283 research outputs found

    Minimizing weighted total earliness, total tardiness and setup costs

    Get PDF
    The paper considers a (static) portfolio system that satisfies adding-up contraints and the gross substitution theorem. The paper shows the relationship of the two conditions to the weak dominant diagonal property of the matrix of interest rate elasticities. This enables to investigate the impact of simultaneous changes in interest rates on the asset demands.

    Mathematical Models for a Batch Scheduling Problem to Minimize Earliness and Tardiness

    Get PDF
    Purpose: Today’s manufacturing facilities are challenged by highly customized products and just in time manufacturing and delivery of these products. In this study, a batch scheduling problem has been addressed to enable on-time completion of customer orders in a lean manufacturing environment. The problem is optimizing the partitioning of product components into batches and scheduling of the resulting batches where each customer order is received as a set of products made of various components. Design/methodology/approach: Three different mathematical models for minimization of total earliness and tardiness of customer orders are developed to provide on-time completion of customer orders and also, to avoid excess final product inventory. The first model is a non-linear integer programming model whereas the second is a linearized version of the first. Finally, to solve larger sized instances of the problem, an alternative linear integer model is presented. Findings: Computational study using a suit set of test instances showed that the alternative linear integer model is able to solve all test instances in varying sizes within quite shorter computer times compared to the other two models. It has also been showed that the alternative model is able to solve moderate sized real-world problems. Originality/value: The problem under study differentiates from existing batch scheduling problems in the literature owing to the inclusion of new circumstances that are present in real-world applications. Those are: customer orders consisting of multi-products made of multi-parts, processing of all parts of the same product from different orders in the same batch, and delivering the orders only when all related products are completed. This research also contributes to the literature of batch scheduling problem by presenting new optimization models.Peer Reviewe

    Heuristic Algorithms to Minimize Total Weighted Tardiness on the Single Machine and Identical Parallel Machines with Sequence Dependent Setup and Future Ready Time

    Get PDF
    This study generates heuristic algorithms to minimize the total weighted tardiness on the single machine and identical parallel machines with sequence dependent setup and future ready time. Due to the complexity of the considered problem, we propose two new Apparent Tardiness Cost based (ATC-based) rules. The performances of these two rules are evaluated on the single machine and identical parallel machines. Besides of these two rules, we also propose a look-ahead identical parallel machines heuristic (LAIPM). When a machine becomes idle, it selects a job to process from available jobs and near future jobs. The proposed method, LAIPM, is evaluated with other look-ahead methods on the identical parallel machines

    04231 Abstracts Collection -- Scheduling in Computer and Manufacturing Systems

    Get PDF
    During 31.05.-04.06.04, the Dagstuhl Seminar 04231 "Scheduling in Computer and Manufacturing Systems" was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Scheduling of Batch Processors in Semiconductor Manufacturing – A Review

    Get PDF
    In this paper a review on scheduling of batch processors (SBP) in semiconductor manufacturing (SM) is presented. It classifies SBP in SM into 12 groups. The suggested classification scheme organizes the SBP in SM literature, summarizes the current research results for different problem types. The classification results are presented based on various distributions and various methodologies applied for SBP in SM are briefly highlighted. A comprehensive list of references is presented. It is hoped that, this review will provide a source for other researchers/readers interested in SBP in SM research and help simulate further interest.Singapore-MIT Alliance (SMA

    A single-machine scheduling problem with multiple unavailability constraints: A mathematical model and an enhanced variable neighborhood search approach

    Get PDF
    AbstractThis research focuses on a scheduling problem with multiple unavailability periods and distinct due dates. The objective is to minimize the sum of maximum earliness and tardiness of jobs. In order to optimize the problem exactly a mathematical model is proposed. However due to computational difficulties for large instances of the considered problem a modified variable neighborhood search (VNS) is developed. In basic VNS, the searching process to achieve to global optimum or near global optimum solution is totally random, and it is known as one of the weaknesses of this algorithm. To tackle this weakness, a VNS algorithm is combined with a knowledge module. In the proposed VNS, knowledge module extracts the knowledge of good solution and save them in memory and feed it back to the algorithm during the search process. Computational results show that the proposed algorithm is efficient and effective

    Shop Scheduling In The Presence Of Batching, Sequence-dependent Setups And Incompatible Job Families Minimizing Earliness And Tardiness Penalties

    Get PDF
    The motivation of this research investigation stems from a particular job shop production environment at a large international communications and information technology company in which electro-mechanical assemblies (EMAs) are produced. The production environment of the EMAs includes the continuous arrivals of the EMAs (generally called jobs), with distinct due dates, degrees of importance and routing sequences through the production workstations, to the job shop. Jobs are processed in batches at the workstations, and there are incompatible families of jobs, where jobs from different product families cannot be processed together in the same batch. In addition, there are sequence-dependent setups between batches at the workstations. Most importantly, it is imperative that all product deliveries arrive on time to their customers (internal and external) within their respective delivery time windows. Delivery is allowed outside a time window, but at the expense of a penalty. Completing a job and delivering the job before the start of its respective time window results in a penalty, i.e., inventory holding cost. Delivering a job after its respective time window also results in a penalty, i.e., delay cost or emergency shipping cost. This presents a unique scheduling problem where an earlinesstardiness composite objective is considered. This research approaches this scheduling problem by decomposing this complex job shop scheduling environment into bottleneck and non-bottleneck resources, with the primary focus on effectively scheduling the bottleneck resource. Specifically, the problem of scheduling jobs with unique due dates on a single workstation under the conditions of batching, sequence-dependent iii setups, incompatible job families in order to minimize weighted earliness and tardiness is formulated as an integer linear program. This scheduling problem, even in its simplest form, is NP-Hard, where no polynomial-time algorithm exists to solve this problem to optimality, especially as the number of jobs increases. As a result, the computational time to arrive at optimal solutions is not of practical use in industrial settings, where production scheduling decisions need to be made quickly. Therefore, this research explores and proposes new heuristic algorithms to solve this unique scheduling problem. The heuristics use order review and release strategies in combination with priority dispatching rules, which is a popular and more commonly-used class of scheduling algorithms in real-world industrial settings. A computational study is conducted to assess the quality of the solutions generated by the proposed heuristics. The computational results show that, in general, the proposed heuristics produce solutions that are competitive to the optimal solutions, yet in a fraction of the time. The results also show that the proposed heuristics are superior in quality to a set of benchmark algorithms within this same class of heuristic

    Dynamic Control for Batch Process Systems Using Stochastic Utility Evaluation

    Get PDF
    Most research studies in the batch process control problem are focused on optimizing system performance. The methods address the problem by minimizing single criterion such as cycle time and tardiness, or bi-criteria such as cycle time and tardiness, and earliness and tardiness. This research demonstrates the use of Stochastic Utility Evaluation (SUE) function approach to optimize system performance using multiple criteria. In long production cycles, the earliness and tardiness weight (utility) of products vary depending on the time. As the time approaches the due-date, it affects contractual penalties, loss of customer goodwill and the storage period for the completed products. It is necessary to reflect the weight of products for earliness and tardiness at decision epochs to decide on the optimal strategy. This research explores how stochastic utility function using stochastic information can be derived and used to strategically improve existing approaches for the batch process control problem. This research first explores how SUE function can be applied to existing model for bi-objective problem such as cycle time and tardiness. Benchmark strategies using SUE function (NACH-SUE, MBS-SUE, No idle and full batch) are compared to each other. The experimental results show that NACH-SUE effectively improves mean cycle time and tardiness performance respectively than other benchmark strategies. Next, SUE function for earliness and tardiness is used in an existing model to develop a tri-objective problem. Typically, this problem is very complex to solve due to its trade-off relationship. However SUE function makes it relatively easy to solve the tri-objective problem since SUE function can be incorporated in an existing model. It is observed that SUE function can be effectively used for solving a tri-objective problem. Performance improvement for averaged value of cycle time, earliness and tardiness is observed under a comprehensive set of experimental conditions
    • …
    corecore