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Abstract: Multitemporal polarimetric synthetic aperture radar (PolSAR) has proven as a very effective
technique in agricultural monitoring and crop classification. This study presents a comprehensive
evaluation of crop monitoring and classification over an agricultural area in southwestern Ontario,
Canada. The time-series RADARSAT-2 C-Band PolSAR images throughout the entire growing season
were exploited. A set of 27 representative polarimetric observables categorized into ten groups
was selected and analyzed in this research. First, responses and temporal evolutions of each of the
polarimetric observables over different crop types were quantitatively analyzed. The results reveal
that the backscattering coefficients in cross-pol and Pauli second channel, the backscattering ratio
between HV and VV channels (HV/VV), the polarimetric decomposition outputs, the correlation
coefficient between HH and VV channel ρHHVV, and the radar vegetation index (RVI) show the
highest sensitivity to crop growth. Then, the capability of PolSAR time-series data of the same
beam mode was also explored for crop classification using the Random Forest (RF) algorithm. The
results using single groups of polarimetric observables show that polarimetric decompositions,
backscattering coefficients in Pauli and linear polarimetric channels, and correlation coefficients
produced the best classification accuracies, with overall accuracies (OAs) higher than 87%. A forward
selection procedure to pursue optimal classification accuracy was expanded to different perspectives,
enabling an optimal combination of polarimetric observables and/or multitemporal SAR images. The
results of optimal classifications show that a few polarimetric observables or a few images on certain
critical dates may produce better accuracies than the whole dataset. The best result was achieved
using an optimal combination of eight groups of polarimetric observables and six SAR images,
with an OA of 94.04%. This suggests that an optimal combination considering both perspectives
may be valuable for crop classification, which could serve as a guideline and is transferable for
future research.

Keywords: synthetic aperture radar (SAR); polarimetric SAR (PolSAR); crop classification; crop
monitoring; time-series; RADARSAT-2; agriculture

1. Introduction

Crops are of great importance to national/global economic development, human diets,
industrial biofuels, climate change and social stability [1,2]. Information on the spatial
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distribution of crops, and their temporal variation throughout the growing season, plays
an essential role in the sustainable management and development of agricultural practice,
crop biophysical and biochemical variable estimation, crop yield prediction, evaluation of
ecosystem services and food security [3–6]. The ground survey method to obtain this vital
information is usually time-consuming, labour intensive and expensive [7]. Furthermore,
the collected data often show inconsistences between regions, or even countries, and
intercomparison is hard due to the different ground field survey methods adopted [8]. As
known, land coverage in agricultural areas usually experiences apparent variations even
within relatively short time intervals due to multiple factors, such as climate conditions,
soil properties and farmer’s decisions [9]. Therefore, traditional field surveys are hard to
fulfill the growing demand of routine crop monitoring.

As a cost-effective and advanced method of supplementing or even substituting
field surveys, remote sensing has proven its ability to capture agricultural land use and
crop growth dynamics with high spatial and spectral resolution over large areas in a
timely and time-dependent fashion [10]. For a long time, optical remote sensing has been
widely used, and is still very active and promising for crop growth monitoring and crop
type classification. However, it is heavily limited by weather conditions, such as rain,
cloud cover, haze and solar illumination. In particular, two-third of the Earth’s surface
is often covered by clouds throughout the year [11]. In addition, a lot of studies indicate
that optical imagery can only characterize crops at critical crop growing stages [12–14],
which further increases the risk of weather effects in practical applications. In contrast,
synthetic aperture radar (SAR) operating with an active sensor at longer wavelengths
that can penetrate cloud, haze and light rain, has the capability of working in all the
time and almost all weather. Different from optical image measuring reflectance, SAR
image obtains radar backscattering signals from the targets, which are very sensitive to
structural attributes and dielectric properties. In agricultural areas, the geometric structures
of crops, dielectric properties of the crop canopy and underlying background soil may vary
significantly at varying crop phenological stages [15,16]. This kind of crop-growth dynamic
is crop-dependent. Additional dynamics happen during the periods of preparation and
postharvest, depending on the farmers’ management practices [5]. These dynamics cause
challenges for single-date SAR applications, but provide unique information that may be
helpful to improve results [5]. As a consequence, SAR time-series data are increasingly
used for crop growth monitoring and crop type classification [17–27].

Since SAR polarization is very sensitive to structure and dielectric properties of the
target, SAR backscattering is also polarization-dependent [28,29]. In agricultural studies,
HH polarization shows good capability in monitoring surface soil properties, VV polar-
ization is better for observing information of vertical vegetation structure, and the cross
polarizations (HV and VH) are good for capturing information of total canopy volume
and plant biomass [7,30]. Compared with single or dual-polarization SAR and polari-
metric SAR (PolSAR) can provide richer information and are more sensitive to scattering
mechanisms [28,29]. With full-polarimetric SAR data, a lot of polarimetric features can be
extracted, which can provide unique and helpful information for agricultural applications.
For example, the polarimetric decomposition method can provide parameters highly re-
lated to scattering mechanisms, which were commonly used in previous studies. Seasonal
patterns of these polarimetric features strongly depend on crop type and phenological
stages, which provide very useful information for crop growth monitoring and crop type
classification. As a result, analyses of temporal evolution in polarimetric parameters for
different crop types are frequently used for crop monitoring studies [15,31–34]. In ad-
dition, time-series polarimetric parameters extracted by multitemporal PolSAR images
are widely studied and favored for improving crop classification accuracy. Given these
known benefits, however, the use of PolSAR time-series data have often been limited in
real-world applications due to several reasons. On the one hand, the acquisition of a full
growing season of PolSAR data is expensive and not always achievable. A large body of
studies have been restricted to the use of single or dual-polarization modes for part of the
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growing season. On the other hand, the data in some cases are acquired using different
beam modes with different spatial resolutions and incidence angles (e.g., RADARSAT-2
launched by the Canadian Space Agency). In particular, incidence angle has shown to affect
the polarimetric parameters and classification performance [35–37]. Moreover, the number
and types of selected PolSAR parameters for investigating temporal variation are also
limited, such as SAR backscattering and ratios, polarimetric decomposition parameters,
polarimetric coherences and phase differences. Meanwhile, fewer polarimetric observables
inputting to layer combinations might achieve better results in crop applications [38]. Few
efforts have been made in optimal combination of SAR features for crop classification.
The common way for constructing a feature set is to stack all polarimetric observables
from various sources [7,17,27,39]. In addition, comparable or even better crop classification
results might be obtained by combining fewer images on dates of critical phenology [10,27].
However, such research topics have not been well studied for crop classification using SAR
time-series data. The usual approach for combination of multitemporal SAR images is
adding images one by one sequentially along the SAR acquisition time [39,40]. Classifica-
tion accuracies usually approach saturation as the number of images increases. Recently, a
forward selection procedure was proposed for searching the optimal combination of SAR
images that make the best tradeoff between classification and number of images [7]. In this
procedure, the SAR images for classification were gradually selected and included in the
image set (starting with an empty image set) with an increment step of one acquisition date.
The tests with an L-band PolSAR time-series indicated that the combination of SAR images
achieving the best crop classification accuracy could be arbitrary selections from the SAR
dataset [7]. The concept of the forward selection procedure can be expanded in search of
the optimal combination of polarimetric observables for crop classification, i.e., forward
feature selection. Moreover, the optimal combination of both factors, i.e., polarimetric
observables and SAR images, will be an interesting topic.

The motivation of this research work was to evaluate the potential of time-series
polarimetric C-band RADARSAT-2 images acquired in the same beam mode across a full
growing season for crop monitoring and classification. The major scientific innovations
and goals of this research can be summarized as follows. First, the responses and seasonal
patterns of 27 widely used polarimetric observables, categorized into ten groups, were
quantitatively analyzed for different crop types, providing comprehensive analyses of
radar signatures over an agricultural area. Second, using the well-known Random Forest
(RF) algorithm, crop classifications with single groups of polarimetric observables were
conducted and their accuracies compared. Third, the concept of optimal combination
for crop classification was applied and expanded to both SAR images and polarimetric
observables. As a result, the forward selection procedure was applied and expanded
for searching the optimal combination of polarimetric observables, SAR images or both,
respectively. This concept was exploited to achieve the best tradeoff between classification
accuracy and number of parameters, image acquisitions or both factors. Moreover, it could
be transferable to SAR data at other frequencies, other incidence angles or other agricultural
areas. In addition, the variable importance for crop classification was quantified across 27
input variables as well as over acquisitions. For testing purposes, an agricultural area with
various crop types in southwestern Ontario, Canada, was selected as the test site. Seven
fully polarimetric SAR images acquired in the same beam mode (with the same spatial
resolution and incidence angles), covering the entire growing period of major crops of the
region, were exploited.

2. Materials and Methods
2.1. Study Site and Dataset

The study site is located in an agricultural area near the city of London in southwestern
Ontario, Canada. The geographical location of this study area, and the Pauli RGB image
corresponding to 12 April 2015 over the overlapping area of all RADARSAT-2 images, is
presented in Figure 1. This site is very suitable for planting crops, attributed to abundant
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precipitation, mild weather and fertile soil, with relatively flat topography [39,41]. The
main crop types over this site are winter wheat, corn, soybean and forage consisting of
alfalfa, hay and grass. A few fields of tobacco and watermelon are also planted in this site.
Almost all crops are rain-fed without irrigation. In addition to field crops, there are a few
buildings and forest patches in the study area. The planting and harvest time for major
crops in the study area are basically the same year by year. Corn and soybean are routinely
seeded in May, ripened in September and harvested in October. In contrast, winter wheat
is usually seeded in October of the previous fall, matured in July, and harvested from late
July to early August the following year. Due to the long-time (November to March) of
heavy snow in this region, farmers don’t start field operations until early April, and the
winter wheat fields follow the same calendar to start regrowth around the same time. As
crop rotations are commonly practiced in this region, crop residuals left from previous
year’s harvest are mostly different from the crops seeded in the current year. For instance,
the winter wheat fields are likely to have residues of corn or soybean prior to seeding at
field preparation.
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Figure 1. Location and Pauli RGB image acquired on 12 April 2015 over the overlapping area of all
RADARSAT-2 images. (RADARSAT-2 Data and Products © MacDonald, Dettwiler and Associates Ltd.
(2015)—All Rights Reserved. RADARSAT is an official trademark of the Canadian Space Agency).

As shown in Table 1, seven fully polarimetric C-band RADARASAT-2 images in
FQ10W (Fine-Quad Wide) covering the entire growing season from April to September
in 2015 were employed. The uniform image acquisition beam mode offers the advantage
of reduced complexity caused by varying SAR incidence angles for multitemporal stud-
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ies [35–37]. In particular, except for the date on 30 May, when the satellite did not overpass
our study area to acquire imagery due to user conflicts, the time interval between data
acquisitions was 24 days.

Table 1. Description of available RADARSAT-2 time series overpassed the study area in 2015.

Date Acquisition
Mode Incidence Resolution Orbit Look

Direction

12 April 2015 FQ10W 28.4~31.6◦ 5.5 m × 4.7 m Ascending Right
6 May 2015 FQ10W 28.4~31.6◦ 5.5 m × 4.7 m Ascending Right
23 June 2015 FQ10W 28.4~31.6◦ 5.5 m × 4.7 m Ascending Right
17 July 2015 FQ10W 28.4~31.6◦ 5.5 m × 4.7 m Ascending Right

10 August 2015 FQ10W 28.4~31.6◦ 5.5 m × 4.7 m Ascending Right
3 September 2015 FQ10W 28.4~31.6◦ 5.5 m × 4.7 m Ascending Right

27 September 2015 FQ10W 28.4~31.6◦ 5.5 m × 4.7 m Ascending Right

From April to September 2015, field surveys were conducted every month by the
Geographic Information Technology and Application (GITA) laboratory at the University
of Western Ontario (UWO). Agricultural information, including crop type, crop height,
soil moisture, crop phenological stage and field photos was recorded. Figure 2 shows field
photos of three main crops (winter wheat, corn and soybean) on RADARSAT-2 acquisition
dates. Since the corn and soybean were not emerging yet on 12 April and 6 May, there were
no ground photos for corn and soybean taken on both dates. Field surveys of corn and
soybean started on 23 May. Fields photos of three main crops on this date are presented
in Figure 3. The heights of winter wheat were significantly taller than those of corn and
soybean on 23 May. The winter wheat field was harvested from the end of July to early
August and standing residuals were left; hence, field photos over winter wheat in harvested
state were only taken once in August, as shown in Figure 1. From these field photos, we
observed that the collected PolSAR time-series imagery covered the crops’ growth changes
throughout almost the full growing season of the main crops over the study site. The
dataset is very suitable for crop monitoring by analyzing the temporal evolution of the
polarimetric parameters. The ground truth labels of crop types were collected in a field
survey, and then we manually digitized the boundary of each field based on satellite
imagery in a Geographic Information System (GIS). Each field polygon was drawn within
the field boundaries to avoid mixed pixels. Finally, these polygons were converted to a
raster layer with the same spatial resolution as the remote sensing data. During the field
surveys, a total of 85 fields were identified. The land-cover map of ground truth is shown
in Figure 4. Training and testing datasets for crop classification and accuracy assessment
were randomly selected at the field level without overlap. Additional details are presented
in Table 2.
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Table 2. The identified crop fields and the number of pixels for classification training and testing.

Land Cover

Training Samples Testing Samples

Number of
Pixels

Number of
Fields

Number of
Pixels

Number of
Fields

Corn 6258 4 20,246 16
Soybean 6505 4 15,995 12
Forage 3700 5 3615 7

Winter wheat 6018 3 17,723 16
Watermelon 310 1 309 1

Tobacco 416 1 301 1
Forest 5148 4 7292 6

Built-up 1267 1 1117 1
Soil 2331 1 1592 1

2.2. PolSAR Observables

Different from single and dual polarization SAR systems that can only obtain one or
two linear channel images over the target site, a fully polarimetric SAR system can acquire
four images by alternately transmitting two radar signals with an orthogonal polarization
basis (e.g., H or V), and receiving backscattered signals simultaneously (H and V). The
acquired data can be represented, for instance in an H-V polarization basis, by a 2 × 2
complex Sinclair scattering matrix S as [28,29]

S =

[
SHH SHV
SVH SVV

]
(1)

where SHH and SVV represent the complex backscattering coefficients as the transmitted
polarization and received polarization are the same (i.e., the copolarized channels), while
SHV and SVH denote the complex backscattering coefficients in the cross-polarized channels.
Under the assumption of reciprocal scattering, SHV and SVH are considered equal [28,29].

Since the scattering matrix is commonly affected by speckle noise, and distributed
targets are common in natural media, incoherent polarimetric analysis by using second-
order statistics, such as the covariance matrix or the coherency matrix, are given more
attention [28,29]. The corresponding covariance matrix C and the coherency matrix T are
represented as [28,29]:

C =


〈
|SHH |2

〉 √
2
〈
SHHS∗HV

〉 〈
SHHS∗VV

〉
√

2〈SHVS∗HH〉 2
〈
|SHV |2

〉 √
2
〈
SHVS∗VV

〉
〈SVVS∗HH〉

√
2
〈
SVVS∗HV

〉 〈
|SVV |2

〉
 (2)

T =
1
2


〈
|SHH + SVV |2

〉 〈
(SHH + SVV)(SHH − SVV)

∗〉 2
〈
(SHH + SVV)S∗HV

〉〈
(SHH − SVV)(SHH + SVV)

∗〉 〈
|SHH − SVV |2

〉
2
〈
(SHH − SVV)S∗HV

〉
2
〈
SHV(SHH + SVV)

∗〉 2
〈
SHV(SHH − SVV)

∗〉 4
〈
|SHV |2

〉
 (3)

In past studies, a large number of polarimetric observables were extracted from
these polarimetric matrices (i.e., C or T in Equations (2) and (3)) for crop monitoring
applications [24,42–44]. For instance, a global sensitivity analysis of 20 PolSAR observables
for crop biophysical variable estimation were investigated in [43]. However, the number
and types of selected PolSAR observables for investigating temporal evolutions and crop
classification were usually limited. Besides those 20 polarimetric observables in sensitivity
studies, according to wide usage of PolSAR observables in crop monitoring studies, a
total of 27 polarimetric observables were selected for temporal evolution inspection and
considered as input features for crop classification in this study, as listed in Table 2. For
the convenience of subsequent analysis, the 27 polarimetric observables were categorized
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into 10 groups and given their abbreviations. First, groups 1–3 were the widely used
backscattering power related parameters including SAR backscattering coefficients in linear
polarization basis (HH, HV, VV), backscattering coefficients in the Pauli basis (HH + VV,
HH-VV) and total backscattering power (Span). These parameters can be directly extracted
or computed following simple operations from the elements in either the covariance matrix
or coherency matrix. Three backscattering ratios (HH/VV, HV/HH, and HV/VV) sensitive
to target characteristics were also considered, which can be obtained from the covariance
matrix and classified as group 4. The polarimetric complex coherences between polarimetric
channels were also selected, which have been often used for crop phenology monitoring
and crop growth stage identification [24,25,31,36]. For two polarization channels i and j,
the polarimetric complex coherence is given as [45]:

ρij =

〈
SiS∗j

〉
√〈
|Si|2

〉
/
∣∣Sj
∣∣2〉 (4)

where <> denotes the sample average. Four complex correlation coefficients were em-
ployed, which can be split into four amplitudes and four phases marked as group 5 and
group 6. In past studies, polarimetric target decomposition has proven to characterize
scattering mechanisms and been frequently used for generating polarimetric features in
agricultural applications. Two mostly representative methods, i.e., the Freeman-Durden
three-component decomposition [46], and the H-A-alpha decomposition proposed by
Cloude and Pottier [47], were used. In addition, a recent study has shown that a model-
based decomposition method, i.e., Neumann decomposition [48], might be more effective
in improving the crop classification accuracy with respect to the Cloude-Pottier decompo-
sition [41]. Therefore, Neumann decomposition was also employed in our study. Three
decomposition methods were marked as groups 7–9. In addition, the radar vegetation
index (RVI) [49] is highly sensitivity to crop parameters [50–52]; thus, it was used in this
study and marked as group 10. The expression of RVI is defined as [53]:

RVI =
4 min(λ1, λ2, λ3)

λ1 + λ2 + λ3
(5)

where λ1, λ2, λ3 are the eigenvalues of the covariance/coherency matrix.

2.3. Data Processing

A series of preprocessing steps including radiometric calibration, polarimetric matrix
generation, speckle filtering and geocoding, were conducted for each RADARSAT-2 image
used. A boxcar filter with a 9 by 9 window was employed to suppress the speckle noise. A
30 m digital elevation model product (PDEM) of Ontario, Canada, was applied to geocode
the polarimetric matrix in the Universal Transverse Mercator (UTM) geographic reference
with an output cell resolution of 10 m by 10 m. Afterwards, for each acquisition date, 27
feature images of polarimetric parameters, listed in Table 3, were extracted. These images
had the same geometry and pixel spacing of 10 m.

Table 3. The list of 27 polarimetric observables in 10 groups selected for temporal evolutions and classification in this study.

Group Polarimetric Observable Description Abbreviation

1 HH (C11), HV (C22), VV (C33) Backscattering coefficients in the linear
polarization channels LP

2 HH + VV (T11), HH-VV (T22) Backscattering coefficients in the Pauli polarization
channels Pauli

3 Span Total backscattering power Span
4 HH/VV, HV/HH, HV/VV Backscattering ratios Ra
5 ρHHVV , ρHVVV , ρHHHV , ρHH+VV,HH−VV Correlation between polarimetric channels Ro
6 φHHVV , φHVVV , φHHHV , φHH+VV,HH−VV Phase difference between polarimetric channels Pha
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Table 3. Cont.

Group Polarimetric Observable Description Abbreviation

7 Ps, Pd, Pv

Scattering power from different scattering
mechanisms derived from Freeman-Durden

decomposition
FD

8 H, A,α Entropy, anisotropy, alpha angle from
Cloude-Pottier decomposition CP

9 |δ|,φδ, τ
Magnitude and phase of the particle scattering

anisotropy, the degree of orientation randomness
derived from Neumann decomposition

ND

10 RVI Radar Vegetation Index RVI

2.4. Experimental Design

For crop growth monitoring, the temporal evolutions of all polarimetric observables
for each crop type used as input feature layers for classification were derived. First,
the locations of the fields for each crop type were extracted from the ground truth set.
Afterwards, the average values of polarimetric observables from all the ground truth fields
for each crop type were produced on each RADARSAT-2 acquisition date. The analysis
of temporal evolutions of polarimetric observables were more focused on the three major
crops (corn, soybean, and winter wheat).

For crop classification, 27 polarimetric observables for each SAR image were obtained
and combined differently as the input feature layers according to ten groups defined
in Table 3. As a result, 10 combinations of input layers were constructed. The detailed
descriptions of the combinations of polarimetric observables are presented in Table 4.
The frequently used Random Forest (RF) algorithm was applied to each combination in
this study due to its good performance, and demonstrated advantages in crop classifi-
cation [39,54–56]. In addition, a beneficial property of RF is that it can quantify variable
importance for classification [57,58]. Previous studies have shown that accuracy of crop
classification with RF nearly reaches stable values as the number of decision trees in-
creases above 50 [39,41,56]. Finally, 100 decision trees were used in RF algorithm for all
classification tests in this study.

Table 4. The detailed descriptions of the combinations of input polarimetric observables. Note that abbreviations are
explained in Table 2.

Data Source Polarimetric Observables Number of Images Number of Layers

LP HH (C11), HV (C22), VV (C33) 7 21
Pauli HH + VV (T11), HH-VV (T22) 7 14
Span Span 7 7

Ra HH/VV, HV/HH, HV/VV 7 21
Ro ρHHVV , ρHVVV , ρHHHV , ρHH+VV,HH−VV 7 28
Pha φHHVV , φHVVV , φHHHV , φHH+VV,HH−VV 7 28
FD Ps, Pd, Pv 7 21
CP H, A,α 7 21
ND |δ|,φδ, τ 7 21
RVI RVI 7 7

In total, ten groups of polarimetric observables were used as input features in clas-
sification. The combination of all types of polarimetric observables is usually adopted
for crop classification and commonly generates better results than using single types of
polarimetric observables alone. However, contributions from different features to crop
classification accuracy may vary dramatically. Therefore, it is interesting to determine an
optimal combination of features that could obtain the best classification accuracy. Moreover,
in past studies with multitemporal SAR data, comparable, or even better crop classifica-
tion accuracies, were sometimes obtained by combining a few images acquired at certain
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critical phenology stages [7,10,24,26]. Moreover, using fewer images can reduce the cost
and computational burden of image processing and classification. Therefore, it is also
worth studying the optimal combination of SAR images that could gain an acceptable
classification accuracy. In addition, further investigating optimal combination of both
factors, i.e., polarimetric observables and SAR images. will be an interesting topic.

Recently, a forward selection procedure was proposed for searching the optimal
combination of SAR images that make the best tradeoff between classification and number
of images [7]. In this procedure, the SAR images for classification were gradually selected
and included in the image set (starting with an empty image set) with an increment step of
one acquisition date. The concept of the forward selection procedure can be expanded in
search of the optimal combination of polarimetric observables for crop classification, i.e.,
forward feature selection. In detail, the groups of polarimetric observables for classification
were gradually selected and included in the feature set (starting with an empty feature set)
with an increment of one group, and the feature combination with the best classification
accuracy was chosen at each step.

Therefore, we first conducted RF classifications with single groups of polarimetric
observables and compared their performances. Then, the classification experiments were
focused on investigating optimal combinations. A forward selection procedure was applied
for searching the optimal combination of polarimetric observables, SAR images or both
aspects. The experiments were designed to make the best tradeoff between classification
accuracy and number of parameters, image acquisitions or both factors. First, all SAR
images were selected in RF classifications by the forward feature selection procedure. For
instance, RF classifications with single groups of polarimetric observables were tested in
the first step. The optimal combination of polarimetric observables was obtained. Then, all
polarimetric observables were selected in RF classifications by the forward image selection
procedure. For instance, RF classifications using single images (one acquisition date) were
tested in the first step. Finally, RF classifications were carried out again using the optimal
combination of polarimetric observables by the forward image selection procedure.

Classification performance was affected by the training and testing samples, including
both the number of samples and their distribution. To investigate the impact of the training
and testing samples on the overall classification performance, the classification tests for
the optimal combination SAR image produced by a forward image selection procedure
using all polarimetric observables were carried out again by swapping the training and
testing samples in Table 2. Moreover, based on the unique capability of the RF method,
the variable importance contributing to crop classification was also quantified. The RF
classification with all polarimetric observables using all RADARSAT-2 images was selected
to investigate the relative importance of the input variables for crop classification.

3. Results
3.1. Temporal Evolution of Polarimetric Observables
3.1.1. SAR Backscattering

The average SAR backscattering coefficients in linear polarization (HH, HV, VV), Pauli
channels (HH + VV, HH-VV), total scattering power (Span), and backscattering ratios
(HH/VV, HV/VV, HV/HH) for various crops throughout the whole growing season were
calculated and are presented in Figure 5 (The values of three main crops (corn, soybean,
and winter wheat) are shown in the supplementary Table S1). In general, the seasonal
patterns of HV and HH-VV were more pronounced than those of co-polarizations (HH,
VV), Span, and HH + VV. Taking winter wheat as an example, the dynamic range of HV
was about 14 dB, and that of HH-VV was approximately 10 dB, while it was about 6 dB
in HH and VV, 7 dB in HH + VV, and only about 3 dB in Span. The seasonal pattern of
crops under HV was the most obvious, so the subsequent analysis of the variation of radar
scattering values mainly revolved around HV polarization.
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The seasonal patterns of winter wheat and summer crops are clearly shown in HV.
In the study area, winter wheat is sown in October of the previous year, going through
dormancy over winter, and starts regrowth when the snow melts the following spring.
During the month of April and early May, the HV value was relatively low due to the
small biomass of the winter wheat crop. After the weather warmed up more, it started to
grow from May to August, and the HV value continued to rise (−40 dB to −25 Db). In
mid-August, after winter wheat had been harvested, the HV value showed a downward
trend. Watermelon and tobacco are harvested in October after a rapid increase in HV
values during sowing and emergence in May, reaching peak biomass in August, and
entering senescence in early August, when HV values start to decrease. The difference
between watermelon and tobacco is that the HV values fluctuated very little from mid-July
to October (−25 dB to −27 dB) for watermelon. The HV response value of soybean was
the lowest in the sowing period (early May), and the HV value increased slowly and
continuously to mid-July with crop growth. The HV value maintained a high value (about
−24 dB) at the peak of biomass (mid-July and mid-August), and then decreased slowly due
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to aging and harvesting. The difference between corn and all other crops is that its biomass
peaks in late June when the HV value reached its peak (about −25 dB), maintained a large
HV value (about −26 dB) from late June to mid-July, and then began to decline.

The average values of three backscattering ratios (HH/VV, HV/VV, and HV/HH)
for various crops were calculated and are shown in Figure 5g–i. It can be seen from the
figures that most crops were more sensitive to HV/VV and HV/HH than to HH/VV,
which showed only a clear temporal pattern for winter wheat. Most crops, such as corn,
forage, soybean, tobacco, and watermelon, had stable HH/VV values (about 0–5 dB)
throughout the growing season. The variation range of HH/VV value of soybean was
2 dB, and the variation range of HV/VV and HV/HH of soybean was about 8 dB and 9 dB.
The variation range of HH/VV and HV/VV values of winter wheat was 9 dB, while the
variation range of HV/HH was 5 dB, indicating that winter wheat was more sensitive to
HH/VV and HV/VV. In conclusion, all crops except winter wheat were more sensitive to
HV/VV and HV/HH. From Figure 5h,i, in general, the HV/VV value of crops was more
pronounced than the HV/HH ratio. For example, the variation range of HV/VV of corn,
tobacco and watermelon was 10 dB, 9 dB, and 16 dB respectively, and the variation range
of HV/HH was 7 dB, 8 dB and 14 dB. Therefore, the following analysis mainly focuses on
the HV/VV ratio.

Soybean and corn exhibited very similar patterns in HV/VV. The range of variation
was small; the value from mid-July to late September was larger and more stable, which
can be distinguished from other crops. When winter wheat biomass peaked in late June,
the response of HV increased, so the HV/VV also reached the peak. Other crops peaked
mainly from July to September, such as corn, which peaked in mid-August. The peaks
for forage, tobacco and watermelon all occurred in early September. Tobacco showed a
steady state of HV/VV (about −10 dB) from mid-July to late September. The variation of
watermelon was the clearest, with a continuous upward trend from May to September,
reaching a very high peak (−4 dB), and then decreased from September to October.

3.1.2. Polarimetric Decompositions

• Freeman-Durden Decomposition

The relative strength of the different scattering mechanisms present in the scene can
be explained directly in terms of the proportional scattering contribution, in percentage
(%), reported by Freeman-Durden decomposition. Notably, their proportional contribution
varied greatly during the growing season for all crops. Figure 6a–c shows the contribution
of surface scattering, double-bounce scattering and volume scattering of various crops
during the growing season (The values of three main crops (corn, soybean, and winter
wheat) in Figure 6 are shown in the supplementary Table S2). In general, the double-bounce
contribution was small (less than 10%) for all crops, but for corn at the last date was 20%.
The evolution of the scattering mechanism contributions was similar for all crops, showing
a decreasing trend of surface scattering and an increasing trend of volume scattering. For
tobacco, surface scattering was the main scattering mechanism from April to the end of
June, while volume scattering was the main scattering mechanism from July to the end of
September. The watermelon field and forage also had similar situations, for example, the
contribution of surface scattering in the watermelon field accounted for 43%, and volume
scattering accounted for 52% in the whole growing season. From August to September, the
surface scattering of corn increased while volume scattering decreased, and the opposite
trend was found in the watermelon field. For summer crops, volume scattering was
dominant in soybean (>55%) throughout the growing season, although there was also a
high contribution of surface scattering (>50%) from April to May. For corn, the volume
scattering was dominant in the whole growing season (about 56%), from April to May
but surface scattering was dominant (greater than 55%), in June to the end of September
because of the crop leaf blight and part of the crop began to be harvested, so the volume
was the main scattering mechanism (greater than 60%). Due to leaving crop residue after
harvesting, double-bounce scattering also increased in the last date. Surface scattering was
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dominant in winter wheat from April to June (>50%), and volume scattering was dominant
from June to August (>60%) due to canopy or standing residues.
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• Cloude-Pottier Decomposition

Cloude-Pottier decomposition can determine the main scattering mechanism of targets
on the land surface from the H-α characteristic plane. The variation trend of entropy (H),
anisotropy (A), and α angle of various crops are reflected in Figure 6d–f. In general, most
crops showed multiple scattering mechanisms with moderate to high values of entropy.
The maximum entropy for most of crops appeared in August and September, while winter
wheat reached maximum entropy at its peak biomass in late June, and soybean achieves
the maximum entropy in July. Entropy generally showed a similar change trend in the
whole growing season. It first increased and then tended to be relatively stable at the
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late stages. During the whole observation period, the α angle identifying the average
scattering mechanism was distributed in the range between 14◦ and 45◦ for the three
crops, indicating an increasing contribution of volume scattering, which is consistent with
the contribution of scattering mechanism obtained by Freeman-Durden decomposition.
Anisotropy of all crops was around 0.2 along the season, indicating that in addition to
the main scattering mechanism at each stage, the difference between the second and third
scattering mechanisms was relatively small.

• Neumann Decomposition

The Neumann decomposition outputs three parameters, namely the degree of orienta-
tion randomness (τ), the magnitude of particle scattering anisotropy |δ| and the phase of
the particle scattering anisotropy φδ [48]. In addition, the parameter |δ| can represent the
scattering mechanism type if a mixed scattering mechanism is assumed [48]. Figure 6g–i
shows the temporal variation of the three parameters. According to Figure 6g, the τ value
of most crops was large (>0.8) and maintained a stable state throughout the growing season,
indicating that the scattering randomness of crops during the whole growing season was
large. The variation of winter wheat was the most obvious. From Figure 6h, it is clear to
the seasonal patterns of |δ| in all crops showed large variations and were very similar to
the α angle from the Cloude-Pottier decomposition, which proves its usability in scattering
mechanism interpretation. In Figure 6i, the variations of φδ among different crops are quite
different, providing helpful information for further distinguishing crop types.

3.1.3. Correlation Coefficient and Phase Difference

Polarimetric complex coherences contain two parameters, the correlation coefficient and
the phase difference between two polarimetric channels, which can be used to help distinguish
land cover types. Figure 7 shows the temporal variations of the common four complex
correlation coefficients (The values of three main crops (corn, soybean, and winter wheat) are
shown in the supplementary Table S3). It can be seen that ρHHVV showed more sensitivity to
crop development than ρHVVV, ρHHHV, and ρHH + VV,HH−VV, whereas all phases were rather
noisy due to the low correlations found in most part of the growing season.

In Figure 7a, the copolarization correlation coefficient ρHHVV of corn, soybean, water-
melon and winter wheat show a gradually decreasing trend first followed by an increasing
trend in the growing season. The volume scattering increased with the progression of
crop growth, and the surface scattering decreased with the increase of crop coverage and
biomass accumulation throughout the vegetative growth period. When the crops started to
mature, corn leaves started to dry up and bend down causing reduced volume scattering,
and increased background soil became visible to the SAR signal, leading to increase in
surface scattering. In the case of soybeans, in May to mid-July surface scattering was
reduced and volume scattering increased (ρHHVV reduced from 0.7 to 0.5), while in late July
to September volume scattering increased. Opposite trends were observed in watermelon,
forage and tobacco when the surface scattering of other crops (corn and winter wheat)
increased, and volume scattering decreased from August to September. The copolarization
correlation of corn in April and May was high (about 0.7), by the middle of May and July it
was on the decline (0.7 to 0.4), and then a small amplitude appeared, increasing (about 0.4
to 0.5) until September, followed by a small decline (0.4), showing that in the early stage of
corn planting surface scattering was larger and volume scattering increased, because after
harvest the surface scattering increased. The surface scattering of winter wheat was greater
from April to late June, and the volume scattering increased from July to late September.
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3.1.4. RVI

The radar vegetation index (RVI) showed the evolution of the vegetation cover in the
study area during the whole growing season, as shown in Figure 8 (The values of three
main crops (corn, soybean, and winter wheat) are shown in the supplementary Table S4).
The RVI value of most crops first showed a trend of gradual rise and then began to decline
in August, indicating that with the growth of crops, the randomness of crops increases, and
the structure of vegetation becomes more and more complex. The RVI of all crops reached a
peak in August and September. Among the main crops (corn, soybean, and winter wheat),
the RVI of soybean increased sharply with crop growth (from May to July), reaching the
peak of RVI in July, and maintaining a relatively stable RVI value (about 0.6) from mid-July
to September when leaves were flourishing, then RVI decreased due to the falling-off of
leaves at senescence and harvest. The RVI of corn peaked in August and then decreased
with senescence and harvest. Due to the unique sowing time, the RVI value of winter wheat
was relatively high in late June. The variation trend of tobacco and forage was similar, but
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the fluctuation of RVI of tobacco was slightly larger than that of forage. The change of RVI
in watermelon was the most obvious among all crops, especially during the mature period
(September to October), when leaves withered and RVI showed a sharp decline.
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3.2. Crop Classification
3.2.1. Classification with Single Groups of Polarimetric Observables

For accuracy assessment of RF classifications using different combinations of polari-
metric observables (i.e., groups in Table 3), the detailed statistics of overall accuracy (OA),
Kappa coefficient, as well as class-wise producer’s accuracy (PA) and user’s accuracy (UA),
are listed in Table 5. The classification based on Neumann decomposition had the best OA
and Kappa coefficient (91.57% and 0.89), while results from RVI time series showed the
lowest OA and kappa coefficient (66.54% and 0.55). Regarding SAR backscattering parame-
ters, both Pauli and LP parameters showed more accurate results than Span and Ra. As for
the polarimetric decomposition parameters, the model-based decomposition methods (FD
and ND) achieved better results than the eigenvalue-based decomposition method (CP).
From the set of polarimetric complex coherence parameters, the RF classification with the
correlation coefficients (Ro) temporal profile produced comparable results, with an OA of
88.66% and Kappa coefficient of 0.85, which were significantly better than those using the
phase difference (Pha) time-series (OA = 76.69, Kappa coefficient = 0.70). From class-wise
accuracies among RF classifications, it is evident that the user’s accuracies and producer’s
accuracies showed variations among crops and selected polarimetric observables. The
three main economic crops (corn, soybean and wheat) in the study area were taken as
examples for further analysis. Except for using RVI, the classifications using other feature
groups produced good results for corn mapping, with PA greater than 90% and OA greater
than 0.8. For soybean identification, LP, Pauli and FD produced better results than others,
with PAs and OAs larger than 0.9. For wheat mapping, CP, ND and Ro achieved more
accurate results, with PAs and OAs larger than 0.9.

Figure 9 shows the classification maps obtained by the RF algorithm using the ten
different combinations of polarimetric observables defined in Table 4. The overall cluster-
ing patterns in most of results were good, since the crop fields were discriminated well.
However, there existed some scattered errors, especially in RVI results.
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Table 5. Accuracy assessment of RF classifications using different combinations of polarimetric observables. Note that
abbreviations are explained in Table 3.

Crop Class
LP Pauli Span Ra Ro

PA UA PA UA PA UA PA UA PA UA

Corn 94.77 84.00 93.45 84.95 82.17 92.4 91.22 80.68 91.99 85.52
Forest 98.33 94.28 95.79 97.39 90.30 94.36 98.86 94.21 98.94 97.72
Grass 90.98 67.70 87.41 69.30 66.17 87.39 52.62 42.35 45.39 52.15
Soil 89.51 100.00 89.89 100.00 94.80 76.76 86.43 100.00 90.7 90.87

Soybean 92.64 92.36 95.54 90.13 82.14 90.7 81.72 90.89 86.23 89.26
Tobacco 62.13 99.47 65.12 97.03 50.26 63.12 25.17 63.56 28.24 95.51

Watermelon 68.28 100.00 80.91 98.04 53.22 58.9 21.17 100.00 43.37 89.93
Wheat 76.44 97.40 77.71 96.80 95.17 65.76 88.8 97.66 93.22 94.49

OA 89.19 89.45 84.23 86.34 88.66
Kappa 0.86 0.86 0.80 0.82 0.85

Crop Class
Pha FD CP ND RVI

PA UA PA UA PA UA PA UA PA UA

Corn 90.02 86.60 95.83 87.58 90.52 82.02 93.95 89.73 66.37 57.06
Forest 80.66 76.62 99.07 97.65 99.74 97.77 99.71 97.94 99.3 94.80
Grass 48.47 26.42 88.38 56.62 52.62 48.48 77.12 64.93 39.52 33.94
Soil 70.41 76.89 91.08 100.00 82.54 99.77 83.79 99.18 78.89 100.00

Soybean 79.33 76.35 94.43 93.31 83.2 87.47 88.92 91.25 61.47 63.94
Tobacco 2.33 10.45 55.81 91.30 28.57 100.00 32.23 100.00 16.85 45.19

Watermelon 1.29 40.00 71.84 98.67 52.1 81.73 55.66 96.09 30.74 62.09
Wheat 66.21 86.21 75.38 96.57 90.49 96.88 93.18 97.42 60.69 72.77

OA 76.69 89.64 87.67 91.57 65.64
Kappa 0.70 0.87 0.83 0.89 0.55

3.2.2. Optimal Combination of Polarimetric Observables

Figure 10 shows the RF overall accuracies for the optimal combination of polarimetric
observables produced by a forward feature selection procedure using all multitemporal
RADARSAT-2 images. A specific combination of eight groups (ND, FD, Ra, Pha, Ro,
CP, RVI and Pauli) of polarimetric observables achieved the optimal crop classification
accuracies in this study, with an OA of 93.75%. The corresponding optimal classification
map is shown in Figure 11, which has better clustering patterns and less scattered errors
than the maps in Figure 10. In addition, the usual combination of all features improved
classification results in comparison with that using a single type of features alone. However,
there were some combinations that produced better accuracies when using only two groups.
This suggests that a reduced set of well-selected polarimetric features may generate better
classification accuracies than using all features.

3.2.3. Optimal Combination of SAR Images

The corresponding accuracy assessment using single images (i.e., first step) with all
polarimetric observables are listed in Table 6. SAR images acquired in June and September
produced more accurate results than at other dates. The reasons may be attributed to the
large morphological and structural differences among crops on these dates due to the crop
calendar. As can be seen from ground truth photos in Figure 4, big differences existed in
June and September. In June, winter wheat was tall and dense while corn and soybean
were sparse with large proportions of bare soil shown. In September, winter wheat had
already been harvested, while corn and soybean were fully mature and started to senesce.
In addition, there was a decrease in OA in the month of July and August. The reason might
be corn and soybean have dense canopy structures and large canopy moisture, which
increases difficulties for radar to distinguish them. Since the value of OA on September 3
was the largest in the first step, optimal combination in the next steps always included the
image on this date. Figure 12 shows the RF overall accuracies for the optimal combination
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produced by the forward image selection procedure using all polarimetric observables. It
is evident that some combinations produced better results than using all images, and the
best OA was achieved using five images (in May, June, August, and September), with an
OA of 92.80%. In addition, it indicates that the summer and autumn acquisitions (from
June to September) were more valuable for crop classification than the spring acquisitions
(April and May).
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Table 6. Accuracy assessment of RF classifications using single-date SAR image with all polarimetric
observables.

Acquisition Date OA (%) Kappa

12 April 2015 46.11 0.32
6 May 2015 53.48 0.42
23 June 2015 72.56 0.65
17 July 2015 60.72 0.50

10 August 2015 56.23 0.45
3 September 2015 73.71 0.66

27 September 2015 72.44 0.65
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the best accuracy in each step (at the bottom), and combinations of SAR images (at the top), for
example “9(1), 6, 8, 9(2)” represents the combination of images dated 3 September, 23 June, 10 August
and 27 September (see Table 1).

3.2.4. Optimal Combination of SAR Images and Polarimetric Observables

The corresponding accuracy assessments using single-date image (i.e., first step) with
optimal combination of polarimetric observables are listed in Table 7. SAR images in June
and September still produced more accurate results. The selected optimal combination
in the first step was still using the image on 3 September. Figure 13 shows the RF OA
for the optimal combination produced by the forward image selection procedure using
optimal combination of polarimetric observables. Similar to the previous tests, the most
important acquisitions corresponded to summer and autumn (from June to September).
The best OA was achieved using six images (in May, June, July, August, and September),
with an OA of 94.04%, which was the highest value among all classification tests in this
study. The corresponding classification map is given in Figure 14, which corresponds to
the best crop classification performance over the study area in this research. It suggests
that the combined use of optimal combination of polarimetric observables and acquisition
dates may produce the best crop classification performance.
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Table 7. Accuracy assessment of RF classifications with optimal combination of polarimetric observ-
ables using single SAR image on each date.

Acquisition Date OA (%) Kappa

12 April 2015 46.72 0.32
6 May 2015 55.66 0.45
23 June 2015 72.68 0.65
17 July 2015 62.14 0.51

10 August 2015 56.57 0.45
3 September 2015 73.51 0.66

27 September 2015 69.29 0.61
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3.2.5. Sensitivity to Training and Testing Samples on Overall Classification Performance

By swapping the training and testing samples in Table 2, the accuracies of RF classifi-
cations with all polarimetric observables using a single SAR image on each date are listed
in Table 8. SAR images in June and September still produced the most accurate results, as
in previous tests. Figure 15 shows the RF overall accuracies for the optimal combination
of SAR images produced by a forward image selection procedure using all polarimetric
observables. The optimal combination with the best accuracy used five images, in which
four images were the same as before. This indicates, again, that fewer images on some
critical dates may produce better accuracies.

Table 8. Accuracy assessment of RF classifications with all polarimetric observables using single SAR
image on each date after exchanging the training and testing samples in previous tests.

Acquisition Date OA (%) Kappa

12 April 2015 55.25 0.45
6 May 2015 56.85 0.47
23 June 2015 68.12 0.61
17 July 2015 59.78 0.51

10 August 2015 55.30 0.45
3 September 2015 63.74 0.56

27 September 2015 67.49 0.60
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Figure 15. The RF overall accuracies for the optimal combination SAR image produced by a forward
image selection procedure using all polarimetric observables after exchanging the training and testing
samples in previous tests. Note that numbers in the figure denote the best accuracy in each step (at
the bottom), and combinations of SAR images (at the top), for example “6, 9(1), 5, 8, 4” represents the
combination of images dated 23 June, 3 September, 6 May, 10 August, and 12 April (see Table 1).

3.2.6. Normalized Variable Importance for Crop Classification

Based on the unique ability of the RF algorithm, the variable importance for crop
classification with all SAR images and all polarimetric observables was quantified across
input features, as well as over all dates. Among the 189 variables (a total of seven images
and 27 features for each image) used in the RF classification, the most important 50 variables
are listed in ascending order in Figure 16. The variables from LP, Pauli, and Span exhibited
the greatest importance, and the variables from polarimetric decompositions (FD, CP, ND)
presented moderate importance in this study. Across time, generally the summer and
autumn acquisitions (from June to September) occupied greater importance positions than
the spring acquisitions (April and May).
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three parts, with the prefix, center, and suffix respectively representing acquisition date, date source (see Table 1), and a
certain variable (none if only one variable from data source, such as Span and RVI). For example, the first variable name
0927-Pauli-HH-VV represents the backscattering coefficient HH-VV from Pauli channel using SAR image on 27 September.

4. Discussion
4.1. Temporal Evolutions of Polarimetric Observables

For crop growth monitoring, temporal evolutions of all 27 polarimetric observables
extracted from the multi-temporal RADARSAT-2 data for different crop types were ana-
lyzed. The backscattering coefficients in cross-pol (HV), Pauli second channel (HH-VV),
and HV/VV ratio were found to be the most sensitive observables to crop growth. The
reason can be attributed to the sensitivity of these parameters to crop structure and its
associated scattering mechanisms. The results are in line with previous studies [10,26,27].
The crop structural features were also well characterized by their unique scattering patterns
using parameters derived from polarimetric decompositions (i.e., FD, CP, and ND). The
difference in temporal evolution patterns of scattering mechanisms among crops provided
useful information for crop classification, which have been frequently used in crop growth
monitoring and classification in previous reports [7,17,27,38,39,41]. Among the polarimet-
ric complex correlation parameters, the correlation coefficient ρHHVV showed the highest
sensitivity to crop growth, which has been proven useful for identification of growth
stages [31,36]. The RVI also varied dramatically following the course of crop development,
which has been successfully introduced for crop growth monitoring with full, dual and
compact polarimetric SAR data [21,51,59].

4.2. Crop Classification

The results using single groups of polarimetric observables showed that polarimetric
decompositions (ND, FD, and CP), backscattering coefficients in Pauli and linear polarimet-
ric channels, and correlation coefficients produced the best classification accuracies, with
OAs greater than 87%. This is because these polarimetric observables were found to be very
sensitive to crop structure and growth parameters [7,17,27,38,39,41]. In previous studies,
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the common way for constructing the feature set was by stacking all polarimetric observ-
ables from various sources [7,17,27,39]. However, in our case, the classifications using an
optimal combination of polarimetric observables with reduced number of polarimetric
observables, i.e., eight groups (NM, FD, Ra, Pha, Ro, CP, RVI and Pauli), produced better
overall accuracies for crop classification. Fewer images acquired on certain critical dates
could produce better overall accuracies for crop classification, which is consistent with
previous studies [10,27]. The best combination of SAR images was selected from the SAR
dataset by the forward selection procedure, rather than combinations by adding images
one by one sequentially along the SAR acquisition time as in previous reports [39,40]. The
best result was achieved using an optimal combination of polarimetric observables and
SAR images (including eight groups and six images), with an OA of 94.04%. This indicates
that this strategy (a forward selection procedure for deciding the optimal combination of
polarimetric observables and SAR images) is recommended for practical classification in
operational scenarios.

4.3. Limitations and Future Research

There are some limitations in our study. First, the results were obtained specifically
based on the C-band FQ10W RADARSAT-2 dataset over an agricultural area in South-
western Ontario, Canada. Although radar signals are affected by both the sensor configu-
rations (radar frequency, incidence angle, look direction) and the targets (crop mixture in
different ecoregions), the information used for separating the targets stays the same. As
long as there are structural differences and varying growth patterns among different crop
types, the multitemporal SAR-based methodology presented in this study can be applied
to crop classifications under different climate scenarios, and the classification accuracy will
fluctuate depending on the complexity of the crop mix. Second, it is known that applying
masks of noncropland land cover types could be helpful in reducing commission errors
in the resulting crop classification map. However, a current and accurate cropland mask
does not always exist and, therefore, we carried out the land cover classification in an
agricultural site without that mask.

Future work will focus on crop growth monitoring and crop classification with PolSAR
data at other radar frequencies (such as TerraSAR-X at X band, ALOS-2 at L band) and
over different agricultural sites. Moreover, the forward selection procedure is helpful for
investigating which type of features (time or polarimetric information) can contribute more
to land-cover classification. For instance, the well-used and freely accessible Sentinel-1 data
can only provide a dual-pol mode but with high temporal resolution (only six days for the
two-satellite constellation). In addition, temporal variation of interferometric coherence
has shown great potential in monitoring dynamics of the surface properties [60–62], which
needs further investigation for crop monitoring and classification.

5. Conclusions

This study presents a comprehensive evaluation and demonstration of crop growth
monitoring and crop type classification over an agricultural area in Southwestern Ontario,
Canada, based on time series of polarimetric RADARSAT-2 C-band images acquired in the
same beam mode across the full growing season. A set of 27 representative polarimetric
observables was selected and analyzed. Temporal evolution studies showed that the
backscattering coefficients in cross-pol (HV), Pauli second channel (HH-VV), and HV/VV
ratio, polarimetric decomposition parameters, RVI were found to be the most sensitive
observables to crop growth. By using the well-known Random Forest (RF) algorithm,
the classification results using single groups of polarimetric observables showed that
polarimetric decomposition methods (ND, FD, and CP), backscattering coefficients in
Pauli and linear polarimetric channels and correlation coefficients produced the best
classification accuracies, with OAs greater than 87%. The forward selection procedure for
pursuing optimal classification accuracy from different perspectives was expanded to find
optimal combinations of polarimetric observables, or SAR images, or both. The results
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showed that fewer polarimetric observables, or fewer images on certain critical dates, could
produce better overall accuracies for crop classification. The best result was achieved using
an optimal combination of polarimetric observables and SAR images (including eight
groups and six images), with an OA of 94.04%. This suggests that an optimal combination
considering both perspectives (i.e., numbers of images and polarimetric observables)
is valuable and could serve as a guideline, which is transferable for crop classification
in practice.
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presented in Figure 6; Table S3: The values of three main crops (corn, soybean, and winter wheat)
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presented in Figure 8.
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