298 research outputs found

    Automated Privacy Protection for Mobile Device Users and Bystanders in Public Spaces

    Get PDF
    As smartphones have gained popularity over recent years, they have provided usersconvenient access to services and integrated sensors that were previously only available through larger, stationary computing devices. This trend of ubiquitous, mobile devices provides unparalleled convenience and productivity for users who wish to perform everyday actions such as taking photos, participating in social media, reading emails, or checking online banking transactions. However, the increasing use of mobile devices in public spaces by users has negative implications for their own privacy and, in some cases, that of bystanders around them. Specifically, digital photography trends in public have negative implications for bystanders who can be captured inadvertently in users’ photos. Those who are captured often have no knowledge of being photographed and have no control over how photos of them are distributed. To address this growing issue, a novel system is proposed for protecting the privacy of bystanders captured in public photos. A fully automated approach to accurately distinguish the intended subjects from strangers is explored. A feature-based classification scheme utilizing entire photos is presented. Additionally, the privacy-minded case of only utilizing local face images with no contextual information from the original image is explored with a convolutional neural network-based classifier. Three methods of face anonymization are implemented and compared: black boxing, Gaussian blurring, and pose-tolerant face swapping. To validate these methods, a comprehensive user survey is conducted to understand the difference in viability between them. Beyond photographing, the privacy of mobile device users can sometimes be impacted in public spaces, as visual eavesdropping or “shoulder surfing” attacks on device screens become feasible. Malicious individuals can easily glean personal data from smartphone and mobile device screens while they are accessed visually. In order to protect displayed user content, anovel, sensor-based visual eavesdropping detection scheme using integrated device cameras is proposed. In order to selectively obfuscate private content while an attacker is nearby, a dynamic scheme for detecting and hiding private content is also developed utilizing User-Interface-as-an-Image (UIaaI). A deep, convolutional object detection network is trained and utilized to identify sensitive content under this scheme. To allow users to customize the types ofcontent to hide, dynamic training sample generation is introduced to retrain the content detection network with very few original UI samples. Web applications are also considered with a Chrome browser extension which automates the detection and obfuscation of sensitive web page fields through HTML parsing and CSS injection

    ReCon: Revealing and Controlling PII Leaks in Mobile Network Traffic

    Get PDF
    It is well known that apps running on mobile devices extensively track and leak users' personally identifiable information (PII); however, these users have little visibility into PII leaked through the network traffic generated by their devices, and have poor control over how, when and where that traffic is sent and handled by third parties. In this paper, we present the design, implementation, and evaluation of ReCon: a cross-platform system that reveals PII leaks and gives users control over them without requiring any special privileges or custom OSes. ReCon leverages machine learning to reveal potential PII leaks by inspecting network traffic, and provides a visualization tool to empower users with the ability to control these leaks via blocking or substitution of PII. We evaluate ReCon's effectiveness with measurements from controlled experiments using leaks from the 100 most popular iOS, Android, and Windows Phone apps, and via an IRB-approved user study with 92 participants. We show that ReCon is accurate, efficient, and identifies a wider range of PII than previous approaches.Comment: Please use MobiSys version when referencing this work: http://dl.acm.org/citation.cfm?id=2906392. 18 pages, recon.meddle.mob

    Location-Privacy Leakage and Integrated Solutions for 5G Cellular Networks and Beyond

    Get PDF
    The fifth generation (5G) of cellular networks improves the precision of user localization and provides the means to disclose location information to over-the-top (OTT) service providers. The network data analytics function (NWDAF) can further elaborate this information at an aggregated level using artificial intelligence techniques. These powerful features may lead to the improper use of user location information by mobile network operators (MNOs) and OTT service providers. Moreover, vulnerabilities at various layers may also leak user location information to eavesdroppers. Hence, the privacy of users is likely at risk, as location is part of their sensitive data. In this paper, we first go through the evolution of localization in cellular networks and investigate their effects on location privacy. Then, we propose a location-privacy-preserving integrated solution comprising virtual private mobile networks, an independent authentication and billing authority, and functions to protect wireless signals against location information leakage. Moreover, we advocate the continuous and detailed control of localization services by the user

    State of the art in privacy preservation in video data

    Full text link
    Active and Assisted Living (AAL) technologies and services are a possible solution to address the crucial challenges regarding health and social care resulting from demographic changes and current economic conditions. AAL systems aim to improve quality of life and support independent and healthy living of older and frail people. AAL monitoring systems are composed of networks of sensors (worn by the users or embedded in their environment) processing elements and actuators that analyse the environment and its occupants to extract knowledge and to detect events, such as anomalous behaviours, launch alarms to tele-care centres, or support activities of daily living, among others. Therefore, innovation in AAL can address healthcare and social demands while generating economic opportunities. Recently, there has been far-reaching advancements in the development of video-based devices with improved processing capabilities, heightened quality, wireless data transfer, and increased interoperability with Internet of Things (IoT) devices. Computer vision gives the possibility to monitor an environment and report on visual information, which is commonly the most straightforward and human-like way of describing an event, a person, an object, interactions and actions. Therefore, cameras can offer more intelligent solutions for AAL but they may be considered intrusive by some end users. The General Data Protection Regulation (GDPR) establishes the obligation for technologies to meet the principles of data protection by design and by default. More specifically, Article 25 of the GDPR requires that organizations must "implement appropriate technical and organizational measures [...] which are designed to implement data protection principles [...] , in an effective manner and to integrate the necessary safeguards into [data] processing.” Thus, AAL solutions must consider privacy-by-design methodologies in order to protect the fundamental rights of those being monitored. Different methods have been proposed in the latest years to preserve visual privacy for identity protection. However, in many AAL applications, where mostly only one person would be present (e.g. an older person living alone), user identification might not be an issue; concerns are more related to the disclosure of appearance (e.g. if the person is dressed/naked) and behaviour, what we called bodily privacy. Visual obfuscation techniques, such as image filters, facial de-identification, body abstraction, and gait anonymization, can be employed to protect privacy and agreed upon by the users ensuring they feel comfortable. Moreover, it is difficult to ensure a high level of security and privacy during the transmission of video data. If data is transmitted over several network domains using different transmission technologies and protocols, and finally processed at a remote location and stored on a server in a data center, it becomes demanding to implement and guarantee the highest level of protection over the entire transmission and storage system and for the whole lifetime of the data. The development of video technologies, increase in data rates and processing speeds, wide use of the Internet and cloud computing as well as highly efficient video compression methods have made video encryption even more challenging. Consequently, efficient and robust encryption of multimedia data together with using efficient compression methods are important prerequisites in achieving secure and efficient video transmission and storage.This publication is based upon work from COST Action GoodBrother - Network on Privacy-Aware Audio- and Video-Based Applications for Active and Assisted Living (CA19121), supported by COST (European Cooperation in Science and Technology). COST (European Cooperation in Science and Technology) is a funding agency for research and innovation networks. Our Actions help connect research initiatives across Europe and enable scientists to grow their ideas by sharing them with their peers. This boosts their research, career and innovation. www.cost.e

    SoK: Acoustic Side Channels

    Full text link
    We provide a state-of-the-art analysis of acoustic side channels, cover all the significant academic research in the area, discuss their security implications and countermeasures, and identify areas for future research. We also make an attempt to bridge side channels and inverse problems, two fields that appear to be completely isolated from each other but have deep connections.Comment: 16 page

    Danger is My Middle Name: Experimenting with SSL Vulnerabilities in Android Apps

    Get PDF
    This paper presents a measurement study of information leakage and SSL vulnerabilities in popular Android apps. We perform static and dynamic analysis on 100 apps, downloaded at least 10M times, that request full network access. Our experiments show that, although prior work has drawn a lot of attention to SSL implementations on mobile platforms, several popular apps (32/100) accept all certificates and all hostnames, and four actually transmit sensitive data unencrypted. We set up an experimental testbed simulating man-in-the-middle attacks and find that many apps (up to 91% when the adversary has a certificate installed on the victim's device) are vulnerable, allowing the attacker to access sensitive information, including credentials, files, personal details, and credit card numbers. Finally, we provide a few recommendations to app developers and highlight several open research problems.Comment: A preliminary version of this paper appears in the Proceedings of ACM WiSec 2015. This is the full versio

    Strong authentication based on mobile application

    Get PDF
    The user authentication in online services has evolved over time from the old username and password-based approaches to current strong authentication methodologies. Especially, the smartphone app has become one of the most important forms to perform the authentication. This thesis describes various authentication methods used previously and discusses about possible factors that generated the demand for the current strong authentication approach. We present the concepts and architectures of mobile application based authentication systems. Furthermore, we take closer look into the security of the mobile application based authentication approach. Mobile apps have various attack vectors that need to be taken under consideration when designing an authentication system. Fortunately, various generic software protection mechanisms have been developed during the last decades. We discuss how these mechanisms can be utilized in mobile app environment and in the authentication context. The main idea of this thesis is to gather relevant information about the authentication history and to be able to build a view of strong authentication evolution. This history and the aspects of the evolution are used to state hypothesis about the future research and development. We predict that the authentication systems in the future may be based on a holistic view of the behavioral patterns and physical properties of the user. Machine learning may be used in the future to implement an autonomous authentication concept that enables users to be authenticated with minimal physical or cognitive effort

    Towards Security and Privacy in Networked Medical Devices and Electronic Healthcare Systems

    Get PDF
    E-health is a growing eld which utilizes wireless sensor networks to enable access to effective and efficient healthcare services and provide patient monitoring to enable early detection and treatment of health conditions. Due to the proliferation of e-health systems, security and privacy have become critical issues in preventing data falsification, unauthorized access to the system, or eavesdropping on sensitive health data. Furthermore, due to the intrinsic limitations of many wireless medical devices, including low power and limited computational resources, security and device performance can be difficult to balance. Therefore, many current networked medical devices operate without basic security services such as authentication, authorization, and encryption. In this work, we survey recent work on e-health security, including biometric approaches, proximity-based approaches, key management techniques, audit mechanisms, anomaly detection, external device methods, and lightweight encryption and key management protocols. We also survey the state-of-the art in e-health privacy, including techniques such as obfuscation, secret sharing, distributed data mining, authentication, access control, blockchain, anonymization, and cryptography. We then propose a comprehensive system model for e-health applications with consideration of battery capacity and computational ability of medical devices. A case study is presented to show that the proposed system model can support heterogeneous medical devices with varying power and resource constraints. The case study demonstrates that it is possible to signicantly reduce the overhead for security on power-constrained devices based on the proposed system model
    • …
    corecore