61 research outputs found

    Application of RADARSAT-2 Polarimetric Data for Land Use and Land Cover Classification and Crop monitoring in Southwestern Ontario

    Get PDF
    Timely and accurate information of land surfaces is desirable for land change detection and crop condition monitoring. Optical data have been widely used in Land Use and Land Cover (LU/LC) mapping and crop condition monitoring. However, due to unfavorable weather conditions, high quality optical images are not always available. Synthetic Aperture Radar (SAR) sensors, such as RADARSAT-2, are able to transmit microwaves through cloud cover and light rain, and thus offer an alternative data source. This study investigates the potential of multi-temporal polarimetric RADARSAT-2 data for LU/LC classification and crop monitoring in the urban rural fringe areas of London, Ontario. Nine LU/LC classes were identified with a high overall accuracy of 91.0%. Also, high correlations have been found within the corn and soybean fields between some polarimetric parameters and Normalized Difference Vegetation Index (NDVI). The results demonstrate the capability of RADARSAT-2 in LU/LC classification and crop condition monitoring

    Crop Monitoring and Classification Using Polarimetric RADARSAT-2 Time-Series Data Across Growing Season: A Case Study in Southwestern Ontario, Canada

    Get PDF
    Multitemporal polarimetric synthetic aperture radar (PolSAR) has proven as a very effective technique in agricultural monitoring and crop classification. This study presents a comprehensive evaluation of crop monitoring and classification over an agricultural area in southwestern Ontario, Canada. The time-series RADARSAT-2 C-Band PolSAR images throughout the entire growing season were exploited. A set of 27 representative polarimetric observables categorized into ten groups was selected and analyzed in this research. First, responses and temporal evolutions of each of the polarimetric observables over different crop types were quantitatively analyzed. The results reveal that the backscattering coefficients in cross-pol and Pauli second channel, the backscattering ratio between HV and VV channels (HV/VV), the polarimetric decomposition outputs, the correlation coefficient between HH and VV channel ρHHVV, and the radar vegetation index (RVI) show the highest sensitivity to crop growth. Then, the capability of PolSAR time-series data of the same beam mode was also explored for crop classification using the Random Forest (RF) algorithm. The results using single groups of polarimetric observables show that polarimetric decompositions, backscattering coefficients in Pauli and linear polarimetric channels, and correlation coefficients produced the best classification accuracies, with overall accuracies (OAs) higher than 87%. A forward selection procedure to pursue optimal classification accuracy was expanded to different perspectives, enabling an optimal combination of polarimetric observables and/or multitemporal SAR images. The results of optimal classifications show that a few polarimetric observables or a few images on certain critical dates may produce better accuracies than the whole dataset. The best result was achieved using an optimal combination of eight groups of polarimetric observables and six SAR images, with an OA of 94.04%. This suggests that an optimal combination considering both perspectives may be valuable for crop classification, which could serve as a guideline and is transferable for future research.This research was funded in part by the National Natural Science Foundation of China (Grant No. 41,804,004, 41,820,104,005, 41,531,068, 41,904,004), the Canadian Space Agency SOAR-E Program (Grant No. SOAR-E-5489), the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (Grant No. CUG190633), and the Spanish Ministry of Science, Innovation and Universities, State Research Agency (AEI) and the European Regional Development Fund under project TEC2017-85244-C2-1-P

    Irrigated grassland monitoring using a time series of terraSAR-X and COSMO-skyMed X-Band SAR Data

    Get PDF
    [Departement_IRSTEA]Territoires [TR1_IRSTEA]SYNERGIE [Axe_IRSTEA]TETIS-ATTOSInternational audienceThe objective of this study was to analyze the sensitivity of radar signals in the X-band in irrigated grassland conditions. The backscattered radar signals were analyzed according to soil moisture and vegetation parameters using linear regression models. A time series of radar (TerraSAR-X and COSMO-SkyMed) and optical (SPOT and LANDSAT) images was acquired at a high temporal frequency in 2013 over a small agricultural region in southeastern France. Ground measurements were conducted simultaneously with the satellite data acquisitions during several grassland growing cycles to monitor the evolution of the soil and vegetation characteristics. The comparison between the Normalized Difference Vegetation Index (NDVI) computed from optical images and the in situ Leaf Area Index (LAI) showed a logarithmic relationship with a greater scattering for the dates corresponding to vegetation well developed before the harvest. The correlation between the NDVI and the vegetation parameters (LAI, vegetation height, biomass, and vegetation water content) was high at the beginning of the growth cycle. This correlation became insensitive at a certain threshold corresponding to high vegetation (LAI ~2.5 m2/m2). Results showed that the radar signal depends on variations in soil moisture, with a higher sensitivity to soil moisture for biomass lower than 1 kg/mÂČ. HH and HV polarizations had approximately similar sensitivities to soil moisture. The penetration depth of the radar wave in the X-band was high, even for dense and high vegetation; flooded areas were visible in the images with higher detection potential in HH polarization than in HV polarization, even for vegetation heights reaching 1 m. Lower sensitivity was observed at the X-band between the radar signal and the vegetation parameters with very limited potential of the X-band to monitor grassland growth. These results showed that it is possible to track gravity irrigation and soil moisture variations from SAR X-band images acquired at high spatial resolution (an incidence angle near 30°)

    Recent Advancement of Synthetic Aperture Radar (SAR) Systems and Their Applications to Crop Growth Monitoring

    Get PDF
    Synthetic aperture radars (SARs) propagate and measure the scattering of energy at microwave frequencies. These wavelengths are sensitive to the dielectric properties and structural characteristics of targets, and less affected by weather conditions than sensors that operate in optical wavelengths. Given these advantages, SARs are appealing for use in operational crop growth monitoring. Engineering advancements in SAR technologies, new processing algorithms, and the availability of open-access SAR data, have led to the recent acceleration in the uptake of this technology to map and monitor Earth systems. The exploitation of SAR is now demonstrated in a wide range of operational land applications, including the mapping and monitoring of agricultural ecosystems. This chapter provides an overview of—(1) recent advancements in SAR systems; (2) a summary of SAR information sources, followed by the applications in crop monitoring including crop classification, crop parameter estimation, and change detection; and (3) summary and perspectives for future application development

    Radar Remote Sensing of Agricultural Canopies: A Review

    Full text link

    Influence of Incidence Angle in the Correlation of C-band Polarimetric Parameters with Biophysical Variables of Rain-fed Crops

    Get PDF
    A multi-temporal field experiment was conducted within the Soil Measurement Stations Network of the University of Salamanca (REMEDHUS) in Spain in order to retrieve useful crop information. The objective of this research was to evaluate the potential of polarimetric observations for crop monitoring by exploiting a time series of 20 quad-pol RADARSAT-2 images at different incidence angles (i.e. 25°, 31°, and 36°) during an entire growing season of rain-fed crops, from February to July 2015. The time evolution of 6 crop biophysical variables was gathered from the field measurements, whereas 10 polarimetric parameters were derived from the images. Thus, a subsequent correlation analysis between both datasets was performed. The study demonstrates that the backscattering ratios (HH/VV and HV/VV), the normalized correlation between HH and VV (γHHVV), and the dominant alpha angle (α1), showed significant and relevant correlations with several biophysical variables such as biomass, height, or leaf area index (LAI) at incidence angles of 31° or 36°. The joint use of data acquired with different beams could be exploited effectively to increase the refresh rate of information about crop condition with respect to a single incidence acquisition scheme.This study was supported by the Spanish Ministry of Economy and Competitiveness and the Spanish Ministry of Science, Innovation and Universities, [Projects ESP2015-67549-C3-3, ESP2017-89463-C3-3-R, and TEC2017-85244-C2-1-P] and the European Regional Development Fund (FEDER)

    Combining Multitemporal Microwave and Optical Remote Sensing Data. Mapping of Land Use / Land Cover, Crop Type, and Crop Traits

    Get PDF
    Humanity has changed the earth’s surface to a dramatic extent. This is especially true for the area used for agricultural production. Against the background of a growing world population and the associated increased demand for food, it is precisely this area that will become even more important in the future. In order not to have to allocate even more land to agricultural use, optimization and intensification is the only way out of the dilemma. In this context, precise Geoinformation of the agriculturally used area is of central importance. It is utilized for improving land use, producing yield forecasts for more stable food security, and optimizing agricultural management. Rapid developments in the field of satellite-based remote sensing sensors make it possible to monitor agricultural areas with increased spatial, spectral and temporal resolution. However, to retrieve the needed information from this data, new methods are needed. Furthermore, the quality of the data has to be verified. Only then can the presented geodata help to grow crops more sustainably and more efficiently. This thesis develops new approaches for monitoring agricultural areas using the technology of microwave remote sensing in combination with optical remote sensing and existing geodata. It is framed by the overall objective to obtain knowledge on how this combination of data can provide the necessary geoinformation for land use studies, precision farming, and agricultural monitoring systems. Hundreds of remote sensing images from more than eight different satellites were analyzed in six research studies from two different Areas of Interest (AOIs). The studies guide through various spatial scales. First, the general Land Use / Land Cover (LULC) on a regional level in a multi-sensor scenario is derived, evaluating different sensor combinations of varying resolutions. Next, an innovative method is proposed, through which the high geometric accuracy of radar-imaging satellite sensors is exploited to update the spatial accuracy of any external geodata of lower spatial accuracy. Such external data is then used in the next two studies, which focus on cost-effective crop type mapping using Synthetic Aperture Radar (SAR) images. The resulting enhanced LULC maps present the annually changing crop types of the region alongside external, official geoinformation that is not retrievable from remote sensing sensors. The last two research studies deal with a single maize field, on which high resolution optical WorldView-2 images and experimental bistatic SAR observations from TanDEM-X are assessed and combined with ground measurements. As a result, this thesis shows that, depending on the AOI and the application, different resolution demands need to be fulfilled before LULC, crop type, and crop traits mapping can be performed with adequate accuracy. The spatial resolution needs to be adapted to the particularities of the AOI. Evaluation of the sensors showed that SAR sensors proved beneficial for the study objective. Processing the SAR images is complicated, and the images are unintuitive at first sight. However, the advantage of SAR sensors is that they work even in cloudy conditions. This results in an increased temporal resolution, which is particularly important for monitoring the highly dynamic agricultural area. Furthermore, the high geometric accuracy of the SAR images proved ideal for implementing the Multi-Data Approach (MDA). Thus information-rich external geodata could be used to lower the remote sensing resolution needs, improve the accuracy of the LULC-maps, and to provide enhanced LULC-maps. The first study of the maize field demonstrates the potential of the WorldView-2 data in predicting in-field biomass variations, and its increased accuracy when fused with plant height measurements. The second study shows the potential of the TanDEM-X Constellation (TDM) to retrieve plant height from space. LULC, crop type and information on the spatial distribution of biomass can thus be derived efficiently and with high accuracy from the combination of SAR, optical satellites and external geodata. The shown analyses for acquiring such geoinformation represent a high potential for helping to solve the future challenges of agricultural production

    Crop monitoring and yield estimation using polarimetric SAR and optical satellite data in southwestern Ontario

    Get PDF
    Optical satellite data have been proven as an efficient source to extract crop information and monitor crop growth conditions over large areas. In local- to subfield-scale crop monitoring studies, both high spatial resolution and high temporal resolution of the image data are important. However, the acquisition of optical data is limited by the constant contamination of clouds in cloudy areas. This thesis explores the potential of polarimetric Synthetic Aperture Radar (SAR) satellite data and the spatio-temporal data fusion approach in crop monitoring and yield estimation applications in southwestern Ontario. Firstly, the sensitivity of 16 parameters derived from C-band Radarsat-2 polarimetric SAR data to crop height and fractional vegetation cover (FVC) was investigated. The results show that the SAR backscatters are affected by many factors unrelated to the crop canopy such as the incidence angle and the soil background and the degree of sensitivity varies with the crop types, growing stages, and the polarimetric SAR parameters. Secondly, the Minimum Noise Fraction (MNF) transformation, for the first time, was applied to multitemporal Radarsat-2 polarimetric SAR data in cropland area mapping based on the random forest classifier. An overall classification accuracy of 95.89% was achieved using the MNF transformation of the multi-temporal coherency matrix acquired from July to November. Then, a spatio-temporal data fusion method was developed to generate Normalized Difference Vegetation Index (NDVI) time series with both high spatial and high temporal resolution in heterogeneous regions using Landsat and MODIS imagery. The proposed method outperforms two other widely used methods. Finally, an improved crop phenology detection method was proposed, and the phenology information was then forced into the Simple Algorithm for Yield Estimation (SAFY) model to estimate crop biomass and yield. Compared with the SAFY model without forcing the remotely sensed phenology and a simple light use efficiency (LUE) model, the SAFY incorporating the remotely sensed phenology can improve the accuracy of biomass estimation by about 4% in relative Root Mean Square Error (RRMSE). The studies in this thesis improve the ability to monitor crop growth status and production at subfield scale

    Crop biophysical parameter retrieval from Sentinel-1 SAR data with a multi-target inversion of Water Cloud Model

    Get PDF
    Estimation of bio-and geophysical parameters from Earth observation (EO) data is essential for developing applications on crop growth monitoring. High spatio-temporal resolution and wide spatial coverage provided by EO satellite data are key inputs for operational crop monitoring. In Synthetic Aperture Radar (SAR) applications, a semi-empirical model (viz., Water Cloud Model (WCM)) is often used to estimate vegetation descriptors individually. However, a simultaneous estimation of these vegetation descriptors would be logical given their inherent correlation, which is seldom preserved in the estimation of individual descriptors by separate inversion models. This functional relationship between biophysical parameters is essential for crop yield models, given that their variations often follow different distribution throughout crop development stages. However, estimating individual parameters with independent inversion models presume a simple relationship (potentially linear) between the biophysical parameters. Alternatively, a multi-target inversion approach would be more effective for this aspect of model inversion compared to an individual estimation approach. In the present research, the multi-output support vector regression (MSVR) technique is used for inversion of the WCM from C-band dual-pol Sentinel-1 SAR data. Plant Area Index (PAI, m2 m−2) and wet biomass (W, kg m−2) are used as the vegetation descriptors in the WCM. The performance of the inversion approach is evaluated with in-situ measurements collected over the test site in Manitoba (Canada), which is a super-site in the Joint Experiment for Crop Assessment and Monitoring (JECAM) SAR inter-comparison experiment network. The validation results indicate a good correlation with acceptable error estimates (normalized root mean square error–nRMSE and mean absolute error–MAE) for both PAI and wet biomass for the MSVR approach and a better estimation with MSVR than single-target models (support vector regression–SVR). Furthermore, the correlation between PAI and wet biomass is assessed using the MSVR and SVR model. Contrary to the single output SVR, the correlation between biophysical parameters is adequately taken into account in MSVR based simultaneous inversion technique. Finally, the spatio-temporal maps for PAI and W at different growth stages indicate their variability with crop development over the test site.This research was supported in part by Shastri Indo-Candian Institute, New Delhi, India and the Spanish Ministry of Economy, Industry and Competitiveness, in part by the State Agency of Research (AEI), in part by the European Funds for Regional Development under project TEC2017-85244-C2-1-P

    Lem benchmark database for tropical agricultural remote sensing application.

    Get PDF
    Abstract: The monitoring of agricultural activities at a regular basis is crucial to assure that the food production meets the world population demands, which is increasing yearly. Such information can be derived from remote sensing data. In spite of topic?s relevance, not enough efforts have been invested to exploit modern pattern recognition and machine learning methods for agricultural land-cover mapping from multi-temporal, multi-sensor earth observation data. Furthermore, only a small proportion of the works published on this topic relates to tropical/subtropical regions, where crop dynamics is more complicated and difficult to model than in temperate regions. A major hindrance has been the lack of accurate public databases for the comparison of different classification methods. In this context, the aim of the present paper is to share a multi-temporal and multi-sensor benchmark database that can be used by the remote sensing community for agricultural land-cover mapping. Information about crops in situ was collected in LuĂ­s Eduardo MagalhĂŁes (LEM) municipality, which is an important Brazilian agricultural area, to create field reference data including information about first and second crop harvests. Moreover, a series of remote sensing images was acquired and pre-processed, from both active and passive orbital sensors (Sentinel-1, Sentinel-2/MSI, Landsat-8/OLI), correspondent to the LEM area, along the development of the main annual crops. In this paper, we describe the LEM database (crop field boundaries, land use reference data and pre-processed images) and present the results of an experiment conducted using the Sentinel-1 and Sentinel-2 data
    • 

    corecore