

STRONG AUTHENTICATION BASED ON MOBILE APPLICATION

Helsingin yliopisto
Faculty of Science
Department of Computer Science

Master's thesis
Spring 2020
Harri Salminen
Supervisor: Valtteri Niemi

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/328853792?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Tiedekunta - Fakultet - Faculty
Faculty of Science

Osasto - Avdelning - Department

The Department of Computer Science

Tekijä - Författare - Author
Harri Salminen

Työn nimi - Arbetets titel

Title
STRONG AUTHENTICATION BASED ON MOBILE APPLICATION

Oppiaine - Läroämne – Subject
Computer Science
Työn laji/ Ohjaaja - Arbetets art/Handledare -
Level/Instructor
Master's thesis / Valtteri Niemi

Aika - Datum - Month and
year

June, 2020

Sivumäärä - Sidoantal - Number of
pages

58

Tiivistelmä - Referat - Abstract

The user authentication in online services has evolved over time from the old username and
password-based approaches to current strong authentication methodologies. Especially, the
smartphone app has become one of the most important forms to perform the authentication.
This thesis describes various authentication methods used previously and discusses about
possible factors that generated the demand for the current strong authentication approach.

We present the concepts and architectures of mobile application based authentication
systems. Furthermore, we take closer look into the security of the mobile application based
authentication approach. Mobile apps have various attack vectors that need to be taken under
consideration when designing an authentication system. Fortunately, various generic
software protection mechanisms have been developed during the last decades. We discuss
how these mechanisms can be utilized in mobile app environment and in the authentication
context.

The main idea of this thesis is to gather relevant information about the authentication history
and to be able to build a view of strong authentication evolution. This history and the aspects
of the evolution are used to state hypothesis about the future research and development. We
predict that the authentication systems in the future may be based on a holistic view of the
behavioral patterns and physical properties of the user. Machine learning may be used in the
future to implement an autonomous authentication concept that enables users to be
authenticated with minimal physical or cognitive effort.

Avainsanat – Nyckelord

Keywords
Authentication, Mobile computing, Software and application security

Säilytyspaikka - Förvaringsställe - Where deposited

Muita tietoja - Övriga uppgifter - Additional information

1 Introduction ... 5
1.1 The past ... 5
1.2 The present .. 5
1.3 The future .. 6

2 Basic concepts and definitions .. 7
2.1 Authentication .. 7
2.2 Single sign-on ... 7
2.3 Federated login ... 7
2.4 Mobile app authenticator ... 7
2.5 Strong authentication ... 8
2.6 Personal identification number ... 8
2.7 Blockchain .. 8
2.8 White box cryptography.. 9
2.9 Public key cryptography .. 9
2.10 Public key infrastructure ... 9
2.11 Identity and access management .. 10

3 Statement of the problem ... 10
3.1 Challenges and limitations .. 10

4 Common authentication solutions .. 11
4.1 Hardware tokens .. 11
4.2 Hardware code generators .. 16
4.3 Smart cards .. 17
4.4 Chip authentication program .. 18
4.5 Transaction authentication numbers ... 19
4.6 Short message service ... 20
4.7 Legacy and backup methods: security questions & email 20
4.8 Biometric authentication .. 22

5 Requirements for a successful authentication scheme 24
5.1 The four-factor model ... 24
5.2 Usability in the strong authentication .. 25
5.3 Cost, privacy and security .. 26

6 Architecture of the mobile app authenticator .. 26
6.1 Peer-to-peer architecture .. 27
6.2 Client-server architecture .. 31
6.3 Secure communication channel ... 34
6.4 Authentication server ... 36

7 Challenge to bootstrap the user identity ... 39
7.1 The authenticity of the authenticator .. 39
7.2 The root of trust ... 39

8 Security of the mobile apps ... 40
8.1 App shielding .. 41
8.2 White box cryptography.. 41
8.3 Obfuscation .. 42
8.4 Anti-tampering technologies ... 42
8.5 The reality about security of the mobile apps .. 43
8.6 Summary about protecting technologies ... 44

9 End-to-end security of the system ... 45

9.1 The viewpoint of an attacker ... 45
9.2 The PIN lifecycle model ... 45

10 Visions about the future ... 48
10.1 Computational offloading ... 48
10.2 Autonomous authentication ... 49

11 Acknowledgements .. 51

12 References .. 52

 5

1 Introduction

Today millions of customers of online services are using smartphones. It is very
common that the primary accessing channel for the service is either purpose built
mobile application, or a web browser interface optimized for the mobile phone
use. Also, the online services commonly use the smartphone of the end-user as
an asset that identifies the individual user. This thesis studies the factors that
helped the smartphone to become such an asset. The thesis further studies
where the technical development is heading next and presents important topics
that may affect the future.

1.1 The past

During many decades, the most used access control mechanism on digital
services has been username and password. The users are identified
(authenticated) by the username and password pair that they present during
entering the service. This has been relatively simple and low-cost solution for the
designers and the owners of the services.

On the other hand, the passwords caused many concerns for the users and the
service providers. Passwords may be forgotten or stolen. They are also
sometimes easily guessable. Often users re-use passwords between different
online services and so data breach on one service usually generates a real threat
to other services. Despite these problems, more secure and more advanced user
authentication mechanisms (which existed) were not widely taken into use
outside military, banking or corporate domain until the last decade.

As mentioned, more secure authentication mechanisms have existed many
decades. For example, in the corporate use the end-users have been given small
electronic devices, so called hardware tokens, that they could use when
accessing the critical systems. At banking sector, some institutions have
traditionally used transaction authentication numbers in the form of a list of
number sequences printed on card board. These numbers are used by customers
during entering the bank online service.

It is an interesting question why the more secure authentication mechanisms
have not achieved more popularity compared to the password. Lot of research
has been done about the usability of the authentication methods. Generally
speaking, it has been discovered that the secure authentication methods might
have been too expensive for consumers, clumsy to use, or not intuitive.

1.2 The present

The total count of mobile subscribers worldwide has been estimated to be around
5 billion [1]. Over half of them have smartphones [2], so majority of world’s

 6

population are potential users for online services that use the smartphone as the
access channel. Many services use the smartphone as an identification asset for
these users. However, lack of generic and widely adopted standards has slowed
down the evolution of the smartphone based user authentication.

Security of the mobile apps and the mobile platforms has been a concern [3].
There are many attack scenarios threating the authentication of the users in
smartphone. The user authentication performed by a smartphone application is
usually based on secret keys that are stored inside the persistent memory of the
mobile device. These secret keys can be stolen by malicious software under
certain circumstances. Also, the data that the mobile applications transfer over
the network may be monitored and altered by unauthorized parties unless there
are mechanisms preventing it.

Despite the security related challenges of the mobile apps, they have gained lot
of popularity. Today, all financial mobile apps in Europe are required to fulfill
regulatory specifications that tie the user identity to the smartphone [4]. Also,
there exist some generic mobile apps (like national electronic id app) that can be
used like an electronic passport.

1.3 The future

One future scenario about the digital services is that they could be supplied to
the consumers autonomously (but of course by the consent of the user).
Advanced development of the computer vision may help to identify the persons
“on-the-fly” without any explicit maneuvers done by the individuals. The rich data
that can be collected continuously from the users by various sensors of the mobile
devices are input source for machine learning algorithms. These algorithms can
support user authentication and various other useful purposes.

 7

2 Basic concepts and definitions

Many of the concepts and terms are not generally expected to be known by the
reader of this thesis. In particular, the chapters that contain elements of the
cryptography may be difficult without background knowledge. The following
chapters try to list and clarify the most important concepts and terms that are
discussed in deeper level later.

2.1 Authentication

In computing, the term authentication is used for a process of verifying the identity
of the user (person). Also, the authentication can mean verifying the identity of a
device. Furthermore, the use cases of transaction verification have similarities to
the verifying the identity of the user. In transaction verification, the user is
requested to assert if the presented details about the transaction are correct and
if the user accepts them (for example payment in a web shop).

2.2 Single sign-on

In the single sign-on (SSO) model [5] [6] [7] the end-users are using a single
digital identity when they are logging into many different software systems. In
some early implementations of the single sign-on the users had one common
username/password pair, that they could use when they logged into the related
systems. Single sign-on has traditionally been popular in corporate use.

2.3 Federated login

The federated login (FID) is related to the single sign-on [8]. In FID, the end-user
may also login to various software systems using single digital identity. Federated
login means that the software system assigns the task of authentication to an
external authentication system. In the federated login concept, the assignor
software system is called typically as relying party and the assignee, the external
authentication system, as identity provider. The assignor software system can
also be called as service provider in a certain context where the trust dependency
between the parties is not specially under interest.

2.4 Mobile app authenticator

In this thesis, the term mobile app authenticator covers all mobile applications for
smartphones that execute strong authentication during their usage. Mobile app
authenticator may be purpose built for authentication use only. Also, the generic

 8

mobile apps, whose main purpose is other than just authentication (for example
financial management apps) are classified as mobile app authenticators in this
thesis when they include a strong authentication component. Mobile applications
that do not use strong authentication are not covered here.

2.5 Strong authentication

Today the term strong authentication [9] can be seen as variation of the term
multi-factor authentication. The challenges of the terminology are explained later
in chapter 3.1. The logical basis of the strong authentication is to have at least
two of the three authentication elements in the authentication process of the end-
user. These elements are knowledge, possession and inherence.

Knowledge can be for example a password that only the user knows. It is
important regarding this factor that the information is not shared with anyone else
than the user or stored anywhere in an unprotected format.

The possession element is typically met when the user has a dedicated device
(for example, mobile phone) which is used to perform the authentication. It is
questionable if shared devices can fulfill the requirements of possession.

Inherence refers to use-cases where individual properties of a human are used
to prove the identity. These individual properties may be, for example, fingerprint
or even keyboard typing patterns.

2.6 Personal identification number

The personal identification number (PIN) [10] has been common knowledge
based authentication method for decades. PIN is a sequence of numbers that
user has selected to identify himself/herself. Randomness of the PIN is crucial for
the security of the authentication scheme.

PIN has been used, for example, with automated teller machines of banks,
accessing Wi-Fi networks and answering machines supplied by teleoperators.

2.7 Blockchain

Blockchain [11] [12] is based on a linked list of records (blocks). Each block in
the chain is tied cryptographically to the previous block. This creates a recursive
cryptographic proof of the data validity in the chain. No block can be altered
without breaking the cryptographic proof of the chain.

 9

2.8 White box cryptography

Normally the cryptographic keys used by computer programs are observable by
such foreign parties who can access the program runtime, with the help of specific
tools. This possibility reduces the security of the programs and make them
vulnerable to attacks.

White box cryptography is a methodology that reduces the observability down to
a point where the access to keys may require so much effort that it exceeds the
possible gain [13] To achieve this low level of observability the keys and the used
cryptographic algorithms are altered in multiple ways. These alterations are
explained later in this thesis.

2.9 Public key cryptography

Public key cryptography [14] is cryptographic concept that is based on a
mathematically tied key pair. One of the keys in the pair is public and can be
shared freely. Another key (private key) is confidential and should always be kept
secret.

Public key cryptography offers two main functions: authentication and encrypting.
For example, if sender of a message wants to ensure the confidentiality of the
message content, he/she can encrypt the message payload with the public key
of the receiver. Only the holder (owner) of the private key can successfully
decrypt the message and so only the receiver is able to access the payload.

Authentication in the public key cryptography is based on digital signatures. The
digital signature is generated by a signature algorithm that uses the private key
and piece of data as input. Anyone with access to the public key can verify that
the signature was created using the private key. The verification is performed by
signature validation algorithm.

2.10 Public key infrastructure

Public key cryptography, which was briefly explained in the previous chapter, can
be applied to real-life use-cases several ways. One common way is to use public
key infrastructure (PKI) [15].

PKI consists typically roles, policies, technical standards and a central certificate
authority (CA) to manage the digital certificates. The digital certificates are issued
to the entities owning private keys. Typically, the CA signs the certificate that
contains an identity, a corresponding public key and some other information such
as the expiration time of the certificate.

 10

2.11 Identity and access management

As the user authentication and user role management have been very important
features in the enterprise software systems from the very beginning, a specific
industry has risen around the problem area.

Identity and access management (IAM) is the industry which supplies software,
standards and solutions around the authentication, access management and
user role management. The global IAM business market size was estimated to
be 9,53 billion USD in year 2018 [16].

3 Statement of the problem

We have a premise that the mobile app authenticators became one of the most
successful strong authentication solution during the last decade. The premise is
based on various observations. For example, there has appeared number of new
companies on the current identity and access management (IAM) markets
supplying mobile application as their main offering. Additionally, the surrounding
legal frameworks in IAM and payments area (in Europe specially) has been set
in a way that the mobile authentication use-cases have been clearly identified
and supported.

Generally speaking, high proportion of companies are doing business
successfully with a strategy that the mobile applications are their main user
interaction channel. If they need payments and they do business in Europe, they
likely must use strong authentication by the regulation.

In this thesis, we try to find out the factors that helped the mobile app
authenticators to gain popularity. We try to gather information about how the
mobile app authenticators are typically constructed and how they work. With this
information, we can reflect the current situation to the future and try to state
potential scenarios about the development. We set the question: what could be
the next generation of strong authentication solutions and how they are built?

Also, we explore the potential threats against mobile app authenticators. These
threats may be factors that affect to the popularity of the current strong
authentication solutions. They may assist the rise of the next generation solutions
that perhaps address the challenges seen with the current ones.

3.1 Challenges and limitations

 11

One major challenge is the terminology of the strong authentication. There are
multiple overlapping terms used for “strong authentication”. Some information
sources and publications handle this through a term two-factor authentication
(2FA). Two-factor authentication means an authentication process that has two
phases. At the first phase, the user typically uses the username/password pair.
The second phase is often performed by using additional device like hardware
token or mobile phone.

After common stabilized usage of the term 2FA, appeared the second European
payment services directive (PSD2) and the regulatory technical standard (RTS)
about strong customer authentication and secure communication [4]. These were
published by the European Union and the European Banking Authority (EBA).

PSD2 and the related RTS defined the term Strong Customer Authentication
(SCA). SCA, by the definition in the regulation, requires that the system identifies
the person with at least two independent factors. On the other hand, a term multi-
factor authentication is sometimes used.

Yet another confusing term exist in some commercial surveys regarding usability
of the authentication. In some publications, the term push may cover there all the
mobile authentication apps that utilize push notifications to notify end-user.
However, the push notification is not a mandatory element for a mobile app based
authentication scheme. So, the classification of the mobile app authenticators
around the word push is questionable.

4 Common authentication solutions

Various weak and strong authentication (or 2-factor authentication) methods
have been available for commercial use for decades. As stated before, the usage
of the strong authentication methods has been common first in other than
consumer targeted services: military, corporate, government services etc. The
adoption of the strong authentication has later been spread to the services for
consumers due the legislation and the rising common knowledge about the
security risks, for example, in banking.

Strong authentication can be built on multiple authentication methods that have
varying security levels. We also cover some old weaker legacy authentication
methods here because they can (depending on the requirements) be used as
individual authentication factors forming together the strong authentication.

4.1 Hardware tokens

Hardware tokens are peripheral devices that are used to allow access to
restricted resources. They can be connected or disconnected.

 12

Typically, the tokens are used in combination with a computer to perform
authentication to a restricted resource like bank web site or corporate system.
Disconnected token does not have a physical or logical connection to the
computer. Hardware code generator is common example of this type of a token.

Connected tokens do interact with the computer during the authentication event.
They may be connected to the computer through physical communication
interface like USB-port or through wireless connection (Bluetooth for example).

The WebAuthn [17] and previous U2F/UAF standards of the FIDO consortium
have generated a common authentication framework for using hardware tokens
for authentication in mobile and browser environments. This has helped
connected tokens to gain popularity over the traditional non-connected tokens.

4.1.1 Tokens with input mechanism

It is possible that hardware has an input mechanism for a PIN (personal
identification number) or biometric input mechanism like fingerprint scanner [18].
This is remarkable enhancement if we think the strong authentication factors and
the strength of the authentication performed with the token.

Hardware token that has no input mechanism supplies only the possession factor
of the strong authentication. The user can prove during the authentication
process that he/she has access to a specific pre-registered hardware token. But
it is not proved that the user is the person who the token is registered to.

Token with PIN input capability allows the access to the authentication
functionalities only for a person who knows the PIN. Of course, the PIN can
theoretically be guessed by very small likelihood or user can share it to another
user, (which typically violates the terms of the service). However, the PIN brings
the additional knowledge factor to the authentication. So, the authentication event
performed with PIN equipped hardware token supplies two factors of the strong
authentication.

Hardware token having a biometric input mechanism has the inherence factor of
the strong authentication in addition to the possession. Some practical examples
of this type of hardware token are Feitian BioPass-series that have fingerprint
reader [19] and Yubikey Bio tokens by Yubico [20]. During the initialization of this
type of token the fingerprint of the user is scanned and stored securely into the
token. After this, the authentication functionalities of the token cannot be
accessed without presenting the registered fingerprint.

4.1.2 Public key cryptography with hardware tokens

Public key cryptography (PKC) is common useful technology with hardware
tokens. The public key concept of the PKC can be treated as the identity of the
end-user. And the cryptographic signatures calculated on the private key can be

 13

seen as an analogy to the consent of the user or a permission granted by the
person.

However, the authentication using hardware token and public key cryptography
requires typically multi-directional communication between the parties involved
into the process. The authentication system must have communication channels
and protocols supporting this.

The communication requirements of PKC with hardware tokens

We can set following questions, when examining the communication
requirements of an authentication with PKC and hardware token (specially in an
online service context).

The authentication using PKC is based on digital signatures. The capability to
build digital signatures requires access to the private key that is protected by the
PIN. How the end-user is able to input the PIN code to the token?

The digital signing algorithms require a source message as one input parameter.
How to transmit the source message for the digital signing process inside the
token?

It is possibly required, that the end-user must see the authentication request
details during the authentication [4]. How these details are shown to the end-
user?

The digital signing algorithms produce signatures which must be verified by the
party which controls the access to the protected resource. In the context of the
online services this means that the backend server or separate authentication
server of the service must verify the signature. How the signature is transferred
to the verification process?

Standardized communication channels and protocols

Standardized communication channels and protocols bring answers to the
questions and challenges mentioned in the previous chapter. Standard API and
interconnection protocols generate major benefits for the application developers
specially if the system is designed to allow usage of tokens from many vendors.

PKCS#11 [21] is one notable standard for hardware tokens. It defines the
standard programming API (application programming interface) for the vendor
specific software libraries. The authentication system components running in a
client computer (practically a PC) can connect to the hardware token and utilize
the PKC services through this API.

The following is an example of an authentication sequence through the PKCS#11
API from the point of view of an application developer.

 14

1. polling the presence of the physical token
2. generating a session to the token (PIN is required as input to open the

session and access to the memory)
3. enumerating the key identifiers and certificates from the token in order to

check if the token is initialized into the actual use
4. initialization of a signing event (setting the signed content into the shared

memory and selecting the signature scheme)
5. committing the signing event
6. finishing the signing event
7. closing the session to the token

Hardware tokens in the web context

One example of the involved parties and required messaging of an authentication
using PKC and hardware tokens in web context is presented in Figure 1 and
Figure 2. However, it is notable to mention as a disclaimer for these figures that
the web browser manufacturers have set major limitations during the last decade
regarding the connectivity possibilities to native libraries.

Formerly the browsers supported widely a common API named NPAPI, that
defined various programming interfaces for accessing native services outside the
browser sandbox [22]. This enabled also accessing the functionalities of the
connected hardware tokens. However, the NPAPI support has been deprecated
from majority of the browsers [23] [24] [25]. It is possible that the NPAPI brought
too much security risks compared to the benefits and so the browser
manufacturers considered it better to discontinue the support.

On the other hand, during the fadeout of the NPAPI support there has risen a
new series of standards based on the same problem area. FIDO consortium has
published UAF, U2F, WebAuthn and CTAP standards to support strong
authentication in web and mobile environments [17]. FIDO has addressed the
challenge of the communication between the browser environment and the
authenticator by defining set of APIs and communication protocols. In order to
succeed, the FIDO standards need support from the all major browser
manufacturers (Google, Microsoft, Apple, Mozilla). The required adoption seems
not being achieved yet as the support from Apple is missing [26].

 15

Figure 1 Simplified authentication flow using connected hardware token in a web
environment. PART 1

 16

Figure 2 Simplified authentication flow using connected hardware token in a web
environment. PART 2

4.2 Hardware code generators

Hardware code generator is typically plastic, battery powered digital device with
LCD display for showing code that changes based on time [27]. The code is
generated by a purpose-built digital circuit board that has an internal clock,
persistent memory for a seed value and processing unit for the code generation
algorithm. The seed is a value that is essential for the randomness of the code
generation algorithm (and so essential for the security of the device). Typically,
the seed is initialized into the token during the manufacturing process.

 17

One popular standard for the timely basis changing codes is TOTP (Time-based
One-Time Password algorithm). TOTP is defined by the RFC 6238 memo of the
IETF (Internet Engineering Task Force) [28]. TOTP code generation algorithm is
based on common shared secret between the server and client devices and the
shared opinion about global time. The “time” means a certain physical time
window, usually 30 seconds when the code stays the same.

Usually there may be some deviations in the time state between client and server.
This is more likely to happen with offline devices that rely only on the internal
clock of the circuit board and cannot reach any reference time from the network.
These time deviations caused by clock drift may generate problems when the
server checks the code calculated by the client. Common solution to compensate
these deviations is that the server generates reference codes from the nearest
time windows and compares the code also against them.

Hardware code generators can be classified to belong to the category of
hardware tokens that is a broader class of various authentication devices. One of
the most common hardware code generator in the commercial use has been RSA
SecurId [29] that has been popular, for example, in corporate use.

4.3 Smart cards

Someone may set a question if a smart card is a hardware token or vice versa.
The question relates to the fact that the cryptographic hardware modules are
manufactured in various form factors. There are, for example, hardware security
modules (HSM), that typically come as standalone box-shaped devices to be
installed into a server rack. Then there are hardware tokens that are hand held
gadget-like items. And after all there are the smart cards that have cryptographic
capabilities as well.

We take the freedom to describe smart cards separately from the hardware
tokens here. The typical form factor of the common smart card like SIM card of a
mobile phone or EMV credit card with embedded chip is different than, for
example, typical security token with a USB connector.

Smart cards are used widely in the payment industry as specific purpose-built
solution for accepting payment transactions (EMV cards). Also, in the mobile
industry the SIM card is the backbone of the identity of the mobile subscriber and
the core services. SIM card can even support the subscriber identity services to
custom applications through the SIM Toolkit functions that are standardized by
European Telecommunications Standards Institute (ETSI) [30].

SIM Toolkit services is good basis for authentication solutions in mobile phone
environments. The SIM card is designed to function as PKI backed cryptographic
root of trust that is the hardest part to implement for an authentication system as
we see later in this study.

 18

Despite the excellent cryptographic foundation and enrollment of the root of trust
the SIM Toolkit solutions have not turned out as widely adopted commercial
success. One possible reason for this is the fact that standard SIM Toolkit
functions have had limitations regarding the graphic user experience (in
comparison to the current user experience standards in the smartphones). Also,
the SIM Toolkit functionalities are deployed into the SIM by the mobile operator,
so the commercial solutions require co-operation with the mobile operator that
can be bureaucratic and slow. This might have reduced the popularity of the SIM
Toolkit authentication. Same time the freedom of the iOS and Android app
development brings great opportunities for even small companies to publish
authentication solutions on the markets.

4.4 Chip authentication program

The Chip Authentication Program (CAP) is a technical specification developed by
MasterCard. Basic idea behind it is to allow using banking smartcards for
authenticating users online. Visa also adopted this technology under the name
Dynamic Passcode Authentication (DPA). Details of the protocol are not public,
but
researchers in Computer Laboratory of University of Cambridge reverse
engineered the system and published a paper describing the protocol functional
principles [31]. They also found out some weaknesses in the protocol.

When utilizing the CAP in authentication to online services, the end-user has the
smartcard, a physical smartcard reader with number pad and display and a PC.
PIN is used by the user to get access to the card after insertion of the card into
the reader. Authentication is implemented by dedicated cryptographic challenge-
response protocol between the online service (via PC) and the EMV card. The
sequence is described in Figure 3.

 19

Figure 3 The CAP challenge-response protocol as described in the paper Optimised to
Fail: Card Readers for Online Banking, Saar Drimer, Steven J. Murdoch, and Ross
Anderson, 2009

4.5 Transaction authentication numbers

One 2-factor authentication method for online services has been the transaction
authentication numbers (TAN). They are one-time passwords generated and
printed to paper by the issuer. Transaction authentication numbers has been
simple low-cost solution for banks [32].

TAN has usually an index and the matching number for the index. During
authentication or transaction verification the online service presents the index
number and the end-user must type a TAN matching the index.

Transaction authentication numbers can be used sequentially or by random
selection of the index. When the index transmission is completed on an auxiliary
side-channel like SMS or phone call, the authentication is seen to fulfill the
requirements for a PSD2 SCA by the European Banking Authority [9] .

One drawback of the transaction authentication numbers is that they have quite
limited amount of combinations due the amount of numbers used. So, the
transaction authentication numbers are prone to brute force attack unless there
are additional countermeasures deployed. In brute force attack the attacker may,
for example, harness automated robots to try the authentication with random
numbers. Also, the numbers can be copied and shared among users, which is a
risk.

 20

Typically, the input forms of authentication are throttled to mitigate the risk of
brute force attacks. Throttling means that the system limits the amount of
(authentication) requests allowed to enter into processing.

4.6 Short message service

The short message services (SMS) [33] of the mobile networks have lost
popularity in common use as the 3G and later networks have allowed the usage
of the internet protocols in mobile phones. Shortly, the internet displaced the short
messages by bringing the rich multi-media content easily available for the end-
users. However, the possibility to send short messages still exist in the
smartphones.

As the mobile networks and SIM-units in the mobile phones are backed by the
PKI system, the SMS has been seen as a reliable channel for sending one-time
codes or challenge codes for transaction authentication numbers.

However, several successful attacks on the SS7 network as tracking of
subscribers, eavesdropping and SMS redirecting was performed during year
2014 [34]. SMS brings vulnerabilities also in the mobile device. The SMS content
can be read by various malware attacks inside the device [35].

In addition to the aforementioned pure technical vulnerabilities the SMS can be
attacked with SIM-swapping that is human operated attack. In SIM-swapping
attack the attacker gathers information about the victim and uses this information
to impersonate him/herself as the victim when contacting the mobile operator. If
attacker succeeds to convince the mobile operator personnel, the telephone
number of the victim is associated to the SIM held by the attacker. After this the
attacker receives the short messages that are intended for the victim.

National Institute of Standards and Technology (NIST) in U.S has addressed this
potential attack scenario in their Digital Identity Guidelines 800-63B. They classify
this attack under social engineering threats. NIST describes this attack shortly by
following description. “An out of band secret sent via SMS is received by an
attacker who has convinced the mobile operator to redirect the victim’s mobile
phone to the attacker.” [36]

As conclusion, the SMS should be seen only as a weakly protected side channel
for multi-factor authentication, not as a sole strong authentication solution.

4.7 Legacy and backup methods: security questions & email

Online users forget often their credentials to the websites. Traditionally this
problem has been solved by backing up the account by weak authentication
methods like private question/answer-pairs that are called “security questions”.

 21

When user has answered correctly to the questions he/she is permitted to enter
the service and reset the lost password.

Security questions are nowadays even less secure than they were in the days
when they were invented. As the personal information has become more public
by various data leaks and by the possibilities of social engineering, the answers
to security questions are too easily available. For example, Ariel Rabkin from
University of California estimated in his survey about security questions among
banks in U.S, that this method may become dangerously insecure. [37]

Email has also traditionally been used for the backup authentication method for
online services. It has been used mostly for gaining access to the account when
the credentials have been lost. The example sequence of the resetting logic is
presented in Figure 4.

Email has major weaknesses regarding authentication. The access to the email
account is typically device independent and protected only by a username and
password. Passwords of email accounts also leak easily from misconfigured
clients. NIST Special Publication 800-63 gives strong guidance that email should
not be used for single factor or multi-factor authentication. [36]

 22

Figure 4 Password reset with email

4.8 Biometric authentication

Traditionally the authentication has relied on the secret information or on the
possession of a device like hardware token or a smart card. Specially the need
to carry an external authentication device has possibly been one motivation of
inventing authentication schemes based on inherence. Obvious question is: Why
to carry a device if you are the “device” that can be used to prove your identity.

 23

4.8.1 Fingerprint reading

A long before the digital age, the fingerprint has been found as unique property
of a person. Traces of fingerprint have been traditionally used for evidence
collection in crime investigations. As the technology became accurate enough to
scan the fingerprint reliably and the algorithms became quick and accurate
enough to verify the human identity, the fingerprint became the dominant
biometric authentication method in digital environments. [38]

Fingerprint reading has been combined in various technical form factors. One
possible way to implement it is to add fingerprint reading pad into a hardware
token. For example, Yubico has utilized this approach in their popular Yubikey
series tokens. [39]

Some trials have also been made to combine the fingerprint reading to EMV card.
Major credit card issuers like Visa and Mastercard have advertised about their
development programs regarding this. [40] [41] This is natural development as
the EMV cards have many similarities with hardware tokens regarding the basic
functionalities, usage and enrollment.

However, the environment where the major success has happened regarding the
adoption of this authentication technology is the smartphone. Today major part
of the smartphones on the markets do have the fingerprint scanner. The scanning
is used for many different use-cases starting already from the access of the
phone. Also, the scanning is available for the mobile app makers by the APIs of
the mobile operating system.

4.8.2 Face recognition

The history of the face recognition dates back to 1960’s when Woodrow Wilson
Bledsoe developed a manual system that could classify photos of faces. [42]
Wilson’s method utilized a special RAND tablet that was manually operated to
locate certain facial properties from the pictures. The data of the processed image
and associated identity were stored in a database. Later, the system could use a
method based on distances between facial features to search the best matching
picture from the database (compared to the provided picture).

Lots of development has happened since the first semi-automated face
recognition attempts. Today the evolution of the computer vision technology and
artificial intelligence has enabled deployment of the face recognition to various
uses. Most common implementations are access control systems, for example,
in airports. However, the most interesting use-cases for this thesis are the
examples where the face recognition is used for web authentication or access to
other digital services. Perhaps the most notable success in this category has
been the Apple Face ID: the user authentication mechanism for certain high-end
Apple smartphones. [43]

One challenge for the face recognition based authentication has traditionally
been the liveness detection: the detection systems have been vulnerable to

 24

attacks where the static 2D-image of the identity owner has been presented to
the recognition mechanism and the authentication passed successfully. More
advanced 3D face recognition methods have been developed to enhance the
security. [44] Also the various sensors available today in smartphone
environments have been explored as a solution to rise the security. [45]

5 Requirements for a successful authentication
scheme

The replacement alternatives for the password authentication scheme have been
explored tens of years. Researchers have found various schemes that are more
secure than passwords. This is not surprising as it is widely known that the
password authentication scheme has major problems regarding security. There
are various on-line or off-line attack vectors against passwords. On the other
hand, there are also user originated problem categories (password sharing etc.).

5.1 The four-factor model

Research made by Joseph Bonneau et. al. [46] [47] bring interesting views to
the discussion about what are the factors that make the authentication scheme
successful. One view is that research has possibly been focused too much on
security. Schemes more secure than passwords have existed tens of years, but
yet none of them is as widespread as passwords. The presented conclusion is
that, to achieve worldwide adoption, the authentication scheme must be secure,
highly usable and incur low costs. It is not enough to excel only in one or two of
these categories. All three are necessary.

The tradeoff between security, cost and usability is mentioned also in the book
LTE Security [48]. One main idea presented there is that the cost of implementing
the security mechanism must be reasonable when compared to the value of the
protected resource. Also, we must be aware that high amount of security
mechanisms applied to a system may typically reduce the usability. It must be
considered what is the threshold level of the worsening usability that should not
be exceeded. How much can the end-user accept the inconvenience brought by
the security?

In addition to this academic research, there is additional view brought by
commercial strong authentication solution vendor Nok Nok Labs inc. They have
pointed that the privacy is the fourth major factor that must be taken into account
when designing an authentication scheme. [49] The criticality of privacy has risen
after the General Data Protection Regulation (GDPR) of European Union [50] has
been set into force. Especially the biometric data that is used to authenticate user
must be protected adequately against theft.

 25

As conclusion, the properties of an authentication scheme may be estimated or
measured in four scales. The overall goodness of the scheme can be visualized
by the Figure 5.

In the visualization, all the four factors have own scale running from center to the
corners. Corners of the dashed rectangle indicate the value for each factor in their
own individual scale. In the sample figure, the usability factor is relatively low and
the low-cost factor is high (meaning that the cost is low). Total area inside the
dashed lines expresses the score: the greater the area, the better. However, it is
notable that the four scales in this model cannot be directly compared and cannot
be used for accurate measurements. The model tries only to visualize the
paradigm.

Figure 5: The 4 factors affecting to the popularity of an authentication scheme

5.2 Usability in the strong authentication

The usability of 2-factor authentication methods has been explored in various
studies during last decade. [51] [52] [53] [54] [55]. Comparisons between different
studies is difficult because of various reasons. The results can be seen
contradictory and complex. Sometimes the research has been targeted to only
single authentication method. On the other hand, the contexts are different
among studies. Research has been conducted in various environments like
banking, university et cetera.

Some observations have been found out in all sources: The 2-factor
authentication seems to feel annoying for the end-users irrespective of the
method.

Common recommendation for the 2-factor authentication implementations is that
the number of the steps should be kept minimal. [54]

There was some evidence supporting the hypothesis that the solutions based on
the push notifications were most popular among the users. For example, Jessica
Colnago et al from Carnegie Mellon University and University of California found
out in their study [54] that the three most popular methods used were push
notification (91%), app-generated passcode (21%), and hard token (4%). Push
notification was here used to invoke an authenticator app, Duo Mobile. Also study

 26

from Ken Reese et al from Brigham Young University found out in their usability
study of different 2-factor methods that the push notification approach
(authenticator app) and U2F security keys helped the end-user to reduce login
time [51]. Also, the push notification approach took the second least set-up time.
Paper based transaction authentication numbers were faster to set-up in the
study.

In addition to these results presented by academic groups there exist some
commercial survey material about the usability in the authentication. One
interesting survey is made by Duo Security inc. [56] They found out some
contradictory results between the usability of push notification-based approaches
and security keys. On the other hand, the security keys enjoyed greatest number
in the question “I enjoyed using it” but also greatest number for the question
“using it was stressful” or “using it was frustrating”. However, the push-based
approach was successful in many questions indicating good usability.

Based on these surveys we set a question: is the push notification a critical factor
in success of mobile app authenticators? On the other point of view, the push
notification can be seen also as a feature that may reduce the security. End-users
may accidentally accept transaction by habit if a hacker is able to initiate the
transaction by guessing the username, phone number or other weak id of the
end-user. Identity phishing is a rising concern for commercial services.

5.3 Cost, privacy and security

Security is very fundamental factor for an authentication method. It is therefore
discussed further in dedicated chapters later in this thesis. Also, the value of
privacy has also risen lately. In particular, the European general data protection
regulation (GDPR) has set new standards for the privacy in the online services
[50]. Due the limited scope of this thesis we must leave the privacy out of further
examination. The same scope limitation applies to the cost factor. Nevertheless,
the cost is important when we look for wide adoption and possible commercial
success of an authentication solution.

6 Architecture of the mobile app authenticator

As stated before, most of the people in the western world are smartphone users
[1] [2] today. Mobile apps are becoming the common way to solve everyday tasks
like making daily purchases, managing financial affairs or maintaining social
relationships. Many of the daily tasks require authentication. Many tasks require
using strong authentication for the security reasons. Result of this long-term
development has been that the mobile app makers have started to include strong
authentication features to their systems or even developed separate purpose-
built authenticator apps.

 27

Also, companies doing business in the security and IAM sector have notified their
opportunities here. Implementing the strong authentication properly requires
special skills that regular mobile app makers do not necessary have. The
following chapters illustrate the common concepts and building blocks of the
mobile app authenticators and try to address the challenges that the developers
may meet.

Mobile app authenticators can be built on many different architectural models:
basic client-server model, edge computing model and peer-to-peer overlay
networks, for example.

Computing power of the mobile devices gives much freedom for the mobile app
authenticator designers regarding the architecture. Also, the wide scale of the
services available by the mobile app platform may steer the designer to
implement many computational tasks in the mobile device instead of the server.
When we compare this, for example, to mainframe computing systems that were
popular in industrial and financial institution use during many decades we see the
change of the paradigm. On the other hand, battery life is one of the major
concerns in mobile devices and this may slow down the development of pure
peer-to-peer authentication solutions. [57]

6.1 Peer-to-peer architecture

One of the interesting questions in the peer-to-peer of architecture is the source
of the trust. If the designer of an authentication system see that the mobile app
authenticator should have no central root of trust and the authenticators should
be equal peers in the network, the architecture can be based on distributed
ledger, as in blockchain architectures.

One special requirement for a peer-to-peer architecture for mobile app
authenticators is that there must exist special proxy nodes in the architecture in
addition to the peers (mobile apps). Reason for this requirement is that the mobile
phone networks do not support interconnectivity between the peers (by other than
voice calls and SMS-messaging). A mobile phone and the apps running in it
cannot act as a server because the inbound messaging on suitable protocols may
be very limited by the network.

 28

Figure 6 Generic sample architecture – peer-to-peer overlay network of mobile
authenticator apps and supporting proxy nodes

In peer-to-peer architecture it is also notable that the system data may be
distributed. In distributed model the data is not stored in a central data source
where all the peers should connect in order to make queries or updates. Instead,
the peers (all or special nodes in the overlay network) hold the data by
themselves. How data is distributed, affects to the data redundancy, query
latency, and data availability and other major architectural properties of the
system, like scalability.

Hany F. Atlam et.al stated that the “large scale” is a challenge for the IoT (Internet
of Things) networks in cloud computing [58]. The interconnecting activities among
the devices (peers) require carefully designed algorithms and data distribution
design to perform in the large scale.

Benefits of a peer-to-peer architecture are, for example:

• No central authority is required

• Control of the personal data may stay in the peers

• System may support peer anonymity

 29

• Data may be distributed among the peers, that may allow faster response
times for data queries.

• Computational efforts may be distributed and scheduled evenly across the
peers

Disadvantages of a peer-to-peer architecture are, for example:

• Intercommunication between the peers may require noticeable amount of
network traffic

• Data redundancy may be high unless the distribution algorithm is carefully
designed

• System scalability is bad due the abovementioned reasons

• Anonymity may support criminal activities

Arguments presented above may however be questioned also. For example, the
lack of a central authority can be seen as advantage or disadvantage depending
on the point of view.

6.1.1 Distributed ledger and the blockchain

Blockchain [12] [59] has been explored intensively for the IoT (Internet of Things)
use during the last decade [60]. Reasons leading to the rising interest of
blockchain solutions have likely been the concern about common security in
internet and the dominance of the major companies doing the business there (like
Apple, Google, Microsoft, Alibaba and Tencent).

Basic idea of the blockchain is that the data is stored into nodes of a linked list.
The nodes of the list are incrementally and cryptographically signed. No node can
be altered in the chain without violating the cryptographic proof of the chain
authenticity.

One well-articulated and simplified description of the distributed ledger concept
is written into the developer documents of IBM. They define it as “type of
database that is shared, replicated, and synchronized among the members of a
decentralized network.” [11] Distributed ledger and the blockchain can be used
together to create a distributed authentication system. Many times, especially in
the commercial publications, the concept of distributed ledger is left out and only
the popularized term blockchain is used to describe a system that is based on
both distributed ledger and blockchain.

One of the main benefits in the combined distributed ledger and blockchain
concept is that the trust of the system and the peers is distributed; no central

 30

authority is required to ensure the authenticity of the peers or the stored data [60]
[61]. The trust is thus de-centralized.

In popularized publications related to “blockchain” the data is generally
mentioned to be distributed into the peers. Distribution is generally speaking
beneficial for networked systems, for example, in order to increase computing
parallelism and system performance. However, the concept of distributed data
may be implemented in various ways. In some cases, the term distributed may
refer to a model where the peers do not hold same data ledger, but a small portion
of it instead. Sharded Merkle tree [62] would be an example of this. On the other
hand, the term distributed may refer to a concept where the system data is
replicated to identical copies held by all the nodes.

Scaling is the major challenge for the peer-to-peer architectures. Blockchain and
distributed ledger technology is not an automatic solution for the scaling problem.
For example, the most known real life blockchain implementation, virtual currency
Bitcoin [63], has performed poorly from the point of view of scalability [64].

One of the biggest problems of the scalability of Bitcoin is the ledger distribution.
In Bitcoin ecosystem, the ledger is copied to all mining nodes in the overlay
network. The concept of mining refers to certain computational work that is
operated by the mining nodes to prove the existence and authenticity of
transactions in each block of the blockchain. Mining will not be described here
further, but it generates the trust in the Bitcoin ecosystem.

If all the peers must have the same redundant data about the all transactions
made in the ecosystem, the system scales up badly. Anamica Chauhan et. al
explored [65] the Bitcoin scalability and compared it to enhanced scaling
concepts of the Ethereum. The results indicate that the ledger sharding
mechanism enhances scaling of the blockchain system.

6.1.2 Crowd-trust

Another architecture candidate concept for a peer-to-peer authentication system
could be a crowd-trust model. The concept crowd-trust means here a digital
reputation value of the system members (peers), that is earned by manual
reviews by the peers or by some automatic algorithmic approach of the system
analyzing the transactions made among the peers.

In this architecture, the peers would not be equal in terms of their reputation. The
peers would gain reputation by their transactions and the feedback received
either from the other peers (“crowd-trust”) or the system itself. The
trustworthiness of their claims about transactions would be a probability value
calculated by an algorithm. One of this kind of trust management schemes is
presented by a study by Jaydip Sen [66].

 31

6.2 Client-server architecture

Usually the authentication platform that utilizes the mobile app authenticators is
based on a model in which the authenticator apps are most of the time in contact
with some central authority (client–server model).

The typical architecture variants of the mobile apps are native client and web view
based architectures (and any hybrids between these). [67]

Figure 7 Simplified mobile app authenticator architecture based on cloud server backend
and rich client.

6.2.1 Web view based mobile apps

Some could say that the easiest way to implement a mobile app today is based
on web views. In this model, the app utilizes a standard web browser component
supplied by the platform or common software development kits (SDK). The
browser component loads content (for example HTML5) from a pre-defined URI
and renders it to the screen. Major parts of the app logic are usually all coded into
the HTML-content and runnable scripts (JavaScript) included.

Web views are easy to implement for multiple mobile platforms simultaneously,
which is a benefit. Also updates to the app may sometimes be handled by
updating the HTML-content, so control is at the server side. Updating the app at
device is not necessarily needed. [67]

However, web views have some limitations that makes them less suitable choice
as basis for an authenticator app. Typically, an authenticator app may need data
or inputs from the sensors of the mobile device. The app may need access to
native authentication services supplied by the platform (like fingerprint reading or
facial recognition). Some years ago, when web views came available there was
a great challenge to reach these functions from the web view. W3C has later
published some libraries and common sensors API for this. [68] Despite the

 32

development of these functionalities in the mobile platforms, the complexity of
reaching the native functionalities from webview seems to have stayed.

Another challenge for a web view is that the authenticator app may need a secure
persistent storage. For a mobile app authenticator, the word secure requires
using encryption over the data staying in the storage. Access and management
of cryptographic keys and using the cryptographic algorithms securely may be a
challenge for a web view.

6.2.2 Native mobile apps

Native mobile apps are apps that are written directly for the target platform [69].
They are developed on programming languages like C and Java. Native apps
render their user interface views without specific structural instructions like HTML.
Native apps benefit from the features published by the operating system. Mobile
platforms like Android and iOS supply today a great number of APIs and libraries
for the developers of native apps.

Downside of the native apps is that the app must typically be programmed
independently to all different mobile platforms. Even there may be some common
components, major part of the code cannot be shared due the fundamental
differences of the platforms. Also, whenever there is a need for a functional
change for the app, the app must be developed, tested and published through
the development and publishing platform of the platform vendor. Publishing and
acceptance may take days by the platform. Slowness is not optimal, for example,
for critical security updates.

Native app implementation strategy has major benefits in the authenticator app
case. The tooling for making the apps, namely the libraries and APIs, are
comprehensive. As mentioned in previous chapters, the access to sensor data
and authentication functions like fingerprint reading, input of the access code, or
facial recognition is important.

Native low-level programming enables using security features like white box
cryptography [13] that gives protection against many typical activities of the
hackers. These activities include static reverse engineering of the app binaries to
source code (that enables access to logic of the app), reverse engineering of the
memory space of the app during runtime, and various other attack vectors.

6.2.3 Hybrid mobile apps

 In the hybrid model, the app contains a wrapper and a web view. It is
questionable if there is any distinction between web view based app and hybrid
mobile app. Classification is not clear. One possible distinctive feature could be
the amount of the logic located in the web view. If there exist major logical parts
in the both areas (native and dynamic web content) in the app, it could be claimed
a hybrid app.

 33

The wrapper

The wrapper is a native part of the app and acts as a core for the web view.
Wrapper may supply an API containing the access to the native platform features.
[67]

Pros and cons of the web view

Both app categories have advantages in certain areas. However, in the
authenticator app use the web view should be used only for functionalities that
are not security critical. These are, for example, showing the terms of service.

Table 1 Differences of the app categories. Source: Shruthi Sasidaran, Survey on Native
and Hybrid Mobile Application Development Tools 2017

 Native Hybrid

Development language Native languages: Java
for Android Swift for iOS

Native and web / web
only

Device specific features High Moderate

Code portability None High

UI/UX High Moderate

Advanced graphics High Moderate

Application store Available Available

Development cost Expensive Reasonable

Device access Complete Complete

Speed Fast Medium

Access to native APIs High Moderate

 34

6.3 Secure communication channel

If we think the very basic requirements for the communication between the parties
in the authentication system architecture, they could be following terms: mutual
trust and confidentiality.

There must be mutual trust between server and clients: mobile authenticator app
must be sure that it is connected to a valid server and the server must be sure
that the connected client is not a rogue one. If the architecture does not have a
central authority, the same principle is still valid: the valid peers must have trust
mechanisms to protect them from rogue peers.

The system must preserve the data confidentiality i.e. it must be protected against
eavesdropping. Typically, the authentication system handles personal data (even
an authentication system based on pseudonymous identities if fully valid concept
as we know from virtual currencies, for example).

Naturally the communication channel and the protocol must suit the messaging
design of the system. Some may prefer continuous stream of small messages
sent on lower layers of the OSI model while other may find the classic sparsely
used request/response pairs over HTTP adequate.

6.3.1 Networking protocol

Authenticator app designers have some alternatives for the networking solution
between the app and the server. While the TCP could be good choice for a
continuous type messaging between the app and the server (like is desired in
gaming) the typical networking activity for an authenticator app might be just a
certain sequence of request/response –pairs in a limited time scale. HTTP (over
TLS) is good match for this.

TLS

Using transport layer security (TLS) [70] has become a de-facto security standard
in various uses of HTTP. TLS utilizes asymmetric cryptography to protect the
messaging confidentiality and can also optionally support mutual authentication
between the messaging parties. Usually only the server is authenticated in web
browsing usage, but in case of mobile app authenticator there must be a
cryptographic mechanism to prove the identity of the client too. TLS client
certificates is good candidate for this use.

The threat of a man-in-the-middle attack

 35

While the TLS supplies principally very good security for the messaging between
the mobile apps and their corresponding server back-ends, the proxy setups with
TLS termination may dilute the situation.

A proxy server, as used in application layer communication in mobile networks,
is a gateway that intercepts all traffic between the mobile device and public
internet [71]. Proxy can also exist inside the mobile device as a software
component that intercepts the traffic between apps and the network.

In both cases the operating system and the networking components of the client
can be configured (with the acceptance given by the end-user) so that the
encryption of the TLS is decrypted in the proxy. Originally these proxy
mechanisms have been built for good intentions like content filtering, bandwidth
usage limitations and privacy but it contains also the risk for misuse in form of a
man-in-the-middle attack in certain conditions. [71]

One possible mitigation method against the man-in-the-middle threat is certificate
pinning combined with an additional authentication and encryption layer
implemented over the TLS networking. Also, this method should be built using
white box cryptography at the client side to additionally slow down the efforts of
the possible attackers.

Figure 8 Traffic eavesdropping with a proxy and TLS termination

Certificate pinning

The main principle in the certificate pinning is that the client application ensures
after successful TLS handshake that the presented certificate of the server is
issued on a previously known or pre-configured public key. The assumed public
key can be even hard-coded into the application if needed. Also, the client may
be programmed to accept multiple alternative keys from a key set [72]. This
allows the system, for example, to rotate the keys used.

 36

Certificate pinning can also be dynamic in a way that when a trusted connection
between the parties has been established, the next assumed public key can be
sent to the client and then stored securely. When the certificate pinning is used
the requirements of using secure storage and app shielding technologies become
important. This is covered in later chapters of this thesis.

6.4 Authentication server

One obvious architecture for an authentication system is the client-server
architecture. The server, which is called authentication server in this thesis, has
various important purposes in this architecture. Example of a generic
authentication server architecture is presented in Figure 9. Concepts and the
main components of this architecture are presented in the following chapters.

Figure 9 Generic authentication server architecture

6.4.1 Service Provider API

Especially in the large enterprise architectures it is common that the
authentication services are centralized to a single system. For example, a bank
can have arranged the authentication of the customers so that they can use a
mobile app authenticator to login to daily banking services and to stock trading
service that are two totally different software systems.

The aforementioned arrangement can be implemented by federated login
concept. If we continue using the banking as example, the daily banking service
application and the stock trading platform are relying parties for the authentication
service that is the identity provider.

 37

The relying parties need to communicate with the identity provider in order to
handle the tasks related to the authentication. In this example architecture, the
Service Provider API is the interface that is used by the relying parties (service
providers). The Service Provider API has endpoints for managing the end-user
identities and associations. Also, it has endpoint for managing authentication
events.

It is beneficial for the Service Provider API, if it is designed to follow common
standards regarding the interface specifications and the communication protocol.
This is important because the standardized frameworks are typically well
designed and reviewed regarding the security. Additionally, this may bring also
cost reduction. Developers of the client applications may possibly utilize common
purpose-built programming libraries instead of building all from the scratch.

For federated identity management, there are some useful frameworks and
standards that can be used with the Service Provider API. For example, Security
Assertion Markup Language (SAML) V2.0 was published year 2005 [73]. It is still
commonly used by many organizations even it may be seen technically slightly
outdated. However, newer generation standards like OpenID Connect (OIDC)
[74] are currently preferred for the Service Provider API.

6.4.2 Authenticator API

The mobile app authenticators need various services through their life cycle in
the client-server architecture. In this example architecture, the Authenticator API
is the interface that supplies the services. The API can be structured various
ways. One possible solution is to arrange the API into endpoints based on the
use-cases they are related to. For example, fetching open authentication
requests and submitting the signatures can be served from the authentication
endpoint as they belong to the authentication use-case.

Registration endpoint

The authenticator app needs to connect to the server immediately when the
required cryptographic keys (we assume that the PKC is used) are generated.
The authenticator must register the generated public key to the server for later
use. Possibly the authenticator and server exchange other keys, attributes or
shared secrets too depending on the implementation details. The registration
endpoint of the Authenticator API supports these requirements.

Authentication endpoint

The authentication endpoint is needed for the authentication flow. For example,
the mobile authenticator app needs to fetch the ongoing authentication requests
that are sent by the service providers. Secondly the committed authentication
requests and the cryptographic signatures must be sent back to the server for

 38

verification and further processing. Simplified generic authentication flow is
presented in the Figure 10.

Figure 10 Generic authentication flow using mobile app authenticator

 39

7 Challenge to bootstrap the user identity

Initialization of a mobile authenticator app securely is itself a challenging task.
Vulnerability or weakness of any component in the mobile authenticator app
ecosystem is a potential risk for fraudulent use or a data breach. The old cliché
quote says that the chain is as strong as the weakest link in it. This saying can
be applied to an authentication system where authentication events must leave
an uninterrupted audit trail.

7.1 The authenticity of the authenticator

We have a generic problem about how to ensure that only valid client can be
enrolled into an authentication system. A potential threat scenario to an
authentication system is that a hacker with appropriate knowledge and tooling
can listen the traffic and reverse engineer the communication protocol between
clients and the server. By this information the hacker can either impersonate an
existing client or deploy new fake clients into the system.

The solution against eavesdropping and theft of the confidential information is
that the clients have a strong shared secret between them and the server. This
shared secret is used to prove that the newly deployed client is valid and
connected to a valid server counterpart. Additionally, the shared secret is used to
generate encrypted messaging channel. In a nutshell, the shared secret is the
root where the higher layers of security are based on.

The problem of the bootstrapping is, how the new client can have the secret
already when it is generated and how the secret is stored securely. Traditionally,
in the mobile phone systems like GSM or UMTS the mutual trust and
confidentiality between the user equipment (UE) and home network (HN) has
been built on a subscriber authentication key stored on a tamper resistant SIM-
card. [75] Naturally the key generation must happen in security-controlled factory
environment.

The SIM concept has similarities to hardware security keys: they also may have
hardware backed shared secrets deployed already from the factory.

7.2 The root of trust

The root of trust problem domain is a major challenge for a mobile app
authenticator. The low-level mechanisms that secure the subscriber in a mobile
network are not generally available for the third-party mobile app makers. The
root of trust must be based on something else.

 40

In many mobile phone models, there exists a hardware backed isolated TEE
(trusted execution environment). TEE is separated from the normal processing
environment where the operating system and applications run [76]. As example
of TEE, Apple has Secure Enclave [77] present in modern iPhones.
Microprocessor vendor ARM has their TrustZone technology that can be utilized
for the TEE implementations in mobile phone environments [78]. However, it is
claimed that most of the smartphone and tablet contains a TEE today [76].

TEE ensures that the code and data inside of it are protected with regarding
confidentiality and integrity. Client applications of the TEE receive services like
storage layer security, secure isolated cryptographic operations and secure
timing services.

It is important to note that the mobile app authenticator should generate the
needed cryptographic keys inside a TEE. But possibilities to do so depend much
on the APIs and the security mechanisms of the mobile operating systems as the
developer of a third-party app does not have direct access to hardware.
Fortunately, iOS of Apple and Android support the TEE through their key
management systems.

It is notable that generating and using cryptographic keys in a TEE helps to
enhance the application security during runtime. It also enhances security of the
communication protocol between client and server. But it does not prevent
generation of fake clients: there is nothing that could allow the server to distinct
a fraudulent client app from a valid one (assuming that the fake client can talk to
the server with the protocol required). TEE is just a mechanism that may help
preventing the identity thefts in some scenarios after the app is installed.

8 Security of the mobile apps

As mentioned before, the mobile app platforms and ecosystems evolve currently
with high speed, and the security has problems to follow. Fortunately, the open
source security community, academic research and the security business players
on the market try to minimize the gap vigorously. One example of this threat
mitigation activity is the OWASP Foundation that publishes the common threat
check-lists to arise awareness among the app developers and businesses.

OWASP Top 10 Mobile risks were 2016 [79]:

M1: Improper Platform Usage
M2: Insecure Data Storage
M3: Insecure Communication
M4: Insecure Authentication
M5: Insufficient Cryptography
M6: Insecure Authorization
M7: Client Code Quality
M8: Code Tampering

 41

M9: Reverse Engineering
M10: Extraneous Functionality

In the following chapters, we discuss some of these aforementioned threats that
the mobile applications are facing.

8.1 App shielding

Vulnerabilities in mobile environments may in some circumstances allow a
hacker, foreign malicious app or malware to read the secrets of the mobile app
authenticator from the runtime memory or from the persistent memory.

Another common attack against mobile apps is repackaging. In repackaging the
malware writer alters a legitimate application to include malicious code and then
publishes it to an app market or even injects the additional functionalities on-the-
fly [80, 81]. So-called rooted or jailbroken operating systems are especially
vulnerable for this approach.

The rooting (Android) or jailbreaking (iOS) is a method to alter the operating
system so that the various security related restrictions for the apps are removed.
Typically, the apps are let to run on root (administrator) user privileges. This
removes the boundaries of the app isolation of the operating system. Root user
privileges permit reading any file in the persistent storage no matter which app
owns it. The motivation for the rooting or jailbreaking may be that the end-user
can, for example, load unsigned applications from illegal sources outside app
stores. This has traditionally been popular in China.

App shielding is generic term for mitigation methods against these
aforementioned scenarios. App shielding typically includes methods like
obfuscation of program code, white box cryptography and anti-tampering
technologies. [82]

8.2 White box cryptography

When the white box cryptography is not applied, the cryptographic keys are
located as sequential bytes in the memory space of an application during runtime.
As stated before, the bytes can be read in some circumstances and this means
theft of the confidential cryptographic secrets.

Purpose of the white box cryptography is to prevent the exposure of the
cryptographic secrets [13]. To reach this goal, the keys are obfuscated, stored in
a distributed format in various memory locations (as non-sequential form) and the
obsolete redundant data may be added into the keys. Additionally, the application
code that executes the cryptographic algorithms is obfuscated and modified so
that it is extremely difficult for human to read. For example, typical AES symmetric
key encryption and decryption contains execution of loop over certain index. This

 42

can be transformed to “flattened” lookup table based execution that is more
difficult to reverse engineer.

Implementations of white box cryptography can also protect the integrity of the
executed binaries. The binaries can include multiple (even overlapping) hash
functions that check during execution that the original code is not altered.
Typically, when the integrity check shows positive finding about tampering, the
application code may be forced to halt immediately to prevent the misuse.

One interesting question is, whether the white box cryptography brings solution
for the root of trust. White box cryptography allows application developers to inject
keys and cryptographic algorithms into the application binaries with high
confidence that the secrets are not detectable with reverse engineering methods.
However, the key is not unique for each application and in no way tied to the
device. It is questionable that the generic key alone could be a root of trust.

8.3 Obfuscation

The term obfuscation means manipulation of a program in such way that it keeps
the original functional capabilities, but the manipulated program code becomes
non-understandable by human.

Boaz Barak et al. provided definition: “Informally, an obfuscator O is an (efficient,
probabilistic) ‘compiler’ that takes as input a program (or circuit) P and produces
a new program O(P) that has the same functionality as P yet is ‘unintelligible’ in
some sense.” [83]

Obfuscation can be seen as more important treatment for the Android apps than
for iOS apps. The Android apps are typically made with Java –technology that is
easily decompiled and reverse engineered with static analysis.

8.4 Anti-tampering technologies

The application can be tampered with various mechanisms by a hacker who
wants to first reverse engineer the authenticator app and perhaps design an
attack against it. At the end, the goal is to make fraudulent payments or to get
access to some critical systems. The publisher of the authenticator app wants
that the app is running in a safe environment enjoying the sandboxing of the
operating system and all other security features designed by the phone
manufacturer.

8.4.1 Rooting and jailbreak detection

As stated before, the rooting or jailbreaking makes the running environment
fundamentally unsafe. The rooting or jailbreaking must be detected in order to
estimate the trust that can be given for the authentication events.

 43

Rooting and jailbreaking can be detected in some reliability level by using various
checks made on the running environment. False positives are possible as the
accuracy of the detection vary, and so multiple checks must be used
simultaneously. Most of the detection methods rely on the basic idea that the app
should not reach certain resources that are normally protected by the running
environment. For example, app should not be able to add or modify files in
protected areas. Also, successful attempt to read system files that require root
privileges reveals that the operating system has probably been tampered.

When the rooting or jailbreaking is detected during runtime the app may react to
the situation by pre-defined way. Simplest method is to halt the app abruptly
leaving no room to operate for the hacker.

8.4.2 Guarding

The app can be protected so that it calculates checksums over the application
binaries during the running and so detects if some of the application fragments
are changed. Typically, the calculations of the checksums have overlapping
regions so that the application alteration without getting caught becomes very
difficult. Desired reaction when the alteration of the binaries is detected may vary.
The reaction can also be slightly delayed and so causing additional difficulty for
the attacker to reverse engineer the logic. [84]

8.4.3 Encryption wrappers

In the white box cryptography, the basic idea is to prevent the secret information
to be readable in clear text. Similarly, in using the encryption wrappers the
principle is to prevent the software binaries to exist in cleartext format allowing
unauthorized static analysis. With encryption wrapper, the software is normally
encrypted and only decrypted dynamically at runtime. [84]

8.5 The reality about security of the mobile apps

The security level of the financial mobile apps has been under interest of the
security consultant companies for many years (since invention of the mobile
banking apps). The point of view is of course commercial and the motivation for
the information gathering is to sell consultancy. But despite the background and
biased opinions, the findings of the surveys are noteworthy. They conclude that
banking apps are generally speaking insecure.

Accenture and NowSecure Lab explored 30 banking apps from North America in
2016 [85]. They downloaded the apps straight from the app stores and performed
780 tests for the apps. Both major mobile platforms were included (iOS &
Android). Some of the findings are collected below.

 44

• 60% of the apps were not obfuscated in Android.

• 13% of the apps did not use certificate validation in networking protocols.

• 33% of the apps used world-writable files

Another example of commercial research is the study made by joint effort of
crypto & security consultancy vendors Inside Secure and UL [86]. They selected
19 apps made for consumer use. Apps were from various geographical markets.
The study did not target to any specific size of banks and there were well
established companies and new small challenger banks among the publishers of
the apps.

The key finding from this study was that only 5% of the apps reached the security
level that was used as benchmark, namely Visa & Mastercard security standards
for mobile payment applications. Majority of the apps had very low security levels.

The requirements for the benchmark level were (in a nutshell) [86]:

• Code handling sensitive data and algorithms is developed in a language
that compiles to processor native machine code (i.e. C/C++)

• Strong obfuscation of all critical code

• Anti-tamper protection of the application

• Cryptography protected by whitebox (or equivalent technology)

• No sensitive text visible in static analysis of code

• Network traffic encrypted using TLS 1.2 and downgrade not possible

• Certificate pinning applied to networking

• Strong device binding

An interesting research topic could be to study which were the reasons that led
to the design decisions regarding the application security. The four-factor model
could probably be used for this research. Unfortunately, we must leave this topic
out from the scope of this thesis.

8.6 Summary about protecting technologies

The highest protection levels are achieved when multiple protecting technologies
are used together and in synergy. It is possible to achieve a level where it is fairly
unpractical and unbeneficial to try to arrange an attack against the app.

Unfortunately, the app shielding methods typically increase the size of the
binaries and slow down the application execution as the control flow is altered.
Also, the steps required to generate obfuscated and shielded binaries require
extra effort from the developers. Debugging the errors in production
environments may be extremely complex with shielded apps. These may slow
down the motivation to adopt the shielding technologies for authenticator apps.

 45

9 End-to-end security of the system

When the authentication system is based on the client-server model, there must
be layers of trust all the way from the client device hardware layer to the
application server backend and to the app publishing system of the mobile
platform. This approach is described in the corporate security as an onion model
[81]. Basic idea of the model is that the security of the system is based on logical
layers. However, the onion model security can be challenged also. The system
architecture does not always follow layered design and can include also single
point of failures.

9.1 The viewpoint of an attacker

One possible way to examine the security of an authentication platform is to look
from the viewpoint of the attacker. And the onion model may help to visualize this
viewpoint. Attacks against mobile authenticator app ecosystem may be classified
to several main categories:

• Attack against the user of the mobile authenticator app

• Attack against the execution environment of the mobile app

• Attack against the communication channel that the app is using when it is
connecting to other clients or servers.

• Attack against the application server

• Attack against the mobile app development

• Attack against the publishing framework

All attacks must be taken into consideration when designing an authentication
system architecture. The onion model can be challenged regarding the possibility
of multiple simultaneous attacks. The model is based on assumption that the
attacks are sequential.

9.2 The PIN lifecycle model

One commonly used concept for knowledge-based authentication factor is
personal identification number (PIN). This number is traditionally used with
smartcard-based credit cards but also for unlocking the SIM card (subscriber
identification module) of a mobile phone. During last decade, the PIN concept is
also adopted to mobile apps. App may require an authentication step before it is
permitted to start, or app may require a step-up authentication [87] when user is
doing a critical transaction that only he/she is entitled to.

 46

Because of long history of PIN, lots of research and standards are related to
banking sector. Same basic usage principles and dynamics can be applied to the
mobile app authenticators as to the smart cards.

One noticeable standard for the PIN security is the VISA PIN security guideline
[10]. It presents a reference model for the security considerations based on a PIN
lifecycle. Many of these aspects are valuable for the mobile authenticator app
context, too.

Process Process Description

PIN Creation

Generation of the PIN, card magnetic stripe
personalization, ICC personalization (if applicable), load
to issuer authorization systems.

PIN selection Cardholder self-selection of PIN.

PIN Transmission

Any transmission of PINs:
• between issuer approved PIN handling devices,

• to and from card holders.

PIN Storage
Protection of PIN-related data by issuers, issuer
approved PIN handling devices and cardholders

PIN Processing

All processing of PINs within a PIN-handling device.

Online PIN
verification

Online verification of the
cardholder PIN.

PIN handling device
management

Deployment, usage and decommissioning of equipment
used to process and store PINs.

PIN related Key
Management

Management of cryptographic keys for secure PIN
creation, storage, processing, transmission and
verification

Cardholder
authentication

Process by which the cardholder supplies credentials to
a system to access PIN management functionality

PIN advice Notification of the PIN to the cardholder.

PIN change Cardholder or issuer re-selection of PIN.

Additional PIN
management
functions

Any other functionality required by issuers to manage
their PINs

 47

Note: reprinted from VISA Issuer PIN Security Guideline, 2010

9.2.1 PIN creation

The authenticator issuer may preset the PIN (like some banks do for the chip-
based credit cards) or it can be decided and initialized by the end-user during the
device enrollment process. The former approach is usually considered to be
safer.

Research on PIN security has indicated that PINs selected by end user are
weaker because humans tend to select common easily remembered number
sequences or something that is semi-public information like their birthday. PIN
length is also limited. Common practice is to allow down to 4 digits for the PIN
length. Short PINs require only low cognitive effort from the end-user, but they
are vulnerable to brute force attacks either by human or automated attacker.

Joseph Bonneau et al from University of Cambridge found out that guessing the
PIN based on victim’s birth date led to success once for 11 cases. If usage of the
obvious number sequences like 1234 was prohibited, they gained access by
guessing once for 18 cases [88].

9.2.2 PIN storage

In addition to the PIN guessing easiness issue described above, the PIN can also
be stolen by a hacker or malware installed in the running environment of an
authenticator app.

Mobile platform vendors fortunately have addressed the challenge to store secret
items by supplying secure key-value storages like iOS Keychain and Android
Keystore. These mechanisms provide basic safety against malicious apps that
aim to steal the data from other app’s static storage. Also, if the secure storages
supplied by the mobile platforms work in co-operation with TEE environment,
higher security levels are achieved.

9.2.3 PIN processing

The risk scenarios related to the PIN processing in the mobile device can be
categorized to following categories: theft from memory and theft from glass

Theft from memory

Numerous times there have been vulnerabilities in mobile platforms (specially in
Android operating system) that have allowed a mobile app to read foreign app’s

 48

address space. These vulnerabilities could be used to read the PIN from memory
when it is typed by the end-user. The PIN alone is not of course useful information
for an attacker, but when combining with other vulnerabilities it may lead to
situation where foreign app or attacker is able to reach valuable information or
activate remotely events in an app.

If the application platform supplies a protected end-to-end connectivity from
touchpad screen to trusted execution environment, the attacker is probably not
able to reach the protected data (PIN in this case) though runtime memory.

Theft from glass

In this scenario the attacker is able to intercept the character reading process
either by getting information about the touch event coordinates or even more
straightforward approach by setting an own keyboard overlay on the screen
capturing the user’s touching actions. Again, the PIN alone is only one component
of the malicious orchestration targeting to a fraudulent transaction or something
valuable.

PIN on glass: PIN entry on a touchscreen keypad integrated on a PCI-
approved terminal.

PIN on COTS: PIN entry on the touchscreen of an off-the-shelf consumer
smartphone or tablet connected to a PCI-certified card reader.

PIN on terminal: PIN entry on a physical, push-button keypad on a card
terminal.

Reprinted from website: https://www.mobiletransaction.org/what-is-pin-on-glass/

The banking industry has been actively driving security in this context by
publishing related standards. Payment Card Industry (PCI) has released security
requirements standard for Software-based PIN Entry on COTS (commercial of
the shelf) devices [89].

10 Visions about the future

The previous chapters of this thesis have presented some aspects of current and
historical authentication mechanisms. In this chapter, we present concepts and
trends that can have an effect to the next generation authentication solutions.

10.1 Computational offloading

The concept of computational offloading may become popular in the future
among the authentication platforms. For example, Dejan Kovachev et.al stated in
their survey [90] that the mobile applications will be developed in the future so
that the heavy processing will be executed in the cloud.

 49

Computational offloading may allow the authentication platforms to have features
that are beyond computational capabilities of the current mobile devices. The
concept of computational offloading means an arrangement where a
computationally intensive task is moved from one execution environment to
another one that is more suitable for the task. Typically, it may be better to
process large amounts of data in a server environment than in a mobile device
having limited CPU capacity and limited battery life.

Recently there has been rising interest to mobile edge computing paradigm
(MEC). The rationale behind the MEC is to improve computational capabilities of
a system by performing the intensive activities in the edge nodes on the mobile
network. This brings benefits regarding latency, for example (when compared to
traditional cloud computing).

Artificial intelligence and machine learning are examples of features that benefit
from computational offloading and MEC. Machine learning algorithms may be
useful for making decisions about authentication requests based on complex
input data. How to provide authentication decisions based on multiple variables
is not a new computational task. For example, the 3-D Secure [91] compliant
access control server of a credit card issuer must take multiple conditions and
variables into account when estimating the trust of a payment transaction.

10.2 Autonomous authentication

One challenge for the authentication has traditionally been the usability. Users
have thought that authentication methods are clumsy and create too much
cognitive load. Users probably would prefer that the system requiring
authentication would authenticate them autonomously. In the best case,
authentication would be performed without any effort from the user.

Modern biometric authentication methods have come very close to achieve the
minimal effort from the user. Face recognition and fingerprint authentication on
mobile phones require no or little cognitive effort to use. However, they fail
occasionally in certain circumstances. For example, when the fingers are wet the
fingerprint reader may fail to recognize the fingerprint.

One common solution for the effortless user authentication experience could be
the autonomous authentication. The basic idea of the autonomous authentication
is to make continuous observations about the end-user by the device that he/she
is using. The observations, i.e. practically collected data, are analyzed with
advanced statistical methods to gather a holistic trust score. The data that is
collected for the analysis can be taken from various sources.

10.2.1 Mobile carrier data

The mobile operators have access to the data that the mobile phones receive or
transmit when they are connected to the network. The online behavior of the end-

 50

user can be analyzed, for example, by recording the DNS-queries sent from the
device [92]. Also, the IP addresses that the device is connected to can be tracked.

The mobile carrier data can be utilized as one data source among others for the
statistical analysis of the autonomous authentication. For example, if the device
suddenly starts to send packets to IP addresses that are either known to be rogue
addresses or are not recorded in the usage history of the end-user, the trust score
can be reduced.

10.2.2 Behavioral biometric data

The uniqueness of the human physical actions has been researched for many
decades. For example, the human keystroke patterns have been found to be
useful for authenticating individual users using computer systems [93] [94]. In
mobile phone environment, there is typically no physical keyboard, so something
else must be looked to find patterns from the actions of the end-user.

It has been found that the user actions performed on the touch screens of the
mobile phones vary and can be used for the analysis and authentication [95] [96].
Timing of the finger actions, finger pressure and the area under the finger
pressure are typically examined.

10.2.3 Device sensor data

The smartphones are equipped today with various sensors like accelerometer,
temperature sensor and inclination sensor. Furthermore, the smartphones have
typically positioning capability based on GPS. Readings of these sensors can be
used for input for the statistical analysis in order to find patterns from the behavior
of the end user [92]. Anomalies in the sensor readings can be used to weaken
the trust score.

10.2.4 Summary

The continuous collection of the data from the various sources and the continuous
statistical analysis may provide way to autonomous authentication. This should
be researched more in the future. Autonomous authentication may be the next
successful authentication method. However, the concerns of the privacy may set
a challenge for this development.

 51

11 Acknowledgements

I want to thank my wife Katja for the long awaited (25 years) inspiration to start
this thesis. Also, the coaching, deep knowledge and the arguments given by
Professor Valtteri Niemi have been very crucial for my work.

 52

12 References

[1] GSM Association, "The Mobile Economy 2020," GSMA Intelligence, 30
May 2020. [Online]. Available: https://www.gsma.com/mobileeconomy/wp-
content/uploads/2020/03/GSMA_MobileEconomy2020_Global.pdf.
[Accessed 30 May 2020].

[2] Statista Ltd., "Number of smartphone users worldwide from 2016 to 2021
(in billions)," 2019. [Online]. Available:
https://www.statista.com/statistics/330695/number-of-smartphone-users-
worldwide/. [Accessed 30 May 2020].

[3] S. Mahmood, B. Amen and R. Nami, "Mobile Application Security
Platforms Survey," International Journal of Computer Applications, vol.
133, pp. 40-46, 2016.

[4] European Banking Authority, "Regulatory Technical Standards on Strong
Customer Authentication and common and secure communication under
Article 98 of Directive 2015/2366 (PSD2)," 2017. [Online]. Available:
https://eba.europa.eu/sites/default/documents/files/documents/10180/176
1863/314bd4d5-ccad-47f8-bb11-
84933e863944/Final%20draft%20RTS%20on%20SCA%20and%20CSC
%20under%20PSD2%20%28EBA-RTS-2017-02%29.pdf. [Accessed 30
May 2020].

[5] Citrix, "What is single sign-on (SSO?)," [Online]. Available:
https://www.citrix.com/glossary/what-is-single-sign-on-sso.html.
[Accessed 18 May 2020].

[6] Ubisecure inc, "What is Single Sign-On (SSO)?," [Online]. Available:
https://www.ubisecure.com/single-sign-on/what-is-sso/. [Accessed 18 May
2020].

[7] OneLogin inc, "How single sign-on works," [Online]. Available:
https://www.onelogin.com/learn/how-single-sign-on-works. [Accessed 18
May 2020].

[8] Okta, "Federated identity vs SSO," [Online]. Available:
https://www.okta.com/identity-101/federated-identity-vs-sso/. [Accessed
18 May 2020].

[9] European Banking Authority, "Opinion of the European Banking Authority
on the elements of strong customer authentication under PSD2," 2019.
[Online]. Available:
https://eba.europa.eu/sites/default/documents/files/documents/10180/262
2242/4bf4e536-69a5-44a5-a685-
de42e292ef78/EBA%20Opinion%20on%20SCA%20elements%20under
%20PSD2%20.pd. [Accessed 30 May 2020].

[10] VISA, "VISA issuer PIN security guideline," 2010. [Online]. Available:
https://usa.visa.com/dam/VCOM/download/merchants/visa-issuer-pin-
security-guideline.pdf. [Accessed 30 May 2020].

[11] IBM, "Blockchain basics: Introduction to distributed ledgers," IBM, 2020.
[Online]. Available:
https://developer.ibm.com/technologies/blockchain/tutorials/cl-blockchain-
basics-intro-bluemix-trs/. [Accessed 30 May 2020].

 53

[12] Wikipedia, "Blockchain," [Online]. Available:
https://en.wikipedia.org/wiki/Blockchain. [Accessed 30 May 2020].

[13] Rambus Technologies, "What is white box cryptography," 2019. [Online].
Available: https://www.rambus.com/blogs/what-is-white-box-
cryptography/. [Accessed 30 May 2020].

[14] A. Salomaa, Public-key cryptography, Springer Science & Business
Media, 2013.

[15] A. Carlisle and S. Lloyd, Understanding public-key infrastructure:
concepts, standards, and deployment considerations, Sams Publishing,
1999.

[16] Fortune Business Insights, "IAM MARKET ANALYSIS - 2026," [Online].
Available: https://www.fortunebusinessinsights.com/industry-
reports/identity-and-access-management-market-100373. [Accessed 5
April 2020].

[17] FIDO Alliance, "FIDO2: WebAuthn & CTAP industry standards," [Online].
Available: https://fidoalliance.org/fido2/. [Accessed 30 May 2020].

[18] J. Andress, The Basics of Information Security, Understanding the
Fundamentals of Infosec in Theory and Practice, 2014.

[19] Feitian Technologies, "BioPass tokens," [Online]. Available:
https://www.ftsafe.com/Products/FIDO/Bio. [Accessed 07 April 2020].

[20] Yubiko, "Yubikey," [Online]. Available: https://www.yubico.com/products/.
[Accessed 07 April 2020].

[21] OASIS Consortium, "PKCS #11 Cryptographic Token Interface Base
Specification Version 2.40," 2015.

[22] Mozilla, "NPAPI documentation," [Online]. Available:
https://wiki.mozilla.org/NPAPI#NPAPI_Documentation. [Accessed 12 April
2020].

[23] Google, "NPAPI plugins," [Online]. Available:
https://developer.chrome.com/apps/npapi. [Accessed 12 April 2020].

[24] Mozilla, "NPAPI plugins," [Online]. Available:
https://support.mozilla.org/en-US/kb/npapi-plugins. [Accessed 12 April
2020].

[25] Microsoft, "NPAPI support is currently disabled," [Online]. Available:
https://answers.microsoft.com/en-us/windows/forum/all/npapi-support-is-
currently-disabled/a48ec865-4282-44f8-bcf1-81ad011aa473. [Accessed
12 April 2020].

[26] Fido Alliance, "WebAuthn," [Online]. Available:
https://fidoalliance.org/fido2/fido2-web-authentication-webauthn/.
[Accessed 12 April 2020].

[27] ScienceDirect, "Hardware Token," 2020. [Online]. Available:
https://www.sciencedirect.com/topics/computer-science/hardware-token.
[Accessed 30 May 2020].

[28] Internet Engineering Task Force, "TOTP: Time-Based One-Time
Password Algorithm," 2011. [Online]. Available:
https://tools.ietf.org/html/rfc6238. [Accessed 30 May 2020].

 54

[29] RSA, "RSA SecurId hardware token specifications," 2015. [Online].
Available: https://www.rsa.com/content/dam/en/data-sheet/rsa-securid-
hardware-tokens.pdf. [Accessed 30 May 2020].

[30] ETSI, "Universal Subscriber Identity Module (USIM) Application Toolkit
(USAT) (3GPP TS 31.111 version 13.3.0 Release 13)," 2016. [Online].
Available:
https://www.etsi.org/deliver/etsi_ts/131100_131199/131111/13.03.00_60/t
s_131111v130300p.pdf.

[31] S. Drimer, S. J. Murdoch and R. Anderson, "Optimised to Fail: Card
Readers for Online Banking," 2009. [Online]. Available:
https://murdoch.is/papers/fc09optimised.pdf. [Accessed 30 May 2020].

[32] Cryptomathic inc, "White Paper, Two‐Factor Authentication for Banking,"
2012. [Online]. Available:
https://www.cryptomathic.com/hubfs/docs/cryptomathic_white_paper-
2fa_for_banking.pdf. [Accessed 30 May 2020].

[33] J. Brown, W. Shipman and R. Vetter, "SMS: The short message service,"
Computer, January 2008.

[34] Telecommunication Engineering Centre, Ministry of communications and
information technology, Department of telecommunications, Goverment of
India, "STUDY PAPER ON SS7 Security," [Online]. Available:
http://tec.gov.in/pdf/Studypaper/ss7%20security.pdf. [Accessed 30 May
2020].

[35] K. Hamandi, A. Chehab, I. Elhajj and A. Kayssi, "Android SMS Malware:
Vulnerability and Mitigation," in WAINA, 2013.

[36] National Institute of Standards and Technology, "Digital Identity
Guidelines," 2020. [Online]. Available: https://pages.nist.gov/800-63-
3/sp800-63b.html. [Accessed 30 May 2020].

[37] A. Rabkin, "Personal knowledge questions for fallback authentication:
Security questions in the era of Facebook," in Symposium on Usable
Privacy and Security, 2008.

[38] R. L. German and S. K. Barber, "Current Biometric Adoption and Trends,"
The University of Texas Austin, 2016.

[39] Yubico, "Yubico blog," 2019. [Online]. Available:
https://www.yubico.com/blog/yubico-reveals-first-biometric-yubikey-at-
microsoft-ignite/. [Accessed 30 May 2020].

[40] Mastercard, "Mastercard Biometric Card FAQ," 2019. [Online]. Available:
https://www.mastercard.us/content/dam/mccom/en-
us/documents/biometric-card-merchant-faq.pdf. [Accessed 30 May 2020].

[41] Visa, "Fingerprint authentication moves from phones to payment cards,"
[Online]. Available: https://usa.visa.com/visa-
everywhere/security/biometric-payment-card.html. [Accessed 30 May
2020].

[42] M. Davis and T. Ellis, "Memorandum RM-4122-ARPA: The RAND Tablet:
A Man-Machine Graphical Communication Device. Aug. 1964," RAND
Corporation, 2005. [Online]. Available:
https://www.rand.org/content/dam/rand/pubs/research_memoranda/2005/
RM4122.pdf. [Accessed 30 May 2020].

 55

[43] Apple, "About Face ID advanced technology," 26 February 2020. [Online].
Available: https://support.apple.com/en-us/HT208108. [Accessed 2020].

[44] V. Blanz and T. Vetter, "Face recognition based on fitting a 3D morphable
model," IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 25, no. 9, 2003.

[45] S. Chen, A. Pande and P. Mohapatra, "Sensor-Assisted Facial
Recognition: An Enhanced Bio- metric Authentication System for
Smartphones," in 12th annual international conference on Mobile
systems, applications, and services, 2014.

[46] J. Bonneau, C. Herley, C. van Oorschot and F. Stajano, "The Quest to
Replace Passwords: A Framework for Comparative Evaluation of Web
Authentication Schemes," in Symposium on Security and Privacy, San
Francisco, 2912.

[47] J. Bonneau, C. Herley, C. van Oorschot and F. Stajano, "Passwords and
the Evolution of Imperfect Authentication," Communications of the ACM,
vol. 58, p. 78–87, July 2015.

[48] D. Forsberg, G. Horn, W.-D. Moeller and V. Niemi, LTE Security, John
Wiley & Sons Ltd., 2010.

[49] Nok Nok Labs inc, "FOUR BARRIERS TO ADOPTING STRONG
AUTHENTICATION," July 2014. [Online]. Available:
https://www.noknok.com/wp-
content/uploads/2017/10/4barrierswhitepaper_0.pdf. [Accessed 22 02
2020].

[50] European Union, "General Data Protection Regulation," 2016. [Online].
Available: https://gdpr-info.eu/. [Accessed 30 May 2020].

[51] K. Reese, T. Smith, J. Dutson, J. Armknecht, J. Cameron and K.
Seamons, "A Usability Study of Five Two-Factor Authentication Methods,"
in Proceedings of the Fifteenth Symposium on Usable Privacy and
Security, Santa Clara, U.S, 2019.

[52] N. Gunson, D. Marshall, H. Morton and M. Jack, "User perceptions of
security and usability of single-factor and two-factor authentication in
automated telephone banking," Computers and security, 2011.

[53] M. Just and D. Aspinall, "On the security and usability of dual credential
authentication in UK online banking," in International Conference for
Internet Technology and Secured Transactions, 2012.

[54] K. Krol, E. Philippou, E. De Cristofaro and M. A. Sasse, "“They brought in
the horrible key ring thing!” Analysing the Usability of Two-Factor
Authentication in UK Online Banking," University College London, 2015.

[55] J. Colnago, S. Devlin, M. Oates, C. Swoopes, L. Bauer, L. Cranor and N.
Christin, "“It’s not actually that horrible”: Exploring Adoption of Two-Factor
Authentication at a University," Carnegie Mellon University, University of
California, Berkeley, 2018.

[56] Duo Security inc, "State of the auth - experiences and perceptions of
multi-factor authentication," 2017. [Online]. Available:
https://duo.com/assets/ebooks/state-of-the-auth.pdf. [Accessed 30 May
2020].

 56

[57] R. Kakerow, "Low power design methodologies for mobile
communication," in Proceedings. IEEE International Conference on
Computer Design: VLSI in Computers and Processors, 2002.

[58] H. Atlam, A. Alenezi, A. Alharthi, R. Walters and G. Wills, "Integration of
cloud computing with Internet of Things: Challenges and open issues," in
2017 IEEE International Conference on Internet of Things (iThings) and
IEEE Green Computing and Communications (GreenCom) and IEEE
Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data
(SmartData), pp. 670–675, 2017.

[59] S. Haber and S. W. Stornetta, "How to Time-stamp a Digital Document,"
Journal of Cryptology, vol. 3, pp. 99-111, 1991.

[60] X. Wang, X. Zha, W. Ni, R. Liu, Y. Guo, X. Niu and K. Zheng, "Survey on
blockchain for Internet of Things," Computer Communications, vol. 136,
2019.

[61] G. Zyskind, O. Nathan and A. Pentland, "Enigma: Decentralized
Computation Platform with Guaranteed Privacy," 2015. [Online].
Available: https://arxiv.org/abs/1506.03471. [Accessed 30 May 2020].

[62] R. Merkle, "A Digital Signature Based on a Conventional Encryption
Function," in Advances in Cryptology, 1988.

[63] S. Nakamoto, "Bitcoin: A Peer-to-Peer Electronic Cash System," [Online].
Available: https://bitcoin.org/bitcoin.pdf. [Accessed 30 May 2020].

[64] N. T. Courtois, P. Emirdag and D. A. Nagy, "“Could bitcoin transactions
be 100x faster?”," in 11th International Conference on Security and
Cryptography (SECRYPT), 2014.

[65] A. Chauhan, P. O. Malviya, M. Verma and S. T. Mor, "Blockchain and
Scalability," in IEEE International Conference on Software Quality
Reliability and Security Companion, 2018.

[66] J. Sen, "A Robust and Efficient Trust Management Scheme for Peer-to-
Peer Networ," Innovation Lab, Tata Consultancy Services Ltd., 2010.

[67] S. Hoober, "Mobile Apps: Native, Hybrid, and WebViews," 2018. [Online].
Available: https://www.uxmatters.com/mt/archives/2018/08/mobile-apps-
native-hybrid-and-webviews.php. [Accessed 30 May 2020].

[68] W3C, "Generic Sensors API," 2019. [Online]. Available:
https://w3c.github.io/sensors/. [Accessed 30 May 2020].

[69] S. Sasidaran, "Survey on Native and Hybrid Mobile Application
Development Tools," International Journal of Advanced Research in
Computer Engineering & Technology (IJARCET) , vol. 6, no. 9, 2017.

[70] Internet Engineering Task Force, "The Transport Layer Security (TLS)
Protocol Version 1.3," 2018. [Online]. Available:
https://tools.ietf.org/html/rfc8446. [Accessed 30 May 2020].

[71] J. Petters, "What is a proxy server," Varonis, 2019. [Online]. Available:
https://www.varonis.com/blog/what-is-a-proxy-server/.

[72] Open Web Application Project, "Certificate and Public Key Pinning,"
[Online]. Available: https://owasp.org/www-
community/controls/Certificate_and_Public_Key_Pinning. [Accessed 28
March 2020].

 57

[73] OASIS standards consortium, "SAML Wiki," 2005. [Online]. Available:
https://wiki.oasis-open.org/security/FrontPage. [Accessed 12 April 2020].

[74] OpenID Foundation, "OpenID Connect specifications," [Online]. Available:
https://openid.net/connect/. [Accessed 12 April 2020].

[75] V. Niemi and K. Nyberg, UMTS Security, John Wiley & Sons, 2003.

[76] J.-E. Ekberg, K. Kostiainen and N. Asokan, "Trusted execution
environments on mobile devices," in 2013 ACM SIGSAC conference on
Computer & communications, 2013.

[77] Apple, "Storing Keys in the Secure Enclave," [Online]. Available:
https://developer.apple.com/documentation/security/certificate_key_and_t
rust_services/keys/storing_keys_in_the_secure_enclave. [Accessed 30
May 2020].

[78] ARM, "Development of TEE and Secure Monitor Code," [Online].
Available: https://www.arm.com/why-arm/technologies/trustzone-for-
cortex-a/tee-and-smc. [Accessed 01 June 2020].

[79] OWASP Foundation, "OWASP Mobile Top 10," [Online]. Available:
https://owasp.org/www-project-mobile-top-10/. [Accessed 9 March 2020].

[80] S. Chatterjee, K. Paul, R. Roy and A. Nath, "A Comprehensive Study on
Security issues in Android Mobile Phone — Scope and Challenges,"
International Journal of Innovative Research in Advanced Engineering
(IJIRAE), vol. 3, no. 3, 2016.

[81] T. Alagna and E. Chen, "Larstan's the Black Book on Corporate Security,"
in Larstan's the Black Book on Corporate Security, Larstan publishing
inc., 2005, p. 76.

[82] Intertrust, "Application shielding for secure applications," [Online].
Available: https://www.intertrust.com/intertrustblog/application-shielding-
for-secure-applications/. [Accessed 07 March 2020].

[83] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan
and K. Yang, "On the (im)possibility of obfuscating programs," Journal of
the ACM, vol. 59, no. 2, 2016.

[84] D. E. Bryant, J. M. Atallah and R. M. Stytz, "A SURVEY OF ANTI-
TAMPER TECHNOLOGIES," Center for Education and Research in
Information Assurance and Security, Purdue University, West Lafayette,
IN 47907-2086, 2004.

[85] Accenture, "Mobile Banking Applications security challenges for banks,"
2016. [Online]. Available:
https://www.accenture.com/t20180223T145013Z__w__/us-
en/_acnmedia/PDF-49/Accenture-Mobile-Banking-Apps-Security-
Challenges-Banks.pdf. [Accessed 30 May 2020].

[86] Inside Secure and UL, "Whitepaper - The Wild West of Mobile Security,"
2018. [Online]. Available:
https://www.verimatrix.com/sites/default/files/White%20paper/Whitepaper-
The%20Wild%20West%20of%20Mobile%20Security.pdf. [Accessed 9
March 2020].

[87] M. Salle, N. Liampotis, D. Vaghetti, C. Kanellopoulos, M. Linden, S.
Memon, D. Hübner, A. Paolini, N. van Dijk, U. Stevanovic, M. Hardt and
P. Solagna, "Guidelines on stepping up the authentication component in

 58

AAIs implementing the AARC BPA," 2018. [Online]. Available:
https://aarc-project.eu/wp-content/uploads/2018/05/AARC-
G029_Guidelines-on-Step-Up-Authentication.pdf. [Accessed 30 May
2020].

[88] J. Bonneau, S. Preibusch and R. Anderson, "A birthday present every
eleven wallets? The security of customer-chosen banking PINs," 2012.

[89] PCI Security Standards Council, "Software-based PIN Entry on COT,"
2018. [Online]. Available:
https://www.pcisecuritystandards.org/documents/SPoC_Security__Requir
ements_v1.0.pdf. [Accessed 30 May 2020].

[90] D. Kovachev and R. Klamma, "Beyond the client-server architectures: A
survey of mobile cloud techniques," in 1st IEEE International Conference
on Communications in China Workshops (ICCC), 2012.

[91] EMV, "3-D Secure Specifications," 2018. [Online]. Available:
https://www.emvco.com/emv-technologies/3d-secure/. [Accessed 30 May
2020].

[92] M. Jakobsson, E. Shi, P. Golle and R. Chow, "Implicit authentication for
mobile devices," in Proceedings of the 4th USENIX conference on Hot
topics in security (HotSec’09), 2009.

[93] S. Bleha, C. Slivinsky and B. Hussien, "Computer-access security
systems using keystroke dynamics," IEEE Transactions on
PatternAnalysis and Machine Intelligence, vol. 12, 1990.

[94] Y. Zhao, "Learning User Keystroke Patterns for Authentication," 2005.

[95] M. H. Wajeeh and S. M. Hameed, "USER AUTHENTICATION BASED
ON TOUCH DYNAMICS OF PATTERN UNLOCK," International Journal
of Computer Science and Mobile Computing, vol. 4, no. 5, 2015.

[96] P. S. Teh, N. Zhang, S.-Y. Tan, Q. Shi, K. How and R. Nawaz,
"Strengthen user authentication on mobile devices by using user’s touch
dynamics pattern," Journal of Ambient Intelligence and Humanized
Computing, 12 2019.

[97] S. Boonkrong and S. Vongsingthong, "A Survey on Smartphone
Authentication," Walailak Journal of Science and Technology, vol. 12, pp.
1-19, 2015.

[98] Yubiko, "Yubiko Website," 2020. [Online]. Available:
https://www.yubico.com. [Accessed 30 May 2020].

	1 Introduction
	1.1 The past
	1.2 The present
	1.3 The future

	2 Basic concepts and definitions
	2.1 Authentication
	2.2 Single sign-on
	2.3 Federated login
	2.4 Mobile app authenticator
	2.5 Strong authentication
	2.6 Personal identification number
	2.7 Blockchain
	2.8 White box cryptography
	2.9 Public key cryptography
	2.10 Public key infrastructure
	2.11 Identity and access management

	3 Statement of the problem
	3.1 Challenges and limitations

	4 Common authentication solutions
	4.1 Hardware tokens
	4.1.1 Tokens with input mechanism
	4.1.2 Public key cryptography with hardware tokens

	4.2 Hardware code generators
	4.3 Smart cards
	4.4 Chip authentication program
	4.5 Transaction authentication numbers
	4.6 Short message service
	4.7 Legacy and backup methods: security questions & email
	4.8 Biometric authentication
	4.8.1 Fingerprint reading
	4.8.2 Face recognition

	5 Requirements for a successful authentication scheme
	5.1 The four-factor model
	5.2 Usability in the strong authentication
	5.3 Cost, privacy and security

	6 Architecture of the mobile app authenticator
	6.1 Peer-to-peer architecture
	6.1.1 Distributed ledger and the blockchain
	6.1.2 Crowd-trust

	6.2 Client-server architecture
	6.2.1 Web view based mobile apps
	6.2.2 Native mobile apps
	6.2.3 Hybrid mobile apps

	6.3 Secure communication channel
	6.3.1 Networking protocol

	6.4 Authentication server
	6.4.1 Service Provider API
	6.4.2 Authenticator API

	7 Challenge to bootstrap the user identity
	7.1 The authenticity of the authenticator
	7.2 The root of trust

	8 Security of the mobile apps
	8.1 App shielding
	8.2 White box cryptography
	8.3 Obfuscation
	8.4 Anti-tampering technologies
	8.4.1 Rooting and jailbreak detection
	8.4.2 Guarding
	8.4.3 Encryption wrappers

	8.5 The reality about security of the mobile apps
	8.6 Summary about protecting technologies

	9 End-to-end security of the system
	9.1 The viewpoint of an attacker
	9.2 The PIN lifecycle model
	9.2.1 PIN creation
	9.2.2 PIN storage
	9.2.3 PIN processing

	10 Visions about the future
	10.1 Computational offloading
	10.2 Autonomous authentication
	10.2.1 Mobile carrier data
	10.2.2 Behavioral biometric data
	10.2.3 Device sensor data
	10.2.4 Summary

	11 Acknowledgements
	12 References

