform will
prevent application launch.

There are a number of actors that participate in our vision of the ecosphere. Each
actor has different responsibilities and assurance obligations:

– The Ecosphere Standards Consortium consists of representives of the other actors
and follows a consensus process to define ecosphere standards: The connectivity
protocols used by each component to exchange data, the logical interfaces devices
can implement, what it means for a device to be compatible with an application, and
the compliance requirements that each type of component (applications, devices,
and platforms) must satisfy before that component can be certified as a member of
the ecosphere. We emphasize that the consortium does not explicitly define specific
systems - rather it establishes constraints on the architecture and interfaces of such
systems and their sub-components.

– The Device Vendor designs, manufactures, and markets their devices. Before their
device can be admitted to the ecosystem they must provide assurance (e.g., via an
assurance case) that their device satisfies the ecosphere compliance requirements
for all interfaces the device claims it implements.

– The Application Vendor is responsible for providing assurance that their application
is safe when instantiated with compatible devices. Application vendors play a role
analogous to“system integrators” in conventional systems: They define the overall
system function, and reason about overall system safety. However, the distinction
is that they define the system using a software application and requirements/as-
sumptions on the devices and platforms. They do not specify a single system but a



family of possible system instances that satisfy the functional and safety goals of
the clinical scenario. Thus, the integration is “virtual”: they do not integrate specific
physical devices and platforms but specifications of devices and platforms where
each such specification represents a set of compliant components.

– The Platform Vendor must provide assurance that their platform will correctly per-
form its responsibilities. Because the platform is the trusted base for each system
these responsibilities include correctly executing application code, correctly imple-
menting the ecosphere device-application compatibility check and providing ade-
quate system security.

– The Certification Authority polices component membership in the ecosphere: The
certification authority only grants certification to components that satisfy the eco-
sphere compliance requirements. When a component becomes certified the author-
ity will sign the component with a digital certificate. If postmarket surveillance
reveals that a component has a previously undetected problem resulting in non-
compliance, the certification authority can revoke the certificate associated with
that component’s make and model. The digital certificate enables the platforms to
use cryptographic methods to verify whether or not applications or devices have
been certified. [10] contains an overview of how cryptographic methods can be
used to establish trust and how the platform acts as a trusted base for this process.

– The HDO does not have assurance responsibilities per se (i.e., they are not required
to provide assurance to any other ecosphere actor) however, they must still use the
application as intended. If the HDO uses an application in an unintended way (i.e.,
off-label use) then the (safety) assurances provided by the Application Vendor for
that application are not guaranteed to apply.

The ecosphere assurance and compliance obligations (combined with the runtime
checks performed by the platform) create a series of “gating functions” that prevent
the HDO from assembling potentially unsafe combinations of devices and applications.
Fig. 2 illustrates the relationship between the ecosphere actors, ecosphere components,
the gating functions and the final physical instantiation of a system. The unringed cir-
cles indicate steps in development or assembly of the physical system. Lines indicate
interactions between the actors. The ringed circles indicate completion of one of the
primary assurance steps and represent the gates. First the Ecosphere Standards Consor-
tium must establish the ecosphere standards and component compliance requirements.
Once the standards have been defined the component manufacturers can design their
respective components. The certification authority enforces the first set of gates: com-
ponents are only allowed into the ecosphere if they satisfy their respective compliance
requirements. The final set of gates are enforced by the platform: The platform will only
let the application run if it is being paired with compatible and compliant (i.e., certified)
devices and if the platform can guarantee that the application’s QoS requirements will
be met.

A Note on Interfaces, Compatibility, and Device Compliance: For the purposes of
this paper we imagine that device and application interfaces are analogous to software
interfaces from programming languages like Java: When an application specifies that
it requires a device interface it is much the same as declaring a field variable in a Java



Fig. 2. Ecosphere actors, their interactions and certification activities.

class to have an interface-type: Any object that implements that interface can be substi-
tuted for that variable. Compatibility checking between devices and applications thus
amounts to checking if the device implements the required interface(s). A device is
compliant with an interface if it satisfies the Consortium defined compliance require-
ments for that interface type. Consider the PCA pump from the motivating example.
The Ecosphere Consortium could define a standardized interface for PCA pumps called
“void InfusionTimedTicket(x)” which applications could use to send a timed ticket to
the pump. The Consortium would then define the behavior a PCA pump must have in
order to comply with that interface. In this case, the pump should correctly implement
the ticket timer and cease infusion after some mandated amount of time.

A Note on Platform Assurance & Compliance: A compliant platform must cor-
rectly implement compatibility checking and resource management. Ideally, applica-
tions would be portable across platforms in the ecosphere. This means that the Consor-
tium would also standardize an execution model for the applications (i.e., application
byte code format, semantics, and available APIs). A compliant platform must then also
correctly implement the standard model of execution. Different applications will have
different levels of criticality: Applications with low criticality do not pose serious con-
sequences in the event of failure while failure of a high-criticality application may result
in catastrophic consequences. Because the application is totally dependent on the plat-
form to function correctly, the assurance requirements for each platform should be at
least as stringent as the assurance requirements for the most critical application that
will be admitted to the ecosphere. While the specifics of these requirements are well
beyond the scope of this paper, we can imagine that the Consortium could mandate that
all Platform Vendors follow guidance that would result in levels of assurance similar to
that of DO-178C Level A. [12].



4 The Platform Argument Pattern

Each plug & play application defines a set of possible systems: One for each allowed
combination of devices and platform with the application. The multitude of potential
systems implied by a single application presents a challenge for both the application
developer and Certification Authority. The application vendor will need to devise an as-
surance argument that explains why all these possible combinations are safe. Practically,
it won’t be possible for the vendor to analyze or test each combination individually be-
cause the number of possible combinations would prohibitively large. Additionally, new
components (i.e., platforms & devices) may be admitted to the ecosphere after the ap-
plication is certified. Because the application vendor will not be able to directly analyze
all possible device combinations they will have to use some form of model-based rea-
soning: They would analyze their application for safety using models as proxies for the
concrete devices. In theory, as long as the models capture the range of behavior allowed
by the different ecosphere gating functions (i.e., the compliance/certification checks and
the platform compatibily checks) then safety conclusions derived from the model-based
reasoning should hold for any allowed instantiation of the application.

Of course, in practice, it is generally impossible to capture all the allowed behavior
of a physical system in a model. If an application vendor is using model-based reason-
ing to support safety-claims they should justify why the models they used are adequate.
In our context, adequacy depends on the intended use of the application (i.e., the mean-
ing of adequate will vary from application to application) as well as the assurances on
each component provided by the ecosphere itself. To this end we propose an assurance
argument pattern that requires application vendors to make model adequacy arguments
explicit. Our hope is that it can help both application vendors and the Certification Au-
thority to quickly identify assurance deficits or other fallacious reasoning in application
assurance arguments, especially those related to model-based reasoning. The remain-
der of this section is organized as follows: First we define the terms the pattern uses.
Then we introduce and explain the platform argument pattern. Lastly, we instantiate
the pattern to make a mock assurance case for an application implementing the PCA
coordination protocol from Section 2.

4.1 Pattern Terms

Fig. 3 maps out the terms used in the pattern. Our terms make an explicit distinction
between models1 and physical embodiments. We ultimately care about the physical
embodiments but we are left with the models to analyze. The rows correspond to the
different types of ecosphere components (with the addition of a row for the environ-
ment and instantiated system). The columns separate out different abstractions for each
of the component categories: The specifications refer to the actual specification arti-
facts created by either the application developer or device manufacturer, the models are

1 Through out this section we adopt a formal notation that might lead some readers to believe
that when we use the term “model” we are explicitly refering to formal models (i.e., ones that
could be analyzed by a model-checker). This is not the case. We are using “model” in a very
general sense and a model could range from an informal “mental model” to an executable
model that could be simulated to a formal model that could be analyzed by a model-checker.



semantic (i.e., analyzable) objects created by the application developer based on the
specifications. The last column (physical embodiments) represent the physical object
that correspond to the models and specifications.

Model Specification Physical Embodiment
Devices - DI1, . . . , DIl D1, . . . , Dl

App
Algorithm
Interface

Am A P (A)
AImj AIj Dj = {Di | DIi ' AIj}

Platform - - P

Environment Em - E

System Am ||nj=1 AImj || Em A ||nj=1 AIj {P (A) ||nj=1 Dj || E | Dj ∈ Dj}

Fig. 3. Pattern Terms: The relationship between models, specifications, and physical embodi-
ments.

Each entity in Fig. 3 is defined as follows: The l devices admitted to the ecosphere
are D1, . . . , Dl. Each Di is compliant with its interface DIi, Each application con-
sists of an A and set of AIj . The A is the algorithm of the application and represents
executable code. Since these applications are typically real-time we assume any QoS
specifications in the application are contained within A. The AIjs represent the appli-
cation’s required device interfaces (If the application uses n devices then 1 ≤ j ≤ n).
The physical emobodiment of eachAIj is the set of devices that implement the interface
AIj (we use ' to represent the compatibility relation). The AImj are models created by
the application developer and are intended to capture all the behaviors of the devices
that implement theAIjs. SinceA is a program, it has no physical embodiment until it is
executed on a platform, therefore P (A) represents platform P executing A. The device
interfaces of an application are syntactic objects. They don’t have explicit semantics but
they do imply a set of behaviors (i.e., the union of the behaviors of all the compliant
devices that are compatible with that interface). Each platform is represented by a P .
E represents the environment where the application will be deployed and Em is the
model of that environment. The last row are the system entities. Am ||nj=1 AI

m
j || Em

is the model of the system. It is the composition of the application model, the device
models, and the environment model (We borrow the parallel composition operator, ||,
from process algebras to denote the combination of two or more components running
together). A ||nj=1 AIj (i.e., the application) represents a specification of the system.
{P (A) ||nj=1 Dj || E | Dj ∈ Dj} is the set of possible physical systems specified
by the application (one system for each compatible combination of application and de-
vice(s)).

4.2 The Pattern

Fig. 4 is a specification of the argument pattern using Goal Structured Notation
(GSN) [14]. The top level goal (G:AllSat) states that all instantiantions of the applica-
tion must satisfy some property φ in a specified environment. Assurance for this claim
is argued via the platform argument strategy (S:PlatArg). The strategy must always
be applied in at least two contexts: One referencing the models used in the model-
based reasoning and the other referencing the ecosphere assurance and compliance re-



G: AllSat 
There is adequate assurance 
that All possible instantiations 
of {App} satisfy {ɸ} in {E}

S: PlatArg
Argue via the 
platform approach

G: ModelSat 
{Am II AI1

m II … II AIn
m II Em }

satisfies {ɸ}

G: ModelsAdequate
the models {Am} , {AIj

m}
 (1 <= j <= n), and {Em} are 
adequate for {ɸ} and {E}

G: PlatformAssurance
There is adequate assurance 
that all platforms in the 
ecosphere will correctly 
execute {App}’s {A} and will 
correctly perform app device 
matching.

G: {Env}ModelAdq.
The model {Em} captures the 
behavior of {E}  relevant to {ɸ}. 

G: DevModel{N}Adq.
Given ecosphere compliance 
assurances: If {Di}  complies 
with {DIi} and {DIi} is 
compatible with {AIn} then 
{AIn

m} captures the behavior of 
{D}  relevant to {ɸ}.

Cntx: Models 
The models {Am},  
{Em}, and for all 
1 <= j <= n {AIj

m}
(n = # of dev. req.)

Cntxt: Ecosphere 
Ecosphere 
compliance 
mechanisms and 
associated 
assurance.

G: AlgModelAdq
The model Am  captures the 
behavior of A relevant to ɸ.

n

Fig. 4. The argument pattern for application assurance.

quirements. S:PlatArg requires adequate assurance for three sub goals. The first goal
(G:ModelSat) is the model-based reasoning step. The argument application vendor
must argue that the chosen models satisfy φ. The remaining two goals explicitly relate
the models used in G:ModelSat to the possible physical systems via the ecosphere as-
surance and compliance requirements. G:ModelsAdequate asks the developer to argue
why the models chosen in G:ModelSat capture all the possible (relevant) behaviors al-
lowed by the application’s specification. Typically, the arguments for the adequacy of
the environment, application, and devices models will all take on a different character
so the pattern separates the arguments for each as a different sub-goal (Note the mul-
tiplicity on the G: DevModel{N}Adq. that forces a sub-goal for each device model).
G:PlatformAssurance asks the developer to argue why the minimum level of assur-
ance provided by any ecosphere compliant platform is sufficient to support the appli-
cation: The application developer relies on the platform to correctly execute their ap-
plication and ensure that the application is only instantiated with compatible devices. If
a platform fails to do either of these correctly, then φ could be violated even if sound
models were used in G:ModelSat.

4.3 An Example Assurance Argument

Fig. 5 shows an example assurance argument for an application implementing the PCA
device coordination protocol of Section 2. We assume that the application specifies
two required interfaces (“void InfusionTimedTicket(x)” and “float getSpO2()”). We
also assume that the application code was auto-generated from Arney et al.’s con-
troller timed automata model via the TIMES tool [2]. The application would have
a QoS specification that requires that all network delays are bounded by 500ms and
that the controller will take no more than 200ms to generate a ticket after it receives a
fresh SpO2 reading. We assume for the purposes of this argument that the Consortium



requires all PCA pumps that comply with void InfusionTimedTicket(x) halt infusion
within 100ms of the ticket expiring. We also assume that any pulse-oximeter compli-
ant with “float getSpO2()” have an averaging time ≤ 2000ms. Lastly, we assume that
the ecosphere compliance requirements for platforms is very stringent (i.e., generally
accepted by domain experts to be adequate for life-critical systems.)

The assurance argument now proceeds as follows: The top-level goal G: NoOver-
infusion claims that all allowed instantiations of the PCAapp prevent over-infusion. G:
NoOverinfusion is argued by applying the platform argument. The models used in the
model-based reasoning step are Arney et al.’s timed automata models (in this setting the
patient model is the environment model). The system is shown to avoid patient over-
dose states by verifying its models in the UPPAAL model-checker (using the process
described in [3]). The patient model is claimed to be sound because it is an accepted
textbook model of opioid pharmokinetics. The device models are argued to be adequate
because they capture all allowed behavior of compliant devices (we elide the argument
for the PCA model due to space constraints). For example, the model of the pulse-
oximeter assumes that all pulse-oximeters compliant with “float getSpO2()” exhibit an
averaging time≤ 2000ms. This is the exact range of timing behavior captured in Arney
et al.’s pulse-oximeter model. The application model is argued to be sound because the
TIMES tool generated the executable code from the model. Finally, all platforms are
argued to have adequate levels of assurance for PCAapp because ecosphere platform
compliance requires a stringent level of assurance generally accepted to be adequate for
life-critical systems.

Of course, just because a developer is able to instantiate the pattern does not mean
their system is safe or their argument is good. The Certification Authority or any other
reviewer may or may not accept the argument. For example, they could employ a
domain expert in opiod pharmokinetics who judges that the textbook pharmokinetic
model used in the analysis is not adequate or too simplistic. Or perhaps the application
vendor had erroneously interpreted the compliance requirements for pulse-oximeters
implementing“float getSpO2()” and some compliant pulse-oximeters may in fact have
an averaging time > 2000ms (in which case the app’s ticket calculation would be
wrong). The point is that, by making the soundness argument explicit it helps both the
application vendor and Certification Authority more quickly identify assurance deficits.

5 Related Work

The study of assurance and ecospheres for plug & play systems is relatively new. ASTM
F2761 [19] is a standard that defines the Integrated Clinical Environment (ICE) out of
work started at the Medical Device Plug & Play Interoperability Program at CIMIT [7].
ASTM F2761 abstractly defines a medical application platform and alludes to how the
platform could support an ecosphere of plug & play medical devices. More recently, [9]
described how a medical application platform would facilitate the safe integration of
applications and medical devices drawn from an ecopshere of interoperable componets.
OpenICE [18] and the MDCF [16] are both prototype medical application platforms and
have been used to inform both academic and industry research on plug & play medical
systems.



While, as far as we know there has not been any work on assurance arguments for
plug & play systems, there has been some work on assurance arguments for model-
based development [4]. The authors of [4] describe an assurance argument pattern for
systems developed using a model-based development process. Like our proposed pat-
tern, their pattern requires that the argument preparer to first prove a propery using a
model, and then justify the use of that model. Their pattern does not address the pecu-
liarities of model based reasoning for plug & play systems. There has been some in-
teresting work on modular certification [20] and compositional safety arguments [15].
These works are primarily concerned with argument reuse but introduce some concepts
that may be applicable to providing assurance for plug & play systems.

6 Conclusions and Future Work

This paper described two contributions. First, we proposed a platform-oriented ecop-
shere designed to support the assurance of plug & play medical systems. Second, we
described an assurance argument pattern that exploits the design of this ecosphere. The
key challenge we sought to address is that, unlike traditional systems, plug & play sys-
tems do not fully exist until they are assembled by their users. Our approach leverages
a specially managed ecosphere of components that enables application vendors to con-
strain which combinations of devices can be used with their application. This puts the
application developer to be in the unique position of being able to use model-based rea-
soning to predict the possible behaviors of the allowed instatiations of their application.
Our proposed assurance argument pattern explicitly links the model-based reasoning
performed by the vendor to assurances provided by the ecosphere. We illustrated the
use of this pattern via a small case-study of a closed-loop medical system. For future
work we would like to apply this approach to a more involved case-study. One objective
of this case-study could be to submit a mock-submission to a regulatory agency (e.g.,
the FDA) and then report on the feedback received. It would also be interesting to ex-
plore how approaches for argument reuse (e.g., [20] or [15]) could be incorporated into
our proposal.
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G: NoOverInfusion 
There is adequate assurance 
that all possible instantiations 
of PCAapp prevent PCA 
overinfusion.

S: PlatArg
Argue via the 
platform 
approach.

G: ModelSat
The timed automata models do 
not exhibit overinfusion.

G: ModelsAdequate
The Patient, PCAappAlg, 
PulseOx, and PCA models are 
adequate.

G: PlatformAssurance
There is adequate assurance 
that all platforms in the 
ecosphere will correctly 
execute PCAapp and will 
correctly perform PCAapp’s 
device matching.

G: PatientAdq. 
The patient model is sound for 
checking for over-infusion.

G: PulseOxModelAdq.
The PulseOx model captures 
all relevant behavior of 
compliant and compatible 
pulse-oximeters

G: PCAapAlgModelAdq.
The application model captures 
the relevant behavior

Ev: 
EcoDevComplia
nce The 
compliance 
criteria used by 
the ecosphere.

Cntxt: Models 
The Timed 
Automata models 
from Arney et. al.: 
Patient, 
PCAappAlg, 
PulseOx & PCA

S: DevAssurance
Argue that PulseOx models 
all the relevant behaviors 
(timing, accuracy) that are 
allowed by the ecosphere 
pulseox compliance criteria.

S: 
AcceptedTextBookModel
The patient model is an 
accepted good model of 
opioid pharmokinetics.

Ev: 
TextbookCitatio
n Reference to 
the patient 
model.

S:  ModelBasedDevel.
Argue that the 
application code was 
automatically derived 
from the timed automata 
model so the model 
contains all application 
behavior

Ev: TIMESToolLog 
Log files generated 
by the  TIMES tool 
from the code 
derivation event.

S:  ModelChecking
satisfiability is verified 
using a model-checker.

Ev: UPPAAL
UPPAAL model-
checking results.

S:  ReferenceEcoAssur.
The ecosphere platform 
compliance criteria 
meets an accepted level 
of assurance for life-
critical apps.

Ev: 
EcoPlatCompliance

Ref. to the 
compliance criteria 

for platforms

G: 
PcaModel
Sound

Cntxt: Ecosphere 
Ecosphere 
compliance 
mechanisms and 
associated 
assurance.

Fig. 5. Assurance case fragment for the PCA-Control Application
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