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ABSTRACT 
HEURISTIC ALGORITHMS TO MINIMIZE TOTAL WEIGHTED TARDINESS ON 

THE SINGLE MACHINE AND IDENTICAL PARALLEL MACHINES WITH 
SEQUENCE DEPENDENT SETUP AND FUTURE READY TIME 

 
by  

 
Yue Xi 

 
 

The University of Wisconsin-Milwaukee, 2013 
Under the Supervision of Professor Jaejin Jang 

 
 
 

This study generates heuristic algorithms to minimize the total weighted tardiness on 

the single machine and identical parallel machines with sequence dependent setup and 

future ready time. Due to the complexity of the considered problem, we propose two new 

Apparent Tardiness Cost based (ATC-based) rules. The performances of these two rules 

are evaluated on the single machine and identical parallel machines. Besides of these two 

rules, we also propose a look-ahead identical parallel machines heuristic (LAIPM). When 

a machine becomes idle, it selects a job to process from available jobs and near future 

jobs. 

 

For the considered combination of scaling parameters, the proposed look-ahead 

heuristic is divided into three phases: in the first phases, we use the newly introduced 

dispatching rule, apparent tardiness cost with ready time and continuous setup 

(ATCRCS), to select the initial job for each machine. The second phase, composed of 

several iterations, schedules all rest jobs on machines. Each iteration starts identifying the 

critical machine (the machine with the smallest finish time) and its next job (the critical 

job). The look-ahead thresh for other machines (non-critical machines) equals to the sum 
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of the finish time of the critical job and the average setup time. The next job on the 

considered non-critical machine is chosen from jobs whose ready time is smaller or equal 

to the look-ahead thresh. Once all machines finish considering their next job selection, a 

possible iteration schedule is generated. The selected jobs are then used as inputs of the 

job switching heuristic which allows the selected jobs to be switched among machines 

and evaluated at different positions. Job switching heuristic generates another possible 

iteration schedule and compares it to the previously generated possible iteration schedule 

to determine the schedule of the considered iteration. After all jobs are scheduled on 

machines, the last phase uses a technique called pairwise exchange to further reduce the 

total weighted tardiness on each machine. Pairwise exchange technique orderly switches 

two jobs' position and selects the schedule with the smallest total weighted tardiness as 

the schedule for the considered combination of scaling parameters. The final schedule of 

the considered problem is the one with the smallest total weighted tardiness among the 

schedules generated by different scaling parameters combinations.  

 

Different from other look-ahead heuristics, such as the look-ahead heuristic of Mao 

et al. (1994) and Chang et al. (2004), the proposed look-ahead heuristic not only looks 

ahead (considers limited number of future jobs) but also looks back (schedules each 

selected job before the last job on each machine). To evaluate its performance, the 

proposed look-ahead heuristic is compared with available look-ahead heuristics and non 

look-ahead heuristic on 5103 randomly generated problems in minimizing the total 

weighted tardiness.   
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HEURISTIC ALGORITHMS TO MINIMIZE TOTAL WEIGHTED TARDINESS 

ON THE SINGLE MACHINE AND IDENTICAL PARALLEL MACHINES WITH 

SEQUENCE DEPENDENT SETUP AND FUTURE READY TIME 

 

 

 
1. INTRODUCTION  

 

 

The configurations of the single machine and parallel machines are very common in 

both service system and production system. The task of the single machine scheduling is 

to determine the processing sequence of a series of jobs. While, in the parallel machines 

production, every machine has the same work function and every job can be processed by 

any machine. Parallel machines scheduling (PMS) mostly considers single operation jobs. 

The task of PMS is to decide each job’s starting time and the machine to process it, so 

that a certain objective is achieved.  

 

Allahverdi and Mittenthal (1994) group the parallel machines into three cases: 

identical parallel machines, where the processing time of a job is the same on all 

machines; uniform parallel machines, where the processing time of a job is determined 

by the speed factor of the machine; and unrelated parallel machines, where the 

processing time of a job on different machines can be different in an arbitral way.  

 

Most research on the single machine scheduling and parallel machines scheduling 

assumes setup time can be either ignored or included in a part’s processing time. This 

assumption is reasonable only when the setup time is independent from the job sequence. 

Sequence dependent setup, in which the length of setup time of a job depends on its 

immediately preceding job, is common and often important in production. Examples of 
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sequence dependent setup are found in petroleum production plants, printing plants, car 

spraying facilities, metallurgical industries and textile dying plants (Luo et al. 2006 and 

Arroyo et al. 2009).  

 

Based on Panwalkar et al. (1973), about 70% of schedulers reported that a quarter of 

jobs they scheduled cannot ignore setup time. Krajewski et al. (1987) claim that effective 

management of sequence dependent setup is one of the critical factors to improve the 

performance of a manufacturing system.  

 

The performance measures of the single machine scheduling and parallel machines 

scheduling are mostly either flow time related or tardiness related. The flow time related 

measures are closely related to job's waiting time for processing and inventory level in a 

shop; while the tardiness related criteria are relevant to penalties if the manufacturer can 

not meet predefined due dates. Not meeting with due dates may result in losing future 

customers. To measure the quality of a schedule from “tardiness” perspectives, several 

criteria have been used in literatures, such as minimizing the total (weighted) tardiness, 

minimizing the sum of (weighted) earliness and (weighted) tardiness, minimizing the 

number of tardy jobs and so on.  

 

Aside from the concept of the sequence dependent setup, there is another 

“dependent” concept called “machine dependency” in the parallel machines scheduling. 

Machine dependency means that processing a job needs different setup times and 

different processing times due to different machine conditions. This concept is different 
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from unrelated parallel machines in which only the length of the processing time is 

decided by the condition of a machine in the arbitral way. This study explores heuristic 

algorithms to minimize the total weighted tardiness on the single machine and identical 

parallel machines with the sequence dependent setup and future ready time.  

 

In this study, we first focus on the single machine scheduling. Two efficient apparent 

tardiness cost-based (ATC-based) rules are proposed. The performances of these two 

newly introduced dispatching rules are then evaluated on the single machine and identical 

parallel machines with other rules. Finally, we propose a look-ahead identical parallel 

machines (LAIPM) heuristic. All proposed heuristics mentioned in this research are all 

focused on minimizing the total weighted tardiness.  

 

This study is organized as follows: Section 2 reviews literature related to the single 

machine scheduling and parallel machines scheduling with sequence dependent setup. 

The look-ahead control heuristics are surveyed at the end of section 2. Section 3 relates to 

the single machine scheduling. Two new ATC-based rules are introduced to minimize the 

total weighted tardiness. Section 4 is an experiment study carried out on the identical 

parallel machines. We evaluate performances of the proposed new ATC-based rules and 

other rules on the identical parallel machines. Section 5 proposes a look-ahead heuristic, 

LAIPM, which is also for the identical parallel machines scheduling. Finally, conclusions 

and future research are discussed in section 6. 
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2. LITERATURE REVIEW 

This section reviews the single machine scheduling and parallel machines scheduling 

with sequence dependent setup. Look-ahead control heuristics are summarized at the end 

of this section. 

 

2.1 Single machine scheduling with sequence dependent setup 

This section reviews the single machine scheduling with sequence dependent setup to 

minimize tardiness-related criteria. Literature on this topic is grouped into three by the 

objective: minimizing total tardiness, minimizing the sum of total earliness and tardiness, 

and minimizing other types of tardiness-related criteria. 

 

2.1.1 Minimizing total tardiness 

 Pinedo (2002) remarks that minimizing total tardiness with sequence dependent 

setup (1/sij/∑ jT ) is strongly NP hard. Incorporating job weight or future ready time into 

1/sij/∑ jT  makes the problem more difficult. Due to this challenge, many people try to 

obtain a near optimal solution by heuristic approaches. Liao et al. (2012) divide the 

scheduling heuristic algorithms into two categories: the constructive approach and the 

improvement approach. These two approaches are also called construction method and 

interchange method by Wodecki (2008), respectively. 

 

 The constructive approach uses dispatching rules to build a schedule by fixing a job 

in a position one by one. Several apparent tardiness cost based rules are proposed to 

minimize the weighted tardiness without considering sequence dependent setup (Morton 
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and Rachamadugu 1982, Morton and Pentico 1983, and Lee and Pinedo 1997). To 

consider the sequence dependent setup, Raman et al. (1989) propose a modified ATC 

rule which considers the setup time in both the WSPT term and the slack term. Lee et al. 

(1997) propose the apparent tardiness cost with setups algorithm (ATCS). ATCS is 

reported as the best constructive algorithm for the 1/sij/∑ jjTw  by Liao et al. (2012). For 

the batch production where several jobs can be processed together at the same time by a 

machine, Mason et al. (2002) propose batch apparent tardiness cost with setups (BATCS). 

At the decision time, jobs with the largest index values are selected together to form a 

batch. In their later research, Mason et al. (2005) propose another ATC-based rule which 

considers the utilization of the batch machine in the index. Pfund et al. (2008) modify the 

slack term of BATCS and propose BATCSmod. Table 1 summarizes above mentioned 

ATC-based rules on the single machine scheduling. 
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Table 1. ATC-based dispatching rules  

Authors   Rule name Ready time 
Number of 

parameters 
Environment  

Rachamadugu and 
Morton (1982)  

ATC No 1 ( k ) Single machine 

Raman et al. (1989) 
Modified 

ATC 
No 1 ( k ) Single machine 

Lee et al. (1997)        
Lee and Pinedo (1997) 

ATCS No   2 ( k1 and k2 ) 
Single/Parallel 

machines 

Vepsalainen and 
Morton (1987)  

MATC No 2 ( b and k ) 
Flow shop , Job 

shop 

Morton and Pentico 
(1993) 

X-RM  Yes 2 ( B and k ) Single machine 

Mason et al. (2002)  BATCS Yes  2 ( k1 and k2 ) Batch machine  

Mason et al. (2005)  ATC-based Yes 2 ( k1 and k2 ) Batch machine  

Pfund et al. (2008) BATCSmod Yes 2 (k1 and k2) Batch machine  

      

 The improvement approach or the interchange method starts with an initial solution 

and repeatedly strives to improve the current solution by local interchange. To minimize 

total tardiness with the consideration of sequence dependent setup, both Tan and 

Narasimhan (1997) and Lin and Ying (2008) suggest the simulated annealing method. 

Genetic algorithms are proposed by Tan et al. (2000), Franca et al. (2001), and Sioud et 

al. (2010). Gupta and Smith (2006) propose the greedy randomize adaptive search 

procedure (GRASP) and the problem space-based local search heuristic. To minimize the 

total weighted tardiness with the consideration of sequence dependent setup, Cicirello 

and Smith (2005) analyze the effectiveness of stochastic sampling approaches, such as 

value-biased stochastic sampling (VBSS), VBSS with hill-climbing, a limited 

discrepancy search, and heuristic-biased stochastic sampling, together with the simulated 

annealing. For the same problem, Liao and Juan (2007) and Anghinolfi and Paolucci 



   

 

 

7 

  
 

(2008) use ant colony optimization to get an improved solution. In an experiment study, 

Lin and Ying (2007) compare the performance of three popular meta-heuristics: genetic 

algorithm, simulated annealing, and tabu search. Lin and Ying (2008) also propose a 

simulated annealing-tabu procedure and test its performance for both total tardiness and 

total weighted tardiness problems. Kirlik and Oguz (2012) present the variable 

neighborhood search (NBV) to get a near optimal solution. They (Kirkik et al. (2012) 

later introduce a genetic algorithm that uses a newly proposed crossover operator. 

 The mathematical modeling approach is used to get an optimal solution. Kirlik and 

Oguz (2012) and Kirkik et al. (2012) present two models to minimize the total weighted 

tardiness on a single machine with sequence dependent setup. Compared to the 

mathematical model Kirlik and Oguz (2012), their later model (Kirlik et al. 2012) uses 

fewer variables. 

 

2.1.2 Minimizing the sum of total earliness and tardiness 

Without considering job weight, Hepdogan et al. (2009) solve an earliness and 

tardiness problem by a heuristic called meta-heuristic for randomized priority search 

(Meta-Raps). Rabadi et al. (2004) present an optimal branch-and-bound algorithm for the 

problem with sequence dependent setup. To minimize the sum of weighted earliness and 

weighted tardiness, Azizoglu and Webster (1997) propose a branch-and-bound algorithm 

and a beam search procedure for the problem with sequence independent setup times and 

an unrestricted common due date. Genetic algorithms and tabu search are used by 

Webster et al. (1998) and Kolahan and Liang (1998), respectively.  
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2.1.3 Minimizing other types of tardiness-related criteria 

 To minimize maximum tardiness, Ovacik and Uzsoy (1994) present a rolling horizon 

procedure (RHP), where the problem is decomposed into a series of smaller problems. 

Asano and Ohta (1999) propose a branch-and-bound algorithm, which considers both 

future ready time and machine down time. Nekoiemehr and Moslehi (2011) propose three 

dominance rules to minimize the sum of maximum earliness and maximum tardiness 

(1/sij/ETmax) by the branch-and-bound algorithm. Uzsoy et al. (1992) and Arroyo et al. 

(2011) also consider tardiness-related measures. 

 

2.2 Parallel machines scheduling with sequence dependent setup 

This section reviews the studies of parallel machines scheduling with sequence 

dependent setup. In literature, research about parallel machines scheduling can be 

grouped based on different criteria: Machine type criterion, where parallel machines are 

classified into identical machines, uniform machines, and unrelated machines; Setup 

time criterion, where the parallel machines scheduling studies are divided into: studies 

without setup time and studies with setup time. Batch criterion, where related papers 

categorize them into parallel batch production and parallel non-batch production; 

Objective criterion, where related papers group it by objectives, such as minimizing the 

total completion time, minimizing the total tardiness, and so on; or Approach criterion, 

where related papers group it by approaches, such as branch and bound, meta-heuristic, 

mathematical model, constructive heuristic and so on.  
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In this study, we use batch criterion to group parallel machines scheduling with 

sequence dependent setup time into parallel non-batch machines scheduling with 

sequence dependent setup and parallel batch machines scheduling with sequence 

dependent setup.  

 

 

2.2.1 Parallel non-batch machines scheduling with sequence dependent setup  

 

This section describes the sequence dependent setup literatures in the parallel 

non-batch machines scheduling. Articles are further grouped by the objective type.  

 

(I) Minimizing total (weighted) tardiness  

The constructive approach or the construction method builds a schedule by fixing a 

job in a position one by one. Apparent Tardiness Cost with Setups, ATCS, is an effect 

ATC-based dispatching rules to minimize the total weighted tardiness considering 

sequence dependent setup. Its effectiveness is proved on the parallel machines (Lee and 

Pinedo. 1997). Extending from ATCS and considering future ready time of a job, Pfund 

et al. (2008) propose ATCSR rule which outperforms other rules, such as EDD, WEDD, 

ATCS, BATCSmod (Pfund et al. 2008), and X-Rmod (Pfund et al. 2008).  

 

When applying ATC-based rules, choosing or determining good scaling parameters 

is also important in literature. At least two types of approaches have been used to decide 

the scaling parameters’ values. One is estimating one good grid, like the empirical value 

method (Rachamadugu and Morton 1982, Vepsalainen and Morton 1987), the regression 

method (Lee et al. 1997, Pfund et al. 2008), and the artificial neural network method 
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(Kim et al. 1995, Park et al. 2000). The other tries many different grids and selects the 

best combination of scaling parameters, like the grid method (Pfund et al. 2008, Drieel 

and Monch 2009, 2011). The grid method is very useful in that it is not only used to 

determine a final schedule but also to provide input information for other methods, like 

the regression method and other heuristics that get improved solution (Christoph et al. 

2007, Drieel and Monch 2009, 2011). Especially, a few grid settings (the range of scaling 

parameters and the size of the gap between grids) are proposed in literature. Lee et al. 

(1997) present a grid setting: k1 = (0.2, 0.4, 0.6,..., 6.4), and k2 = (0.1, 0.2, 0.3,..., 1.6). To 

ensure that “the frequently occurring values were not the extreme values in the grid.” 

Pfund et al. (2008) propose a wider search range for k1 and k2, they also proposing 

settings for their newly introduced parameter, k3: 

 

k1: 0.2,0.6,0.8,1,1.2,1.4,1.6,1.8,2,2.4,2.8,3.2,3.6,4,4.4,4.8,5.2,5.6,6,6.4,6.8,7.2 

k2: 0.1,0.3,0.5,0.7,0.9,1.1,1.3,1.5,1.7,1.9,2.1 

k3: 0.001,0.0025,0.004,0.005,0.025,0.04,0.05,0.25,0.4,0.6,0.8,1,1.2 

 

Following Pfund’s setting, Drieel and Monch (2009) propose narrower search ranges: 

[0.2, 6], [0.1, 1.9] and [0.001, 1.2] and consider fewer grids: 7, 4 and 5 grids for k1, k2 and 

k3, respectively. In their latest research (Driessel and Monch 2011), they use an even more 

coarse grid setting for k3 whose search range is set in [0.001, 1] and only four grids are 

considered in it. The grid settings (for three scaling parameters) in literature are shown in 

table 2. In the research of Drieel and Monch (2009, 2011), the grid method generates an 

initial solution for their proposed variable neighborhood search procedures. In this study, 
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we used the setting of Pfund et al. (2008) to evaluate the proposed ATC-based rules and 

other ATC-based rules including ATCSR. For the proposed look-ahead heuristic 

(LAIPM), we uses the setting as that of Drieel and Monch (2009), because their setting 

has a medium number of grids and searching in a similar range as Pfund et al. (2008). 

Also using their setting avoids subjective analysis.  

 

Table 2. Grids setting comparison 

  
Pfund et al. (2008) 

Driessel and Monch 
(2009) 

Driessel and Monch 
(2011) 

k1 22 values in [0.2, 7.2] 7 values in [0.2, 6] 5 values in [0.01, 1.5] 

k2 11 values in [0.1, 2.1] 4 values in [0.1, 0.9] 4 values in [0.1, 1.9] 

k3 13 values in [0.001, 1.2] 5 values in [0.001, 1.2] 4 values in [0.01, 1.0] 

 

 

The improvement approach or the interchange method starts with an initial solution 

and repeatedly strives to improve the current solution by local interchange. Fowler and 

Horng (2003) present a hybrid genetic algorithm to minimize total weighted tardiness on 

identical parallel machines. Tamimi and Rajan (1997) propose a genetic algorithm for 

uniform parallel machines scheduling with sequence dependent setup. Different from 

Flowler and Horng (2003), they dynamically modify mutation rate, crossover rate and 

insertion rate. Chen (2009) proposed a hybrid method for unrelated parallel machines. 

Their experiments show that simulated annealing effectively improve the initial solution 

that obtained by ATCS.   

 

(II) Minimizing total (weighted) completion time 
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Felipe (2005) presents a constructive heuristic to assign jobs iteratively with the 

minimum adjusted processing time (sum of setup time and process time). Their approach 

uses an improved enumeration to assign jobs either at the beginning or after a partial job 

sequence generated on a machine. Kurz and Askin (2001) present an integer 

programming model to minimize total completion time for identical parallel machines. In 

their heuristic, once jobs are assigned to the machines, a traveling sales man problem is 

formulated to find an optimal job sequence on each machine. In their research, the 

distance between each pair of cities correspondents to sequenced dependent setup. 

 

Weng et al. (2001) minimize the total weighted completion time on unrelated parallel 

machines. Several heuristics are presented. By their experiment, the best heuristic assigns 

one job at a time based on the ratio of a job’s processing time plus setup time to its 

weight. Fowler and Horng (2003) propose a hybrid genetic algorithm to minimize total 

weighted completion time. The algorithm is also tested to minimize the total weighted 

tardiness. In their hybrid approach, the genetic algorithm assigns jobs to machines; 

dispatching rules are then used to schedule jobs on each individual machine.  

 

(III) Bi-criteria 

Balakrishna et al. (1999) minimize the sum of weighted earliness and weighted 

tardiness on uniform parallel machines. This objective is meaningful for a Just-In-Time 

(JIT) production where both earliness and tardiness are deemed as low efficiency. A 

mixed integer programming model is formulated to solve the small size problem. 

Radhakrishnan and Ventura (2000) also minimize sum of weighted earliness and 
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weighted tardiness, but for identical parallel machines. They also propose a mathematical 

model to find optimal solution. For a larger problem, they suggest simulated annealing. 

For the same problem, Feng and Lau (2005) also suggest meta-heuristic approach due to 

the complexity of the solved problem. Their proposed heuristic outperforms that of 

Radhakrishnan and Ventura (2000).  

 

Heady and Zhu (1998) present a heuristic method to minimize the sum of earliness 

and tardiness for identical parallel machines with sequence dependent setup time. They 

don’t consider job weight. For a small problem, they compare the performance of the 

heuristic with the optimal solution from integer programming.   

 

(IV) Other criteria 

To maximum machine utilization, Christos and Milton (1988) propose a heuristic to 

minimize machine interference. Hirashi et al. (2002) address identical parallel machines 

scheduling with sequence dependent setup time. They maximize the weighted number of 

jobs that are completed before their due dates. Kim et al. (2002) propose a restricted tabu 

search to reduce search effort significantly without eliminating the promising solutions. 

They minimize the maximum lateness on identical parallel machines by considering 

sequence dependent setups. Anglian et al. (2005) minimize total setup time for identical 

parallel machines. They use fuzzy mathematical programming.  

 
 
Table 3 shows research related to the parallel non-batch machines scheduling with 

sequence dependent setup time
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Table 3. Parallel non-batch machines with sequence dependent setup time 

Objective functions References  Machines type  Approach  Others  

1. Total weighted 
tardiness  

Lee et al (1997)  Identical parallel 
machines 

Dispatching rules (ATCS)  

 Lee et al (1997)  Identical parallel 
machines 

Three stages 
method 

ATCS is used to find the initial 
solution for simulated anealing  

 Park et al 
(2000) 

Identical parallel 
machines 

Dispatching 
rules (ATCS) 

Neural network to imporve ATCS  

 Fowler et al 
(2003)  

Identical parallel 
machines 

Hybrid 
genertic 
algorithm 
(GA)  

Genetic algorithm assigns jobs to 
machine, then dispatching rules 
are used to sequence jobs on each 
machine 

 Tamimi et al 
(1997)  

Uniform parallel 
machines 

Genetic 
Algorithm 

Dynamic crossover rate 

     
2. Total tardiness Chen et al 

(2006) 
Unrelated parallel 
machines 

Hybride 
Aproach 
(ATCS+SA) 

Simulated annealing , Lee's 
ATCS find initial solution 

     
3. The total completion 
time 

Felipe et al 
(2005) 

Unrelated parallel 
machines 

Constructive 
method 

An improved emueration  

 Kurz et al 
(2001)  

Identical parallel 
machines 

Integer 
programming 

Some jobs's release time ≠ 0  

     

4. Total weighted 
completion time 

Weng et al 
(2001)  

Unrelated parallel 
machines 

Evaluate 
seveal 
hueristics 

Comparisive experiments 

 Fowler et al 
(2003)  

Identical parallel 
machines 

Hybrid 
genertic 
algorithm 
(GA)  

A two stages method  
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5. Bi-Creteria     

Sum of 
weighted 
earliness 
and 
weighted 
tardiness 

Balakrishna et al (1999) Uniform parallel 
machines 

Mixed 
integer 
programming 

Bender's decomposition procesure 
(for large size problem) 

 Radhakrishnan et al (2000) Identical parallel 
machines 

Mathematical programming  

 Feng et al (2005) Identical parallel 
machines 

Meta-huristic  Outperforms Radhakrishnan et 
al's work (2000) 

Sum of 
earliness 
and 
tardiness 

Heady et al  Identical parallel 
machines 

Hueristic Solution compared with that from 
the integer programming 

     
6. Others     

Maximize 
the weighted 
number of 
jobs that are 
completed at 
their due 
date 

Hirashi et al (2002) Identical parallel machines A maximum objective function 

Minimize 
the 
maximum 
lateness  

Kim et al (2003) Identical 
parallel 
machines 

Restricted tabu search Reduce computation effort 
without losing promising 
solutions  

Minimize 
mean 
completion 
time  

Michael et al (2001)  Identical 
parallel 
machines 

Hybrid genertic 
algorithm (GA)  

A two stages method  
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Minimize 
total setup 
time  

Anglian et al (2005)  Identical 
parallel 
machines 

Fuzzy  programming  
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2.2.2. Parallel batch machines scheduling with sequenced dependent setup 

 
Most works in this category are tardiness related. Both Karp (1972) and Ho and 

Chang (1995) claim that minimizing total tardiness of two identical machines (non-batch 

machine) even without setup is NP hard. Due to the complexity of the problem, people 

tend to find quality solutions but rather an optimal solution.  

 

Meta-heuristics are popular methods to find near optimal solutions in complicated 

scheduling environments. Because they impose severe computation burden compared 

with convenience dispatching rules, meta-heuristics may not be suitable when quick 

solutions are needed within a short time. Kim et al. (2002) address unrelated parallel 

batch machines scheduling with sequence dependent setup time. In their study, the jobs 

within in a family have the same due date. Simulated annealing that utilizes job 

rearrangement techniques is used to generate neighborhood solutions. Kim et al. (2003) 

test four heuristics for unrelated parallel batch machines: (1) the earliest weighted due 

date, (2) the shortest weighted process time, (3) the two level batch scheduling heuristic, 

and (4) the simulated annealing method. Their test shows that simulated annealing 

outperforms other heuristics to minimize total weighted tardiness. For the same problem, 

Eom et al. (2002) propose a three stages method where the last phase is tabu search.  

 

To find the optimal solution, Chen and Powell (2003) propose a branch and bound 

algorithm to minimize total weighted completion time on identical parallel batch 

machines. Computational analysis shows that it is capable to optimally solve medium 

size problems within reasonable computation time.  
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Table 4 shows the research related to the parallel batch machines scheduling with 

sequence dependent setup time  

 

Table 4. Parallel batch machines with sequence dependent setup time 

Objective 

funtions References  Machines type  Approach  Others  

1. Meta-heuristic    

Minimize the 
total tardiness 

Kim et al 
(2002) 

Unrelated 
parallel batch 
machine 

Simulated Anealing  

Minimize the 
total weighted 
atrdiness 

Eco et al 
(2002)  

Indentical 
parallel batch 
machine 

A three stages 
method.  

ATCS+ 
Simulated 
Anealing 

Minimize the 
total weighted 
atrdiness 

Kim et al 
(2003) 

Unrelated 
parallel batch 
machine 

Test four 
heuristics 

Simulated 
anealing 
outperforms 
than others. 

2. Others      

Minimize total 
weighted 
completion time 

Chen et al 
(2003)  

Identical 
parallel batch 
machine 

Brach and 
bound 

Solve medium 
size problem 
optimally 

 
 
2.3 Look-ahead control procedures   

This section reviews look-ahead control heuristics of the machine scheduling. 

Related heuristics are grouped into Look-ahead non-batching heuristics and Look-ahead 

batching heuristics. 

 

2.3.1 Look-ahead non-batching heuristics  

Christos and Milton (1988) reduce interference for one operator who operates 

parallel machines. The schedule made by their heuristic yields high machine utilization 

and high operator utilization simultaneously. Mao et al. (1994) explore a one step 



 

 

19 

  
 

look-ahead heuristic to improve the performance of on-line heuristics. They minimize the 

total completion time and study the performance of the worst case. Jihene et al. (2002) 

look ahead machine preventive maintenance and compare four single machine heuristics 

to minimize total tardiness. Jang et al. (2001) propose a heuristic to minimize flow time 

or tardiness on the parallel machine. Each part has different processing times on different 

machines and there is no local buffer. Once part arrived, the destination machine is 

decided for the operation at once. Different from other look-ahead heuristic, the 

considered part is selected from the machine perspective. The assigned parts on the 

machine are processed by first in first out (FIFO) rule. Chang et al. (2004) propose a one 

step look-ahead heuristic which targets to minimize the total weighted tardiness with 

sequence dependent setup and unequal ready time. They iteratively select a job to the 

machine, so that the created partial schedule yields the smallest incensement of the total 

weighted tardiness. Once all jobs are scheduled, pairwise exchange is used to further 

reduce the total weighted tardiness. Their heuristic is proved as an efficient method when 

problem size is small. 

  

In the more complicated scheduling environments, such as flow shop and job shop, 

Smith et al. (1996) explore the influence of changing part input sequence, part mix ratio 

and look-ahead strategy to the machine utilization in a flexible flow shop. The tested 

look-ahead strategy is a one-step look-ahead that guarantees that the machine used for the 

next operation is the one with the earliest available time. Experiment shows that the 

theoretical maximum utilization can be achieved with lower WIP level when balanced 

part mix ratio incorporates look-ahead strategy. Ginzburg et al. (1997) propose a heuristic 
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that combines pairwise comparison with the look-ahead concept to select the next job for 

the idle machine. Competitions are carried out among available jobs. The look-ahead 

horizon is decided by the processing time of the winner. The future arrivals, whose 

estimated finish time falls in this horizon, are considered. The selected available job is 

then competed with considered future jobs. If the winner is still the available job, 

dispatch the job now, otherwise, wait for the winning future arrival. Other look-ahead 

heuristics see works of Holthaus and Ziegler. (1997) and Tunali (1997).  

 

2.3.2 Look-ahead batching heuristics 

In the batching production where several parts are produced together by one time, 

full batch always has higher priority to process than partial batch. When a full batch can 

not be formed, scholars generate look-ahead heuristics to decide the batch should be 

processed now or delayed to a future arrival.  

 

To minimize flow time, Glassey and Weng (1991) propose dynamic batch heuristic 

(DBH) heuristic. DBH computes a net value for each considerable future arrival during 

one processing time of the batch machine from the decision time. The next batch’s 

loading time is the future arrival with the largest net value. Fowler et al. (1992) propose 

next arrival cost heuristic (NACH) heuristic which only considers the next future arrival. 

Other look-ahead heuristics for the same problem see, Guilher et al. (2000), Fowler et al. 

(2002), Cigoloni et al. (2002), and Gupta et al. (2004).  
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To minimize tardiness, Gupta and Sivakumar (2006) propose a look-ahead heuristic 

for Just-In-Time production. They look ahead one processing time of the batch machine 

from the decision time. Two earliness and tardiness measures are considered: the mean of 

the absolute sum of the earliness and tardiness, and the mean of their squared sum. The 

scenario with smallest root mean square value of earliness and tardiness decides the 

loading time of the next batch. In their later work (Gupta and Sivakumar. 2007), each 

lot’s slack time is considered (Slack time = di-pi-t0), where t0 is the current time. The best 

scenario is defined as the batch with the minimum value of 2/1

1

2
0 )( )),0(max(

1
∑
=

−−
n

i
ii tpd

n
, 

where n is the number of lots in the scenario.  

 

Weng and Leachman. (1993) propose minimum cost rate (MCR) heuristic. MCR 

considers max {0,k-q0) future arrivals at the decision time. k and q0 are the machine 

capacity and the number of available parts, respectively. Different from DBH and NACH, 

MCR’s look-ahead horizon is not fixed but equals to one process time of the batch 

machine plus the waiting time of the considered future arrival. MCR calculates a cost 

ratio which equals to the total holding costs over the length of the look-ahead horizon to 

make decision. The loading time of the batch is decided by the considered lot with the 

smallest cost ratio. Other look-ahead heuristics using cost ratio to make decision see, 

Robinson and Fowler (1995), Van et al. (1997) and Van (2002).  
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3. NEW ATC-BASED DISPATCHING RULES FOR THE SINGLE 

MACHINE SCHEDULING 

  
 This section first mentions the problem statement and assumptions, and then 

introduces two new ATC-based dispatching rules. The sequence dependent setup is 

classified into two categories: continuous sequence dependent setup and separable 

sequence dependent setup. The former is the conventional type considered by most 

research, while the latter does not need a job or a part on a machine to setup.   

 
3.1 Problem statement and assumptions 

This research considers the single machine scheduling problem, 1|rj,sij|∑WjTj, which 

is stated as: there are n jobs arriving to the single machines at different times. Each job j 

has its ready time (rj), processing time (pj), due date (dj), and job weight (wj). The setup 

(sij) of each pair of jobs i and j is sequence dependent. The objective is to minimize the 

total weighted tardiness of jobs,∑
=

n

j

jjTw
1

, where Tj , max{0,Cj-dj}, is the tardiness of job j 

and Cj is the competition time of job j.  

 

The considered single machine problem assumes the following: 

• The job attributes (pj, dj, wj, rj, and sij) are known in advance. 

• Machines can process at most one job at each time. 

• Job preemption is not allowed.       

• Interruption such as machine breakdown and order cancellation does not happen. 
 

 
3.2 The proposed ATC-based dispatching rules 
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This section gives detailed information of the proposed ATC-based dispatching rules. 

We first make an analysis of the ATC-based dispatching rules and then generate two new 

rules, ATCRCS and ATCRSS.  

 
3.2.1 Analysis of the ATC-based dispatching rules  

 

This section analyzes the WSPT term, the slack term, and the ready time term of 

existing ATC-based rules. The basic format of ATC-based indexes is a product of several 

terms: 

 

Index = Term A x Term B x (Term C) x (Term D)                            (1) 

 

It is noticed that the index of ATC-based rules has, in literature, at least two terms or at 

most four terms. To select a job to process next on the considered machine, ATC-based 

rules compute the index value for each unprocessed job and select the job with the largest 

index value to process.  

 

The index of ATCSR (Pfund et al. 2008) is given as an example of the related 

ATC-based rules: 

 

)
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where k1, k2, and k3 are scaling parameters. The four terms in formula (2) are the WSPT 

term, the slack term, the setup term and the ready time term, respectively, from left to 

right. 

 

(I) The WPST term 

The denominator of the conventional WSPT term is pj, which signifies the earliest 

possible completion time of job j from the current time (or the time length for the 

considered job to use the machine exclusively from the current time). If setup is sequence 

independent, the processing time can include the setup time. If setup is sequence 

dependent, and a job is available at time zero, its earliest job completion time is ijj sp + ; 

Raman et al. (1997) propose 
ijj

j

sp

w

+
 as the WSPT term. In their WSPT term, the 

sequence dependent setup, sij, is treated as a part of the processing time. On the other 

hand, if a job has future ready times and sequence dependent setup, its earliest possible 

completion time is )0 ,max( trsp jijj −++ for the continuous sequence dependent setup, 

and is ) ,max( trsp jijj −+ for the separable sequence dependent setup. In the above two 

formulas, max(rj-t, 0) and max(sij, rj-t) are possible machine idle times for the continuous 

setup and separable setup, respectively. These possible machine idle times influence the 

earliest completion times for the considered jobs, and it is reasonable to treat these 

possible machine idle times as a part of the processing time. Based on this analysis, we 

propose the following formulas as the new WSPT term: 

 

)0 ,max( trsp

w

jijj

j

−++
 (Continuous sequence dependent setup)                  (3) 
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) ,max( trsp

w

jijj

j

−+
    (Separable sequence dependent setup)                   (4) 

 

(II) Exponent numerator of the slack term  

One of the important differences among ATC-based rules is the slack term. This 

section compares four popular exponent numerators of the slack term and proposes two 

new formulas. Specifically, both new formulas use the sequence dependent setup time, sij, 

which is seldom used in the existing formulas.    

     

(1) )0,max( trpd jjj −+−−  

This formula in BATCS (Mason et al. 2002), )0 ,max( trpd jjj −+−− , assigns a 

lower priority to a job with a larger latest possible start time, jj pd − , while meeting the 

specific due date. It also considers the waiting time of a job, jrt − . If a job has been 

ready for a longer time, its priority becomes higher, when only consider t and rj (figure 

1(a)). On the other hand, a more future job is assigned a lower priority (figure 1(b)). If a 

ready job has been waiting longer than the time length (time to the latest possible start 

time), it gets the highest priority score of the slack term (e0=1) (figure 1(c)). 
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  (a) Ready job (rj≦t)     (b) Future job (rj>t)   

 
 
 
 
 
 
 
    (c) Late job (dj-pj<t) with long waiting time (dj-pj<t-rj) 
 
     Figure 1. Slack term of BATCS  
 
         
(2) )0),max(max( trpd jjj −+−−   

This formula is used by BATCSmod (Pfund et al. 2008). Different from BATCS, all 

ready jobs ( trj ≤ ) are assigned the same highest priority when we only consider rj and t. 

These ready jobs' priorities are decided by the value of ( jj pd − ) regardless of the length 

of their respective waiting times (figure 2). For a future job ( trj > ), this formula is the 

same as that of BATCS (figure 1(b, c)).                

  

   

    Figure 2. Slack term of BATCSmod: ready job ( trj ≤ ) 
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(3) )0),,max(max( trpd jjj −−−                                  

This formula, )0 ), ,max(max( trpd jjj −−− , is used in ATCSR (Pfund et al. 2008). It 

uses the current decision time (t) or the ready time (rj) to calculate the slacks of a ready 

job or a future job (figure 3). The slack in ATCSR measures the maximum time length of 

postponing the start of a job from its earliest possible start time, max(rj,t), while still 

meeting its due date. When this slack is negative, 0) ,max( <−− trpd jjj , the slack term 

gets the highest priority score (e0=1). This term does not consider the sequence dependent 

setup time; even when the slack for this term is positive, the due date may not be met 

because of the required setup time. 

 

  (a) Ready job (rj≦t)       (b) Future job (rj>t)  

Figure 3. Slack term of ATCSR 
 
 
 
(4) )0,max( tspd ijjj −−−−  

If we do not consider the effect of ready time but consider that of the setup time in 

the formula in 4.2.3 (ATCSR), the formula becomes “ )max( tspd ijjj −−−− ”, which is 

used by Raman et al. (1989).  

 

(5) )0),,max(max( trspd jijjj −−−−   

  rj 

       
Slack pj 

   
tj 

0      dj 

Earliest possible job 
start time  

       
d  
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We propose a new exponent numerator for the slack term. This new formula includes 

the sequence dependent setup time in the formula of ATCSR. The slack measures the 

maximum time for postponing the job start from its earliest possible start 

time, ,) ,max( trj while still meeting its due date (figure 4). 

 

   (a) Ready job (rj≦t)       (b) future job (rj>t)   

Figure 4. Slack term of ATCRCS 
 
 
(6) )0 ),,max(max( ijjjj strpd +−−−   

In this new formula, the slack is the maximum time in delaying the start of 

processing a job (but not necessarily the start of setup) from its earliest possible start time 

while still meeting its due date (figure 5).  

         

(a) setup is done before ready time (t+sij≥rj)  (b) setup is done after ready time (t+sij<rj)                             

       Figure 5. Slack term of ATCRSS 

 
 
(III) Exponent denominator of the slack term  
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The exponent denominators of the slack terms of existing rules use only the mean 

processing time ( p ) to normalize the numerator; it does not consider the mean setup time 

( s ), which is important when the setup time is large. This section proposes a new 

formula as the exponent denominator of the slack term: 

 

k1( sp + )                                                            (5) 

 

where k1 is the scaling parameter for the slack term. 

 

(IV) Exponent denominator of the ready time term  

In the exponent denominator of the ready time term, existing ATC-based rules use 

only the mean processing time ( p ) to normalize the numerator of the exponent. This 

section proposes a new formula as the exponent denominator of the ready time term: 

 

k3( sp + )                                                           (6) 

 

where k3 is the scaling parameter for the ready time term.    

 

3.2.2 The proposed ATC-based rules  

Bases on the above analysis, this section proposes new ATC-based rules, ATCRCS 

and ATCRSS, to minimize the total weighted tardiness with the sequence dependent 

setup and future time. 
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(I) Data generation and performance criteria 

The test data sets are generated by Pfund’s procedure. In the experiment, we use all 

of their factors except for the job machine factor µ, which is meaningful only for parallel 

machine problems. For the rest of the five factors, the same levels of each factor are used. 

The experiment is a 35 experiment, which has 243 scenarios. In each scenario, seven 

problems are randomly generated. A total of 1701 (243 x 7) problems are considered. 

Each problem has 40 jobs to be scheduled. Table 5 shows the factors and levels of the 

experiment. Factor and levels in this experiment is given in table 5. 

 

Table 5. Factors and levels of the performance test  

Factor Notation  Factor name  Low level 

Center 

level High level 

1 ŋ Setup severity factor 0.02 1.01 2 

 ז 2

Due date tightness 
factor  0.3 0.6 0.9 

3 R Due date range factor  0.25 0.63 1 

4 Ja Job availability factor  0.2 0.5 0.8 

5 r_ז Ready time factor  1 5.5 10 

 

To compare ATC-based rules, the experiment uses the following two measures: the best 

of the best measure and the territory measure.  

 

The best of the best measure 

By using a given rule, the grid method generates multiple schedules of each problem 

(one schedule for each grid) and selects the best one as the final schedule. To evaluate 

different rules, this test compares the selected best schedules (one from each rule) to 

determine which rule gives the best solution. We call this measure the best of the best 

measure.  
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The territory measure  

For a pair of ATC-based rules, the territory measure compares two schedules in a 

given problem at each grid. It then finds the percentage of grids in which one method 

performs better than, equal to, or worse than the other method on all the grids. This 

measure is helpful when choosing a rule that does not have a good procedure for finding 

a good grid, because the rule with a larger favorable territory is more likely to give a 

better schedule. On the other hand, the best of the best measure is superior when we have 

a good procedure to find the best grid for an ATC-based rule.  

 

(II) The proposed new ATC-based rules: ATCRCS and ATCRSS 

This section evaluates the effects of the new formulas introduced in section 3.2.1 and 

proposes two new ATC-based rules for 1|rj,sij,con|∑wjTj, and 1|rj,sij,sep|∑wjTj, 

respectively. In the latter part of this section, we compare performances of the two 

proposed rules with those of ATCSR, one of the best ATC-based rules in literature 

(ATCSR outperforms other ATC-based rules, such as BATCS, BATCmod, and X-Rmod, 

to minimize the total weighted tardiness of a problem which considers the sequence 

dependent setup and future ready time, Pfund et al. 2008). 

 

(a) The effect of the modified WSPT term 

To evaluate the modified WSPT terms that are introduced in section 3.2.1, 

)0,max( trsp

w

jijj

j

−++
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w
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j

−+
, we compare the original ATCSR with the 

modified ATCSR that includes the new WSPT terms. The results are summarized in table 6. 
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The three numbers in each cell are the number of cases, the percentage of cases, and the 

average reduction of tardiness, respectively (e.g., the tardiness reduction is 3.7% on 

average when only the 770 better cases are considered). The table clearly shows the 

modified WSPT terms improve the performance of ATCSR. In the following section, we 

will use the modified WSPT terms in further performance tests.  

 
Table 6. Effect of the modified WSPT terms     Continuous setup Separable setup   

ATCSR(new WSPT term) vs. 

ATCSR 

ARCSR(new WSPT term) vs. 

ATCSR
*
 

Better  770,  45% ,  3.7% 785,  46% ,  3.8% 

Equal  466,  28% ,  0% 457,  27%,  0% 
Worse 465,  27% ,  -2.8% 459,  27% ,  -3.1% 

* the setup of a future job starts at the decision time instead of the ready time  
 
 
(b) The new introduced ATC-based rules, ATCRCS and ATCRSS 

Several new formulas are introduced for the slack term and the ready time term in 

sections 3.2.1. In order to determine the indexes of the new ATC-based rules, we evaluate 

the effect of these formulas. The considered ATC-based indexes in the experiment have 

the following format: 
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where A: modified WSPT term from section 4.2.1.  

   B: numerator of the exponent of the slack term in section 4.2.2. 

    C: denominator of the exponent of the slack term in section 4.2.3.  

   D: denominator of the exponent of the ready time term in section 4.2.4. 
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Tables 7 and 8 show the results of the best of the best measure and the territory 

measure for the continuous setup case, respectively. Tables 9 and 10 are for the separable 

setup case. The three numbers in each cell of tables 7 and 9 are the number of problems 

in which the corresponding index gives tardiness values that are better than, equal to, or 

worse than those of the benchmarking index (ATCSR with the modified WSPT term). 

The three percentage values in each cell of tables 8 and 10 are the average percentage of 

better, equal, or worse grids in the territory measure of the 1701 problems, when the 

corresponding index is compared to the benchmarking index (ATCSR with the modified 

WSPT term).    

 

The formulas of column 3 of tables 7 to 10 are newly proposed in section 3.2.1, 

while the formulas of column 2, column 4, and column 5 are used in ATCSR, ATC and a 

modification of ATC (Raman et al. 1997), respectively. Tables 9 and 10 are similar to 

tables 7 and 8 respectively, except for the separable sequence dependent setup. The rows 

of the tables consider combinations of the exponent denominator of the slack term and 

the exponent denominator of the ready time term. The formulas in rows 3, 4, and 5 have 

newly proposed formulas.   

   

Tables 7 and 10 show the following for the continuous setup cases:  

• When comparing the second and fourth rows and the third and fifth rows, both 

show that the average setup time in the exponent denominator of the slack term (when 

given in these forms) significantly improves the performance.  
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• When comparing the second and third rows and the fourth and fifth rows, both 

show that the average setup time in the exponent denominator of the ready time term 

(when given in these forms) does not affect the results significantly.  

 

• When comparing the second and fourth columns and the third and fifth columns, 

both show that the ready time in the exponent numerator of the slack term (when given in 

these forms) does not make a significant difference to the results. 

 

• When comparing the second and third columns and the fourth and fifth columns, 

both show that sij in the exponent numerator of the slack term (when given in these forms) 

increases the number of better cases (table 7) and the average percentage of grids with 

tardiness reduction (table 8); however it also increases the number of worse cases and the 

average percentage of grids with worse solutions for 1701 problems.  

 

Table 9 and table 10 show comparable results to table 7 and table 8 for the separable 

setup cases. The new rules are proposed based on the above test results, and we select 

terms based on the performance of the test (the performances are not significantly 

different) and their simplicity. Because tpd jj −− yields both fewer worse cases in the 

best-of-the-best measure and lower percentage of average worse grids in the territory 

measure, and also because the formula is simpler than others, we select it as the 

numerator of the exponent of our new rules. In deciding formulas based on the results of 

rows, we note the tables show similar performances in the fourth and fifth rows, and we 
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select the formula in the fourth rows for its simplicity. The resultant formulas are given 

below:     

 

The index of ATCRCS (for continuous setup):  
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The index of ATCRSS (for separable setup):  
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Notably, the above choices of the slack term for (8) and (9) could be changed 

depending on the objective of the scheduling. For example, if we are aggressive, we can 

maximize the possibility of getting better schedules (at the cost of increased chance of 

getting worse schedules) by using the formulas of the third or fifth columns and the 

formula of the fifth row (instead of the fourth row). After deciding the indexes of the new 

rules, we compare the new ATC-based rules with ATCSR in the following section.  
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Table 7. The best-of-the-best test (for the continuous sequence dependent setup) 
         B 
C, D        

dj-pj-max(rj,t) dj-pj-sij-max(rj,t) dj-pj-t dj-pj-sij-t 

pkpk 31  ,  0, 1701, 0 218, 1221, 262 24, 1636, 41 224, 1196, 281 

)( , 31 spkpk +  72, 1557, 72 250, 1160, 291 73, 1562, 66 245, 1170, 286 

)( ),( 31 pkspk +  450, 1139, 112 511, 970, 220 462, 1111, 128 516, 953, 232 

)(  ),( 31 spkspk ++  480, 1077, 144 531, 938, 232 484, 1078, 139 534, 933, 234 

 
 
 
Table 8. The territory test (% for the continuous sequence dependent setup) 
         B, 
C, D         

dj-pj-max(rj,t) dj-pj-sij-max(rj,t) dj-pj-t dj-pj-sij-t 

pkpk 31  ,  0, 100, 0 15.6, 61.5, 22.9 8.7, 89.4, 1.9 21, 56.2, 22.8 

)( , 31 spkpk +  5.1, 81.7, 13.2 15.5, 58.8, 28.8 10, 82.8, 7.2 20.7, 53.5, 25.8 

)( ),( 31 pkspk +  40.3, 43.5, 16.1 40.2, 41.6, 18.2 43.9, 39.9, 16.2 43.5, 38.2, 18.3 

)(  ),( 31 spkspk ++  39.2, 43.1, 17.7 39.3, 41.1, 19.6 43.8, 39.3, 16.9 43.4, 37.7, 19 

 
 
 
Table 9. The best-of-the-best test (for the separable sequence dependent setup) 
         B, 
C, D       

dj-pj-max(rj,t) 
dj-pj-max(rj,t+sij

) 
dj-pj-t dj-pj-sij-t 

pkpk 31  ,  0, 1701, 0 196, 1223, 282 34, 1606, 61 222, 1190, 289 

)( , 31 spkpk +  123, 1493, 85 269, 1122, 310 120, 1506, 75 288, 1126, 287 

)( ),( 31 pkspk +  455, 1133, 113 497, 985, 219 461, 1092, 148 509, 962, 230 

)(  ),( 31 spkspk ++  513, 1039, 149 549, 926, 226 515, 1042, 144 561, 921, 219 

 
 
 
Table 10. The territory test (% for the separable sequence dependent setup) 
         B, 
C, D       

dj-pj-max(rj,t) 
dj-pj-max(rj,t+sij

) 
dj-pj-t dj-pj-sij-t 

pkpk 31  ,  0, 100, 0 15.5, 61.5, 23.1 8.9, 89.9, 2.3 20.8, 56.3, 22.9 

)( , 31 spkpk +  6.6, 80.3, 13.2 16.3, 55.2, 28.5 11.3, 81.5, 7.2 21.6, 53, 25.4 

)( ),( 31 pkspk +  39.9, 44, 16.1 39.7, 42, 18.4 43.3, 40.3, 16.3 42.9, 38.6, 18.5 

)(  ),( 31 spkspk ++  39.4, 43.2, 17.4 39.4, 41.2, 19.4 43.9, 39.5, 16.6 43.5, 37.8, 18.7 
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(III) The performance of the new proposed ATC-based rules 

This section evaluates the new proposed ATC-based rules over ATCSR on the single 

machine with the continuous setup and separable setup, respectively.  

 

(a) ATCRCS vs. ATCSR  

We compare ATCRCS with ATCSR for continuous setup under the best of the best 

measure and the territory measure.     

  

The best of the best measure  

Among the considered 1701 problems, ATCRCS performs better than, equal to, and 

worse than ATCSR in 915 problems (54%), 390 problems (23%) and 396 problems (23%), 

respectively. When ATCRCS outperforms ATCSR, the average reduction of tardiness is 

5.1%. In the opposite case, ATCRCS gives 2.4% higher weighted tardiness than ATCSR.  

 

Based on this measure, we also study the effect of each factor. The test results in 

figure 6(a) show ATCRCS outperforms ATCSR at all levels of all factors except at the 

low level of factor 1, setup severity. This figure shows that ATCSR performs better than 

ATCRCS only when the average setup time is short (2% of the average processing time). 

When the setup severity level is set at 30% and 60%, which are not parts of Pfund’s level 

of factor 1, additional tests show that ATCSR performs better than ATCSR. When setup 

severity is 30%, ATCRCS gives 283 better problems, 104 equal problems, and 180 worse 

problems in 567 newly generated problems (also generated by Pfund’s method, but at the 
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level value of 30% and 60% of factor 1). When the value of setup severity is increased to 

60%, the results are 359, 75, and 133 problems respectively.   
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(a) Effect of steup severity0100200300400500
Low (0.02) Center (1.01) High (0.2)

       (a) Effect of steup severity0100200300400500
Low (0.02) Center (1.01) High (0.2)

 

(b) Effect of due date tightness050100150200250300350
Low (0.3) Center (0.6) High (0.9)

  
(b) Effect of due date tightness050100150200250300350

Low (0.3) Center (0.6) High (0.9)
 

 (c) Effect of due date range050100150200250300350
Low (0.25) Center (0.63) High (1)

    (c) Effect of due date range050100150200250300350
Low (0.25) Center (0.63) High (1)

 

 (d) Effect of job availability050100150200250300350
Low (0.2) Center (0.5) High (0.8)

    (d) Effect of job availability050100150200250300350
Low (0.2) Center (0.5) High (0.8)

 

 (e) Effect of ready time tightness050100150200250300350
Low (1) Center (5.5) High (10)

  (e) Effect of ready time tightness050100150200250300350
Low (1) Center (5.5) High (10)

 

(a) ATCRCS vs. ATCSR                (b) ATCRSS vs. ATCSR 

                 Figure 6. Effect of factors   
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The territory measure 

The results of a territory test are shown in figure 7(a) by scenarios (statistics of seven 

problems are summarized in each scenario of the figure). Figure 7(a) shows when setup 

severity is at high or center levels (scenarios 1 to 81 and scenarios 82 to 161, 

respectively), ATCRCS significantly outperforms ATCSR. When setup severity level is 

low (scenarios 163 to 243), many grid points yield equal performance for ATCRCS and 

ATCSR. We also note when the setup severity level is low and due date range tightness is 

central or low (scenarios 190 to 243), ATCRCS outperforms ATCSR; only when the 

setup severity level is low and the due date tightness level is high (scenarios 163 to 189), 

ATCSR slightly outperforms ATCRCS. We also note the curve of the worse percentage 

is relatively stable; it is not as sensitive to scenarios as the other two curves.   

 

00.20.40.60.81
1 23 45 67 89 111 133 155 177 199 221 243ScenariosPercentage BetterTieWorse 00.20.40.60.81

1 23 45 67 89 111133 155 177 199 221243ScenariosPercentage BetterTieWorse
 

   (a) ATCRCS vs. ATCSR             (b) ATCRSS vs. ATCSR 

      Figure 7. The territory test 

 

(b) ATCRSS vs. ATCSR  

This section performs the same tests for the separable setup type. Because ATCRSS 

is the only rule to solve a problem with separable sequence dependent setup, ATCSR is 
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modified so that a setup can start at the decision time instead of the ready time of a job. 

The results of the test for ATCRSS are similar to that of ATCRCS. 

    

The best of the best measure 

Among the 1701 problems considered, ATCRSS performs better than, equal to, and 

worse than ATCSR in 912 problems (54%), 400 problems (23%) and 389 problems (23%), 

respectively. When ATCRSS outperforms ATCSR, the average reduction of tardiness is 

5.3%. In the opposite case, ATCRSS gives 2.5% higher weighted tardiness than ATCSR. 

The test results in figure 6(b) show ATCRSS outperforms ATCSR at all levels of all 

factors except at the low level of factor 1, setup severity. When setup severity level is set at 

30% and 60%, which are not parts of Pfund’s level of factor 1, additional tests show that 

ATCRSS performs better than ATCSR. When the level of setup severity is 30%, ATCRSS 

gives 291 better problems, 121 equal problems, and 155 worse problems in the newly 

generated 567 problems mentioned in section 7.4.2. When the level of setup severity is 

increased to 60%, the results are 370, 75, and 122 problems, respectively. 

  

The territory measure 

For the separable setup, figure 7(b) shows a pattern similar to figure 7(a). When 

setup severity is at high or center levels (scenarios 1 to 81 and scenarios 82 to 161, 

respectively), ATCRSS significantly outperforms ATCSR. When setup severity level is 

low (scenarios 163 to 243), many grid points yield equal performance for ATCRSS and 

ATCSR. We also note when the setup severity level is low and due date range tightness is 

central or low (scenarios 190 to 243), ATCRSS outperforms ATCSR; only when the 



 

 

42 

  
 

setup severity level is low and due date tightness level is high (scenarios 163 to 189), 

ATCSR slightly outperforms ATCRSS. We also note the curve of the worse results is 

relatively stable; it is not as sensitive to scenarios as the other two curves. 

 

(IV) The results from the proposed new rules vs. the optimal solution  

 This section compares the performances of ATCRCS and ATCRSS with optimal 

solutions. Six scenarios (5 jobs, 6 jobs, 7 jobs, 8 jobs, 9 jobs and 10 jobs) are tested on a 

single machine. Each scenario contains five randomly generated problems. Table 11 and 

figure 8 show the average computation time needed to achieve the optimal solution, we 

used Lingo 9.0 on a desktop with 3.0 GHz processor and 1TB RAM. It shows that it takes 

more than half of a day to get the optimal solution for 10 jobs on a single machine. 

However, for the dispatching method, it spends less than 1 second to generate a schedule 

for all tested problems. Appendix A and B are the proposed non-linear IP model and its 

lingo program. Appendix C is an example to schedule 5 jobs on a single machine by the 

lingo program.  
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Table 11. Computation time to get optimal solution for different cases 

Continuous type Separable type 
Time 5 jobs 6 jobs 7 jobs 8 jobs 9 jobs 10 jobs 5 jobs 6 jobs 7 jobs 8 jobs 9 jobs 10 jobs 

Test 1 1 4 141 388 4725 51356 1 5 57 287 7979 52433 

Test 2 1 2 28 229 1734 29491 1 2 12 257 1414 46709 

Test 3  1 3 34 338 7899 105364 1 3 66 229 6534 62539 

Test 4 1 4 12 132 2915 31433 1 2 13 147 1838 26330 

Test 5 1 2 21 285 4145 37235 1 3 50 223 3621 31310 

Average (S)  1 3 47.2 274.4 4283.6 50975.8 1 3 39.6 228.6 4277.2 43864.2 

Average (H) 0.00028 0.00083 0.01311 0.07622 1.18989 14.1599 0.00028 0.00083 0.011 0.0635 1.18811 12.1845 
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    Figure 8. Average computation time to get optimal solution  

 

Figure 9 shows the tardiness comparison (the percentage of the result from the 

proposed rules deviates from the optimal solution). Result shows among the 60 tested 

problems, the proposed ATC-based rules get an optimal solution 36 times. There are 

13 problems to achieve a near optimal solution (deviation is within 5% of the optimal 

solution). The last 11 problems have a deviation over 10% of the optimal solution. 

The test shows that the proposed new rules generate a quality schedule, when the 

problem size is small.  
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           Figure 9. Deviation from optimal solution  

 

 

In conclusion, the proposed new rules, ATCRCS and ATCRSS, are extensions of 

ATCSR (Pfund et al. 2008). All these three rules use the same terms but different 

formulas in some terms, for example, the proposed ATCRCS and ATCRSS use ready 
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time and sequence dependent setup in the WSPT term, while not for ATCSR. The 

logics or properties behind the WSPT term, the slack term, setup time term, and ready 

time term of these three rules are the same: a job has larger slack has a lower priority 

to be processed next; a job with a larger job weight or a shorter processing time has a 

higher priority to be processed next; a job with a shorter sequence dependent setup 

has a higher priority to be processed next; and a ready job has a higher priority to be 

processed next than a future job.  
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4. Performances of new rules on the identical parallel machines 

 
 This section evaluates the performance of the proposed ATC-based dispatching 

rules, ATCRCS and ATCRSS, on the identical parallel machines with other 

ATC-based dispatching rules. 

 

4.1 Problem description and assumptions  

  

   This paper considers two problems: Pm|rj,sij,con |∑wjTj and Pm|rj,sij,sep |∑wjTj. 

The first problem is stated as: there are n jobs arriving to m identical parallel 

machines at different times. Each job j has its ready time (rj), processing time (pj), due 

date (dj), and job weight (wj). The setup time (sij) of each pair of jobs i and j is 

sequence dependent and the continuous type, con. In general, sij is not equal to sji. The 

objective is to minimize the total weighted tardiness of jobs,∑
=

n

j

jjTw
1

, where Tj is the 

tardiness of job j, max{0,Cj-dj}, and Cj is the competition time of job j. The second 

problem is the same as the first problem except that the setup is changed into the 

separable type, sep.  

 

Both problems assume the following: 

• The job attributes (pj, dj, wj, rj, sij) are known in advance. 

• The machines are parallel identical. 

• Each machine can process at most one job at each time. 

• Job preemption is not allowed.       
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• Production interruptions such as machine breakdown and order cancellation do 

not happen.   

 

4.2 Benchmark methods and design of experiment  

 

   Five ATC-based dispatching rules, BATCS, BATCSmod, ATCSR, ATCRCS and 

ATCRSS are studied in the experiments. When BATCS and BATCSmod are used as 

benchmark methods, their batch size is set at 1. ATCSR, ATCRCS and ATCRSS have 

three k values, while BATCS and BATCSmod have only two k values. These 

ATC-based indexes are given as below: 

  

BATCS (Mason et al. 2002)   
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BATCSmod (Pfund et al. 2008)  
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ATCSR (Pfund et al. 2008)   
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ATCRCS (Continuous sequence dependent setup) 
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ATCRSS (Separable sequence dependent setup)  
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Two experiments are performed to evaluate the performances of ATC-based rules 

on identical parallel machines scheduling. The first experiment completely repeats 

Pfund’s 36 experimental design but considers more problems: Each of the six factors 

has three levels (low, center, and high). The number of machines is set at 5 (m=5). 

This experiment has 729 (36) scenarios. In each scenario, seven cases, or problems, 

are randomly generated. In total, 5103 (729 x 7) problems are tested in the first 

experiment. Table 12 shows factors and levels of Pfund et al. (2008). We evaluate the 

performance of ATC-based rules by two types of tests, the best of the best test and the 

territory test, which are explained in detail in sections 3.2.1  

 

Table 12. Experiment of Pfund et al. (2008) 

Pfund et al. (2008) 5 machines 
Factors 

Low Center High 

Job machine factor 11 19 27 
Setup severity factor 0.02 1.01 2 
Due date tightness 

factor 
0.3 0.6 0.9 

Due dtae range factor 0.25 0.63 1 
Job availability factor 0.2 0.5 0.8 

Ready time factor 1 5.5 10 

* The ready time rj is generated with uniform probability in the range [dj- r_τ*pj, dj], 
If (dj- r_τ*pj) is less than 0, a range of [0, dj] is used for ready time generation.
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In the second experiment, we focus on the effect of the number of machines. This 

is a 37 experimental design extended from Pfund’s 36 experiment. A new factor called 

machine number factor is added to the experiment of Pfund et al. (2008). The low, 

center, and high levels of this factor are set at 2, 4, and 6 respectively. In addition, the 

low, center, and high levels of the job machine factor, u, are set at 10, 20, and 30. The 

settings of the rest of the five factors (ŋ, г, R, Ja and r_г) are exactly the same as those 

of Pfund. Table 13 contains nine sections, and shows the total number of jobs 

considered in each section. There are 2187 (37) scenarios in this experiment. Each 

scenario contains seven problems. In total, 15309 (2187 x 7) problems are considered 

in the second experiment. 

 
Table 13. Number of jobs of the experiment  

Number of machines Job machine 
factor: µ 2 Machines 4 Machines 6 Machines 

µ=10 20 jobs 40 jobs 60 jobs 
µ=20 40 jobs 80 jobs 120 jobs 
µ=30 60 jobs 120 jobs 180 jobs 

 

  

4.3 Performance comparison of different ATC-based rules with CSDS  

 

  This section shows results of the two experiments mentioned in section 4.2 for the 

continuous sequence dependent setup cases and separable sequence dependent setup 

cases. 

 

4.3.1  Performance comparison of different ATC-based rules with CSDS 

(I) The best of the best test 

  For each scheduling problem, ATCRCS and ATCSR make 3146 (22 x 11 x 13) 

grids, and generate the same number of schedules. For BATCS and BATCSmod, 242 
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(22 x 11) grids and the same number of schedules are made. The schedule with the 

smallest total weighted tardiness among the 3146, or 242 schedules is selected as the 

corresponding rule’s final schedule for the considered problem. We compare the best 

selected schedules, one from each scheduling method, and check which method gives 

the best schedule. 

 

   In this test, ATCRCS, ATCSR, BATCS and BATCSmod have 3407 (66.76%), 

2157 (42.27%), 88 (1.7%) and 30 (0.59%) times to get the best solution out of the 

5103 problems generated in the first experiment in section 4.2. The sum of percentage 

is more than 100% due to ties. This test shows that ATCRCS yields more number of 

the best cases than ATCSR, which significantly outperforms BATCS and 

BATCSmod.  

  

   Next, we compare the two best methods from the above experiment, ATCSR and 

ATCRCS, and study the effect of each factor. In the 1701 problems (1/3 of 5103) 

where the setup severity factor is low (average setup time is short, i.e., 2% of the 

average processing time), ATCSR slightly outperforms ATCRCS (39% to 32% of 

1701 cases); they show the same tardiness level for the rest cases (29% of 1701 cases). 

Amongst the total of 5107 problems, there are 2908 (57%) problems where ATCRCS 

is better, 536 (11%) problems are tied, and 1659 (32%) problem where ATCRCS is 

worse. For problems where ATCRCS gives better results, the average of 

improvements over ATCSR is about 3%. For problems where ATCSR gives better 

results, ATCRCS yields worse results at an average regression of about 2.1% over 

ATCSR. 
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(II) The territory test    

   This section performs the territory test as follows: for each of the 5103 problems 

generated in 4.2, the results from ATCRCS and ATCSR are compared at each of all 

3146 grid points and the percentages of grid points at which ATCRCS performs better 

than, equal to and worse than ATCSR are recorded. The test uses the average values 

of the percentages of the seven problems of each scenario. This analysis is important 

in relation to the regression method because the k values estimated by the regression 

method are somewhat away from the best grid point in a random fashion. When the 

best k values are not estimated accurately, the scheduling method with a larger 

favorable territory is likely to give a better schedule. (On the other hand, when the 

regression equation gives the best k values accurately, the best of the best test 

introduced in the previous section is more relevant because it compares the best points 

selected by ATC-based rules.)  

  

   Figure 10 (a-i, a-ii, and a-iii) shows that when setup severity is at the high or 

center levels (scenarios 1 to 81 or scenarios 82 to 162, respectively) with 55, 95, and 

135 jobs on 5 machines, respectively, ATCRCS performs significantly better than 

ATCSR. It also shows that the number of jobs does not affect the test result much. 

When setup severity level is low (scenarios 163 to 243), many grid points yield the 

same total weighted tardiness for these two methods. The percentage of ties decreases 

when the number of jobs increases. It can also be noticed that when the setup severity 

level is low and due date range tightness is central or low (scenarios 190 to 243), 

ATCRCS outperforms ATCSR again. Only when the setup severity level is low and 

due date tightness level is high, ATCSR is found to have less chance to outperform 

ATCRCS in the territory test (scenarios 163 to 189). 
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     (iii) 135 jobs on 5 machines                      (iii) 135 jobs on 5 machines 
     
 
       (a) ATCRCS vs. ATCSR       (b) ATCRSS vs. ATCSR  
   
       Figure 10. Territory test 
 

 

(III) Effect of the number of machines 

  Figure 11(a) shows the effect of the number of parallel machines. It shows that 

when the level of the machine number factorμincreases, ATCRCS outperforms 
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ATCSR more. Additionally, for a given value of job machine factor,μ, using more 

machines yields more number of better cases. 

X: Number of machines400500600700800900100011001200
2M 4M 6MNumber of better

 cases Mu=10Mu=20Mu=30
 

X: Number of machines400500600700800900100011001200
2M 4M 6MNumber of better

 cases Mu=10Mu=20Mu=30
 

X: Number of machines02004006008001000
2M 4M 6MNumber of tie ca

ses Mu=10Mu=20Mu=30
 

X: Number of machines02004006008001000
2M 4M 6MNumber of tie case

s Mu=10Mu=20Mu=30
 

X: Number of machines300350400450500550600 2M 4M 6MNumber of worse 
cases Mu=10Mu=20Mu=30

  

X: Number of machines300350400450500550600 2M 4M 6MNumber of worse 
cases Mu=10Mu=20Mu=30

 
      (a) ATCRCS vs. ATCSR     (b) ATCRSS vs. ATCSR 
                      
    Figure 11. The effect of the number of machines 
 

   

4.3.2 Performance comparison of different ATC-based rules with SSDS  

 This section shows the results of the two experiments explained in section 4.2 for 

the separable sequence dependent setup cases. Due to the lack of benchmark methods 

for the separable sequence dependent setup case, BATCS, BATCSmod, and ATCSR 

are slightly modified as follows and compared with ATCRSS: if a future job is 

selected to process next, its setup is allowed to start as soon as the last scheduled job 

is finished. 
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(I) The best of the best test 

   In this test, ATCRSS, ATCSR, BATCS, and BATCSmod have 3517 (68.92%), 

1874 (36.72%), 101 (1.98%), and 45 times (0.88%) to get the best solution for the 

5103 problems generated in the experiment in section 4.2. The sum of percentage is 

more than 100% because of ties. This test shows that ATCSSR yields more number of 

the best cases than ATCSR, which significantly outperforms BATCS and 

BATCSmod.  

        

   Next, we compare the two best methods, ATCSR and ATCRSS, in more detail. 

The result shows ATCRSS outperforms ATCSR at all levels on all factors, even when 

the setup severity is low (average setup time is short, i.e., 2% of the average 

processing time). Amongst the total of 5107 problems, there are 3189 (62%) problems 

where ATCSSR is better, 385 (8%) problems are tied, and 1529 (30%) problem where 

ATCRSS is worse. For problems where ATCRSS gives better results, the average of 

improvements over ATCSR is about 3.2%. For problems where ATCSR gives better 

results, ATCRSS yields worse results at an average regression of about 2.0% over 

ATCSR. 

 

(II) The territory test  

   Figure 10(b-i, b-ii, and b-iii) shows, when setup severity is at the high or center 

levels (scenarios 1 to 81 or scenarios 82 to 162, respectively) for 55 jobs, 95 jobs, and 

135 jobs on 5 machines, ATCRSS performs significantly better than ATCSR, and the 

number of jobs does not affect the result significantly. When setup severity level is 

low (scenarios 163 to 243), many grid points yield the same total weighted tardiness. 
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It can be noticed that when the setup severity level is low, and due date tightness level 

is central or low (scenarios 190 to 243), ATCRSS outperforms ATCSR again. Also, 

under this condition, the rate of ties decreases with increasing number of jobs. Only 

when the setup severity factor level is low and due date tightness level is high, 

ATCSR has less chance to outperform ATCRSS in the territory test (scenarios 163 to 

189). 

 

(III) Effect of the number of machines 

  Figure 11(b) shows the effect of the number of machines. It tells that when the 

value of the machine number factor,μ,increases, ATCRSS outperforms ATCSR 

more. Additionally, for a given value of job machine factor,μ, using more machines 

yields more number of better cases. 

 

4.4 Computation time 

  A larger search range and smaller grid size increase computation time while 

improving the quality of the final schedule; the computation time and quality of 

schedule need to be balanced in the application of the scheduling procedure. Table 14 

shows the computation time of scheduling. All 5301 problems generated in section 

4.2 are tested on a 32 bit notebook with Pentium (1.86GHz) processor and 1GB RAM. 

We observe that using more scaling parameters improves the quality of results, but 

needs little bite more computation time. Table 14 also shows the grid method is 

computationally fast enough for most real applications; however, a regression method 

will still be helpful when scheduling is needed soon. In appendix D, we modify the 

single machine model to get a mathematic model for the parallel machines cases. 

Appendix E discusses the application of the math model proposed in appendix D.   



     

 

56 

  
 

Table 14. The computation time 

5 machines 
Methods with 2 scaling parameters 

(BATCS and BATCSmod)  

Methods with 3 scaling 
parameters (ATCSR, ATCRCS, 

and ATCRSS)  

55 jobs Less than 1 second/problem Less than 1 second/problem 

95 jobs Less than 1 second/problem About 1.5 second/problem  

135 jobs Less than 1 second/problem About 4.5 seconds/problem 
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5. THE PROPOSED LOOK_AHEAD HEURISTIC (LAIPM) 

 
 The section introduces the proposed look-ahead heuristic and evaluates its 

performances on the identical parallel machines. The considered setup is the 

continuous type. 

 

5.1 Introduction and potential application 

 

The proposed heuristic, LAIPM, is different from other look-ahead heuristics in 

the following ways. First, the proposed LAIPM is a search-based heuristic: it 

generates multiple schedules and selects the schedule with the smallest total weighted 

tardiness as the final schedule (these generated schedules are created by different 

combinations of scaling parameters). Second, the concept of look-ahead has two 

twofold meanings: (1) to select the next job on a machine, only the available jobs and 

some near future jobs are considered; (2) among considered jobs at the decision time, 

at most two jobs are selected by ATCRCS rule and at most one job is kept. This is 

done by comparing the total weighted tardiness of these two jobs to that of the 

reversed sequence. Finally, LAIPM uses a job switching heuristic to generate another 

possible iteration schedule, which allows selected jobs to be switched on all machines.  

  

The potential customers of the proposed LAIPM are from both manufacturing 

industry and service industry. In the manufacturing industry, an example of the 

parallel machines scheduling with the sequence dependent setup is the print shop 

which has parallel print machines. The color change from a dark color to a lighter 

color takes longer time than in the opposite case. In this example, the color changes 

are deemed as the sequence dependent setups. Press die change is example at the 

machine level, and assembly line setup is an example at the production line level. 

 



     

 

58 

  
 

In the service industry, an example is to generate schedules for maintenance 

workers. In this case, maintenance staffs are the parallel machines. Failures or repair 

requests are comparable to jobs to be processed on the parallel machines. The 

traveling times between failures is deemed as sequence dependent setup. The 

maintenance time is comparable to the job's processing time. Another example in the 

service industry is the handicapped senior riding service. Handicapped persons call to 

request a wheel-chair lift vehicle riding. The service agents know the departing and 

destination location for each request. With limited resource (vehicles), they also 

encounter the parallel machines scheduling problems with sequence dependent setup. 

In this example, the distance between two calls is comparable to the sequence 

dependent setup time. 

 

5.2 Logic and flow chart of the LAIPM heuristic 

To get the final schedule, LAIMP uses bellowing steps: 

For a certain scaling parameters combination, 

 

Step 1. Select the initial job on each machine. Twofold one-step look-ahead is used to 

select the initial job for each machine (one-step means consider available jobs and the 

nearest future job). 

 

Step 2. Check the number of unscheduled jobs:  

    (a) if no unscheduled jobs, go to step 4, pairwise exchange. 

    (b) if there is one unscheduled jobs, assign it to the machine with the smallest 

finish time and go to step 3, job switching heuristic. 
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    (c) if there are two or more unscheduled jobs, identify the critical machine 

which has the smallest finish time and use twofold one-step look-ahead to select a job 

(the critical job) on it. Reduce the number of unscheduled jobs by one and compute 

the look-ahead thresh which is the sum of the finish time of the critical job and the 

average of setup time. 

    2.1. For other non critical machines, we consider them by the increasing order 

of the finish time: the non critical machine with the smallest finish time is considered 

first for its next job selection. After all machines finish selecting their next job, a 

possible iteration schedule is created (Not all non machines must have the next 

selected job in the iteration), go to step 3, job switching heuristic. To decide the next 

job on the considered non critical machine, we start to count the number of 

unscheduled jobs. 

        (a) if all jobs are scheduled, go to step 3, job switching heuristic. 

        (b) if one job is unscheduled, assign it to the considered non critical 

machine. Reduce the number of unscheduled jobs by one and go to step 3, job 

switching heuristic. 

        (c) if two or more jobs are unscheduled, we only consider jobs whose 

ready time is smaller or equal to the look-ahead thresh. These jobs are called qualified 

jobs. Twofold look-ahead is used to select at most two qualified jobs.  

           (1) If no qualified jobs, go to 2.1 (consider the job selection on the 

next non-critical machine). 

           (2) If only one qualified job is found, assign this job to the 

considered non critical machine. Reduce the number of unscheduled jobs by one and 

go to 2.1 (consider the job selection on the next non-critical machine). 



     

 

60 

  
 

             (3) If more than two qualified jobs are found, use twofold look-ahead 

to assign one of them to the considered non critical machine. Reduce the number of 

unscheduled job by one and go to 2.1 (consider the job selection on the next 

non-critical machine). 

 

Step 3. Job switching heuristic. The selected jobs on machines are used as inputs of 

job switching heuristic. These selected jobs are switched among all machines to 

determine another possible iteration schedule which has a small total weighted 

tardiness value. This possible iteration schedule is compared with the possible 

iteration schedule which is created in step 2. If the schedule from job switching 

heuristic has a smaller total weighted tardiness and has a smaller sum of the machine 

finish time, using the schedule generated by the job switching as the schedule of the 

considered iteration, otherwise, using the schedule generated before the job switching 

heuristic as the schedule of the considered iteration. More detailed information of job 

switching heuristic is illustrated in section 5.3. Count the number of unscheduled job 

and go to step 2.  

 

Step 4. Pairwise exchange is used to reduce the total weighted tardiness for the 

created schedule of each machine. More detailed information about pairwise 

exchange is given in section 5.4. Until now, we get a schedule for a combination of 

scaling parameters. 

 

Creating schedules by other combinations of scaling parameters, among generated 

multiple schedules, the schedule with the smallest total weighted tardiness is the final 

schedule. The flow chart of the proposed heuristic is shown in figure 12. 
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Yes 

No

o 

 Yes No 

Final schedule is the one with the smallest TWT 

Two or more unscheduled jobs left. 
Find the machine with the smallest 
finish time.  

Check non-critical machines by increasing 
orders of ft, for the considered non-critical 
machine:  

Unscheduled job=1, 
the last job is 
assigned to the 
considered machine.  

Unscheduled jobs >=2.  

Determine LA horizon. 
Use ATCRCS to selects 
at most two jobs and 
determine the next job on 
machine. Reduce # of 
unscheduled job by 1.  
  

Reduce the # of 
unscheduled job by 
1 

All non-critical 
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      For each k1, k2 and k3 combination, do the followings 

Schedule the Initial job on each machine. 

Compute TWT of the generated schedule and pairwise exchange. 

Figure 12. Flow Chart of the proposed heuristic Phase  

ATCRCS selects two jobs, and decide the critical job. The 
finish time of this job plus the average of setup is the 
look-ahead thresh. Reduce # of unscheduled jobs by 1. 

Go in iteration, the number of unscheduled jobs=0? 
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Find the machine with 
smallest finish time, assign 
this job to it .  

Go in best of best heuristic to decide sequence in the 
considered iteration 

Reduce the # of 
unscheduled job by 
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5.3 The job switching heuristic 

 To allow jobs switching on machine and among machines, we proposed job 

switching heuristic. This heuristic is carried out after all machines finish considering 

their next job selection. Information, like the selected jobs, is used as inputs of the job 

switching heuristic. 

 

 Consider a given iteration in the 3 machines’ scheduling, machines 1 and 2 have 

assigned job, F and C (Machine 3 do not get assigned job) in the considered iteration. 

At the beginning of this iteration, the last jobs on these three machines are A, E and B, 

respectively. The input information is summarized in table 15:  

 

Table 15. Input of smaller in smaller heuristic 

Machine # Last job on machine assigned job on machine 

 1* A F 

2 
3 

E 
B 

 C  
 

* The critical machine 

 

 Job switching heuristic considers job switching among all machines: each 

selected job have chance to be scheduled before the last job of each machine or after 

the last scheduled job on each machine. In this example, job sequence A-F, F-A, A-C, 

and C-A are considered on machine 1; job sequence E-F, F-E, E-C, and C-E are 

considered on machine 2; and job sequence B-F, F-B, C-B, and BC are considered for 

machine 3. Let TWTm,AB donate the total weighted tardiness of the schedule on 

machine m where the last two jobs of the schedule are job A and job B. The total 

weighted tardiness values of the considered sequences on machine m are computed. 

Suppose these total weighted tardiness values are computed and given in table 16. 
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Table 16. Total weighted tardiness of considered sequence  

Machine # Value of TWTm,AB 

 1* TWT3,AF=10 TWT3,FA=8 TWT3,AC=6 TWT3,CA=3 
2 
3 

TWT5,EF=5 
TWT5,BF=8  

TWT5,FE=2 
TWT5,FB=4 

TWT5,EC=9 
TWT5,BC=12 

TWT5,CE=2 
TWT5,CB=4 

* The critical machine 

 

 In table 16, we want to decide the position of selected jobs (job F and job C) so 

that the three parallel machines yields small total weighted tardiness. For the general 

cases, table 16 has 2n * m values, where m is the number of machines that have 

selected job in the considered iteration, n is the number of machines. The positions of 

job F and job C can be determined by solving a linear binary programming with 

several constrains. The mathematical model of above example is given as: 

 

Min∑∑
m seq

seqm,seqm, X*TWT    (seq=AF, FA, AC, CA, EF, FE, EC, CE, BF, FB, BC 

and CB; m=1,2,3)                       (15) 

Subject to:  

X1,AF + X1,FA + X1,AC + X1,CA≤1                  (16) 

X2,EF + X2,FE + X2,EC + X2,CE≤1                 (17) 

X3,BF + X3,FB + X3,BC + X3,CB=1                 (18) 

X1,AF + X1,FA + X2,EF + X2,FE + X3,BF + X3,FB =1               (19) 

X1,AC + X1,CA + X2,EC + X2,CE + X3,BC + X3,CB =1              (20) 

 

where Xm,AB is the binary solution. Xm,AB=1 represents the schedule where the last two 

jobs are A and B is on machine m.  
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 Constrains 16 to 20 can be divided into two groups: (1) row constrains or the 

machine constrains (16, 17 and 18). Each machine can get at most one selected job. (2) 

The column constrains or the selected job constrains (19 and 20). Each selected job 

must be only scheduled by one time. Also, on each machine, each selected job has 

two possible positions, either before the last scheduled job or after the last scheduled 

job. 

 

 To quickly decide the positions of the selected jobs, job F and job C, we 

horizontally combine every two TWT values in table 17 into one value, and put these 

values in table 17.  

 

Table 17. Combined TWT table 

Machine # Modified TWT value 

 1* 18 (10+8) 9 (6+3) 
2 
3 

7 (5+2) 
12 (8+4) 

11 (9+2) 
16 (12+4) 

* The critical machine  

  

 Table 17 only contains 6 values (in general cases, n*m values). The problem 

becomes simpler (the considered problem is changed into the assignment problem): it 

is similar to find a value from each column from table 17 and satisfied with a 

constraint that the number of selected value of each row is smaller or equal to one. In 

this example, it is clear that 7 and 9 give the smaller sum value than others. The value 

7 and 9 in table 17 are then tracked back to get solution in table 16: 7 is the sum of 5 

and 2. 9 is the sum of 6 and 3 in table 16. To decide the sequence or the position of 

the selected job C and F, we select the smaller value between 5 and 2 and the smaller 

value between 6 and 3 as solutions. In this example, the schedule whose last two jobs 

on machine 1 is C-A. The schedule whose last two jobs on machine 2 is F-E. Once 
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this sub-problem is solved, we have two schedules, one is from the job switching 

heuristic and the other is generated before the job switching heuristic. These two 

possible schedules are shown in table 18 and 19: 

 
Table 18. Possible schedule (Before job switching heuristic) 

Machine  Last job  Assigned job  

 1* A F 

2 
3 

E 
B 

 C  
 

 
 
Table 19. Possible schedule (from job switching heuristic) 

Machine  Last job  Assigned job  

 1* C A 

2 
3 

F 
B 

E  
 

 

 To determine the schedule of the considered iteration, we compare the total 

weighted tardiness of these two possible iteration schedules. The schedule of the 

considered iteration is decided by the value of TWT and TWTswitch, where TWT is the 

total weighted tardiness of the schedule before job switching heuristic, while 

TWTswitch is the total weighted tardiness of the schedule from the job switching 

heuristic. If TWTswitch is smaller and the sum of machine finish time becomes smaller, 

the schedule generated by the job switching heuristic is the schedule of the considered 

iteration; otherwise, the schedule generated before the job switching heuristic is the 

schedule of the considered iteration.  

 

5.4 Pairwise exchange 

 Pairwise exchange is an improvement technique by switching two selected jobs’ 

position in predefined orders. It is used as soon as all jobs are assigned to machines. 
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Suppose a sequence on a machine has four jobs, A-B-C-D. The pairwise exchange 

orderly considers following changes: 

 

 B-A-C-D; (switch A and B) 

  C-B-A-D; (switch A and C)  

 D-B-C-A; (switch A and D) 

 A-C-B-D; (switch B and C) 

 A-D-C-B; (switch B and D) 

 A-B-D-C; (switch C and D) 

 

 The final sequence is the one with the smallest total weighted tardiness among all 

considered schedules. In literature, this pairwise exchange technique is also suggested 

in the improvement phase of the look-ahead heuristic of Chang et al. (2004).  

 

5.5 An example (8 jobs on 6 machines) 

 

This section uses the proposed look-ahead heuristic, LAIPM, to schedule 8 jobs 

on 6 machines. The grid settings of scaling parameters, k1, k2, and k3, are that of Rene 

and Lars (2009): 

 

k1: 0.2, 1, 1.6, 2.4, 3.6, 4.8, 6 

k2: 0.1, 0.7, 1.3, 1.9 

k3: 0.001, 0.005, 0.05, 0.6, 1.2 

 

The processing time, due date, sequence dependent setup time, job weight and ready 

time of these 8 jobs are given in table 20 and table 21. 
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Table 20. Processing time, due date, job weight and ready time  

  Job 1  Job 2 Job 3  Job 4 Job 5 Job 6 Job 7 Job 8  

Processing time  8 2 6 9 8 5 3 2 
Due date 10 5 13 12 10 8 7 8 

Job weight 4 2 8 3 1 6 4 3 
Ready time 4 0 5 0 7 0 0 5 

 
Table 21. Sequence dependent setup time 

  Job 1 Job 2 Job 3  Job 4 Job 5 Job 6 Job 7 Job 8  

Initial setup  3 2 4 5 1 3 4 2 
J1 0 1 1 3 2 2 2 3 
J2 3 0 3 4 1 5 1 4 
J3 1 5 0 2 4 1 4 1 
J4 5 2 1 0 4 3 3 5 
J5 2 3 5 2 0 2 1 2 
J6 4 2 3 5 1 0 2 2 
J7 5 2 4 3 3 3 0 2 
J8 2 4 5 3 2 1 1 0 

*IST: Initial Setup Time
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To use the proposed look ahead heuristic generate schedule, we first consider the 

combination of scaling parameters (k1=0.2, k2=0.1, k3=0.001). 

 

Step 1. Decided initial job on each machine 

 The initial jobs on all machines (machine 1 to machine 6) are J6, J7, J4, J1, J8 

and J3, respectively. In this step, machine 1 is considered first, J6 is selected by the 

one step look-ahead ATCRCS. 

 

Step 2. Job selection on the critical machine  

 After step 1, the number of unscheduled jobs is 2. We next identify the critical 

machine. In this example, the critical machine is machine 2 whose finish time of job 7 

is 7. To decide the critical job on the critical machine (machine 2), only two 

unscheduled jobs (J2 and J5) left to be considered. The total weighted tardiness of 

sequence J7-J2-J5 is compared with that of sequence J7-J5-J2. Because sequence 

J7-J2-J5 has smaller total weighted tardiness (value is 22) than sequence J7-J5-J2 

(value is 44). J2 is assigned on machine 2 as the critical job. The average setup time is 

3. The look-ahead thresh is 14, which is the sum of the finish time of J2 (value is 11) 

and the average setup time (value is 3).  

 

Step 3. Job selection for non-critical machine 

The non-critical machines are machines besides of machine 2. Machine 1 is 

considered first because of its smallest finish time (value is 8). The last job, J5, is 

assigned on machine 1. Now, all jobs are assigned, the considered iteration is the last 

iteration. We have a possible schedule before the job switching heuristic. This 

schedule is given as below: 
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Machine 1: J6-J5; 

Machine 2; J7-J2; 

Machine 3: J4; 

Machine 4: J1; 

Machine 5: J8; 

Machine 6: J3; 

 

The total weighted tardiness on all machines is 64.  

Job switching heuristic uses the selected jobs, J2 and J5, as inputs. These two jobs are 

switched on all machines. In this example, we consider following sequences: 

 

J6-J2, J2-J6, J6-J5, and J5-J6 on machine 1; 

J7-J2, J2-J7, J7-J5, and J5-J7 on machine 2; 

J4-J2, J2-J4, J4-J5, and J5-J4 on machine 3;  

J1-J2, J2-J1, J1-J5, and J5-J1 on machine 4; 

J8-J2, J2-J8, J8-J5, and J5-J8 on machine 5; 

J3-J2, J2-J3, J3-J5, and J5-J3 on machine 6;  

 

To determine the position of the selected jobs (J2 and J5), the total weighted tardiness 

of all above considered sequences is computed and put in table 22.  

 
Table 22. TWT of considered sequences on machines 

Machine 1 TWT62=14 TWT26=36 TWT65=7 TWT56=96 

Machine 2 TWT72=18 TWT27=4 TWT75=13 TWT57=58 

Machine 3 TWT42=32 TWT24=15 TWT45=22 TWT54=51 

Machine 4 TWT12=46 TWT21=20 TWT15=35 TWT51=70 

Machine 5 TWT82=23 TWT28=9 TWT85=12 TWT58=42 

Machine 6 TWT32=50 TWT23=8 TWT35=33 TWT53=118 
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After computing the total weighted tardiness of above sequences, every two cells in 

table 22 are combined into one cell horizontally to get table 23. 

 

Table 23. Combined TWT table. 

Machine 1 50 (14+36) 103 (7+96) 

Machine 2 22 (18+4) 71 (13+58) 

Machine 3 47 (32+15) 73 (22+51) 

Machine 4 66 (46+20) 105 (35+70) 

Machine 5 32 (23+9) 54 (12+42) 

Machine 6 58 (50+8) 151 (33+118) 

 

 In table 23, we want to find a value from each column and satisfied the constraint 

that the number of selected values in each row is smaller or equal to 1. In this example, 

the sum of 22 and 54 gives smaller value than other combinations (these two values 

are bold in table 15). Also, from table 23, we know that 22 is the sum of 18 and 4 on 

machine 2, while 54 is the sum of 12 and 42 on machine 5. We then go back to table 

22 to find the selected jobs’ position. Table 22 shows that the total weighted tardiness 

of sequence J2-J7 on machine 2 is 4, and the total weighted tardiness of sequence 

J8-J5 is 12. The possible schedule generated by the job switching heuristic is: 

 

Machine 1: J6; 

Machine 2; J2-J7; 

Machine 3: J4; 

Machine 4: J1; 

Machine 5; J8-J5; 

Machine 6: J3; 

 



     

 

71 

  
 

 Until now, we have two possible iteration schedules. One is generated before job 

switching heuristic and the other is generated by the job switching heuristic. Table 24 

shows these two schedules and their total weighted tardiness. 

 

Table 24. Two possible schedules and their tardiness. 

Schedule Before job switching heuristic By job switching heuristic 

Machine 1 J6-J5 J6 

Machine 2 J7-J2 J2-J7 

Machine 3 J4 J4 

Machine 4 J1 J1 

Machine 5 J8 J8-J5 

Machine 6 J3 J3 

TWT TWT=64 TWTswitch =58 

 

 The total weighted tardiness TWTswitch (by job switching heuristic) on all 

machines is 58. It is smaller than TWT before the job switching heuristic (64). 

Because all jobs are scheduled, we use the schedule generated by the job switching 

heuristic as the schedule before pairwise exchange.  

 

Step 5. Pairwise exchange 

 In this example, pairwise exchange does not further reduce the total weighted 

tardiness on machines. For the considered combination of scaling parameters (k1=0.2, 

k2=0.1, k3=0.001), the schedule on each machine after pairwise exchange is the same 

as the schedule generated by the job switching heuristic: 

 

Machine 1: J6; 

Machine 2; J2-J7; 

Machine 3: J4; 

Machine 4: J1; 

Machine 5; J8-J5; 
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Machine 6: J3; 

 

 In similar, we generate schedules by other combinations of scaling parameters. 

However, their total weighted tardiness is not as good as the schedule generated by 

using k1=0.2, k2=0.1, and k3=0.001. The above schedule is selected as the final 

schedule for this 8 jobs, 6 machines example.   

 

5.6 Experiment design and benchmark methods 

 We use the experiment of Xi and Jang (2012) to evaluate the proposed 

look-ahead heuristic. The experiment of Yue and Jang is an extension of Pfund et al. 

(2008) for the identical parallel machines scheduling. The differences of these two 

experiments are shown in table 25. The considered experiment has 729 (36) scenarios. 

In each scenario, seven cases, or problems, are randomly generated. In total, 5103 

(729 x 7) problems are tested on 6 identical machines. 
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Table 25. Comparison of experiment in this research and that of Pfund et al. (2008) 

Pfund et al.(2008): 5 machines Yue and Jang (2012): 6 machines 
Factors 

Low Center High Low Center High 

Job machine factor  11 19 27 10 20 30 
Setup severity factor 0.02 1.01 2 0.02 1.01 2 
Due date tightness 

factor  
0.3 0.6 0.9 0.3 0.6 0.9 

Due dtae range factor  0.25 0.63 1 0.25 0.63 1 
Job availability factor 0.2 0.5 0.8 0.2 0.5 0.8 

Ready time factor 1 5.5 10 1 5.5 10 ★
The ready time rj is generated with uniform probability in the range [dj- r_τ*pj, dj], If (dj- r_τ*pj) is less  

than 0, a range of [0, dj] is used for ready time generation. 
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 The benchmark methods are divided into two groups: (1) Look-ahead scheduling 

heuristics, and (2) Non-look ahead heuristic. 

 

(1) Look-ahead scheduling heuristic        

 Four look-ahead heuristics, heuristic of Chang et al. (2004) and three modified 

heuristics by Yoon et al. (2011), are studied in the experiment. Chang’s heuristic 

targets to minimize the total weighted tardiness and proved to be effective when the 

problem size is small. Without considering sequence dependent setup, Yoon et al. 

(2011) propose three look-ahead heuristics to minimize the total weighted tardiness 

with equal ready time. Their heuristics exclude non-urgent jobs from the candidates 

for the next job selection. Jobs are divided into urgent jobs and non-urgent jobs by a 

computed thresh value. In order to compare these heuristics with other look-ahead 

heuristics that consider sequence dependent setup, like Chang’s and LAIPM, we  

make a modification so that these three heuristics can solve the total weighted 

tardiness problem with future ready time and sequence dependent setup. Below shows 

how these three heuristics (by Yoon et al. 2011) are modified: the idea of the 

modification is that the sequence dependent setup and the possible machine idle time 

is deemed as a part of the processing time, in the formula, we substitute pj from 

(rj-t,0)+sij+pj  

 

Modified heuristic 1: 

Step 1: At decision time t, compute T=
u

dpstr jjij

uj

j ) ,)0,max(max( ++−∑
∈ , and construct set 

G as { }Tdujj j ≤∈ , , where u is unscheduled job set and u  is the number of 

non-scheduled jobs.  
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Step 2: If G ≠ Ø, then select job j in set G with the minimum value of 

{ } ./),max( ,)0,max(max jjjjijj wtrdpstr −++−   

Step 3: If G = Ø, then select job j with the minimum value of { } jjj wtrd /),max(− .  

 

Modified heuristic 2: 

Step 1: At decision time t, compute T=
2

B+α
, where α is 

) ,)0,(max(max jjijjuj dpstr ++−∈ ,  β is ) ,)0,(max(min jjijjuj dpstr ++−∈ , and u is 

unscheduled job set. Set G includes jobs{ }Tdujj j ≤∈ , .  

Step 2: If G ≠ Ø, then select job j in set G with the minimum value of 

{ } ./),max( ,)0,max(max jjjjijj wtrdpstr −++−   

Step 3: If G = Ø, then select job j with the minimum value of { } jjj wtrd /),max(− .  

 

 
Modified heuristic 3: 

Step 1: Among unscheduled jobs, identify the job with the smallest Weighted 

Modified Due Date (WMDD) index value: WMDDj = 

{ }
j

jjijj

w

tdpstr −++−  ,)0,max(max
. This job is noted as j*. 

Step 2: At decision time t, compute T= { }∗∗∗∗ ++− jjijj dpstr  ,)0,max(max . Set G 

includes jobs{ }Tdujj j ≤∈ , , where u is unscheduled job set. 

Step 3: If G ≠ Ø, then select job j in set G with the minimum value of 

{ } ./),max( ,)0,max(max jjjjijj wtrdpstr −++−   

Step 4: If G = Ø, then select job j with the minimum value of { } jjj wtrd /),max(− . 

 

(2) Non look-ahead heuristic 

 The proposed LAIPM is also compared with ATCRCS (Xi and Jang 2012) which 

is proved as an effective ATC-based heuristic on the identical parallel than ATCSR, 

ATCS, BATCS, and BATCSmod.  
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5.7 Performance evaluation  

 

 This section compares the proposed LAIPM with benchmark heuristics in 

minimizing the total weighted tardiness on the identical parallel machines with the 

consideration of sequence dependent setup and future ready time. 

 

5.7.1 LAIPM vs. look-ahead heuristics   

This section evaluates the performance of the proposed look-ahead heuristic and 

selected look-ahead benchmark heuristics. The average rate of the total weighted 

tardiness obtained by each of the heuristics over the total tardiness obtained by the 

look-ahead heuristic of Chang et al. (2004) is shown in table 26. Results are sorted by 

factors. Table 26 shows that the proposed look-ahead heuristic outperforms the 

heuristic of Chang et al. (2004), which is better than all three modified heuristics of 

Yoon et al. (2011). Among modified three heuristics of Yoon et al. (2011), modified 

heuristic two is better than the others. (This part is not needed.) 

 

 Table 27 shows the comparison of the proposed look-ahead heuristic to the 

one-step look-ahead heuristic of Chang et al. (2004). Each cell of table 27 contains 

three values, for example, 1701, 100%, 44% means that in the considered 1701 

problems (60 jobs on 6 machines), there are 1701 (100% of 1701 problems) problems 

where the proposed look-ahead heuristic gives better solution than the heuristic of 

Chang et al. (2004). The average improvement of these 1701 problems is 44%. 

 

 We also compare all heuristic and study the effect of each factor at different 

levels. Figure 13 shows the related trends: (1) The proposed look-ahead heuristic 

becomes more effective when the number of jobs is increased; (2) The proposed 
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look-ahead heuristic becomes more effective when the average of the setup time is 

longer; (3) The proposed look-ahead heuristic tends to give better solutions when a 

few jobs are available at time zero. (4) The proposed look-ahead heuristic performs 

better than Chang’s heuristic when the ready time is relatively further to the due date. 

(r-τ is larger).  

 

 Both the proposed look-ahead heuristic and Chang’s one step look-ahead 

heuristic use pairwise change technique to reduce the total weighted tardiness for the 

generated schedule on each machine. For Chang’s method, if the three phase, pairwise 

exchange, is removed, the average result will increase 22.46% compared to the results 

of Change’s three phase method (pairwise exchanged is used). In other words, the 

improvement of pairwise exchange in Chang’s work is 22.46%. While in the proposed 

look-ahead heuristic (LAIPM), without using the pairwise exchange technique, the 

average of total weighted tardiness increases about 7.63% than using the pairwise 

exchange technique. From the experiment, we tell that if the phase of pairwise 

exchange is removed for both methods, LAIPM still yields better solution than 

Chang’s method.  
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Table 26. Performance of look-ahead heuristics 

Factor LA(Chang) H1(Yoon) H2(Yoon) H3(Yoon) LAIPM 

Jobs/mchine            

µ=10  1  5.55 4.23 4.57 0.55 

µ=20  1  6.54 4.69 4.86 0.4 

µ=30  1  6.32 4.53 4.66 0.33 

Setup severity       

η=0.02 1  12.72  6.88  6.96  0.53  

η=1.01 1  3.58  3.48  3.79  0.39  

η=2 1  2.10  3.09  3.33  0.36  

Due date 

tightness 
     

τ=0.3 1  12.72  8.83  9.30  0.30  

τ=0.6 1  3.58  2.63  2.79  0.29  

τ=0.9 1  2.11  1.99  2.00  0.69  

Due date range       

R=0.25 1  3.91  3.87  3.82  0.43  

R=0.63 1  6.87  5.00  5.65  0.41  

R=1 1  7.62  4.59  4.63  0.45  

Jobs availability      

Ja=0.2 1  6.18  4.40  4.74  0.53  

Ja=0.5 1  7.38  5.34  5.62  0.42  

Ja=0.8 1  4.85  3.72  3.74  0.34  

Ready time 

tightness 
     

r-τ=1 1  5.24  3.92  4.10  0.52  

r-τ=5.5 1  6.50  4.76  5.00  0.40  

r-τ=10 1  6.67  4.77  4.99  0.37  

Average  1 6.14  4.48  4.70  0.43  

 
 
Table 27. Comparison (the proposed look-ahead heuristic to that of Chang et al. 2004) 

6 machines 60 jobs 120 jobs 180 jobs 

Better 1701,100%, 44.7% 1701,100%,60.27% 1701,100%,66.61% 
Tie 0, 0%, 0% 0, 0%, 0% 0, 0%, 0% 

Worse 0, 0%, 0% 0, 0%, 0% 0, 0%, 0% 
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Effect of job machine factor02468 μ=10 μ=20 μ=30
 

Effect of setup severity factor051015 η=0.02 η=1.01 η=2
       

Effect of due date tightness factor051015 τ=0.3 τ=0.6 τ=0.9
 

Effect of due data range factor0246810 R=0.25 R=0.63 R=1
       

  

Effect of job avalability factor02468 Ja=0.2 Ja=0.5 Ja=0.8
 

Effect of ready time factor02468 r-τ=1 r-τ=5.5 r-τ=10
       

                              

LA(Chang) H1(Yonn) H2(Yonn)

H3(Yoon) LAIPM

 
 
   Figure 13. Comparison of factor effect of heuristics  
 

 
5.7.2 LAIPM vs. non look-ahead heuristic (ATCRSR) 

 This section evaluates the performances of LAIMP and ATCTCR (the newly 

proposed ATC-based rule) over the generated 5103 problems in section 5.1. Each cell 

in table 28 contains three values: the number of better cases gained by LAIMP, the 

percentage of better cases over 1701 generated problems, and the average of tardiness 

reduction of the better cases (compared to the solutions of ATCRCS). It shows that 
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LAIPM (look-ahead) gives more numbers of better schedules than ATCRCS (none 

look-ahead), when the value of job machine factor increases. Also when the number 

of considered jobs is increased, the difference between these two methods becomes 

smaller and LAIPM gives more number of better cases with an increased tardiness 

reduction : -(TWTLAIPM-TWTATCRCS)/TWTATCRCS.   

 

Table 28. Performance comparison (LAIMP vs. ATCRCS)   

6 machines 60 jobs 120 jobs 180 Jobs 

Better 827,48.62%,9.06% 944,55.5%,11.01%  1026,60.31%,12.29%  

tie 7,0.41%,0% 4,0.23%,0%  0, 0%, 0% 
Worse 867,50.97%.7.66%, 753,44.27%,5.2% 675,39.69%,4.47%  

 

 Table 28 shows the effect of the job machine factor. Table 29 to 33 shows the 

effect of the rest five factors: Setup severity, due date tightness, due date range, job 

availability, and ready time tightness. Form these tables, we notice that the number of 

better cases gained by LAIMP increases with increasing the number of considered 

jobs. This is the same at all levels of all factors, beside of the low level of due date 

tightness. At each level of the due date tightness, the number of better cases gained by 

LAIPM for 60 job, 120 jobs, and 180 jobs to ATCRCS is very close (288, 290, and 

287 better cases respectively). It shows that due date tightness does not have 

significant effect for LAIPM to gain more number of better cases, compared to 

ATCRCS.  

 

 We also find that the setup severity factor has a significant effect to the results 

(LAIMP is compared with ATCRCS). Table 29 shows that LAIMP tends to give more 

number of better solutions than that of ATCRCS, when the value of setup severity 

factor is set at middle level (101% of the average processing time) and low level (2% 

of the average processing time). In the real life, the length of the setup is usually about 
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10% to 40% of the average processing time. This setup length falls in the range of the 

tested level: low setup level (2%) and the middle setup level (101%). Under this 

condition, we suggest using LAIMP for the identical parallel machines scheduling 

with sequence dependent setup and ready time, because it considers less number of 

jobs.  
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Table 29. Effect of setup severity (LAIMP vs. ATCRCS). 
6m 60 jobs 120 jobs 180 Jobs 

Low level 440,77.6%,8.02% 486,85.71%,11.11% 503,88.71%,13.28% 

Middle level 234,41.27%,11.97% 255,44.97%,12.69% 315, 55.56%,12.28% 

High level 153,26.98%,7.6% 203,35.8%,8.66% 208,36.68%,9,93% 

 
Table 30. Effect of due date tightness (LAIMP vs. ATCRCS) 

6m 60 jobs 120 jobs 180 Jobs 

Low level 288,50.79%,10.81% 290, 51.15%, 9.89% 287, 50.62%, 10.26% 

Middle level 368, 64.9%, 11.63% 451,79.54%, 15.82% 479%, 84.48%, 18.71% 

High level 171,30.16%, 0.92% 203,35.8%,1.93% 260, 45.86%, 2.9% 

 
Table 31. Effect of due date range (LAIMP vs. ATCRCS) 

6m 60 jobs 120 jobs 180 Jobs 

Low level 253, 44.62%,7.17% 280, 49.38%, 7.9% 296, 52.22%, 8.94% 

Middle level 272, 47.97%,11.38% 311, 54.85%, 13.99% 363, 64.02%, 14.5% 

High level 302, 53.26%, 8.75% 353, 62.26%, 10.85 367, 64.73%, 12.95% 

  
Table 32. Effect of Jab availability (LAIMP vs. ATCRCS) 

6m 60 jobs 120 jobs 180 Jobs 

Low level 206, 36.33%, 6.56% 254, 44.80%,8.64% 274,48.32%,9.83% 

Middle level 289, 50.97%, 8.88% 324, 57.14%, 10.93% 353,62.26%,12.35% 

High level 332, 58.55%, 10.95% 366, 64.55%, 12.72% 399, 70.37%, 14.06% 

 
Table 33. Effect of ready time tightness (LAIMP vs. ATCRCS) 

6m 60 jobs 120 jobs 180 Jobs 

Low level 240, 42.33%, 4.72% 255, 44.97%, 5.88% 272, 47.97%, 7.38% 

Middle level 289, 50.97%, 9.63% 325, 57.32%, 11.18% 346, 61.02%, 12.38% 

High level 298,52.56%, 12.2% 364,64.2%, 14.46% 408, 71.96%, 15.6% 
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 Figure 14 shows the number of better cases gained by LAIPM at all levels of 

setup severity factor, due date tightness factor, due date range factor, job availability 

factor and ready time factor. 
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 Figure 14. Number of better cases gained by LAIPM at different levels  
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6. CONCLUSIONS AND FUTURERESEARCH 

 
 This study is focused on minimizing the total weighted tardiness on the single 

machine and identical parallel machines. For the single machine scheduling, we 

analyze ATC-based dispatching rules and propose two new ATC-based rules, 

ATCRCS and ATCRSS. The performances of these two new rules are evaluated on 

the single machine and identical parallel machines. Experiments show that these new 

rules outperform other ATC-based rules in minimizing the total weighted tardiness in 

both single machine scheduling and parallel machines scheduling.     

 

 This paper also proposes a look-ahead heuristic (LAIPM) for the identical parallel 

machines scheduling with sequence dependent setup and future ready time. Twofold 

look-ahead is used to choose the next selected jobs on each machine. After all 

machines finish considering their next job selection, a possible iteration schedule is 

created. After that, the selected jobs in the considered iteration trigger the job 

switching heuristic to generate another possible iteration schedule. The schedule of 

the considered iteration is the better one. 

 

 Different with other look-ahead heuristic, like Change’s one step look-ahead 

method, the job switching heuristic looks one-step back: each selected job have 

chance to be scheduled before the last scheduled job on each machines.  

 

Experiment shows the proposed heuristic not only outperforms look-ahead 

heuristics by Chang et al. (2004) and modified heuristics by Yoon et al. (2011), but 

also gives better solution than ATCRCS which is a non look-ahead method. When 
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compared to ATCRCR, we notice that when setup severity is set at low level and 

middle level, LAIMP tends to gives better solution than ATCRCS. 

  

 For the future research, generating formulas to estimate values of scaling 

parameters in the index of ATCRCS is a good topic. It saves computation time and 

changes the search-based heuristic into an estimate-based heuristic. Besides of that, 

the proposed look-ahead heuristic may be modified and used in a more complex 

production environment where the parallel machines are unrelated or machine 

dependent. 
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APPENDICES 
 
Appendix A: A non-linear mathematic model (single machine) 

 

Cj: Completion time of job j. 
  
pj,: Process time of job j. 
 
si,j: Sequence dependent setup time to do job j after job i. 
 
s0,j: The initial setup time to do job j first on the machine. 
 
xi,j: 1, if job j is processed directly after job i, otherwise 0. 
 
x0,j:  1, if job j is the first job on the machine and 0 otherwise. 
 
xj,0: 1, if job j is the last job to be processed on the machine and 0 otherwise. 
 
M: A large positive value.   
 
dj: Due date of job j.  
 
Tj: Tardiness of job j. 
 
wj: Weight of job j. 
 
rj: Release time of job j. 
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(6)                                                                         m1,...,k 0,...n,j n,0,...,i   }1,0{, =∀=∀=∀∈jix

 
 

(7)                                                                                                                                                   00 ≥C

   
                                                                                  

(8)                                                                                                       1,...n    j                0 =∀≥jC

 
 

(9)                                                                               1,...n    j           0)max(                ,j =∀−= dCT jj

  
     
 
Formula (1) illustrates that the objective is to minimize total weighted tardiness. 

Constrain (2) ensures that each job is scheduled only once and processed on the 

machine. Constrain (3) makes sure that each job must not be proceeded or succeeded 

by more than one job. Constrain (4) deals with the relationship among completion 

time, release time and machine down time. This constraint also guarantees that no job 

can be preceded and succeeded the same one. Constraint (4) is a non linear constraint. 

Constrain (5) ensures that no more than one job can be scheduled first on the machine. 

Constrain (6) means that the decision variables are all binary. Constrain (7) is the 

completion time of the dummy job 0. Constrain (8) makes sure that all completion 

time must be positive values. Constrain (9) reflects the relationship of tardiness, 

completion time and due date for each job. It also guarantees that tardiness is a 

non-negative time. Above model can solve single machine total weighted tardiness 

problems with the sequence dependent setup time and unequal release times. This 

problem (1|ri,sij|∑wiTi) is also studied by Chang et al [17]. Compared to their 

mathematic model, our model uses less numbers of variables. 
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Appendix B: Lingo model for the proposed non-linear mathematic model (5 

jobs) 

 

sets: 
jobs/0,1,2,3,4,5/:pt,due,ct,tar,weight,ti; 
depstm(jobs,jobs):dstm; 
links(jobs,jobs):x; 
endsets 
 
data: 
dstm= 
0 3 5 4 4 5   
0 0 2 3 2 4   
0 5 0 1 3 2   
0 3 3 0 1 1   
0 4 3 4 0 5   
0 4 5 1 5 0;  
 
pt= 0   5 8 4 2 8; 
 
due=0    8 11 5 3 12   
; 
weight=0 3 7 4 4 7; 
 
Ti=0 7 10 13 14 0; 
 
ct=0,,,,,; 
 
tar=0,,,,,; 
 
enddata 
 
min=@sum(jobs(i):tar(i)*weight(i)); 
 
@for(jobs(j)|j#gt#1: 
     @sum(links(i,j)|i#ne#j:x(i,j))=1); 
 
@for(jobs(h)|h#ge#2: 
         @sum(links(i,h)|i#ne#h:x(i,h))-@sum(links(h,j)|j#ne#h:x(h,j))=0); 
 
@for(jobs(i): 
     @for(jobs(j)|j#ge#2#and#j#ne#i: 
         ct(j)>=@if(ct(i)#ge#ti(j),ct(i),ti(j))+@sum(links(i,j):x(i,j)* 
         (dstm(i,j)+pt(j)))+999*(@sum(links(i,j):x(i,j))-1)));  
 
@sum(links(i,j)|i#eq#1#and#j#ne#i:x(i,j))=1; 
 
@for(links:@bin(x)); 
 
@for(jobs(j)|j#ge#2:ct(j)>=0); 
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@for(jobs(i)|i#ge#2: 
     tar(i)=@if(ct(i)#ge#due(i),ct(i)-due(i),0));     
end 
 
 
In the above model, dstm is the setup matrix which shows the setup between each pair 

of jobs. The row of pt, due, weight and Ti shows each job’s processing time, due date, 

job weight and ready time. The optimal solution of above example is  

 

J5-J3-J4-J2-J1.  

 

The total weighted tardiness is 380. 
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Appendix C: A non-linear mathematic model (two parallel machines) 
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C0=0                                          (7) 
 

(8)     1,...n    j                0 =∀≥jC  

 
 

(8)     1,...n    j                )0,max( =∀−≥ djCjTj  

  
 
 

Constrain (2) ensures that each job is scheduled only once and processed by one 

machine. Constrain (3) makes sure that each job must be neither be proceeded or 

succeeded by more than one job. Constrain (4) is used to calculate completion time 

and no job can precede and succeed the same job. Constrain (5) ensures that no more 

than one job can be scheduled first at each machine. Constrain (6) specifies that the 

decision variable is binary. Constrain (7) is the completion time of the dummy job 0. 

Constrain (8) makes sure that all completion time must be positive values. Constrain 

(9) ensures Tj is a non negative value. 
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Appendix D: Lingo model for the proposed non-linear mathematic model (5 jobs 

on 2 machines) 

 

sets: 
jobs/0,1,2,3,4,5/:pt,due,ct,tar,weight,ti; 
machines/1,2/; 
depstm(jobs,jobs):dstm1,dstm2; 
links(jobs,jobs,machines):x; 
endsets 
 
data: 
dstm1= 0 5 2 3 1 3 
       0 0 3 8 6 2 
       0 2 0 7 2 1 
       0 5 3 0 5 3 
       0 5 5 3 0 4 
       0 6 2 1 7 0; 
 
dstm2= 0 3 9 2 7 3 
       0 0 2 4 5 2 
       0 6 0 1 7 1 
       0 3 5 0 4 3 
       0 9 2 6 0 2 
       0 3 1 4 6 0;  
 
pt = 0 3 5 1 4 3; 
 
 
due = 0 7 9 12 12 9; 
 
 
weight = 0 2 4 8 5 2; 
 
 
ti= 0 7 0 0 3 0; 
 
ct=0,,,,,; 
 
tar=0,,,,,; 
 
enddata 
 
!objective function; 
min=@sum(jobs(i):tar(i)*weight(i)); 
 
!Constarint1: each job is scheduled once and on one machine; 
@for(jobs(j)|j#gt#1: 
     @sum(links(i,j,k)|i#ne#j:x(i,j,k))=1); 
 
!constraint 2; 
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@for(jobs(h)|h#ge#2: 
     @for(machines(k): 
         @sum(links(i,h,k)|i#ne#h:x(i,h,k))-@sum(links(h,j,k)|j#ne#h:x(h,j,k))=0)); 
 
 
!constraint3. each job must be neither be proceeded or succeed by more than one job; 
@for(jobs(i): 
     @for(jobs(j)|j#ge#2#and#j#ne#i: 

ct(j)>=@if(ct(i)#ge#ti(j),ct(i),ti(j))+@sum(links(i,j,k)|k#eq#1:x(i,j,k)*(ds
tm1(i,j)+pt(j)))+@sum(links(i,j,k)|k#eq#2:x(i,j,k)*(dstm2(i,j)+pt(j)))+99
9*(@sum(links(i,j,k):x(i,j,k))-1))); 

 
!constraint 4: only one job can be scheduled first; 
@for(machines(k): 
         @sum(links(i,j,k)|i#eq#1#and#j#ne#i:x(i,j,k))=1); 
 
 
 
!constraint 5: binary constrain; 
@for(links:@bin(x)); 
 
 
!constraint 6: cj is non-negative; 
 
@for(jobs(j)|j#ge#2:ct(j)>=0); 
 
!constraint 7: relation among tar, due and ct; 
@for(jobs(i)|i#ge#2: 
     tar(i)=@if(ct(i)#ge#due(i),ct(i)-due(i),0)); 
 
 
end 
 
 

In the above model, dstm1 and dstm2 are the setup matrixes which shows the setup 

between each pair of jobs on machine 1 and machine 2. The row of pt, due, weight 

and ti shows each job’s processing time, due date, job weight and ready time. The 

optimal solution of above example is:  

M1: J2-J3 

M2: J3-J5-J1 

Total weighted tardiness is 21. 
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Appendix E: The application of proposed parallel machines model 

 

In this section, we discuss the application of the proposed parallel machines model in 

Appendix C. With minor modifications, the proposed model in appendix C can solve 

other parallel machines scheduling problems. 

 
 
Case 1: For the same example in appendix D, but using the below assumptions: 

 
1. The processing time of a job is the same on all machines (same in appendix D).  
 
2. All machines use the same setup time matrix (different in appendix D).  
 
To solve this problem, we delete dstm1 matrix and change constraint 3 (the program 
in appendix 4) into: 
 
@for(jobs(i): 

@for(jobs(j)|j#ge#2#and#j#ne#i: 
ct(j)>=@if(ct(i)#ge#ti(j),ct(i),ti(j))+@sum(links(i,j,k)|k#eq#1:x(i,j,k)*(dstm2
(i,j)+pt(j)))+@sum(links(i,j,k)|k#eq#2:x(i,j,k)*(dstm2(i,j)+pt(j)))+999*(@su
m(links(i,j,k):x(i,j,k))-1))); 

 
The optimal solution for the considered problem is: 
 
M1: J5-J2-J1 
 
M2: J3-J4 
 
The optimal solution (the total weighted tardiness is 40. 
 
 
Case 2: For the same example in appendix D, but using the below assumptions: 

 
1. The processing times of jobs are different on machines (different in appendix D).  
 
2. Each machine has its own setup matrix (same in appendix D). 
 
This case in literature is called “Machine dependency”. It also can be solved by the 
model in appendix C with minor modification: 
 
1. Add another variable: pt2 (pt2 contains the processing times of all jobs on 

machine 2. The second sentence in the appendix D is changed into: 
 

  jobs/0,1,2,3,4,5/:pt,due,ct,tar,weight,ti,pt2; 
 
2. Add the processing times of all jobs. Put a new row: pt2 = 0 7 1 2 4 3; after pt = 0 

3 5 1 4 3 in the program; 
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3. Change constraint 3 (the program in appendix 4 into: 
 
@for(jobs(i): 

@for(jobs(j)|j#ge#2#and#j#ne#i: 
ct(j)>=@if(ct(i)#ge#ti(j),ct(i),ti(j))+@sum(links(i,j,k)|k#eq#1:x(i,j,k)*(dstm1
(i,j)+pt(j)))+@sum(links(i,j,k)|k#eq#2:x(i,j,k)*(dstm2(i,j)+pt2(j)))+999*(@s
um(links(i,j,k):x(i,j,k))-1))); 

 
The optimal solution (total weighted tardiness) of the considered problem is:  

M1: J4-J1 

M2: J5-J2-J3 

Total weighted tardiness is 18. 
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