
University of Wisconsin Milwaukee
UWM Digital Commons

Theses and Dissertations

May 2013

Heuristic Algorithms to Minimize Total Weighted
Tardiness on the Single Machine and Identical
Parallel Machines with Sequence Dependent Setup
and Future Ready Time
Yue Xi
University of Wisconsin-Milwaukee

Follow this and additional works at: https://dc.uwm.edu/etd
Part of the Industrial Engineering Commons

This Dissertation is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations
by an authorized administrator of UWM Digital Commons. For more information, please contact open-access@uwm.edu.

Recommended Citation
Xi, Yue, "Heuristic Algorithms to Minimize Total Weighted Tardiness on the Single Machine and Identical Parallel Machines with
Sequence Dependent Setup and Future Ready Time" (2013). Theses and Dissertations. 184.
https://dc.uwm.edu/etd/184

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Wisconsin-Milwaukee

https://core.ac.uk/display/217182052?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://dc.uwm.edu/?utm_source=dc.uwm.edu%2Fetd%2F184&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F184&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F184&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=dc.uwm.edu%2Fetd%2F184&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd/184?utm_source=dc.uwm.edu%2Fetd%2F184&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:open-access@uwm.edu

HEURISTIC ALGORITHMS TO MINIMIZE TOTAL WEIGHTED

TARDINESS ON THE SINGLE MACHINE AND IDENTICAL

PARALLEL MACHINES WITH SEQUENCE DEPENDENT SETUP

AND FUTURE READY TIME

by

Yue Xi

A Dissertation Submitted in

Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

in

Engineering

at

The University of Wisconsin-Milwaukee

May, 2013

 ii

ABSTRACT
HEURISTIC ALGORITHMS TO MINIMIZE TOTAL WEIGHTED TARDINESS ON

THE SINGLE MACHINE AND IDENTICAL PARALLEL MACHINES WITH
SEQUENCE DEPENDENT SETUP AND FUTURE READY TIME

by

Yue Xi

The University of Wisconsin-Milwaukee, 2013
Under the Supervision of Professor Jaejin Jang

This study generates heuristic algorithms to minimize the total weighted tardiness on

the single machine and identical parallel machines with sequence dependent setup and

future ready time. Due to the complexity of the considered problem, we propose two new

Apparent Tardiness Cost based (ATC-based) rules. The performances of these two rules

are evaluated on the single machine and identical parallel machines. Besides of these two

rules, we also propose a look-ahead identical parallel machines heuristic (LAIPM). When

a machine becomes idle, it selects a job to process from available jobs and near future

jobs.

For the considered combination of scaling parameters, the proposed look-ahead

heuristic is divided into three phases: in the first phases, we use the newly introduced

dispatching rule, apparent tardiness cost with ready time and continuous setup

(ATCRCS), to select the initial job for each machine. The second phase, composed of

several iterations, schedules all rest jobs on machines. Each iteration starts identifying the

critical machine (the machine with the smallest finish time) and its next job (the critical

job). The look-ahead thresh for other machines (non-critical machines) equals to the sum

 iii

of the finish time of the critical job and the average setup time. The next job on the

considered non-critical machine is chosen from jobs whose ready time is smaller or equal

to the look-ahead thresh. Once all machines finish considering their next job selection, a

possible iteration schedule is generated. The selected jobs are then used as inputs of the

job switching heuristic which allows the selected jobs to be switched among machines

and evaluated at different positions. Job switching heuristic generates another possible

iteration schedule and compares it to the previously generated possible iteration schedule

to determine the schedule of the considered iteration. After all jobs are scheduled on

machines, the last phase uses a technique called pairwise exchange to further reduce the

total weighted tardiness on each machine. Pairwise exchange technique orderly switches

two jobs' position and selects the schedule with the smallest total weighted tardiness as

the schedule for the considered combination of scaling parameters. The final schedule of

the considered problem is the one with the smallest total weighted tardiness among the

schedules generated by different scaling parameters combinations.

Different from other look-ahead heuristics, such as the look-ahead heuristic of Mao

et al. (1994) and Chang et al. (2004), the proposed look-ahead heuristic not only looks

ahead (considers limited number of future jobs) but also looks back (schedules each

selected job before the last job on each machine). To evaluate its performance, the

proposed look-ahead heuristic is compared with available look-ahead heuristics and non

look-ahead heuristic on 5103 randomly generated problems in minimizing the total

weighted tardiness.

 iv

To my advisor, parents and family, who made all of this possible,

and for their endless help and encouragement

 v

ACKNOWLEDGEMENTS

There are a number of people to whom I am deeply indebted and would like to

acknowledge their contributions toward to this dissertation.

I would like to first give my utmost gratitude to my advisor, Dr. Jaejin Jang, whose

enormous and endless efforts have enhanced my ability and personality. During my Ph.D.

study, Dr. Jaejin Jang not only passed me knowledge but also instruct me how to think

and solve problems in my research. Doing research with him, I learnt a lot things that I

cannot get from the classroom learning and textbook. His nicely teaching style and

dedicated research altitude deeply influence my study and research. I really admire his

dedication and intellect.

I also would like to present my wholehearted appreciation to my committee numbers

for their valuable time and instructions in my dissertation and study: Dr. Matthew

Petering and Dr. Xiaohang Yue instructed me on the topic of system simulation. Dr.

Hamid Seifoddini is an excellent professor and always helpful in the area of lean

manufacturing and grouping technology. I would like to thank Dr. Xiang Fang for taking

time out of her busy schedule to be one of my committee members. Finally, I deeply

appreciate for the financial support from the department and our department chair, Dr.

Aurn Garg. Thanks to put me in teaching.

Finally, I would like to express my boundless gratefulness to my parents, who have

gave me endless support in my life, and to my grandmother, Xiuyun Jia, who had kept

 vi

taking care of me. I also thank for my wife, for her warm supports, especially for

bringing me the best gift in my life: Meina Xi, our daughter.

 vii

TABLE OF CONTENTS

ABSTRACT..ii

DEDICATION…………………………………………………………………………...iv

ACKNOLEDGEMENT…………………………………………………………………..v

Table of Contents………………………………………………………………………..vii

List of Table……………………………………………………………………………...xi

List of Figure……………………………………………………………………………xiii

1. INTRODUCTION…………………………………………………………………….1

2. LITERATURE REVIEW………………………………………………………....4

2.1 Single machine schedule with sequence dependent setup………………………..4

 2.2.1 Minimizing total tardiness…………………………………………………4

 2.1.2 Minimizing the sum of total earliness and tardiness……………………….7

 2.1.3 Minimizing other types of tardiness-related criteria…………………….8

2.2 Parallel machines scheduling with sequence dependent setup…………………...8

 2.2.1 Parallel non-batch machines scheduling with sequence dependent setup...9

 (I) Minimizing total (weighted) tardiness……………………………...........9

 (II) Minimizing total (weighted) completion time…………………………11

 (III) Bi-criteria……………………………………………………………...12

 (IV) Other criteria………………………………………………………….13

 2.2.2 Parallel batch machines scheduling with sequence dependent setup……..17

 2.3 Look-ahead control procedures………………………………………………….18

 viii

 2.3.1 Look-ahead non-batching heuristics……………………………………18

 2.3.2 Look-ahead batching heuristics…………………………………………20

3. NEW ATC BASED DISPATCHING RULES FOR THE SINGLE MACHINE

SCHEDULING………………………………………………………………………..22

 3.1 Problem statement and assumptions……………………………………………22

 3.2 The proposed ATC-based dispatching rules…………………………………….22

 3.2.1 Analysis of the ATC-based dispatching rules…………………………….23

(I) The WSPT term………………………………………………………...24

(II) Exponent numerator of the slack term…………………………………25

(III) Exponent denominator of the slack term……………………………...28

(IV) Exponent denominator of the ready time term………………………..29

 3.2.2 The proposed ATC-based dispatching rule……………………………….29

(I) Date generation and performance criteria………………………………30

(II) The proposed new ATC-based rules, ATCRCS and ATCRSS………..31

(III) The performance of the new proposed ATC-based rules……………..37

(IV) The results from the proposed new rules vs. the optimal solution……42

4. PERFORMANCES OF NEW RULES ON THE IDENTICAL PARALLEL

MACHINES…………………………………………………………………………….46

 4.1 Problems description and assumption…………………………………………..46

 4.2 Benchmark methods and design of experiment…………………………………47

 4.3 performance evaluation of ATC-based rules………..…………………………..49

 4.3.1 Performance comparison of different ATC-based rules with CSDS……..49

(I) The best of the best test…………………………………………………49

(II) The territory test……………………………………………………….51

 ix

(III) Effect of the number of machines…………………………………….52

 4.3.2 Performance comparison of different ATC-based rules with SSDS……..53

(I) The best of the best test…………………………………………………54

(II) The territory test……………………………………………………….54

(III) Effect of the number of machines…………………………………….55

 4.4 Computation time…………………………………………………………..55

5. THE PROPOSED LOOK-AHEAD HEURISTIC (LAIPM)……………………...57

 5.1 Introduction and potential application…………………………………………..57

 5.2 Logic and Flow chart of the LAIPM heuristic…………………………………..58

 5.3 The job switching heuristic……………………………………………………...62

 5.4 Pairwise exchange……………………………………………………………….65

 5.5 An example (8 jobs on 6 machines)……………………………………………..66

 5.6 Experiment design and benchmark methods……………………………………72

 5.7 Performance evaluation…………………………………………………………76

 5.7.1 LAIPM vs. look-ahead heuristic………………………………………….76

 5.7.2 LAIPM vs non look-ahead heuristic (ATCRCS)…………………………79

6. CONCLUSIONS AND FUTURE RESEARCH……………………………………84

7. REFERENCE………………………………………………………………………...86

APPENDICES…………………………………………………………………………..93

 Appendix A: A Non-linear mathematic model (single machine)…………………...93

 Appendix B: Lingo model for the proposed non-linear mathematic model (5 jobs).95

 Appendix C: A non-linear mathematic model (two parallel machines)…………….97

Appendix D: Lingo model for the proposed non-linear mathematic model (5 jobs on
2 machines)………………………………………………………………………….98

 x

Appendix E: The application of proposed parallel machines model………………100

CURRICULUM VITAE………………………………………………………………102

 xi

LIST OF TABLES

Table 1. ATC-based dispatching rules……………………………………………………6

Table 2. Grids setting comparison……………………………………………………….11

Table 3. Parallel non-batch machines with sequence dependent setup time …………….14

Table 4. Parallel batch machines with sequence dependent setup time…………………18

Table 5. Factors and levels of the performance test……………………………………30

Table 6. Effect of the new WSPT terms…………………………………………………32

Table 7. The best-of-the-best test (for the continuous sequence dependent setup)……...36

Table 8. The territory test (% for the continuous sequence dependent setup)…………...36

Table 9. The best-of-the-best test (for the separable sequence dependent setup)……….36

Table 10. The territory test (% for the separable sequence dependent setup)………..…36

Table 11. Computation time to get optimal solution for different cases………………...43

Table 12. Experiment of Pfund et al. (2008)…………………………………………….48

Table 13. Number of jobs of the experiment…………………………………………….49

Table 14. The computation time…………………………………………………………56

Table 15. Input of smaller in smaller heuristic…………………………………………..62

Table 16. Total weighted tardiness of considered sequence……………………………..63

Table 17. Combined TWT table…………………………………………………………64

Table 18. Possible schedule (before the job switching heuristic)…………………..65

Table 19. Possible schedule (from the job switching heuristic)…………………………65

Table 20. Processing time, due date, job weight and ready time………………………..67

Table 21. Sequence dependent setup time……………………………………………….67

Table 22. TWT of considered sequences on machines…………………………………..69

 xii

Table 23. Combined TWT table…………………………………………………………70

Table 24. Two possible schedules and their tardiness…………………………………...71

Table 25. Comparison of experiment in this research and that of Pfund et al. (2008)…..73

Table 26. Performance of look-ahead heuristics…………………………………………78

Table 27. Comparison (the proposed look-ahead heuristic to that of Chang et al. 2004).78

Table 28. Performance comparison (LAIMP vs. ATCRCS)…………………………….80

Table 29. Effect of setup severity (LAIMP vs. ATCRCS)………………………………82

Table 30. Effect of due date tightness (LAIMP vs. ATCRCS)………………………….82

Table 31. Effect of due date range (LAIMP vs. ATCRCS)……………………………...82

Table 32. Effect of Jab availability (LAIMP vs. ATCRCS)……………………………..82

Table 33. Effect of ready time tightness (LAIMP vs. ATCRCS)………………………..82

 xiii

LIST OF FIGURES

Figure 1. Slack term of BATCS………………………………………………………….26

Figure 2. Slack term of BATCSmod: ready job (trj ≤)……………………………….26

Figure 3. Slack term of ATCSR………………………………………………………….27

Figure 4. Slack term of ATCRCS……………………………………………………….28

Figure 5. Slack term of ATCRSS………………………………………………………28

Figure 6. Effect of factors ………………………………………………………………..39

Figure 7. The territory test……………………………………………………………….40

Figure 8. Average computation time to get optimal solution……………………………44

Figure 9. Deviation from optimal solution………………………………………………44

Figure 10. Territory test………………………………………………………………….52

Figure 11. The effect of the number of machines………………………………………..53

Figure 12. Flow Chart of the proposed heuristic ………………………………………...61

Figure 13. Comparison of factor effect of heuristics…………………………………….79

Figure 14. Number of better cases gained by LAIPM at different levels………………..83

1

HEURISTIC ALGORITHMS TO MINIMIZE TOTAL WEIGHTED TARDINESS

ON THE SINGLE MACHINE AND IDENTICAL PARALLEL MACHINES WITH

SEQUENCE DEPENDENT SETUP AND FUTURE READY TIME

1. INTRODUCTION

The configurations of the single machine and parallel machines are very common in

both service system and production system. The task of the single machine scheduling is

to determine the processing sequence of a series of jobs. While, in the parallel machines

production, every machine has the same work function and every job can be processed by

any machine. Parallel machines scheduling (PMS) mostly considers single operation jobs.

The task of PMS is to decide each job’s starting time and the machine to process it, so

that a certain objective is achieved.

Allahverdi and Mittenthal (1994) group the parallel machines into three cases:

identical parallel machines, where the processing time of a job is the same on all

machines; uniform parallel machines, where the processing time of a job is determined

by the speed factor of the machine; and unrelated parallel machines, where the

processing time of a job on different machines can be different in an arbitral way.

Most research on the single machine scheduling and parallel machines scheduling

assumes setup time can be either ignored or included in a part’s processing time. This

assumption is reasonable only when the setup time is independent from the job sequence.

Sequence dependent setup, in which the length of setup time of a job depends on its

immediately preceding job, is common and often important in production. Examples of

2

sequence dependent setup are found in petroleum production plants, printing plants, car

spraying facilities, metallurgical industries and textile dying plants (Luo et al. 2006 and

Arroyo et al. 2009).

Based on Panwalkar et al. (1973), about 70% of schedulers reported that a quarter of

jobs they scheduled cannot ignore setup time. Krajewski et al. (1987) claim that effective

management of sequence dependent setup is one of the critical factors to improve the

performance of a manufacturing system.

The performance measures of the single machine scheduling and parallel machines

scheduling are mostly either flow time related or tardiness related. The flow time related

measures are closely related to job's waiting time for processing and inventory level in a

shop; while the tardiness related criteria are relevant to penalties if the manufacturer can

not meet predefined due dates. Not meeting with due dates may result in losing future

customers. To measure the quality of a schedule from “tardiness” perspectives, several

criteria have been used in literatures, such as minimizing the total (weighted) tardiness,

minimizing the sum of (weighted) earliness and (weighted) tardiness, minimizing the

number of tardy jobs and so on.

Aside from the concept of the sequence dependent setup, there is another

“dependent” concept called “machine dependency” in the parallel machines scheduling.

Machine dependency means that processing a job needs different setup times and

different processing times due to different machine conditions. This concept is different

3

from unrelated parallel machines in which only the length of the processing time is

decided by the condition of a machine in the arbitral way. This study explores heuristic

algorithms to minimize the total weighted tardiness on the single machine and identical

parallel machines with the sequence dependent setup and future ready time.

In this study, we first focus on the single machine scheduling. Two efficient apparent

tardiness cost-based (ATC-based) rules are proposed. The performances of these two

newly introduced dispatching rules are then evaluated on the single machine and identical

parallel machines with other rules. Finally, we propose a look-ahead identical parallel

machines (LAIPM) heuristic. All proposed heuristics mentioned in this research are all

focused on minimizing the total weighted tardiness.

This study is organized as follows: Section 2 reviews literature related to the single

machine scheduling and parallel machines scheduling with sequence dependent setup.

The look-ahead control heuristics are surveyed at the end of section 2. Section 3 relates to

the single machine scheduling. Two new ATC-based rules are introduced to minimize the

total weighted tardiness. Section 4 is an experiment study carried out on the identical

parallel machines. We evaluate performances of the proposed new ATC-based rules and

other rules on the identical parallel machines. Section 5 proposes a look-ahead heuristic,

LAIPM, which is also for the identical parallel machines scheduling. Finally, conclusions

and future research are discussed in section 6.

4

2. LITERATURE REVIEW

This section reviews the single machine scheduling and parallel machines scheduling

with sequence dependent setup. Look-ahead control heuristics are summarized at the end

of this section.

2.1 Single machine scheduling with sequence dependent setup

This section reviews the single machine scheduling with sequence dependent setup to

minimize tardiness-related criteria. Literature on this topic is grouped into three by the

objective: minimizing total tardiness, minimizing the sum of total earliness and tardiness,

and minimizing other types of tardiness-related criteria.

2.1.1 Minimizing total tardiness

 Pinedo (2002) remarks that minimizing total tardiness with sequence dependent

setup (1/sij/∑ jT) is strongly NP hard. Incorporating job weight or future ready time into

1/sij/∑ jT makes the problem more difficult. Due to this challenge, many people try to

obtain a near optimal solution by heuristic approaches. Liao et al. (2012) divide the

scheduling heuristic algorithms into two categories: the constructive approach and the

improvement approach. These two approaches are also called construction method and

interchange method by Wodecki (2008), respectively.

 The constructive approach uses dispatching rules to build a schedule by fixing a job

in a position one by one. Several apparent tardiness cost based rules are proposed to

minimize the weighted tardiness without considering sequence dependent setup (Morton

5

and Rachamadugu 1982, Morton and Pentico 1983, and Lee and Pinedo 1997). To

consider the sequence dependent setup, Raman et al. (1989) propose a modified ATC

rule which considers the setup time in both the WSPT term and the slack term. Lee et al.

(1997) propose the apparent tardiness cost with setups algorithm (ATCS). ATCS is

reported as the best constructive algorithm for the 1/sij/∑ jjTw by Liao et al. (2012). For

the batch production where several jobs can be processed together at the same time by a

machine, Mason et al. (2002) propose batch apparent tardiness cost with setups (BATCS).

At the decision time, jobs with the largest index values are selected together to form a

batch. In their later research, Mason et al. (2005) propose another ATC-based rule which

considers the utilization of the batch machine in the index. Pfund et al. (2008) modify the

slack term of BATCS and propose BATCSmod. Table 1 summarizes above mentioned

ATC-based rules on the single machine scheduling.

6

Table 1. ATC-based dispatching rules

Authors Rule name Ready time
Number of

parameters
Environment

Rachamadugu and
Morton (1982)

ATC No 1 (k) Single machine

Raman et al. (1989)
Modified

ATC
No 1 (k) Single machine

Lee et al. (1997)
Lee and Pinedo (1997)

ATCS No 2 (k1 and k2)
Single/Parallel

machines

Vepsalainen and
Morton (1987)

MATC No 2 (b and k)
Flow shop , Job

shop

Morton and Pentico
(1993)

X-RM Yes 2 (B and k) Single machine

Mason et al. (2002) BATCS Yes 2 (k1 and k2) Batch machine

Mason et al. (2005) ATC-based Yes 2 (k1 and k2) Batch machine

Pfund et al. (2008) BATCSmod Yes 2 (k1 and k2) Batch machine

 The improvement approach or the interchange method starts with an initial solution

and repeatedly strives to improve the current solution by local interchange. To minimize

total tardiness with the consideration of sequence dependent setup, both Tan and

Narasimhan (1997) and Lin and Ying (2008) suggest the simulated annealing method.

Genetic algorithms are proposed by Tan et al. (2000), Franca et al. (2001), and Sioud et

al. (2010). Gupta and Smith (2006) propose the greedy randomize adaptive search

procedure (GRASP) and the problem space-based local search heuristic. To minimize the

total weighted tardiness with the consideration of sequence dependent setup, Cicirello

and Smith (2005) analyze the effectiveness of stochastic sampling approaches, such as

value-biased stochastic sampling (VBSS), VBSS with hill-climbing, a limited

discrepancy search, and heuristic-biased stochastic sampling, together with the simulated

annealing. For the same problem, Liao and Juan (2007) and Anghinolfi and Paolucci

7

(2008) use ant colony optimization to get an improved solution. In an experiment study,

Lin and Ying (2007) compare the performance of three popular meta-heuristics: genetic

algorithm, simulated annealing, and tabu search. Lin and Ying (2008) also propose a

simulated annealing-tabu procedure and test its performance for both total tardiness and

total weighted tardiness problems. Kirlik and Oguz (2012) present the variable

neighborhood search (NBV) to get a near optimal solution. They (Kirkik et al. (2012)

later introduce a genetic algorithm that uses a newly proposed crossover operator.

 The mathematical modeling approach is used to get an optimal solution. Kirlik and

Oguz (2012) and Kirkik et al. (2012) present two models to minimize the total weighted

tardiness on a single machine with sequence dependent setup. Compared to the

mathematical model Kirlik and Oguz (2012), their later model (Kirlik et al. 2012) uses

fewer variables.

2.1.2 Minimizing the sum of total earliness and tardiness

Without considering job weight, Hepdogan et al. (2009) solve an earliness and

tardiness problem by a heuristic called meta-heuristic for randomized priority search

(Meta-Raps). Rabadi et al. (2004) present an optimal branch-and-bound algorithm for the

problem with sequence dependent setup. To minimize the sum of weighted earliness and

weighted tardiness, Azizoglu and Webster (1997) propose a branch-and-bound algorithm

and a beam search procedure for the problem with sequence independent setup times and

an unrestricted common due date. Genetic algorithms and tabu search are used by

Webster et al. (1998) and Kolahan and Liang (1998), respectively.

8

2.1.3 Minimizing other types of tardiness-related criteria

 To minimize maximum tardiness, Ovacik and Uzsoy (1994) present a rolling horizon

procedure (RHP), where the problem is decomposed into a series of smaller problems.

Asano and Ohta (1999) propose a branch-and-bound algorithm, which considers both

future ready time and machine down time. Nekoiemehr and Moslehi (2011) propose three

dominance rules to minimize the sum of maximum earliness and maximum tardiness

(1/sij/ETmax) by the branch-and-bound algorithm. Uzsoy et al. (1992) and Arroyo et al.

(2011) also consider tardiness-related measures.

2.2 Parallel machines scheduling with sequence dependent setup

This section reviews the studies of parallel machines scheduling with sequence

dependent setup. In literature, research about parallel machines scheduling can be

grouped based on different criteria: Machine type criterion, where parallel machines are

classified into identical machines, uniform machines, and unrelated machines; Setup

time criterion, where the parallel machines scheduling studies are divided into: studies

without setup time and studies with setup time. Batch criterion, where related papers

categorize them into parallel batch production and parallel non-batch production;

Objective criterion, where related papers group it by objectives, such as minimizing the

total completion time, minimizing the total tardiness, and so on; or Approach criterion,

where related papers group it by approaches, such as branch and bound, meta-heuristic,

mathematical model, constructive heuristic and so on.

9

In this study, we use batch criterion to group parallel machines scheduling with

sequence dependent setup time into parallel non-batch machines scheduling with

sequence dependent setup and parallel batch machines scheduling with sequence

dependent setup.

2.2.1 Parallel non-batch machines scheduling with sequence dependent setup

This section describes the sequence dependent setup literatures in the parallel

non-batch machines scheduling. Articles are further grouped by the objective type.

(I) Minimizing total (weighted) tardiness

The constructive approach or the construction method builds a schedule by fixing a

job in a position one by one. Apparent Tardiness Cost with Setups, ATCS, is an effect

ATC-based dispatching rules to minimize the total weighted tardiness considering

sequence dependent setup. Its effectiveness is proved on the parallel machines (Lee and

Pinedo. 1997). Extending from ATCS and considering future ready time of a job, Pfund

et al. (2008) propose ATCSR rule which outperforms other rules, such as EDD, WEDD,

ATCS, BATCSmod (Pfund et al. 2008), and X-Rmod (Pfund et al. 2008).

When applying ATC-based rules, choosing or determining good scaling parameters

is also important in literature. At least two types of approaches have been used to decide

the scaling parameters’ values. One is estimating one good grid, like the empirical value

method (Rachamadugu and Morton 1982, Vepsalainen and Morton 1987), the regression

method (Lee et al. 1997, Pfund et al. 2008), and the artificial neural network method

10

(Kim et al. 1995, Park et al. 2000). The other tries many different grids and selects the

best combination of scaling parameters, like the grid method (Pfund et al. 2008, Drieel

and Monch 2009, 2011). The grid method is very useful in that it is not only used to

determine a final schedule but also to provide input information for other methods, like

the regression method and other heuristics that get improved solution (Christoph et al.

2007, Drieel and Monch 2009, 2011). Especially, a few grid settings (the range of scaling

parameters and the size of the gap between grids) are proposed in literature. Lee et al.

(1997) present a grid setting: k1 = (0.2, 0.4, 0.6,..., 6.4), and k2 = (0.1, 0.2, 0.3,..., 1.6). To

ensure that “the frequently occurring values were not the extreme values in the grid.”

Pfund et al. (2008) propose a wider search range for k1 and k2, they also proposing

settings for their newly introduced parameter, k3:

k1: 0.2,0.6,0.8,1,1.2,1.4,1.6,1.8,2,2.4,2.8,3.2,3.6,4,4.4,4.8,5.2,5.6,6,6.4,6.8,7.2

k2: 0.1,0.3,0.5,0.7,0.9,1.1,1.3,1.5,1.7,1.9,2.1

k3: 0.001,0.0025,0.004,0.005,0.025,0.04,0.05,0.25,0.4,0.6,0.8,1,1.2

Following Pfund’s setting, Drieel and Monch (2009) propose narrower search ranges:

[0.2, 6], [0.1, 1.9] and [0.001, 1.2] and consider fewer grids: 7, 4 and 5 grids for k1, k2 and

k3, respectively. In their latest research (Driessel and Monch 2011), they use an even more

coarse grid setting for k3 whose search range is set in [0.001, 1] and only four grids are

considered in it. The grid settings (for three scaling parameters) in literature are shown in

table 2. In the research of Drieel and Monch (2009, 2011), the grid method generates an

initial solution for their proposed variable neighborhood search procedures. In this study,

11

we used the setting of Pfund et al. (2008) to evaluate the proposed ATC-based rules and

other ATC-based rules including ATCSR. For the proposed look-ahead heuristic

(LAIPM), we uses the setting as that of Drieel and Monch (2009), because their setting

has a medium number of grids and searching in a similar range as Pfund et al. (2008).

Also using their setting avoids subjective analysis.

Table 2. Grids setting comparison

Pfund et al. (2008)

Driessel and Monch
(2009)

Driessel and Monch
(2011)

k1 22 values in [0.2, 7.2] 7 values in [0.2, 6] 5 values in [0.01, 1.5]

k2 11 values in [0.1, 2.1] 4 values in [0.1, 0.9] 4 values in [0.1, 1.9]

k3 13 values in [0.001, 1.2] 5 values in [0.001, 1.2] 4 values in [0.01, 1.0]

The improvement approach or the interchange method starts with an initial solution

and repeatedly strives to improve the current solution by local interchange. Fowler and

Horng (2003) present a hybrid genetic algorithm to minimize total weighted tardiness on

identical parallel machines. Tamimi and Rajan (1997) propose a genetic algorithm for

uniform parallel machines scheduling with sequence dependent setup. Different from

Flowler and Horng (2003), they dynamically modify mutation rate, crossover rate and

insertion rate. Chen (2009) proposed a hybrid method for unrelated parallel machines.

Their experiments show that simulated annealing effectively improve the initial solution

that obtained by ATCS.

(II) Minimizing total (weighted) completion time

12

Felipe (2005) presents a constructive heuristic to assign jobs iteratively with the

minimum adjusted processing time (sum of setup time and process time). Their approach

uses an improved enumeration to assign jobs either at the beginning or after a partial job

sequence generated on a machine. Kurz and Askin (2001) present an integer

programming model to minimize total completion time for identical parallel machines. In

their heuristic, once jobs are assigned to the machines, a traveling sales man problem is

formulated to find an optimal job sequence on each machine. In their research, the

distance between each pair of cities correspondents to sequenced dependent setup.

Weng et al. (2001) minimize the total weighted completion time on unrelated parallel

machines. Several heuristics are presented. By their experiment, the best heuristic assigns

one job at a time based on the ratio of a job’s processing time plus setup time to its

weight. Fowler and Horng (2003) propose a hybrid genetic algorithm to minimize total

weighted completion time. The algorithm is also tested to minimize the total weighted

tardiness. In their hybrid approach, the genetic algorithm assigns jobs to machines;

dispatching rules are then used to schedule jobs on each individual machine.

(III) Bi-criteria

Balakrishna et al. (1999) minimize the sum of weighted earliness and weighted

tardiness on uniform parallel machines. This objective is meaningful for a Just-In-Time

(JIT) production where both earliness and tardiness are deemed as low efficiency. A

mixed integer programming model is formulated to solve the small size problem.

Radhakrishnan and Ventura (2000) also minimize sum of weighted earliness and

13

weighted tardiness, but for identical parallel machines. They also propose a mathematical

model to find optimal solution. For a larger problem, they suggest simulated annealing.

For the same problem, Feng and Lau (2005) also suggest meta-heuristic approach due to

the complexity of the solved problem. Their proposed heuristic outperforms that of

Radhakrishnan and Ventura (2000).

Heady and Zhu (1998) present a heuristic method to minimize the sum of earliness

and tardiness for identical parallel machines with sequence dependent setup time. They

don’t consider job weight. For a small problem, they compare the performance of the

heuristic with the optimal solution from integer programming.

(IV) Other criteria

To maximum machine utilization, Christos and Milton (1988) propose a heuristic to

minimize machine interference. Hirashi et al. (2002) address identical parallel machines

scheduling with sequence dependent setup time. They maximize the weighted number of

jobs that are completed before their due dates. Kim et al. (2002) propose a restricted tabu

search to reduce search effort significantly without eliminating the promising solutions.

They minimize the maximum lateness on identical parallel machines by considering

sequence dependent setups. Anglian et al. (2005) minimize total setup time for identical

parallel machines. They use fuzzy mathematical programming.

Table 3 shows research related to the parallel non-batch machines scheduling with

sequence dependent setup time

1
4

Table 3. Parallel non-batch machines with sequence dependent setup time

Objective functions References Machines type Approach Others

1. Total weighted
tardiness

Lee et al (1997) Identical parallel
machines

Dispatching rules (ATCS)

 Lee et al (1997) Identical parallel
machines

Three stages
method

ATCS is used to find the initial
solution for simulated anealing

 Park et al
(2000)

Identical parallel
machines

Dispatching
rules (ATCS)

Neural network to imporve ATCS

 Fowler et al
(2003)

Identical parallel
machines

Hybrid
genertic
algorithm
(GA)

Genetic algorithm assigns jobs to
machine, then dispatching rules
are used to sequence jobs on each
machine

 Tamimi et al
(1997)

Uniform parallel
machines

Genetic
Algorithm

Dynamic crossover rate

2. Total tardiness Chen et al

(2006)
Unrelated parallel
machines

Hybride
Aproach
(ATCS+SA)

Simulated annealing , Lee's
ATCS find initial solution

3. The total completion
time

Felipe et al
(2005)

Unrelated parallel
machines

Constructive
method

An improved emueration

 Kurz et al
(2001)

Identical parallel
machines

Integer
programming

Some jobs's release time ≠ 0

4. Total weighted
completion time

Weng et al
(2001)

Unrelated parallel
machines

Evaluate
seveal
hueristics

Comparisive experiments

 Fowler et al
(2003)

Identical parallel
machines

Hybrid
genertic
algorithm
(GA)

A two stages method

1
5

5. Bi-Creteria

Sum of
weighted
earliness
and
weighted
tardiness

Balakrishna et al (1999) Uniform parallel
machines

Mixed
integer
programming

Bender's decomposition procesure
(for large size problem)

 Radhakrishnan et al (2000) Identical parallel
machines

Mathematical programming

 Feng et al (2005) Identical parallel
machines

Meta-huristic Outperforms Radhakrishnan et
al's work (2000)

Sum of
earliness
and
tardiness

Heady et al Identical parallel
machines

Hueristic Solution compared with that from
the integer programming

6. Others

Maximize
the weighted
number of
jobs that are
completed at
their due
date

Hirashi et al (2002) Identical parallel machines A maximum objective function

Minimize
the
maximum
lateness

Kim et al (2003) Identical
parallel
machines

Restricted tabu search Reduce computation effort
without losing promising
solutions

Minimize
mean
completion
time

Michael et al (2001) Identical
parallel
machines

Hybrid genertic
algorithm (GA)

A two stages method

1
6

Minimize
total setup
time

Anglian et al (2005) Identical
parallel
machines

Fuzzy programming

17

2.2.2. Parallel batch machines scheduling with sequenced dependent setup

Most works in this category are tardiness related. Both Karp (1972) and Ho and

Chang (1995) claim that minimizing total tardiness of two identical machines (non-batch

machine) even without setup is NP hard. Due to the complexity of the problem, people

tend to find quality solutions but rather an optimal solution.

Meta-heuristics are popular methods to find near optimal solutions in complicated

scheduling environments. Because they impose severe computation burden compared

with convenience dispatching rules, meta-heuristics may not be suitable when quick

solutions are needed within a short time. Kim et al. (2002) address unrelated parallel

batch machines scheduling with sequence dependent setup time. In their study, the jobs

within in a family have the same due date. Simulated annealing that utilizes job

rearrangement techniques is used to generate neighborhood solutions. Kim et al. (2003)

test four heuristics for unrelated parallel batch machines: (1) the earliest weighted due

date, (2) the shortest weighted process time, (3) the two level batch scheduling heuristic,

and (4) the simulated annealing method. Their test shows that simulated annealing

outperforms other heuristics to minimize total weighted tardiness. For the same problem,

Eom et al. (2002) propose a three stages method where the last phase is tabu search.

To find the optimal solution, Chen and Powell (2003) propose a branch and bound

algorithm to minimize total weighted completion time on identical parallel batch

machines. Computational analysis shows that it is capable to optimally solve medium

size problems within reasonable computation time.

18

Table 4 shows the research related to the parallel batch machines scheduling with

sequence dependent setup time

Table 4. Parallel batch machines with sequence dependent setup time

Objective

funtions References Machines type Approach Others

1. Meta-heuristic

Minimize the
total tardiness

Kim et al
(2002)

Unrelated
parallel batch
machine

Simulated Anealing

Minimize the
total weighted
atrdiness

Eco et al
(2002)

Indentical
parallel batch
machine

A three stages
method.

ATCS+
Simulated
Anealing

Minimize the
total weighted
atrdiness

Kim et al
(2003)

Unrelated
parallel batch
machine

Test four
heuristics

Simulated
anealing
outperforms
than others.

2. Others

Minimize total
weighted
completion time

Chen et al
(2003)

Identical
parallel batch
machine

Brach and
bound

Solve medium
size problem
optimally

2.3 Look-ahead control procedures

This section reviews look-ahead control heuristics of the machine scheduling.

Related heuristics are grouped into Look-ahead non-batching heuristics and Look-ahead

batching heuristics.

2.3.1 Look-ahead non-batching heuristics

Christos and Milton (1988) reduce interference for one operator who operates

parallel machines. The schedule made by their heuristic yields high machine utilization

and high operator utilization simultaneously. Mao et al. (1994) explore a one step

19

look-ahead heuristic to improve the performance of on-line heuristics. They minimize the

total completion time and study the performance of the worst case. Jihene et al. (2002)

look ahead machine preventive maintenance and compare four single machine heuristics

to minimize total tardiness. Jang et al. (2001) propose a heuristic to minimize flow time

or tardiness on the parallel machine. Each part has different processing times on different

machines and there is no local buffer. Once part arrived, the destination machine is

decided for the operation at once. Different from other look-ahead heuristic, the

considered part is selected from the machine perspective. The assigned parts on the

machine are processed by first in first out (FIFO) rule. Chang et al. (2004) propose a one

step look-ahead heuristic which targets to minimize the total weighted tardiness with

sequence dependent setup and unequal ready time. They iteratively select a job to the

machine, so that the created partial schedule yields the smallest incensement of the total

weighted tardiness. Once all jobs are scheduled, pairwise exchange is used to further

reduce the total weighted tardiness. Their heuristic is proved as an efficient method when

problem size is small.

In the more complicated scheduling environments, such as flow shop and job shop,

Smith et al. (1996) explore the influence of changing part input sequence, part mix ratio

and look-ahead strategy to the machine utilization in a flexible flow shop. The tested

look-ahead strategy is a one-step look-ahead that guarantees that the machine used for the

next operation is the one with the earliest available time. Experiment shows that the

theoretical maximum utilization can be achieved with lower WIP level when balanced

part mix ratio incorporates look-ahead strategy. Ginzburg et al. (1997) propose a heuristic

20

that combines pairwise comparison with the look-ahead concept to select the next job for

the idle machine. Competitions are carried out among available jobs. The look-ahead

horizon is decided by the processing time of the winner. The future arrivals, whose

estimated finish time falls in this horizon, are considered. The selected available job is

then competed with considered future jobs. If the winner is still the available job,

dispatch the job now, otherwise, wait for the winning future arrival. Other look-ahead

heuristics see works of Holthaus and Ziegler. (1997) and Tunali (1997).

2.3.2 Look-ahead batching heuristics

In the batching production where several parts are produced together by one time,

full batch always has higher priority to process than partial batch. When a full batch can

not be formed, scholars generate look-ahead heuristics to decide the batch should be

processed now or delayed to a future arrival.

To minimize flow time, Glassey and Weng (1991) propose dynamic batch heuristic

(DBH) heuristic. DBH computes a net value for each considerable future arrival during

one processing time of the batch machine from the decision time. The next batch’s

loading time is the future arrival with the largest net value. Fowler et al. (1992) propose

next arrival cost heuristic (NACH) heuristic which only considers the next future arrival.

Other look-ahead heuristics for the same problem see, Guilher et al. (2000), Fowler et al.

(2002), Cigoloni et al. (2002), and Gupta et al. (2004).

21

To minimize tardiness, Gupta and Sivakumar (2006) propose a look-ahead heuristic

for Just-In-Time production. They look ahead one processing time of the batch machine

from the decision time. Two earliness and tardiness measures are considered: the mean of

the absolute sum of the earliness and tardiness, and the mean of their squared sum. The

scenario with smallest root mean square value of earliness and tardiness decides the

loading time of the next batch. In their later work (Gupta and Sivakumar. 2007), each

lot’s slack time is considered (Slack time = di-pi-t0), where t0 is the current time. The best

scenario is defined as the batch with the minimum value of 2/1

1

2
0)()),0(max(

1
∑
=

−−
n

i
ii tpd

n
,

where n is the number of lots in the scenario.

Weng and Leachman. (1993) propose minimum cost rate (MCR) heuristic. MCR

considers max {0,k-q0) future arrivals at the decision time. k and q0 are the machine

capacity and the number of available parts, respectively. Different from DBH and NACH,

MCR’s look-ahead horizon is not fixed but equals to one process time of the batch

machine plus the waiting time of the considered future arrival. MCR calculates a cost

ratio which equals to the total holding costs over the length of the look-ahead horizon to

make decision. The loading time of the batch is decided by the considered lot with the

smallest cost ratio. Other look-ahead heuristics using cost ratio to make decision see,

Robinson and Fowler (1995), Van et al. (1997) and Van (2002).

22

3. NEW ATC-BASED DISPATCHING RULES FOR THE SINGLE

MACHINE SCHEDULING

 This section first mentions the problem statement and assumptions, and then

introduces two new ATC-based dispatching rules. The sequence dependent setup is

classified into two categories: continuous sequence dependent setup and separable

sequence dependent setup. The former is the conventional type considered by most

research, while the latter does not need a job or a part on a machine to setup.

3.1 Problem statement and assumptions

This research considers the single machine scheduling problem, 1|rj,sij|∑WjTj, which

is stated as: there are n jobs arriving to the single machines at different times. Each job j

has its ready time (rj), processing time (pj), due date (dj), and job weight (wj). The setup

(sij) of each pair of jobs i and j is sequence dependent. The objective is to minimize the

total weighted tardiness of jobs,∑
=

n

j

jjTw
1

, where Tj , max{0,Cj-dj}, is the tardiness of job j

and Cj is the competition time of job j.

The considered single machine problem assumes the following:

• The job attributes (pj, dj, wj, rj, and sij) are known in advance.

• Machines can process at most one job at each time.

• Job preemption is not allowed.

• Interruption such as machine breakdown and order cancellation does not happen.

3.2 The proposed ATC-based dispatching rules

23

This section gives detailed information of the proposed ATC-based dispatching rules.

We first make an analysis of the ATC-based dispatching rules and then generate two new

rules, ATCRCS and ATCRSS.

3.2.1 Analysis of the ATC-based dispatching rules

This section analyzes the WSPT term, the slack term, and the ready time term of

existing ATC-based rules. The basic format of ATC-based indexes is a product of several

terms:

Index = Term A x Term B x (Term C) x (Term D) (1)

It is noticed that the index of ATC-based rules has, in literature, at least two terms or at

most four terms. To select a job to process next on the considered machine, ATC-based

rules compute the index value for each unprocessed job and select the job with the largest

index value to process.

The index of ATCSR (Pfund et al. 2008) is given as an example of the related

ATC-based rules:

)
)0,max(

exp()exp()
)0),max(max(

exp()(
321

,

pk

tr

sk

s

pk

trpd

p

w
t,i,jI

jijjjj

j

j

ATCSR

−
−−

−−
−= (2)

24

where k1, k2, and k3 are scaling parameters. The four terms in formula (2) are the WSPT

term, the slack term, the setup term and the ready time term, respectively, from left to

right.

(I) The WPST term

The denominator of the conventional WSPT term is pj, which signifies the earliest

possible completion time of job j from the current time (or the time length for the

considered job to use the machine exclusively from the current time). If setup is sequence

independent, the processing time can include the setup time. If setup is sequence

dependent, and a job is available at time zero, its earliest job completion time is ijj sp + ;

Raman et al. (1997) propose
ijj

j

sp

w

+
 as the WSPT term. In their WSPT term, the

sequence dependent setup, sij, is treated as a part of the processing time. On the other

hand, if a job has future ready times and sequence dependent setup, its earliest possible

completion time is)0 ,max(trsp jijj −++ for the continuous sequence dependent setup,

and is) ,max(trsp jijj −+ for the separable sequence dependent setup. In the above two

formulas, max(rj-t, 0) and max(sij, rj-t) are possible machine idle times for the continuous

setup and separable setup, respectively. These possible machine idle times influence the

earliest completion times for the considered jobs, and it is reasonable to treat these

possible machine idle times as a part of the processing time. Based on this analysis, we

propose the following formulas as the new WSPT term:

)0 ,max(trsp

w

jijj

j

−++
 (Continuous sequence dependent setup) (3)

25

) ,max(trsp

w

jijj

j

−+
 (Separable sequence dependent setup) (4)

(II) Exponent numerator of the slack term

One of the important differences among ATC-based rules is the slack term. This

section compares four popular exponent numerators of the slack term and proposes two

new formulas. Specifically, both new formulas use the sequence dependent setup time, sij,

which is seldom used in the existing formulas.

(1))0,max(trpd jjj −+−−

This formula in BATCS (Mason et al. 2002),)0 ,max(trpd jjj −+−− , assigns a

lower priority to a job with a larger latest possible start time, jj pd − , while meeting the

specific due date. It also considers the waiting time of a job, jrt − . If a job has been

ready for a longer time, its priority becomes higher, when only consider t and rj (figure

1(a)). On the other hand, a more future job is assigned a lower priority (figure 1(b)). If a

ready job has been waiting longer than the time length (time to the latest possible start

time), it gets the highest priority score of the slack term (e0=1) (figure 1(c)).

26

 (a) Ready job (rj≦t) (b) Future job (rj>t)

 (c) Late job (dj-pj<t) with long waiting time (dj-pj<t-rj)

 Figure 1. Slack term of BATCS

(2))0),max(max(trpd jjj −+−−

This formula is used by BATCSmod (Pfund et al. 2008). Different from BATCS, all

ready jobs (trj ≤) are assigned the same highest priority when we only consider rj and t.

These ready jobs' priorities are decided by the value of (jj pd −) regardless of the length

of their respective waiting times (figure 2). For a future job (trj >), this formula is the

same as that of BATCS (figure 1(b, c)).

 Figure 2. Slack term of BATCSmod: ready job (trj ≤)

 Slack

pj

 dj rj t 0

 dj

 Time to arrival

 t

pj

Time to the latest possible start time

 dj rj

 Waiting
time pj

Waiting time
0 rj t dj

t d

pj

Time to the latest possible start time

Time to the latest possible start time

27

(3))0),,max(max(trpd jjj −−−

This formula,)0), ,max(max(trpd jjj −−− , is used in ATCSR (Pfund et al. 2008). It

uses the current decision time (t) or the ready time (rj) to calculate the slacks of a ready

job or a future job (figure 3). The slack in ATCSR measures the maximum time length of

postponing the start of a job from its earliest possible start time, max(rj,t), while still

meeting its due date. When this slack is negative, 0) ,max(<−− trpd jjj , the slack term

gets the highest priority score (e0=1). This term does not consider the sequence dependent

setup time; even when the slack for this term is positive, the due date may not be met

because of the required setup time.

 (a) Ready job (rj≦t) (b) Future job (rj>t)

Figure 3. Slack term of ATCSR

(4))0,max(tspd ijjj −−−−

If we do not consider the effect of ready time but consider that of the setup time in

the formula in 4.2.3 (ATCSR), the formula becomes “)max(tspd ijjj −−−− ”, which is

used by Raman et al. (1989).

(5))0),,max(max(trspd jijjj −−−−

 rj

Slack pj

tj

0 dj

Earliest possible job
start time

d

Slack pj

rj t

Earliest possible job
start time

28

We propose a new exponent numerator for the slack term. This new formula includes

the sequence dependent setup time in the formula of ATCSR. The slack measures the

maximum time for postponing the job start from its earliest possible start

time, ,) ,max(trj while still meeting its due date (figure 4).

 (a) Ready job (rj≦t) (b) future job (rj>t)

Figure 4. Slack term of ATCRCS

(6))0),,max(max(ijjjj strpd +−−−

In this new formula, the slack is the maximum time in delaying the start of

processing a job (but not necessarily the start of setup) from its earliest possible start time

while still meeting its due date (figure 5).

(a) setup is done before ready time (t+sij≥rj) (b) setup is done after ready time (t+sij<rj)

 Figure 5. Slack term of ATCRSS

(III) Exponent denominator of the slack term

Slack

0

pj

t rj

Earliest possible job start time

sij

dj

Slack

0

pj

 t rj

sij

Earliest possible job start time

 dj

j

 rj 0 dj t

 Slack

p

Earliest possible start
time

sij

 Slack

 rj tj 0

p

Earliest possible start
time

sij

 dj
d

29

The exponent denominators of the slack terms of existing rules use only the mean

processing time (p) to normalize the numerator; it does not consider the mean setup time

(s), which is important when the setup time is large. This section proposes a new

formula as the exponent denominator of the slack term:

k1(sp +) (5)

where k1 is the scaling parameter for the slack term.

(IV) Exponent denominator of the ready time term

In the exponent denominator of the ready time term, existing ATC-based rules use

only the mean processing time (p) to normalize the numerator of the exponent. This

section proposes a new formula as the exponent denominator of the ready time term:

k3(sp +) (6)

where k3 is the scaling parameter for the ready time term.

3.2.2 The proposed ATC-based rules

Bases on the above analysis, this section proposes new ATC-based rules, ATCRCS

and ATCRSS, to minimize the total weighted tardiness with the sequence dependent

setup and future time.

30

(I) Data generation and performance criteria

The test data sets are generated by Pfund’s procedure. In the experiment, we use all

of their factors except for the job machine factor µ, which is meaningful only for parallel

machine problems. For the rest of the five factors, the same levels of each factor are used.

The experiment is a 35 experiment, which has 243 scenarios. In each scenario, seven

problems are randomly generated. A total of 1701 (243 x 7) problems are considered.

Each problem has 40 jobs to be scheduled. Table 5 shows the factors and levels of the

experiment. Factor and levels in this experiment is given in table 5.

Table 5. Factors and levels of the performance test

Factor Notation Factor name Low level

Center

level High level

1 ŋ Setup severity factor 0.02 1.01 2

 ז 2

Due date tightness
factor 0.3 0.6 0.9

3 R Due date range factor 0.25 0.63 1

4 Ja Job availability factor 0.2 0.5 0.8

5 r_ז Ready time factor 1 5.5 10

To compare ATC-based rules, the experiment uses the following two measures: the best

of the best measure and the territory measure.

The best of the best measure

By using a given rule, the grid method generates multiple schedules of each problem

(one schedule for each grid) and selects the best one as the final schedule. To evaluate

different rules, this test compares the selected best schedules (one from each rule) to

determine which rule gives the best solution. We call this measure the best of the best

measure.

31

The territory measure

For a pair of ATC-based rules, the territory measure compares two schedules in a

given problem at each grid. It then finds the percentage of grids in which one method

performs better than, equal to, or worse than the other method on all the grids. This

measure is helpful when choosing a rule that does not have a good procedure for finding

a good grid, because the rule with a larger favorable territory is more likely to give a

better schedule. On the other hand, the best of the best measure is superior when we have

a good procedure to find the best grid for an ATC-based rule.

(II) The proposed new ATC-based rules: ATCRCS and ATCRSS

This section evaluates the effects of the new formulas introduced in section 3.2.1 and

proposes two new ATC-based rules for 1|rj,sij,con|∑wjTj, and 1|rj,sij,sep|∑wjTj,

respectively. In the latter part of this section, we compare performances of the two

proposed rules with those of ATCSR, one of the best ATC-based rules in literature

(ATCSR outperforms other ATC-based rules, such as BATCS, BATCmod, and X-Rmod,

to minimize the total weighted tardiness of a problem which considers the sequence

dependent setup and future ready time, Pfund et al. 2008).

(a) The effect of the modified WSPT term

To evaluate the modified WSPT terms that are introduced in section 3.2.1,

)0,max(trsp

w

jijj

j

−++
and

),max(trsp

w

jijj

j

−+
, we compare the original ATCSR with the

modified ATCSR that includes the new WSPT terms. The results are summarized in table 6.

32

The three numbers in each cell are the number of cases, the percentage of cases, and the

average reduction of tardiness, respectively (e.g., the tardiness reduction is 3.7% on

average when only the 770 better cases are considered). The table clearly shows the

modified WSPT terms improve the performance of ATCSR. In the following section, we

will use the modified WSPT terms in further performance tests.

Table 6. Effect of the modified WSPT terms Continuous setup Separable setup

ATCSR(new WSPT term) vs.

ATCSR

ARCSR(new WSPT term) vs.

ATCSR
*

Better 770, 45% , 3.7% 785, 46% , 3.8%

Equal 466, 28% , 0% 457, 27%, 0%
Worse 465, 27% , -2.8% 459, 27% , -3.1%

* the setup of a future job starts at the decision time instead of the ready time

(b) The new introduced ATC-based rules, ATCRCS and ATCRSS

Several new formulas are introduced for the slack term and the ready time term in

sections 3.2.1. In order to determine the indexes of the new ATC-based rules, we evaluate

the effect of these formulas. The considered ATC-based indexes in the experiment have

the following format:

)
)0, max(

exp()exp()exp()(
2

D

tr

sk

s

C

B
At,i,j I

jij −
−−−= (7)

where A: modified WSPT term from section 4.2.1.

 B: numerator of the exponent of the slack term in section 4.2.2.

 C: denominator of the exponent of the slack term in section 4.2.3.

 D: denominator of the exponent of the ready time term in section 4.2.4.

33

Tables 7 and 8 show the results of the best of the best measure and the territory

measure for the continuous setup case, respectively. Tables 9 and 10 are for the separable

setup case. The three numbers in each cell of tables 7 and 9 are the number of problems

in which the corresponding index gives tardiness values that are better than, equal to, or

worse than those of the benchmarking index (ATCSR with the modified WSPT term).

The three percentage values in each cell of tables 8 and 10 are the average percentage of

better, equal, or worse grids in the territory measure of the 1701 problems, when the

corresponding index is compared to the benchmarking index (ATCSR with the modified

WSPT term).

The formulas of column 3 of tables 7 to 10 are newly proposed in section 3.2.1,

while the formulas of column 2, column 4, and column 5 are used in ATCSR, ATC and a

modification of ATC (Raman et al. 1997), respectively. Tables 9 and 10 are similar to

tables 7 and 8 respectively, except for the separable sequence dependent setup. The rows

of the tables consider combinations of the exponent denominator of the slack term and

the exponent denominator of the ready time term. The formulas in rows 3, 4, and 5 have

newly proposed formulas.

Tables 7 and 10 show the following for the continuous setup cases:

• When comparing the second and fourth rows and the third and fifth rows, both

show that the average setup time in the exponent denominator of the slack term (when

given in these forms) significantly improves the performance.

34

• When comparing the second and third rows and the fourth and fifth rows, both

show that the average setup time in the exponent denominator of the ready time term

(when given in these forms) does not affect the results significantly.

• When comparing the second and fourth columns and the third and fifth columns,

both show that the ready time in the exponent numerator of the slack term (when given in

these forms) does not make a significant difference to the results.

• When comparing the second and third columns and the fourth and fifth columns,

both show that sij in the exponent numerator of the slack term (when given in these forms)

increases the number of better cases (table 7) and the average percentage of grids with

tardiness reduction (table 8); however it also increases the number of worse cases and the

average percentage of grids with worse solutions for 1701 problems.

Table 9 and table 10 show comparable results to table 7 and table 8 for the separable

setup cases. The new rules are proposed based on the above test results, and we select

terms based on the performance of the test (the performances are not significantly

different) and their simplicity. Because tpd jj −− yields both fewer worse cases in the

best-of-the-best measure and lower percentage of average worse grids in the territory

measure, and also because the formula is simpler than others, we select it as the

numerator of the exponent of our new rules. In deciding formulas based on the results of

rows, we note the tables show similar performances in the fourth and fifth rows, and we

35

select the formula in the fourth rows for its simplicity. The resultant formulas are given

below:

The index of ATCRCS (for continuous setup):

)
)0, max(

exp()exp()
)

)0, max(
exp(

)0, max(
)(

32(1

pk

tr

sk

s

spk

tpd

trsp

W
t,i,j I

jijjj

jijj

j

ATCRCS

−
−−

+

−−
−

−++
= (8)

The index of ATCRSS (for separable setup):

)
)0, max(

exp()exp()
)

)0, max(
exp(

) , max(
)(

32(1 pk

tr

sk

s

spk

tpd

-trsp

W
t,i,jI

jijjj

jijj

j

ATCRSS

−
−−

+

−−
−

+
= (9)

Notably, the above choices of the slack term for (8) and (9) could be changed

depending on the objective of the scheduling. For example, if we are aggressive, we can

maximize the possibility of getting better schedules (at the cost of increased chance of

getting worse schedules) by using the formulas of the third or fifth columns and the

formula of the fifth row (instead of the fourth row). After deciding the indexes of the new

rules, we compare the new ATC-based rules with ATCSR in the following section.

36

Table 7. The best-of-the-best test (for the continuous sequence dependent setup)
 B
C, D

dj-pj-max(rj,t) dj-pj-sij-max(rj,t) dj-pj-t dj-pj-sij-t

pkpk 31 , 0, 1701, 0 218, 1221, 262 24, 1636, 41 224, 1196, 281

)(, 31 spkpk + 72, 1557, 72 250, 1160, 291 73, 1562, 66 245, 1170, 286

)(),(31 pkspk + 450, 1139, 112 511, 970, 220 462, 1111, 128 516, 953, 232

)(),(31 spkspk ++ 480, 1077, 144 531, 938, 232 484, 1078, 139 534, 933, 234

Table 8. The territory test (% for the continuous sequence dependent setup)
 B,
C, D

dj-pj-max(rj,t) dj-pj-sij-max(rj,t) dj-pj-t dj-pj-sij-t

pkpk 31 , 0, 100, 0 15.6, 61.5, 22.9 8.7, 89.4, 1.9 21, 56.2, 22.8

)(, 31 spkpk + 5.1, 81.7, 13.2 15.5, 58.8, 28.8 10, 82.8, 7.2 20.7, 53.5, 25.8

)(),(31 pkspk + 40.3, 43.5, 16.1 40.2, 41.6, 18.2 43.9, 39.9, 16.2 43.5, 38.2, 18.3

)(),(31 spkspk ++ 39.2, 43.1, 17.7 39.3, 41.1, 19.6 43.8, 39.3, 16.9 43.4, 37.7, 19

Table 9. The best-of-the-best test (for the separable sequence dependent setup)
 B,
C, D

dj-pj-max(rj,t)
dj-pj-max(rj,t+sij

)
dj-pj-t dj-pj-sij-t

pkpk 31 , 0, 1701, 0 196, 1223, 282 34, 1606, 61 222, 1190, 289

)(, 31 spkpk + 123, 1493, 85 269, 1122, 310 120, 1506, 75 288, 1126, 287

)(),(31 pkspk + 455, 1133, 113 497, 985, 219 461, 1092, 148 509, 962, 230

)(),(31 spkspk ++ 513, 1039, 149 549, 926, 226 515, 1042, 144 561, 921, 219

Table 10. The territory test (% for the separable sequence dependent setup)
 B,
C, D

dj-pj-max(rj,t)
dj-pj-max(rj,t+sij

)
dj-pj-t dj-pj-sij-t

pkpk 31 , 0, 100, 0 15.5, 61.5, 23.1 8.9, 89.9, 2.3 20.8, 56.3, 22.9

)(, 31 spkpk + 6.6, 80.3, 13.2 16.3, 55.2, 28.5 11.3, 81.5, 7.2 21.6, 53, 25.4

)(),(31 pkspk + 39.9, 44, 16.1 39.7, 42, 18.4 43.3, 40.3, 16.3 42.9, 38.6, 18.5

)(),(31 spkspk ++ 39.4, 43.2, 17.4 39.4, 41.2, 19.4 43.9, 39.5, 16.6 43.5, 37.8, 18.7

37

(III) The performance of the new proposed ATC-based rules

This section evaluates the new proposed ATC-based rules over ATCSR on the single

machine with the continuous setup and separable setup, respectively.

(a) ATCRCS vs. ATCSR

We compare ATCRCS with ATCSR for continuous setup under the best of the best

measure and the territory measure.

The best of the best measure

Among the considered 1701 problems, ATCRCS performs better than, equal to, and

worse than ATCSR in 915 problems (54%), 390 problems (23%) and 396 problems (23%),

respectively. When ATCRCS outperforms ATCSR, the average reduction of tardiness is

5.1%. In the opposite case, ATCRCS gives 2.4% higher weighted tardiness than ATCSR.

Based on this measure, we also study the effect of each factor. The test results in

figure 6(a) show ATCRCS outperforms ATCSR at all levels of all factors except at the

low level of factor 1, setup severity. This figure shows that ATCSR performs better than

ATCRCS only when the average setup time is short (2% of the average processing time).

When the setup severity level is set at 30% and 60%, which are not parts of Pfund’s level

of factor 1, additional tests show that ATCSR performs better than ATCSR. When setup

severity is 30%, ATCRCS gives 283 better problems, 104 equal problems, and 180 worse

problems in 567 newly generated problems (also generated by Pfund’s method, but at the

38

level value of 30% and 60% of factor 1). When the value of setup severity is increased to

60%, the results are 359, 75, and 133 problems respectively.

39

(a) Effect of steup severity0100200300400500
Low (0.02) Center (1.01) High (0.2)

 (a) Effect of steup severity0100200300400500
Low (0.02) Center (1.01) High (0.2)

(b) Effect of due date tightness050100150200250300350
Low (0.3) Center (0.6) High (0.9)

(b) Effect of due date tightness050100150200250300350

Low (0.3) Center (0.6) High (0.9)

 (c) Effect of due date range050100150200250300350
Low (0.25) Center (0.63) High (1)

 (c) Effect of due date range050100150200250300350
Low (0.25) Center (0.63) High (1)

 (d) Effect of job availability050100150200250300350
Low (0.2) Center (0.5) High (0.8)

 (d) Effect of job availability050100150200250300350
Low (0.2) Center (0.5) High (0.8)

 (e) Effect of ready time tightness050100150200250300350
Low (1) Center (5.5) High (10)

 (e) Effect of ready time tightness050100150200250300350
Low (1) Center (5.5) High (10)

(a) ATCRCS vs. ATCSR (b) ATCRSS vs. ATCSR

 Figure 6. Effect of factors

40

The territory measure

The results of a territory test are shown in figure 7(a) by scenarios (statistics of seven

problems are summarized in each scenario of the figure). Figure 7(a) shows when setup

severity is at high or center levels (scenarios 1 to 81 and scenarios 82 to 161,

respectively), ATCRCS significantly outperforms ATCSR. When setup severity level is

low (scenarios 163 to 243), many grid points yield equal performance for ATCRCS and

ATCSR. We also note when the setup severity level is low and due date range tightness is

central or low (scenarios 190 to 243), ATCRCS outperforms ATCSR; only when the

setup severity level is low and the due date tightness level is high (scenarios 163 to 189),

ATCSR slightly outperforms ATCRCS. We also note the curve of the worse percentage

is relatively stable; it is not as sensitive to scenarios as the other two curves.

00.20.40.60.81
1 23 45 67 89 111 133 155 177 199 221 243ScenariosPercentage BetterTieWorse 00.20.40.60.81

1 23 45 67 89 111133 155 177 199 221243ScenariosPercentage BetterTieWorse

 (a) ATCRCS vs. ATCSR (b) ATCRSS vs. ATCSR

 Figure 7. The territory test

(b) ATCRSS vs. ATCSR

This section performs the same tests for the separable setup type. Because ATCRSS

is the only rule to solve a problem with separable sequence dependent setup, ATCSR is

41

modified so that a setup can start at the decision time instead of the ready time of a job.

The results of the test for ATCRSS are similar to that of ATCRCS.

The best of the best measure

Among the 1701 problems considered, ATCRSS performs better than, equal to, and

worse than ATCSR in 912 problems (54%), 400 problems (23%) and 389 problems (23%),

respectively. When ATCRSS outperforms ATCSR, the average reduction of tardiness is

5.3%. In the opposite case, ATCRSS gives 2.5% higher weighted tardiness than ATCSR.

The test results in figure 6(b) show ATCRSS outperforms ATCSR at all levels of all

factors except at the low level of factor 1, setup severity. When setup severity level is set at

30% and 60%, which are not parts of Pfund’s level of factor 1, additional tests show that

ATCRSS performs better than ATCSR. When the level of setup severity is 30%, ATCRSS

gives 291 better problems, 121 equal problems, and 155 worse problems in the newly

generated 567 problems mentioned in section 7.4.2. When the level of setup severity is

increased to 60%, the results are 370, 75, and 122 problems, respectively.

The territory measure

For the separable setup, figure 7(b) shows a pattern similar to figure 7(a). When

setup severity is at high or center levels (scenarios 1 to 81 and scenarios 82 to 161,

respectively), ATCRSS significantly outperforms ATCSR. When setup severity level is

low (scenarios 163 to 243), many grid points yield equal performance for ATCRSS and

ATCSR. We also note when the setup severity level is low and due date range tightness is

central or low (scenarios 190 to 243), ATCRSS outperforms ATCSR; only when the

42

setup severity level is low and due date tightness level is high (scenarios 163 to 189),

ATCSR slightly outperforms ATCRSS. We also note the curve of the worse results is

relatively stable; it is not as sensitive to scenarios as the other two curves.

(IV) The results from the proposed new rules vs. the optimal solution

 This section compares the performances of ATCRCS and ATCRSS with optimal

solutions. Six scenarios (5 jobs, 6 jobs, 7 jobs, 8 jobs, 9 jobs and 10 jobs) are tested on a

single machine. Each scenario contains five randomly generated problems. Table 11 and

figure 8 show the average computation time needed to achieve the optimal solution, we

used Lingo 9.0 on a desktop with 3.0 GHz processor and 1TB RAM. It shows that it takes

more than half of a day to get the optimal solution for 10 jobs on a single machine.

However, for the dispatching method, it spends less than 1 second to generate a schedule

for all tested problems. Appendix A and B are the proposed non-linear IP model and its

lingo program. Appendix C is an example to schedule 5 jobs on a single machine by the

lingo program.

4
3

Table 11. Computation time to get optimal solution for different cases

Continuous type Separable type
Time 5 jobs 6 jobs 7 jobs 8 jobs 9 jobs 10 jobs 5 jobs 6 jobs 7 jobs 8 jobs 9 jobs 10 jobs

Test 1 1 4 141 388 4725 51356 1 5 57 287 7979 52433

Test 2 1 2 28 229 1734 29491 1 2 12 257 1414 46709

Test 3 1 3 34 338 7899 105364 1 3 66 229 6534 62539

Test 4 1 4 12 132 2915 31433 1 2 13 147 1838 26330

Test 5 1 2 21 285 4145 37235 1 3 50 223 3621 31310

Average (S) 1 3 47.2 274.4 4283.6 50975.8 1 3 39.6 228.6 4277.2 43864.2

Average (H) 0.00028 0.00083 0.01311 0.07622 1.18989 14.1599 0.00028 0.00083 0.011 0.0635 1.18811 12.1845

44

0

2

4

6

8

10

12

14

16

5 Jobs 6 Jobs 7 Jobs 8 Jobs 9 Jobs 10 Jobs

C
o

m
p

u
ta

ti
o

n
 t

im
e
 (

h
o

u
rs

) Continuous type Separable type

 Figure 8. Average computation time to get optimal solution

Figure 9 shows the tardiness comparison (the percentage of the result from the

proposed rules deviates from the optimal solution). Result shows among the 60 tested

problems, the proposed ATC-based rules get an optimal solution 36 times. There are

13 problems to achieve a near optimal solution (deviation is within 5% of the optimal

solution). The last 11 problems have a deviation over 10% of the optimal solution.

The test shows that the proposed new rules generate a quality schedule, when the

problem size is small.

0

5

10

15

20

25

30

35

40

0 (0~5%) (5~10%) (10~15%) (15~20%) (20~30%) (30%~50%)

N
u

m
b

e
r

o
f

c
a
s
e
s

 Figure 9. Deviation from optimal solution

In conclusion, the proposed new rules, ATCRCS and ATCRSS, are extensions of

ATCSR (Pfund et al. 2008). All these three rules use the same terms but different

formulas in some terms, for example, the proposed ATCRCS and ATCRSS use ready

45

time and sequence dependent setup in the WSPT term, while not for ATCSR. The

logics or properties behind the WSPT term, the slack term, setup time term, and ready

time term of these three rules are the same: a job has larger slack has a lower priority

to be processed next; a job with a larger job weight or a shorter processing time has a

higher priority to be processed next; a job with a shorter sequence dependent setup

has a higher priority to be processed next; and a ready job has a higher priority to be

processed next than a future job.

46

4. Performances of new rules on the identical parallel machines

 This section evaluates the performance of the proposed ATC-based dispatching

rules, ATCRCS and ATCRSS, on the identical parallel machines with other

ATC-based dispatching rules.

4.1 Problem description and assumptions

 This paper considers two problems: Pm|rj,sij,con |∑wjTj and Pm|rj,sij,sep |∑wjTj.

The first problem is stated as: there are n jobs arriving to m identical parallel

machines at different times. Each job j has its ready time (rj), processing time (pj), due

date (dj), and job weight (wj). The setup time (sij) of each pair of jobs i and j is

sequence dependent and the continuous type, con. In general, sij is not equal to sji. The

objective is to minimize the total weighted tardiness of jobs,∑
=

n

j

jjTw
1

, where Tj is the

tardiness of job j, max{0,Cj-dj}, and Cj is the competition time of job j. The second

problem is the same as the first problem except that the setup is changed into the

separable type, sep.

Both problems assume the following:

• The job attributes (pj, dj, wj, rj, sij) are known in advance.

• The machines are parallel identical.

• Each machine can process at most one job at each time.

• Job preemption is not allowed.

47

• Production interruptions such as machine breakdown and order cancellation do

not happen.

4.2 Benchmark methods and design of experiment

 Five ATC-based dispatching rules, BATCS, BATCSmod, ATCSR, ATCRCS and

ATCRSS are studied in the experiments. When BATCS and BATCSmod are used as

benchmark methods, their batch size is set at 1. ATCSR, ATCRCS and ATCRSS have

three k values, while BATCS and BATCSmod have only two k values. These

ATC-based indexes are given as below:

BATCS (Mason et al. 2002)

)exp()
)0,max(

exp()(
21 sk

s

pk

trpd

p

w
t,i,jI

ijjjj

j

j

BATCS −
−−−

−= (10)

BATCSmod (Pfund et al. 2008)

)exp()
)0),0,max(max(

exp()(
21

mod
sk

s

pk

trpd

p

w
t,i,jI

ijjjj

j

j

BATCS −
−+−

−= (11)

ATCSR (Pfund et al. 2008)

)
)0,max(

exp()exp()
)0),max(max(

exp()(
321

,

pk

tr

sk

s

pk

trpd

p

w
t,i,jI

jijjjj

j

j

ATCSR

−
−−

−−
−= (12)

ATCRCS (Continuous sequence dependent setup)

)
)0, max(

exp()exp()
)0),, max(max(

exp(
)0, max(

)(

321

pk

tr

sk

s

pk

trspd

trsp

w

t,i,j I

jijjijjj

jijj

j

ATCRCS

−
−−

−−−
−

−++
=

(13)

48

ATCRSS (Separable sequence dependent setup)

)
)0, max(

exp()exp()
)0),, max(max(

exp(
) , max(

)(

321 pk

str

sk

s

pk

strpd

-trsp

w

t,i,jI

ijjijijjjj

jijj

j

ATCRSS

−−
−−

+−−
−

+

=

(14)

Two experiments are performed to evaluate the performances of ATC-based rules

on identical parallel machines scheduling. The first experiment completely repeats

Pfund’s 36 experimental design but considers more problems: Each of the six factors

has three levels (low, center, and high). The number of machines is set at 5 (m=5).

This experiment has 729 (36) scenarios. In each scenario, seven cases, or problems,

are randomly generated. In total, 5103 (729 x 7) problems are tested in the first

experiment. Table 12 shows factors and levels of Pfund et al. (2008). We evaluate the

performance of ATC-based rules by two types of tests, the best of the best test and the

territory test, which are explained in detail in sections 3.2.1

Table 12. Experiment of Pfund et al. (2008)

Pfund et al. (2008) 5 machines
Factors

Low Center High

Job machine factor 11 19 27
Setup severity factor 0.02 1.01 2
Due date tightness

factor
0.3 0.6 0.9

Due dtae range factor 0.25 0.63 1
Job availability factor 0.2 0.5 0.8

Ready time factor 1 5.5 10

* The ready time rj is generated with uniform probability in the range [dj- r_τ*pj, dj],
If (dj- r_τ*pj) is less than 0, a range of [0, dj] is used for ready time generation.

49

In the second experiment, we focus on the effect of the number of machines. This

is a 37 experimental design extended from Pfund’s 36 experiment. A new factor called

machine number factor is added to the experiment of Pfund et al. (2008). The low,

center, and high levels of this factor are set at 2, 4, and 6 respectively. In addition, the

low, center, and high levels of the job machine factor, u, are set at 10, 20, and 30. The

settings of the rest of the five factors (ŋ, г, R, Ja and r_г) are exactly the same as those

of Pfund. Table 13 contains nine sections, and shows the total number of jobs

considered in each section. There are 2187 (37) scenarios in this experiment. Each

scenario contains seven problems. In total, 15309 (2187 x 7) problems are considered

in the second experiment.

Table 13. Number of jobs of the experiment

Number of machines Job machine
factor: µ 2 Machines 4 Machines 6 Machines

µ=10 20 jobs 40 jobs 60 jobs
µ=20 40 jobs 80 jobs 120 jobs
µ=30 60 jobs 120 jobs 180 jobs

4.3 Performance comparison of different ATC-based rules with CSDS

 This section shows results of the two experiments mentioned in section 4.2 for the

continuous sequence dependent setup cases and separable sequence dependent setup

cases.

4.3.1 Performance comparison of different ATC-based rules with CSDS

(I) The best of the best test

 For each scheduling problem, ATCRCS and ATCSR make 3146 (22 x 11 x 13)

grids, and generate the same number of schedules. For BATCS and BATCSmod, 242

50

(22 x 11) grids and the same number of schedules are made. The schedule with the

smallest total weighted tardiness among the 3146, or 242 schedules is selected as the

corresponding rule’s final schedule for the considered problem. We compare the best

selected schedules, one from each scheduling method, and check which method gives

the best schedule.

 In this test, ATCRCS, ATCSR, BATCS and BATCSmod have 3407 (66.76%),

2157 (42.27%), 88 (1.7%) and 30 (0.59%) times to get the best solution out of the

5103 problems generated in the first experiment in section 4.2. The sum of percentage

is more than 100% due to ties. This test shows that ATCRCS yields more number of

the best cases than ATCSR, which significantly outperforms BATCS and

BATCSmod.

 Next, we compare the two best methods from the above experiment, ATCSR and

ATCRCS, and study the effect of each factor. In the 1701 problems (1/3 of 5103)

where the setup severity factor is low (average setup time is short, i.e., 2% of the

average processing time), ATCSR slightly outperforms ATCRCS (39% to 32% of

1701 cases); they show the same tardiness level for the rest cases (29% of 1701 cases).

Amongst the total of 5107 problems, there are 2908 (57%) problems where ATCRCS

is better, 536 (11%) problems are tied, and 1659 (32%) problem where ATCRCS is

worse. For problems where ATCRCS gives better results, the average of

improvements over ATCSR is about 3%. For problems where ATCSR gives better

results, ATCRCS yields worse results at an average regression of about 2.1% over

ATCSR.

51

(II) The territory test

 This section performs the territory test as follows: for each of the 5103 problems

generated in 4.2, the results from ATCRCS and ATCSR are compared at each of all

3146 grid points and the percentages of grid points at which ATCRCS performs better

than, equal to and worse than ATCSR are recorded. The test uses the average values

of the percentages of the seven problems of each scenario. This analysis is important

in relation to the regression method because the k values estimated by the regression

method are somewhat away from the best grid point in a random fashion. When the

best k values are not estimated accurately, the scheduling method with a larger

favorable territory is likely to give a better schedule. (On the other hand, when the

regression equation gives the best k values accurately, the best of the best test

introduced in the previous section is more relevant because it compares the best points

selected by ATC-based rules.)

 Figure 10 (a-i, a-ii, and a-iii) shows that when setup severity is at the high or

center levels (scenarios 1 to 81 or scenarios 82 to 162, respectively) with 55, 95, and

135 jobs on 5 machines, respectively, ATCRCS performs significantly better than

ATCSR. It also shows that the number of jobs does not affect the test result much.

When setup severity level is low (scenarios 163 to 243), many grid points yield the

same total weighted tardiness for these two methods. The percentage of ties decreases

when the number of jobs increases. It can also be noticed that when the setup severity

level is low and due date range tightness is central or low (scenarios 190 to 243),

ATCRCS outperforms ATCSR again. Only when the setup severity level is low and

due date tightness level is high, ATCSR is found to have less chance to outperform

ATCRCS in the territory test (scenarios 163 to 189).

52

0.00.20.40.60.81.0
1 23 45 67 89 111 133 155 177 199 221 243X: ScenarioPercentage BetterTieWorse 0.00.20.40.60.81.0 1 23 45 67 89 111 133 155 177 199 221 243X: ScenarioPercentage BetterTieWorse

 (i) 55 jobs on 5 machines (i) 55 jobs on 5 machines

0.00.20.40.60.81.0
1 23 45 67 89 111 133 155 177 199 221 243X: ScenarioPercentage BetterTieWorse

0.00.20.40.60.81.0
1 23 45 67 89 111 133 155 177 199 221 243X: ScenarioPercentage BetterTieWorse

 (ii) 95 jobs on 5 machines (ii) 95 jobs on 5 machines

0.00.20.40.60.81.0 1 23 45 67 89 111 133 155 177 199 221 243X: ScenarioPercentage BetterTieWorse

0.00.20.40.60.81.0
1 23 45 67 89 111 133 155 177 199 221 243X: ScenarioPercentage BetterTieWorse

 (iii) 135 jobs on 5 machines (iii) 135 jobs on 5 machines

 (a) ATCRCS vs. ATCSR (b) ATCRSS vs. ATCSR

 Figure 10. Territory test

(III) Effect of the number of machines

 Figure 11(a) shows the effect of the number of parallel machines. It shows that

when the level of the machine number factorμincreases, ATCRCS outperforms

53

ATCSR more. Additionally, for a given value of job machine factor,μ, using more

machines yields more number of better cases.

X: Number of machines400500600700800900100011001200
2M 4M 6MNumber of better

 cases Mu=10Mu=20Mu=30

X: Number of machines400500600700800900100011001200
2M 4M 6MNumber of better

 cases Mu=10Mu=20Mu=30

X: Number of machines02004006008001000
2M 4M 6MNumber of tie ca

ses Mu=10Mu=20Mu=30

X: Number of machines02004006008001000
2M 4M 6MNumber of tie case

s Mu=10Mu=20Mu=30

X: Number of machines300350400450500550600 2M 4M 6MNumber of worse
cases Mu=10Mu=20Mu=30

X: Number of machines300350400450500550600 2M 4M 6MNumber of worse
cases Mu=10Mu=20Mu=30

 (a) ATCRCS vs. ATCSR (b) ATCRSS vs. ATCSR

 Figure 11. The effect of the number of machines

4.3.2 Performance comparison of different ATC-based rules with SSDS

 This section shows the results of the two experiments explained in section 4.2 for

the separable sequence dependent setup cases. Due to the lack of benchmark methods

for the separable sequence dependent setup case, BATCS, BATCSmod, and ATCSR

are slightly modified as follows and compared with ATCRSS: if a future job is

selected to process next, its setup is allowed to start as soon as the last scheduled job

is finished.

54

(I) The best of the best test

 In this test, ATCRSS, ATCSR, BATCS, and BATCSmod have 3517 (68.92%),

1874 (36.72%), 101 (1.98%), and 45 times (0.88%) to get the best solution for the

5103 problems generated in the experiment in section 4.2. The sum of percentage is

more than 100% because of ties. This test shows that ATCSSR yields more number of

the best cases than ATCSR, which significantly outperforms BATCS and

BATCSmod.

 Next, we compare the two best methods, ATCSR and ATCRSS, in more detail.

The result shows ATCRSS outperforms ATCSR at all levels on all factors, even when

the setup severity is low (average setup time is short, i.e., 2% of the average

processing time). Amongst the total of 5107 problems, there are 3189 (62%) problems

where ATCSSR is better, 385 (8%) problems are tied, and 1529 (30%) problem where

ATCRSS is worse. For problems where ATCRSS gives better results, the average of

improvements over ATCSR is about 3.2%. For problems where ATCSR gives better

results, ATCRSS yields worse results at an average regression of about 2.0% over

ATCSR.

(II) The territory test

 Figure 10(b-i, b-ii, and b-iii) shows, when setup severity is at the high or center

levels (scenarios 1 to 81 or scenarios 82 to 162, respectively) for 55 jobs, 95 jobs, and

135 jobs on 5 machines, ATCRSS performs significantly better than ATCSR, and the

number of jobs does not affect the result significantly. When setup severity level is

low (scenarios 163 to 243), many grid points yield the same total weighted tardiness.

55

It can be noticed that when the setup severity level is low, and due date tightness level

is central or low (scenarios 190 to 243), ATCRSS outperforms ATCSR again. Also,

under this condition, the rate of ties decreases with increasing number of jobs. Only

when the setup severity factor level is low and due date tightness level is high,

ATCSR has less chance to outperform ATCRSS in the territory test (scenarios 163 to

189).

(III) Effect of the number of machines

 Figure 11(b) shows the effect of the number of machines. It tells that when the

value of the machine number factor,μ,increases, ATCRSS outperforms ATCSR

more. Additionally, for a given value of job machine factor,μ, using more machines

yields more number of better cases.

4.4 Computation time

 A larger search range and smaller grid size increase computation time while

improving the quality of the final schedule; the computation time and quality of

schedule need to be balanced in the application of the scheduling procedure. Table 14

shows the computation time of scheduling. All 5301 problems generated in section

4.2 are tested on a 32 bit notebook with Pentium (1.86GHz) processor and 1GB RAM.

We observe that using more scaling parameters improves the quality of results, but

needs little bite more computation time. Table 14 also shows the grid method is

computationally fast enough for most real applications; however, a regression method

will still be helpful when scheduling is needed soon. In appendix D, we modify the

single machine model to get a mathematic model for the parallel machines cases.

Appendix E discusses the application of the math model proposed in appendix D.

56

Table 14. The computation time

5 machines
Methods with 2 scaling parameters

(BATCS and BATCSmod)

Methods with 3 scaling
parameters (ATCSR, ATCRCS,

and ATCRSS)

55 jobs Less than 1 second/problem Less than 1 second/problem

95 jobs Less than 1 second/problem About 1.5 second/problem

135 jobs Less than 1 second/problem About 4.5 seconds/problem

57

5. THE PROPOSED LOOK_AHEAD HEURISTIC (LAIPM)

 The section introduces the proposed look-ahead heuristic and evaluates its

performances on the identical parallel machines. The considered setup is the

continuous type.

5.1 Introduction and potential application

The proposed heuristic, LAIPM, is different from other look-ahead heuristics in

the following ways. First, the proposed LAIPM is a search-based heuristic: it

generates multiple schedules and selects the schedule with the smallest total weighted

tardiness as the final schedule (these generated schedules are created by different

combinations of scaling parameters). Second, the concept of look-ahead has two

twofold meanings: (1) to select the next job on a machine, only the available jobs and

some near future jobs are considered; (2) among considered jobs at the decision time,

at most two jobs are selected by ATCRCS rule and at most one job is kept. This is

done by comparing the total weighted tardiness of these two jobs to that of the

reversed sequence. Finally, LAIPM uses a job switching heuristic to generate another

possible iteration schedule, which allows selected jobs to be switched on all machines.

The potential customers of the proposed LAIPM are from both manufacturing

industry and service industry. In the manufacturing industry, an example of the

parallel machines scheduling with the sequence dependent setup is the print shop

which has parallel print machines. The color change from a dark color to a lighter

color takes longer time than in the opposite case. In this example, the color changes

are deemed as the sequence dependent setups. Press die change is example at the

machine level, and assembly line setup is an example at the production line level.

58

In the service industry, an example is to generate schedules for maintenance

workers. In this case, maintenance staffs are the parallel machines. Failures or repair

requests are comparable to jobs to be processed on the parallel machines. The

traveling times between failures is deemed as sequence dependent setup. The

maintenance time is comparable to the job's processing time. Another example in the

service industry is the handicapped senior riding service. Handicapped persons call to

request a wheel-chair lift vehicle riding. The service agents know the departing and

destination location for each request. With limited resource (vehicles), they also

encounter the parallel machines scheduling problems with sequence dependent setup.

In this example, the distance between two calls is comparable to the sequence

dependent setup time.

5.2 Logic and flow chart of the LAIPM heuristic

To get the final schedule, LAIMP uses bellowing steps:

For a certain scaling parameters combination,

Step 1. Select the initial job on each machine. Twofold one-step look-ahead is used to

select the initial job for each machine (one-step means consider available jobs and the

nearest future job).

Step 2. Check the number of unscheduled jobs:

 (a) if no unscheduled jobs, go to step 4, pairwise exchange.

 (b) if there is one unscheduled jobs, assign it to the machine with the smallest

finish time and go to step 3, job switching heuristic.

59

 (c) if there are two or more unscheduled jobs, identify the critical machine

which has the smallest finish time and use twofold one-step look-ahead to select a job

(the critical job) on it. Reduce the number of unscheduled jobs by one and compute

the look-ahead thresh which is the sum of the finish time of the critical job and the

average of setup time.

 2.1. For other non critical machines, we consider them by the increasing order

of the finish time: the non critical machine with the smallest finish time is considered

first for its next job selection. After all machines finish selecting their next job, a

possible iteration schedule is created (Not all non machines must have the next

selected job in the iteration), go to step 3, job switching heuristic. To decide the next

job on the considered non critical machine, we start to count the number of

unscheduled jobs.

 (a) if all jobs are scheduled, go to step 3, job switching heuristic.

 (b) if one job is unscheduled, assign it to the considered non critical

machine. Reduce the number of unscheduled jobs by one and go to step 3, job

switching heuristic.

 (c) if two or more jobs are unscheduled, we only consider jobs whose

ready time is smaller or equal to the look-ahead thresh. These jobs are called qualified

jobs. Twofold look-ahead is used to select at most two qualified jobs.

 (1) If no qualified jobs, go to 2.1 (consider the job selection on the

next non-critical machine).

 (2) If only one qualified job is found, assign this job to the

considered non critical machine. Reduce the number of unscheduled jobs by one and

go to 2.1 (consider the job selection on the next non-critical machine).

60

 (3) If more than two qualified jobs are found, use twofold look-ahead

to assign one of them to the considered non critical machine. Reduce the number of

unscheduled job by one and go to 2.1 (consider the job selection on the next

non-critical machine).

Step 3. Job switching heuristic. The selected jobs on machines are used as inputs of

job switching heuristic. These selected jobs are switched among all machines to

determine another possible iteration schedule which has a small total weighted

tardiness value. This possible iteration schedule is compared with the possible

iteration schedule which is created in step 2. If the schedule from job switching

heuristic has a smaller total weighted tardiness and has a smaller sum of the machine

finish time, using the schedule generated by the job switching as the schedule of the

considered iteration, otherwise, using the schedule generated before the job switching

heuristic as the schedule of the considered iteration. More detailed information of job

switching heuristic is illustrated in section 5.3. Count the number of unscheduled job

and go to step 2.

Step 4. Pairwise exchange is used to reduce the total weighted tardiness for the

created schedule of each machine. More detailed information about pairwise

exchange is given in section 5.4. Until now, we get a schedule for a combination of

scaling parameters.

Creating schedules by other combinations of scaling parameters, among generated

multiple schedules, the schedule with the smallest total weighted tardiness is the final

schedule. The flow chart of the proposed heuristic is shown in figure 12.

61

Yes

No

o

 Yes No

Final schedule is the one with the smallest TWT

Two or more unscheduled jobs left.
Find the machine with the smallest
finish time.

Check non-critical machines by increasing
orders of ft, for the considered non-critical
machine:

Unscheduled job=1,
the last job is
assigned to the
considered machine.

Unscheduled jobs >=2.

Determine LA horizon.
Use ATCRCS to selects
at most two jobs and
determine the next job on
machine. Reduce # of
unscheduled job by 1.

Reduce the # of
unscheduled job by
1

All non-critical
are checked

 For each k1, k2 and k3 combination, do the followings

Schedule the Initial job on each machine.

Compute TWT of the generated schedule and pairwise exchange.

Figure 12. Flow Chart of the proposed heuristic Phase

ATCRCS selects two jobs, and decide the critical job. The
finish time of this job plus the average of setup is the
look-ahead thresh. Reduce # of unscheduled jobs by 1.

Go in iteration, the number of unscheduled jobs=0?

Only one job left.

Find the machine with
smallest finish time, assign
this job to it .

Go in best of best heuristic to decide sequence in the
considered iteration

Reduce the # of
unscheduled job by
1

62

5.3 The job switching heuristic

 To allow jobs switching on machine and among machines, we proposed job

switching heuristic. This heuristic is carried out after all machines finish considering

their next job selection. Information, like the selected jobs, is used as inputs of the job

switching heuristic.

 Consider a given iteration in the 3 machines’ scheduling, machines 1 and 2 have

assigned job, F and C (Machine 3 do not get assigned job) in the considered iteration.

At the beginning of this iteration, the last jobs on these three machines are A, E and B,

respectively. The input information is summarized in table 15:

Table 15. Input of smaller in smaller heuristic

Machine # Last job on machine assigned job on machine

 1* A F

2
3

E
B

 C

* The critical machine

 Job switching heuristic considers job switching among all machines: each

selected job have chance to be scheduled before the last job of each machine or after

the last scheduled job on each machine. In this example, job sequence A-F, F-A, A-C,

and C-A are considered on machine 1; job sequence E-F, F-E, E-C, and C-E are

considered on machine 2; and job sequence B-F, F-B, C-B, and BC are considered for

machine 3. Let TWTm,AB donate the total weighted tardiness of the schedule on

machine m where the last two jobs of the schedule are job A and job B. The total

weighted tardiness values of the considered sequences on machine m are computed.

Suppose these total weighted tardiness values are computed and given in table 16.

63

Table 16. Total weighted tardiness of considered sequence

Machine # Value of TWTm,AB

 1* TWT3,AF=10 TWT3,FA=8 TWT3,AC=6 TWT3,CA=3
2
3

TWT5,EF=5
TWT5,BF=8

TWT5,FE=2
TWT5,FB=4

TWT5,EC=9
TWT5,BC=12

TWT5,CE=2
TWT5,CB=4

* The critical machine

 In table 16, we want to decide the position of selected jobs (job F and job C) so

that the three parallel machines yields small total weighted tardiness. For the general

cases, table 16 has 2n * m values, where m is the number of machines that have

selected job in the considered iteration, n is the number of machines. The positions of

job F and job C can be determined by solving a linear binary programming with

several constrains. The mathematical model of above example is given as:

Min∑∑
m seq

seqm,seqm, X*TWT (seq=AF, FA, AC, CA, EF, FE, EC, CE, BF, FB, BC

and CB; m=1,2,3) (15)

Subject to:

X1,AF + X1,FA + X1,AC + X1,CA≤1 (16)

X2,EF + X2,FE + X2,EC + X2,CE≤1 (17)

X3,BF + X3,FB + X3,BC + X3,CB=1 (18)

X1,AF + X1,FA + X2,EF + X2,FE + X3,BF + X3,FB =1 (19)

X1,AC + X1,CA + X2,EC + X2,CE + X3,BC + X3,CB =1 (20)

where Xm,AB is the binary solution. Xm,AB=1 represents the schedule where the last two

jobs are A and B is on machine m.

64

 Constrains 16 to 20 can be divided into two groups: (1) row constrains or the

machine constrains (16, 17 and 18). Each machine can get at most one selected job. (2)

The column constrains or the selected job constrains (19 and 20). Each selected job

must be only scheduled by one time. Also, on each machine, each selected job has

two possible positions, either before the last scheduled job or after the last scheduled

job.

 To quickly decide the positions of the selected jobs, job F and job C, we

horizontally combine every two TWT values in table 17 into one value, and put these

values in table 17.

Table 17. Combined TWT table

Machine # Modified TWT value

 1* 18 (10+8) 9 (6+3)
2
3

7 (5+2)
12 (8+4)

11 (9+2)
16 (12+4)

* The critical machine

 Table 17 only contains 6 values (in general cases, n*m values). The problem

becomes simpler (the considered problem is changed into the assignment problem): it

is similar to find a value from each column from table 17 and satisfied with a

constraint that the number of selected value of each row is smaller or equal to one. In

this example, it is clear that 7 and 9 give the smaller sum value than others. The value

7 and 9 in table 17 are then tracked back to get solution in table 16: 7 is the sum of 5

and 2. 9 is the sum of 6 and 3 in table 16. To decide the sequence or the position of

the selected job C and F, we select the smaller value between 5 and 2 and the smaller

value between 6 and 3 as solutions. In this example, the schedule whose last two jobs

on machine 1 is C-A. The schedule whose last two jobs on machine 2 is F-E. Once

65

this sub-problem is solved, we have two schedules, one is from the job switching

heuristic and the other is generated before the job switching heuristic. These two

possible schedules are shown in table 18 and 19:

Table 18. Possible schedule (Before job switching heuristic)

Machine Last job Assigned job

 1* A F

2
3

E
B

 C

Table 19. Possible schedule (from job switching heuristic)

Machine Last job Assigned job

 1* C A

2
3

F
B

E

 To determine the schedule of the considered iteration, we compare the total

weighted tardiness of these two possible iteration schedules. The schedule of the

considered iteration is decided by the value of TWT and TWTswitch, where TWT is the

total weighted tardiness of the schedule before job switching heuristic, while

TWTswitch is the total weighted tardiness of the schedule from the job switching

heuristic. If TWTswitch is smaller and the sum of machine finish time becomes smaller,

the schedule generated by the job switching heuristic is the schedule of the considered

iteration; otherwise, the schedule generated before the job switching heuristic is the

schedule of the considered iteration.

5.4 Pairwise exchange

 Pairwise exchange is an improvement technique by switching two selected jobs’

position in predefined orders. It is used as soon as all jobs are assigned to machines.

66

Suppose a sequence on a machine has four jobs, A-B-C-D. The pairwise exchange

orderly considers following changes:

 B-A-C-D; (switch A and B)

 C-B-A-D; (switch A and C)

 D-B-C-A; (switch A and D)

 A-C-B-D; (switch B and C)

 A-D-C-B; (switch B and D)

 A-B-D-C; (switch C and D)

 The final sequence is the one with the smallest total weighted tardiness among all

considered schedules. In literature, this pairwise exchange technique is also suggested

in the improvement phase of the look-ahead heuristic of Chang et al. (2004).

5.5 An example (8 jobs on 6 machines)

This section uses the proposed look-ahead heuristic, LAIPM, to schedule 8 jobs

on 6 machines. The grid settings of scaling parameters, k1, k2, and k3, are that of Rene

and Lars (2009):

k1: 0.2, 1, 1.6, 2.4, 3.6, 4.8, 6

k2: 0.1, 0.7, 1.3, 1.9

k3: 0.001, 0.005, 0.05, 0.6, 1.2

The processing time, due date, sequence dependent setup time, job weight and ready

time of these 8 jobs are given in table 20 and table 21.

6
7

Table 20. Processing time, due date, job weight and ready time

 Job 1 Job 2 Job 3 Job 4 Job 5 Job 6 Job 7 Job 8

Processing time 8 2 6 9 8 5 3 2
Due date 10 5 13 12 10 8 7 8

Job weight 4 2 8 3 1 6 4 3
Ready time 4 0 5 0 7 0 0 5

Table 21. Sequence dependent setup time

 Job 1 Job 2 Job 3 Job 4 Job 5 Job 6 Job 7 Job 8

Initial setup 3 2 4 5 1 3 4 2
J1 0 1 1 3 2 2 2 3
J2 3 0 3 4 1 5 1 4
J3 1 5 0 2 4 1 4 1
J4 5 2 1 0 4 3 3 5
J5 2 3 5 2 0 2 1 2
J6 4 2 3 5 1 0 2 2
J7 5 2 4 3 3 3 0 2
J8 2 4 5 3 2 1 1 0

*IST: Initial Setup Time

68

To use the proposed look ahead heuristic generate schedule, we first consider the

combination of scaling parameters (k1=0.2, k2=0.1, k3=0.001).

Step 1. Decided initial job on each machine

 The initial jobs on all machines (machine 1 to machine 6) are J6, J7, J4, J1, J8

and J3, respectively. In this step, machine 1 is considered first, J6 is selected by the

one step look-ahead ATCRCS.

Step 2. Job selection on the critical machine

 After step 1, the number of unscheduled jobs is 2. We next identify the critical

machine. In this example, the critical machine is machine 2 whose finish time of job 7

is 7. To decide the critical job on the critical machine (machine 2), only two

unscheduled jobs (J2 and J5) left to be considered. The total weighted tardiness of

sequence J7-J2-J5 is compared with that of sequence J7-J5-J2. Because sequence

J7-J2-J5 has smaller total weighted tardiness (value is 22) than sequence J7-J5-J2

(value is 44). J2 is assigned on machine 2 as the critical job. The average setup time is

3. The look-ahead thresh is 14, which is the sum of the finish time of J2 (value is 11)

and the average setup time (value is 3).

Step 3. Job selection for non-critical machine

The non-critical machines are machines besides of machine 2. Machine 1 is

considered first because of its smallest finish time (value is 8). The last job, J5, is

assigned on machine 1. Now, all jobs are assigned, the considered iteration is the last

iteration. We have a possible schedule before the job switching heuristic. This

schedule is given as below:

69

Machine 1: J6-J5;

Machine 2; J7-J2;

Machine 3: J4;

Machine 4: J1;

Machine 5: J8;

Machine 6: J3;

The total weighted tardiness on all machines is 64.

Job switching heuristic uses the selected jobs, J2 and J5, as inputs. These two jobs are

switched on all machines. In this example, we consider following sequences:

J6-J2, J2-J6, J6-J5, and J5-J6 on machine 1;

J7-J2, J2-J7, J7-J5, and J5-J7 on machine 2;

J4-J2, J2-J4, J4-J5, and J5-J4 on machine 3;

J1-J2, J2-J1, J1-J5, and J5-J1 on machine 4;

J8-J2, J2-J8, J8-J5, and J5-J8 on machine 5;

J3-J2, J2-J3, J3-J5, and J5-J3 on machine 6;

To determine the position of the selected jobs (J2 and J5), the total weighted tardiness

of all above considered sequences is computed and put in table 22.

Table 22. TWT of considered sequences on machines

Machine 1 TWT62=14 TWT26=36 TWT65=7 TWT56=96

Machine 2 TWT72=18 TWT27=4 TWT75=13 TWT57=58

Machine 3 TWT42=32 TWT24=15 TWT45=22 TWT54=51

Machine 4 TWT12=46 TWT21=20 TWT15=35 TWT51=70

Machine 5 TWT82=23 TWT28=9 TWT85=12 TWT58=42

Machine 6 TWT32=50 TWT23=8 TWT35=33 TWT53=118

70

After computing the total weighted tardiness of above sequences, every two cells in

table 22 are combined into one cell horizontally to get table 23.

Table 23. Combined TWT table.

Machine 1 50 (14+36) 103 (7+96)

Machine 2 22 (18+4) 71 (13+58)

Machine 3 47 (32+15) 73 (22+51)

Machine 4 66 (46+20) 105 (35+70)

Machine 5 32 (23+9) 54 (12+42)

Machine 6 58 (50+8) 151 (33+118)

 In table 23, we want to find a value from each column and satisfied the constraint

that the number of selected values in each row is smaller or equal to 1. In this example,

the sum of 22 and 54 gives smaller value than other combinations (these two values

are bold in table 15). Also, from table 23, we know that 22 is the sum of 18 and 4 on

machine 2, while 54 is the sum of 12 and 42 on machine 5. We then go back to table

22 to find the selected jobs’ position. Table 22 shows that the total weighted tardiness

of sequence J2-J7 on machine 2 is 4, and the total weighted tardiness of sequence

J8-J5 is 12. The possible schedule generated by the job switching heuristic is:

Machine 1: J6;

Machine 2; J2-J7;

Machine 3: J4;

Machine 4: J1;

Machine 5; J8-J5;

Machine 6: J3;

71

 Until now, we have two possible iteration schedules. One is generated before job

switching heuristic and the other is generated by the job switching heuristic. Table 24

shows these two schedules and their total weighted tardiness.

Table 24. Two possible schedules and their tardiness.

Schedule Before job switching heuristic By job switching heuristic

Machine 1 J6-J5 J6

Machine 2 J7-J2 J2-J7

Machine 3 J4 J4

Machine 4 J1 J1

Machine 5 J8 J8-J5

Machine 6 J3 J3

TWT TWT=64 TWTswitch =58

 The total weighted tardiness TWTswitch (by job switching heuristic) on all

machines is 58. It is smaller than TWT before the job switching heuristic (64).

Because all jobs are scheduled, we use the schedule generated by the job switching

heuristic as the schedule before pairwise exchange.

Step 5. Pairwise exchange

 In this example, pairwise exchange does not further reduce the total weighted

tardiness on machines. For the considered combination of scaling parameters (k1=0.2,

k2=0.1, k3=0.001), the schedule on each machine after pairwise exchange is the same

as the schedule generated by the job switching heuristic:

Machine 1: J6;

Machine 2; J2-J7;

Machine 3: J4;

Machine 4: J1;

Machine 5; J8-J5;

72

Machine 6: J3;

 In similar, we generate schedules by other combinations of scaling parameters.

However, their total weighted tardiness is not as good as the schedule generated by

using k1=0.2, k2=0.1, and k3=0.001. The above schedule is selected as the final

schedule for this 8 jobs, 6 machines example.

5.6 Experiment design and benchmark methods

 We use the experiment of Xi and Jang (2012) to evaluate the proposed

look-ahead heuristic. The experiment of Yue and Jang is an extension of Pfund et al.

(2008) for the identical parallel machines scheduling. The differences of these two

experiments are shown in table 25. The considered experiment has 729 (36) scenarios.

In each scenario, seven cases, or problems, are randomly generated. In total, 5103

(729 x 7) problems are tested on 6 identical machines.

73

7
3

Table 25. Comparison of experiment in this research and that of Pfund et al. (2008)

Pfund et al.(2008): 5 machines Yue and Jang (2012): 6 machines
Factors

Low Center High Low Center High

Job machine factor 11 19 27 10 20 30
Setup severity factor 0.02 1.01 2 0.02 1.01 2
Due date tightness

factor
0.3 0.6 0.9 0.3 0.6 0.9

Due dtae range factor 0.25 0.63 1 0.25 0.63 1
Job availability factor 0.2 0.5 0.8 0.2 0.5 0.8

Ready time factor 1 5.5 10 1 5.5 10 ★
The ready time rj is generated with uniform probability in the range [dj- r_τ*pj, dj], If (dj- r_τ*pj) is less

than 0, a range of [0, dj] is used for ready time generation.

74

 The benchmark methods are divided into two groups: (1) Look-ahead scheduling

heuristics, and (2) Non-look ahead heuristic.

(1) Look-ahead scheduling heuristic

 Four look-ahead heuristics, heuristic of Chang et al. (2004) and three modified

heuristics by Yoon et al. (2011), are studied in the experiment. Chang’s heuristic

targets to minimize the total weighted tardiness and proved to be effective when the

problem size is small. Without considering sequence dependent setup, Yoon et al.

(2011) propose three look-ahead heuristics to minimize the total weighted tardiness

with equal ready time. Their heuristics exclude non-urgent jobs from the candidates

for the next job selection. Jobs are divided into urgent jobs and non-urgent jobs by a

computed thresh value. In order to compare these heuristics with other look-ahead

heuristics that consider sequence dependent setup, like Chang’s and LAIPM, we

make a modification so that these three heuristics can solve the total weighted

tardiness problem with future ready time and sequence dependent setup. Below shows

how these three heuristics (by Yoon et al. 2011) are modified: the idea of the

modification is that the sequence dependent setup and the possible machine idle time

is deemed as a part of the processing time, in the formula, we substitute pj from

(rj-t,0)+sij+pj

Modified heuristic 1:

Step 1: At decision time t, compute T=
u

dpstr jjij

uj

j) ,)0,max(max(++−∑
∈ , and construct set

G as { }Tdujj j ≤∈ , , where u is unscheduled job set and u is the number of

non-scheduled jobs.

75

Step 2: If G ≠ Ø, then select job j in set G with the minimum value of

{ } ./),max(,)0,max(max jjjjijj wtrdpstr −++−

Step 3: If G = Ø, then select job j with the minimum value of { } jjj wtrd /),max(− .

Modified heuristic 2:

Step 1: At decision time t, compute T=
2

B+α
, where α is

) ,)0,(max(max jjijjuj dpstr ++−∈ , β is) ,)0,(max(min jjijjuj dpstr ++−∈ , and u is

unscheduled job set. Set G includes jobs{ }Tdujj j ≤∈ , .

Step 2: If G ≠ Ø, then select job j in set G with the minimum value of

{ } ./),max(,)0,max(max jjjjijj wtrdpstr −++−

Step 3: If G = Ø, then select job j with the minimum value of { } jjj wtrd /),max(− .

Modified heuristic 3:

Step 1: Among unscheduled jobs, identify the job with the smallest Weighted

Modified Due Date (WMDD) index value: WMDDj =

{ }
j

jjijj

w

tdpstr −++− ,)0,max(max
. This job is noted as j*.

Step 2: At decision time t, compute T= { }∗∗∗∗ ++− jjijj dpstr ,)0,max(max . Set G

includes jobs{ }Tdujj j ≤∈ , , where u is unscheduled job set.

Step 3: If G ≠ Ø, then select job j in set G with the minimum value of

{ } ./),max(,)0,max(max jjjjijj wtrdpstr −++−

Step 4: If G = Ø, then select job j with the minimum value of { } jjj wtrd /),max(− .

(2) Non look-ahead heuristic

 The proposed LAIPM is also compared with ATCRCS (Xi and Jang 2012) which

is proved as an effective ATC-based heuristic on the identical parallel than ATCSR,

ATCS, BATCS, and BATCSmod.

76

5.7 Performance evaluation

 This section compares the proposed LAIPM with benchmark heuristics in

minimizing the total weighted tardiness on the identical parallel machines with the

consideration of sequence dependent setup and future ready time.

5.7.1 LAIPM vs. look-ahead heuristics

This section evaluates the performance of the proposed look-ahead heuristic and

selected look-ahead benchmark heuristics. The average rate of the total weighted

tardiness obtained by each of the heuristics over the total tardiness obtained by the

look-ahead heuristic of Chang et al. (2004) is shown in table 26. Results are sorted by

factors. Table 26 shows that the proposed look-ahead heuristic outperforms the

heuristic of Chang et al. (2004), which is better than all three modified heuristics of

Yoon et al. (2011). Among modified three heuristics of Yoon et al. (2011), modified

heuristic two is better than the others. (This part is not needed.)

 Table 27 shows the comparison of the proposed look-ahead heuristic to the

one-step look-ahead heuristic of Chang et al. (2004). Each cell of table 27 contains

three values, for example, 1701, 100%, 44% means that in the considered 1701

problems (60 jobs on 6 machines), there are 1701 (100% of 1701 problems) problems

where the proposed look-ahead heuristic gives better solution than the heuristic of

Chang et al. (2004). The average improvement of these 1701 problems is 44%.

 We also compare all heuristic and study the effect of each factor at different

levels. Figure 13 shows the related trends: (1) The proposed look-ahead heuristic

becomes more effective when the number of jobs is increased; (2) The proposed

77

look-ahead heuristic becomes more effective when the average of the setup time is

longer; (3) The proposed look-ahead heuristic tends to give better solutions when a

few jobs are available at time zero. (4) The proposed look-ahead heuristic performs

better than Chang’s heuristic when the ready time is relatively further to the due date.

(r-τ is larger).

 Both the proposed look-ahead heuristic and Chang’s one step look-ahead

heuristic use pairwise change technique to reduce the total weighted tardiness for the

generated schedule on each machine. For Chang’s method, if the three phase, pairwise

exchange, is removed, the average result will increase 22.46% compared to the results

of Change’s three phase method (pairwise exchanged is used). In other words, the

improvement of pairwise exchange in Chang’s work is 22.46%. While in the proposed

look-ahead heuristic (LAIPM), without using the pairwise exchange technique, the

average of total weighted tardiness increases about 7.63% than using the pairwise

exchange technique. From the experiment, we tell that if the phase of pairwise

exchange is removed for both methods, LAIPM still yields better solution than

Chang’s method.

78

Table 26. Performance of look-ahead heuristics

Factor LA(Chang) H1(Yoon) H2(Yoon) H3(Yoon) LAIPM

Jobs/mchine

µ=10 1 5.55 4.23 4.57 0.55

µ=20 1 6.54 4.69 4.86 0.4

µ=30 1 6.32 4.53 4.66 0.33

Setup severity

η=0.02 1 12.72 6.88 6.96 0.53

η=1.01 1 3.58 3.48 3.79 0.39

η=2 1 2.10 3.09 3.33 0.36

Due date

tightness

τ=0.3 1 12.72 8.83 9.30 0.30

τ=0.6 1 3.58 2.63 2.79 0.29

τ=0.9 1 2.11 1.99 2.00 0.69

Due date range

R=0.25 1 3.91 3.87 3.82 0.43

R=0.63 1 6.87 5.00 5.65 0.41

R=1 1 7.62 4.59 4.63 0.45

Jobs availability

Ja=0.2 1 6.18 4.40 4.74 0.53

Ja=0.5 1 7.38 5.34 5.62 0.42

Ja=0.8 1 4.85 3.72 3.74 0.34

Ready time

tightness

r-τ=1 1 5.24 3.92 4.10 0.52

r-τ=5.5 1 6.50 4.76 5.00 0.40

r-τ=10 1 6.67 4.77 4.99 0.37

Average 1 6.14 4.48 4.70 0.43

Table 27. Comparison (the proposed look-ahead heuristic to that of Chang et al. 2004)

6 machines 60 jobs 120 jobs 180 jobs

Better 1701,100%, 44.7% 1701,100%,60.27% 1701,100%,66.61%
Tie 0, 0%, 0% 0, 0%, 0% 0, 0%, 0%

Worse 0, 0%, 0% 0, 0%, 0% 0, 0%, 0%

79

Effect of job machine factor02468 μ=10 μ=20 μ=30

Effect of setup severity factor051015 η=0.02 η=1.01 η=2

Effect of due date tightness factor051015 τ=0.3 τ=0.6 τ=0.9

Effect of due data range factor0246810 R=0.25 R=0.63 R=1

Effect of job avalability factor02468 Ja=0.2 Ja=0.5 Ja=0.8

Effect of ready time factor02468 r-τ=1 r-τ=5.5 r-τ=10

LA(Chang) H1(Yonn) H2(Yonn)

H3(Yoon) LAIPM

 Figure 13. Comparison of factor effect of heuristics

5.7.2 LAIPM vs. non look-ahead heuristic (ATCRSR)

 This section evaluates the performances of LAIMP and ATCTCR (the newly

proposed ATC-based rule) over the generated 5103 problems in section 5.1. Each cell

in table 28 contains three values: the number of better cases gained by LAIMP, the

percentage of better cases over 1701 generated problems, and the average of tardiness

reduction of the better cases (compared to the solutions of ATCRCS). It shows that

80

LAIPM (look-ahead) gives more numbers of better schedules than ATCRCS (none

look-ahead), when the value of job machine factor increases. Also when the number

of considered jobs is increased, the difference between these two methods becomes

smaller and LAIPM gives more number of better cases with an increased tardiness

reduction : -(TWTLAIPM-TWTATCRCS)/TWTATCRCS.

Table 28. Performance comparison (LAIMP vs. ATCRCS)

6 machines 60 jobs 120 jobs 180 Jobs

Better 827,48.62%,9.06% 944,55.5%,11.01% 1026,60.31%,12.29%

tie 7,0.41%,0% 4,0.23%,0% 0, 0%, 0%
Worse 867,50.97%.7.66%, 753,44.27%,5.2% 675,39.69%,4.47%

 Table 28 shows the effect of the job machine factor. Table 29 to 33 shows the

effect of the rest five factors: Setup severity, due date tightness, due date range, job

availability, and ready time tightness. Form these tables, we notice that the number of

better cases gained by LAIMP increases with increasing the number of considered

jobs. This is the same at all levels of all factors, beside of the low level of due date

tightness. At each level of the due date tightness, the number of better cases gained by

LAIPM for 60 job, 120 jobs, and 180 jobs to ATCRCS is very close (288, 290, and

287 better cases respectively). It shows that due date tightness does not have

significant effect for LAIPM to gain more number of better cases, compared to

ATCRCS.

 We also find that the setup severity factor has a significant effect to the results

(LAIMP is compared with ATCRCS). Table 29 shows that LAIMP tends to give more

number of better solutions than that of ATCRCS, when the value of setup severity

factor is set at middle level (101% of the average processing time) and low level (2%

of the average processing time). In the real life, the length of the setup is usually about

81

10% to 40% of the average processing time. This setup length falls in the range of the

tested level: low setup level (2%) and the middle setup level (101%). Under this

condition, we suggest using LAIMP for the identical parallel machines scheduling

with sequence dependent setup and ready time, because it considers less number of

jobs.

8
2

Table 29. Effect of setup severity (LAIMP vs. ATCRCS).
6m 60 jobs 120 jobs 180 Jobs

Low level 440,77.6%,8.02% 486,85.71%,11.11% 503,88.71%,13.28%

Middle level 234,41.27%,11.97% 255,44.97%,12.69% 315, 55.56%,12.28%

High level 153,26.98%,7.6% 203,35.8%,8.66% 208,36.68%,9,93%

Table 30. Effect of due date tightness (LAIMP vs. ATCRCS)

6m 60 jobs 120 jobs 180 Jobs

Low level 288,50.79%,10.81% 290, 51.15%, 9.89% 287, 50.62%, 10.26%

Middle level 368, 64.9%, 11.63% 451,79.54%, 15.82% 479%, 84.48%, 18.71%

High level 171,30.16%, 0.92% 203,35.8%,1.93% 260, 45.86%, 2.9%

Table 31. Effect of due date range (LAIMP vs. ATCRCS)

6m 60 jobs 120 jobs 180 Jobs

Low level 253, 44.62%,7.17% 280, 49.38%, 7.9% 296, 52.22%, 8.94%

Middle level 272, 47.97%,11.38% 311, 54.85%, 13.99% 363, 64.02%, 14.5%

High level 302, 53.26%, 8.75% 353, 62.26%, 10.85 367, 64.73%, 12.95%

Table 32. Effect of Jab availability (LAIMP vs. ATCRCS)

6m 60 jobs 120 jobs 180 Jobs

Low level 206, 36.33%, 6.56% 254, 44.80%,8.64% 274,48.32%,9.83%

Middle level 289, 50.97%, 8.88% 324, 57.14%, 10.93% 353,62.26%,12.35%

High level 332, 58.55%, 10.95% 366, 64.55%, 12.72% 399, 70.37%, 14.06%

Table 33. Effect of ready time tightness (LAIMP vs. ATCRCS)

6m 60 jobs 120 jobs 180 Jobs

Low level 240, 42.33%, 4.72% 255, 44.97%, 5.88% 272, 47.97%, 7.38%

Middle level 289, 50.97%, 9.63% 325, 57.32%, 11.18% 346, 61.02%, 12.38%

High level 298,52.56%, 12.2% 364,64.2%, 14.46% 408, 71.96%, 15.6%

83

 Figure 14 shows the number of better cases gained by LAIPM at all levels of

setup severity factor, due date tightness factor, due date range factor, job availability

factor and ready time factor.

Setup severity

0

100

200

300

400

500

600

1 2 3N
u

m
b

e
r

o
f

b
e

tt
e

r
c

a
s

e
d

 o
u

t
o

f
5

6
7

c

a
s

e
s

Due date tightness

0

100

200

300

400

500

600

60 jobs 120 jobs 180 jobsN
u

m
b

e
r

o
f

b
e

tt
e

r
c

a
s

e
d

 o
u

t
o

f
5

6
7

c

a
s

e
s

Due date range

0

100

200

300

400

1 2 3N
u

m
b

e
r

o
f

b
e

tt
e

r
c

a
s

e
d

 o
u

t
o

f
5

6
7

c

a
s

e
s

Job availability

0

100

200

300

400

500

1 2 3N
u

m
b

e
r

o
f

b
e

tt
e

r
c

a
s

e
d

 o
u

t
o

f
5

6
7

c

a
s

e
s

Ready time factor

0

100

200

300

400

500

1 2 3N
u

m
b

e
r

o
f

b
e

tt
e

r
c

a
s

e
d

 o
u

t
o

f
5

6
7

c

a
s

e
s

0

1 0 0 0

6
0

jo
b

s

1
8
0

jo

b
s

Low level

Middle level

High level

 Figure 14. Number of better cases gained by LAIPM at different levels

84

6. CONCLUSIONS AND FUTURERESEARCH

 This study is focused on minimizing the total weighted tardiness on the single

machine and identical parallel machines. For the single machine scheduling, we

analyze ATC-based dispatching rules and propose two new ATC-based rules,

ATCRCS and ATCRSS. The performances of these two new rules are evaluated on

the single machine and identical parallel machines. Experiments show that these new

rules outperform other ATC-based rules in minimizing the total weighted tardiness in

both single machine scheduling and parallel machines scheduling.

 This paper also proposes a look-ahead heuristic (LAIPM) for the identical parallel

machines scheduling with sequence dependent setup and future ready time. Twofold

look-ahead is used to choose the next selected jobs on each machine. After all

machines finish considering their next job selection, a possible iteration schedule is

created. After that, the selected jobs in the considered iteration trigger the job

switching heuristic to generate another possible iteration schedule. The schedule of

the considered iteration is the better one.

 Different with other look-ahead heuristic, like Change’s one step look-ahead

method, the job switching heuristic looks one-step back: each selected job have

chance to be scheduled before the last scheduled job on each machines.

Experiment shows the proposed heuristic not only outperforms look-ahead

heuristics by Chang et al. (2004) and modified heuristics by Yoon et al. (2011), but

also gives better solution than ATCRCS which is a non look-ahead method. When

85

compared to ATCRCR, we notice that when setup severity is set at low level and

middle level, LAIMP tends to gives better solution than ATCRCS.

 For the future research, generating formulas to estimate values of scaling

parameters in the index of ATCRCS is a good topic. It saves computation time and

changes the search-based heuristic into an estimate-based heuristic. Besides of that,

the proposed look-ahead heuristic may be modified and used in a more complex

production environment where the parallel machines are unrelated or machine

dependent.

86

7. REFERENCE

Allahverdi, A., and Mittenthal, J., (1994). Scheduling on M parallel machines subject

to random breakdowns to minimize expected mean flow time. Naval Research
Logistics, 41, 677-682

Anglani, A., Grieco, A., Guerriero, E., and Musmanno, R., (2005) Robust scheduling
 of parallel machines with sequence-dependent set-up cost. European journal of
 operational research, 161, 704-720

Anghinolfi, D., and Paolucci, M., (2008) A new ant colony optimization approach for

the single machine total weighted tardiness scheduling problem. Int J Oper Res, 5:
(1) 44–60

Arroyo, J. E. C., Nunes, G. V. P., and Kamke, E.H., (2009) Iterative local search
 heuristic for the single machine scheduling problem with sequence dependent
 setup times and due dates. Proceedings of the Ninth international conference on
 hybrid intelligent systems (Shenyang, China, Aug 2009), 104, 505-510

Arroyo, J. E. C., Rafael, D. S. O., Alcione, D. P. O., (2011) Multi-objective variable

neighborhood search algorithms for a single machine scheduling problem with
distinct due windows. Theo Comput Sci 281: 5-19

Asano, M., and Ohta, H., (1999) Scheduling with shutdowns and sequence dependent

setup times. Int J Prod Res 37(7): 1661-1676

Azizoglu, M., and Webster, S., (1997) Scheduling job families about an unrestricted

common due date on a single machine. Int J Prod Res 35: 1321–1330

Balakrishnan. N., John J. K., and Sri V. S,. (1999) Early/tardy scheduling with
 sequence dependent setups on uniform parallel machines. Computer & Operation
 Research 26 127-141

Chang T. Y., Chou F. D., and Lee C. E., (2004) A heuristic algorithm to minimize
 total weighted tardiness on a single machine with release dates and
 sequence-dependent setup times. Journal of the Chinese Institute of Industrial
 Engineers 21:289-300

Chen. J. F., (2009) Scheduling on unrelated parallel machines with
 sequence-andmachine dependent steup times and due date constraints. Int J Adv
 Manuf Technol 44:1204-1212

Chen Z. L., and Powell W. B., (2003) Exact algorithms for scheduling multiple
 families of jobs on parallel machines. Navel research logistics 50: 823-840

Christoph, H., Lars, M., and Jens, Z., (2007) Planning and scheduling Heuristic for
 parallel machines. Proceedings of the 2007 International Engineering Research
 Conference. Nashivill, Tenn, 1545-1550

87

Christos P. K., and Milton L. S., (1998) Look Ahead Scheduling for Minimizing
 Machine Interference. INT. J. PROD. RES, Vol. 26, No. 9, 1523-1533

Cicirello, V. A., and Smith, S. F., (2005) Enhancing stochastic search performance by

value-biased randomization of heuristic. J Heuristics, 11: 5–34

Cigolini, R., Perona, N., Portioli, A., and Zambell, T., (2002) A New Dynamic
 Look-ahead Scheduling Procedure for Batching Machines. Journal of Scheduling
 5: 185-204

Drieel, R., and Monch, L., (2009) Scheduling jobs on parallel machines with sequence
 dependent setup times, precedence constraints, and ready times using variable
 neighborhood search. IEEE, 273-278

Drieel, R., and Monch, L., (2011) Variable neighborhood search approaches for
 scheduling jobs on parallel machines with sequence-dependent setup times,
 precedence constrains, and ready times. Computers and Industrial Enginnering
 61,336-345

Eom, D. H., Shin, H., Kwun, I. H., Shim, J. K., and Kim, S. S., (2002) Scheduling
 jobs on parallel machines with dependent family set-up times. International
 journal of advanced manufacturing technology 19: 926-932

Felipe, R., (2005) Look-ahead constructive heuristic for the unrelated parallel
 machine problem with sequenced dependent setup time. IIE Annual Conference
 and Exposition 2005, 2005, IIE Annual Conference and Exposition

Feng, G., and Lau H. C., (2005) Efficient algorithm for machine scheduling problems
 with earliness and tardiness penalties. Proceedings of the 2nd multidisciplinary
 international conference on scheduling: theory and application, New York, USA,
 July 18-21, 196-211

Fowler, J. W., and Horng, S. M., (2003) A hybridized genetic algorithm to solve
 parallel machine scheduling problem with sequence dependent setup time.
 International journal of industrial engineering: theory application and practice 10,
 232-243

Fowler, J. W., and Pfund, M., (2002) The Inclusion of Future Arrivals and
 Downstream Setups into Wafer Fabrication Batch processing Decision. Journal of
 Electronics Manufacturing, 11 (2) 149-159

Fowler, J. W., Phillips, D. T., and Hogg, G. L., (1992) Real-Time Control of
 Multiproduct Bulk-service Semiconductor Manufacturing Process. IEEE
 Transactions on Semiconductor Manufacturing. 5 (2)

Franca, P. M., Mendes, A., and Moscato. P., (2001) A memetic algorithm for the total

tardiness single machine scheduling problem. Ero J Oper Res 132 (1): 224-242

88

Ginzburg, D. G., and Gonik. A., (1997) Using “Look Ahead” Techniques in Job-shop
 Scheduling with Random Operations. International. J. Production Economics (50)
 13-22

Glassey, C. R., and Weng, W. W., (1991) Dynamic Batching Heuristic for
 Simultaneous Processing. IEEE Transactions on Semiconductor Manufacturing. 4
 (2).

Guilher, M. E. V., Jeffrey, W. H., and Edward, L,. (2000) Analytical Models to
 Predict the Performance of a Single-Machine system Under Periodic and
 Event-Driven Rescheduling strategies. INT. J. PROD. RES., 2000, Vol.38, No.8,
 1899-1915

Gupta, A. K., Ganesan, V. K., and Sivakumar, A. I., (2004) Hot Lot Management:
 Minimizing Cycle Time in Batch Process IEEE 0-7803-8519-5/04

Gupta, A. K., and Sivakumar, A. I., (2006) Optimization of Due-date Objectives in
 Scheduling Semiconductor Batch Manufacturing. International Journal of
 Machine tools & Manufacture 46 (2006) 1671-1679.

Gupta, A. K., and Sivakumar, A. I., (2007) Controlling Delivery Performance in
 Semiconductor Manufacturing Using Look Ahead Batching. International journal
 of Production Reseach, 45 (3): 591-613

Gupta, S. R., and Smith, J. S., (2006) Algorithms for single machine total tardiness

scheduling with sequence dependent setups. Eru J Oper Res 175(2): 722-739

Heady, R. B., and Zhu Z., (1998) Minimizing the sum of job earliness and tardiness in
 a multi-machines system. Int J Prod Rese 1619-1632

Hepdogan, S., Moraga, R., Depuy, G. W., and Whitehouse, G. E., (2009) A Meta-Raps

for the early/tardy single machine scheduling problem. Int J Prod Res 47(7):
1717-1732

Hirashi, K., Levner, E., and Vlach, M., (2002) Scheduling of parallel identical
 machines to maximize the weighted number of jobs of just-in tim jobs.
 Computers and operation research 29, 841-848

Ho, J. C., and Chang, Y. L., (1995) Minimizing the number of tardy jobs for
 m-parallel machines. European journal of operation research 84 343-355

Holthaus, O., and Ziegler, H., (1997) Improving Job shop Performance by
 Coordinating Dispatching Rule. INT. J. PPROD. RES., 35 (2): 539-549

Jang, J. J., Suh, J. D., Park, D and Liu, R., (2001) A Look-Ahead Routing Procedure
 for Machine Selection in a Highly Informative Manufacturing System. The
 International Journal of Flexible Manufacturing system 13: 287-308

Jihene, K., Chistophe, V., and Noureddine, Z., “Heuristics for Scheduling
 Maintenance and Production on a Single Machine”

89

Karp. R. M., (1972) Reducibility among combinational problems: complexty of
 computer computations. New York: Plenum press. P85-103.

Kim, D. W., Dong G., Na, F., and Chen. F., (2003) Unrelated parallel machine
 scheduling with setup times and a total weighted tardiness objective. Robotics
 and computer integrated manufacturing. 19: 173-181

Kim, D. W., Kim, K, H., Jang, W., and Chen, F., (2002) Unrelated parallel mchines
 scheduling with steup times using simulated annnealing. Robotics and
 computer-integrated manufacturing 18, 223-231

Kim, S. S., H. J., Eom, D. H., and Kim, C. O., (2002) A due date desity-based
 categorizing heuristic for parallel machines scheduling. International journal of
 advanced manufacturing technology 22, 753-760.

Kim, S. Y., Lee, Y. H., and Agnihotri, D., (1995) A hybrid approach to sequencing
 jobs using heuristic rules and neural network. Production Planning and Control, 6
 (5), 445–454

Kirlik, G., and Oguz, C., (2012) A variable neighborhood search for minimizing total

weighted tardiness with sequence dependent setup times on a single machine.
Comput Oper Res 39 (7): 1506 -1520

Kirlik,G., Kartal, Z., and Hasgul, S., (2012) A new crossover operator for single

machine total weighted tardiness problem with sequence dependent setup times.
Gazi University Journal of Science, 25 (1): 127-136

Kolahan, F., and Liang, M., (1998) An adaptive TS approach to JIT sequencing with

variable processing times and sequence dependent setups. Eur J Oper Res
109(1):142-159

Krajewski, L. J., King, B.E., Ritzman, L.P., and Wong, D.S., (1987) Kaban, MRP and
 shaping the manufacturing environment. Management Science, 33, 39-57

Kurt, M. E., and Askin. (2001) Heuristic scheduling of parallel machines with
 sequence dependent set-up times. International journal of production research,39,
 3747-3769

Lee, Y. H., Bhaskaran, K., Pinedo, M., “A heuristic to minimize the total weighted
 tardiness with sequence-dependent setups”1997, IIE Transaction, 29, 45-52.

Lee, Y. H., and Pinedo, M., “Scheduling jobs on parallel machines with
 sequence-dependent setup time” 1997, European journal of operational research
 100, 464-474.

Liao, C. J., and Juan, H. C., (2007) An ant colony optimization for single machine

tardiness scheduling with sequence dependent setups. Comput Oper Res, 34:
1899–1909

90

Liao, C., J., Tsou, H. H., Huang, K. L., (2012) Neighborhood search procedures for
 the single machine tardiness scheduling with sequence dependent setups. Ther
 Comput Sci 434: 45-52

Lin, S.W., and Ying, K.C., (2007) Solving single-machine total weighted tardiness

problems with sequence-dependent setup times by meta-heuristics. Int J Adv
Manuf Tech, 34: 1183–1190

Lin, S. W, and Ying, K. C., (2008) A hybrid approach for single-machine tardiness

problems with sequence-dependent setup times. Int J Adv Manuf Tech, 34:
1183-1190

Luo, X, Chu, C, and Wang, C (2006) Some dominance properties for single-machine
 tardiness problems with sequence-dependent setup. International Journal of
 Production and Research, 44 (17): 3367-3378

Mao, W., and Kincaid, R. K., (1994) A Look-Ahead Heuristic for scheduling Jobs
 with Release Date on a Single Machine. Computer Ops Res. 21 (10) 1041-1050

Mason, S. J, Fowler, J. W., and Carlyle, W. M., (2002) A modified shifting bottleneck
 heuristic for minimizing total weighted tardiness in complex job shop. Journal of
 Scheduling 5: 247-262

Mason, S. J, Fowler, J. W., and Carlyle, W. M., and Montgomery, D. C., (2005)

Heuristics for minimizing total weighted tardiness in complex job shops. Int J Prod
Res 43(10): 1943-1963

Morton, T. E, Rachamadugu, R.V., (1982) Myopic heuristics for the single machine

weighted tardiness problem. http://www.ri.cmu.edu/pub_files/pub3/morton_thom
as_f_1982 1/morton_thomas_f_1982_1.pdf

Morton, T.E, Pentico , D. W., (1993) Heuristic Scheduling Systems: With Applications

to Production Systems and Project Management. Wiley, New York

Nekoiemehr, N., Moslehi, G., (2011) Minimizing the sum of maximum earliness and

maximum tardiness in the single-machine scheduling problem with
sequence-dependent setup time. J Oper Res Soc 62:1403-1412

Ovacik, I. M., Uzsoy, R., (1994) Rolling horizon algorithms for a single-machine

dynamic scheduling problem with sequence dependent setup times. Int J Prod Res
32(6): 1243-1263

Panwalkar, SS, Dudek, RA, and Smith, ML (1973) Sequence research and the
 industrial scheduling problem. Proceedings of the Symposium on the theory of
 scheduling and it applications, 29-38

Park, Y., Kim,. and Lee. Y. H., (2000) Scheduling jobs on parallel machines applying
 neural network and heuristic rules. Computer & Industrial Engineering 38,
 189-202

91

Pfund, M. E., Fowler, J. W., Gadkari, A., and Chen, Y., (2008) Scheduling jobs on
 parallel machines with setup times and ready time. Computers & Industrial
 Engineering, 54 (4), 764–782

Pinedo, M., (2002) Scheduling: Theory, Algorithm, and Systems, second ed.,
 Prentice-Hall.

Rabadi, G., Mollaghasemi, M., and Anagnostopoulos, G. C., (2004) A

branch-and-bound algorithm for the early/tardy machine scheduling problem with
a common due-date and sequence-dependent setup time. Comput Oper Res 31(10):
1727-1751

Rachamadugu, R.V., and Morton, T. E., (1982) Myopic heuristics for the single
 machine weighted tardiness problem. Working Paper, Carnegie Mellon
 University, Pittsburgh, PA 30-82-83

Radhakrishnan and Ventura. (2000) Simulated annealing for parallel machine
 scheduling with earliness-tardiness penalties and sequence-dependent set-up
 times. International Journal of production research. 38, 2233-2252

Raman, N., Rachamadugu, R. V., Talbot, F. B., (1989) Real time scheduling of an
automated manufacturing center. Eur J Oper Res 40: 222-242

Robinson, J. K., and Fowler, J. W., (1995) The use of upstream and downstream
 information in scheduling semiconductor batch operations. INT. J. Prod. RES., 33
 (7): 1849-1869

Sioud, A., Gravel, M., and Gagne, C., (2010) Constraint based scheduling in a genetic

algorithm for the single machine scheduling problem with sequence-dependent
setup times. In: Proceedings of the International Conference on Evolutionary
Computation. 137-145

Smith, F. T. M., and Stecke, K. E., (1996) On the Robustness of using Balanced Part
 Mixed Ratios to Determine Cyclic Part input Sequences into Flexible Flow
 Systems. INT. J. PROD., 1996, Vol. 34, No. 10, 2925-2941.

Tan, K. C., and Narasimhan, R., (1997) Minimizing tardiness on a single processor

with sequence-dependent setup times: a simulated annealing approach. Omega
25(6): 619-634

Tan, K. C., Narasimhan, R., Rubin, P. A., and Ragatz, G. L., (2000) A comparison of

four methods for minimizing total tardiness on a single processor with sequence
dependent setup times. Omega 28(3): 313-326

Tamimi, S. A., and Rajan, V. N., (1997) Reduction of total weighted tardiness on
 uniform machines with sequence dependent setups. Industrial engineering
 research-conference procedding, pp. 181-185.

92

Tunali, S., (1997) A Simulation Study Evaluating the Performance of a Look-ahead
 FMS Machine Scheduling Algorithm. Microcomputer Applications 16 (3)

Uzsoy, R., Lee, C. Y., and Martin-Vega, L. A., (1992) Scheduling semiconductor test

operations. Minimizing maximum lateness and number of tardy jobs on a single
machine. Nav Res Log 39 (3): 369-388

Van, D. Z., (2002) Adaptive Scheduling of Batch Server in Flow Shop, INT. J.
 PROD.RES, 40 (12): 2811-2833

Van, D. Z., Harten, A. V., and Schuur, P. C., (1997) Dynamic Job Heuristics for
 Multi-server Batch Operations-A Cost Based Approach. INT. J. PROD.RES., 35
 (11): 3063-3093

Vepsalainen, A., and Morton, T. E., (1987) Priority rules for job shops with weighted
 tardiness costs. Management Science, 33, 1035–1047

Webster, S., Jog, P. D., and Gupta, A., (1998) A genetic algorithm for scheduling job

families on a single machine with arbitrary earliness/tardiness penalties and an
unrestricted common due date. Int J Prod Res 36. 2543–2551

Weng, M. X., Lu, J., and Ren, H. (2001) Unrelated parelllel machine scheduling with
 setup consideration and a total weighted completion time objective. International
 journal of production economics 70. 215-226

Weng, W. W., and Leachman, R. C., (1993) An Improved Methodology for Real-time
 Production Decision at Batch-Process Work Station. IEEE Transaction on
 Semiconductor Manufacturing. 6 (3)

Wodecki, M., (2008) A branch-and-bound parallel algorithm for single-machine total
 weighted tardiness problem. Int J Adv Manuf Tech 37: 996-1004

Xi, Y., and Jang, J. J., (2012) working paper “Minimizing Total Weighted Tardiness
on the Single Machine with Sequence Dependent Setup Time and Future Ready
Time” University of Wisconsin Milwaukee, IME department

Yoon, S. H, and Lee, I. S., (2011) New constructive heuristics for the total weighted
 tardiness problem. The Journal of the Operational Research Society 62 (1):
 232-237

93

APPENDICES

Appendix A: A non-linear mathematic model (single machine)

Cj: Completion time of job j.

pj,: Process time of job j.

si,j: Sequence dependent setup time to do job j after job i.

s0,j: The initial setup time to do job j first on the machine.

xi,j: 1, if job j is processed directly after job i, otherwise 0.

x0,j: 1, if job j is the first job on the machine and 0 otherwise.

xj,0: 1, if job j is the last job to be processed on the machine and 0 otherwise.

M: A large positive value.

dj: Due date of job j.

Tj: Tardiness of job j.

wj: Weight of job j.

rj: Release time of job j.

Minimize

(1)
1

∑
=

n

j

jjTw

Subject to:

 (2) 1,...n j 1
,0

=∀=∑
≠=

n

jii

ijx

 (3) n 1,...,h 0
,0

,

,0

, =∀=− ∑∑
≠=≠=

n

hjj

jh

n

hii

hi xx

 (4) ji 1,...n,j n,0,...,i)1()(),max(, ≠=∀=∀−+++≥ ijjjiijij xMPSxrjCC

(5) 1
0

,0 =∑
=

n

j

jx

94

(6) m1,...,k 0,...n,j n,0,...,i }1,0{, =∀=∀=∀∈jix

(7) 00 ≥C

(8) 1,...n j 0 =∀≥jC

(9) 1,...n j 0)max(,j =∀−= dCT jj

Formula (1) illustrates that the objective is to minimize total weighted tardiness.

Constrain (2) ensures that each job is scheduled only once and processed on the

machine. Constrain (3) makes sure that each job must not be proceeded or succeeded

by more than one job. Constrain (4) deals with the relationship among completion

time, release time and machine down time. This constraint also guarantees that no job

can be preceded and succeeded the same one. Constraint (4) is a non linear constraint.

Constrain (5) ensures that no more than one job can be scheduled first on the machine.

Constrain (6) means that the decision variables are all binary. Constrain (7) is the

completion time of the dummy job 0. Constrain (8) makes sure that all completion

time must be positive values. Constrain (9) reflects the relationship of tardiness,

completion time and due date for each job. It also guarantees that tardiness is a

non-negative time. Above model can solve single machine total weighted tardiness

problems with the sequence dependent setup time and unequal release times. This

problem (1|ri,sij|∑wiTi) is also studied by Chang et al [17]. Compared to their

mathematic model, our model uses less numbers of variables.

95

Appendix B: Lingo model for the proposed non-linear mathematic model (5

jobs)

sets:
jobs/0,1,2,3,4,5/:pt,due,ct,tar,weight,ti;
depstm(jobs,jobs):dstm;
links(jobs,jobs):x;
endsets

data:
dstm=
0 3 5 4 4 5
0 0 2 3 2 4
0 5 0 1 3 2
0 3 3 0 1 1
0 4 3 4 0 5
0 4 5 1 5 0;

pt= 0 5 8 4 2 8;

due=0 8 11 5 3 12
;
weight=0 3 7 4 4 7;

Ti=0 7 10 13 14 0;

ct=0,,,,,;

tar=0,,,,,;

enddata

min=@sum(jobs(i):tar(i)*weight(i));

@for(jobs(j)|j#gt#1:
 @sum(links(i,j)|i#ne#j:x(i,j))=1);

@for(jobs(h)|h#ge#2:
 @sum(links(i,h)|i#ne#h:x(i,h))-@sum(links(h,j)|j#ne#h:x(h,j))=0);

@for(jobs(i):
 @for(jobs(j)|j#ge#2#and#j#ne#i:
 ct(j)>=@if(ct(i)#ge#ti(j),ct(i),ti(j))+@sum(links(i,j):x(i,j)*
 (dstm(i,j)+pt(j)))+999*(@sum(links(i,j):x(i,j))-1)));

@sum(links(i,j)|i#eq#1#and#j#ne#i:x(i,j))=1;

@for(links:@bin(x));

@for(jobs(j)|j#ge#2:ct(j)>=0);

96

@for(jobs(i)|i#ge#2:
 tar(i)=@if(ct(i)#ge#due(i),ct(i)-due(i),0));
end

In the above model, dstm is the setup matrix which shows the setup between each pair

of jobs. The row of pt, due, weight and Ti shows each job’s processing time, due date,

job weight and ready time. The optimal solution of above example is

J5-J3-J4-J2-J1.

The total weighted tardiness is 380.

97

Appendix C: A non-linear mathematic model (two parallel machines)

Minimize ∑
=

n

j

jjTw
1

Subject to:

(2) 1,...n j 1
,0 1

,, =∀=∑ ∑
≠= =

n

jii

m

k

kjix

 (3) m1,...,k n,1,...,h 0
,0

,,

,0

,, =∀=∀=− ∑∑
≠=≠=

n

hjj

kjh

n

hii

khi xx

(4) 1,...n j n,0,...,i)1()(
1

,,,,,

1

,, =∀=∀−+++≥ ∑∑
==

m

k

kjikjkji

m

k

kjij xMPSxCiC

(5) 1,...mk 1
0

,,0 =∀=∑
=

n

j

kjx

(6) m1,...,k 0,...n,j n,0,...,i }1,0{,, =∀=∀=∀∈kjix

C0=0 (7)

(8) 1,...n j 0 =∀≥jC

(8) 1,...n j)0,max(=∀−≥ djCjTj

Constrain (2) ensures that each job is scheduled only once and processed by one

machine. Constrain (3) makes sure that each job must be neither be proceeded or

succeeded by more than one job. Constrain (4) is used to calculate completion time

and no job can precede and succeed the same job. Constrain (5) ensures that no more

than one job can be scheduled first at each machine. Constrain (6) specifies that the

decision variable is binary. Constrain (7) is the completion time of the dummy job 0.

Constrain (8) makes sure that all completion time must be positive values. Constrain

(9) ensures Tj is a non negative value.

98

Appendix D: Lingo model for the proposed non-linear mathematic model (5 jobs

on 2 machines)

sets:
jobs/0,1,2,3,4,5/:pt,due,ct,tar,weight,ti;
machines/1,2/;
depstm(jobs,jobs):dstm1,dstm2;
links(jobs,jobs,machines):x;
endsets

data:
dstm1= 0 5 2 3 1 3
 0 0 3 8 6 2
 0 2 0 7 2 1
 0 5 3 0 5 3
 0 5 5 3 0 4
 0 6 2 1 7 0;

dstm2= 0 3 9 2 7 3
 0 0 2 4 5 2
 0 6 0 1 7 1
 0 3 5 0 4 3
 0 9 2 6 0 2
 0 3 1 4 6 0;

pt = 0 3 5 1 4 3;

due = 0 7 9 12 12 9;

weight = 0 2 4 8 5 2;

ti= 0 7 0 0 3 0;

ct=0,,,,,;

tar=0,,,,,;

enddata

!objective function;
min=@sum(jobs(i):tar(i)*weight(i));

!Constarint1: each job is scheduled once and on one machine;
@for(jobs(j)|j#gt#1:
 @sum(links(i,j,k)|i#ne#j:x(i,j,k))=1);

!constraint 2;

99

@for(jobs(h)|h#ge#2:
 @for(machines(k):
 @sum(links(i,h,k)|i#ne#h:x(i,h,k))-@sum(links(h,j,k)|j#ne#h:x(h,j,k))=0));

!constraint3. each job must be neither be proceeded or succeed by more than one job;
@for(jobs(i):
 @for(jobs(j)|j#ge#2#and#j#ne#i:

ct(j)>=@if(ct(i)#ge#ti(j),ct(i),ti(j))+@sum(links(i,j,k)|k#eq#1:x(i,j,k)*(ds
tm1(i,j)+pt(j)))+@sum(links(i,j,k)|k#eq#2:x(i,j,k)*(dstm2(i,j)+pt(j)))+99
9*(@sum(links(i,j,k):x(i,j,k))-1)));

!constraint 4: only one job can be scheduled first;
@for(machines(k):
 @sum(links(i,j,k)|i#eq#1#and#j#ne#i:x(i,j,k))=1);

!constraint 5: binary constrain;
@for(links:@bin(x));

!constraint 6: cj is non-negative;

@for(jobs(j)|j#ge#2:ct(j)>=0);

!constraint 7: relation among tar, due and ct;
@for(jobs(i)|i#ge#2:
 tar(i)=@if(ct(i)#ge#due(i),ct(i)-due(i),0));

end

In the above model, dstm1 and dstm2 are the setup matrixes which shows the setup

between each pair of jobs on machine 1 and machine 2. The row of pt, due, weight

and ti shows each job’s processing time, due date, job weight and ready time. The

optimal solution of above example is:

M1: J2-J3

M2: J3-J5-J1

Total weighted tardiness is 21.

100

Appendix E: The application of proposed parallel machines model

In this section, we discuss the application of the proposed parallel machines model in

Appendix C. With minor modifications, the proposed model in appendix C can solve

other parallel machines scheduling problems.

Case 1: For the same example in appendix D, but using the below assumptions:

1. The processing time of a job is the same on all machines (same in appendix D).

2. All machines use the same setup time matrix (different in appendix D).

To solve this problem, we delete dstm1 matrix and change constraint 3 (the program
in appendix 4) into:

@for(jobs(i):

@for(jobs(j)|j#ge#2#and#j#ne#i:
ct(j)>=@if(ct(i)#ge#ti(j),ct(i),ti(j))+@sum(links(i,j,k)|k#eq#1:x(i,j,k)*(dstm2
(i,j)+pt(j)))+@sum(links(i,j,k)|k#eq#2:x(i,j,k)*(dstm2(i,j)+pt(j)))+999*(@su
m(links(i,j,k):x(i,j,k))-1)));

The optimal solution for the considered problem is:

M1: J5-J2-J1

M2: J3-J4

The optimal solution (the total weighted tardiness is 40.

Case 2: For the same example in appendix D, but using the below assumptions:

1. The processing times of jobs are different on machines (different in appendix D).

2. Each machine has its own setup matrix (same in appendix D).

This case in literature is called “Machine dependency”. It also can be solved by the
model in appendix C with minor modification:

1. Add another variable: pt2 (pt2 contains the processing times of all jobs on

machine 2. The second sentence in the appendix D is changed into:

 jobs/0,1,2,3,4,5/:pt,due,ct,tar,weight,ti,pt2;

2. Add the processing times of all jobs. Put a new row: pt2 = 0 7 1 2 4 3; after pt = 0

3 5 1 4 3 in the program;

101

3. Change constraint 3 (the program in appendix 4 into:

@for(jobs(i):

@for(jobs(j)|j#ge#2#and#j#ne#i:
ct(j)>=@if(ct(i)#ge#ti(j),ct(i),ti(j))+@sum(links(i,j,k)|k#eq#1:x(i,j,k)*(dstm1
(i,j)+pt(j)))+@sum(links(i,j,k)|k#eq#2:x(i,j,k)*(dstm2(i,j)+pt2(j)))+999*(@s
um(links(i,j,k):x(i,j,k))-1)));

The optimal solution (total weighted tardiness) of the considered problem is:

M1: J4-J1

M2: J5-J2-J3

Total weighted tardiness is 18.

102

CURRICULUM VITAE
Name: Yue XI

Education:

B.A., Capital University of Economic & Business, June 2000
Major: Business Management

M.S., University of Wisconsin-Platteville, Dec 2004
Major: Industrial Technology Management

Ph.d., University of Wisconsin-Milwaukee, May 2013
Major: Industrial Manufacturing Engineering; Minor: Business Management

Dissertation Title: A look-ahead Heuristic to Minimize Total Weighted Tardiness on
the Identical Parallel Machines with Sequence Dependent Setup and Future Ready
Time.

Teaching & Research Experience:

 Lab assistant, University of Wisconsin-Platteville, Jan-Dec 2004

 Project assistant, University of Wisconsin-Milwaukee, Jan-May 2006

 Teaching assistant, University of Wisconsin-Milwaukee, Sep 2007-May 2011

Publications (Selected):

Yue Xi and Jaejin Jang, 2012, Scheduling Jobs on Identical Parallel Machines
with Sequence Dependent Setup Time and Future Ready Time: An
Experimental Study”, International Journal of Production and Economics, v
137, n 1, p 1-10.

Yue Xi and Jaejin Jang, 2013, Minimizing Total Weighted Tardiness on a
Single Machine with Sequence Dependent Setup and Future Ready Time”,
Revision is accepted for publication on International Journal of Advance
Manufacturing Technology on Dec 11th 2012

	University of Wisconsin Milwaukee
	UWM Digital Commons
	May 2013

	Heuristic Algorithms to Minimize Total Weighted Tardiness on the Single Machine and Identical Parallel Machines with Sequence Dependent Setup and Future Ready Time
	Yue Xi
	Recommended Citation

	Microsoft Word - Look ahead Papaer _May07_.doc

