173 research outputs found

    Comparison of resting electroencephalogram coherence in patients with mild cognitive impairment and normal elderly subjects

    Get PDF
    Mild cognitive impairment (MCI) was a condition beginning before more serious deterioration, leading to Alzheimer’s dementia (AD). MCI detection was needed to determine the patient's therapeutic management. Analysis of electroencephalogram (EEG) coherence is one of the modalities for MCI detection. Therefore, this study investigated the inter and intra-hemispheric coherence over 16 EEG channels in the frequency range of 1-30 Hz. The simulation results showed that most of the electrode pair coherence in MCI patients have decreased compared to normal elderly subjects. In inter hemisphere coherence, significant differences (p<0.05) were found in the FP1-FP2 electrode pairs. Meanwhile, significant differences (p<0.05) were found in almost all pre-frontal area connectivity of the intra-hemisphere coherence pairs. The electrode pairs were FP2-F4, FP2-T4, FP1-F3, FP1-F7, FP1-C3, FP1-T3, FP1-P3, FP1-T5, FP1-O1, F3-O1, and T3-T5. The decreased coherence in MCI patients showed the disconnection of cortical connections as a result of the death of the neurons. Furthermore, the coherence value can be used as a multimodal feature in normal elderly subjects and MCI. It is hoped that current studies may be considered for early detection of Alzheimer’s in a larger population

    Electrophysiological findings in migraine may reflect abnormal synaptic plasticity mechanisms. A narrative review

    Get PDF
    Background: The cyclical brain disorder of sensory processing accompanying migraine phases lacks an explanatory unified theory. Methods: We searched Pubmed for non-invasive neurophysiological studies on migraine and related conditions using transcranial magnetic stimulation, electroencephalography, visual and somatosensory evoked potentials.We summarized the literature, reviewed methods, and proposed a unified theory for the pathophysiology of electrophysiological abnormalities underlying migraine recurrence. Results: All electrophysiological modalities have determined specific changes in brain dynamics across the different phases of the migraine cycle. Transcranial magnetic stimulation studies show unbalanced recruitment of inhibitory and excitatory circuits, more consistently in aura, which ultimately results in a substantially distorted response to neuromodulation protocols. Electroencephalography investigations highlight a steady pattern of reduced alpha and increased slow rhythms, largely located in posterior brain regions, which tends to normalize closer to the attacks. Finally, nonpainful evoked potentials suggest dysfunctions in habituation mechanisms of sensory cortices that revert during ictal phases. Conclusion: Electrophysiology shows dynamic and recurrent functional alterations within the brainstem-thalamuscortex loop varies continuously and recurrently in migraineurs. Given the central role of these structures in the selection, elaboration, and learning of sensory information, these functional alterations suggest chronic, probably genetically determined dysfunctions of the synaptic short- and long-term learning mechanisms

    Sensory and cognitive factors in multi-digit touch, and its integration with vision

    Get PDF
    Every tactile sensation – an itch, a kiss, a hug, a pen gripped between fingers, a soft fabric brushing against the skin – is experienced in relation to the body. Normally, they occur somewhere on the body’s surface – they have spatiality. This sense of spatiality is what allows us to perceive a partner’s caress in terms of its changing location on the skin, its movement direction, speed, and extent. How this spatiality arises and how it is experienced is a thriving research topic, compelled by growing interest in the nature of tactile experiences from product design to brain-machine interfaces. The present thesis adds to this flourishing area of research by examining the unified spatial quality of touch. How does distinct spatial information converge from separate areas of the body surface to give rise to our normal unified experience of touch? After explaining the importance of this question in Chapter 1, a novel paradigm to tackle this problem will be presented, whereby participants are asked to estimate the average direction of two stimuli that are simultaneously moved across two different fingerpads. This paradigm is a laboratory analogue of the more ecological task of representing the overall movement of an object held between multiple fingers. An EEG study in Chapter 2 will reveal a brain mechanism that could facilitate such aggregated perception. Next, by characterising participants’ performance not just in terms of error rates, but by considering perceptual sensitivity, bias, precision, and signal weighting, a series of psychophysical experiments will show that this aggregation ability differs for within- and between-hand perception (Chapter 3), is independent from somatotopically-defined circuitry (Chapter 4) and arises after proprioceptive input about hand posture is accounted for (Chapter 5). Finally, inspired by the demand for integrated tactile and visual experience in virtual reality and the potential of tactile interface to aid navigation, Chapter 6 will examine the contribution of tactile spatiality on visual spatial experience. Ultimately, the present thesis will reveal sensory factors that limit precise representation of concurrently occurring dynamic tactile events. It will point to cognitive strategies the brain may employ to overcome those limitations to tactually perceive coherent objects. As such, this thesis advances somatosensory research beyond merely examining the selectivity to and discrimination between experienced tactile inputs, to considering the unified experience of touch despite distinct stimulus elements. The findings also have practical implications for the design of functional tactile interfaces

    Modulation ascendante et descendante de l'intégration supraspinale d'inputs nociceptifs bilatéraux

    Get PDF
    La nociception est un système d’alarme spécialisé dans la détection d’évènements potentiellement nocifs pour l’organisme. Les informations nociceptives sont traitées en priorité par le cerveau et captent l’attention involontairement (un mécanisme ascendant). Cependant, l’information sensorielle à laquelle nous portons attention volontairement est sélectionnée pour être priorisée (un mécanisme descendant). Ainsi, le traitement de l’information nociceptive est déterminé par une balance attentionnelle résultant de la compétition entre les signaux ascendants et descendants. Or, des situations où plusieurs stimuli nociceptifs ont lieu simultanément se produisent couramment. Mais quels mécanismes permettent au système nerveux central de s’adapter à de telles situations? Cela demeure méconnu à ce jour. L’objectif principal de cette thèse était de mieux comprendre les mécanismes d’intégration cérébrale de l’information nociceptive. Cette thèse inclut quatre études examinant l’intégration cérébrale de l’information nociceptive bilatérale dans différentes conditions expérimentales. Dans ces études, nous avons investigué comment l’intégration de l’information nociceptive est affectée par 1) la latéralisation hémisphérique présumée distincte entre les droitiers et les gauchers, 2) la modalité utilisée pour induire la douleur (stimuli laser sélectifs aux nocicepteurs et stimuli électriques non spécifiques), 3) l’attention spatiale et 4) la proximité des régions corporelles stimulées. Dans chaque étude, au moins vingt participants furent recrutés et reçurent soit des stimuli électriques (étude 1 et 3) ou lasers (étude 2 à 4) douloureux. L’activité du cerveau fut enregistrée avec l’électroencéphalographie. Les stimulations unilatérales et bilatérales furent appliquées sur les chevilles (étude 1) et sur les mains (études 2 à 4). Les variables d’intérêts étaient la perception de la douleur, les potentiels évoqués, et les oscillations cérébrales évoquées entre 2 et 100 Hz. Nos résultats indiquent que l’effet le plus reproductible lors d’une stimulation laser ou électrique bilatérale comparée à une stimulation unilatérale, est une augmentation de l’amplitude des réponses cérébrales (potentiels évoqués et oscillations cérébrales dans certaines bandes de fréquences). De plus, la comparaison entre les gauchers et les droitiers indique que ces effets sont comparables malgré la latéralisation hémisphérique présumée. Par ailleurs, l’augmentation des réponses cérébrales est modulée par la proximité des régions corporelles stimulées. Quant à la perception de la douleur, elle augmente pour les stimuli bilatéraux lorsque ces derniers sont appliqués sur les chevilles ou les mains. Pour les mains, cet effet dépend toutefois de la distance entre les mains et de l’attention spatiale, étant observé seulement lorsque les mains sont rapprochées l’une de l’autre ou lorsque l’attention spatiale est dirigée vers les deux mains plutôt qu’une seule. Ces résultats montrent que l’intégration cérébrale de l’information nociceptive bilatérale est modulable, et nous proposons que l’augmentation des réponses cérébrales lors d’une stimulation bilatérale reflète une augmentation de la saillance et de la capture attentionnelle. Cette intégration et sa modulation par différents facteurs permettraient au système nerveux central de produire des réponses adaptées selon les sources de nociception et la balance attentionnelle.Nociception is an alarm system specialized in the detection of events that are potentially harmful to the body. Nociceptive processing is prioritized in the brain and is particularly adept at capturing attention automatically and involuntarily (i.e., a bottom-up mechanism). However, the sensory information to which we voluntarily pay attention (a top-down mechanism) is also prioritized. Thus, the processing of nociceptive information is subject to a bottom-up and top-down attentional balance. However, situations where several nociceptive stimuli take place simultaneously are common. The mechanisms that allow the nervous system to manage this attentional balance in such situations remain poorly understood. The main objective of this thesis was to better understand the integration of nociceptive information. This thesis presents four studies examining the cortical integration of bilateral nociceptive stimuli. These studies investigated the role of 1) the hemispherical lateralization of pain that is presumed to be different between left- and right-handed individuals, 2) the modality (a bottom-up mechanism) used to induce pain, 3) spatial attention (a top-down mechanism), and 4) between-limb proximity in the integration of bilateral painful stimuli. In each study, at least twenty participants were recruited and received either painful but tolerable electrical (Studies 1 and 3) or laser (Studies 2 to 4) stimulation. Brain activity was recorded via electroencephalography. Unilateral and bilateral stimulations were delivered to the ankles (Study 1) and to the hands (Studies 2 to 4). The variables of interest were pain perception, evoked potentials (ERP), and event-related spectral perturbations (ERSP) from 2 to 100 Hz. In the first study, the impact of the hemispherical lateralization of pain processing (located mainly in the right hemisphere) on the integration of pain stimuli was examined by comparing left-handed and right-handed participants. In the second study, lasers selectively activating nociceptors were used to study the integration of bilateral nociceptive stimuli specifically. The third study sought to explain the observed discrepancies between laser and electrical modalities in Studies 1 and 2 by comparing these modalities in the same participants and in two separate experiments. The fourth study explored the role of spatial attention and limb proximity in the integration of bilateral nociceptive stimuli. The results show that bilateral painful stimuli led to increases in ERP and some ERSP frequencies compared to unilateral stimuli. These results were similar between left-handed and right-handed people. More variability was noted for laser compared to electrical stimuli with the most reproducible response being an increase in ERP and ERSP. Finally, this increase was modulated by limb proximity. Pain perception was increased for bilateral stimuli to the ankles. It was also increased for bilateral stimuli to the hands, but only when the limbs were in close proximity or when spatial attention was global. These results suggest that bilateral painful stimuli are integrated, which possibly reflects an increase in salience and attentional capture. This would allow the central nervous system to produce adapted responses in the face of increased danger

    Effets de la stimulation électrique transcrânienne à courant alternatif sur les régions sensorimotrices

    Full text link
    Thèse de doctorat présentée en vue de l'obtention du doctorat en psychologie - recherche intervention, option neuropsychologie clinique (Ph.D)Les oscillations endogènes cérébrales sont associées à des fonctions cognitives spécifiques et jouent un rôle important dans la communication entre les différentes régions corticales et sous-corticales. Les rythmes alpha (8-12 Hz) et bêta (13-30 Hz) ont été observés de façon dominante dans les aires sensorimotrices, avec des moyennes de fréquence autour de 10 et 20 Hz, et jouent un rôle dans les fonctions motrices. Ces oscillations cérébrales peuvent être entrainées par une stimulation externe, notamment par la stimulation électrique transcrânienne par courant alternatif (SEtCA). Ainsi, la SEtCA de 10 et 20 Hz a un effet sur certaines mesures physiologiques comme l’excitabilité corticospinale et la puissance des oscillations via la stimulation magnétique transcrânienne (SMT) et l’électroencéphalogramme (EEG), respectivement. Toutefois, les effets post-stimulation sont variables et parfois incohérents. De plus, à ce jour, aucune étude n’a mesuré les effets physiologiques d’une stimulation bilatérale sensorimotrice tant sur l’activité locale que sur l’interaction entre les deux aires sensorimotrices. Les articles composant le présent ouvrage visent à explorer les effets post-stimulation de deux fréquences de stimulation, soit 10 Hz et 20 Hz, sur les régions sensorimotrices à l’aide d’un montage SEtCA bilatéral. Ce travail de recherche s’est effectué à travers une revue de la littérature ainsi que deux études avec des paramètres méthodologiques relativement similaires, mais avec des mesures différentes et complémentaires de SMT et d’EEG. L’article 1 sert d’assise à la pertinence de l’évaluation de la connectivité entre le cortex moteur et les différentes aires du cerveau. Cet excursus recense et décrit les différents protocoles de stimulation magnétique pairée qui ont été développés au cours des dernières années afin d’évaluer la connectivité effective entre les aires sensorimotrices du cerveau. L’article 2 montre que la SEtCA bilatérale à 10 Hz a permis de réduire l’excitabilité corticospinale via la SMT après la stimulation. La fréquence bêta de 20 Hz n’a cependant mené à aucun changement. De plus, la SEtCA n’a pas modulé de façon significative les mesures d’interaction entre les régions sensorimotrices, telles l’inhibition interhémisphérique et les mouvements miroirs physiologiques. Dans l’article 3, les résultats démontrent que la SEtCA bilatérale à 10 et 20 Hz appliquée sur les aires sensorimotrices peut modifier la puissance des oscillations alpha et bêta après la stimulation. Notons que les résultats étaient associés à une variabilité interindividuelle qui est également rapportée dans la littérature. Ces résultats peuvent avoir des implications dans la conception de protocoles visant à induire des changements persistants dans l'activité cérébrale.Endogenous brain oscillations are associated with specific cognitive functions and are known to have an important role in regimenting communication between cortical and subcortical areas. Alpha (8-12 Hz) and beta (13-30 Hz) rhythms have been observed predominantly in sensorimotor areas, with averages around 10 and 20 Hz, and are believed to play a role in motor functions. These cerebral oscillations can be entrained by external stimulation, in particular by transcranial alternating current stimulation (tACS). Thus, tACS has shown an impact on certain physiological measures such as corticospinal excitability and the power of oscillations via transcranial magnetic stimulation (TMS) and electroencephalogram (EEG), respectively. However, the after-effects are variable and incoherent. In addition, to date no study has measured the physiological effects of a bilateral sensorimotor stimulation montage on both local activity and the interaction between the two sensorimotor areas. Thus, the studies included in the present thesis aim to explore the after-effects of two stimulation frequencies, 10 Hz and 20 Hz, on sensorimotor regions using a bilateral montage. This research was carried out through a review of the literature as well as two methodological studies with relatively similar parameters, but using different and complementary measures of TMS and EEG. Article 1 provides a basis for the relevance of assessing the connectivity between the motor cortex and different areas of the brain. This excursus identifies and describes the different paired magnetic stimulation protocols that have been developed in recent years to assess the effective connectivity between sensorimotor areas of the brain. Study 2 shows that bilateral 10 Hz tACS significantly reduced corticospinal excitability via TMS after stimulation. However, the 20 Hz frequency did not lead to any change. In addition, tACS did not significantly modulate measures of interaction between sensorimotor regions, such as interhemispheric inhibition and physiological mirror movements. In study 3, the results failed to demonstrate reliably that bilateral tACS at 10 and 20 Hz administered over sensorimotor areas could modulate offline alpha and beta oscillations power at the stimulation site. Note that the results were associated with inter-individual variability, which is also reported in the literature. These findings may have implications for the design and implementation of future protocols aiming to induce sustained changes in brain activity

    A Quest for Meaning in Spontaneous Brain Activity - From fMRI to Electrophysiology to Complexity Science

    Get PDF
    The brain is not a silent, complex input/output system waiting to be driven by external stimuli; instead, it is a closed, self-referential system operating on its own with sensory information modulating rather than determining its activity. Ongoing spontaneous brain activity costs the majority of the brain\u27s energy budget, maintains the brain\u27s functional architecture, and makes predictions about the environment and the future. I have completed three separate studies on the functional significance and the organization of spontaneous brain activity. The first study showed that strokes disrupt large-scale network coherence in the spontaneous functional magnetic resonance imaging: fMRI) signals, and that the degree of such disruption predicts the behavioral impairment of the patient. This study established the functional significance of coherent patterns in the spontaneous fMRI signals. In the second study, by combining fMRI and electrophysiology in neurosurgical patients, I identified the neurophysiological signal underlying the coherent patterns in the spontaneous fMRI signal, the slow cortical potential: SCP). The SCP is a novel neural correlate of the fMRI signal, most likely underlying both spontaneous fMRI signal fluctuations and task-evoked fMRI responses. Some theoretical considerations have led me to propose a hypothesis on the involvement of the neural activity indexed by the SCP in the emergence of consciousness. In the last study I investigated the temporal organization across a wide range of frequencies in the spontaneous electrical field potentials recorded from the human brain. This study demonstrated that the arrhythmic, scale-free brain activity often discarded in human and animal electrophysiology studies in fact contains rich, complex structures, and further provided evidence supporting the functional significance of such activity

    Modern Developments in Transcranial Magnetic Stimulation (TMS) – Applications and Perspectives in Clinical Neuroscience

    Get PDF
    Transcranial magnetic stimulation (TMS) is being increasingly used in neuroscience and clinics. Modern advances include but are not limited to the combination of TMS with precise neuronavigation as well as the integration of TMS into a multimodal environment, e.g., by guiding the TMS application using complementary techniques such as functional magnetic resonance imaging (fMRI), electroencephalography (EEG), diffusion tensor imaging (DTI), or magnetoencephalography (MEG). Furthermore, the impact of stimulation can be identified and characterized by such multimodal approaches, helping to shed light on the basic neurophysiology and TMS effects in the human brain. Against this background, the aim of this Special Issue was to explore advancements in the field of TMS considering both investigations in healthy subjects as well as patients
    • …
    corecore