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ABSTRACT

Towards Security and Privacy in Networked Medical Devices and Electronic Healthcare

Systems

Isabel Jellen

E-health is a growing field which utilizes wireless sensor networks to enable access to

effective and efficient healthcare services and provide patient monitoring to enable early

detection and treatment of health conditions. Due to the proliferation of e-health systems,

security and privacy have become critical issues in preventing data falsification, unautho-

rized access to the system, or eavesdropping on sensitive health data. Furthermore, due to

the intrinsic limitations of many wireless medical devices, including low power and lim-

ited computational resources, security and device performance can be difficult to balance.

Therefore, many current networked medical devices operate without basic security services

such as authentication, authorization, and encryption.

In this work, we survey recent work on e-health security, including biometric approaches,

proximity-based approaches, key management techniques, audit mechanisms, anomaly de-

tection, external device methods, and lightweight encryption and key management proto-

cols. We also survey the state-of-the art in e-health privacy, including techniques such as

obfuscation, secret sharing, distributed data mining, authentication, access control, blockchain,

anonymization, and cryptography. We then propose a comprehensive system model for

e-health applications with consideration of battery capacity and computational ability of

medical devices. A case study is presented to show that the proposed system model can

support heterogeneous medical devices with varying power and resource constraints. The

case study demonstrates that it is possible to significantly reduce the overhead for security

on power-constrained devices based on the proposed system model.
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Chapter 1

INTRODUCTION

1.1 Background

1.1.1 E-health background

In the past, medical records were stored in a paper repository consisting of clinical, re-

search, administrative, and financial data. This approach had several limitations; for ex-

ample, only one user at a time could access this paper-based repository, and any updates

were performed manually. Most medical records departments were located in the base-

ment of the institution due to the weight of the paper, and access was controlled by doors,

locks, identification cards, and sign-out procedures [1]. In the past few decades, there has

been a transformation in the quality and availability of healthcare services, due in part to

the contributions of digitizing the industry. Recent developments have led to the adoption

of Electronic Health (E-health) systems which are made possible in large part due to the

large-scale adoption of communication technologies. Today, an electronic data manage-

ment system has been adopted, which mitigates many of the limitations of the previous

paper-based system. E-health is an emerging application of wireless networks which aims

to minimize temporal, special, and monetary barriers to providing access to healthcare [2].

Recently, the term m-health was also introduced to refer to the use of mobile devices in pa-

tient monitoring and data transmission [3]. With advances in healthcare technologies and

networked sensors, e-health has been used to deliver effective and efficient healthcare ser-

vices as they provide medical staff with real-time remote access to patient data. Examples

of e-health applications include remote monitoring of people with various chronic illnesses,

patient-centric healthcare, and elderly monitoring [3]. However, the electronic storage of
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healthcare records brings up key issues such as privacy and confidentiality, security, and

data integrity and availability [1]. Some examples of potential attacks against e-health

systems include data falsification, unauthorized access to the system, or eavesdropping on

sensitive health data [4]. Furthermore, as a subsection of the healthcare industry, e-health

must be especially vigilant about data privacy due to guidelines set forth by the Health

Insurance Portability and Accountability Act (HIPAA), including protection of personal

patient data [5]. Broadly, e-health security and privacy attempts to address two issues:

security of medical data and privacy of the patient’s data [6].

1.1.2 Wireless Sensor Networks Background

Wireless Sensor Networks (WSNs) are becoming a popular tool to deploy sensors and

actuators in applications such as infrastructure, agriculture, smart home, healthcare, and

military, recently becoming known as the Internet of Things (IoT). WSNs consist of spa-

cially distributed sensor nodes which are mutually controlled by some given conditions.

Nodes often communicate information which is collected from the surrounding environ-

ment [7]. Each sensor node is small and affordable in cost with limited computation power

and memory.

In recent years, medical wireless sensors have been incorporated into patients’ daily lives

as an IoT healthcare platform [8]. As such, wireless sensor networks dominate the data

collection layer of e-health systems, which are comprised of a body area network linked to

a healthcare center via the patient’s smartphone. Data is collected and stored across various

platforms, from on-premises data stores to the cloud, with varying communication chan-

nels, such as SMS and e-mail, and transmission protocols, such as Bluetooth, WiFi, and

Broadband [9]. The body area network consists of sensors and actuators which are inter-

connected often through short-range wireless communication such as IEEE 802.15.1/Blue-

tooth or IEEE 802.15.4/ZigBee [10].
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1.1.3 Security and Privacy Background

Security generally relates to protecting sensitive data, whereas privacy safeguards a user’s

identity. In studying security and privacy, we first define a system model for the problem

at hand, including protocols, data stores, and device types. Unique challenges presented

by the system are taken into account, such as power constraints of certain devices in the

system. Then, we outline vulnerabilities and threat models at each layer defined in the

system model. In order to set goals for security solutions, we define security and privacy

requirements and objectives. Three objectives that are commonly stated in security research

are confidentiality, integrity, and availability. After compiling this necessary background

information, we can then work on proposing security and privacy solutions.

1.2 E-health Security and Privacy

Data shared in a clinical setting, such as identification data, diagnoses, treatment and

progress notes, and laboratory results, is considered confidential and must be protected

under the HIPAA Privacy Rule [11]. This rule maintains that patient information should

be released only with the permission of the patient except for certain treatment, payment,

or administrative purposes, making data privacy a primary consideration in maintaining

electronic healthcare data records [1]. While many researchers focus on electronic health

privacy policies from American and European entities, privacy legislation with regards to

e-health can be found in most developed countries [12]. Furthermore, healthcare data is be-

coming more valuable - to legitimate commercial entities interested in targeted marketing,

to parties looking to illicitly obtain services, and to criminals selling an identity or using it

to commit fraud [9].
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There are several layers that must be considered in protecting e-health data, including the

personal layer, transmission and communication layer, and services layer [9]. Four types

of threats to an e-health system can be considered: threats to confidentiality, integrity,

authentication, and availability. Several components of the system can be subject to each

type of threat, including communication within the body area network, between the mobile

device and network operator, within the operator’s network, between the network operator

and the cloud server, and between the server and the application [10]. Security of medical

data is typically accomplished in the body area domain, while patient data privacy is mainly

accomplished in the service domain [6].

There are several previous surveys related to e-health data security and privacy. In [9], the

authors describe the data privacy and security concerns in e-health and discuss available

tools to minimize risk of data compromise. In [13], the feasibility of adequately pro-

tecting against threats to privacy and security of electronic healthcare data is discussed.

There are several systematic literature reviews on the privacy and security of e-health

data [14] [15] [16] which review privacy and security challenges and future directions for

e-health. There is also a survey on privacy solutions for the e-health cloud [17], but there

have been significant developments in health data privacy since the date of publication of

this paper. Although there is work surveying the privacy challenges of e-health, we did

not find any current work which presented a comprehensive survey of current solutions to

combat these privacy challenges.

1.3 Security with Consideration of Resource Limitations for Wireless Medical De-

vices

The final section in this thesis focuses on methods for securing e-health medical devices

with consideration of their resource limitations. Traditional network security measures in-
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clude encryption, authentication, and authorization of network communications. However,

for devices which are severely power-constrained, these approaches may not be practical.

In the case of implantable medical devices, a non-trivial challenge is whether power can

be supplied sufficiently and continuously for the operation of the entire system [18]. Due

to these constraints, many networked implantable medical devices on the market today op-

erate without basic security defenses, making them vulnerable to cyber attacks [19][20].

Medtronic markets a line of implantable cardioverter defibrillators (ICDs) which support

wireless programming and remote monitoring, such as the Medtronic Virtuoso [21]. The

US Food and Drug Administration (FDA) issued a statement on March 21, 2019 to alert

healthcare providers and patients on cybersecurity vulnerabilities identified in the Conexus

Wireless Telemetry protocol [22]. As described in this statement, the Conexus protocol

was found to contain vulnerabilities because it did not use encryption, authentication, or

authorization. According to the Medtronic security bulletin, the Conexus protocol allows

remote transmission of data from the cardiac device to a specified clinic, display of device

information in real time for physicians, and wireless programming of device settings.

Although this is just one example of the security vulnerabilities which exist in implantable

medical devices, the lack of basic security measures such as encryption, authentication, and

authorization is not uncommon in networked implantable medical devices due to resource

and power constraints. Furthermore, security vulnerabilities in these life-critical systems

could lead to not only the compromise of sensitive personal data but also potentially to

injury or death. There is some research work related to constrain of medical devices [23,

22], attack vectors and threats for medical devices [24, 25], lightweight encryption and

key management for medical devices [26, 27], and external hardware for medical device

security [28, 29, 30]. However, most current work does not consider the heterogeneous

system model for e-health security. Therefore, our final contribution will be to propose an

e-health system model with consideration of the resource limitations of wireless medical
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devices and provide a case study to show that this system model supports medical devices

with varying power and resource constraints.

1.4 Major Contributions and Organization

There are several contributions of this thesis, including:

• A comprehensive system model for e-health

• A survey of the state-of-the-art in e-health security and privacy

• An e-health system model which considers varying battery capacity and computa-

tional ability for medical devices

• A case study which demonstrates that the proposed system model can support het-

erogeneous medical devices, showing that it is possible to reduce the computational

overhead to provide security on power-constrained devices in the system

The remainder of this thesis is structured as follows:

1. In Chapter 2, we present a survey of the state-of-the-art in e-health security, including

a comprehensive system model, an outline of attack models, a description of security

objectives, and a survey of current solutions.

2. In Chapter 3, we present a survey of recent work in e-health privacy, including an

outline of challenges and threats, a description of privacy objectives, and a survey of

current solutions.

6



3. In Chapter 4, we propose a comprehensive system model for e-health applications

with consideration of battery capacity and computational ability of medical devices.

A case study is presented to show that the proposed system model can support het-

erogeneous medical devices with varying power and resource constraints.

4. Finally, in Chapter 5, we present conclusions and ideas for future works.
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Chapter 2

E-HEALTH SECURITY

2.1 E-Health System Model

An e-health system is one which electronically exchanges healthcare information from

patient to provider and is comprised of a body area network linked to a healthcare center

(often via the user’s smartphone).

2.1.1 System Architecture

There are multiple layers to consider in a e-health system, including the perception layer,

network layer, data processing layer, and application layer. The layers considered in this

system are shown in Fig. 2.1.

Application	Layer

Data	Storage	&
Processing	

(Cloud	Layer)		

Network	LayerPerception	Layer Web	Server

Secure	Server

Device
management

Data	display

Wearable	sensor

Implanted	device

Patient's	smartphone

Data	storage

Data	analytics

Remote
monitoring

Data	Collection

Data	Storage	&
Processing

Patient

Doctor

Figure 2.1: E-health overall system architecture is shown.
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The system is comprised of four major network layers [31]:

1. Body area network (BAN) or Perception Layer: Body sensors and smart mobile

device. Often, protocols such as Bluetooth or ZigBee are used in this layer.

2. Personal area network (PAN) or Network Layer: Connects the BAN with the remain-

der of the system via WiFi or cellular networks

3. Wide area network (WAN) or Data Processing Layer: Internet connection to data

processing server layer, which handles analytics, data storage, and providing a secure

server

4. Application Layer: Back-end to user and physician software applications

The perception layer, or body area network (BAN), consists of sensors and actuators which

serve to collect physiological data and provide therapy. Devices within the perception

layer of e-health systems include wearable devices as well as connected implanted devices.

Often, protocols such as Bluetooth or ZigBee are used in this layer.

The network layer, or personal area network (PAN), serves to connect the perception layer

with the remainder of the system through a WiFi connection or cellular networks. In many

cases, the user’s smartphone is used to provide this link, often through an app developed

for this purpose by the healthcare provider.

In the wide area network (WAN) layer, an internet connection provides a link between the

PAN layer and the data processing server layer. The data processing layer serves several

functions, such as data analytics, data storage, and providing a secure server. Data analyt-

ics may include statistical or machine learning models to provide insights on patient data

trends, anomalies, or other metrics.
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In the application layer, multiple functionalities are implemented, such as remote control

of therapy settings, data display, device management, and remote patient monitoring.

2.1.2 System Constraints

There are a few notable constraints on e-health medical devices, including their small size,

processing limitations, and non-rechargeable battery [32].

1. Size is a limitation of medical devices because they often need to be deployed in

or on the user’s body. For implantable devices, larger devices are more likely to be

rejected by the immune system. For wearable devices, users are unlikely to wear a

device that is large and inconvenient.

2. Processing power in medical devices is also typically low, in part due to size and cost

restrictions.

3. Battery life in medical devices can last up to ten years; however, security protocols

such as cryptography, machine learning approaches, and hashing require significant

power which could quickly drain the battery. If the battery is exhausted, the whole

device needs to be replaced, which can be especially challenging for implantable de-

vices. Communication transmissions themselves cause significant power consump-

tion, so low-power techniques must be used for communications [32].

10



2.2 Attack Models and Security Objectives

From the network model shown in the previous section, several attack vectors can be iden-

tified [33]:

1. Medical device software, hardware, or firmware vulnerabilities

2. Protocol vulnerabilities (Bluetooth, BLE, ZigBee, WiFi, Cellular, etc.)

3. Non-compliant or over-privileged smartphone apps

4. Inadequate protection of data stored at the gateway (e.g. lack of encryption, access

control, authentication, or inappropriate policy)

Threats to medical devices in an e-health can be classified into three broad categories:

confidentiality, integrity, and availability, as shown in Fig. 2.2.

TextE-Health	Attack	Models

Confidentiality Integrity Availability

Eavesdropping Sniffing
Firmware

Modification

Information

Disclosure

Man	in

the

Middle

Tampering Replay

Denial-

of-

service

Resource

Depletion
Jamming

Figure 2.2: Attack models applicable to e-health are displayed and classified into the three
major security objectives, confidentiality, integrity, and availability.
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2.2.1 Confidentiality

Threats to confidentiality are eavesdropping attacks in which the attacker gains unautho-

rized access to sensitive information. This may include patient data or credentials. This

type of attack is targeted mainly at the network layer and can be prevented using encryp-

tion of exchanged data and identification and authorization mechanisms for incoming net-

work traffic [34]. The main attacks against confidentiality are eavesdropping and sniffing.

Eavesdropping is real-time interception of a user’s personal information by an adversary.

Sniffing is focused on traffic analysis to obtain sensitive data such as credentials and MAC

addresses. Eavesdropping and sniffing attacks utilize spyware, a universal software radio

peripheral, or traffic analysis and exploit weak or non-existent encryption algorithms [33].

The privacy of healthcare data in patient identity is especially important due to the need to

comply with legislation such as HIPAA, so data confidentiality is of paramount importance

in e-health systems.

2.2.2 Integrity

In threats to confidentiality, the attacker tampers with sensitive information. This may

include modifying medical device therapy settings, deleting stored medical data, drifting

the clock to make timestamps invalid or misleading, or even disabling the device alto-

gether [35]. In a firmware modification attack, an adversary modifies a program stored in

non-volatile memory that controls hardware of the device. Researchers have demonstrated

firmware modification attacks on medical devices which often use reverse engineering and

exploit insufficient of input validation, encryption, or authentication. Another prevalent

attack on medical devices is information disclosure, in which sensitive data is exposed

by an unauthorized entity. Additionally, an adversary can perform a man-in-the-middle

attack by intercepting the communication between two legitimate parties. Information dis-
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closure, unauthorized access, and man-in-the-middle attacks have also been implemented

in e-health applications by exploiting weak authentication, encryption, and message in-

tegrity mechanisms. Tampering and modification attacks have also been implemented on

implantable and wearable medical devices using reverse engineering and weak channel

exploitation. Tampering and modification attacks alter data without proper authorization.

Replay attacks can also be used in the context of medical devices in order to obtain valid

packet data, intending to corrupt or impersonate it. [33].

2.2.3 Availability

Threats to availability include attacks (often called denial-of-service attacks) where the

adversary acts to deny services to legitimate users. Motivations may include preventing a

medical device from collecting or transmitting data, or preventing the device from receiving

configuration. Denial-of-service attacks are typically either implemented as flood attacks or

buffer overflow attacks. Flood attacks send an overwhelming number of packets to a given

device, saturating the target device. Buffer overflow attacks use a memory buffer overflow

to cause the target device to consume all available memory or CPU time. Denial-of-service,

resource depletion, and jamming attacks have been demonstrated on medical devices by

using a universal software radio peripheral or exploiting communication channels with

weak encryption mechanisms or bombarding the device with requests. Due to the resource-

constrained nature of many networked medical devices, the battery of these devices could

be easily drained by launching such an attack [33].

2.3 Security Vulnerabilities

Medical devices on the market today often have severe security vulnerabilities for several

reasons. First, implantable and wearable devices are power-constrained, so they cannot
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afford the energy expense of additional security. Secondly, the primary function of medical

devices, which is providing medical treatment or monitoring, can be life-critical, so many

medical device manufacturers argue that proper function of the device should be consid-

ered before security. When manufacturers are trying to balance software and hardware

functionalities, low power consumption, and low cost, security often falls to the wayside.

Some medical device manufacturers use proprietary protocols in their networked medical

devices to save on cost and offer increased customization. However, these proprietary pro-

tocols often sacrifice security in favor of lowering energy requirements or cost. For exam-

ple, a proprietary protocol utilized in many networked devices developed by Medtronic was

recently shown to lack basic encryption and authentication services [22]. Security vulnera-

bilities that have been exploited in recent medical device security research in implementing

attacks against confidentiality include [33]:

• Lack of encryption

• Insecure key exchange

• Sending credentials and sensitive information in cleartext

Vulnerabilities exploited for attacks against integrity include:

• Missing input validation checks

• Weak access control and authentication mechanisms

• Absence of read / write protection in device firmware

Vulnerabilities exploited for attacks against availability include:

• Absence of traffic restriction

• Absence of traffic analysis
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2.4 Current Solutions

Several approaches have been proposed to increase security in light of the unique chal-

lenges of e-health systems, as shown in Table 2.1.

Table 2.1: Security Solutions for Demonstrated Attacks
Security Solution Approaches Attacks Addressed
Biometric Approaches Biometric authentica-

tion, key generation from
biometrics

Eavesdropping, Man-in-
the-middle

Distance / Proximity Based
Approaches

Sound detection through
piezoelectric element,
Near Field Communica-
tion (NFC) tag

Eavesdropping, Replay

Key Management Symmetric key cryptogra-
phy, Public (asymmetric)
key cryptography

Denial of service, Eaves-
dropping, Man-in-the-
middle, Replay

Audit Mechanisms Maintenance and alerting
on device audit logs

Non-repudiation

Anomaly Detection SVMs to classify network
activities

Internal attacks, Resource
depletion, Malicious com-
munication

External device methods IMD Guardian - external
device using electrocardio-
gram signals, IMD Shield
- full duplex radio device
with receiver and jamming
antenna, Cloaker - external
device which shares master
key to authenticate device
and caregiver

Eavesdropping, Device
capture

Lightweight encryption
and key management
techniques

Vibration-based key ex-
change protocols

Eavesdropping, Man-in-
the-middle
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2.4.1 Access Control

2.4.1.1 Biometric Authentication

Biometric authentication measures unique, verifiable physiologic characteristics and searches

against samples stored in the system using screening, scanning, and feature extraction.

First, the reference image is chosen from the images captured as the clearest image. A

discriminative bit set is acquired from the image, and hamming distance is used as a dis-

tance metric to verify the biometric [32]. This approach requires relatively low overhead,

but there is a security concern that storing biometrics in the system is similar to storing

a master key in the system. Bio-cryptographic key management protocols have also been

proposed, where unique physiological features such as Inter Pulse Interval (IPI) are used

to generate random cryptographic keys. In such methods, the finite monotonic increasing

sequence generation mechanisms and Hamming Distance can be used to extract bits from

physiological signals with a high degree of entropy. These random bit sequences can be

used as cryptographic keys for secure data exchange [36].

2.4.1.2 Distance-based approaches

Distance-based approaches to security in medical devices have been proposed, where ac-

cess is granted through touch or close proximity. For example, the work presented in [37]

detects sound emitted by the medical device through an implanted piezoelectric circuit el-

ement in its access control scheme. In [38], a Near Field Communication (NFC) approach

is used for access control to patient information in the medical device. In this method, an

NFC tag is implanted into the patient’s body, enabling communication with a medical prac-

titioner through the use of a smart phone. Such approaches avoid the need for cryptographic

techniques, which place strain on battery life.
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2.4.1.3 Key Management

Symmetric and public key techniques can be used to manage cryptographic keys used in

encryption and message authentication. In symmetric techniques, a secret key is shared

between only the trusted devices and personnel. Public key techniques utilize a public key,

which is made public, and a secret key which is used as a digital signature. Symmetric key

techniques are generally preferred for medical device applications as they are less costly

in terms of computational complexity and power consumption. Asymmetric methods often

utilize complex circuits and high data exchange rates and communication before granting

access, increasing the power consumption of the device [32].

2.4.2 Auditing and Anomaly Detection

Audit logs are maintained in many medical devices in order to keep a record of the pa-

tient’s health history and conduct of the device over a particular time interval. However,

memory limitations in medical devices could lead to overflowed audit logs, making the

device vulnerable to attacks. One approach to mitigate such risks is alerting the provider

upon completion of memory storage [39] or overwriting previous data which is no longer

relevant. Anomaly detection approaches have also been proposed, such as the approach

proposed in [40], which uses unsupervised support vector machine (SVM) methods for

detecting resource depletion attacks. Medical device access patterns specific to a given

patient are used to train the SVM, with access information being comprised of five fields:

reader action, time interval, location, time, and date of use. This information is fed into

linear and non-linear SVMs for learning and classification. In this experiment, the linear

and non-linear SVMs produced accuracies of 90% and 97%, respectively, for classifica-

tion of resource depletion attacks. One concern about machine learning approaches is the

processing power it takes to train and deploy such algorithms.
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2.4.3 External Hardware Approaches

Several external device approaches have been proposed to improve the security of medi-

cal devices, such as Cloaker [28], IMD Guard [29], and IMD Shield [30]. These external

devices generally aim to increase access control to the device in normal operation but re-

move barriers to access in health emergencies. The Cloaker device is an external device

worn by the patient to ensure security of the medical device (completely ignoring all au-

thentication requests) when worn and give open access when not worn. The idea is that

the Cloaker device can be removed in a health emergency situation and the medical device

will respond to all authentication requests. IMD Guard is mechanism which uses an ex-

ternal device called the Guardian. This approach is used with cardiovascular devices such

as implantable cardioverter-defibrillators, pacemakers, and electrocardiogram sensors. The

Guardian facilitates interactions between the healthcare provider and medical device in or-

der to provide security in normal situations but provide access in case of emergency. A

challenge-response technique where the device sends challenges at different time intervals

is used to enter the emergency mode. The medical device programmer is authenticated by

verifying the signature of the device, issuing temporary session keys. The patient’s ECG

signals are used for key sharing between the device and the Guardian. One vulnerability of

the Guardian approach is that it is vulnerable to man-in-the-middle attacks. The third exter-

nal device, IMD shield, is a full-duplex radio device consisting of a receiver and jamming

antenna. The receiving antenna obtains and deciphers signals, and the jamming antenna

transfers an arbitrary flag to prevent eavesdropping by blocking interception of transmis-

sions from the medical device. One vulnerability of this approach is that IMD Shield

commands do not remain confidential when the commands are sent from the caregiver to

the medical device. Furthermore, this device does not comply with FDA regulations as

jamming interferes with other radio frequency devices, so this is not a feasible solution.
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2.4.4 Lightweight Encryption and Key Management

Vibration-based key exchange protocols have been proposed as lightweight security for

medical devices [41]. In this scheme, vibrations are initially received by measuring vibra-

tions of an accelerometer. Low frequency noise from action of the patient is then removed

using a high pass filter, and the RF module is activated in the case that a high-frequency

signal is perceived. Once the RF module is activated, the symmetric key can be shared

between devices. The key is produced by the first and modified into a vibration signal.

Once this signal is received, it is transformed back into a bit string key using a two-feature

On-Off Keying (OOK) demodulation mechanism. The major limitation of this approach

is that an adversary may be able to extract keys from vibration signals, which are acoustic

and electromagnetic waves that could potentially be captured [33].

2.5 Conclusions: E-health Security

This survey provided a system model along with attack models and security objectives.

We outlined common security vulnerabilities in medical devices, then surveyed current

solutions which address the given attack models.

Based on this survey, future directions for research are suggested as follows:

• Address security vulnerabilities present in legacy medical devices deployed in many

real-world systems.

• Ensure data and message integrity without significant additional computational over-

head.

• Develop more secure lightweight cryptographic and authentication protocols.
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• Implement proper firmware integrity check mechanisms to prevent firmware modifi-

cation.

• Design a legitimate external eavesdropper that detects malicious network traffic using

machine learning techniques. This will increase rates of attack detection without

consuming power of the medical device.

• Dynamically recover the system after detecting attack vulnerability by changing the

network configuration.

• Propose a standard communication protocol for body area network communication.

There is a lot of work still be done to address wireless security and privacy concerns in

the field of e-health, especially due to the sensitive nature of the data being transmitted

and the unique constraints of medical devices. E-health promises a way to increase access

to healthcare and has been steadily growing in popularity, so it is important to secure this

platform as we move into the future.
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Chapter 3

E-HEALTH PRIVACY

3.1 System Model

Here, we split the e-health system model as shown in Fig. 2.1, which includes the percep-

tion layer, network layer, cloud layer, and application layer into two primary components:

data collection and data storage and processing.

The perception layer includes networked medical devices, including wearable sensors, ac-

tuators, and implantable devices, in addition to smart devices which act as a gateway be-

tween the perception layer and network layer. Patients’ health data transmitted in this layer

may include ECG, fetal monitors, temperature, or blood glucose levels [8]. Protocols such

as Bluetooth, WiFi, ZigBee, and cellular are commonly used in the perception and network

layers, which together comprise the data collection component of the e-health system. The

data storage and processing layer commonly includes the cloud layer, including data stor-

age, analytics, and processing. This component is often implemented as a Software as a

Service (SaaS) architecture.

3.2 E-health Privacy Challenges

3.2.1 Data Collection: Vulnerabilities and Threat Models

In the data collection stage, there are two primary locations where data privacy can be com-

promised: at the perception layer, or at the network layer by a third-party service provider

(TSP) or communication service provider (CSP). In a medical data sharing framework,
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parties involved include patients, researchers, wearable device providers, and data brokers.

Patients typically trust hospitals and health service providers, but not necessarily the third

parties that are involved [42]. Because of this, it is important to properly identify trusted

and untrusted third parties in an e-health data collection system.

There are several potential threats to data privacy at perception layer. Due to the ubiq-

uity and lack of standardization of IoT devices in today’s world, some medical sensors

consistently provide protected data, while others may be prone to attacks such as eaves-

dropping [43]. Wearable medical devices are small in size, so therefore they have smaller

battery sizes that need to be constantly charged. Traditional cryptographic algorithms need

more power than allowed by many wearable devices, underscoring the need for low-power

privacy defenses [44]. The data stored in wearable devices are often not encrypted, ant the

devices do not have any password protection, pin or biometric security, making wearable

devices weak in tamper-resistance [44]. Furthermore, a user may have other IoT devices

in their home which could interfere with the medical sensor devices if they are under sim-

ilar networks [43]. Another challenge of data collection in e-health is the reliability and

accuracy of information collected by the patient themselves [45]

It is not only medical sensors that collect sensitive data in the healthcare system; in [46],

researchers demonstrate that RFID (Radio Frequency IDentification) can be used in health-

care to efficiently track hospital supplies, medical equipment, medications and patients.

However, the prospect of wide spread use of RFID tags in healthcare has raised questions

regarding privacy, because RFID data in transit can easily be intercepted and potentially

used to trace personal health information, clinical history and financial information of the

user.

Regardless of whether the data transmitted by sensors in the IoT healthcare system is pro-

tected or not, another attack surface is presented at the network layer, in data transmission

from the patient to the cloud server by the communication service provider (CSP), which
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may not be fully trusted [43]. Sensitive physiological data sent can be sent over open wire-

less channels, enabling threats such as eavesdropping, impersonation, data integrity, data

breach, collusion, and so on [47].

Threat models of the data collection layer in an e-health system are detailed in [8] as fol-

lows:

1. Collusion: In this attack, an IoT medical device purposely maintains connections

with an outsider, who may be motivated to gain sensitive information about the pa-

tient from the healthcare system

2. Eavesdropping: In an eavesdropping attack, health data transmitted by a medical

sensing device can be sniffed, resulting in loss of data and potentially identity privacy.

3. Impersonation: Here, an attacker plays the role of a trusted party by the medical

sensor, potentially permitting the attacker access to the health data, database, and

network resources.

4. Data Leakage: In this attack, health data is transmitted from the healthcare system to

an unauthorized external destination.

3.2.2 Data Storage and Processing: Vulnerabilities and Threats

Data stored in an e-health system can be referred to as the Electronic Health Record (EHR)

or Electronic Medical Record (EMR). Due to the huge volume and complexity of healthcare

data, it is infeasible to manage this data using traditional software or hardware approaches.

As a result, many institutions are moving towards cloud-based systems. A challenge which

is unique to cloud-based systems is shared tenancy, where multiple parties share the same

physical hardware [48]. Furthermore, the introduction of a cloud-based data storage system

requires some amount of trust in the cloud service provider.
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One of the challenges in the data storage and processing layer of the IoT healthcare sys-

tem is ensuring that only authorized parties have access to store and retrieve data [49]. It

is important to remember that the patient should always maintain the role of data owner,

whereas hospital staff is a data user [50]. Access control models can be effective for exter-

nal attacks, but are generally ineffective against internal attackers as they are likely to be

authorized to access the data [45].

In data storage, we must consider the scenario that the storage system is attacked and the

data stolen. In this case, the attacker should not be able to determine the content of the

data, which can be achieved by encryption [49]. When stored data is encrypted, if the

system loses control over the data, patients will be accountable for their data as they will

control the encryption keys [51]. However, encryption of data limits the searchability of

the data: healthcare providers have to decrypt the data prior to searching on the decrypted

data, resulting in increased time and cost for the data retrieval and processing [45].

Furthermore, in the event of data compromise, the attacker should not be able to gain the

identity of the patient [52]. The patient’s permanent identifier should not be stored with

their personal health information; rather, a temporary identifier should be used to make

data untraceable to its original owner [52]. Another consideration is the need to be able

to process healthcare without revealing patient identity. There are several motivations for

being able to process large amounts of clinical data while preserving patient anonymity,

such as training machine learning models [53] [54], better understanding of patterns and

trends in public health and disease [55], diagnosis diseases and find treatments [56], and

per-patient data sharing between healthcare institutions [57]. Anonymization can be used

to process large amounts of patient data while being able to preserve identity privacy; how-

ever, such techniques may present tradeoffs with searchability, efficiency, and resulting

model quality [56].
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Several threats to the data storage and processing layers of the e-health system are summa-

rized as follows [58]:

1. Spoofing: An adversary can gain access to medical data through forged credentials.

2. Malicious Insiders: Doctors who are the authorized users of e-health records can

share this data with unauthorized pharmacies and laboratories in acts of unauthorized

information disclosure.

3. Data Leakage: In a data leak, if not properly anonymized and encrypted, an attacker

can gain access to the identity and / or personal health information of users.

4. Repudiation: Each activity must be monitored and logged with entity details so that

an entity cannot deny modifying data.

3.3 Security and Privacy Requirements and Objectives

The HIPAA Privacy Rule [11] governs general policy decisions on collection, storage and

processing of healthcare data, maintaining that data shared in a clinical setting, such as the

patient’s identification, diagnoses, treatment, and laboratory results, must only be released

with the explicit permission of the patient. In part because of such policies in the health-

care system, and additionally to protect very sensitive patient data, security and privacy

requirements must be more stringent in e-health than in some other IoT or cloud com-

puting systems. All layers of the e-health system share common underlying security and

privacy goals [42], including:

• Accuracy: Health-related data often is characterized by a certain accuracy which

must be preserved by the e-health system

• Authenticity: The source of data must be able to be accurately verified
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• Confidentiality: Patient data and identity confidentiality must be preserved through-

out the e-health system

• Freshness: Monitoring of certain health conditions may require short response times

following data collection

• Availability: The data collection and processing systems must maintain availability

• Integrity: The system should be able to detect tampering and be tamper-resistant

3.3.1 Data Collection

At the data collection layer of the e-health system, it must be ensured that if data is compro-

mised on a physical node on a multi-hop system or at the communication service provider

level, the confidentiality of the user’s data and identity must be maintained. Since data col-

lected may be sent to the cloud over open wireless channels, very little trust can be put in

the entities involved in transmitting data to the cloud [47] [8]. However, in order to provide

end-to-end mechanisms for ensuring security and privacy, researchers often assume that the

data is collected by certified and trusted devices [42]. Since users may often be collecting

data themselves in an e-health model, checks may need to be put in place in order to ensure

that the data is collected by the device as intended and is as accurate as possible [45].

Power, memory, and size constraints on networked medical devices also must be considered

in designing security solutions for the data collection layer [44]. Availability is also a con-

cern for data collection in an e-health system, since data must be able to be collected con-

tinuously and uploaded to the cloud for processing in real time for many applications [45].
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3.3.2 Data Storage and Processing

The patient is considered the owner of their health data according to the HIPAA Privacy

Rule [11]; therefore, they should have the ability to grant, deny, or delegate access to their

own data [59] [42]. Other parties, such as healthcare administrators, healthcare practition-

ers, and patient family members may also need access to the patient’s data [59]. Each of

these parties should only have access to the data they need to perform their job. Further-

more, when a user requests access to a patient’s data, they must have a valid credentials

which are validated by an authentication server, which grants the proper access. It also

should be noted that in the case of an acute health emergency, immediate access to the

necessary patient data should be granted to an available healthcare practitioner [59].

Many recent works in data storage for healthcare systems require that the confidentiality of

the user’s data and identity is maintained even if an attacker gains access to the data or any

of the cloud servers in the e-health system [43]. In some research, decentralization of the

database is added as a security requirement in order to avoid a single point of failure as is

seen in centralized systems [45] [51] [49] [53].

For data processing, there must be a method to anonymize data in order for patient data

to be able to be shared for purposes such as research investigations without revealing the

associated patient identity [60] [61] [58].
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3.4 E-Health Privacy Solutions

Many e-health privacy solutions proposed in existing research primarily focus on one layer

of the e-health system: data collection, storage, or processing. Research can be further

classified by the general solution type proposed, listed below:

• Obfuscation

• Secret sharing

• Distributed data mining

• Authentication

• Access control

• Blockchain

• Anonymization

• Cryptography

3.4.1 Obfuscation

Obfuscation techniques in e-health privacy are focused on the data collection layer, dis-

guising the true use of a medical device in order to combat attacks such as traffic analysis.

For example, in [62], physiologic parameters are embedded into a message from a cover

device. In this implementation, the cover device is intended to not be associated with se-

rious medical conditions; an example for a cover device might be an IoT light bulb. In

order to select the cover device, the system scans for nearby devices in order to produce a

realistic device type. Some methods suggested by [62] to embed physiological parameters
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into messages include buffering physiological data prior to transmission, using a packet

length associated with the physiological data, or multiplexing the physiological data across

multiple cover devices.

Obfuscation can also be used at the cloud data storage layer by using decoy techniques as

in [48]. Also called ”fog computing,” these methods create decoy information and locate it

beside the real information in the cloud to hide the true owner of the data.

3.4.2 Secret Sharing

Secret sharing methods are used at the cloud layer in order to preserve the privacy of stored

patient data. In a secret sharing scheme, a secret is encoded into a number of shares, which

are distributed across servers at the cloud layer, each cloud server holding one share of the

secret [47]. When enough secret shares are combined, the secret can be reconstructed [43].

In e-health applications, the ”secret” can be considered to be the sensitive patient data

being stored on cloud servers. Several secret sharing schemes exist, including Shamir and

Blakley’s [63] [64], where the size of the share is 1/m the size of the secret, where m is the

number of blocks in the secret. One major drawback of these methods is heavy computation

cost, so some research has been done in the context of e-health secret sharing to propose a

scheme with lower computation cost. One such method is based on Slepian-Wolf coding,

which achieves optimal share size using binning [47].

3.4.3 Distributed Data Mining

While secret sharing helps preserve the privacy of stored data, distributed data mining

techniques can help preserve the privacy of data being processed. This can allow parties

to acquire knowledge from healthcare data without gaining access to sensitive patient data.

One example of such a method is an adaptive distributed privacy-preserving data mining

29



technique based on an ensemble strategy [53]. Another approach is a distributed learning

method which keeps all data within the originating institution [65].

3.4.4 Authentication

Some research has been pursued in privacy-preserving authentication techniques for e-

health, which mainly concerns access to stored patient data. In [59], Public Key Infrastruc-

ture (PKI) is used for authentication, where the authentication server validates the user’s

digital certificate. This ensures that only users with a valid certificate are granted access

to a patient’s data. Work has also been done in authentication for RFID-based systems

in e-health, where authentication uses an anonymous protocol to disclose less information

than existing RFID authentication schemes [46]. In this scheme, no sensitive information is

leaked to the adversary even if a tag’s information is read without the knowledge or consent

of the owner.

3.4.5 Access Control

Access control is the mechanism that enables legitimate parties to access stored data with-

out allowing an attacker to view or edit the data. The most standard form of access con-

trol in existing literature and industry practice is role-based access control. Privacy-aware

versions of role-based access control by using group-based access control in order to pre-

serve sender anonymity [46]. Researchers in [59] propose an attribute-based access control

model which grants the proper access level based on resource attributes, subject attributes,

and environmental attributes.
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3.4.6 Blockchain

As decentralization has promised privacy preservation, there has been a lot of recent re-

search on blockchain for e-health, which leverages its properties of decentralization to

ensure accountability, integrity, and privacy. Blockchain has been demonstrated in the fi-

nancial field as a trusted, auditable data storage mechanism, which is accomplished by

using a decentralized network of peers and a public ledger. Blockchain is a growing list

of records (or ”blocks”) which are cryptographically linked, where blocks are distributed

across multiple nodes of a cloud infrastructure and are not centrally stored. In e-health

applications, each block would contain a timestamp of its creation, a hash of the previous

block and transaction data, and patient healthcare data [45]. Once in the blockchain, data

is publicly accessible, so some research has been done on encrypting and obfuscating data

before inserting it into the blockchain [51] [49]. One paper uses a sidechain and a main-

chain to disassociate the identity of the patient with their health data [52]. In this approach,

the sidechain is a private chain which stores the identity of the patient, and the mainchain

is a public chain which stores the patient’s data with a temporary identifier. Permissioned

blockchains can also be provisioned to preserve privacy in e-health applications by using

channel formulation schemes and membership service supported by blockchain. There is

also research that suggests that blockchain-based solutions could enable an untrusted third

party to process a patient’s data without violating patient privacy [55].

3.4.7 Anonymization

There has been significant research in the use of anonymization to preserve patient privacy

in e-health systems while being able to mine the data for research purposes. K-anonymity

can be used to hide the origin of the dataset and identity of the patient by using supression

and generalization [61]. Another tool for anonymization of healthcare data was proposed
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which uses techniques such as including fake data and replacing characters by random num-

bers and letters [66]. Another approach to acheive privacy-preserving data publishing is de-

tailed in [60], where anonymization is achieved through data publishers who act as a mid-

dleman between the data owner and recipient to ensure that the privacy of the data owner

is preserved throughout the transaction. The authors of [58] list several techniques that can

be used to anonymize data, including generalization, suppression, and pseudonymization.

Generalization is a widely used anonymization approach which uses predefined hierarchies

or values; suppression is a version of generalization in which values are replaced with ’*’,

and pseudonymization is a version which replaces values with pseudonyms.

3.4.8 Cryptography

Cryptography approaches have been proposed for privacy preservation both for stored data

and data in transit to the cloud following data collection. For encrypting stored data, [48]

proposes a three-party one-round authenticated key agreement protocol based on the bi-

linear pairing cryptography that can generate a session key among the participants and

communicate among them securely.

Encrypting data in transit from the data collection layer is more complicated since medical

devices are often power, CPU, and memory constrained, making traditional cryptographic

approaches often impractical. To this end, one paper proposes a lightweight field pro-

grammable gate array (FPGA) hardware-based cipher algorithm for use in e-health data

collection [8].
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3.5 Conclusions: E-health Privacy

In this paper, we survey privacy in e-health applications. First, we present a comprehensive

e-health system model, dividing the system into two main sections: data collection, and

data storage and processing. Then, we present challenges, vulnerabilites, and threats based

on this system model. We then define security and privacy requirements and objectives,

including goals such as accuracy, authenticity, confidentiality, freshness, availability, and

integrity. Finally, we survey the state-of-the-art in e-health privacy, detailing solutions

such as obfuscation, secret sharing, distributed data mining, authentication, access control,

blockchain, anonymization, and cryptography.

It seems that an important step for future work in e-health privacy would be to further

investigate the policy side of the problem. Although current regulations require compliance

with the HIPAA privacy laws, these are fairly vague and do not provide specifics for e-

health systems. Also, it would be helpful to have more research in patient-centric privacy,

allowing patients to specify who can have what level of access to their records. Finally,

as wearable and implantable medical sensors increasingly become an important part of e-

health systems, more work should be done on privacy for these data collection devices,

which may be limited in power and memory and require creative approaches to preserve

privacy without depleting their resources.
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Chapter 4

HETEROGENEOUS SYSTEM MODEL FOR SECURITY IN E-HEALTH

APPLICATIONS

4.1 System Model

In this section, we will introduce the system model, body-area networks, and attack models

perspectives.

4.1.1 System Overview

Application	Layer

Data	Processing	
(Cloud	Layer)		

Network	LayerPerception	Layer Web	Server

Secure	Server

Device
management

Data	display

Remote	control	of	
therapy	settings

Wearable	sensor

Implanted	device

Monitor	device

Remote	
Control	Device

Data	storage

Data	analytics

Remote
monitoring

Figure 4.1: E-health overall system architecture is shown.

We consider modern medical sensing and actuation devices, including implantable devices,

in our proposed system model. The medical devices maintain a wireless local network in

order to monitor physiological quantities or remotely modify therapy settings. There are

multiple layers to consider in the proposed system, including the perception layer, network

layer, data processing layer, and application layer as shown in Fig. 4.1.
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The sensors and actuators seen in the perception layer are often power-constrained, so

heavyweight security is impractical. Traditionally, information has been secured at the net-

work layer, leaving the perception layer, or in this case, the body area network vulnerable

to various attacks. In Fig. 4.1, wearable sensors and implanted devices are considered.

Patients’ data can be collected from implanted devices and wearable sensors. Monitor de-

vices and remote control devices can be utilized as a relay to transmit the sensed data from

patients to the cloud. Security in wired communications is not considered in this thesis.

Figure 4.2: Communication between devices in the body area network of the example
system.

4.1.2 The Body Area Network

For the purpose of this study, we use an insulin delivery system as an example to illustrate

the types of connected medical devices present in the body area networks. For the sample

system, this network will include an implanted infusion pump, a wearable blood glucose

meter, a remote monitoring device, and a remote control device. Implantable insulin infu-

sion pumps are implanted subcutaneously (under the skin), with a catheter extending from

the pump into the peritoneal cavity. Implantation of insulin pumps is relatively unpopular

due to the impracticality of replacement and refill, but the subcutaneous delivery of insulin

is thought to more closely mimic the delivery of insulin in people without diabetes [67].
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Wearable continuous blood glucose monitors take blood glucose readings regularly to pro-

vide data to monitor the user’s blood sugar levels. There is a large market for continuous

blood glucose monitors for patients with diabetes, and many products on the market have

incorporated wireless technologies for display of data. The sensor on the continuous blood

glucose monitor is a very thin wire or filament inserted with the aid of a needle under the

user’s skin, typically applied on the abdomen or back of the underarm. A sticky back-

ing holds the sensor in place on the user’s skin. Using similar enzymes as a test strip

for a glucose meter, the sensor detects glucose in the interstitial fluid (the fluid between

the cells) [68]. A wireless transmitter can attach on top of the area where the sensor was

inserted to send data to a monitor device every one to five minutes. The monitor device

receives data from the blood glucose meter and presents information to the user. Displays

often include current glucose levels, past readings, alerts on abnormal glucose levels, sta-

tus messages, and trend information. Standalone monitor devices as well as smartphone

apps are available on the market. Finally, in networked medical device systems such as the

one we have outlined, the capability for remote control of therapy settings by a medical

professional is often incorporated into the functionality of the system. This introduces a

remote control device, which has the ability to modify therapy and firmware settings on

the implantable infusion pump. The wireless communication in the system is shown in

Fig. 4.2.

Within the system, consideration must be given to the resource divide between devices.

For example, since an implantable device may require surgery to recharge or replace a

battery, it is imperative to reduce the power consumption for such a device. A smartphone

application, however, may have less restrictions on power consumption and CPU usage

due to the utilization of more powerful processors in most smartphones and relative ease of

recharging the device.
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Table 4.1: Summary of Attack Models for Networked Medical Devices
Attack Model Implementation Motivation of At-

tackers
Countermeasures Objective of secu-

rity
Eavesdropping Universal Soft-

ware Radio
Peripheral

Extract sensitive
exchanged data;
Use compromised
device to attack
other sections of
the healthcare
network

Encryption of
exchanged data;
Identification and
authorization of
incoming traffic

Patient data pri-
vacy protection;
Protection of
credentials

Unauthorized
Access

Universal Soft-
ware Radio Pe-
ripheral; Unautho-
rized programmer
used to capture
PIN

Modify ther-
apy settings or
firmware; Drift
clock; Delete
stored data; Finan-
cial, nation-state,
or cyber-terrorist

Tamper resistance
of firmware to
unauthorized
reprogramming
and passive secret
stealing; Encryp-
tion of data stored
on the device

Maintain intended
device therapy
settings; Preserve
stored data

Denial-of-
Service

Repetitive mes-
sages to the device,
leading to resource
depletion; Buffer
overflow

Prevent device
from collecting
data; Prevent
device from
receiving configu-
ration

Reverse DNS
lookup to verify
the source address

Ensure availability
of the system to
the desired specifi-
cations

4.1.3 Attack Models

In such a system, an attacker may have various motives, including data capture or obtaining

unauthorized access to the device. Data capture can be achieved through an eavesdropping

attack and the risk mitigated through the use of encryption. The risk of unauthorized access

can be mitigated through the use of authentication and authorization [69]. Therefore, in our

proposed system model, we consider eavesdropping, unauthorized access, and denial-of-

services as shown in Table. 4.1. From Table. 4.1, we present the possible implementation

of each attack model, motivation of attackers, possible countermeasures and objective of

security corresponding to each attack model.
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4.1.3.1 Eavesdropping

An eavesdropping attack can be performed using a Universal Software Peripheral. If mes-

sages are not encrypted, the attacker can extract sensitive exchanged data, including device

identification, physiological patient data, therapy specification, and even authentication cre-

dentials exchanged in plaintext (if authentication is, in fact, used) [35]. This type of attack

is targeted mainly at the network layer and can be prevented using encryption of exchanged

data and identification and authorization mechanisms for incoming network traffic [34].

Again, however, encryption and authorization are costly for a power-constrained device, so

many networked medical devices may omit these basic security features against an eaves-

dropping attack.

4.1.3.2 Unauthorized access

An unauthorized access attack can be performed using a Universal Software Peripheral or,

in the case of wireless-programmable devices, even an unauthorized device programmer.

Unauthorized access could allow the attacker to make modifications to therapy settings,

modify the device firmware, drift the clock to make timestamps invalid or misleading,

delete data stored in the device, or even disable the device altogether [69]. In order to

prevent such an attack, the device firmware must be tamper-resistant to unauthorized re-

programming and passive secret stealing, and access control must be employed on each

node in the system in order to prevent unauthorized access from compromising the en-

tire system. Additionally, protection of storage should be implemented by encrypting data

stored on the device using security features on the hardware [70]. However, access con-

trol and encryption are costly in terms of power consumption, so many power-constrained

IoT devices (such as implantable networked medical devices) omit these critical security

measures.

38



4.1.3.3 Denial-of-service

A denial-of-service attack is when the attacker attempts to prevent the legitimate user from

accessing the networked services. This type of attack can be performed by sending repeti-

tive messages to the device, leading to device resource depletion. Denial-of-service attacks

are typically either implemented as flood attacks or buffer overflow attacks. Flood attacks

send an overwhelming number of packets to a given device, saturating the target device.

Buffer overflow attacks use a memory buffer overflow to cause the target device to consume

all available memory or CPU time.

4.2 Case Study

In this section, we introduce a case study based on our proposed system model. We first

introduce the classification of devices. Then we present different key management meth-

ods. Finally we show our test environment. Results of the experimentation are presented

and discussed.

4.2.1 Device Classification

For this study, the system model outlined in Fig. 4.2 is used as a sample system. A software

simulation using Python Bluetooth and AES libraries is utilized to quantify performance

and energy consumption of the system for both baseline and experimental phases.

Table 4.2 outlines the basis for classification for each device in the system. From metrics

such as the ease of battery recharge or replacement, it can be inferred that certain devices

have greater or fewer resources practically available to implement additional functionality,

such as security protocols. Additionally, the type and frequency of wireless communication
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by or to a device provides information about the ease of implementing additional function-

ality related to the security of the wireless protocol on that device. The proposed method

is to classify devices based on resource constraints, presence in the body area network, and

regular wireless activity to identify certain devices to run additional wireless security proto-

cols on in order to improve the security of the overall body area network. Using Table 4.2,

the monitor device can be identified as a potential target device on which to run additional

security protocols.

Table 4.2: Basis of Classification for Each Device in the System
Device Time to replace-

ment or battery
recharge

Availability in the
body network

Primary function Wireless commu-
nication

Implanted infusion
pump

4 - 7 years (re-
placement)

Always Drug delivery Receiver

Wearable sensor 7 - 14 days (re-
placement)

Always (except
during replace-
ment)

Obtaining physio-
logic data

Sends data every 1
- 5 minutes

Monitor device 12 - 24 hours
(recharge)

Usually Data presentation Receiver

Remote control
device

12 - 24 hours
(recharge)

Occasionally Changing ther-
apy settings on
implantable device

Sends data as nec-
essary

The monitor device is often a smartphone application, thus lending the resources of the rela-

tively powerful smartphone hardware. Most smartphone users charge their device regularly

and consistently keep it in range of the body area network. Furthermore, the monitor de-

vice is often receiving communications from other devices in the network about the user’s

physiological data. Since security can be a heavy consumer of a device’s power and CPU

resources, it is important to consider these metrics in device categorization. Furthermore,

consistent presence of the device in the network and consistent wireless communication be-

tween this device and other devices in the network are important for availability to search

for active threats. For these reasons, the user’s smartphone is a good candidate to imple-

ment additional security-related functionality in the body area network.
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Based on power and CPU constraints on each device in the system, the devices can be

classified into three primary categories:

1. Level 1: Implanted device;

2. Level 2: Wearable device;

3. Level 3: Smartphone (monitor device or remote control device).

In this device classification scheme, the implanted device is considered to be the most en-

ergy and hardware constrained due to the impracticality of recharge or replacement, while

the smartphone is considered the least energy constrained due to ease of recharge and rela-

tively powerful processor.

4.2.2 Key Management Methods

There are three different key management methods considered in this thesis: a baseline

method using homogeneous key management, semi-heterogeneous key management and

heterogeneous key management.

4.2.2.1 Baseline Method: Homogeneous Key Management

In this baseline method, each class of device implements the same symmetric key genera-

tion, distribution, and management techniques as shown in Fig. 4.3. This is simulated by

each device performing a key refresh for one link in the system by hashing the old symmet-

ric encryption key for that link and distributing this key using the old encryption key. The

receiving device for this link in the system decrypts the new key using the old encryption

key and installs the new key.
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k13*	=	Hash(k13)

msg13	=	Ek13(k13*)
Dk13(msg13)	=	k13*

k23*	=	Hash(k23)

msg23	=	Ek23(k23*)
Dk23(msg23)	=	k23*

Dk12(msg12)	=	k12*

msg23

k12*	=	Hash(k12)

msg12	=	Ek12(k12*)

msg12

Level	1 Level	2 Level	3

msg13

Figure 4.3: The baseline key management scheme with a homogeneous system model is
shown.

4.2.2.2 Semi-heterogeneous Key Management

We propose a system in which key management is handled in an asymmetric manner be-

tween devices, depending on the energy restraints of the device. In this method, the Level

3 device (smartphone) is utilized to implement symmetric key generation, distribution, and

management for links with the Level 1 (implanted) and Level 2 (wearable) devices in the

system. Furthermore, the Level 3 device performs session key generation, distribution, and

refresh functionality to the Level 1 - Level 2 link using its previously established connec-

tions with both the Level 1 and Level 2 devices. The new key is generated based on a hash

of the old symmetric encryption key and distributed by encrypting the new key using the

old encryption key. When the second device receives the encrypted key, it decrypts the

message with the old key and installs the new key. This key management scheme is shown

in Fig. 4.4.
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Figure 4.4: A semi-heterogeneous key management scheme is shown which differentiates
between Level 3 (smartphone) devices and other devices in the system.

4.2.2.3 Heterogeneous Key Management

In the second experimental method, a similar method to the previous experimental method

is used, except the symmetric encryption key used to secure links with the Level 1 (im-

planted) device are generated using PUF-based key generation [71]. PUFs (or Physical

Unclonable Functions) use entropy created by variations within tolerances of manufactur-

ing processes of electronics to produce a function that is unique to a particular device.

When a PUF is used to hash a random number, this can be an effective low-power method

of performing key generation. PUFs, which have become a popular hardware security

approach in recent years, can be found on embedded systems, but are rarely included in

higher-power computing applications such as smartphones. For this reason, we make the

assumption that a PUF is present in the Level 1 (least-resourced) device in the system.

In this method, instead of receiving the new key encrypted by the old key, the implanted

device hashes a random number generated by the Level 3 device in order to generate a new

encryption key. The Level 3 device performs the same hash with the same random number

in order to generate the key for the other device in the link. For the Level 1 - Level 2 link

in the system, the Level 3 device performs this hash of the random number and distributes
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it to the Level 2 device using the encryption key for the pre-established Level 2 - Level 3

link. This key management protocol is shown in Fig. 4.5.

Generate	RAND13,	

k13	=

Hash(RAND13)

k13	=	Hash(RAND13)

k23*	=	Hash(k23)

msg23	=	Ek23(k23*)
Dk23(msg23)	=	k23*

Dk12(msg12)	=	k12*

k12	=	Hash(RAND12)

RAND13

msg23

Generate	RAND12
k12*	=	Hash(RAND12)

msg12	=	Ek12(k12*)

msg12

RAND12

Level	1 Level	2 Level	3

Figure 4.5: A heterogeneous key management scheme is shown which utilizes PUF-based
key generation methods for the implanted device.

4.2.3 Test Environment

The following protocols and algorithms were utilized in this case study:

1. Bluetooth LE (BLE) version 4.0 with Just Works pairing and Level 1 security

2. AES encryption and decryption with 128-bit keys

3. SHA2 (Secure Hash Algorithm 2) with a 256-bit digest

4. Random number generation

Python libraries supporting Bluetooth LE (BLE), AES encryption and decryption, random

number generation, and cryptographic hash functions were utilized to create a software

simulation of both the baseline and experimental methods. The Adafruit Python Bluefruit

LE library [72] was used for BLE support to transmit and receive all messages. This li-

brary requires an environment running Mac OSX (used in this experiment) or Linux with
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a Bluetooth 4.0 low energy adapter. For two-way communication, a virtual peripheral was

created on the iPhone LightBlue R© application [73], using Bluetooth 4.0 low energy. In

virtual peripheral mode, in the LightBlue R© application, the iOS device advertises as that

particular BLE peripheral. LightBlue R© allows customization of the services and character-

istics of any virtual peripheral, a service with read and write properties was created for this

experiment to interface with the program running on the Mac OSX laptop. The PyCrypto

library [74] was used for AES support, including AES encryption and decryption with 128-

bit keys. Security is quantified based on symmetric encryption key size, where a 128-bit

cryptographic key is more secure than a 64-bit key. The Hashlib library [75] SHA256

function was used for cryptographic hash functions. The SHA256 function utilizes SHA2

(Secure Hash Algorithm 2) with a digest of 256 bits in order to produce cryptographically

secure hashes. Finally, the Python OS library was used for random number generation [76].

We recognize that using Python’s built-in OS library to generate random numbers could be

potentially misleading since this is simulating processes that would be run on embedded

systems in the real-world, most likely in a low-level language like C. However, since many

Python routines utilize C functions for performance, we assert here that using a standard

Python library for random number generation is a reasonable assumption.

Performance results were produced for each of the following processes within each ex-

perimental method: 1) BLE transmission, 2) BLE receipt, 3) AES encryption, 4) AES

decryption, 5) Random number generation, 6) SHA2 256-bit hash.

The appropriate timing results were added for each experimental method for each device

class, and the results were plotted by device class. A sample size of a thousand timing

results for each process was used for this experiment.
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4.2.4 Results

Execution times for each process (BLE transmission, BLE receipt, AES encryption, AES

decryption, random number generation, and SHA2 256-bit hash) are shown in Fig. 4.6.
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Figure 4.6: The breakdown of execution times by process is shown, with error bars to +/-
one standard deviation.

The time used for key management for each method described previously is plotted by

device classification level, as shown in Fig. 4.7 and Fig. 4.8. In Fig. 4.7 the normalized

key management time is shown on the y-axis, for each experimental method described in

Section 4.2.2 (x-axis). Fig. 4.8 shows the absolute execution time (y-axis) for each device

and key management method (x-axis).
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Figure 4.7: Normalized key management time for each experimental method is presented
as a fraction of key management time using the baseline (homogeneous) method, for each
classification level of device in the system.

For the baseline method, Fig. 4.8 shows that the time used for key management by de-

vice is the same for the homogeneous system model. For the semi-heterogeneous system

model, we see that the asymmetric key management method, which exploits the heteroge-

neous devices, results in less time being used by the Level 1 and Level 2 devices, which

is instead incurred by the Level 3 device, as the Level 3 device assumes additional key

management responsibilities. In this method, the key management time for the Level 1 and

Level 2 devices is the same. For the heterogeneous system model involving PUF-based

key generation for the implanted device, it can be seen that the key management time for

the Level 1 (implanted device) is further reduced (in fact the performance overhead nearly

negligible for the Level 1 device). This is primarily due to the fact that a hash of a random

number as utilized in the PUF-based method is less costly than decryption, as were seen in

the previous methods.
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Figure 4.8: The time used for key management activities is shown by device for each of
three system models: the baseline, a homogeneous system model, a semi-heterogeneous
system model, and a heterogeneous system model in which the implanted device utilizes
PUF-based key generation methods. Error bars are shown for one standard deviation.

A two-sample, two-tailed t-test assuming unequal variance was used to determine whether

the timing results differed significantly for each experimental method from the baseline

method, for each device classification level. A significance level of 0.05 was used to de-

termine significance with a 95% confidence level. Table 4.3 displays p-values and cor-

responding significance results for each device classification level in each experimental

method. These results demonstrate that the time used in key management is significantly

reduced from the baseline for both of the experimental methods (heterogeneous and semi-

heterogeneous), for all classes of devices - Level 1, Level 2, and Level 3.

Table 4.3: T-test Results (P-Values) Comparing Experimental Methods to Baseline
Experimental Method Level 1 Level 2 Level 3
Semi-heterogeneous Key Management 1.99E-14 1.99E-14 1.99E-27
Heterogeneous Key Management with PUF 9.18E-104 1.99E-14 6.36E-29
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4.3 Conclusions: Heterogeneous System Model for E-health

In this section, we first proposed a system model with consideration of the limitations of

each device in an e-health body area network. We then proposed a classification system

to separate devices into different levels based on the constraints of the specific device. Fi-

nally, we provided a case study utilizing the device classifications to implement a heteroge-

neous security system which results in less resource depletion for resource-limited devices.

The case study has applied semi-heterogeneous and heterogeneous experimental methods

which address key management. Results from the case study show that it is possible to

significantly reduce the time used for key management activities on power-constrained de-

vices by utilizing semi-heterogeneous and heterogeneous system models as a basis for the

distribution of security responsibilities.

The case study uses key management as an example of a security application which can

be asymmetrically distributed across devices in the system; however, there is potential to

expand this idea to other security or privacy protocols in such a system. For example,

anomaly detection software could be run on less resource-constrained devices in the sys-

tem in order to provide a threat detection mechanism for additional security. Additionally,

the timing results in this case study were performed as a Python software simulation, so it

would be interesting to see the results on hardware with realistic specifications to the appli-

cation given, in order to measure power consumption for each method in a more realistic

setting.
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Chapter 5

CONCLUSIONS

E-health is transforming the field of healthcare in an effort to provide effective, efficient ac-

cess to healthcare and perform remote patient monitoring for early detection and treatment

of health conditions. E-health systems are made possible by the introduction of networked

medical devices, which form a body area network along with a gateway device (often the

user’s smartphone). As such systems become more prevalent, it is important to think about

the implications and practicality of securing these systems. Patient data privacy, data in-

tegrity, and availability of devices in the system are three important considerations in e-

health wireless security. As medical devices become increasingly network-connected with

the development of remote patient monitoring and the Internet of Things, e-health applica-

tions have been developing rapidly. Privacy of patient information and security of critical

device firmware settings are a significant concern; however, with power and computational

resources of many of these embedded systems, implementing traditional network security

measures is impractical.

In the first two sections of this thesis, we survey current approaches to e-health security

and privacy, providing a general e-health system model, outlining challenges and threats,

providing security and privacy objectives, and surveying and classifying current solutions.

Our survey suggests the potential for further study in e-health security and privacy, given

that e-health is a relatively new field and many e-health systems in industry operate without

effective security and privacy threat mitigations in place. In the final section of this thesis,

we first proposed a system model with consideration of the limitations of each device in an

e-health body area network. We then proposed a classification system to separate devices

into different levels based on the constraints of the specific device. Finally, we provided a
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case study utilizing the device classifications to implement a heterogeneous security system

which results in less resource depletion for resource-limited devices.

There is a lot of work still be done to address wireless security and privacy concerns in

the field of e-health, especially due to the sensitive nature of the data being transmitted

and the unique constraints of medical devices. E-health promises a way to increase access

to healthcare and has been steadily growing in popularity, so it is important to secure this

platform as we move into the future.
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