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ABSTRACT
Estimation of bio-and geophysical parameters from Earth observation (EO) data
is essential for developing applications on crop growth monitoring. High spatio-
temporal resolution and wide spatial coverage provided by EO satellite data are key
inputs for operational crop monitoring. In Synthetic Aperture Radar (SAR) appli-
cations, a semi-empirical model (viz., Water Cloud Model (WCM)) is often used
to estimate vegetation descriptors individually. However, a simultaneous estimation
of these vegetation descriptors would be logical given their inherent correlation,
which is seldom preserved in the estimation of individual descriptors by separate
inversion models. This functional relationship between biophysical parameters is es-
sential for crop yield models, given that their variations often follow different distri-
bution throughout crop development stages. However, estimating individual param-
eters with independent inversion models presume a simple relationship (potentially
linear) between the biophysical parameters. Alternatively, a multi-target inversion
approach would be more effective for this aspect of model inversion compared to an
individual estimation approach. In the present research, the multi-output support
vector regression (MSVR) technique is used for inversion of the WCM from C-band
dual-pol Sentinel-1 SAR data. Plant Area Index (PAI, m2 m−2) and wet biomass
(W, kg m−2) are used as the vegetation descriptors in the WCM. The performance of
the inversion approach is evaluated with in-situ measurements collected over the test
site in Manitoba (Canada), which is a super-site in the Joint Experiment for Crop
Assessment and Monitoring (JECAM) SAR inter-comparison experiment network.
The validation results indicate a good correlation with acceptable error estimates
(normalized root mean square error–nRMSE and mean absolute error–MAE) for
both PAI and wet biomass for the MSVR approach and a better estimation with
MSVR than single-target models (support vector regression–SVR). Furthermore,
the correlation between PAI and wet biomass is assessed using the MSVR and SVR
model. Contrary to the single output SVR, the correlation between biophysical pa-
rameters is adequately taken into account in MSVR based simultaneous inversion
technique. Finally, the spatio-temporal maps for PAI and W at different growth
stages indicate their variability with crop development over the test site.
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1. Introduction

Remote sensing data assimilation for crop yield models often employ vegetation bio-

physical parameters (e.g., Leaf Area Index (LAI), vegetation water content (VWC),

biomass, etc.) as key state variables (Baruth et al. 2008; Chipanshi et al. 2012;

Boogaard et al. 2013). In a dynamic system for such crop growth model, it is funda-

mental to regulate crop biophysical parameter distributions during the plant growth

period. However, these distributions of the biophysical parameters do not change in

the same way along the cultivation cycle (Kross et al. 2015). For example, the dry

biomass increases during the grain filling stage of wheat, while the LAI barely changes

at this stage. Conversely, during the tillering stage, both these biophysical parame-

ters advance almost proportionally. Therefore a compromise between the functional

relationship (e.g., between LAI and biomass) is often made while estimating only

one vegetation parameter from remote sensing data. These estimates from the remote

sensing data are used to replace crop model simulations at a particular time step in

a forcing strategy. Hence, direct ingestion of these crop estimates with a presumed

relationship (often linear) in a crop model may lead to instability in the overall model

setting.

Alternatively, the simultaneous estimation of biophysical parameters from remote

sensing data would be essential considering their correlations and differences in varia-

tion (Borchani et al. 2015). Among several Earth observation (EO) systems, Synthetic

Aperture Radar (SAR) data have been recognized for vegetation monitoring due to

its unique characteristics and sensitivity to geometric and dielectric properties of the

target (Ulaby 1975; Steele-Dunne et al. 2017). Radar backscatter intensity simulation

for vegetation canopies often relies on radiative transfer models (Ulaby et al. 1990;

Prevot, Champion, and Guyot 1993; Karam et al. 1995; De Roo et al. 2001). Such
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models characterize vegetation cover with a couple of direct and indirect measurable

crop biophysical parameters (Prevot, Champion, and Guyot 1993). To date, a number

of studies have been carried out to retrieve these biophysical parameters from SAR

data. The semi-empirical Water Cloud Model (WCM) has been extensively utilized to

estimate these crop descriptors (Attema and Ulaby 1978), given its relative simplicity

to model and invert these parameters (Graham and Harris 2003). Thus, this approach

is expected to be well adapted for the operational monitoring of agricultural crops.

A large number of experiments (Prevot, Champion, and Guyot 1993; Inoue, Sakaiya,

and Wang 2014; Chakraborty et al. 2005; Dabrowska-Zielinska et al. 2007; Bériaux

et al. 2015; Hosseini et al. 2015; Fieuzal and Baup 2016; Hosseini and McNairn 2017)

reported the potentiality of WCM for biophysical parameter estimation for several

crop types. These experiments suggest the possible approaches to invert the WCM for

estimating crop biophysical parameters with acceptable accuracies and its scalability.

Operational monitoring of agricultural areas benefits from remote sensing data with

high temporal revisit and wide spatial coverage. In this context, the C-band Sentinel-1

SAR constellation offers global high-resolution imagery at an unprecedented spatio-

temporal coverage. After the launch of Sentinel-1A in 2014, Satalino et al. (2015)

demonstrated the retrieval of above ground biomass (AGB) of wheat. The regres-

sion results indicate that the linear cross-pol ratio (VH/VV) is well correlated up to

3.0 kg m−2 of wheat biomass, with an root mean square error (RMSE) of 0.6 kg m−2.

The biomass map generated from the regression model clearly captured the spatial

variability within the wheat fields. In more recent studies, the VV and VH backscat-

ter coefficients and the VH/VV ratio of a dense time series of Sentinel-1 data showed

sensitivity to crop dynamics at critical phenological stages (Nguyen, Gruber, and Wag-

ner 2016; Veloso et al. 2017; Mandal et al. 2018b).
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Estimating vegetation parameters from dual-pol SAR systems might hold signif-

icant interest from an operational perspective for agricultural applications based on

time series of satellite data. These could be globally obtained from multiple SAR satel-

lites considering the rapid expansion of constellations of satellites such as Sentinel-1

A/B, Canadian RADARSAT Constellation Mission (RCM), SAOCOM (SAtélite Ar-

gentino de Observación COn Microondas) and NASA-ISRO SAR (NISAR) mission.

Nevertheless, the estimation of vegetation and soil descriptors via the WCM inversion

may often lead to an ill-posed inversion problem, which arises because more than one

combination of LAI, biomass, and soil parameters can produce an identical backscat-

ter intensity (Bériaux et al. 2015). It may lead to unstable and inaccurate inversion

performance. In literature, the iterative optimization (IO) and look-up table (LUT)

search techniques are aptly used to solve the ill-posed nature of such inversion prob-

lems (Prevot, Champion, and Guyot 1993; McNairn et al. 2012; Hosseini et al. 2015).

However, the iterative method produce accurate estimates at the expense of high com-

putational resources when optimizing such inversion problems. Mandal et al. (2019a)

indicated the highest computation-intensive nature of IO approach in memory-time

performance analysis compared with other inversion approaches. Besides, the intrinsic

problem associated with such an optimization of non-linear multi-variate merit func-

tion is the possibility to get confined into a local minimum instead of reaching the

global minimum (Perez, Jansen, and Martins 2012). Conversely, the LUT search tech-

niques provide an alternative for estimating crop parameters from WCM inversion.

However, the LUT approach lacks good generalization capability (Bériaux et al. 2015)

which might increase the prerequisite of high computational resources for large areas.

It is likely due to the search method need to be run through the entire LUT to get the

optimum solution for each resolution cell. It might pose a challenge for estimation of
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vegetation descriptors using new generation and upcoming operational SAR missions

providing wide area observations.

Recognizing the potential issues of the traditional approaches (IO and LUT search

techniques) for applications to larger areas, ill-posed inversion problems in remote

sensing are often solved by data-driven nonparametric models (Durbha, King, and

Younan 2007; Bériaux, Lambot, and Defourny 2011; Verrelst et al. 2012; Mandal et al.

2019a), which provides a stable and optimum solution. Also, machine learning regres-

sion models can provide an optimum solution with a lower computational cost (Mandal

et al. 2019a). Machine learning regression approaches such as the support vector re-

gression (SVR) can cope with the nonlinearity of the functional dependence between

crop descriptors (in WCM) and the SAR backscatter intensities. Hence, SVR can serve

as a suitable technique for model inversion in operational scale applications (Caicedo

et al. 2014; Mandal et al. 2019a). However, the formulation of standard SVR involves

a single target output. Hence, to estimate multiple biophysical parameters (e.g., Plant

Area Index–PAI, and wet biomass), we have to run several (in this case two) inde-

pendent SVRs which often ignore the correlation between the estimated biophysical

parameters (Tuia et al. 2011). Indeed, for plant biophysical parameter retrieval, it is

then necessary to contemplate multivariate outputs. This strategy takes care of the

functional dependency between the distribution of biophysical parameters, which may

not be preserved while estimating them individually. A preliminary attempt in this line

was made by Mandal et al. (2018a), which utilized the Multi-output SVR (MSVR)

to extend the standard SVR to a multi-target problem to simultaneously estimate

vegetation descriptors.

The objective of the current research is to appraise the WCM inversion capability

using the MSVR method for simultaneous retrieval of biophysical parameters (viz.,
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PAI and wet biomass). The estimation of biophysical parameters is achieved by using

the dual-pol VV and VH data acquired from the C-band Sentinel-1 SAR system.

The proposed MSVR method is compared with standard SVR to demonstrate how

the correlation between retrieved biophysical variables is preserved and their relative

performances. The performance of MSVR is investigated for structurally different crops

so that the model can be used for various cropping systems. Furthermore, the model

transferability is evaluated from point to a regional-site scale by generating spatio-

temporal maps of PAI and W.

The rest of the paper is organized as follows: Section 2 illustrates the test site

description and the dataset utilized. Section 3 details the methodology proposed in

this work. Section 4 discusses the results and their analysis, and finally, the work is

summarized and concluded in Section 5.

2. Study area and dataset

The test site is located at south and west of Winnipeg, Manitoba, Canada. This area

is considered as one of the super-sites of the Joint Experiment for Crop Assessment

and Monitoring (JECAM) network. The average extent of the test area is 26×48 km2.

This area is characterized by major cultivable lands and diverse crop types. The soil

texture varies across the site with heavy clay in the east, changing sharply to loamy-

sand in the west. Clay and loamy soils account for 76% of the test site, whereas

coarse loam, and sandy soils account for 14%. This contrast in soils across the test site

leads to significant spatial variability in soil moisture and farming operations across

the region. According to the Manitoba Agricultural Services Corporation (MASC)

crop insurance data, more than 85% of the site is dominated by annual crops. The

major annual crops grown in this area include wheat, canola, soybeans, corn, and oats.
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Only a small fraction (<5%) is under grassland and pasture. According to Manitoba

Agriculture (Agriculture 2016), the seeding of annual crops starts at the end of April

to mid-May with harvesting commencing in August. The field photographs indicating

differential vegetation growth stages are shown in Fig. 2 for major crop types.

[Figure 1 about here.]

[Figure 2 about here.]

2.1. Sampling strategy

The in-situ measurements were carried out over the test area in 2016 during the Soil

Moisture Active Passive Validation Experiment 2016 (SMAPVEX16-MB) (Bhuiyan

et al. 2018). During the campaign, in-situ measurements of soil and crops were collected

in two separate periods, i.e., Intensive Observation Periods (IOP) (June 08 to June 22

and July 8 to July 22, 2016) from 50 fields. During the field campaign, the majority of

crops advanced from an early stage of development to a peak accumulation of biomass

at the full vegetative stage. The soil and vegetation sampling were conducted in the

individual fields with an average size of 800 m×800 m. In each sampling field, soil

moisture measurements were collected from 16 sampling locations, which are placed

in two parallel transects along the row direction, as shown in Fig. 1. Two sampling

points in a transact were separated by 75 m, while the distance between two transects

was 200 m. In each soil sampling location, soil moisture was taken with 3 replicate

measurements using Stevens Hydra probes during both IOPs of the campaign.

In each field, 3 points (i.e., points 2, 11, 14 in the first week and 3, 10, 13 in the second

week of the campaign) were selected as the vegetation sampling locations as shown

in Fig. 1. The vegetation sampling included measurement of PAI, wet biomass, plant
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height, and phenological stage (McNairn et al. 2016). A comprehensive illustration

of vegetation and soil sampling strategies during the field campaign is provided in

the SMAPVEX16-MB report (McNairn et al. 2016). In addition, the annual crop

inventory map (Davidson et al. 2017) prepared by the Agriculture and Agri-Food

Canada (AAFC) is used as ancillary data for this study to generate crop specific map.

2.2. Satellite data and data pre-processing

We have utilized C-band Sentinel-1 data for the current study. The details of the dual-

pol (VV and VH) Sentinel-1A data are given in Table 1. The selection of Sentinel-1

images is solely based on the coincidence of the campaign and satellite acquisition

dates.

[Table 1 about here.]

The Sentinel-1 provides data in the Interferometric Wide (IW) swath mode in single-

look complex (SLC) format. In general, the IW mode comprises three sub-swaths. By

following the standard protocol (Mandal et al. 2019b) for processing the Sentinel-1

data, the sub-swaths are split and de-bursted using SNAP toolbox (ESA 2015) for all

individual acquisitions. The SLC images have range and azimuth spatial resolution of

5 m× 20 m. These SLC images are then multi-looked by 4×1 to form the 2×2 covariance

matrix, 〈[C]〉. Subsequently, despeckle operation is performed for all the elements of

〈[C]〉, using the refined Lee filter with a 3×3 window. These multi-temporal images

(elements of the diagonal of the 〈[C]〉 matrix) are then co-registered using ground

control points with an RMSE < 1.02 m. Subsequently, terrain correction and geocoding

are applied to these images. Then backscatter intensities σ◦VV and σ◦VH are derived

from the elements of the 〈[C]〉 matrix for an individual date. The in-situ measurement
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points (vector file) are overlayed on these σ◦VV and σ◦VH images. Here it is important

to note that the plot size is comparatively bigger (approx. 800 m×800 m) than the size

of the image pixel (approx. 15 m×15 m). Hence, the backscattering intensities for each

sampling location are calculated as the average over a 3×3 window centered on each

site.

2.3. Calibration and validation dataset

The extracted backscatter intensities (VV and VH) are tabulated with corresponding

in-situ measurements available for each acquisition date as given in Table 1. These

tabulated datasets are further utilized for calibration and validation of the Water

Cloud Model.

According to SMAPVEX16-MB experimental plan (McNairn et al. 2016), in each

field, 3 points were selected for vegetation sampling. However, the preprocessed data

provided by the SMAPVEX16-MB team to the end-users have some discrepancy for

different crop types when compared with the experiment plan. For wheat, both the

PAI and biomass measurements are provided for each three sampling points; while

for other crops, the biomass measurements are not available for all these three points.

Hence, we split the dataset differently for wheat and other crops. For all wheat fields,

data from sites 11 and 14 are used in validation and site 2 in calibration. As such,

partitioned data from sites 11 and 14 are not available from the SMAPVEX16-MB

data for other crop types. So, data is split in terms of field numbers. From this whole

feature set, the calibration data split is performed by selecting approximately half

of the data randomly, while the remainder of data is used as independent validation

dataset as given in Table 2.

The first dataset is used in the WCM calibration and utilized to generate the LUT.
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The validation data are reserved for testing to assess the performance of the inversion

approach. Notably, all the 50 fields are not sampled on each acquisition day as given

in Table 1. The sampling strategy is quite different than the general approach of

repeat in-situ measurements over the same sampling site on each acquisition. It is

well described in SMAPVEX16-MB campaign planning report (McNairn et al. 2016).

Measurements were performed in selected sampling fields of a particular crop on 1st

week of IOP1, but in second-week measurements were skipped and performed in other

selected fields. In addition, Sentinel-1 images do not cover all the fields in the test site;

hence, some measurements are not considered in the current work.

[Table 2 about here.]

3. Methodology

3.1. Multi-output Support Vector Regression (MSVR)

For a regression problem, the Support vector machine (SVM) uses the feature dataset

to derive a continuous-valued function between a set of inputs and an output (Vapnik

2013). In general, SVR generates a mapping function between the input feature x and

a target y ∈ R for a one-dimensional regression case. However, for a multi-target case,

several independent SVRs need to be utilized to get functional relationships between

the input feature and the target variables. In a multi-target regression problem, the

target variables can be represented as a vector with Q variables, i.e., y ∈ RQ. In this

context, the standard SVRs solves the regression problem by ignoring the correlation

among the target variables (Tuia et al. 2011). Conversely, the MSVR solves a multi-

dimensional regression problem by evaluating the regressor wj and bj (j = 1, · · · , Q)

for every target variable. An extensive description of MSVR formulation can be found
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in Tuia et al. (2011). In the present work, the target vector is generated with PAI,

and wet biomass. The input features are kept as the corresponding SAR backscatter

intensities. The implementation of MSVR in the present inversion chain is discussed

in Sec. 3.3.

3.2. Vegetation modeling

In SAR theory, the radar backscatter models for vegetation canopy have evolved from

the physics-driven complex functions to describe volume scattering throughout the

continuous canopy layer (Graham and Harris 2003; Steele-Dunne et al. 2017). The well

known physical models (e.g., the Michigan Microwave Canopy Scattering model (MIM-

ICS) or Radiative transfer model (RTM) based approaches) can provide an excellent

agreement of the estimated backscatter with the observed values. However, the com-

plexity of these models and the requirement of intensive in-situ measurements make

them difficult to implement for any operational scale. Alternatively, semi-empirical

models derived from the concept of physics of scattering and experiments, are used

efficiently in literature. An acceptable form of a semi-empirical model is the Water

Cloud Model (Attema and Ulaby 1978). The WCM simulates the radar backscatter

intensities from the vegetation-soil system as an incoherent sum of the contributions

from the vegetation and the underlying soil layer components (1). Attenuation of the

soil backscatter intensity component is represented by the two way attenuation factor

τ2.

σ◦ = σ◦veg + τ2σ◦soil (1)
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σ◦veg = AV1 cos θ
(

1− exp
(
− 2BV2

cos θ

))
(2)

τ2 = exp(−2BV2/ cos θ) (3)

where V1 and V2 are vegetation parameters. The radar incidence angle is indicated by

the term θ. The backscatter intensity due to the soil component σ◦soil is expressed as

proposed in (4):

σ◦soil = CMv +D (4)

where Mv is volumetric soil moisture. The model coefficient C is a representation of

the sensitivity of radar signal to soil moisture and D indicates the backscatter intensity

due to surface roughness.

Here it is important to note that different canopy descriptors have been used in

SAR literature for realizing the complex vegetation structure. A number of experi-

mental research on the combination of different vegetation descriptors were conducted

in several studies (Graham and Harris 2003; Lievens and Verhoest 2011; Kumar, Surya-

narayana Rao, and Arora 2015), which appointed LAI, wet and dry biomass, fraction

cover etc. to describe the vegetation canopy. It is interesting to observe that some

selective variables are widely used due to their physical significance and availability

of straight forward in-situ measurement techniques. In the present work, the following

form (5) of WCM is adapted to simulate the vegetation-radar signal interaction.

σ◦ = ALE cos θ

(
1− exp

(
−2BWF

cos θ

))
+ (CMv +D)× exp

(
−2BWF

cos θ

)
(5)
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where A, B, C, D, E, and F are the model coefficients. L, and W are the PAI and

wet biomass, respectively.

3.3. Model inversion

The estimation of vegetation descriptors from the WCM model as defined in (5) is

treated as an ill-posed inversion problem. The direct inversion of this model is chal-

lenging, given the observed backscatter intensities. Hence, several steps need to be

followed to achieve the inversion of WCM, which essentially includes four steps: a)

calibration of the WCM, b) forward modeling and LUT generation, c) MSVR model

training, and d) simultaneous estimation of crop biophysical parameters using MSVR

model.

[Figure 3 about here.]

Semi-empirical WCM models require the in-situ datasets that allow the fitting of

the model coefficients which are derived from the concept of physics of scattering

and experiments. At first, the WCM parameterization is performed by estimating

the WCM model parameters (A, B, C, D, E, and F ) as (5). This step is typically

called as a calibration phase. The calibration dataset is used to estimate the model

parameters using the non-linear least square optimization of the Levenberg-Marquardt

algorithm (Moré 1978). The WCM is calibrated for both the VV and VH backscatter

intensities for each crop using the in-situ measurements as given in Table 2. The

performance of the WCM calibration is assessed in terms of the correlation coefficient

(r) and RMSE between the simulated and the observed backscatter intensities for

individual crop and each polarization channel.

Theoretically, the forward modeling denotes the generation of response values from a
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model using a set of input data, which can be utilized for training the regression model.

In case of the forward WCM, the backscatter intensities in both polarizations can be

simulated for extrapolated points in the vegetation parameter space. This dataset is

often treated as the synthetic dataset. To make this kind of synthetic data resem-

ble natural measurements of vegetation space, some noise is usually added (Durbha,

King, and Younan 2007; El Hajj et al. 2016). However, these datasets often contain

uncertainties, and the realistic nature of synthetic data is not guaranteed. Hence, in

the present study, we have used the combinations of vegetation parameters from the

calibration data to derive the associated backscatter intensities by the forward WCM.

For each crop type, the backscatter intensities are simulated from the calibrated WCM

at each calibration point, and subsequently the LUT is derived.

The LUT elements are then utilized as training data to build the MSVR model. Hos-

seini et al. (2015) indicated that a combination of polarization channels can improve

crop parameter estimation when compared with a single channel. Thus, backscatter

intensities in both the co-pol and cross-pol channels (VV+VH) are included in the

MSVR target vector. On the other hand, crop biophysical parameters (PAI, and wet

biomass) are used as the MSVR model responses. It is important to note that all bio-

physical parameters used in WCM can be retrieved simultaneously using the MSVR.

The MSVR models are trained using the LUT elements for each crop separately.

The meta-parameters of the MSVR (the insensitive parameter ε, kernel parameter

γ, and margin parameter C ′) are selected using a k-fold cross-validation technique

for an individual crop. Finally, the validation dataset is used to estimate the crop

biophysical parameters simultaneously from the trained MSVRs for each crop. Here it

is important to note that for each crop there exists one MSVR. As such, three MSVR

models are generated separately for this study. The inversion accuracies are tested with
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independent validation points as given in Table 2. The estimation accuracies between

observed and estimated crop descriptors (Dc) are performed for the validation dataset

with the correlation coefficient (r), Mean Absolute Error (MAE) and normalized root

mean square error (nRMSE) as (6):

nRMSE =

√∑n
i=1(DObserved

c −DPredicted
c )2

n∑n
i=1D

Observed
c

n

(6)

These three error measurement are estimated for each descriptor for all individual

crops. Subsequently, PAI and biomass maps over the test area are generated in on

the fly mode (prediction phase) using Sentinel-1 acquisitions and the crop inventory

map. During this prediction phase, trained MSVR models are selected as per the crop

map. Once selected, these models simultaneously estimate PAI and biomass for each

resolution cell, as shown in Fig. 3.

3.4. Experimental design

This experiment tests the proposed MSVR approach and the standard single-target

SVR approach for crop biophysical parameter retrieval for individual crops. We have

used the same training and validation dataset for the comparison. This comparison

has two objectives: 1) to test the retrieval accuracies for MSVR and SVR approaches,

and 2) to test the correlation between estimated parameters (PAI and W estimates)

from two approaches and compare them with the actual correlation between these

parameters in ground measurement space.

Apart from generating geophysical parameter estimates simultaneously from the

proposed MSVR approach (Sec. 3.3), separate SVR models are used. The biophysical

parameters, i.e., PAI and W, are estimated separately by constructing two sets of the
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SVR model. In one set, both the radar backscatter intensities (VV and VH) are used

as predictors, while PAI as a response. In another set, W is considered as response

with the same training data. The PAI and W are retrieved individually using two

separate SVR models for the validation dataset. The correlation between PAI and W

are assessed subsequently with scatter plot for both the SVR and MSVR. The in-situ

measurements of PAI and W are used to determine if the correlation between these

biophysical parameters is preserved during the model inversion for individual crops.

4. Results and discussions

This section describes the results of the WCM inversion for each crop type and com-

pares these estimates to in-situ measurements. Subsequently, the accuracy of the WCM

model calibration and inversion is assessed in Sec. 4.1 and Sec. 4.2. Further, the com-

petitive performances between the multi and single output SVM regression are evalu-

ated with a correlation analysis between the PAI and W.

4.1. Calibration of the WCM

The parameterization of the WCM for an individual crop is performed using the cali-

bration data as discussed in Sec. 3.3. WCM is parametrized individually for both the

VV and VH polarization channels for wheat, soybean, and canola. This process results

in 6 different model equations. The coefficients for each model (crop and polarization

combinations) along with the F-statistics and the p-values (level of significance) are

given in Table 3.

[Table 3 about here.]

Prior to evaluating errors in biophysical parameter estimation, the goodness of fit of
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the parameterized WCM model is evaluated using the calibration dataset. The accura-

cies of the calibrated WCMs are assessed by comparing the observed and the simulated

backscatter intensities for the calibration dataset. This evaluation is presented in Ta-

ble. 4.

[Table 4 about here.]

The correlation between the observed and the simulated backscatter intensities is

0.80 (VV) and 0.62 (VH) for wheat. The RMSE is low (0.007 m2 m−2) for the cross-

pol channel as compared to the co-pol VV channel (0.026 m2 m−2). This disparity is

likely due to the unique morphological structure of wheat plant. Wheat belongs to

the graminaceous family which is characterized by vertical stems and erectophile leaf

distribution. Moran et al. (2012) reported a similar differential sensitivity of σ◦HV and

σ◦VV for barley (graminaceous family) for C-band RADARSAT-2 data.

The correlation coefficients (r) between the observed and the estimated backscatter

coefficients are 0.87 (VV) and 0.83 (VH) for canola. However, the RMSE is lower for

VH (0.010 m2 m−2) than for VV (0.051 m2 m−2) possibly due to the highly random

structure of canola canopies. The sensitivities of backscatter intensities in both the

VV and VH polarizations is observed through the entire phenological evolution of

canola. The comparison of simulated and observed backscatter intensity values are

notably different for low biomass crops like soybean. The r values for soybean are

found to be 0.64 (VV), and 0.68 (VH). The RMSE is comparatively lower for the

cross-pol channel (0.006 m2 m−2) for soybean indicating a better calibration for cross-

pol channel. It may be due to the sensitivity of the VH backscatter intensity to diffused

scattering from the crop canopy as the biomass and the PAI increases. Alike sensitivity

of VH backscatter intensity with changes in crop biomass of soybean was indicated
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for C-band RADARSAT-2 acquisitions during the SMAPVEX-12 campaign (Wiseman

et al. 2014; Hosseini et al. 2015).

4.2. Validation for crop biophysical parameter estimation

The MSVR model inversion is evaluated with the validation dataset for each crop indi-

vidually. The estimated PAI, and W are compared with the in-situ measurements on a

1:1 plot to investigate the performance of the inversion approach using the validation

points. Results are shown in Fig. 4 for all individual crops.

[Figure 4 about here.]

4.2.1. Wheat

For wheat, the in-situ measured PAI varies from 1.10 m2 m−2 to 8.95 m2 m−2 and

advanced from leaf development to fruiting stages. The correlation (r) between the es-

timated and in-situ measured PAI is 0.83 with nRMSE and MAE values of 0.246 and

0.893 m2 m−2, respectively as shown in Fig. 4a. The proposed MSVR technique with

the VV+VH polarization combination as input produces estimation of PAI over the

entire range. However, underestimation of PAI values is apparent as the plant area has

reached about 7.0 m2 m−2 at the end of the heading stage. Conversely, an overestima-

tion in PAI is observed during the early tillering stages (when PAI was <2.5 m2 m−2),

which is likely due to soil contribution to the radar backscatter intensities.

The in-situ measured wet biomass varies from 0.40 kg m−2 to 6.0 kg m−2 during the

field campaign period. The r−value between observed and estimated wet biomass is

0.75, which is similar to PAI estimation (Fig. 4d). The errors of estimate (nRMSE

and MAE) for biomass are 0.333 and 0.707 m2 m−2, respectively, higher than the PAI

estimation errors. The wide margin of wet biomass estimation is apparent (1.2 kg m−2)
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across the 1:1 line for high biomass conditions (> 2.5 kg m−2). It is likely due to

saturation of C-band when wheat biomass is high at the end of the heading stage.

Similar accuracies were also declared in Hosseini and McNairn (2017) for retrieval of

total biomass for wheat using combinations of VV and HV polarization channels.

4.2.2. Canola

The estimated and in-situ measured PAI are highly correlated for canola (r = 0.88)

with nRMSE of 0.466 and MAE of 1.144 m2 m−2) (Fig. 4b). However, the retrieval re-

sults during the inflorescence emergence to flowering stages indicated underestimation

when the PAI reaches about 5 m2 m−2. This underestimation is likely due to saturation

of C-band radar wave when canola accumulates considerable biomass after flowering

and pod development. A considerable amount of depolarization is possible for a dense

canopy with stems, leaves, and pods. Pacheco et al. (2016) also reported approximately

four times increment of HV/VV differential reflectivity with the advancement of plant

growth from stem elongation to the flowering stage for canola.

The simultaneous estimation using the MSVR inversion method indicates high es-

timation accuracy for wet biomass as well as PAI, as shown in Fig. 4e. The r and

MAE between estimated and in-situ measured wet biomass are 0.89 and 0.841 kg m−2,

respectively. Similar to other crop types, the overestimation and underestimation of

the wet biomass are also apparent during the early stage of vegetative growth and

the flowering stage of canola, respectively. The sensitivity of the SAR signal to canola

biomass accumulation from leaf development up to the flowering stage is apparent,

and saturation of C-band signal is possible due to the high volume of plant material

at the time of pod development (Wiseman et al. 2014). The overall estimation result

is marginally better in case of wet biomass as compared to PAI.
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4.2.3. Soybean

The ground measured PAI for soybean varies from 0.2 to 4.3 m2 m−2, covering pheno-

logical stages from leaf development to flowering. The correlation coefficient for PAI

estimation is 0.73 with nRMSE and MAE of 0.517 and 0.798 m2 m−2, respectively

(Fig. 4c). An overestimation of PAI retrieval is observed during the leaf develop-

ment stage, which is likely due to sparse vegetation cover. Early in its development,

canopy closure is very small (PAI<1.45 m2 m−2) in between soybean rows, which al-

lows the radar wave to interact more with the exposed soil (Wiseman et al. 2014;

Ratha et al. 2019). Nevertheless, estimated and observed PAI follow the 1:1 line when

PAI>1.6 m2 m−2. This higher plant area indicates the end of side-shoot formation

stage, with dense canopy cover. Nonetheless, a significant spread (about 1.2 m2 m−2)

is observed for high PAI.

The behavior of W estimates (Fig. 4f) results in a higher correlation coefficient (r =

0.79) relative to PAI. Early in the season, soybean biomass is low. This sparse canopy

along with wide row spacing make modeling of this canopy more difficult. The in-situ

measured wet biomass of soybean changed from 0.02 kg m−2 to 2.2 kg m−2 during the

field campaign window. For this crop, radar backscatter would be significantly affected

by the underlying soil. A sparse soybean canopy could not attenuate much the radar

signal leading to surface scattering from the underlying soil layer, as also reported with

Sentinel-1 observations by Veloso et al. (2017). Error of estimates for wet biomass are

nRMSE<0.491 and MAE 0.260 kg m−2 with a slightly increased spread around the 1:1

line. These variations in biomass estimates are possibly due to the variations in the

plant density in several fields. It is evident from in-situ measurements that the number

of plants along the row was higher for a few fields (≈ 50 plants m−1) than for other

fields (12 plants m−1).
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4.3. Comparison of inversion results for MSVR and SVR

The performance of the MSVR based inversion approach is compared with the single

target SVR model for the same validation dataset. Comparative results of retrieval

accuracies of biophysical parameters for each crop types are presented in Table 5 with

the correlation coefficient (r), normalized RMSE, and mean absolute error (MAE).

Highest accuracy (r = 0.83) in the PAI estimation is obtained with the MSVR ap-

proach (nRMSE = 0.246 and MAE = 0.893 m2 m−2) as compared to SVR (r = 0.75,

nRMSE = 0.306 and MAE = 1.012 m2 m−2) for wheat. For wet biomass, a difference

in both the nRMSE and MAE is obtained for SVR as compared to the MSVR. For

the given three crop types, the MSVR has outperformed the SVR estimates in all bio-

physical parameters for each crop types. It is noticeable from the comparative analysis

that the inversion technique with MSVR, which takes into account the correlations

between the plant biophysical parameters, produced acceptable inversion results for

all crops. It can be further confirmed from the correlation analysis between estimated

biophysical parameters, as shown in Fig. 5.

[Table 5 about here.]

4.4. PAI and wet biomass relationship

In addition to comparative analysis between retrieval results from the MSVR and SVR

approaches, it is imperative to analyze the correlation between the estimated biophys-

ical parameters and the observed ones for both methods. To achieve this analysis, the

experiment design is set up as discussed in Sec. 3.4. Apart from generating biophysical

parameters simultaneously from the proposed MSVR approach (Sec. 3.3), separate

SVR models are used. The correlation between PAI and W are then evaluated with
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scatter plots for both the SVR and MSVR runs. The in-situ measurements of PAI and

W are used to determine whether the correlation between these two biophysical pa-

rameters is preserved during the model inversion for individual crops. The functional

relationships between the PAI and W are shown in Fig. 5 for individual crops.

[Figure 5 about here.]

For wheat, a non-linear function is apparent for the in-situ measured PAI and W.

The relationships between the estimated biophysical parameter are also similar in the

case of MSVR, and SVR approaches. However, MSVR performed better (R2 >0.79) as

compared to the SVR based single target output (R2 <0.72). Of note, an exponential

model fits the data well in both cases. However, for canola, a logarithmic function fit

is found superior. It is evident from Fig. 5 that, for canola, the correlation between

the MSVR-based estimates of PAI and W (R2 =0.88) is preserved better when com-

pared with the SVR model (R2 =0.66). However, for soybean, a non-linear functional

dependence (possibly exponential function) is found better to fit in-situ measured PAI

and W. The overall analysis indicates that the non-linear relationship between the

biophysical parameters is successfully retained by the MSVR method (Fig. 4.4), while

the performance of the single-output SVR is comparatively low.

4.5. PAI and biomass maps

The MSVR approach is used to invert the WCM to simultaneously produce PAI and

biomass maps for the test site using the Sentinel-1 acquisitions. The high resolution

(20 m) maps for PAI and W are shown in Fig. 6 for three selected acquisition dates.

Both the spatial as well as the temporal variability in plant growth is observed for

various fields in these map products. Once the regression model is established, the

algorithm took a computational time of about 70 sec. to process 2500 × 2500 pixels
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and generate both the PAI and biomass maps for a single date Sentinel-1 data.

[Figure 6 about here.]

The Manitoba weekly crop reports (Agriculture 2016) suggest that seeding was com-

pleted in the central region of Manitoba during the second week of June. Wheat plants

were growing rapidly, and most fields were at the tillering stage on 13 June. A few of

the most advanced fields were close to the flag leaf stage. Data from the SMAPVEX16-

MB campaign confirms that the majority of the wheat and oat fields were tillering

with average wet biomass of 1.02 kg m−2 and PAI of 3.44 m2 m−2. However, the over-

estimates the PAI and W values by the inversion algorithm are pronounced in several

wheat fields on 13 June during the early vegetative stage, as shown in Fig. 6. These

results are consistent with the validation results shown in Fig. 4.

On 13 June, the estimated PAI and W in the majority of canola fields are low (about

0.7 m2 m−2 and 0.5 kg m−2) as compared to cereal crops. From the Manitoba weekly

crop reports (Agriculture 2016) canola seeding was almost completed and the crop

was emerging rapidly. Earlier seeded fields were reaching the rosette stage. Thus, the

effect of the soil component is expected to dominate rather than the vegetation. Similar

results are observed for the low biomass soybean crop. Soybean seeding was completed

during this period and plants were in their unifoliate to third trifoliate growth stage.

This results in very low PAI and biomass values in the biophysical maps.

During the first week of July, good crop growth was reported in the Manitoba weekly

crop reports (Agriculture 2016). Nevertheless, excess moisture was a concern in fields

with late seeded crops due to heavy rainfall events in the previous week. However,

more advanced crops had been better able to handle higher rainfall, although stand

thinning and yellowing of crops was evident. Cereals were at their stem elongation
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to flag leaf stages. Some fields advanced to the heading stage. Thus increases in PAI

and biomass are observed in Fig. 6 up to 0.7 m2 m−2 and 0.5 kg m−2, respectively. In

contrast, for soybean, increases in PAI and W are negligible in the map products.

Nonetheless, the majority of the soybeans were at the seventh trifoliate stage with

PAI and W of 0.7 m2 m−2 and 0.5 kg m−2, respectively.

The canola fields were bolting, forming early flowers; podding started in the most

advanced fields. A rapid increase in PAI and W is apparent in the PAI and W maps of

canola. A rapid growth is evident in canola up to PAI of 0.7 m2 m−2 and wet biomass

of 0.5 kg m−2 (Fig. 6).

During the third week of July, most of the crops were at the end of their vegetative

growth and were initializing their reproductive stages. Cereal crops were at an ad-

vanced heading stage with high PAI and biomass (about 0.7 m2 m−2 and 0.5 kg m−2).

However, lodging was reported in several fields as a result of high winds and thunder-

storm activity (Agriculture 2016). The canola was growing rapidly and most was in

full flowering. Podding was observed in the most advanced fields where flowering was

completed. The PAI and biomass map clearly capture the relative growth of canola in

several fields (Fig. 6). Rapid growth in soybean canopies is evident on 19 July as soy-

beans continue to flower and pod (Agriculture 2016). Temperature or moisture stress

can limit the quality of soybean pods and seeds during these critical growth stages.

5. Conclusion

Standard inversion techniques with a single target estimation framework seldom pre-

serve the correlation amongst the target parameters. Nevertheless, it is often indispens-

able to preserve correlations between the biophysical parameters for better estimation

of crop productivity. Hence, a novel inversion framework for the WCM with multi-
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target output technique has been proposed in this research for simultaneous retrieval

of biophysical parameters (PAI, and wet biomass). The applicability of this inversion

approach is assessed for several major crops using C-band Sentinel-1 dual-pol data.

Results exhibit high correlation coefficients and low estimation errors for simul-

taneous retrieval of biophysical parameters. Notably, the relationship between the

estimated PAI and W indicates that the MSVR successfully preserves the correla-

tion between the crop biophysical parameters during the inversion process. Besides,

biophysical parameters maps capture the spatial variability among and within the

crop fields. These biophysical maps would enable continuous monitoring at large spa-

tial scales throughout the season, hence supporting yield forecasting and productivity

monitoring.

Downstream users might be interested in weekly products from an operational mis-

sion like Sentinel-1. In fact, the frequent revisit of SAR satellites is necessary to monitor

critical phenological stages during the crop season. With the increased capability of

this constellation, the in-situ measurements can be enriched to reconstruct the MSVR

at other phenological stages as well, which are not observed in the present research.

With the synergy of Sentinel-1A and 1B, the inversion would be improved as integrat-

ing data from other growth stages could allow better inter-correlation between PAI

and biomass; which could lead to a better estimation.

Although the formulation of MSVR model with kernel tricks often condemned to be

computationally intensive, the problem of computational efficiency can be solved by

employing a parallel computation strategy during the training and prediction phases

of WCM inversion model. Nevertheless, this inversion strategy needs to be further

investigated for different cropping systems for the applicability of WCM at cross-site

validation and for a dense time series data cube through several test site under JECAM
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SAR Inter-Comparison Experiment to be applied for an operational scale.

This research demonstrates a significant potential of Sentinel-1 data for simultane-

ous estimation of crop biophysical parameters, with promising operational accuracy

levels. This is illustrated by producing analysis-ready biophysical maps (ARD prod-

ucts). The MSVR based model inversion approach can be transferred from a point scale

to a regional test site. With the synergy between PAI and biomass products derived

from Sentinel-1, data could contribute significantly to monitor crop development.
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Veloso, Amanda, Stéphane Mermoz, Alexandre Bouvet, Thuy Le Toan, Milena Planells, Jean-

François Dejoux, and Eric Ceschia. 2017. “Understanding the temporal behavior of crops

using Sentinel-1 and Sentinel-2-like data for agricultural applications.” Remote Sensing of

Environment 199: 415–426.
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Figure 1. Study area and sampling locations over the JECAM-Manitoba (Canada) test site. The layout of

the 16 sampling locations within each field is highlighted. In each field, 3 points were selected for vegetation

sampling. Soil samples were collected from all the 16 sampling locations.
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Figure 2. Field conditions of different crops during the campaign.
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Figure 3. Schematic work-flow for retrieval of crop biophysical parameters using MSVR.
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Figure 4. Validation plots of PAI (m2 m−2) and wet biomass (kg m−2) for wheat (a, d), canola (b, e), and

soybean (c, f).
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Figure 5. The relationship between PAI and wet biomass based on ground measured, MSVR, and SVR
retrievals for wheat (a-c), canola (d-f), and soybean (g-i).
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Figure 6. Plant Area Index (PAI m2 m−2) and wet biomass (kg m−2) maps over the Manitoba test site for

three acquisitions dates, (a-b) 13 June, (c-d) 07 July and (e-f) 19 July 2016. The crop inventory map and

sampling field locations are presented in (g) and (h) respectively.
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Table 1. Sentinel-1A acquisitions over Manitoba (Canada) during the SMAPVEX16-MB campaign.

Satellite data
acquisition date

Beam mode
Incidence angle

range (◦)
Orbit Campaign window

06 June 2016 IW 39.87-41.84 Ascending 08 June 2016

13 June 2016 IW 30.22-32.47 Ascending
13 June 2016
15 June 2016

30 June 2016 IW 39.87-41.84 Ascending
27 June 2016
28 June 2016

07 July 2016 IW 30.22-32.44 Ascending
05 July 2016
06 July 2016

19 July 2016 IW 30.22-32.44 Ascending
17 July 2016
20 July 2016

24 July 2016 IW 39.82-41.79 Ascending
21 July 2016
22 July 2016
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Table 2. The number of independent calibration and validation points for each crop combined from different

growth stages.

Crop Growth stage
Number of

calibration feature point
Number of

validation feature point

Wheat
Leaf development
to fruit development

54 108

Canola
Leaf development
to flowering

21 20

Soybean
Early leaf development
to flowering

41 38
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Table 3. Model parameters and statistics for different crops and polarizations

Crop Polarization
Model parameter

F-Statistic
Level of

significanceA B C D E F

Wheat
VV 0.038 0.002 0.14 0.032 0.162 1.259 172 2.03×10−24

VH 0.024 1.283 0.026 -0.016 0.302 -1.18 173 1.46×10−24

Canola
VV 0.282 -2.236 0.287 -0.018 0.004 -0.051 34.4 1.33×10−7

VH -0.028 -0.027 0.039 -0.067 -0.516 0.412 39.1 5.84×10−8

Soybean
VV 0.045 1.949 1.833 5.725 0.727 0.012 36.1 2.10×10−10

VH 0.099 0.062 -0.079 0.564 0.440 0.378 29.4 4.02×10−9
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Table 4. Comparison of simulated and observed backscatter (σ◦) for the calibration data

Crop
VV VH

r RMSE r RMSE
Wheat 0.80 0.026 0.62 0.007
Soybean 0.64 0.034 0.68 0.006
Canola 0.87 0.051 0.83 0.010
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Table 5. Comparison of MSVR and SVR based retrieval accuracy of PAI (m2 m−2) and wet biomass (W,

kg m−2) for various crop types.

Crop
Biophysical
parameter

MSVR SVR
r nRMSE MAE r nRMSE MAE

Wheat
PAI 0.83 0.246 0.893 0.75 0.306 1.012
W 0.75 0.333 0.707 0.70 0.425 0.824

Canola
PAI 0.88 0.466 1.144 0.85 0.612 1.452
W 0.89 0.396 0.841 0.81 0.486 1.054

Soybean
PAI 0.73 0.517 0.798 0.66 0.842 0.912
W 0.79 0.491 0.260 0.70 0.674 0.387
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