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ABSTRACT 

The motivation of this research investigation stems from a particular job shop production 

environment at a large international communications and information technology company in 

which electro-mechanical assemblies (EMAs) are produced.  The production environment of the 

EMAs includes the continuous arrivals of the EMAs (generally called jobs), with distinct due 

dates, degrees of importance and routing sequences through the production workstations, to the 

job shop. Jobs are processed in batches at the workstations, and there are incompatible families 

of jobs, where jobs from different product families cannot be processed together in the same 

batch. In addition, there are sequence-dependent setups between batches at the workstations. 

Most importantly, it is imperative that all product deliveries arrive on time to their customers 

(internal and external) within their respective delivery time windows. Delivery is allowed outside 

a time window, but at the expense of a penalty. Completing a job and delivering the job before 

the start of its respective time window results in a penalty, i.e., inventory holding cost. 

Delivering a job after its respective time window also results in a penalty, i.e., delay cost or 

emergency shipping cost. This presents a unique scheduling problem where an earliness-

tardiness composite objective is considered. 

This research approaches this scheduling problem by decomposing this complex job shop 

scheduling environment into bottleneck and non-bottleneck resources, with the primary focus on 

effectively scheduling the bottleneck resource. Specifically, the problem of scheduling jobs with 

unique due dates on a single workstation under the conditions of batching, sequence-dependent 
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setups, incompatible job families in order to minimize weighted earliness and tardiness is 

formulated as an integer linear program. This scheduling problem, even in its simplest form, is 

NP-Hard, where no polynomial-time algorithm exists to solve this problem to optimality, 

especially as the number of jobs increases. As a result, the computational time to arrive at 

optimal solutions is not of practical use in industrial settings, where production scheduling 

decisions need to be made quickly.  Therefore, this research explores and proposes new heuristic 

algorithms to solve this unique scheduling problem. The heuristics use order review and release 

strategies in combination with priority dispatching rules, which is a popular and more 

commonly-used class of scheduling algorithms in real-world industrial settings.  A 

computational study is conducted to assess the quality of the solutions generated by the proposed 

heuristics. The computational results show that, in general, the proposed heuristics produce 

solutions that are competitive to the optimal solutions, yet in a fraction of the time. The results 

also show that the proposed heuristics are superior in quality to a set of benchmark algorithms 

within this same class of heuristics. 
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 : INTRODUCTION CHAPTER 1

1.1. Background of the Industrial Setting Motivating This Research Investigation 

The motivation of this research investigation stems from a particular production 

environment at large international communications and information technology company serving 

both the government and commercial markets. This company specializes in government 

contracts that provide funding to the company to produce various complex electro-mechanical 

assembly systems that support communications systems. These communication systems are 

typically installed on avionics, space, and ground systems such as radios, reflectors, ground 

system radars, etc. Often, the assemblies start with the production of circuit card assemblies 

(CCAs). These CCAs are later assembled into a chassis using mechanical subassemblies. 

The typical customers for these products are the United States military, foreign militaries 

and industries, and commercial customers. The requirements of a government contract constitute 

what is called a manufacturing program, where the program has unique hardware requirements, 

quantities for the electro-mechanical assemblies (EMAs), and a unique customer. The work for a 

program includes the effort of designing and manufacturing a set of products or systems for that 

customer.  Each EMA can contain one or multiple CCAs, and there can be multiple types (or 

families) of CCAs built for one program. 
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 The Importance of On-Time Delivery 1.1.1

The Master Production Schedule (MPS) outlines the manufacturing start time (or release 

date) of each assembly within a program (or within multiple programs), expected manufacturing 

completion dates, and customer due dates.  Strict adherence to the MPS for a contract is the 

primary objective, and the MPS is often fixed. The metric often used to measure on-time 

delivery performance of a program is the Schedule Performance Index (SPI).  SPI is the ratio of 

what is completed versus what was scheduled to be completed.  An SPI value equal to 1.0 means 

the program is on-schedule for delivery.  An SPI value less than 1.0 means the program is behind 

schedule. 

Strict adherence to the fixed schedule is necessary for several reasons. Firstly, some 

assemblies must be loaded onto cargo ships that arrive at local loading docks at specific times 

during the year, and typically, there is a one-week window during which these ships are docked.  

The assemblies must be delivered to and arrive at the loading dock during this one-week window 

in order to be loaded onto the cargo ship.  Therefore, it is imperative that all deliveries arrive on 

time. 

Secondly, missing a delivery date could result in a loss of an award fee to the company. 

Typically, programs are financially compensated when they reach certain performance goals.  

One of these performance goals is on-time delivery performance.  The award fees are given 

when the program meets each delivery milestone.  The award fee is another incentive for the 

manufacturing completion dates of programs to be aligned to the MPS. 
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Finally, finishing a program’s production ahead of schedule incurs a penalty in the form 

of rework costs.  If production jobs are finished ahead of schedule (or, early), and there is an 

engineering change order that requires a change to the design of the product, or if it is found that 

a component is not performing to its full capability and needs to be removed and replaced by a 

superior component, then the finished inventory will have to be reworked and retested. 

 The Coating Room 1.1.2

The particular area of interest within the subject manufacturing facility is the Coating 

Room, which is a key area in the production of circuit card assemblies. This area is classified as 

a low-volume, high product variety job shop.  Virtually all programs completed in the facility 

require at least one or more process steps performed in the Coating Room, which results in a 

large variety of CCAs that visit the Room. The Coating Room has several functional areas such 

as Bonding, Staking and Coating (see Figure 1.1.). 
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Figure 1.1. General product flow through the Coating Room. 

 

Each process involves the application of chemicals and chemical adhesives to the 

assemblies. The assemblies require these additional processes for structural reinforcement, 

moisture protection, foreign object damage protection, and thermal protection to enhance heat 

transfer away from assembly sub-components, especially those that are critical to the 

functionality, durability and useful life to the CCAs. A single assembly can require one or 

multiple processes and can enter the Coating Room multiple times during the production of a 

circuit card. The type of processes and chemicals the assemblies require depend on the operating 

environment (i.e., ground, flight, and/or space) of the final assembly product. 
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The chemicals in the Coating Room are applied manually to the assemblies by Coating 

Room technicians and have long process times associated with them. More specifically, the 

chemicals and chemical adhesives must be given time not only to be applied to the assemblies 

but also to cure and harden after being applied. 

 Process Characteristics within the Coating Room 1.1.3

1.1.3.1 Batch Processing and Machine Changeovers 

CCAs are typically processed in batches based on product type (or, family). A family of 

CCAs is a group of assemblies that share the same underlying architecture and are closely related 

in production and process requirements. CCAs of different families cannot be batched and 

processed together. The size of the batches varies depending upon processing requirements and 

CCA availability at the time of processing at a particular machine or set of machines. 

Batching of assemblies is performed at different process steps and is due to the often long 

times that occur when changing a machine’s current production setup to another. Machine 

changeover is needed when processing batches of jobs both within a CCA product family and 

between different CCA product families. As such, there are two types of machine changeovers – 

minor changeover and major changeover. As a result, there are two types of machine setup times 

associated with the changeover types. A minor changeover incurs a minor setup time, and a 

major changeover incurs a major setup time. A minor changeover at a machine takes place 

between two successive batches of jobs from the same family. Therefore, minor setup times tend 
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to be relatively short in length. A major changeover at a machine takes place between two 

successive batches of CCAs from different product families. The major setup time includes the 

time to clean the machine, to apply electronic devices to the batch of assemblies prior to the use 

of the new chemicals, and to mix and weigh those chemicals. Therefore, major setup times tend 

to be significantly longer than minor setup times. 

1.1.3.2 Sequence-Dependent Setups 

The length of the machine setup times between CCA product families (i.e., major setup 

times) varies depending upon the sequence in which the product families are processed at the 

machines. In other words, a machine’s setup time for a batch from a particular CCA product 

family is determined not only by that batch’s product family but also by the previous CCA 

product family for which the machine is currently setup. 

1.1.3.3 Disruptions in the Production Schedule 

Planned and unplanned disruptions in the MPS occur in the Coating Room and often 

threaten the on-time delivery of assemblies to the customer. By disruptions, it is meant that the 

scheduled completion of the CCAs within the Coating Room is delayed due to an expected or 

unexpected event. As a result, the delivery of the EMAs awaiting the installation of the CCAs is 

also delayed. 
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Unplanned disruptions are more commonplace in this particular job shop, and there are 

two main types of unplanned disruptions in the Coating Room. The first is the unexpected arrival 

of high priority (or “hot”) CCAs to the Room, or the unexpected elevation of priority of CCAs 

currently in process in the Room. 

The second type of unplanned disruption is the availability of the chemicals and chemical 

adhesives, which have varying shelf lives and varying work lives.  The shelf life of a chemical is 

the length of time that it can remain in its packaging or container before it expires prior to the 

container and packaging of the chemical being opened and the chemical being mixed. The work 

life is the amount of time the chemical is usable once it is mixed or once it is out of its container. 

Each chemical needs to be mixed prior to applying it to assemblies belonging to a family not 

currently being processed. When the chemicals expire according to the shelf life, the processing 

of the awaiting CCAs is delayed because the chemicals need to be recertified, in which the shelf 

life of the unusable chemicals is extended. 

 Description of the General Problem 1.2

In this section, the shop floor configuration and the general problem that underlie the 

industrial problem motivating this research investigation, as explained in Section 1.1, is 

described. 
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 Job and Resource Characteristics 1.2.1

In the fundamental problem, there is an index set J of n jobs (i.e., i = {1, …, n}) to be 

processed through an index set W of m workstation resources (i.e., j = {1, …, m}) during a 

certain planning horizon T. 

A job, in this context, refers to a single circuit card assembly unit and is generally 

referred to as job i. Jobs arrive on a continuous basis to the shop floor during planning horizon T, 

and each job i has a release date, ri, at which the job is initially made available for processing on 

the shop floor. Each job i has a due date, di, by which the job is due to an internal or external 

customer and a weight, wi, which indicates the priority of the job. Depending upon customer 

requirements, some jobs have a higher priority than others, and have to meet internal and/or 

external due dates. It is important to note that the due date di of each job i has a lower bound and 

upper bound, Li and Ui, respectively. These bounds create a non-relaxable delivery time window 

for each job. 

A workstation resource in this context consists of a single machine or a number of 

parallel identical machines. The m workstations are arranged by function in a low-volume, high-

mix job shop. Job shops, by definition, are production systems that are configured by function to 

produce a number of different job types. Each type has a unique routing and a different 

processing time on each machine visited. 
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 Processing Characteristics 1.2.2

1.2.2.1 Batching and Incompatible Job families 

A machine in the production shop floor underlying the industrial problem processes a 

number of jobs simultaneously as a batch. Specifically, the jobs traverse the shop floor in 

transfer batches, and they are processed at the machine individually. A batch consists of a finite 

number of circuit card assembly units. A batch does not move on to the next station in its routing 

until all jobs in the batch have been processed. 

Batch splitting, where a batch is divided into sub-batches and each sub-batch is process 

simultaneously across multiple resources, does not occur. In other words, once a batch is formed, 

it is permanent and is processed as a single unit. Batch preemption, however, does occur. Batch 

preemption occurs when a single batch is in process at a machine and another batch with higher 

priority arrives at that machine and interrupts the batch currently in process. After completing the 

higher priority batch that arrived, the preempted batch resumes processing until it is completed 

unless another higher priority batch arrives before it completes processing, and so on. 

The set J of n jobs awaiting processing can be partitioned into F different families and 

each job within a family f is denoted as job i
f
. The number of jobs in family f is denoted by n

f
. 

The processing times of all jobs belonging to family f are equal to a common processing time, 



p j
f
, for each machine j. It is important to note that the F product families are incompatible, in 

that jobs from different families cannot be batched together in the same batch. This is due to the 
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various chemical and chemical adhesive requirements. Therefore, each batch k is made up 



nk
f  

jobs belonging to a single product family. 

Batch sizes within a product family are not fixed and can vary across the different 

product families. In other words, a batch k of 



nk
f  jobs is processed of family f, and a batch l of 



nl
g  

jobs of another family g can be processed next. Each machine is capable of processing up to 



Bmax
f  jobs from the same family f simultaneously as a batch and each machine can begin 

processing a batch when there are at least 



Bmin
f  jobs from the same family f available 

simultaneously at the machine. 

The processing time of a batch k is equal to the sum of the processing times of its jobs. 

More succinctly, the processing time of a batch k is equal to the number of jobs in batch k times 

the common processing time for the family, i.e., 



pk
f  nk

f  p j
f
. 

1.2.2.2 Sequence-Dependent Setup Times 

A common machine setup time precedes the processing of the first batch of family g after 

completing processing of the last batch of family f, and the setup times at the machines are 

influenced by the sequence in which product families are processed. In other words, the setup 

time to change over a machine j after processing the last in a sequence of batches of jobs 

belonging to family f in order to process the first in a sequence of batches of jobs belonging to 

family g is denoted by sjfg. Therefore, the sequence-dependent setup times for the F families can 

be stored in an F-by-F matrix. Note that the setup time to change over a machine from family g 
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back to family f can be different. Also, it is important to note that a changeover is needed at a 

machine j between two batches of the same family, i.e., f: sjff  0. In other words, the diagonal 

entries of the F-by-F matrix of setup times are non-zero. 

1.2.2.3 Unplanned Disruptions 

There are high priority, or “hot”, jobs that arrive unexpectedly to the shop floor. Also, 

due to the finite work life and finite shelf life of the chemicals and chemical adhesives, the 

perishability of materials is a prominent feature of the general problem. 

First, consider the unexpected arrival of hot jobs during planning horizon T. Upon the 

arrival of a hot job i to the first machine in its routing, p represents the number of jobs impacted 

by job i’s arrival and need to be rescheduled and these p jobs make up the subset of jobs Ji, 

where Ji  J. There is a subset of workstations that process that particular job along its routing 

and along the routing of the other p jobs that need to be rescheduled. Let q represents the number 

of workstations to be rescheduled in the subset of workstations Wi for hot job i and the other p 

impacted jobs, where Wi  W. 

Second, in addition to the unexpected arrival of hot jobs, jobs must arrive to workstations 

before the expiration of the shelf and work lives of the chemicals required for processing. This 

expiration time can be represented using a time window at the different workstations in each 

arriving job’s process routing. Therefore, similar to that which is discussed in Section 1.2.3, 

delivery to each workstation is allowed outside the time window, but at the expense of an 



12 

 

associated penalty. When a job arrives to a workstation before the start of its respective time 

window for the chemicals results in a penalty, e.g., inventory holding/storage cost. If a job’s 

estimated completion time at a workstation is after its respective time window for the chemicals, 

this also results in a penalty, e.g., delay cost due to chemical remixing and recertification. 

However, this penalty is much more severe than that incurred when a job arrives to a workstation 

before the start of its respective time window, and thus should be avoided. 

 The Performance Objective 1.2.3

Recall that strict adherence to the fixed Master Production Schedule is necessary for 

several reasons, and there is a one-week time window during which jobs must be delivered and 

loaded onto cargo ships.  Therefore, it is imperative that all product deliveries arrive on time 

within the delivery time windows. Delivery is allowed outside the time window, but at the 

expense of an associated penalty. The process of manufacturing these electro-mechanical 

assemblies are very lengthy and complex.  Completing a job and delivering the job before the 

start of its respective time window result in a penalty, i.e., inventory holding cost. Delivering a 

job after its respective time window also results in a penalty, i.e., delay cost or emergency 

shipping cost. In summary, completing shipments too early or too late is disadvantageous, and no 

penalty is incurred when a job is completed and delivered during its respective delivery time 

window. As a result, the performance objective for the general problem is a composition of 

performance measures Ei and Ti, where 
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Ei = max{Li – ci, 0} i = 1, …, n, and (1.1) 

Ti = max{ci – Ui, 0} i = 1, …, n. (1.2) 

Hence, the performance objective for the general problem is to minimize 

 



n

i

iiii
TEZ

1

21  , (1.3) 

where ci is the actual completion/delivery time of job i, 1i is the cost per unit time of completing 

job i before the beginning of the delivery time window, and 2i is the cost per unit time of 

completing job i after the end of the delivery time window. 

To summarize, the general problem considered in this research investigation is expressed 

using the widely adopted three-field scheduling notation  |  |  (Blazewicz et al., 1996) as Jm | 

ri, batch, prmp, sij |  1 2

1

 




n

i i i i

i

E T . 

 Decomposition of the Problem – The Bottleneck 1.3

In the industry problem, the overall performance of the Coating Room is greatly inhibited 

by the bottleneck – the Bonding Station, and approximately 80% of the jobs visit the Bonding 

Station. Therefore, this research can make inroads to the industry problem by focusing on the 

effective scheduling of this one workstation, which would, in turn, improve the overall 

performance of the entire production system. 



14 

 

 Objectives of This Research Investigation 1.4

Hence, the primary objectives of this research investigation are to: 

1. Model the scheduling problem for one workstation in the presence of batching, incompatible 

job families and sequence-dependent setup times. The definition and modeling of this 

scheduling problem, 1 | ri, batch, sij |  



n

i

iiii
TE

1

21  , is a contribution in and of itself. The 

definition discusses the characteristics and challenges of this interesting problem and the 

subsequent model of the general problem presents valuable insights to solving it; and 

 

2. Develop effective heuristic solution approaches for the 1 | ri, batch, sij |  



n

i

iiii
TE

1

21  , 

scheduling problem in the presence of batching, incompatible job families, and sequence-

dependent setup times. It is well-known that the single batch resource scheduling problem for 

all but very few special situations is NP-hard. In other words, a polynomial-time algorithm 

that solves this problem optimally does not exist. Therefore, researchers and practitioners 

seek and develop heuristic approaches to address this problem. The proposed solution 

approaches can serve as the initial effort to address this unique problem and other problems 

similar in structure. 



15 

 

  Expected Contribution of This Research Investigation 1.5

The contribution of this research is two-fold. First, the general scheduling problem 

underlying the industrial problem motivating this research investigation is known to be NP-hard. 

Therefore, any effective solution approaches to this problem, not only for some simple, smaller 

special cases but also for cases that align with more realistically-sized job shop scheduling 

problems, will contribute significantly to the research body of knowledge in 

operations/production scheduling. Second, this investigation explores new approaches that 

should help shop floor production supervisors and managers effectively manage and schedule 

jobs in order to minimize the deviation of actual job delivery dates from scheduled delivery 

dates. Further, it should lead to the development of better proactive scheduling policies in job 

shops where sequence-dependent setups and batching are present. 

  Organization of This Document 1.6

The remainder of this document is organized as follows. Chapter 2 discusses the previous 

literature related to the primary areas of this research investigation, which include job shop 

scheduling, batching with sequence-dependent setups and incompatible job families. An 

overview of past solution approaches is also presented. Chapter 3 describes the research 

approach of this investigation in detail. Chapter 4 summarizes the proposed mathematical 

formulation of the scheduling problem, followed by Chapter 5, which presents the proposed 

heuristics and the benchmark heuristics to which the proposed heuristics are compared.  Chapter 

6 summarizes sensitivity analyses, where the weights of the earliness and tardiness measures and 
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limits of batch sizes are varied. The effects of these changes on the performance of the proposed 

heuristics and the benchmark heuristics are presented and discussed. This chapter also introduces 

the use of Order Review and Release strategies.  Chapter 7 increases the complexity of the 

problem formulation by introducing sequence-dependent setups and updates the previous 

mathematical formulation to include this problem characteristic.  Chapter 8 summarizes this 

research investigation as well as directions for future research. 
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  CHAPTER 2

REVIEW OF THE EXISTING LITERATURE 

 Introduction 2.1

This chapter presents a review of the literature covers the job scheduling problem along 

with various approaches to solve this problem.  The chapter is divided into several sections.  The 

first major section summarizes existing literature on job shop scheduling problems.  The second 

section discusses scheduling problems that include the batching of jobs and sequence-dependent 

setups. The third discusses existing methods for scheduling due to unplanned disturbances in the 

manufacturing flow.  The chapter concludes with a review of the research gaps that are addressed 

during this investigation. 

 Job Shop Scheduling 2.2

A job shop is a facility that typically has many product families, but low volumes, and 

units visit multiple workstations during their production.  The job shop scheduling problem is a 

well-researched problem and has been studied for many decades. One of the first to explore this 

problem is the research of Balas (1969). As a result, it is impractical to review all the research 

that addresses the general job shop scheduling problem and its variants. Therefore, the interested 

reader is encouraged to review the following works, which provide detailed background on this 

well-studied problem – Mellor (1966), Rodammer and White (1988), Blazewicz et al. (1996), 

Jain and Meeran (1999), Pinedo (2002), and Parveen and Ullah (2010). It has been concluded in 
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the open literature that the job shop scheduling problem, even in its simplest form, is proven to 

be NP-hard and no polynomial-time algorithm exists to solve this problem to optimality (see, for 

example, Muth and Thompson (1963), Garey et al. (1976), Kan (1976), Sotskov and Shakhlevich 

(1995)). 

 Heuristic Approaches to the Job Shop Scheduling Problem 2.2.1

Since the job shop scheduling problem is NP-hard, researchers typically pursue heuristic 

solution approaches instead of exact approaches. Other heuristic approaches that are applied to 

the job scheduling problems and perhaps have greater appeal, especially to practitioners, are 

order review and release (ORR) strategies and dispatching rules. These methodologies are shown 

to be effective in controlling the amount of work-in-process inventory on the floor as well as 

provide the best sequencing of jobs with respect to the desired performance criterion or set of 

criteria (e.g., Philipoom et al. 1993; Sabuncuoglu and Karapinar 2000; Chiang and Fu 2009; Lu 

et al. 2011). 

Job shop scheduling problems involving batching and/or sequence-dependent setups are 

quite common in scheduling research literature (e.g., Gentile 2009; Vinod and Sridharan 2009; 

Zhang and Gu 2009). The next section discusses these problem features and methodologies 

proposed to solve scheduling problems with these features. 
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 Batching and Sequence-Dependent Setups 2.3

There are different approaches in solving scheduling problems when batching and 

sequence-dependent setups are present.  These solution approaches range from exact 

methodologies to heuristic methodologies.  These various solution approaches can be used in 

order to improve performance metrics such as number of tardy jobs, maximum lateness and 

deviation from job due dates. 

Batching is typically done when machine changeovers (or, setups) are required, in order 

to improve machine utilization, especially when the machine is a shared resource across product 

families. One industry in which the use of shared resources is common is the semiconductor 

manufacturing industry. This is due to the complex nature of the product being manufactured.  

This environment is similar to the industrial setting motivating this research investigation, with 

the exception that batch processors in a semiconductor manufacturing environment can process 

multiple units simultaneously.  Scheduling of batch processors in a semiconductor industry has 

been studied for many years (e.g., Kim et al. 1998, Min and Yih 2003, Mathirajan et al. 2006, 

Lee et al. 2009, Senties et al. 2009).  Mathirajan et al. (2006) identify three primary categories of 

methods to address these problems: mathematical programming models, exact approaches and 

heuristic approaches (see Figure 2.1). 
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Figure 2.1. Summary of existing solution methodologies (modified from Mathirajan et al. 2006). 

 

Many researchers address batch scheduling in other production environments, e.g., the 

automotive industry (e.g., Gokhale and Mathirajan 2010) and the fruit canning industry (e.g., 

Parthanadee and Buddhakulsomsiri 2010). These researchers explore different approaches, such 

as dispatching rules, to address their particular problem in their respective industries. 

 Exact Approaches 2.3.1

Pott et al. (2000) review batch scheduling and identify past research from Rinnooy Kan 

(1976) that considers the 1|sij|Ci problem, which is the minimization of total job completion 

time on a single machine where there are job families and sequence-dependent family setup 

times. This problem is unary NP-hard for an arbitrary number of product families F. This 

research is interested in preventing late deliveries, and as a result, one of the objectives of 

interest is to minimize job maximum lateness, or Lmax. 

Solving this problem for an arbitrary number of product families has been found to be 

NP-hard by Bruno and Downey (1978), and, as a response, Hariri and Potts (1997) develop a 
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branch and bound algorithm to solve such a problem using the Earliest Due Date (EDD) 

dispatching rule.  A review of Pott et al. (2000) and Cheng et al. (2001) reveals that scheduling 

with batching is an NP-hard problem, and heuristics are better suited at solving a scheduling 

problem when batching is present. Cheng et al. (2001) show that single batch processor 

scheduling problems with multiple product families, setup times, and focusing on due date 

objectives, such as minimizing maximum lateness, is strongly NP-hard. 

 Heuristic Approaches 2.3.2

Given the computational complexity results of the batch scheduling problem, researchers, 

such as Mathirajan and Sivakkumar (2006), Geiger and Uzsoy (2008), Gokhale et al. (2010), 

,explore the effects batching have on scheduling.  Geiger and Uzsoy (2008) extend their previous 

work Geiger et al. (2006) of utilizing a bio-inspired genetic learning approach and apply it to 

more complex batch processing environments.  They are able to evaluate this approach over a 

range of single batch processor scheduling problems under different production conditions to 

identify the robustness and performance of their proposed learning approach against other known 

heuristics such as Greedy Earliest Due Date (GREDD) (Uzsoy 1995) and Batch Apparent 

Tardiness Cost (BATC) (Mehta and Uzsoy 1998). 

Gokhale et al. (2010) look at the problem of scheduling a batch processor in presence of 

unequal release times, incompatible job families and non-identical job sizes with job splitting to 

minimize the total weighted tardiness. The batch processor can process multiple compatible jobs 

at one time. The focus of their research is on the bottleneck of an automobile gear manufacturer.  



22 

 

In order to solve this problem, Gokhale et al. (2010) develop three heuristic algorithms (HAs): 

Weighted tardiness based HA, Weighted job score based HA, and Weighted family score and job 

score based HA.  All three heuristics are tested on smaller-sized problems and then later on 

larger problems, and prove to be relatively effective. 

Another approach to solving scheduling problems with batching is with the use of order 

review and release (ORR) strategies and dispatching rules.  The combination of these two 

scheduling strategies have been shown to be effective in reducing work-in-process (WIP) 

inventory in order to improve the overall performance of the shop floor (e.g., Gronalt 2002 and 

Gentile 2009). 

Batch preemption can occur when a machine is processing a job of an in-process batch 

and that processing is often interrupted by a batch (or single job) of higher priority.  That 

machine then processes the interrupting higher priority batch (or single job) to completion, then 

resumes processing the previously interrupted job and completes the in-process batch.  An 

assumption of many researchers used to solve scheduling problems is to not allow batch or 

machine preemptions (e.g., Mathirajan 2006, Chiang and Fu 2007, Geiger and Uzsoy 2008, 

Gokhale and Mathirajan 2010).  Scheduling problems in which batch preemption occurs is NP-

hard when the number of machines m is 2 (Monma and Potts 1993).  Therefore, heuristic 

approaches are appropriate when solving batch scheduling problems with preemption. 
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 Sequence-Dependent Setups 2.3.3

Zhu and Wilhelm (2005) summarize recent results in the existing literature for scheduling 

problems with sequence-dependent setups.  Most research considers the reduction of setup costs 

and inventory holding costs. This research shows that any scheduling problem that has sequence-

dependent setups any performance objective (e.g., minimize makespan, minimize total flow time, 

minimize maximum lateness, etc.) is NP-hard (see, for example, Monma and Potts 1989, Ghosh 

1994, Pinedo 2002).  As a result, even though some researchers have pursued exact approaches 

for simplified versions of scheduling problems with sequence-dependent setups, more 

commonly, heuristic solution approaches have been developed in order to address problems with 

sequence-dependent setups, including genetic algorithms, dispatching rules and simulation, to 

name a few. 

2.3.3.1 Exact Approaches 

A scheduling problem involving sequence-dependent setups is well-known to be similar 

to that of the Traveling Salesperson problem (TSP), which is known in literature to be NP-hard 

(see, for example, Kan 1976, Pinedo 2002, Zhu and Wilhlem 2006).  The traveling salesperson 

problem is a widely-studied mathematical problem for which the ultimate goal is to find the 

optimal path given a set of distances. This problem has been applied to many other fields such as 

logistics, planning and manufacturing.  A literature review by Allahverdi et al. (2008) shows that 

scheduling problems, with sequence-dependent setups, regardless if there is or isn’t batching, are 

NP-hard. 
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2.3.3.2 Heuristic Approaches 

Mathematical programming models, simulation models and metamodels, etc. all have 

been used to address scheduling problems in various environments (e.g., Ruiz 2008, Vinod and 

Sridharan 2009, Salmas et al. 2010, Fernandes et al. 2011). 

Various heuristic scheduling approaches have been used and tested in order to improve 

shop floor performance.  One of these approaches is the Similar Setup (SIMSET) rule (Vinod 

and Sridharan 2009, Fernandes et al. 2011), which has proven to be effective especially in the 

case of sequence-dependent setups. 

Another popular strategy for solving scheduling problems with sequence-dependent 

setups is the integration of both order review and release (ORR) strategies and dispatching rules. 

Missbauer (1996), Lee (1997) and Gentile (2008) evaluate the performance of these strategies in 

a job shop and show the effectiveness of these strategies in reducing production costs and 

reducing work-in-process inventory.  Missbauer (1996) create an analytical model as well as a 

simulation model.  The author tests and analyzes the performance of these rules and determines 

the most suitable combination of ORR strategies and dispatching rules. 

 Unplanned Disruptions 2.4

In a manufacturing environment, it is often difficult to plan or predict the performance of 

the manufacturing system due to random disturbances, which can alter the originally intended 

schedule.  Many theories have been suggested to identify the best planning strategies and 
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identify when there are dangers of missed deliveries.  One of the planning strategies that can be 

utilized is dispatching rules. 

Dispatching rules identify priorities of jobs waiting to be processed on a machine and can 

be based on various criteria.  New research has suggested using simulation in order to select 

dispatching rules as the manufacturing conditions change (e.g., disruptions occur, unanticipated 

orders arrive, etc.). Interruptions such as machine failures, process yield and rework are some 

issues that impact the dispatching rules in the study performed by Min and Yih (2003).  Their 

objective is to utilize scheduling rules to minimize work-in-process inventory, improve 

throughput. They researchers develop a simulation-based scheduler that provides real-time 

dispatching decisions. 

A successful approach to dealing with unexpected changes in the system is to modify 

dispatching rules in real-time (e.g., Jeong and Kim 1998, Wu et al. 1999, Min and Yih 2003, 

Parthanadee and Buddhakulsomsiri 2010).  Parthanadee and Buddhakulsomsiri (2010) 

successfully apply dispatching rules to a fruit canning facility’s bottleneck. The desired 

outcomes of Parthanadee and Buddhakulsomsiri (2010)’s research are to: 

1. identify the dispatching rules for scheduling, which are performed real-time; 

2. use simulation modeling to analyze the dispatching rule performance. 

Dynamically changing dispatching rules to account for these unforeseen changes, such as 

variable job arrival patterns, urgent jobs, or unplanned machine downtime, has been studied 

throughout the years (e.g., Jeong and Kim 1998, Min and Yih 2003, Upsani and Uzsoy 2008).  

For each significant disruption, the dispatching rules are analyzed and the best fit is selected.  
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Some authors’ works involve testing different rules in order to determine the rules that provide 

the best performance (e.g., Joeng and Kim 1998). Other authors propose a more complex 

solution in which dispatching rules are adjusted in order to meet pre-determined acceptable 

levels in the performance metrics (e.g., Min and Yih 2003). Upsani and Uzsoy (2008) focus on 

how the dispatching rules impact the lateness of the product. Ishii and Talavage (1991) use 

simulation to analyze dispatching rules to identify the rule that provides the best solution to 

reduce work-in-process inventory, reduce costs and improve profit in a flexible manufacturing 

system. The authors assert that a dispatching rule selected at different periods in time greatly 

improves production performance.  They assert that no one dispatching rule produces optimal 

performance in all cases. 

 Minimizing the Earliness and Tardiness Performance Objectives 2.5

 Approaches for Minimizing Tardiness 2.5.1

It is reported that the single machine total tardiness problem is NP-hard in the ordinary 

sense, and its weighted counterpart is NP-hard in the strong sense (Pinedo 2002). As the 

tardiness problem increases in complexity, the tractability of the problem does not improve. 

Therefore, researchers and practitioners pursue approximate approaches to address this 

performance objective. 

A successful and popular heuristic approach to addressing the tardiness objective is the 

Apparent Tardiness Cost (ATC) sequencing heuristic proposed by Rachamadugu and Morton 
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(1981). ATC calculates an index value for each job i in a set of jobs to be processed and arranges 

those jobs in decreasing order ATC index value.  ATC works in a similar fashion as the weighted 

shortest processing time dispatching rule that processes a set of jobs in increasing order of the wi 

/ pi index value, where wi is the weight (or importance) of job i and pi is the processing time of 

job i. However, ATC considers the “apparent cost” of the remaining jobs awaiting processing 

and scales the slack in accordance with the remaining number of competing jobs awaiting 

processing.  The calculation of the ATC index value for job i is as follows: 

   ( )  
  

  
   

( [
          

  
])

 (2.1) 

where: 

pi processing time for job i 

di due date for job i 

p average processing time of the waiting jobs 

wi weight of job i 

k look-ahead parameter (user-defined for the problem at hand) 

The k parameter is a look-ahead parameter related to the number of competing jobs, and k is a 

decision parameter whose specific value is determined by the user for the scheduling problem at 

hand. Appropriate values of the k-value range from 1.5  k  4.5, according to the empirical 

analyses of Ow (1985) and Rachamadugu (1982). 

Vepsalainen and Morton (1987) evaluate the ATC rule against several standard rules 

including First Come First Serve (FCFS), Earliest Due Date (EDD), Slack per Remaining 
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Processing Time (S/RPT), Weighted Shortest Processing Time (WSPT), and Weighted Cost over 

Time (COVERT), in a job shop environment with 10 machines and jobs arriving at a continuous 

Poisson arrival rate. ATC is shown to outperform the standard rules and the COVERT 

dispatching rule. In fact, Rachamadugu and Morton (1981) and Vepsalainen and Morton (1987) 

find that ATC outperforms several other heuristics for the tardiness and weighted tardiness 

objectives. It is found to generate near-optimal performance for single machine scheduling 

problems when tardiness and weighted tardiness are the performance objectives. 

 Approaches for Minimizing Earliness-Tardiness 2.5.2

Baker and Scudder (1990) discuss that there are several formulations of the earliness-

tardiness scheduling problem. One formulation is that jobs have a common due date (see, for 

example, Gordon et al. 2002). Another formulation is that each job has a distinct due date, which 

is a generalization of the previous formulation. Yet, another formulation of the earliness-

tardiness scheduling problem is to derive a due date that will ultimately help to optimize the 

sequence of jobs with respect to both objectives simultaneously.  Each of these types of problems 

requires different solutions approaches in order to minimize earliness-tardiness. 

For instance, Wan and Yen (2002) develop a tabu search method for the single machine 

problem with individual jobs having distinct due dates, and jobs are assumed to be all available 

at time t = 0. In order to consider the earliness portion of the objective, they allow for idle time to 

be inserted into the master production schedule.  Their problem allows for time windows in 

which the job due dates fall. Batching, incompatible job families, sequence-dependent setups are 
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not considered.  The authors’ solution to this problem involves two algorithms: optimal timing 

and optimal sequencing. The optimal timing algorithm identifies the best completion time that 

corresponds to a particular job’s due window. Forced idle time is inserted and jobs are shifted in 

order for their completion time to fall within their respective time windows. 

Mazzini and Armentano (2001) approach the problem by proposing a heuristic in which 

idle times are inserted during the construction of the schedule rather than determining a schedule 

using a priority rule and then inserting idle times in order to optimize the schedule. The authors 

are able to compare the results of the heuristic against optimal solutions but only for 12 jobs or 

less.  The authors show that it is computationally-expensive to reach a solution for more than 12 

jobs.  Therefore, their heuristic is compared to other known heuristic priority rules for problems 

greater than 12 jobs.  Their results suggest that, if the job is going to be inevitably tardy, then the 

job would start at its ready time ri; however, if the job is early, the start would be the difference 

between the due date di and its processing time pi.  After the start time si is determined for each 

job i, the heuristic looks to see if any jobs have overlapping times, in which the feasibility 

procedure of their heuristic shifts jobs either to the left or to the right to ensure no overlapping 

and reduce overall earliness-tardiness. Their heuristic performs well when compared to the 

optimal solution and a benchmark set of standard heuristic priority rules. 

Rabadi et al. (2004), Rabadi et al. (2006), and Sourd (2005) all address scheduling 

problems with sequence-dependent setups. Both the research of Rabadi et al. (2004) and Sourd 

(2005) focuses on a scheduling problem with one machine and no preemptions; however, Rabadi 

et al. (2004) assumes one common due date for all jobs and attempts to minimize the total 
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amount of earliness and tardiness, while Sourd (2005) assigns each job a due date and works to 

minimize earliness-tardiness and setup costs.  Rabadi et al. (2004) attempts to minimize overall 

earliness and tardiness by scheduling jobs using the longest processing time first (to minimize 

earliness) until the due date is approached.  Once jobs are considered tardy, shortest processing 

time is used to schedule the remaining jobs in order to minimize tardiness.  In order to make the 

scheduling problem more manageable, Rabadi et al. (2004) sum the processing and setup times 

in a matrix as the adjusted processing time or APij, where APij = Sij + Pj. The authors utilize a 

branch and bound algorithm and compare their solutions to those generated from a mixed integer 

programming (MIP) model by proposed by Coleman (1992). Sourd (2005) use a similar 

approach in that a MIP model is formulated, and then use a branch and bound algorithm 

approach to solve the MIP. Sourd (2005) also proposes a heuristic to solve the problem, and the 

solutions generated by the proposed heuristic are compared to those generated from the branch 

and bound algorithm.  It is found that the branch and bound algorithm performs well; however, it 

is only suitable when the number of jobs is limited to less than 20.  For larger-scale scheduling 

problems where the number of jobs is greater than or equal to 20, the heuristic approach is more 

suitable. 
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 Summary 2.6

As concluded by most researchers in the existing literature, job shop scheduling problems 

in which batching and sequence-dependent setups are present are NP-hard. Therefore, in order to 

provide a solution to this problem, heuristic solution methods are pursued.  There are many 

solution approaches to preventing late deliveries to customers considering some of these problem 

characteristics.  However, currently there is no research regarding the scheduling problem 

encompasses all of these problem characteristics as described and defined in Section 1.2. 
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 : CHAPTER 3

RESEARCH APPROACH 

 Introduction 3.1

Job shop scheduling with batching, incompatible job families, and sequence-dependent 

setups have all been addressed independently or in some combination. However, the open 

literature shows that there is no current work that identifies a methodology to solve the problem 

when all three features are present simultaneously and while minimizing both earliness and 

tardiness. As a result of the computational complexity results for this (and variants of this) 

problem, heuristics are the desired approach to solve this problem. 

Recall that an objective of this research investigation is to formulate a special case of the 

general problem. Specifically, this research focuses on the effective scheduling of the bottleneck 

workstation, which would, in turn, improve the overall performance of the entire production 

system. In order to do this, the general multi-workstation problem is simplified through a series 

of assumptions that are systematically relaxed in a three-phased approach. The final phase 

involves modeling the problem 1 | ri, batch, sij|    ii TE 21  . The following three sections 

detail the relevant assumptions of each phase. 
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 Phase 1: Single Batch Workstation with Sequence-Independent Setups and Equal Job 3.2

Weights 

Phase 1 of this research involves the following problem with the simplifying 

assumptions. 

 The number of workstations m is 1, i.e., |W| = 1; 

 The number of machines in the workstation is 1; 

 The number of jobs n arrives individually to the workstation and are placed in batches 

before being processed; 

 There is no restriction on queue length for jobs and batches awaiting processing at the 

workstation; 

 Jobs within a batch are processed one at a time at the workstation; 

 Jobs depart the workstation in batches; 

 No batch preemption.  Once a batch has begun processing at a workstation, it cannot be 

interrupted due to the arrival of higher priority jobs (or batches of jobs) before the 

processing of that batch has been completed; 

 No batch splitting.  Once a batch has been created, it cannot be divided into smaller sub-

batches of jobs.  It is treated as a single entity; 

 Incompatible job families.  Jobs from different families cannot be processed together in 

the same batch; 

 Machine setups occur between processing batches of jobs, regardless of the job family 

process prior; in other words, a machine’s setup time for a batch from a family is 
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determined by that batch’s product family not by the previous family for which the 

machine is currently setup, i.e., machine setups are batch sequence-independent; and 

 The earliness penalty per unit time per job and the tardiness penalty per unit time per job 

are equal. 

The assumptions for this phase characterize a scheduling problem similar to that addressed 

by Uzsoy (1995).  One primary difference between the simplified problem of Phase 1 and that of 

Uzsoy (1995) is the scheduling performance criterion.  While Uzsoy (1995) focuses on 

minimizing Cmax (or makespan) and weighted completion time iiCw , the scheduling 

performance objective in this phase is to minimize 



E i  Ti  , one that has not yet been 

addressed in the open literature for the batch scheduling problem in the presence of incompatible 

job families and dynamically arriving jobs. This simplified scheduling problem is expressed in 

the scheduling notation as follows: 1 | ri, batch | 



E i  Ti  . 

 Phase 2: Single Batch Workstation with Sequence-Independent Setups and Unequal 3.3

Weights 

Phase 2 of this research involves the following problem and modeling assumptions. The 

relaxed assumption is italicized. 

 The number of workstations m is 1, i.e., |W| = 1; 

 The number of machines in the workstation is 1; therefore, m = 1; 
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 The number of jobs n arrives individually to the workstation and are placed in batches 

before being processed; 

 There is no restriction on queue length for jobs and batches awaiting processing at the 

workstation; 

 Jobs within a batch are processed one at a time at the workstation; 

 Jobs depart the workstation in batches; 

 No batch preemption. Once a batch has begun processing at a workstation, it cannot be 

interrupted due to the arrival of higher priority jobs (or batches of jobs) before the 

processing of that batch has been completed; 

 No batch splitting.  Once a batch has been created, it cannot be divided into smaller sub-

batches of jobs.  It is treated as a single entity; 

 Incompatible job families.  Jobs from different families cannot be processed together in 

the same batch; 

 Machine setups occur between processing batches of jobs, regardless of the job family 

process prior; in other words, a machine’s setup time for a batch from a family is 

determined by that batch’s product family not by the previous family for which the 

machine is currently setup, i.e., machine setups are batch sequence-independent; and 

 The earliness penalty per unit time per job and the tardiness penalty per unit time per job 

are unequal. 
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This enhanced scheduling problem through the relaxation of the earliness/tardiness unit 

weighting is expressed in the scheduling notation as follows: 1 | ri, batch |    ii TE 21  . The 

rationale of experimenting with unequal weights is to understand if the proposed heuristics are 

robust under unequal weights. 

 Phase 3: Single Batch Workstation with Sequence-Dependent Setups and Unequal Job 3.4

Weights 

Phase 3 of this research involves the following problem and modeling assumptions. The 

relaxed assumptions are italicized. 

 The number of workstations m is 1, i.e., |W| = 1; 

 The number of machines in the workstation is 1; therefore, m = 1; 

 The number of jobs n arrives individually to the workstation and are placed in batches 

before being processed; 

 There is no restriction on queue length for jobs and batches awaiting processing at the 

workstation; 

 Jobs within a batch are processed one at a time at the workstation; 

 Jobs depart the workstation in batches; 

 No batch preemption.  Once a batch has begun processing at a workstation, it cannot be 

interrupted due to the arrival of higher priority jobs (or batches of jobs) before the 

processing of that batch has been completed; 
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 No batch splitting.  Once a batch has been created, it cannot be divided into smaller sub-

batches of jobs.  It is treated as a single entity; 

 Incompatible job families. Jobs from different families cannot be processed together in 

the same batch; 

 A machine’s setup time for a batch from a family is determined not only by that batch’s 

product family but also by the previous family for which the machine is currently setup; 

in other words, machine setup are family sequence-dependent; 

 Major machine setups occur between processing batches of jobs from different families; 

 Minor machine setups occur between processing batches of jobs from the same family; 

 The earliness penalty per unit time per job and the tardiness penalty per unit time per job 

are unequal. 

 

This even further relaxed scheduling problem is expressed in the scheduling notation as follows: 

1 | ri, batch, sij |    ii TE 21  .  This problem now addresses sequence-dependent setups for the 

single batch processor scheduling problem minimizing the earliness/tardiness objective with 

unequal weights. 
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 : CHAPTER 4

MATHEMATICAL MODEL FORMULATION AND COMPUTATIONAL 

PERFORMANCE REQUIREMENTS 

 Phase 1: Single Batch Machine Scheduling with Sequence-Independent Setups and Equal 4.1

Earliness and Tardiness Penalties 

Recall from CHAPTER 3 that Phase 1 involves a single batch workstation with 

sequence-independent setups and equal job weights and involves the following simplifying and 

modeling assumptions: 

 The number of workstations m is 1, i.e., |W| = 1; 

 The number of machines in the workstation is 1; 

 The number of jobs n arrives individually to the workstation and are placed in batches 

before being processed; 

 There is no restriction on queue length for jobs and batches awaiting processing at the 

workstation; 

 Jobs within a batch are processed one at a time at the workstation; 

 Jobs depart the workstation in batches; 

 No batch preemption.  Once a batch has begun processing at a workstation, it cannot be 

interrupted due to the arrival of higher priority jobs (or batches of jobs) before the 

processing of that batch has been completed; 

 No batch splitting.  Once a batch has been created, it cannot be divided into smaller sub-

batches of jobs.  It is treated as a single entity; 
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 Incompatible job families.  Jobs from different families cannot be processed together in 

the same batch; 

 Machine setups occur between processing batches of jobs, regardless of the job family 

process prior; in other words, a machine’s setup time for a batch from a family is 

determined by that batch’s product family not by the previous family for which the 

machine is currently setup, i.e., machine setups are batch sequence-independent; and 

 The earliness penalty per unit time per job and the tardiness penalty per unit time per job 

are equal. 

 

Before presenting the general model formulation of this problem, the relevant notation 

and parameters are first presented. 

 

Sets 

J : Set of jobs to be processed 

F : Set of product families 

M : Set of machines 

 

Parameters 

n  : Number of jobs, where n = |J| 

m  : Number of machines, where m  = |M| 

F  : Number of families, where F = |F| 
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i  : Index for jobs, where i = 1, …, n 

j  : Index for machines,  where j =1, …, m 

f  : Index for families, where f = 1, …, F 

    : Release time of job i 

     : Due date of job i 

     : Weight or importance of job i; the jobs are equally-weighted, i.e., wi = 1 

      : Earliness penalty of job i 

     : Tardiness penalty of job i 

     : Common processing time of a job of family f 

    : Setup time for family f 



Bmin
f

 : Minimum batch size of family f 

fBmax  : Maximum batch size of family f 

      : 1, if family f belongs to job i; otherwise 0 

 

Decision Variables 

     : 1, if job i is processed in batch k; otherwise 0. 

     : 1, if family f is processed in batch k; otherwise 0 

 

Dependent Variables 

Ci  : Completion time of job i 
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Ei  : Earliness of job i 

     : Tardiness of job i 

     : Start time of batch k 

     : Process time of batch k of family f  

     : Completion time of batch k 

 

The following is the proposed mathematical model formulation: 

 

Minimize 

 
∑(         )

 

   

 
(4.1) 

s.t. 

                 (4.2) 

                (4.3) 

                   (4.4) 

 

∑   

 

   

 ∑(         )
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    ∑ (         )

 
     

              (4.6) 

     ∑ (  
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                (4.7) 
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∑    

 

   

                   
(4.8) 

 ∑    
 
                  (4.9) 

                                  (4.10) 

                             (4.11) 

                (4.12) 

              (4.13) 

                      (4.14) 

           (4.15) 

            (4.16) 

             (4.17) 

             (4.18) 

              (4.19) 

     {   }           (4.20) 

     {   }         (4.21) 

 

Objective (4.1) minimizes the total tardiness and earliness over all jobs.  Constraints (4.2) 

and (4.3) are the definitions of the earliness and tardiness measures of a job.  Constraint (4.4) 

shows the definition of the due date for each job.  Constraint (4.5) states that the sum of all jobs 

in a batch is greater than the minimum family batch size constraint for that batch.  Constraint 
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(4.6) states that the sum of jobs in a batch is less than the maximum family batch size constraint 

for that batch. Constraint (4.7) defines the process time of a batch of jobs for the same family.  

This is the number in the batch times the individual processing time of each job plus the setup 

time associated for each family.  Constraint (4.8) says that each job is assigned to a batch only 

once.  Constraint (4.9) states that each family is assigned to exactly one batch. If there are no 

jobs in the batch then no families would be assigned to a batch.  Constraint (4.10) ensures that if 

a job in a family is assigned to a batch, then that batch must be of the same family (i.e., if Xik = 1, 

then Yfk = 1).  Constraint (4.11) ensures that the start time of a batch must be no less than the 

release time of any jobs forming that batch.  Constraint (4.12) specifies that no job can start 

before the completion of the previous batch at a machine.  Constraint (4.13) identifies that a job’s 

start time must be early enough to allow for the processing time before it is completed.  

Constraint (4.14) states that the completion time of the job is equal to the completion time of the 

batch to which the job belongs.  This is because jobs depart in batches.  Constraints (4.15) 

through (4.19) are the non-negativity constraints.  Constraints (4.20) and (4.21) are binary 

constraints for the decision variables. 

 Computational Requirements of the Single Batch Machine Scheduling Problem with 4.2

Sequence-Independent Setups and Equal Earliness and Tardiness Penalties 

The general integer programming model in Section 4.1 is solved using IBM ILOG 

CPLEX version 12.5 on a 2.13 GHz Intel Pentium CPU Processor with 4.0 GB RAM and 

Microsoft Windows 7 operating system. Table 4.1 summarizes the computational time of the 
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CPLEX solver. It can be seen from Table 4.1 that the solution time increases exponentially, even 

for the simpler single batch workstation scheduling problem under the various operating 

conditions, including tight and loose due dates and high and low incoming job traffic intensity at 

the workstation. 

Table 4.1. Summary of CPLEX solution times in order to reach an optimal solution. 

  5 Jobs Instance 10 Jobs Instance 15 Jobs Instance 

Problem 

Characteristic Value 

% Nodes 

Tested 

Solution 

Time 

% Nodes 

Tested 

Solution 

Time 

% Nodes 

Tested 

Solution 

Time 

# of Families 1 

100% < 2 Secs 100% < 10 Secs 100% 
< 10 

Secs 
Due Dates Tight / Loose 

Traffic Intensity High / Low 

# of Families 5 

100% < 2 Secs 100% < 10 Secs 100% 
0.42 Hrs 

- 18 Hrs 
Due Dates Tight / Loose 

Traffic Intensity High / Low 

# of Families 1 

100% < 2 Secs 100% 1-5 Days 100% 
8-10 

Hrs 
Due Dates Tight / Loose 

Traffic Intensity 
All Jobs Available 

Simultaneously 

# of Families 5 

100% < 2 Secs 100% 2-6 Days 4% >12 Hrs Due Dates Tight / Loose 

Traffic Intensity 
All Jobs Available 

Simultaneously 
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 : CHAPTER 5

HEURISTIC SOLUTION PROCEDURES 

 Introduction 5.1

One of the most effective heuristics in research and practice for addressing the tardiness 

problem (and its weighted counterpart) in several scheduling environments with various 

processing characteristics is the Apparent Tardiness Cost (ATC) heuristic (Vepsalainen and 

Morton, 1987). This heuristic works well for tardiness, but does not consider the earliness 

measure. In this research, the ATC heuristic is enhanced so that it considers both the tardiness 

and the earliness measure. 

For the single batch machine scheduling problem with sequence-independent setups 

minimizing total earliness and tardiness objective with equal weights, 



E i  Ti  , two solution 

heuristics are proposed, namely, (1) the Apparent Tardiness and Earliness Cost (ATEC) heuristic 

and (2) the Batching Incompatible Families with Earliness Tardiness Cost (BIFET) heuristic. 

 Proposed Solution Heuristics 5.2

 Apparent Tardiness and Earliness Cost (ATEC) Heuristic 5.2.1

The steps of the proposed Apparent Tardiness and Earliness Cost (ATEC) heuristic are as 

follows. 
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1. Obtain a sequence for the available jobs awaiting processing at the batch machine using 

pure ATC heuristic (Vepsalainen and Morton 1987); 

2. Construct sequential batches by adding awaiting jobs of the same family to a batch until 

the maximum batch size is reached; 

3. When the maximum batch size is reached, then start a new batch with the remaining 

unbatched jobs; 

4. Identify the start time of each job and set this time equal to si. 

5. Create an initial schedule and calculate the completion time Ci = piBf + si; 

6. Calculate earliness-tardiness of each job i using 

                

               

7.  Count the number of early jobs, and set z equal to the number of early jobs; Set j = 1; 

8. Start with the job with the highest earliness penalty; 

9. Calculate the earliness, and adjust start time si by that amount si(new) = rai + di – Ci; 

Increment j; 

10. Recalculate the earliness/tardiness penalty for all batched jobs; 

a. If it is improved, keep new start time; Go to Step 2; and 

b. If it is not improved, set start time of the batch back to original start time; Go to 

Step 6, and identify the job with next highest earliness penalty; 

11. When j = z, stop. 
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ATEC identifies the batch size in order to improve the overall objective function.  All 

available jobs of the same family are batched together regardless if this degrades the total 

earliness and tardiness penalty.  This does not align with the tardiness objective of the scheduling 

problem because it causes jobs to be batched, which causes tardy (or near tardy) jobs to be even 

tardier because those jobs are waiting for other jobs in the batch to be processed before they can 

be processed.  To address this, the proposed ATEC heuristic is modified in order to improve how 

batches are formed. Batching Incompatible Families with Earliness Tardiness (BIFET) includes 

enhancements to ATEC. 

 Batching Incompatible Families with Earliness Tardiness Cost (BIFET) Heuristic 5.2.2

Before the steps of the Batching Incompatible Families with Earliness Tardiness Cost 

(BIFET) heuristic are presented, it is necessary to discuss the Family Batch Constraint 

parameter. 

5.2.2.1 The Family Batch Constraint (FBC) Parameter 

The FBC is a user-defined parameter.  It allows the user to expand or constrain the 

number of jobs of the same family to be batched together. Variable j is assigned to the job with 

the highest ATC value awaiting processing. If another waiting job’s ATC value of the same 

family falls within plus or minus j’s ATC value, then the job is batched with job j. 

The steps of the proposed BIFET heuristic are as follows. 
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1. Obtain a sequence for the available jobs awaiting processing at the batch machine using 

pure ATC heuristic (Vepsalainen and Morton 1987); 

2. Jobs are batched based on family and according to the FBC parameter; 

3. Then, the start times of the jobs are identified and set equal to s; 

4. Construct sequential batches by adding jobs in the same family to a batch until the 

maximum batch size is reached; 

5. When the maximum batch size is reached, then start a new batch with the remaining un-

batched jobs; 

6. Identify start time of each job i and set it equal to si; 

7. Create initial schedule and calculate completion time of each job i as Ci = piBf + si; 

8. Calculate earliness-tardiness penalties of each job i using 

                

               

 

9. Count number of early jobs and set z equal to number of early jobs; Set j = 1; 

10. Start with the job with the highest earliness penalty; Calculate earliness and adjust start 

time si by that amount si(new) = rai + di-Ci; Increment j; 

11. Recalculate the earliness/tardiness penalty for all batched jobs; 

a. If it is improved, keep the new start time; Go to Step 2; and 



49 

 

b. If it is not improved, set start time of the batch back to original start time; Go to 

Step 8, and identify the job with next highest earliness penalty. 

The results from the mathematical model in CHAPTER 4 using CPLEX are used as benchmark 

results for the heuristics in order to evaluate the quality of their performance.  The percent error 

(or deviation) from the CPLEX solution results is calculated using Eq. 5.1. 

       [
 ( )   (  )

 (  )
]      

(5.1) 

where  ( ) is the solution value of the heuristic tested, and (e*) denotes the value from 

CPLEX. 

 Computational Study 5.3

It is important to note that the value of the look-ahead parameter k for any ATC-based 

heuristic is somewhat problem-dependent. Past research suggests that the value of k should be set 

to a value from 1.5 to 4.5 (i.e., 1.5  k  4.5). For the purpose of this research investigation, the 

most appropriate k-value for the problem characteristics being considered is determined using 

what can be considered a worst-case scheduling scenario, i.e., when all jobs to be processed 

arrive simultaneously from multiple job families and with tight due dates. This creates a high 

competition environment at the workstation. Thirty randomly-generated test problems with these 

conditions are run and the ATC look-ahead parameter k is varied from 1.5 to 4.5 at 0.5 

increments, and the 



E i  Ti   objective value is recorded for each k-value and the k-value with 
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the best performance value is noted. The best performance results are achieved using a k-value of 

4.5. Therefore, the look-ahead parameter k is set to 4.5 for all ATC-based heuristics, including 

the two proposed heuristics. 

 Benchmark Heuristics 5.3.1

The assumptions for this phase of the research characterize a scheduling problem similar 

to that addressed by Uzsoy (1995). Therefore, the proposed solution heuristics are benchmarked 

with heuristics proposed by Uzsoy (1995), which are shown to exhibit remarkable performance 

for single batch machine scheduling problems with incompatible families. One primary 

difference between the simplified problem of Phase 1 and that of Uzsoy (1995) is the scheduling 

performance objective. While Uzsoy (1995) focuses on minimizing Cmax (or makespan), 

maximum lateness (Lmax), and weighted completion time iiCw , the scheduling performance 

objective in this phase is to minimize 



E i  Ti  .
 

Uzsoy (1995) proposes various scheduling heuristics such as Family Earliest Due Date 

(FEDD) and Critical Job (CRIT) in order to minimize maximum lateness (Lmax). Since the 

problem is similar to the one addressed in this research, FEDD and CRIT are used for 

comparison against the two proposed heuristics – ATEC and BIFET. In addition, pure ATC 

(which is described in CHAPTER 2) is used as a benchmark heuristic. As FEDD and CRIT are 

briefly described here, the reader should refer to Uzsoy (1995) for the details of the two heuristic 

approaches. 
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5.3.1.1 Family Earliest Due date (FEDD) 

FEDD begins when a machine becomes available and jobs are awaiting processing at the 

machine. When a machine becomes available and jobs are waiting, the job with the earliest due 

date is selected to be processed.  If there are other jobs in the queue of the same family as the job 

selected, those jobs can be batched and processed with that job. fBmax
 is the maximum number of 

jobs of family f that can be batched together. 

5.3.1.2 Critical Job (CRIT) 

CRIT begins when a machine becomes available and jobs are awaiting processing at the 

available machine. The following are the steps of the CRIT heuristic, which begin with a 

schedule generated using the FEDD heuristic. 

Step 1: Develop a schedule using the FEDD algorithm; 

Step 2: Identify the critical job c and the job with Lmax, Job j; 

 If there is no critical job, stop. 

 Otherwise, set rc = rj, and go to Step 1. 

A critical job is defined as a job in the same busy period with a due date greater that the 

job with Lmax 

All solutions generated from the benchmark heuristics are also compared to the solutions 

generated by CPLEX. 
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 Experimental Design 5.3.2

The proposed and benchmark heuristics are compared in an empirical study using a set of 

randomly-generated problem instances. The number of jobs in the study is set to three levels – 5, 

10, and 15.  A family is randomly assigned to a job using an empirical probability distribution 

when each integer value from 1 to F, where F is the number of families, is equally-likely to 

occur. Job due dates to the customers are calculated using Eq. 5.2. 

       (  ) (5.2) 

The multiplicative factor  is used to control the tightness or looseness of the due dates.  There 

are two cases that are considered in this computational study. Tight due dates are calculated 

setting  as a Uniform distribution U(0, 2).  Loose due dates are calculated setting  as a 

Uniform distribution U(0, 4). A similar approach to Geiger and Uzsoy (2008) that uses a desired 

level of average machine utilization is used to assign release time to the jobs. These job release 

times dictate the level of traffic intensity (or competition) at the machine resource. The desired 

average utilization of the batch machine is set to three levels – 50%, 95% and 100%. The 

experimental design is summarized in Table 5.1.  
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Table 5.1. Experimental design for phase 1: single batch workstation with sequence-independent 

setups and equal job weights. 

Factor Values 

Number of 

Levels 

Number of Jobs, n 5, 10, 15 3 

Number of Families, F 1, U(   ) 2 

Traffic Intensity 

 Low: 50% Machine Utilization 

 Medium: 75% Machine Utilization 

 High: 95% Machine Utilization 

 Highest: All Jobs Arrive Simultaneously 

4 

Due Date Tightness Tight: U(0,2), Loose: U (0,4) 2 

Min Batch size 1 1 

Max Batch Size 10 1 

Replications per Problem  10 

 Discussion of Computational Results 5.4

Solving the problem instances using IBM ILOG CPLEX is run to completion (i.e., 100% 

of the branch and bound nodes tested for problems with 5 and 10 jobs). The time for CPLEX to 

run to completion for 10 jobs ranged between 30 seconds (for the smaller problems) and five 

days (for the larger problems).  In order to effectively run all 240 problem instances for the 15-

job problem, run time is kept to reasonable levels. All heuristics are coded in C++ and 

Bloodshed Dev-C++ compiler. 

Table 5.2 through Table 5.4 summarizes the percent error results for the benchmark ATC, 

FEDD, CRIT heuristics and the proposed ATEC and BIFET heuristics for the various job sizes 

with tight due dates. Recall that the solutions produced by the heuristics are compared to those 

from CPLEX.  It can be seen that the BIFET outperforms FEDD and CRIT in almost every 

category, with the exception of when all jobs are released simultaneously.  As Table 5.2 through 
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Table 5.4 show, BIFET outperforms all other heuristics with respect to the deviation from the 

CPLEX solutions, regardless of traffic intensity when the due dates are tight. 

Table 5.2. Performance results for 5 jobs with tight due dates results. 

 

 

Table 5.3. Performance results for 10 jobs with tight due date results. 

 
 

  

Jobs arrive Simultaneously

1 family 5 families 1 family 5 families 1 family 5 families 1 family 5 families

Average 48.09% 11.40% 218.62% 24.28% 31.03% 68.92% 51.69% 219.38%

Max 50.35% 18.64% 428.95% 87.01% 115.79% 307.14% 155.56% 1250.00%

Average 48.09% 11.40% 218.62% 28.41% 31.03% 71.39% 51.69% 219.38%

Max 50.35% 18.64% 428.95% 87.01% 115.79% 307.14% 155.56% 1250.00%

Average 48.09% 7.45% 218.62% 24.28% 31.03% 68.92% 51.69% 219.38%

Max 50.35% 15.04% 428.95% 87.01% 115.79% 307.14% 155.56% 1250.00%

Average 48.09% 6.80% 0.00% 2.46% 0.64% 5.86% 0.00% 0.00%

Max 50.35% 15.04% 0.00% 10.00% 3.81% 39.28% 0.00% 0.00%

Average 11.47% 2.53% 0.00% 2.46% 0.64% 5.86% 0.00% 0.00%

Max 28.76% 5.73% 0.00% 10.00% 3.81% 39.29% 0.00% 0.00%

Low TrafficMedium TrafficHigh Traffic

Tight Due Dates

FE
D

D
C

R
IT

A
TC

A
TE

C
B

IF
ET

1 family 5 families 1 family 5 families 1 family 5 families 1 family 5 families

Average 60.45% 15.07% 11.28% 15.24% 40.49% 34.50% 61.68% 37.73%

Max 63.04% 36.36% 26.06% 54.32% 108.93% 88.19% 233.33% 91.19%

Average 60.45% 15.07% 22.54% 24.99% 40.49% 39.39% 61.68% 37.73%

Max 63.04% 36.36% 93.66% 57.92% 108.93% 88.19% 233.33% 91.19%

Average 60.45% 6.65% 11.28% 14.69% 40.49% 34.50% 61.68% 37.73%

Max 63.04% 17.26% 26.06% 54.32% 108.93% 88.19% 233.33% 91.19%

Average 60.45% 6.65% 3.02% 4.29% 1.03% 5.63% 0.00% 0.00%

Max 63.04% 17.26% 12.72% 11.63% 7.14% 22.92% 0.00% 0.00%

Average 11.41% 3.11% 3.02% 4.29% 1.03% 5.63% 0.00% 0.00%

Max 25.17% 6.41% 12.72% 11.63% 7.14% 22.92% 0.00% 0.00%

Low Traffic

B
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ET
A

TE
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A
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C
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D
D

Jobs arrive Simultaneously High Traffic Medium Traffic

Tight Due Dates
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Table 5.4. Performance results for 15 jobs with tight due dates. 

 

 

Table 5.5, Table 5.6 and Table 5.7 summarize the performance of the heuristics under loose due 

date conditions.  The proposed ATEC and BIFET heuristics outperform the benchmark heuristics 

in every category.  BIFET outperforms ATEC when there is high traffic intensity (i.e., jobs 

arrive simultaneously and high traffic). However, they perform the same when due dates are 

loose and traffic is low, which is intuitive since there is low competition among the jobs awaiting 

processing at the single batch workstation. The earliness portion of both heuristics helps improve 

the performance when jobs are early; however, it is difficult to effectively determine the best 

start time for the jobs that are early. For the high maximum error percentage in the low traffic, 

the majority of jobs tend to be early.  However, there are some problem instances in which 

adjusting the start time of the jobs with the difference between the due date and completion time 

is excessive and causes the start time of the other jobs to be delayed, and, therefore, results in a 

larger percent error from the CPLEX solutions. 

  

1 family 5 families 1 family 5 families 1 family 5 families 1 family 5 families

Average 43.28% 16.94% 10.79% 6.66% 43.69% 30.54% 55.66% 73.00%

Max 46.77% 635.71% 30.24% 32.87% 86.63% 90.42% 144.12% 195.88%

Average 43.28% 185.40% 16.07% 15.87% 43.69% 33.10% 55.66% 66.47%

Max 46.77% 635.71% 61.95% 47.88% 86.63% 90.42% 144.12% 154.64%

Average 67.99% 185.40% 10.79% 6.66% 43.69% 30.54% 55.66% 73.00%

Max 74.74% 635.71% 30.24% 32.87% 86.63% 90.42% 144.12% 195.88%

Average 72.07% 3.83% 3.70% 1.80% 1.26% 2.65% 0.00% 13.60%

Max 79.98% 16.81% 11.19% 5.84% 5.81% 6.59% 0.00% 32.99%

Average 7.80% 3.83% 3.70% 1.80% 1.26% 2.65% 0.00% 11.79%

Max 20.25% 16.81% 11.19% 5.84% 5.81% 6.59% 0.00% 32.99%

C
R

IT
A

TC
A

TE
C

B
IF

ET

Tight Due Dates

Jobs arrive 

Simultaneously High Traffic Medium Traffic Low Traffic
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D
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Table 5.5. Performance results for 5 jobs with loose due dates. 

 
 

Table 5.6. Performance results for 10 jobs with loose due dates. 

 
 

Table 5.7. Performance results for 15 jobs with loose due dates. 

 

Jobs arrive Simultaneously

1 family 5 families 1 family 5 families 1 family 5 families 1 family 5 families

Average 87.82% 20.77% 186.24% 106.49% 187.28% 119.42% 218.62% 192.61%

Max 144.68% 54.60% 435.48% 326.09% 605.41% 330.43% 428.95% 480.77%

Average 87.82% 20.77% 151.23% 100.27% 187.28% 120.53% 218.62% 193.99%

Max 144.68% 54.60% 435.48% 326.09% 605.41% 330.43% 428.95% 480.77%

Average 87.82% 18.19% 186.24% 106.49% 187.28% 119.42% 218.62% 169.51%

Max 144.68% 54.60% 435.48% 326.09% 605.41% 330.43% 428.95% 480.77%

Average 87.82% 10.68% 32.02% 12.02% 17.46% 10.68% 0.00% 3.43%

Max 144.68% 27.33% 89.74% 33.33% 42.31% 19.86% 0.00% 32.69%

Average 7.09% 5.35% 23.24% 10.76% 15.03% 8.25% 0.00% 3.43%

Max 36.17% 13.19% 74.36% 33.33% 37.97% 19.86% 0.00% 32.69%

High Traffic Medium Traffic Low Traffic

FE
D

D
C

R
IT

A
TC

A
TE

C
B

IF
ET

Loose Due Dates

1 family 5 families 1 family 5 families 1 family 5 families 1 family 5 families

Average 71.01% 18.05% 127.88% 65.32% 160.80% 126.88% 345.96% 328.75%

Max 88.78% 38.36% 242.00% 144.44% 347.17% 314.96% 1295.00% 994.23%

Average 71.01% 85.22% 108.97% 69.62% 160.80% 128.53% 345.96% 328.75%

Max 88.78% 994.23% 186.62% 120.29% 347.17% 314.96% 1295.00% 994.23%

Average 71.01% 13.89% 127.88% 65.32% 160.80% 126.88% 345.96% 328.75%

Max 88.78% 38.36% 242.00% 144.44% 347.17% 314.96% 1295.00% 994.23%

Average 71.01% 13.58% 35.17% 14.11% 27.81% 17.70% 1.02% 9.23%

Max 88.78% 38.36% 90.00% 38.58% 48.60% 43.56% 7.63% 44.23%

Average 5.05% 5.96% 26.97% 13.67% 26.76% 17.50% 1.02% 9.23%

Max 19.13% 14.76% 66.00% 38.58% 48.60% 43.56% 7.63% 44.23%B
IF

ET
A

TE
C

A
TC

C
R

IT
FE

D
D

Loose Due Dates

Jobs arrive Simultaneously High Traffic Medium Traffic Low Traffic

1 family 5 families 1 family 5 families 1 family 5 families 1 family 5 families

Average 43.27% 18.59% 95.02% 73.91% 189.75% 133.67% 235.60% 352.57%

Max 46.77% 25.75% 194.04% 195.88% 397.60% 306.90% 446.81% 1563.79%

Average 43.27% 18.59% 86.31% 67.21% 189.75% 132.14% 235.60% 352.57%

Max 46.77% 25.75% 194.04% 154.64% 397.60% 306.90% 446.81% 1563.79%

Average 65.30% 13.58% 95.02% 73.91% 189.75% 133.67% 235.60% 352.57%

Max 69.01% 24.98% 194.04% 195.88% 397.60% 306.90% 446.81% 1563.79%

Average 68.73% 13.58% 24.29% 14.19% 37.23% 21.86% 2.29% 11.74%

Max 72.61% 24.98% 39.72% 32.99% 62.42% 58.62% 10.34% 46.55%

Average 7.79% 5.82% 20.33% 12.30% 37.72% 19.79% 2.29% 11.74%

Max 20.25% 11.13% 39.57% 32.99% 62.42% 53.88% 10.34% 46.55%

Jobs arrive 

Simultaneously

B
IF

ET

Medium Traffic Low Traffic
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High Traffic
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Table 5.8 through Table 5.10 show how the algorithms perform when all the jobs arrive 

simultaneously. In this scenario, BIFET outperforms all other heuristics, including ATEC.  All 

the heuristics perform better when there are multiple family types, which leads to the suspicion 

that having smaller batch sizes, might improve the performance of the benchmark heuristics.  

BIFET allows the use to control the number of jobs to be batched together by selecting an 

appropriate FBC parameter. However, this needs to be verified because Table 5.10 shows a large 

amount of variability. 

Table 5.8. Performance results for 5 jobs that arrive simultaneously. 

 

  

1 family 5 families 1 family 5 families

Average 48.09% 11.40% 87.82% 20.77%

Max 50.35% 18.64% 144.68% 54.60%

Average 48.09% 11.40% 87.82% 20.77%

Max 50.35% 18.64% 144.68% 54.60%

Average 48.09% 7.45% 87.82% 18.19%

Max 50.35% 15.04% 144.68% 54.60%

Average 48.09% 6.80% 87.82% 10.68%

Max 50.35% 15.04% 144.68% 27.33%

Average 11.47% 2.53% 7.09% 5.35%

Max 28.76% 5.73% 36.17% 13.19%B
IF

ET

Tight Due Dates Loose Due datesJobs Arrive 

Simultaneously
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D
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R
IT

A
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Table 5.9. Performance results for 10 jobs that arrive simultaneously. 

 

 

Table 5.10. Performance results for 15 jobs that arrive simultaneously. 

 

 

1 family 5 families 1 family 5 families

Average 60.45% 15.07% 71.01% 18.05%

Max 63.04% 36.36% 88.78% 38.36%

Average 60.45% 15.07% 71.01% 85.22%

Max 63.04% 36.36% 88.78% 994.23%

Average 60.45% 6.65% 71.01% 13.89%

Max 63.04% 17.26% 88.78% 38.36%

Average 60.45% 6.65% 71.01% 13.58%

Max 63.04% 17.26% 88.78% 38.36%

Average 11.41% 3.11% 5.05% 5.96%

Max 25.17% 6.41% 19.13% 14.76%B
IF

ET
A

TE
C

A
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C
R

IT
FE

D
D

Simultaneously

Tight Due Dates Loose Due dates

1 family 5 families 1 family 5 families

Average 43.28% 16.94% 43.27% 18.59%

Max 46.77% 635.71% 46.77% 25.75%

Average 43.28% 185.40% 43.27% 18.59%

Max 46.77% 635.71% 46.77% 25.75%

Average 67.99% 185.40% 65.30% 13.58%

Max 74.74% 635.71% 69.01% 24.98%

Average 72.07% 3.83% 68.73% 13.58%

Max 79.98% 16.81% 72.61% 24.98%

Average 7.80% 3.83% 7.79% 5.82%

Max 20.25% 16.81% 20.25% 11.13%
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Table 5.11 through Table 5.13 show how the algorithms perform at high traffic intensity. 

The ATEC and BIFET proposed heuristics, again, o outperform the benchmark heuristics under 

the varying scheduling conditions. 

Table 5.11. Performance results for 5 jobs with high traffic intensity. 

 

 

Table 5.12. Performance results for 10 jobs with high traffic intensity. 

 

Tight Due Dates Loose Due Dates

1 family 5 families 1 family 5 families

Average 218.62% 24.28% 186.24% 106.49%

Max 428.95% 87.01% 435.48% 326.09%

Average 218.62% 28.41% 151.23% 100.27%

Max 428.95% 87.01% 435.48% 326.09%

Average 218.62% 24.28% 186.24% 106.49%

Max 428.95% 87.01% 435.48% 326.09%

Average 0.00% 2.46% 32.02% 12.02%

Max 0.00% 10.00% 89.74% 33.33%

Average 0.00% 2.46% 23.24% 10.76%

Max 0.00% 10.00% 74.36% 33.33%
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High Traffic
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1 family 5 families 1 family 5 families

Average 11.28% 15.24% 127.88% 65.32%

Max 26.06% 54.32% 242.00% 144.44%

Average 22.54% 24.99% 108.97% 69.62%

Max 93.66% 57.92% 186.62% 120.29%

Average 11.28% 14.69% 127.88% 65.32%

Max 26.06% 54.32% 242.00% 144.44%

Average 3.02% 4.29% 35.17% 14.11%

Max 12.72% 11.63% 90.00% 38.58%

Average 3.02% 4.29% 26.97% 13.67%

Max 12.72% 11.63% 66.00% 38.58%

Tight Due Dates Loose Due dates

High Traffic
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Table 5.13. Performance results for 15 jobs with high traffic intensity. 

 

 

Table 5.14 through Table 5.16 show the performance for the 5-, 10-, and 15-job problem 

instances with medium job traffic intensity.  BIFET and ATEC continue to outperform the other 

heuristics, but especially moreso when the due dates are tight. This is due to the fact that BIFET 

and ATEC can reschedule jobs that will be too early and allow for jobs that tighter due dates to 

be scheduled prior to those that have more slack. 

  

1 family 5 families 1 family 5 families

Average 10.79% 6.66% 95.02% 73.91%

Max 30.24% 32.87% 194.04% 195.88%

Average 16.07% 15.87% 86.31% 67.21%

Max 61.95% 47.88% 194.04% 154.64%

Average 10.79% 6.66% 95.02% 73.91%

Max 30.24% 32.87% 194.04% 195.88%

Average 3.70% 1.80% 24.29% 14.19%

Max 11.19% 5.84% 39.72% 32.99%

Average 3.70% 1.80% 20.33% 12.30%

Max 11.19% 5.84% 39.57% 32.99%
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Table 5.14. Performance results for 5 jobs with medium traffic intensity. 

 

 

Table 5.15. Performance results for 10 jobs with medium traffic intensity. 

 

  

1 family 5 families 1 family 5 families

Average 31.03% 68.92% 187.28% 119.42%

Max 115.79% 307.14% 605.41% 330.43%

Average 31.03% 71.39% 187.28% 120.53%

Max 115.79% 307.14% 605.41% 330.43%

Average 31.03% 68.92% 187.28% 119.42%

Max 115.79% 307.14% 605.41% 330.43%

Average 0.64% 5.86% 17.46% 10.68%

Max 3.81% 39.28% 42.31% 19.86%

Average 0.64% 5.86% 15.03% 8.25%

Max 3.81% 39.29% 37.97% 19.86%

Tight Due Dates Loose Due dates
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1 family 5 families 1 family 5 families

Average 40.49% 34.50% 160.80% 126.88%

Max 108.93% 88.19% 347.17% 314.96%

Average 40.49% 39.39% 160.80% 128.53%

Max 108.93% 88.19% 347.17% 314.96%

Average 40.49% 34.50% 160.80% 126.88%

Max 108.93% 88.19% 347.17% 314.96%

Average 1.03% 5.63% 27.81% 17.70%

Max 7.14% 22.92% 48.60% 43.56%

Average 1.03% 5.63% 26.76% 17.50%

Max 7.14% 22.92% 48.60% 43.56%B
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D

Medium Traffic

Tight Due Dates Loose Due dates
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Table 5.16. Performance results for 15 jobs with medium traffic intensity. 

 

 

Table 5.17 through Table 5.19 show how the proposed heuristics perform under low traffic 

intensity conditions.  Both BIFET and ATEC outperform the other benchmark heuristics when 

there is low traffic.  They are especially effective when due dates are tight. 

Table 5.17. Performance results for 5 jobs with low traffic intensity. 

 

 

1 family 5 families 1 family 5 families

Average 43.69% 30.54% 189.75% 133.67%

Max 86.63% 90.42% 397.60% 306.90%

Average 43.69% 33.10% 189.75% 132.14%

Max 86.63% 90.42% 397.60% 306.90%

Average 43.69% 30.54% 189.75% 133.67%

Max 86.63% 90.42% 397.60% 306.90%

Average 1.26% 2.65% 37.23% 21.86%

Max 5.81% 6.59% 62.42% 58.62%

Average 1.26% 2.65% 37.72% 19.79%

Max 5.81% 6.59% 62.42% 53.88%
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Tight Due Dates Loose Due dates

Tight Due Dates Loose Due dates

1 family 5 families 1 family 5 families

Average 51.69% 219.38% 218.62% 192.61%

Max 155.56% 1250.00% 428.95% 480.77%

Average 51.69% 219.38% 218.62% 193.99%

Max 155.56% 1250.00% 428.95% 480.77%

Average 51.69% 219.38% 218.62% 169.51%

Max 155.56% 1250.00% 428.95% 480.77%

Average 0.00% 0.00% 0.00% 3.43%

Max 0.00% 0.00% 0.00% 32.69%

Average 0.00% 0.00% 0.00% 3.43%

Max 0.00% 0.00% 0.00% 32.69%
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Table 5.18. Performance results for 10 jobs with low traffic intensity. 

 
 

Table 5.19. Performance results for 15 jobs with low traffic intensity. 

 

 

  

1 family 5 families 1 family 5 families

Average 61.68% 37.73% 345.96% 328.75%

Max 233.33% 91.19% 1295.00% 994.23%

Average 61.68% 37.73% 345.96% 328.75%

Max 233.33% 91.19% 1295.00% 994.23%

Average 61.68% 37.73% 345.96% 328.75%

Max 233.33% 91.19% 1295.00% 994.23%

Average 0.00% 0.00% 1.02% 9.23%

Max 0.00% 0.00% 7.63% 44.23%

Average 0.00% 0.00% 1.02% 9.23%

Max 0.00% 0.00% 7.63% 44.23%B
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Low Traffic

1 family 5 families 1 family 5 families

Average 55.66% 73.00% 235.60% 352.57%

Max 144.12% 195.88% 446.81% 1563.79%

Average 55.66% 66.47% 235.60% 352.57%

Max 144.12% 154.64% 446.81% 1563.79%

Average 55.66% 73.00% 235.60% 352.57%

Max 144.12% 195.88% 446.81% 1563.79%

Average 0.00% 13.60% 2.29% 11.74%

Max 0.00% 32.99% 10.34% 46.55%

Average 0.00% 11.79% 2.29% 11.74%

Max 0.00% 32.99% 10.34% 46.55%B
IF

ET

Loose Due dates
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The performance of the heuristics can be further analyzed using a confidence interval 

estimation approach to assess if the performance deltas of the proposed heuristics are 

statistically-significant. The confidence intervals of each scenario can be seen in Figure 5.1 

through Figure 5.10. The figures show that the ATEC and BIFET proposed heuristics perform 

consistently better statistically than the benchmark heuristics. It is also evident that BIFET 

performs better than ATEC in some conditions such as when all jobs arrive simultaneously, i.e., 

during the highest level of traffic intensity, or job competition. 
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Figure 5.1. 95% confidence intervals on the performance results for 1 family and 5 families, tight 

due dates, and high traffic intensity. 



66 

 

 

Figure 5.2. 95% confidence intervals on the performance results for 1 family and 5 families, tight 

due dates, and medium traffic intensity. 
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Figure 5.3. 95% confidence intervals on the performance results for 1 family and 5 families, tight 

due dates, low traffic intensity. 
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Figure 5.4. 95% confidence intervals on the performance results for 1 family and 5 families, 

loose due dates, and low traffic intensity. 
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Figure 5.5. 95% confidence intervals on the performance results for 1 family and 5 families, tight 

due dates, and low traffic intensity. 
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Figure 5.6. 95% confidence intervals on the performance results for 1 family and 5 families, 

loose due dates, and high traffic intensity. 
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Figure 5.7. 95% confidence intervals on the performance results for 1 family and 5 families, tight 

due dates, and all jobs arriving simultaneously. 
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Figure 5.8. 95% confidence intervals on the performance results for 1 family and 5 families, 

loose due dates, and all jobs arriving simultaneously. 
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Figure 5.9. 95% confidence intervals on the performance results for 1 family and 5 families, tight 

due dates, and medium traffic intensity. 
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Figure 5.10. 95% confidence intervals on the performance results for 1 family and 5 families, 

loose due dates, and medium traffic intensity. 
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The ATEC and BIFET heuristics both delay the start time of jobs in order to prevent jobs 

from finishing unnecessarily early.  This strategy has been very effective in minimizing overall 

earliness and tardiness.  It also acts as an order review and release (ORR) strategy, in that, it 

delays the release time to the workstation. However, the general heuristics have several cases 

where the objective function can benefit from further improvement. ORR strategies have been 

found to be effective when integrated with priority dispatching rules. Therefore, blending these 

strategies with the benchmark heuristics may further improve the overall performance of the 

heuristics and therefore provide more competitive strategies against the proposed heuristics, 

ATEC and BIFET. 

Another area that is explored is relaxing the constraint of equally-weighted tardiness and 

earliness penalties. Relaxing the constraint of equally-weighted tardiness and earliness penalties 

closer aligns the general problem described in Section 1.2. In addition, relaxation of the 

maximum batch size of ten is an interesting problem characteristic to explore. Removing the 

maximum batch size of 10 may reveal limitations in the performance of the heuristics at different 

batch sizes. 
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 : CHAPTER 6

THE SINGLE BATCH WORKSTATION WITH UNEQUALLY-WEIGHTED 

PENALTIES AND VARYING BATCH SIZES AND INCOMPATIBLE 

FAMILIES AND SEQUENCE-INDEPENDENT SETUPS 

 Introduction 6.1

An insight gained from Phase 1 is that the size of the batch impacts the algorithm’s 

performance. If several jobs are batched together, it causes jobs to be either very tardy or very 

early.  Therefore, it is important to understand how the heuristics perform if the maximum batch 

size is varied. Another important aspect of the general problem is the weights placed on the 

earliness and tardiness measures.  It is assumed in Phase 1 that the job are equally-weighted. In 

summary, process batch sizes, unequal tardiness and earliness penalties, and ORR strategies are 

investigated in this chapter. 

 Phase 2: Single Batch Workstation with Sequence-Independent Setups and Unequal Job 6.2

Weights 

In order to better assess the robustness of the proposed heuristics as well as the 

benchmark heuristics, they must be evaluated in varying production scheduling conditions 

including varying batch sizes and unequal earliness and tardiness penalties. 
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 Experimental Design 6.2.1

Table 6.1 shows the experimental design which now includes unequally-weighted 

earliness and tardiness penalties as well as additional levels for the maximum batch size. 

Table 6.1. Experimental design with emphasis on unequal job weights and varying batch sizes. 

Factor Values Number of Values 

Job Weight, 1, 2 

1 = Earliness = 1, 2 = Tardiness=1 

1 = Earliness = 10, 2 = Tardiness=1 

1 = Earliness=1, 2 = Tardiness=10 

3 

Number of Jobs, n 5, 10, 15 3 

Number of Families, F 1, U(1, 5) 2 

Traffic Intensity 

 Low: 50% Machine Utilization 

 Medium: 75% Machine Utilization 

 High: 95% Machine Utilization 

 Highest: All Jobs Arrive Simultaneously 

4 

Due Date Tightness Tight: U (0, 2), Loose: U (0, 4) 2 

Max Batch Size 1, 3, 10 3 

Replications per Problem 

 

10 

Total Number of Problem Instances  4,320 

 Performance Results of Varying Maximum Batch Sizes 6.2.2

In Phase 1, the maximum batch size is equal to 10. A feature of the BIFET heuristic 

which helps improve the overall early tardiness objective is that it constrains the maximum 

number of jobs in a batch.  When all the jobs are batched according to maximum batch size, such 

as in FEDD and in CRIT, the heuristics do not consider and schedule the jobs in order to 

minimize both their earliness and tardiness measures.  Instead all available jobs with the same 

family type are batched together, which, in turn, causes all those jobs in the batch either to be 

early or late.  As shown in Table 6.1, there are two new levels added to the experimental design 

for maximum batch sizes.  The scheduling scenarios are evaluated with a maximum batch size of 
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one and of three and then are compared to those same scenarios with a maximum batch size of 

10. 

Table 6.2 through Table 6.4 summarize the percent error between the different maximum 

batch sizes. For example, the percent error of pure ATC is shown with maximum batch size of 

10 (MB10) minus the maximum batch size of 3 (MB3).  If ATC has a higher percent error from 

the CPLEX solution, then the difference between MB10 and MB3 is a positive percent 

difference.  If it is negative, then MB3 has a higher percent error, which means that the heuristic 

performs worse at a maximum batch size of 3. 

As shown in Table 6.2, when batch sizes of ATC or ATEC vary, there is little impact on 

the overall performance of the heuristic in terms of percent error from the CPLEX optimal 

solutions, except in the cases when all jobs arrive simultaneously. There are also some 

differences when the traffic is high or medium and the due dates are loose. This difference can be 

seen when going from a maximum batch size of 10 to a maximum batch size of 1 or from a 

maximum batch size of 3 to a maximum batch size of 1.  In these cases, the maximum batch size 

of 1 seems to perform better.  This can be attributed to the fact that with a larger maximum batch 

size and loose due dates, the jobs available are processed together and cause the jobs to be early. 

This is shown in Table 6.4, where earliness is more important than tardiness. The percent 

changes are much higher than when the penalties are equally-weighted, or if tardiness is 

weighted higher than earliness. 

  



79 

 

Table 6.2. Comparison of ATC and ATEC performance of percent error with varying batch sizes 

and equal earliness and tardiness weights. 

 
 

Table 6.3. Comparison of ATC and BIFET performance of percent error with varying batch sizes 

and unequal earliness and tardiness weights where earliness is more important than tardiness. 

 
  

<TI,DT,F> AVE STD DEV AVE STD DEV AVE STD DEV <TI,DT,F> AVE STD DEV AVE STD DEV AVE STD DEV

<S, T, 1> 56.29% 1.49% 60.45% 1.60% 4.17% 0.11% <S, T, 1> 56.29% 1.49% 60.45% 1.60% 4.17% 0.11%

<S, T, 5> 1.96% 3.73% 3.97% 4.57% 2.01% 1.85% <S, T, 5> 1.96% 3.73% 3.97% 4.57% 2.01% 1.85%

<H, T, 1> 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% <H, T, 1> 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

<H, T, 5> 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% <H, T, 5> 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

<M, T, 1> 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% <M, T, 1> 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

<M, T, 5> 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% <M, T, 5> 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

<LW, T, 1> 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% <LW, T, 1> 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

<LW, T, 5> 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% <LW, T, 5> 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

<S, L, 1> 65.38% 5.97% 71.01% 9.47% 5.63% 3.95% <S, L, 1> 66.26% 6.07% 71.01% 9.47% 4.75% 4.28%

<S, L, 5> 2.91% 4.65% 8.79% 9.00% 5.88% 6.87% <S, L, 5> 3.08% 4.49% 8.49% 8.94% 5.41% 6.44%

<H, L, 1> 0.00% 0.00% 20.41% 16.73% 20.41% 16.73% <H, L, 1> 0.00% 0.00% 12.40% 25.08% 12.40% 25.08%

<H, L, 5> 0.00% 0.00% 4.66% 9.51% 4.66% 9.51% <H, L, 5> 0.00% 0.00% 3.46% 7.94% 3.46% 7.94%

<M, L, 1> 0.00% 0.00% 28.36% 28.24% 28.36% 28.24% <M, L, 1> 0.00% 0.00% 16.15% 12.40% 16.15% 12.40%

<M, L, 5> 0.00% 0.00% 2.26% 5.39% 2.26% 5.39% <M, L, 5> 0.00% 0.00% 1.52% 3.45% 1.52% 3.45%

<LW, L, 1> 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% <LW, L, 1> 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

<LW, L, 5> 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% <LW, L, 5> 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

MB10-MB1 MB3-MB1 MB10-MB3 MB10-MB1 MB3-MB1

10 Jobs 10 Jobs

Equal 

Penalties

ATC Equal 

Penalties

ATEC

MB10-MB3

<TI,DT,F> AVE STD DEV AVE STD DEV AVE STD DEV <TI,DT,F> AVE STD DEV AVE STD DEV AVE STD DEV

<S, T, 1> 56.29% 1.49% 60.45% 1.60% 4.17% 0.11% <S, T, 1> 56.29% 1.49% 60.45% 1.60% 4.17% 0.11%

<S, T, 5> 1.39% 3.19% 3.47% 4.05% 2.08% 1.82% <S, T, 5> 1.39% 3.19% 3.47% 4.05% 2.08% 1.82%

<H, T, 1> 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% <H, T, 1> 0.00% 0.00% 0.39% 1.24% 0.39% 1.24%

<H, T, 5> 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% <H, T, 5> 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

<M, T, 1> 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% <M, T, 1> 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

<M, T, 5> 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% <M, T, 5> 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

<LW, T, 1> 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% <LW, T, 1> 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

<LW, T, 5> 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% <LW, T, 5> 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

<S, L, 1> 57.96% 7.95% 71.72% 8.16% 13.76% 13.75% <S, L, 1> 62.91% 8.54% 71.72% 8.16% 8.82% 12.87%

<S, L, 5> 3.11% 4.72% 12.00% 13.85% 8.90% 13.50% <S, L, 5> 3.27% 4.56% 8.62% 9.61% 5.35% 6.82%

<H, L, 1> 0.00% 0.00% 351.77% 328.21% 351.77% 328.21% <H, L, 1> 0.00% 0.00% 74.62% 170.21% 74.62% 170.21%

<H, L, 5> 0.00% 0.00% 29.46% 72.22% 29.46% 72.22% <H, L, 5> -11.52% 39.18% -7.10% 22.73% 4.42% 21.97%

<M, L, 1> 0.00% 0.00% 299.86% 400.33% 299.86% 400.33% <M, L, 1> 0.00% 0.00% 35.91% 34.60% 35.91% 34.60%

<M, L, 5> 0.00% 0.00% 71.99% 165.99% 71.99% 165.99% <M, L, 5> 0.00% 0.00% 5.18% 19.44% 5.18% 19.44%

<LW, L, 1> 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% <LW, L, 1> 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

<LW, L, 5> 0.00% 0.00% 1.96% 6.20% 1.96% 6.20% <LW, L, 5> 0.00% 0.00% 0.06% 0.20% 0.06% 0.20%

MB3-MB1 MB10-MB3 MB10-MB1 MB3-MB1

Early=10/

Tardy=1

ATC Early=10/

Tardy=1

ATEC

MB10-MB3 MB10-MB1
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Table 6.4. Comparison of ATC and ATEC performance of percent error with varying batch sizes 

and unequal earliness and tardiness weights where tardiness is more important than earliness. 

 
 

Figure 6.1 to Figure 6.3 show a closer look at the effects of batch sizes on the 

performance of the heuristics in percent error deviation from the optimal solution.  As in the case 

when the jobs have tight due dates and arrive simultaneously, it is apparent from Figure 6.1 that 

the maximum batch size affects the overall performance of the heuristic.  As the batch size 

decreases, the percent error as well as the variation of the percent error decreases. BIFET 

continuously performs better regardless of batch size in this scenario as well. Figure 6.1 shows 

the percent error steadily decreasing as the maximum batch size is reduced from 10 to 3 to 1. 

This is because all jobs are available at once and, therefore, FEDD, CRIT, and ATC batch all 

available jobs up to the maximum batch size. This causes many of the jobs to be either early or 

late. MB10 denotes a maximum batch size of 10, MB3 represents a maximum batch size of 3, 

<TI,DT,F> AVE STD DEV AVE STD DEV AVE STD DEV <TI,DT,F> AVE STD DEV AVE STD DEV AVE STD DEV

<S, T, 1> 56.29% 1.49% 60.45% 1.60% 4.17% 0.11% <S, T, 1> 56.29% 1.49% 60.45% 1.60% 4.17% 0.11%

<S, T, 5> 1.39% 3.19% 3.47% 4.05% 2.08% 1.82% <S, T, 5> 1.39% 3.19% 3.47% 4.05% 2.08% 1.82%

<H, T, 1> 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% <H, T, 1> 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

<H, T, 5> 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% <H, T, 5> 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

<M, T, 1> 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% <M, T, 1> 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

<M, T, 5> 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% <M, T, 5> 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

<LW, T, 1> 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% <LW, T, 1> 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

<LW, T, 5> 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% <LW, T, 5> 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

<S, L, 1> 65.95% 6.45% 71.72% 8.16% 5.77% 1.88% <S, L, 1> 66.44% 6.67% 71.72% 8.16% 5.28% 1.75%

<S, L, 5> 2.95% 4.53% 8.63% 8.73% 5.68% 6.60% <S, L, 5> 3.11% 4.38% 8.63% 8.73% 5.53% 6.48%

<H, L, 1> 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% <H, L, 1> 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

<H, L, 5> -0.78% 2.46% 0.69% 4.13% 1.47% 2.91% <H, L, 5> -0.75% 2.37% 0.70% 4.04% 1.45% 2.88%

<M, L, 1> 0.00% 0.00% 0.32% 1.00% 0.32% 1.00% <M, L, 1> 0.00% 0.00% 0.28% 0.89% 0.28% 0.89%

<M, L, 5> 0.00% 0.00% 0.04% 0.11% 0.04% 0.11% <M, L, 5> 0.00% 0.00% 0.04% 0.11% 0.04% 0.11%

<LW, L, 1> 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% <LW, L, 1> 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

<LW, L, 5> 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% <LW, L, 5> 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

MB10-MB3 MB10-MB1 MB3-MB1

Early=1 

/Tardy=10

ATC Early=1 

/Tardy=10

ATEC

MB10-MB3 MB10-MB1 MB3-MB1
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and MB1 represents a maximum batch size of 1. The graph depicting these results for one family 

can be found in Appendix A. 

 

Figure 6.1. 95% confidence interval on the performance results with varying batch sizes for tight 

due dates, all jobs arrive simultaneously, 5 families, and earliness penalty = 10 and tardiness 

penalty = 1. 

 

 

Figure 6.2. 95% confidence interval on the performance results with varying batch sizes for tight 

due dates, all jobs arrive simultaneously, 5 families, and earliness penalty = 1 and tardiness 

penalty = 10. 
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Problem instances where jobs arrive at high, medium and low traffic intensity with tight 

due dates show that maximum batch size does not impact the performance of the heuristic.  This 

is because, if jobs arrive at varying times, the batch might not wait for a maximum batch size to 

be reached in order to be processed and therefore having a maximum batch size of 10 versus a 

maximum batch size of 3 does not impact the results since there may not be enough jobs waiting 

in the queue to meet the maximum batch size. 

 

Figure 6.3. 95% confidence interval on the performance results with varying batch sizes for tight 

due dates, medium traffic intensity, 5 families, earliness penalty = 10 and tardiness penalty = 1. 
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ATEC and BIFET outperform all the other common heuristics in terms of overall percent 

error and variation.  The graphs showing the results for high, and low traffic, as well as family 

size of one can all be found in appendix A.  These graphs are similar to that of Figure 6.3. 

 Unequal Weights 6.2.3

In order to fully understand the robustness of the proposed algorithms, it is important to 

see their performance when one of the weights of earliness and tardiness is heavier than the 

other. 

Table 6.2 shows the comparison of percent error between when job penalties are 

weighted differently.  The letter ‘A’ is for both penalties being equally weighted.  ‘E’ is when 

earliness is more heavily weighted and ‘T’ is when tardiness is more heavily weighted (also see 

Table 6.1 for the meaning of the acronyms).  For example, one column shows the percent error 

difference of FEDD with equal weights (A) minus tardiness being heavily weighted (T).  If the 

heuristic FEDD has a higher percent error off from the optimal solution in A, then the difference 

between A and T is a positive % difference and tardiness performs better, meaning there is less 

percent error in tardiness from the optimal solution.  If it is negative, then T has a higher percent 

error, which means that the heuristic performs worse when tardiness is more heavily weighted. 

Table 6.5, shows the impact of varying weights, when a batch size of 10 is held constant.  

It can be seen from this table that the performance of the heuristics, for the most part, relies 

heavily upon how the jobs are weighted, especially in the cases when the due dates are loose or 

when traffic intensity is low.  FEDD’s percent error when earliness is more heavily weighted is 
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very high and this is due to the fact that FEDD does not consider earliness when scheduling jobs.  

BIFET seems to perform better when the penalties are equally weighted as can be seen in Figure 

6.5 for 5 jobs. 

Table 6.5. Comparison of FEDD and BIFET performance of percent error when varying 

penalties at a maximum batch size of 10. 

 

 

Figure 6.5 and Figure 6.4 show how varying the earliness-tardiness penalties affect the 

performance of the heuristics. 

<TI,DT,F> AVE STD DEV AVE STD DEV AVE STD DEV <TI,DT,F> AVE STD DEV AVE STD DEV AVE STD DEV

<S, T, 1> 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% <S, T, 1> 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

<S, T, 5> 0.55% 1.22% 0.55% 1.22% 0.00% 0.00% <S, T, 5> -2.41% 2.82% -2.41% 2.82% 0.00% 0.00%

<H, T, 1> 10.30% 7.28% -244.50% 125.54% -254.80% 131.77% <H, T, 1> 2.15% 3.91% -13.39% 19.91% -15.53% 21.86%

<H, T, 5> 11.95% 12.05% -211.44% 187.20% -223.39% 198.70% <H, T, 5> 2.12% 4.59% -15.58% 21.55% -17.70% 22.17%

<M, T, 1> 36.05% 30.98% -444.09% 335.91% -480.14% 366.38% <M, T, 1> 0.08% 1.60% -6.11% 20.45% -6.19% 21.99%

<M, T, 5> 30.43% 28.40% -440.78% 332.06% -471.21% 359.52% <M, T, 5> 2.71% 7.36% -22.51% 27.35% -25.22% 29.11%

<LW, T, 1> 55.51% 59.94% -555.08% 599.43% -610.59% 659.37% <LW, T, 1> 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

<LW, T, 5> 33.90% 19.80% -351.63% 201.58% -385.53% 221.32% <LW, T, 5> -0.51% 0.71% 0.00% 0.00% 0.51% 0.71%

<S, L, 1> 0.33% 8.24% 0.33% 8.24% 0.00% 0.00% <S, L, 1> -0.09% 5.13% -0.09% 5.13% 0.00% 0.00%

<S, L, 5> -0.11% 0.70% -1.26% 4.55% -1.16% 5.12% <S, L, 5> -3.43% 2.51% -3.07% 2.76% 0.36% 0.99%

<H, L, 1> 117.77% 60.20% -1378.31% 527.00% -1496.08% 578.79% <H, L, 1> 19.79% 13.23% -58.69% 93.19% -78.48% 84.12%

<H, L, 5> 52.23% 36.79% -781.48% 319.18% -833.71% 350.18% <H, L, 5> 6.76% 13.03% -10.96% 25.66% -17.72% 29.40%

<M, L, 1> 144.05% 73.22% -1639.71% 737.09% -1783.76% 808.57% <M, L, 1> 11.30% 19.69% -30.32% 51.07% -41.62% 53.10%

<M, L, 5> 107.03% 67.78% -1406.22% 703.75% -1513.25% 769.99% <M, L, 5> 4.50% 14.31% -59.09% 70.72% -63.60% 71.06%

<LW, L, 1> 302.41% 326.91% -3356.44% 3243.97% -3658.85% 3570.27% <LW, L, 1> -7.42% 8.30% -8.71% 21.89% -1.30% 26.44%

<LW, L, 5> 280.01% 224.08% -3155.28% 2320.01% -3435.30% 2542.49% <LW, L, 5> -12.75% 19.32% -57.20% 130.43% -44.45% 144.65%

10 Jobs

Max 

Batch 10

BIFET

A-T A-E T-E

10 Jobs

Max 

Batch 10

FEDD

A-T A-E T-E
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Figure 6.4. 95% confidence interval on the performance results for tight due dates, low traffic 

intensity, 5 families, and maximum batch size 10. 

 

Figure 6.5. 95% confidence interval on the performance results for tight due dates, jobs arrive 

simultaneously, 1 family, and maximum batch 3. 
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Figure 6.6. 95% confidence interval on the performance results for Max batch size 1, tight due 

dates, medium traffic intensity, and 1 family. 

 

There is large variation in the performance of the benchmark heuristics and the proposed BIFET 

and ATEC outperform these heuristics in the majority of the scenarios.  Again, this is due to the 

fact that ATEC and BIFET consider earliness and readjust the release time to the machine to 

minimize earliness and to ensure that the bottleneck is not being overrun.  This, in turn, acts an 

ORR strategy in which it delays the release time in order to minimize work-in-process inventory, 

which can lead to machine congestion and tardiness as well as earliness, where jobs are being 
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sent to the machine prematurely.  In an effort to reduce the percent error, effective ORR 

strategies are integrated with the general heuristics. 

 Integrating Order Review and Release Strategies 6.3

ATEC and BIFET heuristics have a clear advantage in their performance against the 

benchmark heuristics because, unlike FEDD and even ATC, they consider the earliness 

component of the composite objective function.  Therefore, in order to compensate for this 

consideration, ORR strategies should be combined with these dispatching rules to determine if 

the ORR strategies will improve their performance especially under the conditions when the 

earliness penalty is weighted more heavily than tardiness. 

ORR is the boundary between the manufacturing planning system and the production 

floor (Melnyk et al, 1991) and controls the release of work to the floor. Melnyk et al. (1991) use 

a combination of ORR and a planning system in conjunction with simulation and Design of 

Experiments to examine the following factors: 

 Work load smoothing 

 Order release mechanisms 

 Dispatching rules used on the shop floor  

The results from the experiment show that work load smoothing by the planning system 

improves system performance for tardiness related measures (mean tardiness and percent tardy) 

and flow time related measures.  ORR strategies determine the timing in which orders are 
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released to the shop floor. Bertrand et al (2002) find that using ORR strategies while focusing on 

the due date performance of a shop can significantly decrease or eliminate assembly order 

lateness. Dispatching rules are often used for scheduling due to their ease of use, ability to react 

to disruptions without the need to reschedule, and ability to be used real time (Baykasoglu et al, 

2009). Over the past several years, operations scheduling has been expanded to include various 

decision points (Lu et al., 2011). These include when to schedule product, dispatching rules, etc. 

It is evident, through works such as Min and Yih (2003) and Parthanadee et al (2010) to name a 

few, that analyzing the process flow and identifying the most appropriate dispatching rules can 

improve schedule performance. As a result, this research has been expanded to include decisions 

such as ORR strategies and dispatching rules to improve the earliness/tardiness objective 

function. 

There are several ways in which ORR strategies can help reduce schedule deviation and 

improve on-time delivery performance.  ORR strategies can be used to help control lead times by 

limiting the amount of WIP at each work center in order to prevent the manufacturing floor 

becoming too congested and exceeding capacity (Bergamaschi et al 1997).  ORR strategies can 

also help moderate the utilization of machines by introducing product at balanced levels rather 

than having points of high volumes of WIP and then periods of starvation. 

The interaction between ORR and dispatching rules has been shown to have a significant 

and positive impact on performance metrics such as MAD (Lu et al., 2011).  MAD is a 

measurement that compares the actual delivery date with the original scheduled date (Lu et al., 

2011).The mathematical model in this phase will reflect the model in Phase 1. 
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The following section will identify the ORR strategies selected in this research and 

identify the impact that these strategies have on the objective function of earliness and tardiness. 

 Experimental Design with ORR Strategies 6.3.1

Two ORR strategies have been selected to use in conjunction with the previous dispatching 

rules.  These are IMM (Immediate Release) and Modified Infinite Loading strategies (MIL). 

6.3.1.1 Immediate Release (IMM) 

Immediate Release Strategy releases all jobs to the floor as they arrive, regardless of 

priority.  Essentially, it is equal to not having an ORR strategy.  Therefore, the dispatching rules 

remain the same and are compared with the dispatching rules combined with the MIL ORR 

strategy. 

6.3.1.2 Modified Infinite Loading (MIL) 

MIL is considered a “planning factor” method in which it considers information about the 

individual jobs (due date, number of ops) and about the current shop congestion. 

MIL Modified Infinite Loading:  

                 (6.1) 
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    New release time of job i 

     Due date of job i 

    Planning Factors 

    Number of operations for job i 

    Planning Factors 

     Number of jobs in queue for same routing as job I’s 

Planning Factors 

The planning factor k1 is multiplied by the number of operations in the job’s routing.  

Since this research is examining only 1 machine, k1 will be the average of the setup times for the 

job families.  The planning factor k2 is multiplied by the number of jobs waiting in the queue.  

This factor is derived from the average of the processing times for each of the families. 

 Results with ORR Strategies 6.4

The ORR strategy MIL is integrated with the benchmark dispatching rules (FEDD, CRIT, 

and ATC) and compared to the proposed heuristics ATEC and BIFET.  Figure 6.7 shows all jobs 

arriving simultaneously.  In this case, the ORR strategies do not appear to have a significant 

impact on the overall percent error between the heuristic and optimal solution, when compared 

against their respective batch sizes.  This is due to all the jobs arriving simultaneously.  The 

likelihood of the jobs being tardy is high and therefore a new release date is probably not 

calculated by the ORR strategy and therefore perform the same as when the dispatching rules are 
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used alone.  BIFET and ATEC continue to perform better and all heuristic’s performances 

improve as the batch sizes decrease, which was previously discussed in section 6.2.2. 

 

Figure 6.7. 95% confidence interval on the performance results for equal earliness and tardiness 

penalties, tight due dates, all jobs arriving simultaneously, and 5 families. 
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Figure 6.8. 95% confidence interval on the performance results for equal earliness and tardiness 

penalties, tight due dates, all jobs arriving simultaneously, and 5 families. 

 

In the circumstances when jobs arrive at a high, medium, or low rate, the use of the MIL 

strategy has a large impact on the overall performance of the dispatching rule as well as reduces 

the variance of percent error (refer to Figure 6.9 through Figure 6.12).  With the jobs flowing in 

at a slower rate, rather than being available all at the same time, there is a higher risk for the jobs 

to be completed earlier than the scheduled due date, thus impacting the overall performance 

objective.  Controlling the release of the job to the machine ensures that the job will not be 

processed too early. 
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Figure 6.9. 95% confidence interval on the performance results for equal earliness and tardiness 

penalties, tight due dates, high traffic intensity, 1 family, dispatching rules compared with ORR 

strategies combined with dispatching rules. 

 

 

Figure 6.10. 95% confidence interval on the performance results for equal earliness and tardiness 

penalties, tight due dates, low traffic, 1 family, dispatching rules compared with ORR strategies 

combined with dispatching rules. 
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Figure 6.11. 95% confidence interval on the performance results for earliness penalty=10 and 

tardiness penalty=1,  for tight due dates, high traffic intensity, 1 family, dispatching rules 

compared with ORR strategies combined with dispatching rules. 

 

 

Figure 6.12. 95% confidence interval on the performance results for earliness penalty=1 and 

tardiness penalty=10, loose due dates, high traffic, 5 families, dispatching rules compared with 

ORR strategies combined with dispatching rules.  
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 : CHAPTER 7

THE SINGLE BATCH WORKSTATION WITH UNEQUALLY-WEIGHTED 

PENALTIES AND VARYING BATCH SIZES AND INCOMPATIBLE 

FAMILIES AND SEQUENCE-DEPENDENT SETUPS 

 Introduction 7.1

In this final phase, the assumption that the setups are sequence-independent is relaxed.  In 

this phase, minor and major setups are considered. This even further relaxed scheduling problem 

is expressed in the scheduling notation as follows: 1 | ri, batch, sij |    ii TE 21  .  This 

problem now addresses sequence-dependent setups for the single batch processor scheduling 

problem minimizing the earliness-tardiness objective with unequal weights. In this phase, the 

proposed heuristics are integrated with ORR strategies in order to determine how robust these 

strategies are when introducing sequence-dependent setups. 

 Mathematical Model 7.2

Recall from 3.4 that Phase 3 of this research involves the following simplifying 

assumptions: 

 The number of workstations m is 1, i.e., |W| = 1; 

 The number of machines in the workstation is 1; therefore, m = 1; 

 The number of jobs n arrives individually to the workstation and are placed in batches 

before being processed; 
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 There is no restriction on queue length for jobs and batches awaiting processing at the 

workstation; 

 Jobs within a batch are processed one at a time at the workstation; 

 Jobs depart the workstation in batches; 

 No batch preemption.  Once a batch has begun processing at a workstation, it cannot be 

interrupted due to the arrival of higher priority jobs (or batches of jobs) before the 

processing of that batch has been completed; 

 No batch splitting.  Once a batch has been created, it cannot be divided into smaller sub-

batches of jobs.  It is treated as a single entity; 

 Incompatible job families. Jobs from different families cannot be processed together in 

the same batch; 

 A machine’s setup time for a batch from a family is determined not only by that batch’s 

product family but also by the previous family for which the machine is currently setup; 

in other words, machine setup are family sequence-dependent; 

 Major machine setups occur between processing batches of jobs from different families; 

 Minor machine setups occur between processing batches of jobs from the same family; 

 The earliness penalty per unit time per job and the tardiness penalty per unit time per job 

are unequal. 
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This even further relaxed scheduling problem is expressed in the scheduling notation as 

follows: 1 | ri, batch, sij |    ii TE 21  .  This problem now addresses sequence-dependent 

setups for the single batch processor scheduling problem minimizing the earliness/tardiness 

objective with unequal weights. In this phase, the proposed heuristics are integrated with ORR 

strategies in order to determine how robust these strategies are when introducing sequence-

dependent setups. 

Sets 

J  Set of jobs to be processed 

F Set of product families 

M  Set of machines  

 

Parameters 

    Number of jobs, where n = |J| 

m  Number of machines, where m  = |M| 

F  Number of families, where F = |F| 

i  Index for jobs, where i = 1, …, n 

j  Index for machines,  where j =1, …, m 

f  Index for families, where f = 1, …, F 

    Release time of job i 

     Due date of job i 

     Weight or importance of job i; the jobs are equally-weighted, i.e., wi = 1 
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      Earliness penalty of job i 

     Tardiness penalty of job i 

     Common processing time of a job of family f 

        
 Setup time for family f of batch k when it follows the family of the previous batch 

k-1 

       Setup time for family f when it is the first batch to be processed 



Bmin
f

 Minimum batch size of family f 

fBmax  Maximum batch size of family f 

      1, if family f belongs to job i, otherwise 0 

 

Decision Variables 

     1, if job i is processed in batch k, otherwise 0. 

     1, if family f is processed in batch k, otherwise 0 

 

Dependent Variables 

     Earliness of job i 

     Tardiness of job i 

     Completion time of job i 

     Process time of batch k of family f  

     Start time of batch k 
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     Completion time of batch k  

 

The following is the proposed mathematical model: 

 

Minimize 

 
∑(         )

 

   

 
(7.1) 

s.t. 

                 (7.2) 
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                      (7.4) 
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                             (7.12) 

                (7.13) 

              (7.14) 

                      (7.15) 

           (7.16) 

            (7.17) 

             (7.18) 

             (7.19) 

              (7.20) 

     {   }           (7.21) 

     {   }         (7.22) 

 

Objective (7.1) minimizes the total tardiness and earliness over all jobs.  Constraints (7.2) 

and (7.3) are the definitions of the earliness and tardiness of a job.  Constraint (7.4) shows the 

definition of the due date for each job.  Constraint (7.5) states that the sum of all jobs in a batch 

is greater than the minimum family batch size constraint for that batch.  Constraint (7.6) states 

that the sum of jobs in a batch is less than the maximum family batch size constraint for that 

batch. Constraint (7.7) defines the process time for the first batch of jobs to be processed.  

Constraint (7.8) define the process time for the subsequent batches of jobs.  Both constraints are 

the number in the batch times the individual processing time of each job plus the setup time 

associated for each family.  The setup time is determined by the family of the batches that was 
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processed previously and the current family being processed. Constraint (7.9) says that each job 

is assigned to a batch only once.  Constraint (7.10) states that each family is assigned to exactly 

one batch. If there are no jobs in the batch then no families would be assigned to a batch.  

Constraint (7.11) ensures that if a job in a family is assigned to a batch then that batch must be of 

the same family (i.e., if Xik = 1, then Yfk = 1).  Constraint (7.12) ensures that the start time of a 

batch must be no less than the release time of any jobs forming that batch.  Constraint (7.13) 

specifies that no job can start before the completion of the previous batch.  Constraint (7.14) 

identifies that a job’s start time must be early enough to allow for the processing time before it’s 

completed.  Constraint (7.15) states that the completion time of the job is equal to the completion 

time of the batch to which the job belongs.  This is because jobs depart in batches.  Constraints 

(7.16) through (7.20) are the negativity constraints.  Constraints (7.21) through (7.22) are binary 

constraints. 

The updated integer programming model, which now considers sequence-dependent 

setups, is also solved using IBM ILOG CPLEX version 12.5 on a 2.13 GHz Intel Pentium CPU 

Processor with 4.0 GB RAM and Microsoft Windows 7 operating system.  

 Computational Time of the Mathematical Model vs the Proposed and Benchmark 7.2.1

Heuristics 

The run time for each run scenario is recorded.  The stopping time of 6 hours for Phase 2 

and 3 is followed as it is in Phase 1.  The percentage of nodes remaining to be tested is also 

recorded next to the completion time.  For example, if the scenario is stopped after 6 hours and 
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50% of nodes remained to be tested, then both data are recorded along with the CPLEX solution 

at the stop time.  As discussed earlier and as recognized by other researchers who have studied 

similar problems, the length of time to reach an optimal solution is impractical for real-world 

industrial settings and therefore heuristics should be pursued.  In order to understand the impact 

of the increase in number of jobs, as well as adding complexity to the problem (such as 

sequence-dependent setups), the run time is graphed in Figure 7.1. 

 

Figure 7.1. Computational time for CPLEX to arrive at a solution as problem complexity 

increases in terms of the number of jobs. 

 

For each number of jobs (5, 10, 15), the number of days to completion for the various 

scenarios was averaged.  If a particular run is stopped prematurely, the expected length of time is 

calculated by using the current percent complete, the run time, and extrapolating that in order to 

identify the run time at 100 percent completion.  After reviewing the data, and by examining the 

slope in the Figure 7.1, it is infeasible to run the same data sets for 15 jobs with sequence-
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dependent setups.  Therefore, for n = 15, heuristic performance is compared against one another 

rather than to the optimal solution. 

 Experimental Design 7.2.2

Table 7.1 shows the experimental design for this phase. This is similar to the 

experimental design in CHAPTER 6, with one exception: the number of families.  Since, setups 

are now dependent on which family has been processed previously, it is not necessary to look at 

scenarios with only one family type.  Now. the run scenarios are set up to each be with 2 or more 

families. 

Table 7.1. Experimental design with emphasis on unequal job weights and sequence-dependent 

setups 

Factor Values Number of Values 

Weight, 1, 2 

1 = Earliness = 1, 2 = Tardiness=1 

1 = Earliness = 10, 2 = Tardiness=1 

1 = Earliness=1, 2 = Tardiness=10 

3 

Number of Jobs, n 5, 10, 15 3 

Number of Families, F 
U(2, 5) 

 
1 

Traffic Intensity 

 Low: 50% Machine Utilization 

 Medium: 75% Machine Utilization 

 High: 95% Machine Utilization 

 Highest: All Jobs Arrive Simultaneously 

4 

Due Date Tightness Tight: U(0,2), Loose: U (0,4) 2 

Replications per Problem 

 

10 

Total Number of Problem Instances 

 

720 
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 Discussion of the Performance Results 7.3

In the cases with sequence dependent setups, the proposed heuristics continued to 

perform superior to the general dispatching rules as well as the dispatching rules in combination 

with the ORR strategies. 

 Batch Size Impact 7.3.1

Table 7.2 shows the comparison of percent error between one batch size and another. For 

example, the percent error of MIL with ATC is shown with maximum batch size of 10 (MB10) 

minus the maximum batch size of 3 (MB3).  If the heuristic MIL with ATC has a higher percent 

error from the optimal solution, then the difference between MB10 and MB3 is a positive % 

difference.  If it is negative, then MB3 has a higher percent error, which means that the heuristic 

performs worse at a maximum batch size of 3. 

As can be seen in Table 7.2, when batch sizes of BIFET vary, there is little impact on the 

overall performance of the heuristic in terms of percent error from the CPLEX solution. This is 

largely due to the fact that BIFET utilizes the Family Batch Constraint, which also regulates the 

number that can be grouped within in a batch.  Often times this could even trump the maximum 

batch size entered by the user.  This feature allows the heuristic BIFET to be more robust when 

batch sizes are changing which in turn also means the heuristic will maintain its robustness when 

the number of types of families change (the more different types of families for 5, 10, 15 jobs, 

the smaller the batch sizes will be).  The table displaying the batch comparison for MIL with 

ATC is very similar to that of FEDD, CRIT and ATC. 
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Table 7.2. Comparison of MIL with ATC and BIFET performance of percent error when varying 

batch sizes. 

 

 Effects of Weighted the Earliness and Tardiness Penalties 7.3.2

The effects of varying weighted penalties can be seen in Table 7.3.  It is apparent that the 

weights of the penalties affect the performance of the heuristics.  BIFET continues to out-

perform the other dispatching rules and ORR strategies in the majority of the scenarios, with the 

<TI,DT,F> AVE STD DEV AVE STD DEV AVE STD DEV <TI,DT,F> AVE STD DEV AVE STD DEV AVE STD DEV

<S, T, 5> 0.00% 0.00% -4.18% 7.78% -4.18% 7.78% <S, T, 5> 0.00% 0.00% 0.53% 1.98% 0.53% 1.98%

<H, T, 5> 0.00% 0.00% 1.04% 3.28% 1.04% 3.28% <H, T, 5> 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

<M, T, 5> 0.00% 0.00% 2.59% 8.19% 2.59% 8.19% <M, T, 5> 0.00% 0.00% 2.50% 7.91% 2.50% 7.91%

<LW, T, 5> 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% <LW, T, 5> 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

<S, L, 5> 0.00% 0.00% -3.37% 17.96% -3.37% 17.96% <S, L, 5> 0.00% 0.00% 8.26% 8.70% 8.26% 8.70%

<H, L, 5> 0.00% 0.00% 5.86% 12.36% 5.86% 12.36% <H, L, 5> 0.00% 0.00% 2.98% 9.43% 2.98% 9.43%

<M, L, 5> 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% <M, L, 5> 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

<LW, L, 5> 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% <LW, L, 5> 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

<TI,DT,F> AVE STD DEV AVE STD DEV AVE STD DEV <TI,DT,F> AVE STD DEV AVE STD DEV AVE STD DEV

<S, T, 5> -1.73% 3.84% 4.02% 5.61% 5.75% 4.98% <S, T, 5> 0.00% 0.00% 2.09% 2.95% 2.09% 2.95%

<H, T, 5> 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% <H, T, 5> 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

<M, T, 5> 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% <M, T, 5> 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

<LW, T, 5> 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% <LW, T, 5> 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

<S, L, 5> 2.53% 5.88% 29.51% 41.65% 26.98% 41.74% <S, L, 5> 0.00% 0.00% 1.96% 4.34% 1.96% 4.34%

<H, L, 5> 0.00% 0.00% 37.69% 119.20% 37.69% 119.20% <H, L, 5> 0.00% 0.00% 3.02% 9.56% 3.02% 9.56%

<M, L, 5> 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% <M, L, 5> 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

<LW, L, 5> 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% <LW, L, 5> 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

<TI,DT,F> AVE STD DEV AVE STD DEV AVE STD DEV <TI,DT,F> AVE STD DEV AVE STD DEV AVE STD DEV

<S, T, 5> 0.00% 0.00% 6.69% 4.21% 6.69% 4.21% <S, T, 5> 0.00% 0.00% 2.09% 2.95% 2.09% 2.95%

<H, T, 5> 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% <H, T, 5> 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

<M, T, 5> 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% <M, T, 5> 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

<LW, T, 5> 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% <LW, T, 5> 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

<S, L, 5> 1.59% 5.04% 13.03% 19.94% 11.44% 19.56% <S, L, 5> 0.00% 0.00% 2.50% 6.94% 2.50% 6.94%

<H, L, 5> 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% <H, L, 5> 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

<M, L, 5> 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% <M, L, 5> 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

<LW, L, 5> 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% <LW, L, 5> 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Early=1 

/Tardy=10

BIFET

MB10-MB3 MB10-MB1 MB3-MB1

MB10-MB1 MB3-MB1

Early=10/Tar

dy=1

BIFET

MB10-MB3 MB10-MB1 MB3-MB1

5 Jobs with SDS

Equal 

Penalties

BIFET

MB10-MB3

Early=10/Ta

rdy=1

MIL with ATC

MB10-MB3 MB10-MB1 MB3-MB1

Early=1 

/Tardy=10

MIL with ATC

MB10-MB3 MB10-MB1 MB3-MB1

5 Jobs with SDS

Equal 

Penalties

MIL with ATC

MB10-MB3 MB10-MB1 MB3-MB1
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exception when all jobs arrive simultaneously and the due dates are tight.  In those cases, BIFET 

performs just as well as the general dispatching rules paired with ORR strategies. 

Table 7.3. Comparison of MIL with ATC and BIFET performance of percent error when varying 

penalties. 

 

 

Figure 7.2 and Figure 7.3, take a closer look at how ATEC and BIFET perform when the 

job penalties are equal or the earliness penalty is more heavily weighted than the tardiness 

penalty.  As stated previously, the dispatching rules with ORR strategies and the proposed 

<TI,DT,F> AVE STD DEV AVE STD DEV AVE STD DEV <TI,DT,F> AVE STD DEV AVE STD DEV AVE STD DEV

<S, T, 5> -0.04% 0.12% -2.62% 8.27% -2.58% 8.16% <S, T, 5> -0.04% 0.12% -2.62% 8.27% -2.58% 8.16%

<H, T, 5> -21.13% 32.81% 6.39% 15.84% 27.53% 42.93% <H, T, 5> 1.88% 3.06% -8.43% 15.32% -10.31% 15.83%

<M, T, 5> -61.75% 81.52% -99.41% 145.01% -37.66% 196.56% <M, T, 5> 1.37% 7.63% -29.71% 67.02% -31.07% 66.87%

<LW, T, 5> 36.46% 98.58% -382.36% 977.13% -418.82% 1075.63% <LW, T, 5> -0.10% 0.33% 0.00% 0.00% 0.10% 0.33%

<S, L, 5> 3.73% 9.06% -64.75% 108.09% -68.47% 114.75% <S, L, 5> -0.38% 1.20% -15.24% 48.20% -14.86% 47.00%

<H, L, 5> -83.36% 102.35% -31.51% 116.47% 51.85% 174.82% <H, L, 5> -3.87% 30.79% -60.17% 111.32% -56.30% 125.87%

<M, L, 5> -11835.45% 26758.43% -3133.88% 6182.21% 8701.57% 21255.83% <M, L, 5> -90.71% 284.63% -88.51% 285.52% 2.19% 424.42%

<LW, L, 5> -11835.45% 26758.43% -3133.88% 6182.21% 8701.57% 21255.83% <LW, L, 5> -90.71% 284.63% -88.51% 285.52% 2.19% 424.42%

<TI,DT,F> AVE STD DEV AVE STD DEV AVE STD DEV <TI,DT,F> AVE STD DEV AVE STD DEV AVE STD DEV

<S, T, 5> -0.04% 0.12% -2.62% 8.27% -2.58% 8.16% <S, T, 5> -0.04% 0.12% -2.62% 8.27% -2.58% 8.16%

<H, T, 5> -21.13% 32.81% 6.39% 15.84% 27.53% 42.93% <H, T, 5> 1.88% 3.06% -8.43% 15.32% -10.31% 15.83%

<M, T, 5> -61.75% 81.52% -99.41% 145.01% -37.66% 196.56% <M, T, 5> 1.37% 7.63% -29.71% 67.02% -31.07% 66.87%

<LW, T, 5> 36.46% 98.58% -382.36% 977.13% -418.82% 1075.63% <LW, T, 5> -0.10% 0.33% 0.00% 0.00% 0.10% 0.33%

<S, L, 5> 3.57% 9.12% -64.75% 108.09% -68.31% 114.79% <S, L, 5> -0.38% 1.20% -15.24% 48.20% -14.86% 47.00%

<H, L, 5> -83.36% 102.35% -31.51% 116.47% 51.85% 174.82% <H, L, 5> -3.87% 30.79% -60.17% 111.32% -56.30% 125.87%

<M, L, 5> -11835.45% 26758.43% -3133.88% 6182.21% 8701.57% 21255.83% <M, L, 5> -90.71% 284.63% -88.51% 285.52% 2.19% 424.42%

<LW, L, 5> -11835.45% 26758.43% -3133.88% 6182.21% 8701.57% 21255.83% <LW, L, 5> -90.71% 284.63% -88.51% 285.52% 2.19% 424.42%

<TI,DT,F> AVE STD DEV AVE STD DEV AVE STD DEV <TI,DT,F> AVE STD DEV AVE STD DEV AVE STD DEV

<S, T, 5> -0.04% 0.12% -2.62% 8.27% -2.58% 8.16% <S, T, 5> -0.04% 0.12% -2.62% 8.27% -2.58% 8.16%

<H, T, 5> -21.01% 32.85% 6.22% 16.21% 27.23% 43.24% <H, T, 5> 1.88% 3.06% -8.43% 15.32% -10.31% 15.83%

<M, T, 5> -64.35% 80.40% -97.23% 145.01% -32.89% 195.71% <M, T, 5> -1.13% 7.42% -29.71% 67.02% -28.57% 68.07%

<LW, T, 5> 36.46% 98.58% -382.36% 977.13% -418.82% 1075.63% <LW, T, 5> -0.10% 0.33% 0.00% 0.00% 0.10% 0.33%

<S, L, 5> -2.09% 5.49% -24.22% 57.85% -22.12% 59.25% <S, L, 5> -2.92% 4.37% -10.23% 29.16% -7.31% 29.10%

<H, L, 5> -84.41% 99.06% -31.51% 116.47% 52.90% 173.13% <H, L, 5> -6.85% 29.13% -54.00% 99.59% -47.15% 108.94%

<M, L, 5> -11835.45% 26758.43% -3133.88% 6182.21% 8701.57% 21255.83% <M, L, 5> -90.71% 284.63% -88.51% 285.52% 2.19% 424.42%

<LW, L, 5> -11835.45% 26758.43% -3133.88% 6182.21% 8701.57% 21255.83% <LW, L, 5> -90.71% 284.63% -88.51% 285.52% 2.19% 424.42%

Max 

Batch 3

BIFET

A-T A-E T-E

Max 

Batch 1

BIFET

A-T A-E T-E

5 Jobs

Max 

Batch 10

BIFET

A-T A-E T-E

Max 

Batch 3

MIL with ATC

A-T A-E T-E

Max 

Batch 1

MIL with ATC

A-T A-E T-E

5 Jobs

Max 

Batch 10

MIL with ATC

A-T A-E T-E
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heuristics perform better, which appear that the ORR strategies handle the scheduling of jobs 

better when tardiness is not more heavily weighted.  The ORR strategy might be delaying the 

release to the machine more so than needed which in turn creates more tardy jobs.  When the 

tardiness is heavier weighted, this negatively impacts the overall objective function.  This is 

displayed in Figure 7.4. 

 

Figure 7.2. 95% confidence interval on the performance results for equal earliness and tardiness 

penalties, tight due dates, and high traffic intensity, dispatching rules compared with ORR 

strategies combined with dispatching rules. 
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Figure 7.3. 95% confidence interval on the performance results for earliness penalty =10 and 

tardiness =1, tight due dates, and low traffic intensity, dispatching rules compared with ORR 

strategies combined with dispatching rules. 
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Figure 7.4. 95% confidence interval on the performance results for tardiness penalty =10, and 

earliness penalty = 1, loose due dates, and high traffic intensity, dispatching rules compared with 

ORR strategies combined with dispatching rules. 

 Overall Performance of Dispatching Rules and ORR versus Proposed Heuristics 7.3.3

The proposed heuristics in this research, ATEC and BIFET continue to outperform the 

general heuristics even when used in conjunction with ORR strategies. 

Figure 7.5 to Figure 7.7 show the confidence intervals for 10 Jobs with sequence 

dependent setups.  In Figure 7.5 (equal earliness and tardiness penalties) and Figure 7.6 (higher 

earliness penalties), it can be seen that the dispatching rules perform better with the ORR 

strategy MIL rather than having jobs immediately released to the machine according to their 
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arrival time.  However, in Figure 7.7, where the tardiness penalty is weighted higher than 

earliness, the dispatching rules perform worse when used in conjunction with the ORR strategies.  

This is evident that delaying the release time of the jobs in order to avoid earliness, creates more 

tardy jobs.  Since, in this scenario, tardiness is weighted higher, the overall performance 

objective worsens. 

 

Figure 7.5. 95% confidence interval on the performance results for equal earliness and tardiness 

penalties, loose due dates, high traffic, dispatching rules compared with ORR strategies 

combined with dispatching rules. 
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Figure 7.6. 95% confidence interval on the performance results for tardiness penalty =1, and 

earliness penalty = 10, loose due dates, high traffic, dispatching rules compared with ORR 

strategies combined with dispatching rules. 
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Figure 7.7: 95% confidence interval on the performance results for earliness penalty =1 and 

tardiness =10, loose due dates, high traffic, dispatching rules compared with ORR strategies 

combined with dispatching rules. 

7.3.3.1 Performance of Proposed Heuristics Versus the Benchmark Heuristic for 15 Jobs 

Since the optimal solution for 15 jobs could not be found in a reasonable amount of time, 

the proposed heuristics are compared against the best performing general heuristic. After 

examining the results, it is determined that ATC with MIL works best over FEDD and CRIT 

(with or without MIL) when the penalties are either equal or earliness is rated higher. In the case 

where tardiness is more heavily weighted, ATC works best on its own. 

In order to get an overall idea how the general heuristics perform compared to one 

another, the Table 7.4 is constructed to compare the overall percent error average.  As shown in 

Table 7.4, the ATC rule with MIL has the lowest average percent error in the case where the 
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penalties are equally weighted and when earliness is weighted heavier.  ATC alone has a lower 

overall percent error when tardiness is weighted heavier. 

Table 7.4. Average percent error for heuristics. 

 

Therefore, MIL with ATC is used as a benchmark heuristic to compare the performance of the 

proposed heuristics.  Table 7.5 to  

Table 7.10 summarize the results of the proposed heuristics and the two benchmark heuristics 

when earliness and tardiness penalties are equal, when earliness is weighted heavier, and when 

tardiness is weighted heavier.  A negative average indicates that the benchmark heuristic 

performs worse than the heuristic being compared against.  In Table 7.5, it is interesting to see 

that ATC performs just as well or even better when the traffic intensity is simultaneous or high, 

with the exception when the due tightness is loose.  When earliness is more heavily weighted, the 

use of the ORR strategy, MIL, in combination with ATC proves to be much more effective in 

minimizing the performance objective.  

Average Std Dev Average Std Dev Average Std Dev Average Std Dev Average Std Dev Average Std Dev

FEDD Max Batch 10 883% 1591% 544% 604% 10% 6% 1118% 1861% 10731% 17863% 964% 1751%

FEDD Max Batch 1 888% 1588% 542% 600% 15% 11% 1118% 1861% 10725% 17867% 965% 1750%

FEDD Max Batch 3 881% 1592% 543% 605% 10% 6% 1118% 1861% 10731% 17863% 964% 1751%

MIL with FEDD Max Batch 10 323% 533% 59% 44% 71% 53% 514% 784% 1335% 2154% 3463% 6197%

MIL with FEDD Max Batch 1 329% 529% 60% 38% 79% 50% 514% 783% 1336% 2154% 3464% 6196%

MIL with FEDD Max Batch 3 321% 534% 58% 45% 70% 54% 514% 784% 1335% 2154% 3463% 6197%

CRIT Max Batch10 883% 1591% 544% 604% 10% 6% 1118% 1861% 10731% 17863% 964% 1751%

CRIT Max Batch1 888% 1588% 542% 600% 15% 11% 1118% 1861% 10725% 17867% 965% 1750%

CRIT Max Batch3 881% 1592% 543% 605% 10% 6% 1118% 1861% 10731% 17863% 964% 1751%

MIL with CRIT Max Batch10 339% 541% 59% 44% 71% 53% 514% 784% 1335% 2154% 3463% 6197%

MIL with CRIT Max Batch1 329% 529% 60% 38% 79% 50% 514% 783% 1336% 2154% 3464% 6196%

MIL with CRIT Max Batch3 321% 534% 58% 45% 70% 54% 514% 784% 1335% 2154% 3463% 6197%

ATC Max Batch 10 883% 1592% 545% 604% 9% 6% 1118% 1861% 10738% 17858% 963% 1751%

ATC Max Batch 1 887% 1589% 541% 601% 14% 9% 1118% 1861% 10727% 17865% 965% 1750%

ATC Max Batch 3 881% 1592% 544% 605% 9% 6% 1118% 1861% 10738% 17858% 963% 1751%

MIL with ATC Max Batch 10 322% 533% 57% 44% 71% 57% 514% 783% 1345% 2148% 3464% 6196%

MIL with ATC Max Batch 1 329% 529% 59% 39% 79% 55% 514% 783% 1339% 2152% 3465% 6196%

MIL with ATC Max Batch 3 320% 534% 56% 45% 71% 57% 514% 783% 1345% 2148% 3464% 6196%

Equal Early=10/Tardy=1 Early=1/Tardy=10

10 Jobs 5 Jobs

Equal Early=10/Tardy=1 Early=1/Tardy=10
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Table 7.5. Comparison of rule performance for ATC against MIL with ATC for equal penalties 

and earliness penalty=10/tardiness penalty =1. 

 

Table 7.6 and Table 7.7 show how the proposed heuristics perform against MIL with ATC.  Both 

BIFET and ATEC outperform MIL with ATC, with the exception that BIFET does not perform 

as well in the cases where jobs arrive simultaneously and the maximum batch sizes are set to the 

extremes (a maximum batch size of 10 and a maximum batch size of 1). 

 

 

 

 

 

Average 

% Error

Std 

Deviation

Average 

% Error

Std 

Deviation

Average 

% Error

Std 

Deviation

<S, T, 5> 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

<H, T, 5> -5.6% 17.2% -7.7% 18.6% -5.6% 17.2%

<M, T, 5> 4.2% 33.5% 3.9% 34.1% 4.2% 33.5%

<LW, T, 5> -3.7% 19.4% -4.8% 21.6% -3.7% 19.4%

<S, L, 5> -1.6% 5.1% -2.6% 8.4% -1.6% 5.1%

<H, L, 5> -16.3% 15.7% -27.1% 16.5% -16.3% 15.7%

<M, L, 5> 52.8% 48.1% 52.8% 48.1% 52.8% 48.1%

<LW, L, 5> 45.3% 51.2% 45.3% 51.2% 45.3% 51.2%

<S, T, 5> 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

<H, T, 5> 0.6% 8.6% -3.2% 8.9% 0.6% 8.6%

<M, T, 5> 407.5% 194.5% 431.6% 227.3% 407.5% 194.5%

<LW, T, 5> 143.2% 159.0% 143.2% 159.0% 143.2% 159.0%

<S, L, 5> 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

<H, L, 5> 128.5% 98.8% 97.1% 65.2% 128.5% 98.8%

<M, L, 5> 596.7% 261.5% 597.3% 261.3% 596.7% 261.5%

<LW, L, 5> 596.7% 261.5% 597.3% 261.3% 596.7% 261.5%

Eq
u

al
Ea

rl
y

Performance relative to MIL with ATC

<TI,DT,F>

ATC MB10 ATC MB3 ATC MB1
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Table 7.6. Comparison of rule performance for ATEC against MIL with ATC for equal penalties 

and earliness penalty=10/tardiness penalty =1. 

 

 

Average 

% Error

Std 

Deviation

Average 

% Error

Std 

Deviation

Average 

% Error

Std 

Deviation

<S, T, 5> 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

<H, T, 5> -13.6% 11.6% -14.3% 11.9% -13.6% 11.6%

<M, T, 5> -31.9% 12.7% -32.5% 12.7% -31.9% 12.7%

<LW, T, 5> -20.3% 11.3% -21.5% 13.3% -20.3% 11.3%

<S, L, 5> -3.2% 9.0% -3.7% 11.9% -3.0% 9.0%

<H, L, 5> -22.0% 17.1% -28.3% 18.2% -22.0% 17.1%

<M, L, 5> -32.6% 6.2% -32.6% 6.2% -32.6% 6.2%

<LW, L, 5> -31.6% 6.6% -31.6% 6.6% -31.6% 6.6%

<S, T, 5> 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

<H, T, 5> -7.5% 7.2% -8.8% 7.3% -7.5% 7.2%

<M, T, 5> -17.1% 24.4% -14.5% 21.7% -17.1% 24.4%

<LW, T, 5> -26.0% 10.8% -26.0% 10.8% -26.0% 10.8%

<S, L, 5> -2.4% 4.9% 0.0% 0.0% -2.3% 4.7%

<H, L, 5> 9.5% 37.2% -6.6% 8.9% 9.5% 37.2%

<M, L, 5> -41.4% 22.5% -41.4% 22.5% -41.4% 22.5%

<LW, L, 5> -41.4% 22.5% -41.4% 22.5% -41.4% 22.5%

ATEC MB3 ATEC MB1

Eq
u

al
Ea

rl
y

<TI,DT,F>

ATEC MB10
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Table 7.7. Comparison of rule performance for BIFET against MIL with ATC for equal penalties 

and earliness penalty=10/tardiness penalty =1. 

 

Since ATC seems to perform better than MIL with ATC in the cases of 5 and 10 jobs when the 

tardiness penalty is higher, BIFET and ATEC are compared to ATC in Table 7.9 and  

Table 7.10.  ATC is compared to MIL with ATC in Table 7.8 to ensure that its performance 

continues to be superior with 15 jobs.  After examining the data in the table, it’s continues to be 

the case.  ATEC continues to perform stronger overall than ATC.  BIFET performs better when 

the traffic intensity is medium or low.  ATEC performs better in the case where jobs arrive 

simultaneously than does BIFET.  In the scenarios where the jobs arrive simultaneously or traffic 

Average 

% Error

Std 

Deviation

Average 

% Error

Std 

Deviation

Average 

% Error

Std 

Deviation

<S, T, 5> 12.6% 9.4% 0.0% 0.0% 18.3% 9.4%

<H, T, 5> -3.7% 16.6% -14.3% 11.9% -3.7% 16.6%

<M, T, 5> -32.2% 12.3% -32.5% 12.7% -32.2% 12.3%

<LW, T, 5> -20.3% 11.3% -21.5% 13.3% -20.3% 11.3%

<S, L, 5> 10.7% 16.6% -3.7% 11.9% 16.9% 17.5%

<H, L, 5> -15.1% 19.0% -28.3% 18.2% -13.4% 21.8%

<M, L, 5> -32.6% 6.2% -32.6% 6.2% -32.6% 6.2%

<LW, L, 5> -31.6% 6.6% -31.6% 6.6% -31.6% 6.6%

<S, T, 5> 11.5% 9.3% 0.0% 0.0% 17.2% 7.6%

<H, T, 5> 2.9% 11.9% -8.8% 7.3% 2.9% 11.9%

<M, T, 5> -16.7% 22.7% -14.5% 21.7% -16.7% 22.7%

<LW, T, 5> -26.0% 10.8% -26.0% 10.8% -26.0% 10.8%

<S, L, 5> 11.8% 9.2% 0.0% 0.0% 18.2% 10.0%

<H, L, 5> 2.3% 23.4% -6.6% 8.9% 2.3% 23.4%

<M, L, 5> -41.4% 22.5% -41.4% 22.5% -41.4% 22.5%

<LW, L, 5> -41.4% 22.5% -41.4% 22.5% -41.4% 22.5%

Eq
u

al
Ea

rl
y

Performance relative to MIL with ATC

<TI,DT,F>

BIFET MB10 BIFET MB3 BIFET MB1
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is high, BIFET’s family batch constraint parameter might be restricting the heuristic too much, in 

which that it is not batching effectively enough.  It is recommended that in cases where the 

traffic is high that the user experiments with the family batch constraint in order to find the best 

performance. 

Table 7.8. Comparison of rule performance for MIL ATC against ATC for earliness penalty 

=1/tardiness penalty =10. 

 

 

  

Average 

% Error Std Dev

Average 

% Error Std Dev

Average 

% Error Std Dev

<S, T, 5> 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

<H, T, 5> 13.0% 17.6% 16.3% 18.1% 13.0% 17.6%

<M, T, 5> 134.6% 74.9% 141.6% 78.2% 134.6% 74.9%

<LW, T, 5> 24.3% 16.4% 24.3% 16.4% 24.3% 16.4%

<S, L, 5> 0% 0% 0% 0% 0% 0%

<H, L, 5> 70.9% 44.8% 97.5% 58.8% 70.9% 44.8%

<M, L, 5> 81.7% 32.4% 81.5% 32.5% 81.7% 32.4%

<LW, L, 5> 81.7% 32.4% 81.5% 32.5% 81.7% 32.4%

<TI,DT,F>

Performance relative to ATC

Ta
rd

y

MIL with ATC MB10 MIL with ATC MB3 MIL with ATC MB1
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Table 7.9. Comparison of rule performance for ATEC against ATC for earliness penalty 

=1/tardiness penalty =10. 

 

Table 7.10. Comparison of rule performance for BIFET against ATC for earliness penalty 

=1/tardiness penalty =10. 

 

 

Average 

% Error Std Dev

Average 

% Error Std Dev

Average 

% Error Std Dev

<S, T, 5> 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

<H, T, 5> -1.5% 4.1% 0.0% 0.1% -1.5% 4.1%

<M, T, 5> -1.2% 2.7% -1.2% 2.7% -1.2% 2.7%

<LW, T, 5> -1.9% 2.1% -1.9% 2.1% -1.9% 2.1%

<S, L, 5> 0% 0% 0% 0% 0% 0%

<H, L, 5> -1.6% 2.8% -0.2% 0.6% -1.6% 2.8%

<M, L, 5> -9.6% 9.9% -9.6% 9.9% -9.6% 9.9%

<LW, L, 5> -9.6% 9.9% -9.6% 9.9% -9.6% 9.9%

Performance relative to ATC

<TI,DT,F>

Ta
rd

y

ATEC MB10 ATEC MB3 ATEC MB1

Average 

% Error Std Dev

Average 

% Error Std Dev

Average 

% Error Std Dev

<S, T, 5> 11.5% 9.3% 0.0% 0.0% 17.2% 7.6%

<H, T, 5> 9.8% 8.8% 0.0% 0.1% 9.8% 8.8%

<M, T, 5> -1.2% 2.7% -1.2% 2.7% -1.2% 2.7%

<LW, T, 5> -1.9% 2.1% -1.9% 2.1% -1.9% 2.1%

<S, L, 5> 16% 10% 0% 0% 24% 8%

<H, L, 5> 6.5% 8.1% -0.2% 0.6% 6.5% 8.1%

<M, L, 5> -9.6% 9.9% -9.6% 9.9% -9.6% 9.9%

<LW, L, 5> -9.6% 9.9% -9.6% 9.9% -9.6% 9.9%

BIFET MB10 BIFET MB3

Ta
rd

y

<TI,DT,F>

Performance relative to ATC

BIFET MB1



119 

 

 : CHAPTER 8

SUMMARY AND FUTURE RESEARCH DIRECTIONS 

 Summary 8.1

The objective of this research is to understand the effects of batching, traffic intensity, 

sequence-dependent setups, incompatible job families, and penalties on the objective function to 

minimize earliness and tardiness penalties.  CHAPTER 1 discusses the case study after which the 

problem has been modeled.  CHAPTER 2 summarizes the relevant literature in which 

researchers conclude that the problem, in its simplest form, is NP-Hard. As a result, many 

researchers choose to utilize heuristics, since arriving at an optimal solution in a reasonable time 

is unrealistic especially in industry, where decisions need to be made quickly. CHAPTER 3 

describes how the problem is dissected into more manageable phases in order to understand the 

gap in performance with general heuristics.  This provides a framework to develop a new 

heuristic to improve the minimization of the objective function.  The mathematical model of the 

phase 1 approach and the computational time required by CPLEX to solve optimally the model is 

provided in CHAPTER 4.  A comparison of the new proposed heuristics against certain 

benchmark heuristics is developed in CHAPTER 5.  During the development and analysis of the 

new heuristics it was evident that the current benchmark heuristics do not consider the earliness 

portion of the objective function.  CHAPTER 6 looks at how the heuristics perform when the 

batch sizes are varied and unequal penalties in the objective function are introduced.  The ORR 

strategies IMM and MIL are discussed and incorporated with the general dispatching rules.  This 



120 

 

provides a more even comparison against the proposed heuristics because it looks at releasing the 

jobs based off the due date rather than immediately releasing them in queue when available.  

CHAPTER 7 relaxes the sequence independent setups assumption and introduces minor and 

major changeovers.  Using the ORR strategies introduced in CHAPTER 6, the proposed 

heuristics are compared against the general dispatching rules with the added complexity of 

sequence-dependent setups.  With this added complexity, the time to solve becomes 

exponentially long and unrealistic to solve optimally for 15 jobs.  

 Future Research Directions 8.2

The research studied in this dissertation and its conclusions provide a solid foundation for 

further development and exploration. 

 Modeling Multiple Serial Machines in a Flow shop 8.2.1

Recall in Chapter 1 the case study, which this research was modeled after, contained 

multiple, serial, work stations.  As a result of the complexity of the initial problem, the 

assumption of a single machine was made in order to first study the main bottleneck to achieve 

performance improvements.  Now that the bottleneck has been studied and an effective solution 

has been found, the work could be extended to schedule the work for the remainder of the flow 

in the shop.  It is important to analyze the remaining workstations within the flow of the shop in 

order to ensure that the bottleneck is not being starved or overrun. 
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The ORR strategy, MIL, considers multiple work stations in its calculation. 

                

The planning factor    is the number of operations in the job’s routing.   

Lu et al. (2011) and Baykasoglu et al. (2009) studied the performance that varying ORR 

strategies and dispatching rules had in a multiple serial machine flow shop.  Lu et al. (2011) 

looks at how well ORR strategies minimized Mean Absolute Deviation (MAD) at three varying 

machine utilization levels, while Baykasoglu et al. (2009) focuses on tardiness-related 

performance metrics. As a result, job earliness is not considered.  It would be beneficial to 

understand how it impacts earliness especially when looking at machine utilization.  If the 

machine shop is producing too many jobs unnecessarily early, that will drive up the utilization of 

the machines and create bottlenecks.  These papers also did not consider setup times, batching or 

incompatible job families. 

Currently ATEC and BIFET do not account for multiple workstations that a job would 

visit in its routing.  In order to accommodate for this, the methodology in both heuristics will 

need to be adjusted.  The wait time at each station and the number of stations in a job’s routing 

should be considered when improving both heuristics in order to able to extend their use to a 

multiple machine case study. 

 Modeling Multiple Parallel Machines 8.2.2

Balanced scheduling in a job shop environment is an effective way to ensure jobs are 

finished on time and resources are being used to their full ability.  However, in cases where the 
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traffic intensity is high and the amount of work in process inhibits on-time delivery, the use of 

multiple, identical, parallel machines at the bottleneck workstation could be considered.  The 

proposed heuristics are a good way to handle the scheduling of work, but would need to be 

modified to accommodate multiple parallel machines.  The number of machines at the 

workstation would need to be incorporated into the heuristic.  Another concept that could be 

explored is identifying intelligently which machine should be used for a particular job.  In other 

words, should the jobs with longer processing times be sent to one particular machine, or should 

all families with large setup times get processed on a particular machine.  Uzsoy (1995) explores 

this problem with incompatible job families and utilizes list scheduling as a technique in order to 

minimize maximum completion (Cmax).  He proposes the algorithm Batch Longest Processing 

Time (BLPT) which orders the batches in decreasing order of their processing times, then sends 

the batch to the machine that is available.  This idea is to reduce idle time at the machine.  While 

this works well to reduce Cmax, jobs could be processed on machines too early.  Incorporating 

ORR strategies in this problem could be an effective solution to minimize earliness as well as 

tardiness. 

In a more recent study, Malve and Uzsoy (2005) implement a genetic algorithm to reduce 

maximum lateness (Lmax) on multiple parallel machines with dynamic job arrivals and 

incompatible job families.  In this paper they look at the effects of varying batch sizes, number of 

machines and traffic intensity of job arrivals.  They also extend Uzsoy’s previous algorithm 

RDU to account for multiple parallel machines.  In addition they develop two new heuristics 

which were found to be effective overall, but less effective when the traffic intensity is high or 
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there is a large congestion of work.  Again, in this paper as well as the previous, the author’s 

main performance metric is aligned with minimizes tardiness. 

 Machine scheduling with Job Preemption 8.2.3

 Another assumption that is made in Chapter 3 is that job preemption is not 

allowed.  In other words, jobs with a higher priority could not interrupt the work that is currently 

being processed.  This problem has been studied by researchers such as Jeong and Kim(1998), 

Min and Yih(2003), Upsani and Uzsoy(2008), to name a few.  They focused on using 

dispatching rules real time in order to make scheduling changes as ‘hot’ jobs arrive and interrupt 

current work.   

The experiment would need to examine the number of hot job interruptions, or how 

frequently they occur in the system.  The performance of the ORR strategies and dispatching 

rules can be measured at various intervals of interruptions.  For example, if there is a low 

frequency of interruption, versus medium, or a high number of interruptions. 

Sequence-dependent setups might also play an important role in job shop scheduling 

when there is a requirement to stop current production of a job and accommodate a new job that 

may be of a different family.  It would be interesting to see if the proposed heuristics would be 

robust when batches are split due to interruptions or if they will need to be modified to be more 

robust to the additional setups incurred as a result of preemption. 
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 Due Date Time Windows 8.2.4

Another aspect of the case study is the idea of using due date time windows in which an 

upper and lower bound are present for the due dates.  For the purposes of this research, each job 

had a unique hard due date.  Rather than having a singular due date for each job, it would be 

interesting to explore if those dates had some flexibility and how the proposed heuristics would 

perform against this change.  Koulamas (1996) and Wan and Yen (2002) have researched 

heuristics and algorithms to effectively schedule jobs in order to minimize earliness and 

tardiness.  Koulamas (1996) shows that the scheduling problem, with due date time windows, is 

NP Hard for a single machine. He also proposes several heuristics that are tested at various 

ranges of due dates as well as an average tardiness factor.  He found that his proposed heuristics 

work well when sequencing jobs in order to minimize tardiness and then show how to optimally 

insert idleness time in order to minimize earliness.  This was especially true when altering the 

start time of the job was the main focus when scheduling rather than when the completion time 

of the job will be. 

Wan and Yen(2002) also looks at a single machine and sets the experiments at varying 

job sizes and ranges of due dates as well as a tardiness factor.  They use a tabu search method in 

conjunction with an optimal timing algorithm in order to create a schedule.  In their research, 

tardiness was also more heavily weighted than earliness.  They assumed that tardiness would be 

less desirable than earliness.  The tabu search method used in conjunction with the timing 

algorithm was compared to optimal solutions found by the branch and bound techniques.  The 

proposed methodology proved to be effective in the tested problem instances.  None of the above 
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authors consider, batching, incompatible job families, sequence-dependent setups, or varying job 

arrival rates. 

The proposed heuristics in this research would need to be modified in order to be more 

flexible and to be able to recognize and work with the upper and lower bounds of the due dates, 

rather than focusing on a singular date.  It would also be beneficial to see whether it would be 

more advantageous to shoot for the lower, middle or upper bound of that due date window.  

Scheduling jobs in order to meet the lower bound of the due date window could result in jobs 

being processed too early, and creating unnecessary bottlenecks in the workstation.  However, if 

the jobs are being scheduled with the upper bound in mind, it could create a situation where the 

machines are being under-utilized for a portion of the time, and then over-utilized as the upper 

bound time due date approaches, causing late shipments and a bottleneck later in the delivery 

schedule.  The other thought is to take the approach Koulamas had and focus on the start date of 

the job rather than when the job will be completed in the due date window. 
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APPENDIX A: EQUAL WEIGHTS
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Figure A 1: 95% confidence interval on the performance results for tight due dates, jobs arrive 

simultaneously, 1 family. 
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Figure A 2: 95% confidence interval on the performance results tight due dates, jobs arrive 

simultaneously, 1 family. 
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Figure A 3: 95% confidence interval on the performance results for tight due dates, jobs arrive 

simultaneously, 5 families. 
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Figure A 4: 95% confidence interval on the performance results for tight due dates, jobs arrive 

simultaneously, 5 families. 
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Figure A 5: 95% confidence interval on the performance results for tight due dates, high traffic, 1 

family. 
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Figure A 6: 95% confidence interval on the performance results for tight due dates, high traffic, 1 

family. 
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Figure A 7: 95% confidence interval on the performance results for tight due dates, high traffic, 5 

families. 



134 

 

 

Figure A 8: 95% confidence interval on the performance results for tight due dates, high traffic, 5 

families. 
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Figure A 9: 95% confidence interval on the performance results tight due dates, medium traffic, 

1 family. 
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Figure A 10. 95% confidence interval on the performance results for tight due dates, medium 

traffic intensity,1 family. 
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Figure A 11: 95% confidence interval on the performance results for tight due dates, medium 

traffic, 5 families. 
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Figure A 12: 95% confidence interval on the performance results for tight due dates, medium 

traffic, 5 families. 
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Figure A 13: 95% confidence interval on the performance results for tight due dates, low traffic, 

1 family. 
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Figure A 14: 95% confidence interval on the performance results for tight due dates, low traffic, 

1 family. 
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Figure A 15: 95% confidence interval on the performance results for tight due dates, low traffic, 

5 families. 
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Figure A 16: 95% confidence interval on the performance results for tight due dates, low traffic, 

5 families 



143 

 

 

Figure A 17: 95% confidence interval on the performance results for loose due dates, jobs arrive 

simultaneously, 1 family. 
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Figure A 18: 95% confidence interval on the performance results for loose due dates, jobs arrive 

simultaneously, 1 family. 
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Figure A 19: 95% confidence interval on the performance results for loose due dates, jobs arrive 

simultaneously, 5 families. 
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Figure A 20: 95% confidence interval on the performance results for loose due dates, jobs arrive 

simultaneously, 5 families. 
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Figure A 21: 95% confidence interval on the performance results for loose due dates, high 

traffic, 1 family. 
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Figure A 22: 95% confidence interval on the performance results for loose due dates, high 

traffic, 1 family. 
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Figure A 23: 95% confidence interval on the performance results for loose due dates, high 

traffic, 5 families. 
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Figure A 24: 95% confidence interval on the performance results for loose due dates, high 

traffic, 5 families. 
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Figure A 25: 95% confidence interval on the performance results for loose due dates, medium 

traffic, 1 family. 
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Figure A 26: 95% confidence interval on the performance results for loose due dates, medium 

traffic, 1 family. 
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Figure A 27: 95% confidence interval on the performance results for loose due dates, medium 

traffic, 5 families. 
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Figure A 28: 95% confidence interval on the performance results for loose due dates, medium 

traffic, 5 families. 
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Figure A 29: 95% confidence interval on the performance results for loose due dates, low traffic, 

1 family. 
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Figure A 30: 95% confidence interval on the performance results for loose due dates, low traffic, 

1 family. 
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APPENDIX B: EARLY PENALY =10/TARDY PENALTY =1
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Figure B 1: 95% confidence interval on the performance results for jobs arrive simultaneously, 

tight due dates, 1 family. 
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Figure B 2: 95% confidence interval on the performance results for jobs arrive simultaneously, 

tight due dates, 1 family. 
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Figure B 3: 95% confidence interval on the performance results for jobs arrive simultaneously, 

tight due dates, 5 families. 
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Figure B 4: 95% confidence interval on the performance results for jobs arrive simultaneously, 

tight due dates, 5 Families. 
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Figure B 5: 95% confidence interval on the performance results for tight due dates, high traffic, 1 

family. 
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Figure B 6: 95% confidence interval on the performance results for tight due dates, high traffic, 1 

family. 

 



164 

 

 

Figure B 7: 95% confidence interval on the performance results for tight due dates, high traffic, 5 

families. 
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Figure B 8: 95% confidence interval on the performance results for tight due dates, high traffic, 5 

families. 
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Figure B 9: 95% confidence interval on the performance results for tight due dates, medium 

traffic, 1 family. 
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Figure B 10: 95% confidence interval on the performance results for tight due dates, medium 

traffic, 1 family. 
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Figure B 11: 95% confidence interval on the performance results for tight due dates, medium 

traffic, 5 families. 
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Figure B 12: 95% confidence interval on the performance results for tight due dates, medium 

traffic, 5 families. 
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Figure B 13: 95% confidence interval on the performance results for tight due dates, low traffic, 

1 family. 
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Figure B 14: 95% confidence interval on the performance results for tight due dates, low traffic, 

1 family. 
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Figure B 15: 95% confidence interval on the performance results for tight due dates, low traffic, 

5 families. 



173 

 

 

Figure B 16: 95% confidence interval on the performance results for tight due dates, low traffic, 

5 families. 
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Figure B 17: 95% confidence interval on the performance results loose due dates, 

simultaneously, 1 family. 
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Figure B 18: 95% confidence interval on the performance results for loose due dates, 

simultaneously, 1 family. 
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Figure B 19: 95% confidence interval on the performance results for loose due dates, 

simultaneously, 5 families. 
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Figure B 20: 95% confidence interval on the performance results for loose due dates, 

simultaneously, 5 families. 
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Figure B 21: 95% confidence interval on the performance results for loose due dates, high traffic, 

1 family. 
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Figure B 22: 95% confidence interval on the performance results for loose due dates, high traffic, 

1 family. 
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Figure B 23: 95% confidence interval on the performance results for loose due dates, high traffic, 

5 families. 
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Figure B 24: 95% confidence interval on the performance results for loose due dates, high traffic, 

5 families. 
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Figure B 25: 95% confidence interval on the performance results for loose due dates, medium 

traffic, 1 family. 
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Figure B 26: 95% confidence interval on the performance results for loose due dates, medium 

traffic, 1 family. 
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Figure B 27: 95% confidence interval on the performance results for loose due dates, medium 

traffic, 5 families. 
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Figure B 28: 95% confidence interval on the performance results for loose due dates, medium 

traffic, 5 families. 
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Figure B 29: 95% confidence interval on the performance results for loose due dates, low traffic, 

1 family. 
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Figure B 30: 95% confidence interval on the performance results for loose due dates, low traffic, 

1 family. 
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APPENDIX C: TARDY PENALTY=10/EARLY PENALTY = 1
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Figure C 1: 95% confidence interval on the performance results for tight due dates, jobs arrive 

simultaneously, 1 family. 
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Figure C 2: 95% confidence interval on the performance results for tight due dates, jobs arrive 

simultaneously, 1 family. 
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Figure C 3: 95% confidence interval on the performance results for tight due dates, jobs arrive 

simultaneously, 5 families. 
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Figure C 4: 95% confidence interval on the performance results for tight due dates, jobs arrive 

simultaneously, 5 families. 
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Figure C 5: 95% confidence interval on the performance results for tight due dates, high traffic, 1 

family. 
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Figure C 6: Tight Due Dates, High Traffic, 5 Families 
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Figure C 7: 95% confidence interval on the performance results for tight due dates, high traffic, 5 

families. 
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Figure C 8: 95% confidence interval on the performance results for tight due dates, medium 

traffic, 1 family. 



197 

 

 

Figure C 9: 95% confidence interval on the performance results for tight due dates, medium 

traffic, 1 family. 
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Figure C 10: 95% confidence interval on the performance results for tight due dates, medium 

traffic, 5 families. 
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Figure C 11: 95% confidence interval on the performance results for tight due dates, medium 

traffic, 5 families. 
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Figure C 12: 95% confidence interval on the performance results for tight due dates, low traffic, 

1 family. 
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Figure C 13: 95% confidence interval on the performance results for tight due dates, low traffic, 

1 family. 
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Figure C 14: 95% confidence interval on the performance results for tight due dates, low traffic, 

5 families. 
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Figure C 15: 95% confidence interval on the performance results for tight due dates, low traffic, 

5 families. 
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Figure C 16: 95% confidence interval on the performance results for loose due dates, 

simultaneously, 1 family. 
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Figure C 17: 95% confidence interval on the performance results for loose due dates, 

simultaneously, 1 family. 
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Figure C 18: 95% confidence interval on the performance results for loose due dates, 

simultaneously, 5 families. 
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Figure C 19: 95% confidence interval on the performance results for loose due dates, 

simultaneously, 5 families. 
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Figure C 20: 95% confidence interval on the performance results for loose due dates, high traffic, 

1 family. 
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Figure C 21: 95% confidence interval on the performance results for loose due dates, high traffic, 

1 family. 
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Figure C 22: 95% confidence interval on the performance results for loose due dates, high traffic, 

5 families. 
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Figure C 23: 95% confidence interval on the performance results for loose due dates, high traffic, 

5 families. 
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Figure C 24: 95% confidence interval on the performance results for loose due dates, medium 

traffic, 1 family. 
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Figure C 25: 95% confidence interval on the performance results for loose due dates, medium 

traffic, 1 family. 
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Figure C 26: 95% confidence interval on the performance results for loose due dates, medium 

traffic, 5 families 
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Figure C 27: 95% confidence interval on the performance results for loose due dates, medium 

traffic, 5 families. 
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Figure C 28: 95% confidence interval on the performance results for loose due dates, low traffic, 

1 family. 
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Figure C 29: 95% confidence interval on the performance results for loose due dates, low traffic, 

1 family. 
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