
Danger is My Middle Name:
Experimenting with SSL Vulnerabilities in Android Apps

Lucky Onwuzurike
Computer Science Department

University College London
lucky.onwuzurike.13@ucl.ac.uk

Emiliano De Cristofaro
Computer Science Department

University College London
e.decristofaro@ucl.ac.uk

ABSTRACT
This paper presents a measurement study of information leak-

age and SSL vulnerabilities in popular Android apps. We perform
static and dynamic analysis on 100 apps, downloaded at least 10M
times, that request full network access. Our experiments show that,
although prior work has drawn a lot of attention to SSL implemen-
tations on mobile platforms, several popular apps (32/100) accept
all certificates and all hostnames, and four actually transmit sen-
sitive data unencrypted. We set up an experimental testbed sim-
ulating man-in-the-middle attacks and find that many apps (up to
91% when the adversary has a certificate installed on the victim’s
device) are vulnerable, allowing the attacker to access sensitive in-
formation, including credentials, files, personal details, and credit
card numbers. Finally, we provide a few recommendations to app
developers and highlight several open research problems.

1. INTRODUCTION
Over the past few years, the proliferation of always-on, always-

connected smartphones has skyrocketed. In 2013, 73% of mobile
phone users regularly accessed the Internet via their mobile de-
vices [7, 34] and this ratio is bound to increase as sales of smart-
phones and tablets keep growing [25, 26]. Naturally, as the num-
ber and the usage of always-on, always-connected smartphones
increase, so does the amount of personal and sensitive informa-
tion they transmit. Thus, it is crucial to secure traffic exchanged
by these devices, especially considering that mobile users might
connect to open Wi-Fi networks or even fake cell towers. How-
ever, SSL implementations in smartphone applications (in the rest
of the paper simply referred to as apps) are actually more buggy
and prone to vulnerabilities than browsers, including to man-in-the
middle (MiTM) attacks [21,27]. Moreover, while browsers provide
users with visual feedback that the communication is secured (via
the lock symbol) and of certificate validation issues, apps do so less
extensively and effectively [9].

Although prior work has presented means for detecting vulnera-
bilities [13,33], it is unclear whether these are still prevalent in An-
droid apps, and how so. We set to measure and analyze private in-
formation leakage and SSL vulnerabilities by building a sample of
100 popular Android apps requesting full network access (10% of
all apps with at least 10M downloads, as per [2]). We examine them
via static—decompiling using dex2jar [3]—and dynamic analysis,
where we simulate three MiTM scenarios: (1) an advanced adver-
sary that has its certificate installed on the user’s device, (2) an SSL
implementation accepting all certificates, and (3) an implementa-
tion not performing hostname verification correctly.

Results. We observe that almost all apps in our sample (93/100) in-
clude SSL, and most of them (78) use customized SSL code. Static

analysis shows that half of the apps accept all certificates and half
fail hostname verification. Dynamic analysis then reveals that 9 in
10 apps establish HTTPS connections under attack in scenario (1),
while, in scenarios (2) and (3), about a quarter of them do so (23
and 29, respectively). Also, 4 apps—Deezer, Duolingo, Pic Col-
lage, and 4shared—actually establish login sessions over HTTP.
Finally, we report that only 3 apps provide relevant feedback in-
dicating failure as a result of SSL certificate validation during an
attack. As a consequence of these vulnerabilities, adversaries can
access sensitive information, including credit card numbers, chat
messages, contact list, files, and credentials. While we acknowl-
edge that our work is similar in nature and, partly, in methodology
to prior research [13,21,22,27] (see Section 2), note that we do not
only measure whether these are still prevalent, but also investigate
and compare them via both static and dynamic analysis.

Contributions. In summary, we make the following contributions:
• We present a measurement study of Android apps security,

confirming that SSL vulnerabilities are still prevalent even in
very popular (10M+ downloads) apps.

• We investigate why static and dynamic analysis yield slightly
different results.

• We provide recommendations for developers and highlight a
few open research problems.

Paper organization. Next section reviews related work, then Sec-
tion 3 presents some relevant background information. Section 4
introduces our methodology, while Section 5 discusses our mea-
surement results, which we analyze in Section 6. Then, in Section 7
we discuss some recommendations, and conclude in Section 8. In
the Appendix, we also provide a code snippet developers can be
build from in order to implement SSL pinning as well as the com-
plete list of analyzed apps.

2. RELATED WORK
Prior work looked at Android security from several perspectives:

permissions [10, 11], privilege escalation [14, 18], detecting mali-
cious apps [38, 40], information flow/taint tracking [20, 41], and
details of SSL implementations [15, 21, 22, 27].

Georgiev et al. [27] study libraries and APIs used in SSL im-
plementations of non-browser apps, and Brubaker et al. [13] in-
troduce techniques for large-scale testing of certificate validation
logic. Also, [15] and [33] introduce tools (respectively, MITHYS-
App and SMV-Hunter) for automated vulnerability discovery.

A fewstudies [8, 9, 36, 39] analyze issues with SSL warnings in
web browsers, but not many in the context of apps. In [21], Fahl
et al. report that numerous apps do not display meaningful warn-
ing messages in presence of possible attacks, and, in [22], that 312
out of 599 apps display warnings, with 254 of them not being de-
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Figure 1: SSL Handshake.

scriptive of the problem. MITHYSApp [15] also warns users about
vulnerable apps and allows them to decide whether to continue the
connection. Work in [21, 22] use static analysis to discover vul-
nerabilities in Android and iOS apps. Our work extends these by
performing both static and dynamic analysis and investigate why
they differ from each other. We also propose a fail-safe strategy
that developers can use to implement SSL securely. Interestingly
enough, although prior work, including [21,22,27], has highlighted
important vulnerabilities in Android/iOS SSL implementations, 1-
2 years later these are still prevalent even in very popular apps.

Finally, Bates et al. [12] introduce CERTSHIM, a tool for certifi-
cate verification retrofitting that is dynamically hooked to SSL and
data transport libraries, while Kranch and Bonneau [30] reveal that
cookies can be leaked from domains that implement key pinning to
malicious scripts in HTTP domains they load resources from.

3. BACKGROUND
In this section, we introduce some background information about

SSL handshake, man-in-the-middle attacks, implementation of SSL
on Android, and SSL Pinning.

SSL Handshake. SSL sessions always begin with a message ex-
change between the client and the server – the SSL handshake.
Specifically, as depicted in Figure 1, the client initiates it by send-
ing the client hello message and then verifies the identity of the
server. Obviously, if the verification is not implemented correctly,
an attacker could impersonate the server. The verification involves
checking the Chain-of-Trust in server’s certificate, hostname [29],
and certificate validity [16,32]. It may also include verifying server’s
certificate serial number, key usage, etc.

SSL MiTM Attacks. In a man-in-the-middle (MiTM) attack, an
attacker sits between two communicating parties, and intercepts,
reads, modifies, and/or relays messages between them. In a MiTM
attack over SSL, an attacker may also attempt to subvert the cer-
tificate verification in the SSL handshake, aiming to, e.g., read or
modify encrypted traffic, and succeeding if:

− The client accepts all certificates as the server’s,
− The client does not verify the identity of anyone claiming to

be the server,
− The client accepts expired certificates,
− The server’s certificate is forged by the adversary, or
− The client accepts all self-signed certificates.

SSL Implementation in Android. To guarantee end-to-end se-
curity, application developers use SSL over HTTP (HTTPS) sock-
ets, relying on the android.net, android.webkit, java.net, javax.net,
java.security, javax.security.cert, and org.apache.http packages of
the Android SDK to create HTTP/HTTPS connection, adminis-
ter, and verify certificates and keys. These packages provide de-
velopers with TrustManager and HostnameVerifier interfaces,
which are used in the SSL certificate validation logic. TrustMan-
ager manages the certificates of all Certificate Authorities (CA)
used in assessing the certificate’s validity. Only root CAs trusted
by Android are contained in the default TrustManager. The cer-
tificates are stored in a keystore which is then used to create the
TrustManager. HostnameVerifier performs hostname verifi-
cation whenever a URL’s hostname does not match the hostname
in the peer’s identification credentials.

Developers can use default implementations of the TrustMan-
ager and HostnameVerifier interfaces provided by the Android
SDK, or use customized ones. The latter usually involves developer-
specified credentials or validation logic on TrustManager and/or
HostnameVerifier. Typically, customization is done to support
a certificate issued by a CA unknown to the OS, when using self-
signed certificates, pinning peer credentials (“SSL pinning”, see
below), server configuration sending incomplete certificate chain,
or the use of a single certificate for multiple hosts.

In the rest of the paper, we simply refer to the name of an in-
terface or its implementation (e.g., TrustManager), whenever it is
clear from the context.

SSL Pinning involves coupling a host’s trusted credential (e.g., an
X.509 certificate or a public key) to its identity. Any other creden-
tials received other than that coupled will not be accepted as valid
for the host, whether or not it was issued by a valid entity or an
entity trusted by the OS. This is usually done when a developer
knows, beforehand, the trusted credentials of the host.

4. METHODOLOGY
Experimental testbed. We use an LG Nexus 4 smartphone (run-
ning Android KitKat 4.4.4) with a Lenovo laptop (running Win-
dows 8.1) acting as the Wi-Fi Access Point (AP). To capture traffic
and simulate MiTM attacks, we use Wireshark [6] and Fiddler2 [4].

Timeline. Experiments presented in this paper were performed in
August/September 2014, and then revisited in March/April 2015.
All statistics refer to the first round of tests, however, whenever an
app is no longer vulnerable, we report it in the text.

Analyzed Apps. Our first step is to build a set of 100 popular
Android apps. We select 97 apps that request permission for full
network access and that have been downloaded at least 10 million
times. We choose apps from several different categories (includ-
ing social networks, gaming, IM, e-commerce, etc) that access and
process multiple kinds of sensitive information rather than those
that only exchange login credentials. We also add 3 more apps
that request full network access, even though they have less than
10M downloads: Barclays Mobile Banking, TextSecure, and Ama-
zon Local. We choose Barclays Mobile and TextSecure motivated
by the curiosity of analyzing at least one mobile banking and one
secure chat app, and Amazon Local to verify the presence of any
difference with the standard Amazon app.1

The total number of downloads for the 100 selected apps amounts
to over 10 billion, according to statistics provided by the Google
Play store. Table 1 summarizes the distribution of apps by number
1Amazon and Amazon Local did implement SSL differently as for our first tests
but both implement pinning as of our second tests.
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#Downloads (Millions) #Apps
> 1,000 4

500 - 1000 6
100 - 500 31
50 - 100 19
10 - 50 37

< 10 3

Table 1: Distribution of examined apps by number of downloads.

of downloads (at the time of our experiments). Note that, according
to [2], there were about 1,000 apps with 10M+ downloads around
the time of our experiments, thus, our 100-app set roughly corre-
sponds to a 10% of all apps with 10M+ downloads. The complete
list of apps we analyze is reported in the Appendix.

Sensitive information. Throughout our experiments, we classify
as sensitive information traffic that includes: login credentials, de-
vice information (e.g., IMEI number), location data, chat and email
messages, financial information, calendars, contact list, files, and so
on. We exclude sensitive data transmitted by embedded ad libraries
as this is out of the control of the app developer.

Static Analysis. We decompile apps using dex2jar [3] and JD-
GUI [5] and search key terms such as HttpsURLConnection, Host-
nameVerifier, and TrustManager, which indicate the presence
of SSL code. Then, we analyze the TrustManager and Host-
nameVerifier implementations used by the apps.

Dynamic Analysis. For the dynamic analysis, we proceed to use
features of the apps that would request/need sensitive information
and probe for vulnerabilities. We assume an adversary that has con-
trol over the Wi-Fi access point the victim connects to and simulate
the three following possible MiTM attack scenarios:

S1: The adversary has his certificate installed on the user’s device
(to simulate this, we install a Fiddler certificate as root CA);

S2: The adversary presents an invalid, self-signed certificate;

S3: The adversary presents a certificate with a wrong Common
Name (CN) and/or SubjectAltName, signed by a root CA.

Ethics. Note that we conducted all experiments in a controlled test
environment and did not monitor or capture any user’s traffic.

5. RESULTS

5.1 Static Analysis
Via static analysis, we find that 93/100 apps include SSL code,

while the remaining 7 (AVG antivirus, Candy Crush, Clean Master,
Google Earth, Play Music, Jobsearch and Voice Search) do not in-
clude SSL, even though they use tokens to access secure web pages
using Google, Facebook, or Twitter user accounts on the device.
84% (78/93) of the apps with SSL implement their own Trust-
Manager or HostnameVerifier, while the remaining 16% use
Android’s default TrustManager and a combination of the sub-
classes of the HostnameVerifier.

We perform static analysis on the 93 SSL-enabled apps and find
that 48 of them include HostnameVerifier accepting all host-
names. 41 define a verifier that always return true and/or use the
AllowAllHostnameVerifier subclass, while the other 7 define a
hostname verifier that returns true without any check. Our analysis
also reveals that 46 of the SSL-enabled apps define a TrustMan-
ager that actually accepts all certificates. Examples of TrustMan-
ager and SocketFactory doing so are shown in Table 2.

TrustManager SocketFactory
NaïveTrustManager NaïveSslSocketFactory

BogusTrustManagerFactory AndroidSSLSocketFactory
FakeX509TrustManager FakeSocketFactory

TrustEveryoneTrustManager TrustNonFacebookSocketFactory
TrustAllManager TrustAllSSLSocketFactory

EasyX509TrustManager EasySSLSocketFactory
IgnoreCertTrustManager SimpleSSLSocketFactory

TrivialTrustManager AllTrustingSSLSocketFactory
BurstlySSLSocketFactory

SelfSignedCertSocketFactory
KakaoSSLSocketFactory

TrustingSSLSocketFactory
ConvivaSSLSocketFactory
SSLSocketFactoryTrustAll

Table 2: Known vulnerable TrustManager and SocketFactory subclasses
accepting all certificates [21].

Sensitive Data #Apps
Username and Password 3

GPS Location 4
IMEI Number 2
IMSI Number 1

Table 3: Sensitive data sent via HTTP.

5.2 Dynamic Analysis
We start our dynamic analysis by looking for information leak-

age, i.e., aiming to identify whether any sensitive information is
sent in the clear, and then move on to MiTM attacks.

Unencrypted traffic. Table 3 summarizes the number of apps
sending sensitive information unencrypted. Specifically, we find
that4shared, Duolingo, and Pic Collage send usernames and pass-
words in the clear during login, while Deezer encrypts the pass-
word with a nonce and transmits it over HTTP. Location is sent
in the clear by MeetMe and Google Maps (no longer the case as
of March 2015), GO SMS Pro/Launcher EX, and IMDB. Also, GO
SMS Pro sends IMEI and IMSI and Talking Angela the IMEI unen-
crypted. While it has been reported that transmission of IMEI/IMSI
and location data are mostly done by embedded ad libraries [1,19],
this is only true for Talking Angela.

MiTM. Our next step is to use Fiddler to mount MiTM attacks. We
consider the three scenarios discussed in Section 3, starting with
S1, i.e., an attacker having its certificate installed on the user’s de-
vice. We find that 91 apps establish login connections and give ac-
cess to secure pages, and leaking sensitive information such as lo-
gin credentials, financial information, contact list, calendar sched-
ules, and chat messages. On the other hand, 9 apps do not connect
thanks to SSL Pinning. In scenario S2 (i.e., an attacker present-
ing an invalid certificate), 23 of the apps complete the connection
(the implementation accepts all certificates), with 9 of them leaking
sensitive information. In S3, when the attacker presents a certificate
with wrong CN and/or SubjectAltName, we find that 29 of the apps
establish a connection, with 11 of them revealing sensitive informa-
tion. A total of 20 apps are vulnerable in all three scenarios, with 9
of these revealing sensitive information.

Only 3 apps (and all in scenario S2) present the user with an
error message, such as the one illustrated in Figure 2(a), indicat-
ing that the connection was refused due to an SSL certificate error.
Other apps keep loading indefinitely, crash, display a message try-
ing to redirect the user to a web browser, display a blank screen
or a generic message (e.g., “Unable to connect. Please check your
connection and try again”, “Incorrect device time. Please ensure
the device time is correctly set and try again”). Figure 2(b)–2(d)
show examples of unhelpful warning messages prompted by a few
apps when the connection is not established.
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Category #Apps
Analyzed Apps 100
Apps with SSL code 93
Accepts all certificates 46
Accepts wrong hostname 48
Vulnerable to S1 91
Vulnerable to S2 23
Vulnerable to S3 29
Vulnerable to S1, S2, and S3 20

Table 4: Summary of Results.

5.3 Summary
The results of our analysis are summarized in Table 4. From the

static analysis, we deduce that majority of SSL-enabled apps are
vulnerable to MiTM attacks due to wrong hostname verification.
Specifically, vulnerable hostname verifiers use the AllowAllHost-
nameVerifier class or return true without performing any checks
(or checking if the common name ends with a given suffix). We also
find that almost half of the apps are vulnerable as TrustManager
accept invalid or self-signed certificates.

Then, following our dynamic analysis, we posit that: (1) apps
with correct implementation of SSL pinning are not vulnerable to
MiTM attacks; (2) apps with a vulnerable TrustManager establish
connections in the presence of an attack; and (3) apps using Al-
lowAllHostnameVerifier or with a vulnerable HostnameVer-
ifier also establish connections. Also note that the overwhelming
majority of apps (91) are vulnerable to powerful adversaries with a
certificate on the user’s device.

6. ANALYSIS

6.1 “Secure” Apps
We now analyze the 9 apps that do not establish connections in

any of the three attack scenarios considered. These are: Amazon
(10M downloads), Barclays Banking (1M), BBM (50M), Bitstrips
(10M), Dropbox (100M), MeetMe (10M), TextSecure (500K), Twit-
ter (100M), and Vine (10M), for a total of almost 300M down-
loads. Note that apps not vulnerable in all attack scenarios account
for only 2.6% of the total number of downloads of the apps we
test. Also note that since Tweetcaster and Amazon Local/Music
are vulnerable in scenario S1, Twitter and Amazon credentials can
be compromised even though the Twitter and Amazon apps are not
vulnerable.2

We also notice that 10 apps (e.g., Skype, Telegram, Viber) em-
ploy proprietary protocols or obscure their traffic, and/or did not
connect via the MiTM proxy. These apps establish login sessions,
and transmit messages/chat conversation in all three attack scenar-
ios, except for Skype which does not load the contact list in sce-
nario S3 (hence, no chat or call conversation can be initiated). Also,
the in-app purchase and the WebView interface (when present) of
these apps (excluding Telegram, which does not offer in-app pur-
chase) can be exploited in scenario S1. Debit card information used
to subscribe and purchase call credit on Skype is also accessible.

6.2 Google Apps
Next, we zoom in all Google apps requesting full network access

and having 10M+ downloads that are loaded on our Nexus 4 phone
by default: Gmail, Calendar, Maps, Google+, Play Store, Play Mu-
sic, Play Movies (included in our 100-app corpus). We find that
they are all vulnerable in scenario S1, with debit card information
and PayPal credentials exposed during in-app purchase. Note that
2This is no longer the case for Amazon Local/Music as of March 2015.

Figure 3: Certificate warning displayed by Job Search app in S2 and S3.

this is not limited to the Google apps but also to non-Google apps
that use Google’s in-app purchase API (a total of 40 in our sample).

Other sensitive information accessible from Google apps in sce-
nario S1 include: usernames and encrypted passwords, email mes-
sages (from Gmail), location, calendar, and reminders.

6.3 Vulnerable Apps
Looking at apps vulnerable in any of the three attacking sce-

narios during dynamic analysis, we notice that 59 apps (including
Netflix and Facebook3) are vulnerable in scenario S1 but not in
S2 and S3. This means that these apps are secure against most
adversaries, but not against advanced (e.g., state-like) adversaries.
Protecting against vulnerability in S1 can be achieved using SSL
pinning, which might however add some extra costs.

Also note that there are 32 apps vulnerable in scenario S2 and/or
S3, i.e., trusting all certificates or all hostnames, including, e.g.,
Groupon, Vevo, and Zoosk, that are not vulnerable in S2 but are in
S3, leaking user credentials.

Five apps (Booking.com, IMDB, PayPal, Trip Advisor, and TuneIn
Radio) establish login sessions in S3, however, we were not able
to extract the credentials from the eavesdropped traffic. For in-
stance, after login, PayPal refuses to establish further connections,
displaying the message “SSL Error” at the bottom of the screen.
We have two possible explanations for this. One is that logins are
established simply due to cached cookies. Alternatively, we notice
that developers tend to create several different TrustManager and
HostnameVerifier implementing and enforcing different levels
of security checks, thus potentially leading to oversights in creat-
ing connections with the wrong TrustManager.

A total of 20 apps are vulnerable in all three scenarios. One of
such app is Jobsearch which displays a warning – shown in Figure 3
– signaling a problem with the certificate and providing users with
the option to continue. As highlighted in prior work [36], users
tend to ignore SSL warnings, and, if users decide to continue, the
adversary would access credentials and other sensitive data.

As mentioned earlier, a few apps send login credentials unen-
crypted. Specifically, 4shared sends login credentials as part of the
URI in the GET command, Deezer encrypts user’s password with
a nonce before transmission, while Duolingo and Pic Collage send
it in plaintext. While developers might not consider their service
to be very sensitive, password reuse makes this practice extremely
dangerous nonetheless, as discussed in [17].

Disclosure & Updates. We communicated our findings to the
developers of apps transmitting sensitive information unencrypted
and with possible vulnerabilities in scenarios S2 and S3. As a re-
sult, Pic Collage now establish login sessions and transmit user
information via HTTPS, while 4shared hashes passwords before
transmitting them over HTTP. Also, besides updates to Google Maps
and Amazon apps discussed earlier, we also report that, as of April
2015, Ask.fm, Textplus and Viber no longer establish connection
in scenario S2, while Groupon and IMDB do not in scenario S3.

3Friend list, chat messages, and credentials are accessible from Facebook in S1.
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Figure 2: Warnings presented to users, as result of non-validation of an SSL certificate.

6.4 Static vs Dynamic Analysis
As the results of our static and dynamic analysis differ some-

what, we set to investigate the reasons for this inconsistency.

Possible false negatives in dynamic analysis. First, we notice
that dynamic analysis may miss some vulnerabilities discovered in
static analysis due to vulnerable TrustManagers and SocketFac-
tory implementations. This happens as vulnerabilities may occur
in apps’ functionalities that are not tested during our dynamic anal-
ysis. For instance, static analysis reveals that NaïveTrustMan-
ager and FakeSocketFactory interfaces are used in 7 apps for
the Application Crash Reports for Android (ACRA); however, our
dynamic analysis does not test ACRA interaction, thus, it does not
report these apps as vulnerable. Similarly, 2 apps use Ignore-
CertTrustManager for the NativeX mobile ad API.

Possible false positives in static analysis. A total of 23 apps pos-
sibly contain vulnerable TrustManager and SocketFactory im-
plementations that dynamic analysis did not report. While 9 are
confirmed vulnerabilities, the discrepancy suggests they are not
used to create SSL sessions as they might have been introduced for
testing purposes but never removed in production. Thus, this might
generate some false positives during static analysis, however, be-
cause of code obfuscation, it is not always feasible to completely
remove such false positives from static analysis.

7. DISCUSSION

7.1 Self-signed and testing
We now discuss some recommendations to app developers vis-

à-vis the vulnerabilities discussed in this paper. We find that many
TrustManagers are vulnerable as they accept self-signed certifi-
cates. This may occur as developers wish to accept self-signed cer-
tificates for testing purposes but forget to disable the feature in pro-
duction. Others purposely choose to employ self-signed certificates
in production, and proceed to customize their TrustManagers.
TrustManagers built to accept self-signed certificates usually check
for the presence of a single certificate, and verify whether or not it
is valid by calling the checkValidity() method. This implies that any
self-signed certificate currently valid would be accepted by the app.

In order to use self-signed certificates safely, developers should
enable SSL pinning instead, rather than using a TrustManager
that accepts all certificates. While the normal practice of using
self-signed certificate is to verify the certificate thumbprint, we rec-
ommend the use of self-signed root certificates. Developers should
create a keystore with self-signed root certificate to sign any num-
ber of end-entity certificates to be employed on servers. The key-
store is then used to create a TrustManager. The end certificates
are then verified against the self-signed root certificate. Credentials
to be checked can include public key, SubjectAltName, signature,
and any other field specified by the developer (cf. Section 3).

The same method should also be used when developers have a
valid certificate, signed by a trusted CA, but need to use a self-
signed one for testing purposes. A separate keystore containing the
self-signed root certificate for development environment should be
created and used to initialize the TrustManager, but with the same
pinning validation logic as that of the production environment. Em-
ploying the same pinning validation logic of checking public key,
signature, etc., would ensure that developers only add a new self-
signed root certificate to the development keystore and/or create
new end certificates signed by the self-signed root certificate for
any number of tests without disrupting the SSL validation logic. If
one forgets to change the keystore used to initialize the TrustMan-
ager, the SSL pinning validation logic will act as a fail-safe de-
fault, leading to the failure of all secure connections, thus pointing
the developer to check the keystore used for validation. A sample
code snippet that could be used for this purpose is presented in the
Appendix.

Finally, whenever a peer’s certificate is not known beforehand,
developers could use a TrustManager that relies on the OS’s trusted
credentials for the app interface interacting with the peer (unless the
peer already provides the API connecting to its servers). This way,
using the same TrustManager enforcing pinning will result in the
HTTPS connection not being established.

7.2 Open Problems
Following our analysis, we highlight a few open research prob-

lems. First, we emphasize how, more than 1-2 years after prior
work drew attention to SSL implementations on mobile platforms,
many popular apps still accept all certificates and wrong hostnames,
and are vulnerable to MiTM attacks. We argue for the need to
give developers more effective tools that can help them detect and
fix issues before the app is in production, and not only ways to
detect vulnerabilities “after the fact.” To this end, we have dis-
cussed how developers could “safely” use self-signed certificates,
and more strategies could be experimented with [12, 22].

The analysis of private information leakage and SSL vulnerabili-
ties should be part of the vetting process performed by app markets,
such as Google Play. These already scan apps for malware, inap-
propriate content, system interference, etc. [28]. Alternatively, re-
search efforts should be encouraged to do so in lieu of app markets.
Considering that tools are already available that allow crawling of
app markets [37] as well as methodologies for large-scale analysis
of SSL vulnerabilities [33], the community could design a portal
keeping track over time of such vulnerabilities and reporting them
to the public. Ideally, this could also be integrated with results from
large-scale dynamic analysis.

Another set of open problems relates to designing meaningful
mechanisms for visual feedback. Recall that, in the browser con-
text, the lock icon informs users that their connection is secure and
that extensive research has analyzed (and proposed improvements
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to) SSL warnings [8, 23, 36]. On the contrary, little has been done
in the context of smartphone apps. This prompts a number of chal-
lenges as it is not clear how to provide meaningful feedback and
how to proceed w.r.t. to warnings. Arguably, we should not rely
on the user to fix problems the community is not able to, as users
have often no idea as to what warnings actually mean or what is
the right course of action. A possible research avenue is to con-
textualize the warnings: if the user is connected via an untrusted
Wi-Fi, they could receive a different set of warnings, following
a contextual security approach [31]. A user that connects to an
open Wi-Fi and gets a descriptive warning (e.g., the certificate of
www.twitter.com is signed by Mallory, Inc. but was expected to be
signed by Verisign) is more likely to disconnect from the Wi-Fi.

Finally, it is well-known that apps often request permissions to
access information they do not actually need (as in the notorious
Flashlight app case [24]), however, we have usually framed these
issue purely in terms of privacy. However, measurement studies
could highlight how this can also be exploited by MiTM attackers.

8. CONCLUSION
This paper presented a study measuring information leakage from

Android apps. Although prior work has highlighted the risks of
private information leakage and developed tools for detecting SSL
vulnerabilities [13,33], we found that many of these vulnerabilities
are still prevalent, even in popular apps. We analyzed a corpus of
100 Android apps that request full network access and (except for
3 of them) have been downloaded 10M+ times. We decompiled the
apps, and analyzed them statically, then, we simulated three MiTM
attacks to analyze their security dynamically.

Through static analysis, we found that 46 apps accepted all cer-
tificates and 48 failed hostname verification, while, with dynamic
analysis, that 91, 23, and 29 apps, respectively, established HTTPS
connections with sensitive information leaked in three different at-
tack scenarios. We also found that a few apps established login
sessions over HTTP, and that only 3 of the apps provided useful
feedback indicating connection failure as a result of an attack.

Limitations. While it is inherently hard to perform large-scale dy-
namic analysis, we acknowledge the limited size of our 100-app
corpus. However, this actually represents a reasonably sized sam-
ple of popular Android apps – as per statistics in [2], roughly 10%
of all apps with at least 10M downloads. Also, we did not use
cookies as an attack vector to exploit vulnerabilities: as mentioned
in [35], developers include OAuth tokens in cookies and these were
often accessible to our MiTM attackers, thus, they could be used to
exploit further attack scenarios. Finally, dynamic analysis might
produce some false negatives as we might not monitor all possible
sockets, while code obfuscation may have masked non-use of vul-
nerable TrustManager or HostnameVerifier during static anal-
ysis, potentially leading to a handful of false positives.

Future work. We plan to include more apps and monitor them
over time and are working on a standalone app aiming to counter
both passive and active MiTM attacks that extends the features of
MITHYSApp [15] and TaintDroid [20]. Specifically, we plan to:
(1) block any attempt by apps to transmit tainted information via
HTTP, while warning the user, (2) scan the layout of an app’s we-
bview to correctly predict and prevent transmission of sensitive in-
formation, (3) verify the security of HTTPS connections attempted
by apps, and (4) allow transmission of tainted information only af-
ter appropriately warning users and getting their consent.
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APPENDIX
A. COMPLETE LIST OF APPS

See Table 5.

B. SSL PINNING USING ANY OF TWO KEY-
STORES

public final class PinManager implements X509TrustManager {

/* Get key from keystore */
KeyStore ks = KeyStore.getInstance(KeyStore.

getDefaultType());

/* One of the keystore should be commented... */

/* Development environment keystore */
String myStore = "devStore.keystore";
/* Production environment keystore */
String myStore = "proStore.keystore";
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try {
FileInputStream fis = new FileInputStream(myStore);

ks.load(fis, password);
} finally {
fis.close();

}

/* Get certificate and associated public key */
Certificate cert = ks.getCertificate(alias);
PublicKey storedPubKey = cert.getPublicKey();
String keyAlgorithm = storedPubKey.getAlgorithm();
private static String pinnedKey = storedPubKey.getEncoded

().toString();

/* Create TrustManager with specified keystore */
try {

TrustManagerFactory tmf = TrustManagerFactory.
getInstance("X509");

tmf.init((KeyStore) myStore);
for(TrustManager tm : tmf.getTrustManagers()) {
((X509TrustManager) tm).checkServerTrusted(chain,

authType);}
}
catch(Exception e) {
throw new CertificateException(e);

}

public void checkServerTrusted(X509Certificate[ ] chain,
String authType) throws CertificateException

{
if(null == chain) {
throw new IllegalArgumentException("Server

X509Certificate array is null");
}

if(!(null != authType && authType.equalsIgnoreCase(
keyAlgorithm))) {

throw new CertificateException("Server AuthType is not
" + keyAlgorithm);

}

/* Get server certificate’s public key */
PublicKey pubKey = chain[0].getPublicKey();
String receivedKey = pubKey.getEncoded().toString();

/* Check if keys match */
final boolean keyMatch = pinnedKey.equalsIgnoreCase(

receivedKey);
if(!keyMatch) {
throw new CertificateException("Public key expected:"+

pinnedKey+", received: "+receivedKey);
}

}
}

/* Initialize SSL context with customized TrustManager */
TrustManager tm [ ] = {new PinManager()};
SSLContext context = SSLContext.getInstance("TLS");
context.init(null, tm, null);

/* Create connection using customized socket factory*/
URL url = new URL("https://www.bob.com/");
HttpsURLConnection connection = (HttpsURLConnection) url.

openConnection();
connection.setSSLSocketFactory(context.getSocketFactory());
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