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Abstract 

Timely and accurate information of land surfaces is desirable for land change detection and 

crop condition monitoring. Optical data have been widely used in Land Use and Land Cover 

(LU/LC) mapping and crop condition monitoring. However, due to unfavorable weather 

conditions, high quality optical images are not always available. Synthetic Aperture Radar 

(SAR) sensors, such as RADARSAT-2, are able to transmit microwaves through cloud cover 

and light rain, and thus offer an alternative data source.     

This study investigates the potential of multi-temporal polarimetric RADARSAT-2 data for 

LU/LC classification and crop monitoring in the urban rural fringe areas of London, Ontario. 

Nine LU/LC classes were identified with a high overall accuracy of 91.0%. Also, high 

correlations have been found within the corn and soybean fields between some polarimetric 

parameters and Normalized Difference Vegetation Index (NDVI). The results demonstrate 

the capability of RADARSAT-2 in LU/LC classification and crop condition monitoring. 
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Chapter 1  

1 Introduction 

1.1  Research Content  

Agriculture is an important element of the Canadian economy; as such, Canada has 

become one of the largest agricultural producers and exporters in the world. However, the 

proportion of the population and GDP devoted to agriculture has fallen dramatically over 

the past few decades.  

Due to the rapid urban development in Ontario, the impact of urban development on the 

agricultural economy is evident. In the decade from 1981 to 1990, the net farm income in 

Ontario was 6,812 million CAD, which was 23% of the net farm income in Canada. In 

contrast, net farm income decreased to 2,891 million CAD from 2001 to 2010, which 

occupied merely 11% of the net farm income in the whole country (Statistics Canada, 

2012). A report given by Statistic Canada showed that from 2006 to 2011, the number of 

farms decreased by 9.2%. During this timeframe, the total area occupied by farms also 

dropped by 4.8%. 

In Southern Ontario alone, hundreds of square kilometers of productive agricultural land 

are lost due to the rapid urban sprawl each year. For example, in the Greater Toronto 

Area, over 2,000 farms and 500 km2 of farmland were converted to urban purposes 

between 1976 and 1996 (OMAFRA, 2011).  

The rapid loss of agricultural areas to urban land use in the urban/rural fringe area in 

regions similar to Southern Ontario, has raised great concern. Increasingly, researchers 

have focused on assessing the impacts of urban expansion on agricultural and forest 

ecosystems (Lombard et al. 2003; Pellizzeri 2003; Pellizzeri et al. 2003; Niu and Ban 

2010; Zhang et al. 2010; Zhu et al.2011).    
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Remote Sensing offers an effective solution to detect changes over land surfaces. Satellite 

sensors are able to collect up-to-date and reliable information about the current state of 

land surfaces, with such features as wide area coverage and a short revisit interval. This 

data if then used to further facilitate Land Use and Land Cover (LU/LC) change detection, 

as well as agricultural condition monitoring.  

The complexity of urban/rural fringe environments makes LU/LC mapping very 

challenging, as they are composed of a wide variety of LU/LC classes. However, optical 

images have been proven to be promising data sources, due to the rich informational 

content of multispectral data. Since the launch of Landsat optical satellites, many LU/LC 

mapping applications have utilized optical remote sensing data. With the advent of 

advanced optical satellite sensors (i.e. Quickbird, Ikonos, SPOT, Worldview, and 

RapidEye), the spectral and spatial resolution of images have been highly improved 

(Corbane et al., 2008). More sophisticated methods, such as object-based classification, 

have been developed to improve the classification accuracy (Geneletti & Gorte, 2003; Gao 

et al., 2006; Li et al., 2008; Li et al., 2009; Qi et al., 2012; Watts et al., 2009).  

Multi-temporal Remote Sensing information is particularly useful in agricultural 

applications, such as annual crop inventory and crop condition monitoring (Defries & 

Townshend, 1994; Friedl et al., 2010; Gopal et al., 1999; Guerschman et al., 2003; Hansen 

et al., 2000; Tucker et al.,1985; Wolter et al., 1995). The bio-physical characteristics of 

vegetation, such as pigmentation, internal leaf structure and moisture, vary from crop to 

crop and reflect crop development over time. The changes in the biophysical characteristics 

can be directly reflected by the amount of visible and infrared (V-IR) energy recorded on 

the satellite images (Reese et al., 2002; Guerschman et al., 2003; Turker and Arikan, 2005; 

Fisette et  al., 2005). A large number of vegetation indices (i.e. the normalized difference 

vegetation index (NDVI), the optimized soil adjusted vegetation index, the enhanced 

vegetation index, and the modified triangular vegetation index) are derived from 

multispectral optical data in order to track temporal changes in biophysical characteristics 

of different vegetation types (Andrés et al., 2011).  
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LU/LC change detection and crop condition monitoring applications using optical images 

are successful only when images can be acquired frequently over the entire crop growth 

period. However, due to the existence of haze and cloud, high quality optical data are not 

always available under unfavorable weather conditions. Therefore, when time and area 

gaps in data acquisition occur, the application potentials of optical images are often limited 

(McNairn et. al., 2009). In contrast, remote sensing satellites using RADAR technology 

employ microwaves, which are able to transmit through most cloud and haze. Thus, the 

backscattering signals obtained using RADAR remote sensing satellites are less influenced 

by weather conditions. The Synthetic Aperture Radar system, which transmits and receives 

microwave signals, provides complementary information for optical remote sensing. The 

backscattering signals from SAR are sensitive to the architecture and dielectric properties 

of land surfaces, such as plant canopy, built-up and soils (McNairn et. al., 2009).  

The advantages of SAR images over optical data are more obvious in agricultural 

applications, as crops change rapidly during their growing seasons. The resulting SAR 

backscatter signals are primarily a function of the canopy structure such as the size, shape 

and orientation of leaves, stalks and fruit, the water content of the crop canopy and the soil 

conditions. However, the structure and water content varies from crop to crop and changes 

among different stages of crop development. Therefore, SAR images have the potential to 

not only distinguish different crop types, but also to monitor crop growing conditions. 

During the past few years, many studies have proved the capabilities of SAR data in crop 

condition monitoring and biophysical parameter retrieval (Blaes et al., 2005; Chakraborty 

et al., 2005; Moran et al., 1997; Nicolas et al., 2009; Shao et al., 2001).  

Studies show that the sensitivity of SAR backscattering to crop conditions depends on the 

SAR sensor parameters (wavelength, incidence angles, and polarization). Generally, short 

SAR wavelengths, such as X-band (~3cm) and C-band (~6cm), are less capable to 

penetrate through the canopy, and therefore mainly interact with the top part of the canopy 

layers. In contrast, longer wavelengths such as L-band (~20cm) and P-band (~100cm) can 

penetrate into the vegetation cover and even reach the soil (Ulaby et al., 1987). The 

penetration depth achieved depends on the biophysical parameters of the objects causing 

scatter within a vegetation layer (e.g., water content, size and geometry of the scatter 



4 

 

objects), which might enhance or attenuate the interactions between microwaves and 

scatter- producing features.  

In addition to exploring the frequency dimension of the SAR system, some researchers 

have investigated the polarimetric properties of SAR data in LU/LC classification and 

vegetation monitoring. (Pierce et al., 1994; Du & Lee, 1996; Lee et al., 2001; Freitas et al., 

2008). Results indicate that, by utilizing polarimetric SAR instead of single polarization 

data, higher accuracy can be achieved in both LU/LC mapping and crop monitoring. With 

the recent launch of radar satellites, such as ENVISAT ASAR, ALOS PALSAR, 

RADARSAT-2 and TERRASAR-X, more polarimetric SAR data are becoming available. 

Congruently, some polarimetric decomposition theorems have been developed and applied 

(Cloude & Pottier, 1996; Freeman &Durden, 1998; Yang et al., 1998; Cameron & Rais, 

2006), which provide additional information for LU/LC classification and crop monitoring. 

The decomposition parameters extracted from polarimetric SAR data are related to the 

physical properties of land surfaces, and are thus sensitive to the structures of different 

LU/LC types and crops in various stages. However, the potential of polarimetric 

decomposition parameters in LU/LC classification and crop growing conditions 

monitoring, is not fully explored in the current research literature (Liu et al., 2012).  

1.2 Research Objectives 

The objectives of this research are to evaluate the multi-temporal Quadpol RADARSAT-

2 data for usage in LU/LC mapping and crop monitoring applications in Southwestern 

Ontario. As mentioned above, rapid urban sprawl has greatly influenced the agricultural 

economy and overall crop productivity in this area. However, multitemporal polarimetric 

SAR data have seldom been used in this agricultural area before. The newly available 

RADARSAT-2 data provide an opportunity to study the impacts of urban development 

on agriculture in Southwestern Ontario. 

The research objectives of this thesis will seek to provide answers to the following 

questions: 
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1. How accurately can LU/LC be classified in this urban/rural fringe area using the 

fine beam multi-temporal polarimetric RADARSAT-2 satellite images? 

2. What is a good classification method for LU/LC classification in urban/rural 

fringe areas using polarimetric RADARSAT-2 satellite images? 

3. What is a suitable multi-date combination of polarimetric RADARSAT-2 images 

in LU/LC classification?  

4. What is the potential of polarimetric RADARSAT-2 data for monitoring crop 

height changes? 

5. How sensitive are RADARSAT-2 polarimetric parameters to crop biophysical 

parameters, such as NDVI? 

The studies presented in Chapter 2 and Chapter 3 answer these questions by addressing 

these research objectives: 

1.  To assess the potential of polarimetric RADARSAT-2 data in LU/LC 

classification in urban/rural fringe areas, from the aspects of classification method, 

polarimetric parameters selection, and multi-temporal data combination. 

2.  To analyze the sensitivity of different RADARSAT-2 polarimetric parameters to 

the temporal changes of crop height and NDVI. 

1.3 Study Area and Data 

The study area is located in the urban/rural fringe area of London, Ontario (Figure 1.1). 

The City of London is within the Middlesex County right at the forks of the non-navigable 

Thames River. London is well-known for its tree-lined boulevards, and is consequently 

known as the “Forest City” after that. The city is situated along the Quebec City-Windsor 

Corridor, approximately halfway between Toronto, Ontario and Detroit, Michigan. In 

2011, there were approximately 366,151 residents in the city within an area of 

approximately 420 square kilometers (Statistics Canada, 2012). In terms of economy, 

London is dominated by high education, medical research, insurance, and information 
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technology sectors (Service Canada, 2009). The main crops growing in the adjacent rural 

area are wheat, corn, soybeans, hay, and field peas. 

 

Figure 1.1 Study Area 

The satellite images used in the research include RADARSAT-2 SAR images and 

RapidEye optical images. The boundaries of satellite images and study areas are displayed 

in Figure 1.2. Other ancillary data, such as images from Google Earth, and air photo images 

are also used to facilitate the research.    
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Figure 1.2 The boundaries of RapidEye images (Red), RADARSAT-2 images 

(Yellow), and study areas (Green) shown on the Google Earth images.  

The RADARSAT-2 is a RADAR observation satellite that was successfully launched on 

December 14th, 2007 by MacDonald Dettwiler & Associates (MDA) and the Canadian 

Space Agency. As the successor of the earlier RADARSAT-1, the RADARSAT-2 satellite 

was developed in order to enhance the SAR systems’ applications in sea ice mapping, 

iceberg detection, marine surveillance for ships and pollution detection, geological 

mapping, wetlands mapping, topographic mapping, land use land cover mapping, and 

agricultural crop monitoring (Canadian Space Agency, 2007). 

Two sets of wide fine beam polarimetric (also called Quadpol) RADARSAT-2 data were 

acquired for this research (Table 1.1). One set was taken at the steeper incidence angle, 

between 25° to 28°, while the other set of data were taken at a shallower incidence angle, 

between 40° to 42°. Both data sets have similar pixel spacing, of approximately 5 meters, 
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and wide landscape spatial coverage of 50km by 25km. All the data were taken from 

early May to September, 2012.  

Table 1.1 RADARSAT-2 data parameters from data head files 

Name Pixel 

spacing 

Pixel×Line 

Coverage 

(km) 

Incidence 

Near 

edge 

Incidence 

Far edge 

Dates 

(mdd2012) 

Wide Fine 

Quadpol7 

4.7m×4.7m 25×50 24.9° 28.3° 504, 528, 

621, 715, 

901 

Wide Fine 

Quadpol21 

4.7m×5.1m 25×50 40.2° 41.6° 507, 624, 

718, 811, 

904, 928 

RapidEye is a commercial optical satellite developed by TÜV NORD of Germany, MDA, 

and RapidEye AG. The RapidEye system contains five independent satellites, which enable 

observation of the Earth’s surface with high-resolution imagery over large areas. RapidEye 

images can be used to provide valuable information about land surfaces. 

The nadir resolution for these satellite images is 6.5 meters, and the swath width is 77 

kilometers. In the RapidEye system, two vegetation sensitive bands, the red edge and the 

near infrared band are provided to optimize the satellite’s potential for vegetation detection 

. Therefore, RapidEye has great advantages in agricultural applications. Many Vegetation 

Indices have been derived from the multispectral bands to capture the vegetation 

characteristics (Andrés et al., 2011).  

Although RapidEye seems to be an ideal data source for agricultural applications, its 

optical nature limits data collection under unfavourable weather conditions. In this study, 

five scenes of RapidEye images were acquired during the 2012 crop growing season (Table 

1.2). Each complete RapidEye dataset were combined from two adjacent scenes. During 

the 2012 growing season, many days were cloudy or rainy; as a result, it was necessary to 
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combine multiple images. In order to achieve a cloud free image in the mid- July over the 

whole study area, images taken on the July 16th and July 24th were combined together. The 

lack of cloud free optical images makes it difficult to interpret complete and useful 

information about land surfaces.  

Table 1.2 The parameters of RapidEye data  

Spectral Band  Blue  Green Red Red Edge Near 

Infrared 

Wavelength(nm) 440-510  520-590 630-685 690-730 760-850 

Dates(m_dd_yyy) 6_07_2012 7_16_2012 7_24_2012 8_05_2012 8_25_2012 

Scene Location West&East West East West&East West&East 

 

1.4 Thesis Format 

This research is presented in integrated-article format. Chapter 1 gives a brief review of the 

literature on the research problems, the objectives of the research, and the study area and 

data used in this research.   

The focus of the thesis is to investigate the potential of polarimetric RADARSAT-2 SAR 

data in Land Use/Land Cover information extraction and crop condition monitoring. To 

achieve this goal, different imagery sources and processing methods were used. Chapter 2 

focuses on assessing the potential of RADARSAT-2 polarimetric imagery for Land 

Use/Land Cover classification. Chapter 3 analyzed the sensitivities of polarimetric 

parameters to the Normalized Difference Vegetation Index and crop height. 
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Chapter 2  

2  Assessment of Multi-temporal Polarimetric 
RADARSAT-2 data for Land Use and Land Cover 
Classification in an Urban/Rural Fringe Area  

2.1 Introduction  

2.1.1 Background 

Land Use and Land Cover (LU/LC) information provides the basis for many studies, such 

as carbon modeling, land use change detection, forest management, and crop yield 

estimation (Jung et al., 2006; Lark & Stafford, 1997; Wolter et al., 1995; Woodcock et 

al., 2001). In recent decades, changes in LU/LC composition have been occurring all over 

the world, due to rapid urban expansion.  

The emergence of urban/rural fringe zones caused by urban expansion has led to serious 

land use problems, such as loss of agricultural land, unauthorized urban sprawl, and high 

land values (Qi et al., 2012). The fringe zones, which have been somewhat in either rural 

or urban studies, have become a topic of great importance (Zhu et al., 2011). In order to 

deal with land use problems, complete and timely land surface information about fringe 

areas is required.  

Remote sensing has the characteristics of broad coverage and repetitive visit, and thus 

provides a practical and economical method for obtaining LU/LC information (Rogan et 

al., 2004). The use of aerial photographs to map land use and land cover mapping can be 

dated back to 1940s (Lillesand et al., 2004). The earliest space borne optical Remote 

Sensing sensor for LU/LC mapping was a series of Earth Resources Technology 

Satellites (ERTSs), also called “Landsat” program, developed by NASA, with the 

cooperation of the U.S. Department of the Interior. The satellites have the capability to 

cover the globe (except the 82° to 90° polar latitudes once every 18 days at the spatial 

resolution of 80m (Lillesand et al., 2004). In the past few decades, increasing high spatial 

resolution Remote Sensing data are available now, providing by satellites such as the 

Quickbird, Worldview and so on. Those day have been commonly used in urban areas, 
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such as boundaries detection and impervious surface extraction. In rural areas, remote 

sensing satellites capable of  high temporal resolution imaging are useful for delivering 

crop type inventory, and crop condition monitoring (McNairn et al., 2009). However, 

little research has focused on the application of Remote Sensing in the rural/urban fringe 

areas. The mixture of dynamic land use and complex LU/LC classes in fringe zones has 

created challenging for either urban sprawl detection or crop inventory (Zhu et al., 2011). 

2.1.2 Previous Studies 

Remotely sensed data have been widely used in LU/LC classification. Most LU/LC types 

in the urban areas remain unchanged in a short period, and thus multi-temporal datasets 

are not necessary for distinguishing urban LU/LC classes. For example, using two images 

acquired at two very close dates, Qi successfully distinguished several LU/LC classes in 

urban/sub-urban areas with a high overall accuracy of 86.64 %( Qi, et al., 2012). 

However, in Qi’s study, all the croplands were considered as one LU/LC type, the 

cropland/natural vegetation. 

Multi-temporal images are essential to identify different crop types. During the growing 

seasons, crops evolve through a series of phenological stages. Meanwhile, the structure 

and water content of crops varies from type to type or even from field to field. Capturing 

the differences in temporal changes of crops is key to their identification. For example, in 

Southwestern Ontario, the growing season of most winter wheat is from April to July. 

However, most of the soybeans and corn are not planted until late May. Therefore, 

without multi-temporal datasets, satisfactory classification results are unlikely to be 

obtained. In the classification of crops, the selection of multi-temporal sequences of SAR 

images is critical to the classification results. McNairn and Skriver reported that higher 

accuracy in crop identification could be achieved by adding more multi-temporal SAR 

images (McNairn et al., 2009).   

Multi-temporal optical images are ideal data sources for LU/LC classification in the 

urban/rural fringe areas. Remotely sensed images obtained from various optical sensors 

have been widely used in LU/LC mapping (Saatchi et al., 1997; Roberts et al., 2003; 

Thenkabail et al., 2005). However, high-quality optical images are not always available 
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due to the frequent cloudy and rainy weather during the growing season. Take London, 

Ontario as an example, during the whole growing season in 2012 (May to September), 

only three scenes of cloud free RapidEye optical images were obtained. The applications 

of optical remote sensing data in LU/LC classification of wide areas are limited by 

weather conditions. 

Synthetic Aperture Radar (SAR) sensors play an increasingly important role in LU/LC 

classification due to their ability to obtain images day and night through cloud cover and 

haze (Shang et al., 2006; Shang et al., 2009). In 1978, the Seasat-1 was the first radar 

satellite developed for oceanographic research (Lillesand et al., 2004). SAR data are able 

to capture the dielectric properties and structure of the earth’s surface materials, and thus 

provide complementary information for the optical data.  

Early studies have used multitemporal SAR data to investigate LU/LC information, but 

mainly focused on the single polarization (Desons et al., 1999; Weber et al., 2003; Li et 

al., 2007). In the past few decades, most of the orbital radar systems, such as the ERS-1, 

ERS-2, JERS-1, and RADARSAT-1, only provided single or dual polarization data. The 

information contained in the single or dual polarization data is limited and may create 

confusion in distinguishing some LU/LC types (Ulaby et al., 1986; Li & Yeh, 2004, Dan 

et al., 2010).  

In order to improve the effectiveness of single polarization SAR data, many researchers 

have utilized quad polarization (polarimetric) SAR data in LU/LC classification 

(McNairn et al., 2009; Niu and Ban, 2013; Qi et al., 2012). Recently, high spatial and 

temporal resolution polarimetric SAR data have been available through the radar systems, 

such as C-band RADARSAT-2, X-band TerraSAR-X, and Phased Array type L-band 

SAR (PALSAR) sensors. With access to those multitemporal sequences of high-

resolution and polarimetric SAR data, a SAR-only solution for surveying rapid urban 

sprawl in the urban/rural fringe areas becomes increasingly viable (Palubinskas, et al. 

2011).  

Polarimetric SAR data provide the description of land features from the observations of 

full polarizations. Therefore, more information can be explored from the polarimetric 
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SAR data than from the single or dual polarization images (Lee et al., 2009; McNairn et 

al., 2009; Niu and Ban, 2013; Qi et al., 2012). Some research has shown that by 

integrating polarimetric data in the classification, not only are the classification 

accuracies of vegetation types enhanced, but also the separability between vegetation and 

built-up is increased (McNairn et al., 2009; Skriver H., 2012; Qi et al., 2012). Using 

polarimetric decomposition methods, a complex radar signal can be decomposed into 

several scattering responses from simpler objects with easier physical interpretation. 

Decomposed parameters provide information about corresponding target types in the 

image, and thus are able to facilitate the classification of various LU/LC classes.  

2.1.3 Objectives 

The major objective of this study is to assess the potential of polarimetric RADARSAT-2 

data for LU/LC classification of urban/rural fringe areas. More specific objectives are: (1) 

to examine the effectiveness of various polarimetric decomposition parameters in LU/LC 

classification; (2) to find the best combination of multi-date data for accurate and 

efficient LU/LC classification; (3) to provide a suitable procedure for LU/LC 

classification of urban/rural fringe areas. 

2.2 Study Area and Data Description  

2.2.1 Study Area 

The study area is situated in the northwest portion of the urban/rural fringe areas 

surrounding London, a city in southwestern Ontario, Canada. The region is characterized 

by a flat, regular topography which is notable for its productive agricultural lands. In recent 

decades, London has been experiencing rapid urban expansion. Therefore, the timely 

information about LC/LU in this area is critical for urban sprawl detection as well as for 

monitoring the areas lost to urban development. There are a wide range of LU/LC classes, 

such as commercial areas, industrial areas, residential areas, construction sites, forests, 

grass and agricultural areas. The main crop types in this area includes corn, soybeans, 

wheat, and field peas. The complex nature of LU/LC types in the urban/rural fringe area is 

both a challenge and an opportunity to test the potential of multi-temporal RADARSAT-2 

data in mapping.  
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Figure 2.1 The location of London, Ontario, and the RapidEye image of the study 

area  

2.2.2 Remote Sensing Data 

Five dates of RADARSAT-2 wide fine beam Quadpol (polarimetric) images were acquired 

in ascending orbits over the study area from May 4th to September1st, 2012. Polarimetric 

information is recorded in HH, VV, HV, VH bands, with a nominal pixel spacing of 4.7m 

and 4.7m in the range and azimuth directions. The incidence angles for the five images are 

varying from 24.9° to 28.3°. The frequency of the RADARSAT-2 data is 5.4 GHz at a 

wavelength of 5.6 cm. 

Optical data used in the research is geometrically corrected RapidEye satellite imagery and 

air photos. The RapidEye images are multi-spectral optical data, which have five 

multispectral bands (from 440 nm to 850 nm) at 6.5m spatial resolution. The air photos 

used in the study were taken in April, 2011 with a 15cm spatial resolution (Provided by 

city of London). The optical data were used as reference for SAR data classification.  
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Table 2.1 RADARSAT-2 and RapidEye imagery from head files 

Satellite Mode Wave  

length  

Dates  Resolution      Bands 

RADARSAT-2 Wide 

FQ7  

5.6cm May 4, May 28,     

June 21,July 15, 

Sept.1, 2012  

8-12m HH, VV ,  

HV,  VH 

RapidEye Standard 440 -

850nm 

June 7,                           

July 16,July 24,   

Aug 25, 2012 

6.5m Blue, Green,           

Red, Red Edge,         

Near Infrared 

2.2.3 Field Data Collection 

The purpose of the field work was to investigate the LU/LC types and crop growing state. 

Two general investigations of crop and non-crop LU/LC types were completed in July and 

September. More frequent field work was conducted through the whole crop growing 

season, so as to ensure that there were in-situ data available whenever RADARSAT-2 

image was taken.  

In the field, the accurate locations of various crop lands were recorded using GPS units. To 

observe crop conditions at different growing stages, the average crop height were measured 

and crop samples were photographed. Weather condition was recorded, as inclement 

weather influences the moisture of scatterers, such as soil and crops. The change of 

moisture leads to the change of dielectric constant, which might result in abnormal SAR 

backscattering values. In order to facilitate the interpretation of the SAR data, hourly 

meteorological information was recorded to coincide with RADARSAT-2 imaging dates. 
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2.3 Methodology 

The methodology for this research consists of RADARSAT-2 image preprocessing; 

selection of samples; multi-temporal RADARSAT-2 dataset classification; post 

classification processing, and accuracy assessment (Figure 2.2). 

2.3.1 RADARSAT-2 Data Pre-processing  

The preprocessing of polarimetric SAR data is of critical importance to achieving good 

classification results (Lee et al., 2009); as such, three main pre-processing steps have been 

sequentially conducted, including polarimetric decomposition data extraction, speckle 

filtering, and geometric correction (Figure 2.3). 

Figure 2.2 The flowchart showing the methodology for LU/LC classification 
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Figure 2.3 An overview of the preprocessing of RADARSAT-2 images 

2.3.1.1 Coherency Matrix and Pauli Decomposition and  

The raw polarimetric RADARSAT-2 data are recorded in the four elements of the S matrix, 

Shh, Shv, Svh, Svv (see the function 2.1). Initially, the coherency matrix T3 was extracted 

from the S matrix using PolSARpro software. The coherency matrix T3 contained all the 

polarimetric information. Most of the decomposition parameters were derived from 

coherency matrix T3, or covariance C3, which contains similar information, but in different 

form. The coherency matrix T3 and covariance matrix C3 can be expressed as:                

S = [
Shh Sℎ𝑣

S𝑣ℎ Svv
] 

(2.1) 

K =
1

√2
[Shh + Svv    Shh − Svv    Sℎ𝑣 + S𝑣ℎ]T 

(2.2) 

T3 = ⟨K ∙ K∗T⟩ (2.3) 

Pre-processed 
R-2  

R-2 dataset 

Filter 

Geometric Correction 

Boxcar Lee Sigma Refined Lee  

 Decom- 

 position 
 T3 matrix Freeman 

H/Alpha/A 

Pauli 

Gaussian 
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T3 = [

T11 T12 T13

T12
∗ T22 T23

T13
∗ T23

∗ T33

] 

 (2.4) 

=
1

2

[
 
 
 
 
 |Shh + Svv   |

2

(Shh + Svv   )(Shh − Svv  )
∗ 2(Shh + Svv   )Shv  

∗

(Shh − Svv   )(Shh + Svv  )
∗ |Shh − Svv   |

2

2(Shh − Svv   )Shv  
∗

2Shv  (Shh + Svv   )
∗ 2Shv  (Shh − Svv   )

∗ 4 |Shv   |
2

]
 
 
 
 
 

 

 

C3 = [

C11 C12 C13

𝐶12
∗ C22 C23

𝐶13
∗ 𝐶23

∗ 𝐶33

] 

(2.5) 

= [

|Shh|2 √2ShhShv
∗ ShhSvv

∗

√2ShvShh
∗ 2|Shv|

2 √2ShvSvv
∗

ShvSℎℎ
∗ √2SvvShv

∗ |Svv |2

] 

 

For the monocratic case,𝑆ℎ𝑣  = 𝑆𝑣ℎ  , ∗ denotes the conjugate and | | detonates the module. 

The Pauli decomposition parameters are composed of the three diagonal elements of the 

coherency matrix T3. The advantage of the Pauli decomposition is that each of the three 

elements corresponds to a basic scattering mechanism. SHH + SVV   represents single (odd) 

bounce scattering, SHH − SVV    indicates double bounce scattering, and SHV + SVH   is 

associated with volume scattering. Typical LU/LC examples in the real field for those three 

scattering mechanisms are bare soil, buildings and forests, respectively (Lee and Pottier, 

2009). 

2.3.1.2 Other Polarimetric Decomposition  

(1) Freeman-Durden decomposition 

The Freeman-Durden decomposition is a method for fitting a physically based, three-

component scattering mechanism model to polarimetric SAR observations. The three-

component scattering mechanism include surface, double-bounce and volume scattering 

mechanisms (Lee and Pottier, 2009). This approach can be used to determine the dominant 
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scattering mechanisms and to facilitate identifying the current state of the surface cover. In 

addition, the three-component scattering may provide features for distinguishing between 

different surface cover types. Although the Freeman-Durden decomposition has been 

widely used in LU/LC classification, it has some limitations. Since Freeman-Durden 

method was intended to model the backscattering from forests, it might be invalid for other 

surface scatterings. 

(2) H/Alpha/A Decomposition 

H/Alpha/A decomposition is an approach proposed by Cloude and Pottier for extracting 

average parameters from experimental data using a smoothing algorithm based on second-

order statistics (Cloude and Pottier, 1996; Cloude and Pottier, 1997). Decomposition 

parameters are generated from an eigenvector analysis of the coherency matrix T3. The 

eigenvectors describe different scattering processes, and the eigenvalues indicate their 

relative magnitudes. Among all the parameters, the averaged Alpha angle (α) relates 

directly to the underlying average physical scattering mechanisms. The value of Alpha 

ranges from 0° to 90°, which indicates the dominant scattering varies from surface 

scattering mechanism (0°), moving into single scattering (45°) by a cloud of anisotropic 

particles, and finally reaching dihedral scattering (90°). The Entropy (H) describes the 

randomness of the scatter. The anisotropy (A) corresponds to the relative power of the 

second and third eigenvectors (Lee and Pottier, 2009). 

Both of the aforementioned polarimetric target decomposition methods have been 

commonly used in the LU/LC classification (Qi et al., 2010; McNairn et al., 2009; Niu et 

al., 2013). In this study, the three polarimetric decomposition methods mentioned above 

have been applied to each RADARSAT-2 image (Figure 2.3). A right multi-look number 

is critical to the final classification results. After several tests, the multi-look number of 3 

for Freeman-Durden decomposition, and the multi-look number 7 for H/Alpha/A was 

applied, see the decomposition results in Figure 2.4.  
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(a)  Pauli 

 

 

(b)  Freeman 

 

(c)  H/Alpha/A (d)  RapidEye 

Figure 2.4 RGB composition images presenting different polarimetric 

decomposition methods. 

2.3.1.3 Speckle Filter 

Speckle effects are inherent noises resulting from the coherent interference of the waves 

that have been reflected from elementary scatter (J.W. et al., 1976; Lee et al., 1994; Lee 

and Pottier, 2009). In order to achieve optimal speckle-reducing in imagery, four different 

filters, boxcar, Gaussian, sigma Lee, and Refined Lee, were tested and compared (Figure 

2.5). Visually, Gaussian filter achieved the best results among all the filters. After filtering 

with the boxcar filter, the boundaries of each LU/LC type were quite blurred. In the Sigma 

Lee filtered images, the separability among various classes was increased after filtering; 
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however, some dark and bright points remained unfiltered. In contrast, the Refined Lee 

filter maintained the sharp boundaries of land surface features, but introduced some false 

edges. Within homogenous crop fields, these false edges appear as larger speckles. 

 
Boxcar 

 
Gaussian 

 
Sigma Lee  

Refined Lee 

Figure 2.5 Filtered Pauli RGB images using different speckle filtering methods 

The Gaussian function, which is also used to express the normal distribution, is applied to 

smooth an image by calculating the weighted averages in a filter box. In two dimensions 

image, the weight factors for a Gaussian distribution can be expressed as  

G(x,y) =
1

2πσ2
e

−
x2+y2

2σ2  
(2.7) 
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where x is the distance from the origin in the horizontal axis, y is the distance from the 

origin in the vertical axis; σ  is the standard deviation of the Gaussian distribution (Cover, 

2006). Gaussian filter is a low-pass filter, and is thus able to reduce the image’s high-

frequency components. The Gaussian filter was applied to each polarimetric SAR image 

prior to analysis.  

2.3.1.4 Geometric Correction  

Geometric correction is an essential step in SAR data preprocessing. Due to the unique 

SAR satellite imaging process, the image is recorded in a slant range system, where 

distances on the Earth’s surface are measured between the antenna and the target (Lee and 

Pottier, 2009). In areas with large elevation variation, serious geometric distortion can be 

easily observed in SAR images (Chen et al., 2008). Since the selected study area is 

generally flat, terrain effects, such as layover and shadowing are avoided. Effective 

geometric correction was conducted to transfer the slant range system to the ground range 

coordinate system. Subsequently, the multitemporal SAR images were georegistered 

together.  

MapReady is a Remote Sensing Tool kit developed by Alaska Satellite Facility. This tool 

can be used to correct terrain effects, geocode polarimetric decomposition parameters and 

converted data to several common imagery formats. The MapReady tool kit used in this 

study is embedded in the PolSARpro software. Therefore, geometric correction can be 

applied directly on the datasets of T3, C3 matrix and other polarimetric parameters 

generated from the PolSARpro software. Initially, the platform ephemeris information of 

SAR images and the Digital Elevation Model (DEM) data of the study area were used to 

simulate an amplitude image. Terrain effects were then corrected through matching the real 

SAR image with the simulated SAR data.  
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After geometric correction, visual inspection of urban streets and boundaries of lakes and 

rivers in the geocorrected SAR images shows that they align with the same features in the 

geocorrected RapidEye images of the same area (Figure 2.5). These accurate geometric 

correction results provided a solid foundation for subsequent image analysis and 

classification.  

2.3.2 Classification Scheme and Training Samples   

(1) Classification Scheme 

A good classification scheme is required to achieve successful classification results. 

Theoretically, a satisfactory classification scheme should be mutually exclusive and totally 

exhaustive (Russel C., & Kass G., 1999). In other words, any pixel should be classified 

into one and only one category or class; furthermore, each LU/LC type should be 

considered in the classification. Ideally, a hierarchical classification scheme should be used 

to readily distinguish between LU/LC classes. Two or more detailed classes can be merged 

(a) 

 

 

(b) 

Figure 2.6 Pauli RGB image before(a) and after(b) geometric correction using 

MapReady 
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into a more general category, so as to meet the required accuracy standard (Russel C., & 

Kass G., 1999). 

In this study, LU/LC types were initially categorized into eleven classes, which include six 

crop types: alfalfa, grass, wheat, field peas, soybeans, corn; and four non-crop classes: 

forest, lawn, construction sites (CS), residential areas (RA), and 

commercial/industrial/institutional areas (CIIA). However, the primary objective of this 

research is to distinguish urban built-up from vegetation, and identify several main crop 

types. Therefore, post-classification methods required the aggregation of the RA, and CIIA 

classes into a new “built-up” category. Similarly, alfalfa and grass crop types were 

combined into a new forage class.   

(2) Training Sample Selection  

In a supervised classification, the classification algorithm should be trained to separate 

different classes. To achieve this purpose, representative samples, also known as 

prototypes, exemplars, or simply training samples, for each class of interest with ground 

truth are required. The training samples of each category should be representative, 

homogeneous, and should include the range of variability within a given category (Robert, 

2007). In this study, ground truth data was acquired from the in-situ survey as well as 

through reference to the RapidEye optical image and the aerial photo. All the training 

samples for each of the eleven LU/LC types were evenly distributed and carefully selected 

in order to accurately represent each LU/LC type in the study area.  

2.3.3 RADARSAT-2 Data Classification 

Maximum Likelihood Classification (MLC) classifier is the most commonly used method 

adopted in supervised classification. MLC is based on the mean, variance or covariance 

statistics of class signal responses, and utilizes a Bayesian Probability Function which is 

calculated from the training samples for each class. Each pixel is then classified to the class 

to which it most likely belongs, based on statistical values (Jensen, 2005). In this study, 

MLC classifiers based on two different probability functions, (i.e. Gaussian and Wishart 

distributions) were applied to find the better classification method.  
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(1) MLC Based on Gaussian distribution  

MLC classification based on Gaussian (Normal) distribution ( see Function 2.8) is widely 

used in the optical image classification, because the distributions of each class spectral 

responses recorded in optical images are normally distributed (Jensen, 2005). Due to the 

speckle effects, the radar responses in SAR image for each class are not normally 

distributed. Recently, some researchers have proved that when the number of look is large 

enough, the Gaussian probability density distribution is a valid approximation of multi-

look SAR data (Skriver, 2012).  

G(f;μ, σ) =
1

𝜎√2𝜋
e

−
(𝑓−𝜇)2

2σ2             
2.8 

In this study we found that the distributions of logarithm Pauli decomposition parameters, 

T11, T22 and T33 are approximate to the Gaussian distribution. As displayed in histogram 

of T11 (0.5|HH+VV|²), T22 (0.5|HH-VV|²) and T33 (2|HV|²) shown in Figure 2.8, the 

majority of the original pixels value are concentrated in the low value zone. After the 

logarithmic transformation, the histograms of T11, T22 and T33 became bell shaped. 

Moreover, the curves of histograms of T11, T22, and T33 were well-matched with the 

corresponding normal distribution ones. The same shapes can be observed from the 

histograms of other classes, as well. The marked similarity between the aforementioned 

curves guaranteed that the Gaussian distribution can be a valid, if not optimal, 

approximation of logarithm T11, T22, T33 data.  

Consequently, MLC based on the Gaussian statistics was adopted for use in classifying 

multi-temporal polarimetric data that were derived from different decomposition 

parameters. 
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Figure 2.7 Data distributions of wheat from the raw Pauli parameters (blue), 

logarithm Pauli parameters (red), and simulated normal curve (black) at T11 (a), 

T22 (b) and T33 (c). (d) Comparison of fitted normal curves and logarithm Pauli 

parameters histogram curves of corn. (Nor means Normal) 

 (2) MLC Based on Complex Wishart distribution 

Complex Wishart distribution MLC is an algorithm proposed by Lee to deal with LU/LC 

classification using polarimetric SAR data (Lee, et al., 1994). Similar to the MLC based on 

Gaussian distribution, Bayesian probability function is also adopted to determine the 

classification boundaries. In contrast, the probability is derived from the probability density 

functions of the coherency T3 (or covariance C3) matrix of polarimetric SAR data, named 
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complex Wishart density function. The Wishart distance measure from a pixel to a class m 

can be simplified as: 

d(Z,wm) = nTr(Cm
−1Z)+ nln|Cm| − ln [ P(wm)] (9) 

Where Z is the covariance matrix of the pixel to be classified, Cm is the average covariance 

matrix of the m class, n is the number of look. P(wm) is the priori probability of the class m. 

MLC based on the complex Wishart distribution has been used in the classification of 

single   polarimetric SAR imagery. Additionally, some researchers have investigated its 

usefulness in multi-frequency polarimetric SAR data classification (Lee et al. 1994). 

However, few studies have applied the Wishart supervised classifier in multi-temporal 

polarimetric SAR data classification (Skriver, 2012). Based on the assumption that multi-

temporal data are uncorrelated, it is hypothesized that the joint probability density function 

will be the product of the probabilities for each image. Therefore, the Wishart distance 

measure for multi-temporal polarimetric SAR classification becomes: 

D(Z,wm) = ∑ 𝑛[Tr(Cm
−1(j)Z(j))+ ln|Cm(j)|]

J

j=1

− ln [ P(wm)] 

 

(10) 

where J is the total number of images, n is the number of looks,  Cm(j)  is the average 

covariance matrix of the m class in the jth image. Z(j) is the pixel’s covariance matrix from 

the jth image. 

The comparison between the results generated from MLC based on Complex Wishart 

distribution and Gaussian distribution are explained in the Results Analysis and 

Discussions section. 

2.3.4 Post- classification Processing 

Due to the serious speckle effect impacting SAR images, the preliminary classification 

results are not always satisfactory, regardless of which filter are used to pre-process the 

imagery. Visually, a small number of isolated, generally poorly classified pixels are often 

located at the boundaries between two clearly assigned areas or within a large classified 
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area. In order to produce more accurate LU/LC maps, post-classification process is 

required to reduce those isolated misclassified pixels. Two commonly used post-

classification methods were adopted in this study. 

(1) Sieve Filter  

The sieve filter functions by merging image value polygons smaller than a user-specified 

threshold with the largest neighboring polygon (Liu et al., 2013). In the SAR classification 

results, there were always some single pixels and small polygons which are misclassified. 

The sieve filter was particularly useful in enhancing SAR image classification accuracies. 

(2) Segmentation  

The segmentation post-classification method functions by grouping the pixels in the 

preliminary classification results into homogenous objects using segmentation algorithm 

in the eCognition software. Initially, the original SAR images are segmented into spectrally 

similar and spatial contiguous objects. Then the majority class within each object was 

assigned to that object in the classification results.  

2.3.5 Classification Accuracy Assessment 

(1) Testing Sample Selection 

Testing samples are the portions of the generated land use classification map that will be 

selected for accuracy assessment (Russel C., & Kass G., 1999). To give a statistically valid 

and appropriate assessment of classification results, two vital factors of testing samples 

selection should be considered. One is the sample size and the other is the method of testing 

sample selection. Adequate number of samples per class should be gathered so that the 

assessment is statistically valid. Secondly, the distribution and proportion of each class 

should also be fully considered in order to select appropriate sampling methods.. 

In urban areas where the classification maps are less homogeneous than rural areas, the 

single pixel or clusters of pixel units are usually chosen as testing samples. In order to 

obtain sufficient randomly distributed testing samples, which is a basic requirement for 
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accuracy assessments (Jenson, 2005), a compromising option is to select a homogeneous 

cluster of pixels around each of the randomly distributed points.  

In the rural areas that are dominated by homogenous crop fields, polygons are the most 

common sample units. The testing samples and training samples should be exclusive, even 

if they are derived from the same ground truth data.   

(2) Error Matrix 

The error matrix is the most widely accepted measure for LU/LC mapping accuracy 

(Russel C., & Kass G., 1999). As defined by Russel, “An error matrix is a square array of 

numbers set out in rows and columns that expresses the number of sample units assigned 

to a particular category in one classification relative to the number of sample units assigned 

to a particular category in reference data”. It is a very effective way to present errors of 

omission and commission for individual classes. The error matrix can also be used to 

calculate other accuracy measures, such as overall accuracy, Kappa accuracy, producer’s 

accuracy, and user’s accuracy.  

Overall accuracy (OA) is simply the sum of the number of correctly classified sample units 

divided by the total number of sample units in the entire error matrix. Producer’s accuracy 

(PA) describe the accuracy of individual class from map producers’ perspective. PA for 

each category is performed by dividing the number of correct sample units by the total 

number the reference data in that class. “User’s accuracy” (UA) is defined from the map 

users’ perspective. It is computed by dividing the number of correct sample of one class by 

the total number of samples classified to that class in the map. Kappa can be used to 

determine if the values contained in an error matrix represent a result significantly better 

than random results (Jensen 2005).While the OA is the same for two classification result, 

the one with higher Kappa usually has better classification accuracy.  

  



36 

 

2.4 Results Analysis and Discussion 

This study was conducted following the processing procedure introduced in the 

Methodology section.  

(1) Preprocessing 

The preprocessing of multi-temporal RADARSAT-2 datasets were conducted in the 

PolSARpro software. Pauli, Freeman-Durden, and H/Alpha/A polarimetric 

decomposition parameters were generated from the coherency T3 matrix and the 

covariance C3 matrix. Gaussian filter at the window size of 5×5 was then applied to each 

of the decomposition parameters. The filtered decomposition parameters from each 

image were geometrically corrected and resampled into 10 meter resolution datasets, 

using a DEM data through the MapReady tool kit.  

(2) Training Samples Selection 

In order to provide enough sample units for training the classifier, over 200 polygons 

with over 7000 pixels were manually selected from the reference and ground truth data 

(see table 2.2).  

Table 2.2 Number of the plots and pixels selected for each LU/LC class in the 

training sample units. 

class alfalfa wheat hay peas soybeans corn forest lawn CS RA CIIA 

Plots 3 53 3 6 40 49 10 6 4 26 14 

Pixels 45 762 40 71 1849 2397 695 155 158 553 524 

CS: construction sites, RA: residential areas, CIIA: commercial/industrial/institutional 

areas. 

(3) Multi-temporal dataset classification 
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To assess the potential of multi-temporal polarimetric RADARSAT-2 data in the 

urban/rural fringe area mapping, a number of classifications strategies were conducted 

using different RADARSAT-2 datasets (Figure 2.8). As Figure 2.8 shows, the various 

classifications were conducted and compared from four aspects, (1) different classifiers, 

(2) polarimetric parameters, (3) time selections and combinations of images, as well as 

(4) different post-classification processing methods. 

 

 (4) Testing Samples selection 

Nine LU/LC classes, which include five crop types (i.e. forage, wheat, field peas, 

soybeans, corn) and four non-crop classes (i.e. forest, lawn, construction sites (CS), and 

built-up areas), were aggregated from the original eleven detailed classes. The hay and 

the alfalfa are aggregated into the forage, and the RA and the CIIA are aggregated into 

the built-up areas. To fully assess the classification effectiveness for each LU/LC class in 
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Figure 2.8 An overview of the comparisons among various classification strategies  
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the fringe areas, two sets of testing samples were selected. For all the classes, 700 random 

points were generated using the PCI software, and over 500 clusters of more than 7000 

pixels were selected around those points as the testing samples (Table 2.3). To test the 

accuracy of the classification results of the five crop types, all of the field inventory data 

were used for testing, with the exception those selected as training samples (table 2.4). 

Table 2.3 Number of the plots and pixels selected for five crop types in the testing 

samples. 

class forage wheat peas soybeans corn 

fields surveyed 23 44 3 63 57 

pixels per class 6175 42200 6037 69311 76583 

% of total 3% 21% 3% 35% 38% 

 

Table 2.4 Number and percentage of pixels selected for the testing samples of all 

LU/LC classes 

class forage wheat peas soybean corn Bups CS forest lawn 

Pixels #  79 765 72 1859 2395 1079 159 698 161 

Class% 1% 11% 1% 26% 33% 15% 2% 10% 2% 

CS: construction sites, Bups: Built-ups 

(4) Accuracy Assessment 

To assess classification accuracy, an error matrix for each of the classification results was 

generated. The advantages and disadvantages of each classification method are analyzed 

and discussed based on the error matrix and LU/LC maps in the following sections.  

2.4.1 Training Data Analysis   

To identify the separability of LU/LC different classes, the responses of polarimetric 

parameters to different land surfaces in different images are analyzed. Based on the training 
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sample units, the mean values and standard deviations of the polarimetric parameters in 

each image for every LU/LC class have been calculated.  

(1)Pauli Decomposition Parameters 

The temporal profiles of Pauli decomposition parameters (T11, T22, and T33) of 

RADARSAT-2 data for the six crop types were shown in Figure 2.6. Generally, the T11 

represents the surface scattering and the T33 indicates the volume scattering. In T11 

parameter, the separability of various crops is higher in the May 4th and June 21st images 

than for the other dates. However, in terms of both T22 and T33 parameters, the May 28th, 

July 15th, and Sept. 1st  data provides higher separability between various crops.  
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Figure 2.9 Temporal profiles of Pauli decomposition parameters value for various 

crop types in (a) PauliT11 single bounce, (b) PauliT22 double bounce, and (c) 

PauliT33 volume scattering. 

For each crop type, the separability varies from parameter to parameter and image to image. 

For example, peas can be easily separated from other crops using T33 in the May 28th 

image alone. The mean T33 value of peas is at least 6 dB higher than those of the other 

crops. The curves of wheat, hay, and alfalfa at T11 are very close to each other, but greater 

difference is observed between the wheat and the hay at T22 on May 28th and also between 

the hay and the alfalfa at T33 on Sept. 1st. The curves of corn and soybeans are particularly 

different from the curves of other crops. The sharp increase of double bounce (T22) and 
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volume (T33) scattering from May 28th to June 21st corresponds to the rapid growth of 

soybeans and crop. Before May 28th, the SAR backscattering from the fields of soybeans 

(height<15cm) and crop (height<20cm) was dominated by the soil, according to the ground 

truth data. In contrast, the fields were fully covered by soybean plants (height >25cm) and 

corn plants (height>70cm) since June 21st. The marginal difference is observed between 

the soybeans and corn at T22 and T33, which might lead to the misclassification of these 

crops. 

(2)Freeman-Durden and H/Alpha/A Decomposition Parameters 

The values of Freeman-Durden decomposition parameters indicate the contributions of 

different scattering mechanisms, such as double-bounce, volume, and odd-bounce 

scattering mechanisms. In Figure 2.10(b), the mean values of Freeman volume scattering 

are close to each other for most classes; however, at double and odd bounced scatterings, 

the differences between the mean values of various classes are more significant. Figure 

2.10 (a) shows that the separability of H/Alpha/A parameters between crop and non-crop 

types is much larger than that between agricultural crops.  
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2.4.2 Classification Results Using the Gaussian and Wishart 
Classifier 

Both Gaussian and Wishart-based methods are effective in LU/LC classification using 

multi-temporal RADARSAT-2. Gaussian based MLC generates a better classification 

results mainly in non-crop classes. Within the nine LU/LC classes used in this study, the 

results given by Gaussian are 86.3% (OA) and 0.83(Kappa), contrast to those given by 

Wishart at 78.4% (OA) and 0.73 (Kappa). 

However, in terms of crop classification accuracy, the Gaussian MLC is slightly superior 

to the Wishart MLC. Using the five main crop type testing samples, the assessment results 

show that the Gaussian MLC is merely 1%(OA) and 0.01(Kappa) better than the Wishart 

MLC. The results revealed that the Gaussian MLC is more suitable than the complex 

Wishart MLC for LU/LC classification in these urban/rural fringe areas with various crop 

and non-crop LU/LC classes.  

2.4.3 Classification Results Using Different Polarimetric SAR 
Parameters  

To fairly compare the classification accuracy using different polarimetric parameters, the 

same Gaussian MLC classifier was adopted for all the classification. Classification results 

using four sets of decomposition parameters (i.e. coherency matrix, Pauli, H/Alpha/A, and 

Freeman) were compared respectively.  

(1) Coherency Matrix and Pauli Decomposition Parameters 

Pauli decomposition parameters (Pauli3) consist of the diagonal elements of coherency 

matrix (T3all). Classification results indicate that using Pauli3 outperforms those using 

T3all, although T3all contains more polarimetric information than Pauli3.  

The classification results using the same four-date dataset shows that the results given by 

Pauli3 is 89 % (OA) at 0.87 (Kappa), while those by T3all is only 84.8 % (OA) at 0.81 

Figure 2.10 (a) H/Alpha/A (T11, T22, T33 scattering value in dB), and (b) Freeman 

decomposition parameters (Double Volume and Odd scattering value in dB), for all 

the LU/LC classes on the July 15th image. 
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(Kappa). For most crops (hay, wheat, and peas) and other vegetation types, such as forest, 

the Pauli3 gives higher accuracy than T3all in terms of both producer’s and user’s accuracy.  

The comparison results reveal that the Pauli decomposition parameters contain the most 

useful polarimetric information in T3 matrix. The other off-diagonal elements in the T3 

matrix introduce more noises to the classification process, rather than providing useful 

information. 

(2) Freeman-Durden and H/Alpha/A Decomposition Parameters 

The classification results using H/Alpha/A decomposition parameters are better than those 

yielded by Freeman-Durden decomposition parameters, but not effective in comparison to 

classification results obtained by using the Pauli decomposition parameters. The OA given 

by H/Alpha/A was 84.1% at 0.79 (Kappa), while those accuracies achieved by Freeman 

were merely 76.9 %( OA) at 0.71(Kappa). 

(3) Separability Analysis of Different Parameters 

Among the three polarimetric parameter datasets, the Pauli3 gives the best results, while 

the Freeman gives the lowest accuracy. The inferior performance of Freeman can be 

explained by the poor separability among different classes in the decomposed images. 

According to the concept of feature separation (Cumming and Van Zyl 1989, Shi et al. 

1994), features can be readily separated, provided that the distance between the class mean 

values is larger than the standard deviations. Richards (Richards 1987) proposed a criteria, 

named the Bhattacharya distance, to quantitatively measure the separability between two 

classes, such as the class i and j:  

S𝑖 ,𝑗 =
|𝑢𝑖 − 𝑢𝑗|

S𝑖 + S𝑗 

 
 

(11) 

Where 𝑢 and s are mean value and standard deviation of the classes. The higher the S𝑖,𝑗  is, 

the more useful the feature is in distinguishing class i from class j.  
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This relationship is exemplified in terms of assessing the separability between corn and 

soybeans classes in this study. In the same image taken on July 15th, the S𝑖 ,𝑗 of Freeman-

Durden double scattering, H/Alpha/A T22, and Pauli T22 parameter is 0.09, 0.22, and 0.36 

respectively. The classification results also indicates that polarimetric parameters with 

higher S𝑖,𝑗  value, such as Pauli decomposition parameters, generated better results.  

2.4.4 Classification Results Using Different Time Combinations  

Dataset with high temporal resolution are preferable for LU/LC classification, particularly 

for crop type identification. However, due to the limitation of the budget for data 

purchasing, and the limitation of image processing abilities, it is especially valuable to 

accurately classify crops with the least number of images. To achieve this goal, a variety 

of data combinations using one to five images from different dates were tested in this study. 

These multi-temporal classification results were assessed and compared using the same 

classification procedure.  

(1) Overall Trends 

Generally, classification accuracy increases as more dates of images are included in the 

classification (Table 2.5). The highest classification accuracy was achieved by using all 

members of the five-date dataset at 91% (OA) and 0.888 (Kappa). The best classification 

results generated by the four-date dataset, 90.1% (OA) and 0.877 (Kappa), which was very 

close to that given by five-date one. The classification results given by the three-date and 

two-date datasets are less satisfactory, with the highest OA being 87.8% and 83.3% 

respectively. In contrast, the best result generated by one-date data is as low as 62.4% (OA).  

The greatest increase in classification accuracy (over 20%) is observed from one-date 

datasets to two-date datasets. Less than 1% increase in OA is observed between the highest 

four-date datasets to five-date dataset, which indicates that well-selected four-date datasets 

are able to generate the classification results almost as accurate as the five-date one.  
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Figure 2.11 the classification result using different time combination ranking by 

classification OA from highest to lowest overall accuracy (%) (1 to 5). 

 (2) Four-date Dataset 

The overall accuracies of four-date datasets vary from 88.3% to 90.1% (see table 2.5). 

Among these four-date combinations, datasets without May 28th (528) or July 15th (715) 

image dates give the lowest overall accuracy. In other words, the May 28th and July 15th 

images contained the most useful information in terms of multi-temporal classification. 

With reference to the ground truth data, the greatest separability among various crops was 

also observed on image dates collected on those two periods, particularly in Mid-July, 

2012.  

 

 

 

 

 

1 2 3 4 5

5 dates 91.0%

4 dates 90.1% 89.5% 88.8% 88.6% 88.3%

3 dates 87.8% 86.3% 86.3% 86.2% 84.0%

2 dates 83.3% 82.8% 78.6% 77.0% 75.5%

1 dates 62.4% 59.9% 59.1% 54.5%

50.0%

55.0%

60.0%

65.0%

70.0%

75.0%

80.0%

85.0%

90.0%

95.0%

O
ve

ra
ll

 A
cc

u
ra

cy

Time combination sets



46 

 

Table 2.5 The classification results from four-date dataset by different combinations 

As Figure 2.12 shows, crops in Southwestern Ontario were in different growing stages as 

of mid-July, 2012. Most wheat was harvested by that point in time, while forage grew very 

well. Field peas were withered and dry. The soybean plants could just cover the soil, and 

had started flowering. Corn had begun tasseling, and some of corn plants were already as 

tall as 2 meters.   

  May 4 May 28 June 21 July 15 Sep.1 overall kappa 

Four 
dates 

          90.1% 0.877 

          89.5% 0.869 

          88.8% 0.86 

          88.6% 0.858 
          88.3% 0.855 
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Figure 2.12 The PauliRGB composite image acquired on July 15th, 2012. Five major 

crop types can be identified within this image 

(3) Three-date Datasets 

The overall accuracies of the three-date dataset varies from 87.8% to 84.0%. As Table (2.6) 

indicates, the classification results given by images obtained in the early and middle 

growing seasons (May to July) are relatively better than those of images obtained later in 

the season. For example, the OA given by the three-date dataset from May 4, May 28, and 

July 15, is 3.8% higher than that given by the June 21, July 15, and September 1 dataset. 

In the early growing season, non-crop vegetation and other built-ups classes can be 

separated more easily from crop fields as most of the fields have not been covered by plants 

yet. In the late crop growing season, most crop types are either harvested or senescent, so 
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the crop plants are similar to each other. In addition, some dry plants might be easily 

confused with plant residues, which also increase the difficulty in crop separation. 

Table 2.6 The classification results from three-date datasets by different 

combinations 

 

 

 

 

In sum, carefully selected multi-temporal dataset can improve the classification accuracy 

more economically and effectively than using more images. As these results indicate, 

satisfactory classification OA (over 87%) can be achieved using images from four-date and 

three-date datasets, provided that the images at key points in the growing season were 

included.   

2.4.5 Classification Results Using Different Post-classification 
Processing Methods  

In general, both sieve filter and segmentation methods are effective in enhancing 

classification accuracy. For example, the overall accuracy of five-date MLC results was 

87% before any post-classification processing. The OA increased to 91% and 92% after 

using sieve filter (Figure 2.15) and segmentation methods respectively.  

A detailed analysis of each class type revealed that while both methods are effective for 

most classes, some omission errors were induced in the classification of LU/LC classes 

and resulted in small and fragmentized patches. The forage class is a good example of 

this phenomenon, as some field areas of forage were so small that they were 

inadvertently reassigned to their neighboring classes in the segmentation. As a result, the 

producer’s accuracy for the forage class decrease by 40%.    

  May 4 May 28 June 21 July 15 Sep.1 overall kappa 

Three 
dates 

          87.8% 0.849 

          86.3% 0.83 

          86.3% 0.83 

          86.2% 0.83 

          84.0% 0.801 
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Figure 2.13 Producer’s Accuracy (PA) and User’s Accuracy (UA) of each LU/LC 

type using different post-classification processing methods 

2.5 Conclusions 

In summation, the capabilities of multi-temporal polarimetric RADARSAT-2 data for 

LU/LC classification in urban/rural fringe areas have been well proved and assessed by 

using the basic MLC supervised classification method in this study.  

LU/LC classes in urban/rural fringe areas can be successfully identified using multi-

temporal polarimetric RADARSAT-2 datasets. An accurate LU/LC map of the study area 

has been generated (Figure 2.13). Most non-crop classes and crop types in the rural areas 

have been readily separated. Within individual fields of crops, some confusions can still be 

observed, such as misclassifications between corn and soybeans, wheat and forage, because 

their phonologies are similar over the growing season. Some construction sites have been 

successfully detected in the north boundaries of London city, indicating the occurrence of 

urban expansion.  
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Figure 2.14 LU/LC map of the study area generated by five-date images after sieve 

filtering 

 

 

LU/LC map of London, Ontario using RADARSAT-2 

data 
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To assess the potential of multi-temporal polarimetric RADARSAT-2 data, four aspects of 

classification have been evaluated: classifiers, decomposition parameters used for 

classification, time combinations of images, and post-classification processing methods. 

The major findings of this study are as follows. 

(1)Gaussian based MLC is an effective classifier for Land Use and Land Cover 

classification in urban/rural fringe areas. Using Gaussian based MLC, the overall accuracy 

of 89% has been achieved with four-date RADARSAT-2 data.  

(2) An appropriate decomposition method is essential for polarimetric RADARSAT-2 

classification. Using Pauli decomposition parameters, the overall accuracy of classification 

increased by 12% comparison to Freeman-Durden decomposition parameters.    

(3) The classification accuracy can still be significantly improved through carefully 

selecting and combining multi-date images. Although the inclusion of more dates can result 

in a slightly higher accuracy, satisfactory classification accuracy (over 87%) can also be 

achieved using images from three dates, provided that the imagery obtained at key points 

in the growing seasons was included.   

(4) An effective post-classification processing method is also useful in improving the 

classification results. In this study, the overall accuracies of classification results have been 

improved by 5% and 4% using the segmentation and filter post-classification processing 

method, respectively. 

The classification procedure provided in this study may have significant applications in 

both annual crop inventory performed with remote sensing technology, or for land use and 

land cover change detection in urban/rural fringe areas. 
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Chapter 3  

3 Sensitivity of RADARSAT-2 Polarimetric SAR Data to 
Normalized Difference Vegetation Index and Crops 
Height 

3.1 Introduction 

3.1.1 Background 

Agriculture plays a critical role in the Canadian economy, and accounts for more than 8% 

of Canadian Gross Domestic Product (Longtin, 2006). Acquisition of timely information 

about agricultural land use and land management is useful for crop yields estimation, and 

thus is essential for the agriculture and economic suitability.  

Remote sensing technology has the capability of providing timely and wide-spread 

coverage of land surface information at a wide range of spatial and temporal scales. Thus, 

space borne and airborne remote sensing images have been widely used in agricultural 

applications, such as crop type inventory, soil analysis, crop condition monitor ing and 

even yield prediction.  

Traditionally, agricultural survey and crop condition monitoring was mainly dependent 

on in situ measurement, and thus used to be time and labor consuming. Currently, with 

the development of remote sensing techniques, the plant biological parameters which are 

observed in the field, can also be derived from remotely sensed data, and be extended to a 

wide area.  

Optical remote sensing data have been primarily used to extract vegetation indices, such 

as Normalized Difference Vegetation Index (NDVI), Perpendicular Vegetation Index 

(PVI), Soil Adjusted Vegetation Index (SAVI), and Transformed Soil Adjusted 

Vegetation Index (TSAVI) (Haboudane et al. 2002; Eitel et al. 2007, 2008). These 

indices are proved to be sensitive to canopy characteristics, such as Leaf Area Index 

(LAI) and plant biochemical constituents (Viña et al., 2011). Tracking VI changes 

through the growing season is critical for crop growth modeling and yield 

forecast.  Conventionally, optical data have been widely used to calculate VI (Liu et all, 
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2012).  However, under unfavorable weather conditions, optical sensors cannot reliably 

meet the time requirement when information on key growing stages is needed.  

3.1.2 Previous Studies 

Synthetic Aperture Radar (SAR) sensors are able to transmit microwaves through the haze 

and clouds, and therefore offer an alternative data source for optical data. Different from 

traditional optical data, SAR signals respond to the crop structure (size, shape, and 

orientation of leaves, stalks, and fruits), the dielectric properties of the canopy, as well as 

the roughness and moisture of the underlying soil (McNairn et al. 2009a, Steffen et al., 

2012). The existence of the connection between the SAR signals and crops parameters has 

been proved by previous research (McNairn et al. 2004). However, how robust the 

connections are have not been fully explored yet.  

SAR data acquired at different frequencies have different transmission abilities, and thus 

are sensitive to the properties of plants at different components’ scales (Lopez-Sanchez et 

al.2009). The selection of SAR sensors for agricultural applications is highly dependent on 

the crop types and task objectivities. Indeed, many successes have resulted from using 

multi-frequency SAR data in a wide range of agricultural applications, such as crop-type 

mapping (McNairn et al., 2009b, Shang et al., 2009), crop condition monitoring ( Ferrazzoli 

et al. 1997, Paloscia, 1998), and soil moisture retrieval (Lievens et al. 2011). Baghdadi and 

colleagues investigated the potential of TerraSAR-X, ASAR/ENVISAT and 

PALSAR/ALOS for monitoring sugarcane crops. Their results show that cross 

polarizations at long radar wavelengths are mostly sensitive to the changes in sugarcane 

crops’ height and NDVI early in the growing stages (Baghdadi et al. 2009). The C band 

SAR data was established as appropriate for biomass estimation of crops such as colza, 

wheat, alfalfa, and soybeans (Ferrazzoli et al. 1997). Compared to L and P band SAR data, 

C band has a relatively short wave length, and thus is less able to penetrate into crop plants 

with large biomass. Therefore, the sensitivity of C band SAR data to crop biomass is also 

restricted by the presence of signal saturation effects of crops with large biomass, such as 

the corn and sugarcane (McNairn et al. 2000).  
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Multipolarization SAR data provide more information about crop growing conditions than 

the single polarization SAR data. The potential of single polarization SAR data for crop 

monitoring has been well explored in the previous studies. For example, strong correlations 

have been reported between the HH polarization backscattering values from multitemporal 

RADARSAT data and biological parameters of rice, such as the plant height, age, and 

biomass (Shao et al. 2001, Li et al. 2003, Chakraborty et al. 2005). However, the sensitivity 

of the wave polarization to the orientation, shape and dielectric properties of the plants is 

less studied. Recently, as more polarimetric SAR data are provided by satellites such as C 

band RADARSAT-2, PAlSAR L band ALOS, and X band TerraSAR sensors, increasing 

number of studies have focused on the application of polarimetric SAR data in crop 

condition monitoring. Studies indicate that for both corn and soybeans, significant 

correlation has been reported between volume scattering indicative RADARSAT-2 

Quadpol parameters and the LAI (Jiao et al. 2011). In addition, Steffen and colleagues 

compared TerraSAR-X Quadpol backscattering with RapidEye multispectral vegetation 

indices over rice fields, and the results showed that significant correlations are found 

between the VV images, the VH images, and the modified chlorophyll absorption ratio 

index/second modified triangular vegetation index(MCARI/MTVI2) on an object basis 

(Steffen et al.,2012 ).  

The temporal and spatial dimensions of remotely sensed data are also critical to certain 

agricultural applications, such as crop phenological stages monitoring, and plant pathology 

detection (Lopez-Sanchez et al.2009). Most of the crops in North America change rapidly 

in the summer season, when weather conditions are optimal. Also, the variation of crops in 

the same field might also be significant. As the results of a 2007 field campaign showed, 

variations of 20% in LAI, 20% in vegetation height and 40% in biomass were measured 

within the same corn fields (Gerighausen et al., 2007). Therefore, high temporal and spatial 

resolution of remotely sensed data are necessary for accurate farming and other time critical 

agricultural applications. Several newly launched SAR sensors, such as RADARSAT-2 

and TerraSAR, have short revisit intervals and fine spatial resolution, and thus are able to 

provide an opportunity for these applications. 
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3.1.3 Objectives 

The objectives of this study are to investigate the potential of RADARSAT-2 polarimetric 

SAR data in monitoring crops growth conditions of wheat, peas, soybeans and corn 

agricultural crops in southwestern Ontario.  

3.2 Study Areas and Data Description 

3.2.1 Study Area 

The study site is in Middlesex County, Ontario, Canada (43° 02 Ń, 81° 19 Ẃ), one of the 

most agriculturally productive areas in Ontario, Canada.  The terrain is generally flat. The 

soils are mainly Huron Lobe Glacial till with loamy and clay texture, with some stratified 

sand and gravel along the rivers. The climate is ideal for farming, with plenty of sunshine 

and precipitation. Meteorological data show that, the average monthly temperature ranged 

from 13°C to 20°C, and the monthly precipitation was 82 cm to 87 cm, during most of the 

crop growing season from May to September in 2012. In that same time, the mean relative 

humidity at 3:00 PM ranged from 55% to 60%, and monthly total hours of bright sunshine 

totaled between 221 and 262 hours. The main crops in this area include corn, soybeans, 

wheat, forage, and field peas.  
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Figure 3.1 Study fields shown in the RapidEye image 

 

3.2.2 Satellite Data 

Two sets of multi-temporal RADARSAT-2 Wide Swath Quadpol data, FQ7 and FQ21, 

were acquired over the growing season in 2012. The FQ7 has a steeper incidence angles 

(25.7° - 27.6°), while the incidence angles in for FQ 21 images are much shallower (40.2°-

41.6°). The nominal pixel spacing for the polarimetric SAR image is 4.7m in range and 

5.1m in azimuth (Table 3.1).    

During the same crop growing season, four scenes of RapidEye images were obtained 

(June 7th, July 20th, August.5th and August 25th). The multispectral RapidEye sensors are 

particularly useful in vegetation applications because they observe the Earth in a wide 

spatial range, with five spectral bands ranging from 400 to 850nm at 6.5m resolution at 

nadir. 
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Table 3.1 Summary of Satellite images and acquisition dates 

Satellites RapidEye R-2 FQ7 R-2 FQ21 

Dates (d-mm-yyyy)  5-04-2012 5-07-2012 

 6-07-2012 5-28-2012 5-31-2012 

 7-16&24-2012 7-15-2012 7-18-2012 

 8-05-2012  8-11-2012 

 8-25-2012 9-01-2012 9-04-2012 

   9-28-2012 

3.2.3 Field Work 

The in situ measurements were taken coincident with the satellites overpasses. 

Measurement were conducted on per-fieldbasis. The crop fields selected in this study area 

are representative of the main crops in Southwestern Ontario. Within the study area, 13 

corn, 19 soybeans, and 16 wheat croplands, 6 forage and 3 peas’ fields were selected in the 

study area. The polygons for each field were manually drawn from the RapidEye images. 

In each field, the general crop condition information has been investigated, which includes 

the field management information, crop phenological stages, height, and general soil 

conditions. Height information is one of the most important characteristics in describing 

the plant growing conditions. The plants’ heights are usually homogenous for the most of 

the fields, and thus were measured by averaging three samples in each individual field. As 

SAR signals might be responsive to the soil moisture, the soil wetness are also recorded in 

each field on every imagery acquisition date. Soil conditions are briefly measured by hand 

and recorded in five categories: dry, slightly moist, moist, wet, and extremely wet soil 

conditions.     

The meteorological information is very useful in analyzing the SAR signal, which is 

sensitive to the moistures in the land surface. Detailed meteorological information was 

downloaded from the environmental Canada. Hourly weather information on the image 

acquisition date were recoded, such as participation, temperature, wind, and pressure. 
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3.3 Methodology 

The methodology of this study can be separated into three main steps (Figure 3.2): (1) 

RADARSAT-2 polarimetric data decomposition; (2) NDVI mapping and segmentation; 

(3) Correlation analysis between crop parameters (height and NDVI) and polarimetric 

parameters. The detailed concepts and methods are explained as below. 

3.3.1 Polarimetric Data Processing 

The polarimetric information contained in the RADARSAT-2 data is related to the crop 

parameters, such as crop height, density, moisture, as well as the canopy structures. Using 

polarimetric decomposition methods, a variety of parameters can be extracted from the 

original RADARSAT-2 datasets. Different parameters contain different physical 

meaning, and thus each of them might have different sensitivities different crops. Among 

all the polarimetric parameters, the most commonly used one can be separated into two 

main categories: (1) the basic polarimetric parameters (2) and decomposition parameters.  

(1) Basic Polarimetric Parameters 

T3 coherency and C3 covariance matrix are fundamental matrices, from which other 

decomposition parameters can be derived (Lee and Pottier, 2009). Among all the 

Analysis Results 

R-2 Datasets RapidEye In Situ Data 

Polarimetric 

Parameters 

   Decomposition 

NDVI Maps 

   NDVI Mapping  

  Segme ntation 

Crop Heights 

Figure 3.2 The methodology of the data processing and analysis 



63 

 

parameters in T3, the diagonal parameters T11 (|HH+VV|), T22 (|HH-VV|), and T33 (| 

HV|) contain the most useful polarimetric information. The widely used Pauli 

decomposition is based on the T3 matrix. Each of the parameters has clear physical 

meaning: T11 represents single (odd) bounce scattering, T22 indicates double bounce 

scattering, and T33 is associated with volume scattering (Lee and Pottier, 2009).  

From the C3 matrix, the intensities of different polarization bands can be extracted from 

the diagonal parameters. C11 (|HH|) and C33 (|VV|) represent the horizontal and the 

vertical polarization band intensity, respectively. C22 (|HV|) is similar to T22, which 

indicates the intensity in volume scattering.   

The intensity ratios are also sensitive to the canopy characteristics of different crops at 

various growing stages. Three main intensity ratios have been studied in this study, which 

includes HH/VV, HV/HH, and HV/VV polarizations. 

(1) Polarimetric Decomposition Parameters 

The Freeman-Durden decomposition is a method for fitting a physically based, three-

component scattering mechanism model to the polarimetric SAR observations. The three-

components scattering mechanism model includes surface, double-bounce and volume 

scattering mechanisms (Freeman et al., 1998; Lee and Pottier, 2009). This approach can be 

used to determine the dominant scattering mechanisms in the land surface. In the crop 

growing season, the dominant scattering mechanisms in the crop land would change 

according to the plant development. Therefore, the decomposition results from Freeman-

Durden might related to the crop growing stage and crop conditions.  

(2) H/Alpha/A Decomposition 

H/Alpha/A decomposition is an approach proposed by Cloude and Pottier for extracting 

average parameters from experimental data using a smoothing algorithm based on second-

order statistics (Cloude and Pottier, 1996; Cloude and Pottier, 1997). Decomposition 

parameters are generated from an eigenvector analysis of the coherency matrix T3. The 

eigenvectors describe different scattering processes, and the eigenvalues indicate their 

relative magnitudes. Among all the parameters, the averaged Alpha angle (α) relates 
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directly to underlying average physical scattering mechanisms. The value of Alpha ranges 

from 0° to 90°, which indicates the variance of dominant scattering from surface scattering 

mechanism moving into single scattering by a cloud of anisotropic particles, and finally 

reaching dihedral scatters. Entropy (H) describes the randomness of the scatter. The 

anisotropy (A) corresponds to the relative power of the second and third eigenvectors (Lee 

and Pottier, 2009).  

Among the three H/Alpha/A decomposition parameters, H has been reported to be most 

sensitive to the density and randomness of some plants canopy (Lee and Pottier, 2009, 

McNairn et. al, 2009). The sensitivity of H to crop parameters, such as height and NDVI, 

has not been fully investigated yet, and thus requires further study.  

(3) Pedestal Height and Span 

Pedestal height is another way of measuring randomness in the scattering. Pedestal height 

is equivalent to measuring the ratio of the minimum eigenvalue to the maximum 

eigenvalue. It is an indicator of the presence of an unpolarized scattering component in the 

received signal, and thus is related to the degree of polarization of a scattered wave (Lee 

and Pottier, 2009). Span is a measurement of total power by adding all the intensities from 

different polarization bands.  

As the Figure 3.3 show, in this study, all the parameters were extracted from the filtered 

multi-temporal RADARSAT-2 polarimetric data. After the decomposition, all the data are 

orthorectified and registered together. Each step of the polarimetric data pre-processing is 

conducted using the PCI Geomantica 10.3 software and the additional Polarimetric SAR 

Work Station.  
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Figure 3.3 Flowchart shows the workflow used to process the polarimetric 

RADARSAT-2 datasets. 

3.3.2 NDVI Calculation  

Normalized Difference Vegetation Index (NDVI) is one of the most commonly used 

vegetation indices derived from optical Remote Sensing data. It is calculated from the 

visible and near-infrared (NIR) light reflected by vegetation (Rouse et al., 1974). NDVI is 

able to reflect the health conditions of vegetation because healthy vegetation absorbs most 

of the visible light that hits it, and reflects a large portion of the near-infrared light. 

However, unhealthy or sparse vegetation reflects more visible light and less near-infrared 

light. The normalized difference between NIR and Red reflectance (Function 3.1) is able 

to characterize the healthiness of vegetation.   

The RapidEye images have a wide coverage of NIR and visible spectral wavelength, and 

thus have great potential in vegetation indices derivation. However, due to the different 

atmospheric condition of each image taken at different time, using the original digital 

number is not accurate enough to derive high quality NDVI maps. Atmospheric Correction 
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of optical data is necessary prior to NDVI calculation, as the calculated reflectance in each 

band from multi-temporal images only become comparable the atmospheric correction. In 

this study, the atmospheric correction module ATCOR, which is embedded in PCI software, 

has been used to perform the correction.  

Pixel based analysis of the sensitivities between polarimetric parameters and vegetation 

indices is usually unstable due to the serious speckle effects in the SAR images. 

Therefore, the object unites are adopted in this study to investigate the relationship 

between polarimetric SAR parameters and NDVI.  

In the course of this study, NDVI maps were segmented into homogenous zones using 

the multi-resolution algorithm in eCognition software. As the crop growing conditions 

vary a lot from day to day even within the same individual crop land, each NDVI map 

generated from different images should be segmented independently. The mean values of 

the NDVI and polarimetric parameters within each of the homogenous zones were 

extracted for the correlation analysis.  

 

𝑁𝐷𝑉𝐼 =
𝜌𝑁𝐼𝑅 − 𝜌𝑅𝑒𝑑

𝜌𝑁𝐼𝑅 + 𝜌𝑅𝑒𝑑

                                                                                  (3.1) 

Whereρ𝑁𝐼𝑅  and ρ𝑅𝑒𝑑 are the reflectance in NIR and Red bands.  

3.3.3 Correlation Analysis 

The widely used Pearson product-moment correlation coefficient (Pearson’s r) is utilized 

in this study for correlation analysis (Wilcox, 2005). Pearson’s r is a measure of the 

linear correlation (dependence) between two variables X and Y, giving a value between 

+1 and −1 inclusive (see Function 3.2).  

ρ𝑋,𝑌 =
𝑐𝑜𝑣(𝑋, 𝑌)

𝜎𝑋𝜎𝑌

=
𝐸[(𝑋− 𝜇𝑋)(𝑌− 𝜇𝑌)]

𝜎𝑋𝜎𝑌

                                                     (3.2) 

In this study, the Pearson's r between NDVI and SAR parameter is defined as 

the covariance of the two variables divided by the product of their standard deviations. 

http://en.wikipedia.org/wiki/Correlation
http://en.wikipedia.org/wiki/Covariance
http://en.wikipedia.org/wiki/Standard_deviations
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The absolute values of Pearson’s r are less than or equal to 1. The higher the absolute 

value of Pearson’s r, the stronger the correlation between two variables. 

3.4 Results and Discussion 

This study was conducted from three aspects as mentioned in the methodology section.  

(1) The crop height information was measured from each of the cropland at every image 

acquiring date. The crop phenological information was observed in the field. The 

vegetation characteristics changes were also tracked and analyzed based on the field 

measurements results. 

(2) The NDVI maps were first generated from RapidEye maps, and then segmented into 

homogenous objects. Over 1000 objects, with similar NDVI values in the same object 

have been extracted for the sensitivity analysis.   

(3) A high dimension of polarimetric dataset was derived from the multi-temporal 

RADARSAT-2 data. The responses of those polarimetric data to the vegetation 

parameters (both height and NDVI) at two different image incidence angles (FQ7 and 

FQ21) were analyzed respectively.  

Detailed analysis of study results are discussed below.  

3.4.1 Field Data Collection 

Over 20 times of field work were conducted from early May to the end of September. 

Plant height, one of the most important pieces of crop information, has been carefully 

recorded (See Appendix 2.4).  

(1) Corn and Soybeans 

Six stages of corn growth have been captured, from the end of May to the end of September: 

stalk initiation, stalk development, tasseling and flowing, ear development, kernel 

development, and maturation (Figure 3.4). The height of corn starts to increase 

dramatically in the end of May when the corn began to initiate (20cm) and the growth rate 

slowed down with when the corn started to tassel in the middle of July (200cm).  
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For the soybeans, five images taken at different soybean growing stages are presented in 

Figure 3.4. The average soybean height varied from 20cm in late June to 70cm in early 

September. Most soybeans were planted in late May. On June 24th, the two-trifoliate was 

fully developed for the majority of the soybeans. The height of soybeans increased 

continually through the stages of flowering and bean filling. Average soybean height 

peaked when leaves began shedding in early September, and decreased by 5cm when the 

soybeans matured. 

  

 
 

 

Corn May31 Corn June24 Corn July 18 Corn Aug.11 Corn Sept.28 

  

 

 
 

soybeanJune24 Sb Jul 18 Sb Aug 11 Sb Sept.4 Sb Sept.28 

Figure 3.4 Key crop growing stages for corn and soybeans during the growing 

season 

 (2) Wheat and Field peas 

Four main growing stages of wheat were captured by the RADARSAT-2 images taken 

from early May to mid-July, 2012 (Figure 3.5). The height of wheat increased rapidly from 

the tiller formation stage in early May at 30cm, and reached a peak of 75cm at heading and 

flowering stages by the end of May. Most wheat began to ripen at the end of June, and 

were harvested in the middle of July.  
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The development stages of field peas in 2012 were similar to those of wheat. The majority 

of pea plants emerged in early May, and bloomed in early June. The pea pods were fully 

developed at the end of June, and were finally harvested in the middle of July (Figure 3.5). 

Over the whole growing season, the height of field pea plants varied from 10cm to 55cm 

(Figure 3.5).  

 

Wheat May 7 Wheat May 31 Wheat June 24 Wheat July 18 

 Field Peas May 7 Field Peas May 31 Field Peas June 24  Field Peas July 18 

Figure 3.5 Key crop growing stages for wheat and field peas during the 2012 

growing season 

3.4.2 Correlation Analysis between RADARSAT-2 Polarimetric SAR 
Data and Crop Height 

The correlation between crop height and RADARSAT-2 polarimetric parameters are 

summarized in Table 3.2. The average heights of each crop field were observed in the 

field at each satellite passing day. The mean values for each SAR parameter at 

corresponding places in the field were extracted from the polarimetric parameters 

datasets.  
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(1) Overall Trend 

Relative high correlations(r) were observed in corn and peas. The high value of r ranged 

from 0.7 to 0.8. For soybeans and wheat, the correlations were relatively low, with the r 

less than 0.6. To further investigate the relationship between crop height and SAR 

parameters, one typical field for each crop was selected for detailed analysis.  
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Table 3.2 The correlation between crop height and  

SAR parameters 

 

 

 

 

Corn  Soybean  Wheat  Field Peas 

Linear Backscatter coefficient(dB) 
C11(HH) 0.57 0.41  -0.49 0.26 

C22(HV) 0.68 0.52  -0.57 0.82 

C33(VV) 0.47 0.35  -0.20 0.54 

T11(HH+VV) 0.36 0.23  -0.40 0.54 

T22(HH-VV) 0.70 0.56  -0.36 0.31 

Intensity ratio 

HH/VV 0.51 0.16  -0.22 -0.46 

HV/HH 0.43 0.45  -0.15 0.82 

HV/VV 0.67 0.49  -0.56 0.51 

Freeman-Durden decomposition parameters  

Single  -0.61 -0.38  0.15 -0.26 

Double  -0.49 0.24  0.17 -0.72 

Volume  0.68 0.52  -0.57 0.82 

Cloude-Pottier decomposition parameters  

Entropy 0.79 0.42  -0.05 0.18 

Alpha (deg.) 0.79 0.47  -0.11 0.01 

Anisotropy 0.04 -0.23  0.51 -0.75 

Polarimetric variables 

PH 0.71 0.54  -0.40 0.62 

Total power 0.59 0.44  -0.45 0.59 
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(2) Corn 

The volume scattering indicative parameters, such as HV and the volume scattering from 

the Freeman-Durden decomposition parameters, are sensitive to the corn height. The 

volume scattering values increased as the corn height increased. Large amount of rainfall 

accumulated on June 24 might also contribute to the high volume scattering value. 

The Entropy and Alpha parameters were more sensitive to the change in corn height 

(r=0.79) than the other parameters. The variation of the corn height was well characterized 

by the change of Entropy value, even at the late of corn growing season. A minor decrease 

of Entropy was observed at the corn maturation stage, which might be a result of the 

withering of most leaves.  

The change of Alpha angle indicates the change of dominant scattering mechanism. In the 

early stage of the corn growing season (stalk initiation and development) the dominant 

mechanism was surface scattering since the plants could barely cover the ground. The 

Alpha increased from 40 to 50 degrees during the period from the tasseling to the maturity 

of corn, which indicates that volume scattering was the main scattering mechanism in the 

corn fields. High canopy densities of corn were also observed in the in-situ investigation 

during that period. At the corn maturation stage, the Alpha was approaching to 50 degrees, 

which indicated that increasing double bounce scattering was also observed. As the 

canopies were less dense than before, more reflectance was backscattered from the semi-

double-faced geometry between stalks of corn and the surface.  

In sum, both Entropy and Alpha angle from Cloud-Pottier decomposition parameters and 

HV scattering are good indicators of corn height.  

(3) Soybeans 

The values of both Pedestal height (Ph) and HH-VV (T22) correlated well with the height 

of soybeans. Pedestal height is an indicator of the presence of an unpolarized scattering 

component, and the randomness of scattering. A high pedestal height  value indicates that 

the volume scattering or multiple-surface scattering is the dominant from of scattering in 
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the targets. Researchers reported that (Evans, et al. 1988) Pedestal height was directly 

proportional to vegetation density.   

 

  

  

 

 
 

 

Day of Year 2012  over corn Day of Year 2012 over Soybeans 
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Figure 3.6 Temporal evolution of the SAR responses over corn and soybeans. SAR 

parameters are presented together with crop height and precipitation amounts. 

The sensitivity of Ph to soybean height was observed in this study. However, the decrease 

in Ph value was much greater than the drop of height after the maturation of soybeans. 

Over the course of growing season, the foliage of most soybean plants became sparse as 

most leaves defoliated at the maturation stages. The decrease of soybean plant density 

resulted in the decrease of overall crop density, and consequently a decrease in Ph value. 

Similar results were also observed in the HV and HH-VV parameters, which are the 

indicators of volume and double scattering, respectively.  

(4) Wheat and Field Peas 

Figure 3.7 shows that the backscattering in the HH polarization channel of RADARSAT-

2 is negatively correlated with the wheat height. HH is an indicator of surface scattering. 

The value of HH decreased as the wheat leaves and stems developed, and dropped to the 

lowest value when the biomass was at its highest. The temporal change in HH indicated 

that, as wheat grew, the signals scattering from the underlying bare soil were less intensive. 

The value in the Anisotropy of Cloude-Pottier decomposition is positively correlated with 

the wheat height. Anisotropy represents the relative power of the second and third 

eigenvectors of the covariance matrix.  

The value of HV and the HV/HH positively corresponded to the growth of the peas. The 

rise in the value of HV/HH and HV indicated that volume scattering, instead of surface 

scattering, became the dominant component as the pea’s biomass increased.  
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(a) Day of Year 2012 over wheat  (b) Day of Year 2012 over peas 

Figure 3.7 Temporal evolution of the SAR responses over wheat (a) and peas (b). 

SAR parameters presented together with crop height and precipitation received. 

3.4.3  Correlation Analysis between RADARSAT-2 Polarimetric SAR 
Data and Crop NDVI 

The NDVI maps of both soybeans and corn crops were generated from multi-temporal 

RapidEye images. The segmentation results give the basic units for the correlation analysis. 

In the following sections, (1) the NDVI segmentation results, (2) the correlation between 

NDVI and basic polarimetric parameters, as well as (3) the correlation between NDVI and 

polarimetric decomposition parameters, were analyzed and presented.  

0

10

20

30

40

1
3

1

1
5

2

1
7

6

P
re

ci
p

it
a

ti
o

n
 m

m

0

10

20

30

40

1
3

1

1
5

2

1
7

6

P
re

ci
p

it
a

ti
o

n
 m

m

0

20

40

60

80

-49

-44

-39

-34

122 142 162

T33(HV)

Height(cm)
0

20

40

60

-35

-33

-31

-29

-27

-25

122 142 162

C22(HV)

Height(cm)

0

20

40

60

80

0.4

0.42

0.44

0.46

0.48

122 142 162

Anisotropy(deg)

Height(cm)
0

20

40

60

0

0.1

0.2

0.3

0.4

122 142 162

HV/HH

Height(cm)



76 

 

(1) NDVI Segmentation 

The statistics between NDVI and RADARSAT-2 polarimetric parameters were conducted 

on the object level. Four NDVI maps were generated from the images acquired on the dates 

of June 7th, July 16th and 24th, August 5th, and August 25th, 2012. Each NDVI map was 

segmented into homogeneous objects at the scale of 15(Table 3.3). The number of objects 

included in the statistics is 212 for June 7th, 365 for July 16&24th, 382 for August 5th, and 

295 for August 25th. The correlation analyses were independently conducted for the fields 

of corn and soybeans using the images taken on the FQ7 or FQ21 angle.   

Table 3.3 Samples show the segmentation results for soybeans and corn fields 

superimposed on the June 7th (a), July 16th and 24th (b), August 5th (c), and 

August 25th (d) 2012, NDVI maps. 

(a)soybean (b)soybean (c)soybean (d)soybean 

(a) corn  (b)corn (c)corn (d)  corn  
NDVI:1                                                    0

 
 

 

3.4.3.1 Basic Polarimetric Parameters  

For both corn and soybean crops, significant correlations between HV and NDVI were 

observed at FQ7 and FQ21 images. Also, strong correlations were observed between the 

T22 (HH-VV) and the NDVI at FQ7 (r= 0.89 for corn, 0.9 for soybeans). At FQ21, however, 

the correlations between T22 (HH-VV) and NDVI was slightly lower for both corn(r=0.83) 
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and soybeans(r=0.83). In Figure 3.8, the HV and HH-VV parameters are plotted against 

NDVI for both corn and soybean crops. HV is associated with volume and HH-VV 

represents double or even-bounce scattering from within the target. The significant 

correlation between HV, HH-VV and NDVI reflects that both HV and HH-VV are 

sensitive to the physical structure of crops. Early in the crop growing season, most 

scattering originated from the soil surface. Thus, both volume and multiple scatterings were 

low during that period. With the growth of leaves and stems of plants as the crop matured, 

more scattering was resulted  

Table 3.4 The correlation between soybean and corn NDVI to basic polarimetric 

parameters in FQ7 and FQ21 

 R(FQ7, NDVI)  R(FQ21,NDVI) 

 Soybean  Corn  Soybean  Corn 

Linear Backscatter coefficient(dB) 
C11(HH) 0.42 0.56  0.80 0.79 

C22(HV) 0.93 0.92  0.89 0.93 

C33(VV) 0.43 0.43  0.79 0.75 

T11(HH+VV) 0.25 0.38  0.73 0.75 

T22(HH-VV) 0.89 0.90  0.83 0.83 
Intensity Ratio 

HH/VV -0.90 -0.80  -0.07 0.48 

HV/HH 0.63 0.74  0.67 0.65 

HV/VV 0.76 0.78  0.63 0.73 

The saturation of HH-VV to NDVI was observed once the NDVI reached 0.8 at the FQ21 

angle for both soybean and corn crops (Fig 3.8). As Fig 3.8 (f) shows, once the NDVI in 

the corn fields were higher than 0.7, the positive correlations between T22 and NDVI 

disappeared. The low correlations might be explained based on the principle that after the 

maturation of most corn, the NDVI decreased due to the drop in chlorophyll in the plant. 

In the meantime, the occurrence of double bounce scattering increased when most leaves 

were dry. Stronger signals were reflected from the semi-double-faced geometry between 
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corn stalks and soil surface. For the soybeans, the sensitivity of HH-VV to NDVI matured 

when the NDVI values were higher than 0.8, particularly in FQ21 images. The FQ21 

images were taken in a shallower incidence angles, and were less able to penetrate into the 

canopy. Therefore, parameters derived from FQ21 images are less sensitive to NDVI than 

those from FQ7.  

  

(a) 

 

  

(b) 

 

(c) 

 

(d) 
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(e) 

 

 (f) 

 

(g) 

 

 (h) 

 

Figure 3.8 Correlation between the HV, HH-VV from the RADARSAT-2 FQ7 and 

FQ21 and NDVI for corn and soybeans 

3.4.3.2 Decomposition Polarimetric Parameters 

(1) Freeman-Durden and Pedestal Height 

The volume scattering of Freeman-Durden decomposition parameters was significantly 

correlated with NDVI for both soybeans and corn. In addition, pedestal height was highly 

correlated with NDVI for both crops. Pedestal height describes the degree of polarization 

of a scattered wave. Studies demonstrate that pedestal height is directly proportional to 

vegetation density (Evans, et al. 1988). In this study, the pedestal height is also positively 

correlated with the NDVI of soybeans and corn. Also, the saturation of Pedestal height to 
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NDVI was observed when the NDVI of crop samples was higher than 0.75, particularly in 

the FQ21 images.  

 

 

 

 

 

 

 

 

 

 

Table 3.5 The correlation between soybeans and corn crop NDVI to polarimetric 

decomposition parameters in FQ7 and FQ21 

 

 

 

 

 

 

 

 R(FQ7, NDVI)  R(FQ21,NDVI) 

 
Soybean  Corn  

Soybean  Corn 
Freeman-Durden decomposition parameters  

Single  -0.41 -0.37  -0.34 -0.44 
Double  -0.40 -0.42  0.31 0.41 

Volume  0.93 0.92  
0.89 0.93 

Cloude-Pottier decomposition parameters  
Entropy 0.83 0.82  0.76 0.82 

Alpha (deg.) 0.82 0.82  0.69 0.79 

Anisotropy -0.35 -0.14  -0.46 -0.23 
Polarimetric variables 

PH 0.90 0.91  0.87 0.89 

Total power 0.58 0.62  0.85 0.84 
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(2) Entropy 

A slightly weak correlation was reported between Entropy and crop NDVI. Entropy 

characterizes the randomness of scattering occurring within a target. The randomness 

increases as crops develop, due to scattering from the soil, the vegetation, as well as the 

soil-vegetation interaction all contribute to the total scattering of radar signals. As Table 

3.5 shows, the correlation between Entropy and NDVI is slightly higher in soybeans fields 

than that in corn fields. It might be interpreted from the figure that the Entropy is more 

sensitive to the low biomass crops, such as soybeans, than crops with high biomass.  

(3) Overall 

In summary, the sensitivity of NDVI to polarimetric parameters varied from parameter to 

parameter. The correlation between the same parameter to the crop NDVI also depends on 

the crop types and incidence angles at which imagery is obtained. In general, parameters 

that are indicative of volume and multi-scattering, such as HV, HH-VV, and volume 

scattering from Freeman-Durden decomposition, are relatively highly related to the value 

of NDVI. Also, parameters related to the density and randomness of plants, like the 

Pedestal height and Entropy in the Cloude-Pottier decomposition, are correlated with the 

NDVI. However, due to the lack of high quality optical images obtained in mid-June, the 

NDVI values of most samples were clustered either in the high or the low value zones. The 

statistical results might be more convincing if NDVI maps from various dates were 

available.  
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(e) 

 

(f) 

 

(g) 

 

(h) 

 

Figure 3.9 Scatter plots between the Entropy, Pedestal and NDVI for corn and 

soybeans at FQ7 (a, c, e, g), and FQ21 (b, d, f, h) image. 

3.4.3.3 Comparison of all Polarimetric Parameters 

By comparing the correlation between NDVI and polarimetric parameters, the rankings 

of the coefficients for soybeans and corn are shown and analyzed below.  
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For soybeans, the volume scattering derived from HV intensity and Freeman-Durden 

decomposition parameters are significantly correlated to the value of NDVI, with a 

Pearson’s r of 0.93. The Pedestal height and HH/VV are also very sensitive to the NDVI 

values of soybeans with the same Pearson’s r of 0.9. The correlation between T22 (|HH-

VV|) and NDVI is in the third place, with a Pearson’s r o f 0.89.  

As discussed in the above sections, serious saturations were observed while using FQ21 

images, due to reduced canopy penetration of canopy. Parameters derived from FQ7 

images, obtained at a steeper incidence angle, have higher correlation to NDVI than those 

from FQ21.  

Table 3.6 the ranking of correlation coefficients between polarimetric parameters 

and NDVI for soybeans 

Ranking Recommended 

parameters 

Optimal 

Mode 

r 

1 C22 (HV) FQ7 0.93 

1 Freeman(Vol) FQ7 0.93 

2 PH FQ7 0.9 

2 HH/VV FQ7 -0.9 

3 T22(HH-VV) FQ7 0.89 

(2) Corns 

The volume scatterings from HV intensity and Freeman-Durden decomposition are 

strongest correlated to corn NDVI among all the parameters, with the Pearson’s r as high 

as 0.93. Pedestal height and T22 are also very sensitive to NDVI values.  

The preverable mode for volume scatterings is FQ21, and that for Ph and T22 is FQ7. 

However, the difference between FQ7 and FQ21 is not significant, which is less than 

0.02. Therefore, no absolute optimal angle mode for obtaining imagery was found in this 

study.   
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Table 3.7 The ranking of correlation coefficients between polarimetric parameters 

and NDVI for corn. 

Ranking Recommended 

parameters 

Better 

Mode 

r 

1 C22(HV) FQ21 0.93 

1 Freeman(Vol) FQ21 0.93 

2 PH FQ7 0.91 

3 T22(HH-VV) FQ7 0.9 

3.5 Conclusion 

This study investigates the sensitivity of RADARSAT-2 polarimetric SAR signals to 

structural changes of wheat, field peas, soybeans, and corn during the 2012 growing season, 

Southwestern Ontario. Several conclusions have been drawn from this study: 

(1) Polarimetric SAR data are able to provide complement information for optical data in 

time critical agricultural applications, such as crop condition monitoring, when high quality 

optical data are not available under unfavorable weather conditions.   

(2) The potential of polarimetric SAR parameters in characterizing the temporal changes 

of field peas and corn height have been amply demonstrated in this study. The high 

correlation coefficients of 0.82 and 0.79 were observed in peas and corn. The 

recommended parameters for field pea height estimation are Freeman-Durden volume 

scattering and HV/VV. Corn height estimation is best performed with Entropy and Alpha 

parameters. 

(3) Strong correlation coefficients have been observed between polarimetric parameters 

and NDVI values for both corn and soybeans. The highest correlation coefficient is 0.93, 

between HV, Freeman-Durden Volume and NDVI for both corn and soybean crops. 

Pedestal height is also sensitive to crop NDVI; the correlation coefficients are 0.9 and 0.91 

for soybeans and corn, respectively.  
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(4) Marginal differences were observed between the images taken at FQ21 and FQ7 

incidence angles. FQ7 is slightly better than FQ21 in estimation of soybean NDVI from 

some polarimetric SAR parameters, such as HH-VV, HH/VV, Pedestal Height, and volume 

scattering. 

The potential of deriving NDVI from RADARSAT-2 polarimetric SAR data has been 

demonstrated in this study. Further research should focus on investigating the relationship 

between the SAR parameters and other plant parameters, such as LAI and biomass, so as 

to facilitate crop yield estimation applications. 
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Chapter 4  

4 Conclusions 

4.1 Summary 

The successful management of land use/land cover (LU/LC) planning and agricultural 

applications depends on continuous monitoring of LU/LC changes and crop growing 

conditions. Timely information about land surface is critical in the urban rural fringe areas 

in Southwestern Ontario, Canada, where rapid urban expansion has great influence on the 

agricultural production and the resultant economy. Frequent monitoring permits complete 

and accurate assessments of the impacts of urban development on the local and regional 

agriculture.  Remote Sensing provides an efficient and effective tool for this purpose.  

The commonly available optical remote sensing data are not reliable for crop type 

identification and conditions monitoring during the growing seasons due to frequent 

overcast and rainy weather. SAR images provide an alternative data source to optical 

images. In addition, the newly available polarimetric SAR data contain full polarization 

information, and have greater potential compared with the traditional single polarization 

SAR data for the applications in LU/LC mapping and crop monitoring.   

Chapter 2 presented a classification procedure for the LU/LC mapping of urban/rural fringe 

areas using multi-temporal polarimetric RADARSAT-2 images. Nine classes were 

identified with a high overall accuracy over 90%. The classification results were compared 

and analyzed from four aspects: decomposition parameters, classifiers, multi-date image 

combinations, and post-classification processing methods.  

Chapter 3 described the sensitivities of RADARSAT-2 polarimetric parameters to 

vegetation parameters over the crop growing season from two aspects: (1) the responses of 

polarimetric parameters to the change of crop heights in different phenological stages. And 

(2) the relationship between polarimetric parameters and NDVI values for selected crops. 
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4.2 Conclusions and Results 

The research presented in this thesis provided response to the questions posed in the 

introduction: 

1. How accurately can LU/LC be classified in this urban/rural fringe areas from the 

fine beam multi-temporal RADARSAT-2 satellite images? 

An accurate LU/LC map of the urban and rural fringe area of the City of London, 

Ontario has been generated with a high accuracy of 91.0% (OA) at 0.888 (Kappa). 

The results are satisfactory considering the complex natural of the boundary areas 

and various kinds of crop types in this area.  

2. What is a good classification procedure for LU/LC classification in urban/rural 

fringe areas using RADARSAT-2 satellite images? 

The classification procedure using the log transformed Pauli decomposition 

parameters and Gaussian distribution MLC yielded better classification results than 

other parameters or the Wishart based MLC methods.  

3. What is a suitable multi-date combination of polarimetric RADARSAT-2 images 

in LU/LC classification?  

The classification accuracy can be significantly improved through carefully 

selecting and combining multi-date images. An overall accuracy of 91% was 

achieved by using five-date images combinations. Satisfactory classification 

accuracy (over 87%) can also be achieved using images from three date data, as 

long as these combinations included images obtained at key points in plant 

development during the season.  The images retrieved in the early and middle 

portion of the growing seasons provided better classification results than those from 

other parts of the growing season.  

4. What is the potential of polarimetric RADARSAT-2 for monitoring crop height 

changes? 
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The temporal and spatial variation of crop height over the season of crop growing 

was well characterized by the polarimetric SAR parameters. The curves of entropy, 

HH-VV, and Anisotropy, as well as HV/VV were shown to be closest to the 

temporal profile of height in corn, soybeans, wheat, and field pea crops 

respectively. 

5. How sensitive are RADARSAT-2 polarimetric parameters to crop biophysical 

parameters, such as NDVI? 

Strong correlations were observed between the NDVI values and HV, volume 

scattering in Freeman-Durden decomposition, and Pedestal height for both 

soybeans and corn crops. Insignificant differences were observed between the 

images taken at FQ21 and FQ7 incidence angles. However, polarimetric SAR 

parameters, such as HH-VV, HH/VV, and pedestal height, in FQ7 were slightly 

more sensitive to plant parameters than those in FQ21. 

4.3 Research Contributions 

4.3.1 Technical Contribution  

Chapter 2 demonstrated the capabilities of Gaussian based Maximum Likelihood Classifier 

(MLC) in polarimetric SAR image classification. The classification results indicated that 

Gaussian distribution was an effective method of characterizing distribution of log 

transformed Pauli decomposition parameters. 

4.3.2 Practical Contribution 

The main contributions of the study in Chapter 2 are demonstrated in two aspects: 

 (1) An operational procedure has been provided for LU/LC classification in the urban/rural 

fringe areas using polarimetric RADARSAT-2 data. Using this procedure, detailed LU/LC 

classes, including crop types and urban land use classes, can be classified with a high 

degree of accuracy.  
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(2) An accurate and economic combination strategy of multi-date data for LU/LC 

classification has been recommended. This strategy can be used for detailed crop inventory 

in Southwestern Ontario, particularly in the urban/rural fringe areas.  

The main contribution in Chapter 3 is that it explored the potential of polarimetric 

RADARSAT-2 data for crop condition monitoring in Southwestern Ontario, Canada. 

(1) Some polarimetric parameters are shown to be responsive to the variation of crop plants 

in Southwestern Ontario, and thus might be used for vegetation change monitoring. 

(2) High correlation between RADARSAT-2 polarimetric parameters and NDVI of corn 

and soybean crops in Southwestern Ontario have been demonstrated. Several polarimetric 

parameters with high correlation coefficients were recommended for NDVI estimation.  

4.4 Possible Future Research 

 (1) Texture Analysis and Object Classification  

The advantages of an object-based method are not obvious when merely applied in post-

classification processing. Further research would be worthwhile in terms of studying the 

benefits of applying object-based methods to multi-temporal polarimetric RADARSAT-2 

data classification. Additionally, texture information that can be retrieved from SAR 

images, such as gray-level co-occurrence matrices (GLCM), within each object might be 

useful in improving classification accuracy. Future research could focus on using texture 

features extracted from the polarimetric SAR data in an object-based classification.  

(2) Correlation Analysis with Other Agricultural Parameters 

Crop height and NDVI are two of the important parameters that describe crop growing 

conditions. However, in order to both accurately estimate the biomass of crops and give 

early prediction of crop yields, more information is necessary. The correlation between the 

polarimetric SAR parameters and other crop biophysical parameters, such as Leaf Area 

Index, enhanced vegetation index, and soil moisture, deserve more study.  
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Appendices   

A. Polarimetric Decomposition Theorem and Results 

A1  H/Alpha/A Decomposition and Pedestal Height 

H/Alpha/A Decomposition method was proposed by Cloude and Pottier in 1997. This method is 

based on an eigenvector analysis of 3X3 coherency T3 matrix. 

 The Entropy (H) indicates the randomness of scattering surface. It is given by Eq.(A1) 

𝐻 = ∑−𝑃𝑖𝑙𝑜𝑔3𝑃𝑖         𝑊ℎ𝑒𝑟𝑒      𝑃𝑖 =
𝜆𝑖

∑ 𝜆𝑗
3
𝑗=1

 

3

𝑖=1

 

𝜆𝑖  𝑖𝑠 𝑡ℎ𝑒 𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑦 𝑚𝑒𝑡𝑟𝑖𝑥 𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒𝑠.                                                          (𝐴1) 

 The alpha angle identified scattering types. It is defined by Eq. (A2) 

𝑒𝑖⃗⃗⃗  = exp(𝑖𝜙𝑖) [

cos𝛼𝑖

sin 𝛼𝑖 cos𝛽𝑖 exp(𝑖𝛿𝑖)

sin 𝛼𝑖 sin 𝛽𝑖 exp(𝑖𝛾𝑖)
]  

𝑤ℎ𝑒𝑟𝑒 𝑒𝑖⃗⃗⃗    𝑖𝑠 𝑡ℎ𝑒 𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑦 𝑚𝑎𝑡𝑟𝑖𝑥 𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒𝑠. 

𝛿 𝑖𝑠 𝑡ℎ𝑒 𝑝ℎ𝑎𝑠𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑆𝐻𝐻 + 𝑆𝑉𝑉 𝑎𝑛𝑑 𝑆𝐻𝐻 − 𝑆𝑉𝑉. 

𝛾 𝑖𝑠 𝑡ℎ𝑒 𝑝ℎ𝑎𝑠𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑆𝐻𝐻 + 𝑆𝑉𝑉 𝑎𝑛𝑑   𝑆𝐻𝑉.     

 𝜙 𝑖𝑠 𝑡ℎ𝑒 𝑑𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑝ℎ𝑎𝑠𝑒 𝑆𝐻𝐻 + 𝑆𝑉𝑉. 

 𝑇ℎ𝑒 𝑚𝑒𝑎𝑛 𝑎𝑙𝑝ℎ𝑎 𝑎𝑛𝑔𝑙𝑒 𝑖𝑠 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑏𝑦: 𝛼 = 𝑃1𝛼1 + 𝑃2𝛼2 + 𝑃3𝛼3 .  

𝑇ℎ𝑒 𝛼𝑖  𝑖𝑠 𝑡ℎ𝑒 𝑎𝑙𝑝ℎ𝑎 𝑎𝑛𝑔𝑙𝑒 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑡𝑜 𝑡ℎ𝑒 𝑒𝑖⃗⃗⃗   𝑒𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑡𝑜𝑟.                   (A2) 

The anisotropy is defined by Eq. (A3) 

𝐴 =
𝜆2 − 𝜆3

𝜆2 + 𝜆3
 ;  𝜆𝑖  𝑖𝑠 𝑡ℎ𝑒 𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑦 𝑚𝑒𝑡𝑟𝑖𝑥 𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒𝑠,𝜆1 > 𝜆2 > 𝜆3             (𝐴3) 

The Pedestal Height is defined by Eq. (A4) 
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                                                       𝑃𝐻 =
𝜆3

𝜆1
                                                                               (𝐴4) 

 

A 2 Freeman Decomposition 

The Freeman-Durden decomposition is a method for converting the polarimetric SAR 

observations into a physically based, three-component scattering model, without any 

ground truth measurements (Freeman & Durden, 1998). The scattering model is 

composed of surface, double- or even- bounce and volume scatter.  

 

𝑅𝐻 = 
𝑐𝑜𝑠𝜃 − √𝜀𝑟 − 𝑠𝑖𝑛2𝜃

𝑐𝑜𝑠𝜃 + √𝜀𝑟 − 𝑠𝑖𝑛2𝜃
 , 𝑅𝑉 = 

(𝜀𝑟 − 1){𝑠𝑖𝑛2𝜃 − 𝜀𝑟(1 + 𝑠𝑖𝑛2 𝜃)} 

(𝜀𝑟𝑐𝑜𝑠𝜃 + √𝜀𝑟 − 𝑠𝑖𝑛2𝜃 )2
, 

   𝑆 = [
𝑅𝐻 0
0 𝑅𝑉

] ,    𝐹𝑆 = |𝑅𝑉|2,   

𝑆 = [
𝑒2𝑗𝛾𝐻 𝑅𝑇𝐻𝑅𝐺𝐻 0

0 𝑒2𝑗𝛾𝑉 𝑅𝑇𝑉𝑅𝐺𝑉

] ,        𝐹𝐷 = |𝑅𝑇𝑉𝑅𝐺𝑉 |2 ,   𝐹𝑉 =
3

2
⟨𝑅𝑉𝐻𝑅𝐻𝑉

∗⟩.   

where θ is the local incidence angle,εr is the relative dielectric constant of the surface 

. RTVRTH are the reflection coefficients from vertical trunk surface for vertical and 

 horizontal polarizations,respectively.  RGVRGH arethe reflection coefficients from  

Fresnel reflection coefficients for vertical and  horizontal polarizations,respectively.  

γVand γH represent any propagation attenuation and phase change effects in vertical  

and horizontal polarizations, respectively.  
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B. Reference Data and Samples  

The reference data used in this study including air photo imagery, RapidEye optical 

imagery, as well as pictures and height measurements taken in the field.  
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B1 Optical Images 

 

Figure B.1 The RapidEye image by false color composition taken in July, 2012 
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Figure B.2 Air photo of London, Ontario taken in 2009 
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B2 Training Samples and Testing Samples 

 

Figure B.3 Training and testing samples shown in RapidEye image fro reference  
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Figure B.4 Crop samples collected from the fields shown in a RapidEye image  
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B3 LU/LC Classes and Field Work Pictures 

(a) 

(b) 

(c) 

Figure B.6 LU/LC classes photographs, (a) commercial area, (b) construction site, 

(c) industrial areas 
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 (a) 

 (b) 

 (c) 

Figure B7 LU/LC classes photographs, (a) residential area, (b) forest, (c) lawn 
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B 4 Crop Height Measurements 

Table B.1 Height measurement fieldwork data. (Cut: Harvested crop, Gr: Grass 

and forage H: Height (cm), NSb: new soybeans, Sb: Soybeans, Soil: bare soil, Wt: 

Wheat)  

field 

name 

May 4- 

May 7 

May 28- 

May 31 

June 21-

June 24 

July 16-

July 18 

Aug.8- 

Aug.11 

Sep.2- 

Sep.5 

Sep.25-

Sep.28 

1 Type Wt Wt Wt Wt Cut Wt Cut Wt Cut Wt Cut 

 H 30 75 70  <30  <20 

2 Type Wt Wt Wt Wt Cut Wt Cut   Wt Cut 

 H 30 75 70  <30  <20 

3 Type   Sb Sb Sb Sb Sb 

 H   20 39 55 70 65 

4 Type  Sb Sb Sb Sb Sb Sb 

 H   20 37 70 80 65-75 

5 Type Soil corn corn corn corn corn corn 

 H  20 76 180 190 230 215 

6 Type Soil corn corn corn corn corn corn 

 H  20 80-120 210 200 230 232 

7 Type Soil Sb Sb Sb Sb Sb Sb 

 H   25 43 63 70 60 

8 Type Soil corn corn corn corn corn corn 

 H  35 80-120 210 215 230 Cut 
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9 Type     Wt Cut Gr Gr Gr Gr 

 H   <15 35 <15 50  

10 Type Cut corn Sb Sb Sb Sb Sb 

 H   20-25 40 65 50 50 

11 Type Wt Wt Wt Wt Cut NSb NSb N Sb 

 H 25 70 50-60 <10 <15 33 45 

12 Type Cut corn Sb Sb Sb Sb& Gr Sb& Gr 

 H   33-40 50 60 70 Cut 

13 Type Wt Wt Wt Wt Cut       

 H 28 53 70     

14 Type   Wt     NSb NSb NSb 

 H  55    43 55 

15 Type   corn corn corn corn corn corn 

 H  30 100 225 235 250 175 

16 Type Gr Gr Gr cut Gr Gr Gr Gr 

 H  60 <15   <15 25 

17 Type Soil corn corn corn corn corn corn 

 H  25 100-120 210 230 275 220 

18 Type Wt Wt Wt Wt Cut       

 H 30 70 66     

19 Type Wt Wt Wt Wt Cut       

 H 30 70 69     
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20 Type   Sb Sb Sb Sb Sb& G Sb& G 

 H   27 57 60 155 100 

21 Type   Sb Sb Sb Sb Sb Cut 

 H   26 45 63 60  

22 Type  Sb Sb Sb Sb Sb Sb Cut 

 H   30 55 65 65  

23 Type Soil Sb Sb       Sb 

 H   30 55 65 65 100 

24 Type Wt Wt Wt Wt Cut       

 H 24 73 90     

25 Type Soil corn corn corn corn corn corn 

 H  25 150 200 220 Cut Cut 

26 Type Soil corn corn corn corn corn corn 

 H  25 120-130 200 220 240 Cut 

27 Type     Soil corn corn corn corn 

 H    <15 60 160 Cut 

28 Type  Sb Sb Sb Sb Sb 

 H   24 53 57 45 Cut 

29 Type Wt Wt Wt Wt Cut       

 H  72 70     

30 Type Gr Gr Gr  Gr Gr Gr Gr 

 H  72 <15 15 35 <10 25 
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31 Type Wt Wt Wt Wt Cut       

 H 24 60 60     

32 Type Soil corn corn corn corn corn corn 

 H  25 120 190 200 210 210 

33 Type Wt Wt Wt Wt Cut Wt Cut Gr 

 H 45 75 77   40  

34 Type Wt Wt Wt Wt Cut Wt Cut Gr 

 H 50 74 74   60  

35 Type Wt Wt & Gr Wt & Gr Wt Cut Wt Cut Gr 

 H 50 90 80   80  

36 Type Wt Wt  Wt Cut        

 H 23 50      

37 Type Wt Wt Wt Cut         

 H 33 60      

38 Type Wt Wt Wt Wt Cut       

 H 31 68 40     

39 Type     Sb Sb Sb Sb Sb 

 H   22 63 75 80 Cut 

40 Type Gr  Gr  Gr  Gr  Gr  Gr  Gr  

 H   70 160 160 160 160 

41 Type   corn corn corn corn corn corn 

 H  20 120 210 275 310 300 
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42 Type   Sb Sb Sb Sb Sb Sb 

 H   20-22 48 66 67 55 

43 Type peas peas peas NSb NSb NSb NSb 

 H 8 45 55 <10 30 63 75 

44 Type   corn corn corn corn corn corn 

 H  20 64     

45 Type peas peas peas Cut peas   N Pea Cut Pea 

 H 8 35 34   20  

46 Type peas peas peas Cut peas       

 H 8 35 30     

47 Type     Sb Sb Sb Sb Sb 

 H   20 47 53 50 Cut 

48 Type     Sb Sb Sb Sb Sb 

 H   18 47 53 50 Cut 

49 Type Sb   Sb Sb Sb Sb Sb 

 H   30 63 65 63 Cut 

50 Type Sb   Sb Sb Sb Sb Sb 

 H   35 55 60 63 Cut 

51 Type     Sb Sb Sb Sb Sb 

 H   25 50 47 Cut Cut 

52 Type     corn corn corn corn corn 

 H   70 190 220 220 230 
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53 Type     corn corn corn corn corn 

 H   80-100 210 220 250 220 

 

C Classification Results 

The comparisons of classification results are compared in four aspects, Gaussian V.S. 

Wishart distribution, four sets of polarimetric parameters, different time combinations, 

and three different post-processing methods.  

C.1 Gaussian MLC and Wishart MLC 

Table C.1 Error matrix for Wishart MLC using May 28, July 15, and September 1 images  

Reference Data  

class Hay wheat peas soybeans corn built-

ups 

CS forest lawn UA 

Hay 56 0 0 0 0 0 4 7 63 43% 

wheat 0 659 0 6 1 0 7 0 0 98% 

peas 0 13 61 0 0 11 6 0 1 66% 

soybeans 0 0 0 1072 325 1 14 16 3 75% 

corn 1 0 0 591 1585 0 9 10 0 72% 

built-ups 4 7 0 0 9 1197 8 5 15 96% 

CS 0 0 0 0 5 0 106 0 5 91% 

forest 0 0 0 0 8 358 1 793 5 68% 

lawn 9 0 0 0 1 16 0 0 77 75% 
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Table C.2 Error matrix for Gaussian MLC using May 28, July 15, and September 1 

images 

Reference Data  

class Hay wheat peas soybeans corn built-

ups 

CS forest lawn UA 

Hay 43 0 0 0 0 0 0 2 7 83% 

wheat 4 732 0 0 5 5 23 0 0 95% 

peas 0 0 68 0 0 0 0 0 0 100% 

soybeans 8 0 0 1553 396 0 17 27 15 77% 

corn 0 0 0 219 1636 0 3 0 0 88% 

built-ups 0 0 0 0 2 1479 4 7 3 99% 

CS 5 0 0 0 1 0 121 0 0 95% 

forest 0 2 0 0 11 226 3 855 6 78% 

lawn 13 6 0 0 0 40 0 0 178 75% 

PA 83% 95% 100% 77% 88% 99% 95% 78% 78%  

OA 0.86  KA 0.83       

 

PA 80% 97% 100% 64% 82% 76% 68% 95% 46%  

OA 0.78  KP 0.73       
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C.2 PolSAR Parameters 

Table C. 1 Error matrix for Gaussian MLC using all T3 elements from May 4, May 

28, June 21, and July 15 images 

Reference Data  

class Hay wheat peas soybeans corn built-

ups 

CS forest lawn UA 

Hay 4 23 0 0 0 0 0 0 1 14% 

wheat 47 1368 0 0 2 15 7 4 5 94% 

peas 1 25 85 0 7 0 0 0 0 72% 

soybeans 9 12 2 1328 272 49 4 246 10 69% 

corn 19 2 0 180 2013 15 0 4 0 90% 

built-ups 0 0 0 10 0 1321 5 22 26 95% 

CS 3 0 0 0 0 14 97 0 6 81% 

forest 21 9 0 71 4 79 0 949 34 81% 

lawn 8 4 0 0 0 45 4 0 256 81% 

PA 4% 95% 98% 84% 88% 86% 83% 77% 76%  

OA 0.85  KP 0.81       
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Figure C.1 classification map for Gaussian MLC using all T3 elements from May 4, 

May 28, June 21, and July 15 images 
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Table C.4  Error matrix for Gaussian MLC using Pauli3 elements from May 4, May 

28, June 21, and July 15  images 

Reference Data  

class Hay whea

t 

peas soybean

s 

corn built

-ups 

CS fores

t 

law

n 

UA 

Hay 4 23 0 0 0 0 0 0 1 66% 

wheat 47 1368 0 0 2 15 7 4 5 97% 

peas 1 25 85 0 7 0 0 0 0 100% 

soybeans 9 12 2 1328 272 49 4 246 10 78% 

corn 19 2 0 180 2013 15 0 4 0 94% 

built-ups 0 0 0 10 0 1321 5 22 26 92% 

CS 3 0 0 0 0 14 97 0 6 90% 

forest 21 9 0 71 4 79 0 949 34 85% 

lawn 8 4 0 0 0 45 4 0 256 80% 

PA 19% 99% 100% 94% 85% 88% 70% 92% 74%  

OA 0.89  KP 0.87       
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Figure C.2 classification map for Gaussian MLC using Pauli3 elements from May 4, 

May 28, June 21, and July 15 images 
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Table C.5  Error matrix for Gaussian MLC using Freeman Durden elements from 

May 28, June 21, and July 15 images 

Reference Data  

class Hay whea

t 

peas soybean

s 

corn built

-ups 

CS fores

t 

law

n 

UA 

Hay 56 109 0 0 4 12 20 15 9 25% 

wheat 20 578 0 2 0 87 45 5 19 76% 

peas 0 0 69 0 0 3 0 13 0 81% 

soybean

s 0 14 0 1511 615 2 1 34 1 69% 

corn 0 4 0 333 1507 2 1 2 1 81% 

built-ups 0 11 4 1 7 1516 14 132 9 89% 

CS 0 0 0 12 6 0 84 0 0 82% 

forest 0 18 0 0 4 184 0 737 1 78% 

lawn 6 21 0 0 0 46 14 4 173 66% 

PA 68% 77% 95% 81% 70% 82% 47% 78% 81%  

OA 0.77  KP 0.71       
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Figure C.3 classification map for Gaussian MLC using Freeman-Durden 

decomposition parameters from May 28, June 21, and July 15 images 
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Table C.6  Error matrix for Gaussian MLC using H/Alpha/A elements from May 5,  

May 28, June 21, and July 15 images 

Reference Data  

class Hay whea

t 

peas soybeans corn built

-ups 

CS fores

t 

law

n 

UA 

Hay 62 2 0 0 0 0 0 3 6 85% 

wheat 2 754 0 0 6 17 13 0 0 95% 

peas 0 0 72 0 0 0 0 0 0 100% 

soybean

s 6 0 0 1575 619 0 0 28 14 70% 

corn 0 0 0 264 1493 0 0 0 0 85% 

built-

ups 0 0 0 0 0 1534 4 3 10 99% 

CS 5 0 0 1 0 0 154 0 1 96% 

forest 0 4 0 3 8 256 9 900 8 76% 

lawn 6 0 0 0 0 39 0 0 179 80% 

PA 77% 99% 100% 85% 70% 83% 86% 96% 82%  

OA 0.83  KP 0.79       



116 

 

 

Figure C.4 classification map for Gaussian MLC using H/Alpha/A decomposition 

parameters from May 28, June 21, and July 15 images 
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C.3 Time Combinations 

Table C.7 Error matrix for Gaussian MLC Pauli elements from May 4, May 28, June 

21, July 15 and September 1 five- date images 

Reference Data  

class Hay whea

t 

peas soybeans corn built

-ups 

CS fores

t 

law

n 

UA 

Hay 31 0 0 0 0 0 0 0 0 100% 

wheat 25 740 12 0 4 5 24 0 7 91% 

peas 0 0 56 0 0 0 0 0 0 100% 

soybean

s 4 0 0 1646 211 6 4 24 6 87% 

corn 0 0 0 126 1827 0 0 3 2 93% 

built-

ups 0 0 0 0 4 1577 11 20 9 97% 

CS 2 0 0 0 0 0 131 0 0 98% 

forest 0 0 0 0 5 138 1 844 5 85% 

lawn 11 0 0 0 0 24 0 0 180 84% 

PA 42% 100% 82% 93% 89% 90% 77% 95% 86%  

OA 0.91  KP 0.89       
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Figure C.5 classification map using Pauli3 from May 4, May 28, June 21, July 15 and 

September 1 images 
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Table C.8 Error matrix for Gaussian MLC Pauli elements from May 4, May 28, July 

15 and September 1 four-date images 

Reference Data  

class Hay whea

t 

peas soybeans corn built

-ups 

CS fores

t 

law

n 

UA 

Hay 33 0 0 0 0 0 0 0 3 92% 

wheat 13 740 13 0 1 1 7 0 0 95% 

peas 0 0 55 0 0 0 0 0 0 100% 

soybean

s 3 0 0 1617 269 0 21 27 9 83% 

corn 1 0 0 155 1768 0 13 0 0 91% 

built-

ups 0 0 0 0 7 1540 8 11 4 98% 

CS 2 0 0 0 1 0 121 0 0 98% 

forest 0 0 0 0 5 184 1 853 9 81% 

lawn 21 0 0 0 0 25 0 0 184 80% 

PA 45% 100% 81% 91% 86% 88% 71% 96% 88%  

OA 0.89  KP 0.87       
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Figure C.6 classification map using Pauli3 from May 4, May 28, July 15 and 

September 1 images 
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Table C.9 Error matrix for Gaussian MLC Pauli elements from May 28, July 15 and 

September 1 three-date images 

Reference Data  

class Hay whea

t 

peas soybeans corn built

-ups 

CS fores

t 

law

n 

UA 

Hay 43 0 0 0 0 0 0 2 7 83% 

wheat 4 732 0 0 5 5 23 0 0 95% 

peas 0 0 68 0 0 0 0 0 0 100% 

soybean

s 8 0 0 1553 396 0 17 27 15 77% 

corn 0 0 0 219 1636 0 3 0 0 88% 

built-

ups 0 0 0 0 2 1479 4 7 3 99% 

CS 5 0 0 0 1 0 121 0 0 95% 

forest 0 2 0 0 11 226 3 855 6 78% 

lawn 13 6 0 0 0 40 0 0 178 75% 

PA 59% 99% 100% 88% 80% 85% 71% 96% 85%  

OA 0.86  KP 0.83       
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Figure C.7 classification map using Pauli3 from May 28, July 15 and September 1 

images 
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Table C.10 Error matrix for Gaussian MLC Pauli elements from May 28 and July 15 

images 

Reference Data  

class Hay whea

t 

peas soybeans corn built

-ups 

CS fores

t 

law

n 

UA 

Hay 58 9 0 0 0 0 0 0 10 75% 

wheat 9 706 0 0 0 0 10 0 0 97% 

peas 0 9 72 0 0 0 0 0 0 89% 

soybean

s 0 0 0 1556 711 0 6 21 15 67% 

corn 0 0 0 287 1681 0 0 0 0 85% 

built-

ups 0 0 0 0 0 988 0 0 0 100% 

CS 0 0 0 15 3 0 143 0 0 89% 

forest 0 6 0 1 0 80 0 677 0 89% 

lawn 12 35 0 0 0 11 0 0 136 70% 

PA 73% 92% 100% 84% 70% 92% 90% 97% 84%  

OA 0.83  KP 0.78       
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Figure C.8 classification map using Pauli3 from May 28 and July 15 images 
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Table C.11 Error matrix for Gaussian MLC Pauli elements from May 28 one-date 

image 

Reference Data  

class Hay whea

t 

peas soybeans corn built

-ups 

CS fores

t 

law

n 

UA 

Hay 46 14 0 197 126 4 7 2 50 10% 

wheat 8 711 0 4 0 79 0 0 6 88% 

peas 0 0 57 0 0 57 0 452 0 10% 

soybean

s 4 0 0 1332 932 0 80 19 1 56% 

corn 0 0 0 220 981 0 45 2 0 79% 

built-

ups 0 0 0 2 0 903 0 29 0 97% 

CS 5 0 0 88 350 0 27 0 0 6% 

forest 0 0 15 0 0 29 0 194 0 82% 

lawn 16 40 0 16 6 7 0 0 104 55% 

PA 58% 93% 79% 72% 41% 84% 17% 28% 65%  

OA 0.60  KP 0.51       
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Figure C.9 classification map using Pauli3 from May 28 images 
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C.4 Post-classification Processing 

Table C.12 Error matrix for five-date images results without post-classification 

processing  

Reference Data  

class Hay whea

t 

peas soybeans corn built

-ups 

CS fores

t 

law

n 

UA 

Hay 30 2 0 0 0 0 0 0 0 94% 

wheat 17 682 11 0 0 11 20 0 6 91% 

peas 0 0 50 0 0 0 0 0 0 100% 

soybean

s 2 0 1 1429 340 0 0 21 3 80% 

corn 0 1 0 211 1841 0 0 1 0 90% 

built-

ups 0 0 0 0 0 868 10 36 0 95% 

CS 4 0 0 2 0 2 107 0 0 93% 

forest 1 1 0 0 0 54 0 552 4 90% 

lawn 7 1 0 0 0 13 0 0 120 85% 

PA 49% 99% 81% 87% 84% 92% 78% 90% 90%  

OA 0.88  KP 0.84       
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Figure C.10 classification map May 28, June 21 and July 15 images without any 

post-classification processing 



129 

 

Table C.13 Error matrix for five-date images results after sieve filtering 

Reference Data  

class Hay whea

t 

peas soybeans corn built

-ups 

CS fores

t 

law

n 

UA 

Hay 31 0 0 0 0 0 0 0 0 100% 

wheat 25 740 12 0 4 5 24 0 7 91% 

peas 0 0 56 0 0 0 0 0 0 100% 

soybean

s 4 0 0 1646 211 6 4 24 6 87% 

corn 0 0 0 126 1827 0 0 3 2 93% 

built-

ups 0 0 0 0 4 1577 11 20 9 97% 

CS 2 0 0 0 0 0 131 0 0 98% 

forest 0 0 0 0 5 138 1 844 5 85% 

lawn 11 0 0 0 0 24 0 0 180 84% 

PA 42% 100% 82% 93% 89% 90% 77% 95% 86%  

OA 0.91  KP 0.89       
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Figure C.11 classification map May 28, June 21 and July 15 images after sieving  
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Table C.14 Error matrix for five-date images results after segmentation 

Reference Data  

class Hay whea

t 

peas soybeans corn built

-ups 

CS fores

t 

law

n 

UA 

Hay 4 0 0 0 0 0 0 0 0 100% 

wheat 62 760 0 0 3 0 15 0 0 90% 

peas 0 0 72 0 0 0 0 0 0 100% 

soybean

s 
0 0 0 1721 137 0 1 26 16 

91% 

corn 0 0 0 113 1985 0 0 0 0 95% 

built-

ups 
0 0 0 0 0 1670 4 16 4 

99% 

CS 5 0 0 0 0 0 160 0 0 97% 

forest 0 0 0 9 1 160 0 892 12 83% 

lawn 10 0 0 0 0 16 0 0 186 88% 

PA 5% 100% 100% 93% 93% 90% 89% 96% 85%  

OA 0.92  KP 0.90       
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Figure C.12 classification map from May 28, June 21 and July 15 images after 

segmentation 
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