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 Mild cognitive impairment (MCI) was a condition beginning before more 

serious deterioration, leading to Alzheimer’s dementia (AD). MCI detection 

was needed to determine the patient's therapeutic management. Analysis of 

electroencephalogram (EEG) coherence is one of the modalities for MCI 

detection. Therefore, this study investigated the inter and intra-hemispheric 

coherence over 16 EEG channels in the frequency range of 1-30 Hz. The 

simulation results showed that most of the electrode pair coherence in MCI 

patients have decreased compared to normal elderly subjects. In inter 

hemisphere coherence, significant differences (p<0.05) were found in the 

FP1-FP2 electrode pairs. Meanwhile, significant differences (p<0.05) were 

found in almost all pre-frontal area connectivity of the intra-hemisphere 

coherence pairs. The electrode pairs were FP2-F4, FP2-T4, FP1-F3, FP1-F7, 

FP1-C3, FP1-T3, FP1-P3, FP1-T5, FP1-O1, F3-O1, and T3-T5. The 

decreased coherence in MCI patients showed the disconnection of cortical 

connections as a result of the death of the neurons. Furthermore, the 

coherence value can be used as a multimodal feature in normal elderly 

subjects and MCI. It is hoped that current studies may be considered for 

early detection of Alzheimer’s in a larger population. 
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1. INTRODUCTION  

The most prevalent type of dementia was Alzheimer’s disease (AD), characterized by a cognitive 

impairment that has to be more significant for the very elderly than predicted by the usual aging process  

[1], [2]. Early detection of AD was problematic because many of the signs correlate with those of the 

regression associated with natural aging. There was no disease-modifying clinical intervention for dementia 

due to AD, but early diagnosis for complex behavioral and psychological symptoms will allow for improved 

care and treatment planning.  

Mild cognitive impairment (MCI) was mostly the early stage of AD, described as a reduction in 

mental abilities [3]. MCI detection was important to slow down the deterioration process by providing 

appropriate treatment management [4]. The modalities that can be used are medical imaging such as 

magnetic resonance imaging (MRI) scan [5], [6], and positron emission tomography (PET) scan [7], [8]. 

Their study applies automatic classifier algorithms such as support vector machines (SVM) or artificial 

neural networks (ANN), which have proven to generate high detection accuracy. However, they are high cost 

https://creativecommons.org/licenses/by-sa/4.0/
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and may not be used in the near future for evaluation. There was an electroencephalogram (EEG) as a 

solution by considering installation efficiency, cost, and patient safety [9]–[12]. 

Numerous studies have been conducted in recent years to investigate the effects of MCI and AD on 

EEG signals. A single-channel EEG-based MCI detection technique for standard home-based patient 

monitoring was reported by Khatun et al. [13]. Using the Montreal cognitive evaluation test, they assessed 

the cognitive condition and extracted 590 characteristics that achieved classification accuracy of 87.9%. An 

integrated spectral-temporal analysis-based framework for MCI detection using EEG resting-state signals has 

been developed [14]. With stationary wavelet transformation and descriptive statistical analysis, a three-

dimensional discrete feature space was added, with the SVM classifier achieved a maximum accuracy rate of 

96.94%. A machine learning approach to discriminate MCI and normal cases using simple spectral EEG 

characteristics was suggested and obtained a precision of about 88% [15]. Durongbhan et al. [2] developed a 

supervised classification system that classify healthy controls and AD participants using the K-nearest 

neighbor method. It can be seen from the aforementioned literatures that their output outcomes were not 

acceptable and not enough for real world implementation. 

Sharma et al. [16] reported eight EEG biomarkers for the diagnosis of MCI patients. They were 

power spectral density, kurtosis, skewness, spectral skewness, spectral crest factor, spectral kurtosis, spectral 

entropy, and fractal dimension. Normal control and MCI signal classification achieved accuracy ranges from 

73.2% to 89.8%. McBride et al. [17] conducted spectral and complexity analysis of MCI and early AD scalp 

EEG characteristics, achieving an average accuracy of 79.2%. Engedal et al. [18] observed the EEG power to 

predict the subjective cognitive decline and MCI. Hagery et al. [19] carried out methodological advances in 

Alzheimer's disease's diagnostic performance using ensemble approaches. Three types of ensemble methods, 

Boosting, Bagging, and Stacking, used to process the open access series of imaging studies (OASIS) clinical 

data collection. The methods were combined with the decision tree algorithm. The results of the proposed 

random forest (Bagging) obtained the highest accuracy of 96.66 %. 

The quantitative EEG (qEEG) was performed to identifying patients with subjective cognitive 

decline (SCD) and MCI who have a high risk of deterioration over a 5-year period to dementia. However, 

because the method's discriminatory power was mild, it should be applied to other routine diagnostic 

techniques, such as cognitive assessments and other bio-markers. MCI generally uses power spectral density 

analysis in the delta, theta, alpha, beta, and gamma bands. It was found that in AD, MCI patients was 

characterized by an increase of delta and theta frequencies [20]. The disadvantage of the power spectral 

density approach is that it is biased because the EEG signal is mixed with a large amount of low frequency 

noise due to blinking artifacts and eye movement. Therefore, another quantitative approach is needed to 

support the analysis, one of which is the EEG coherence method [21], [22]. Based on the study by Tsolaki  

et al. [20], coherence analysis allows for the characterization of AD. Thus, coherence measurement is 

thought to be a modality in early detection of AD Coherence is a calculation of the covariation of the two 

EEG signal spectra. Evidence of structural and functional relations between cortical areas underlying the 

recording electrodes has been considered to be high coherence between two EEG signals [23], [24]. 

In this study, we investigated inter and intra-hemispheric coherence over 16 EEG channels in the 

frequency range of 1-30 Hz EEG in MCI patients and normal elderly subjects. The coherence analysis in this 

study is expected to complement the spectral analysis which was previously applied to the same dataset in the 

study [15]. The t-test was conducted to find significant differences between the two groups observed. The 

proposed method is expected to support clinical diagnosis in early detection of Alzheimer's. 

 

 

2. MATERIAL AND RESEARCH METHOD  

There were three main processes done in this study to observe the EEG coherence in patients with 

MCI and normal elderly subjects. The first was the artifact removal by applying the bandpass filter using the 

4th order of butterworth filter. Channel or electrode pair was arranged following the inter and 

intrahemispheric location of the brain. There were 16 electrodes used in this process, FP1, FP2, F7, F3, FZ, 

F4, F8, T3, C3, CZ, C4, T4, T5, P3, PZ, P4, T6, O1, and O2. The coherence value was measured from the 

electrode pairs, which were then analyzed to see the change between the MCI and the normal subjects. This 

process was expressed in Figure 1. 

 

2.1.  MCI and normal EEG data 

This study used EEG recording of 27 subjects from the EEG signals database: 

https://misp.mui.ac.ir/en/eegdata. The data consist of 16 normal elderly subjects and 11 patients with MCI 

[15]. This dataset was taken from patients admitted to the cardiac catheterization units of the Nour and Sina 

Hospitals, Isfahan, Iran. The patients were having a history of coronary angiography over the past year in the 

age range of 60-77 years and minimum elementary school background. Normal and MCI parameters were 

differentiated based on the mini-mental state examination (MMSE) score diagnosed using neuropsychiatry 
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unit cognitive assessment (NUCOG) tool, where 21-26 scores for MCI and normal scores above 26. Subject 

demographics are summarized in Table 1. 

 

 

 
 

Figure 1. General process of EEG coherence measurement in MCI patients 

 

 

Table 1. Resume demographics and cognitive scores 
Parameter MCI Normal 

Age (years) 66.4±4.6 65.3±3.9 

Education (years) 10.3±3.8 11.1±3 

MMSE 27.6±0.9 29±0.8 
Cognitive assessment tool 82.4±3.6 91.1±3 

 

 

This EEG was recorded in the morning for 30 minutes from 19 electrodes using the galileo NT 

EEG, which 32 digital channels, 256Hz of sampling rate, and electrodes skin impedance was less than 5 kΩ. 

During the recording, the patients closed their eyes but was prohibited from getting sleepy. All EEG signals 

were issued from patients with a history of head trauma, major psychiatric disorders, dementia, substance 

abuse, and serious medical illnesses. 

 

2.2.  EEG coherence 

The EEG coherence was a normalized measure of the functional connectivity between brain regions 

[25], namely signal channel x and signal channel y at any given particular frequency band [24]. Generally, 

EEG coherence analysis was carried out for the traditional four or five frequency bands: gamma  

(γ=25-50 Hz), beta (𝛽 = 13-25 Hz), alpha (∝ = 8-13 Hz)theta (𝜃 = 4-8 Hz), and delta (𝛿 = 0.5-4 Hz) [26], 

[27]. In this study, coherence was measured in the range 1-30Hz. These are thought to represent the 

traditional bands. This measurement was investigated by computing the interhemispheric and 

intrahemispheric cross mutual information [28]. The interhemispheric coherence conducted by computing the 

functional connectivity between brain hemispheres (left and right) [29]. While the intrahemispheric 

coherence conducted by computing the functional connectivity between electrodes in the same brain area 

(left and right) [30]. The EEG coherence values for each frequency band is the extension of the pearson’s 

correlation formulated by (1) [31], [32]: 

 

𝐶𝑜ℎ𝑥𝑦(𝑓) =
|𝑊𝑥𝑦|

2
(𝑓)

𝑊𝑥(𝑓). 𝑊𝑦(𝑓)
 

(1) 

 

where, 𝐶𝑜ℎ𝑥𝑦  𝑖𝑠 estimated coherence value in the range of 0-1 [33], f is frequency, 𝑊𝑥(𝑓) is the PSD of 

signal 𝑥, 𝑊𝑦(𝑓) is the PSD of signal 𝑦 and 𝑊𝑥𝑦(𝑓) is cross spectral density between the two brain region. If 

the coherence value approaches=1, it means that the x and y signals are similar. Since the original EEG 

record consisted of 19 channels which included three central electrodes (Fz, Cz and Pz), then 16 electrodes 

were selected to make the symmetrical coherence pair. Coherence was measured on the electrode pairs based 

on studies [34], [35]. Table 2 shows the measured inter and intrahemispheric electrode pairs. 

 

 

Table 2. Inter and intrahemispheric electrode pairs investigated in this study 
Electrode Pairs 

Interhemispheric Right Intrahemispheric Left Intrahemispheric 

FP1-FP2, F3-F4, F7-F8, 

T7-T8, C3-C4, P3-P4, P7-

P8, O1-O2 

FP2-F4, FP2-F8, FP2-C4, FP2-T4, FP2-P4, 

FP2-T6, FP2-O2, F4-F8, F4-C4, F4-T4, F4-P4, 

F4-T6, F4-O2, F8-C4, F8-T4, F8-P4, F8-T6, F8-
O2, C4-T4, C4-P4, C4-T6, C4-O2, T4-P4, T4-

T6, T4-O2, P4-T6, P4-O2, T6-O2 

FP1-F3, FP1-F7, FP1-C3, FP1-T3, 

FP1-P3, FP1-T5, FP1-O1, F3-F7, F3-

C3, F3-T3, F3-P3, F3-T5, F3-O1, F7-
C3, F7-T3, F7-P3, F7-T5, F7-O1, C3-

T3, C3-P3, C3-T5, C3-O1, T3-P3, T3-

T5, T3-O1, P3-T5, P3-O1, T5-O1 

 

MCI EEG 

Dataset

Band Pass Filter

(1 - 30 Hz)

Channel Pairs 

(Interhemisphere and 

Intrahemisphere)

Coherence 

Measurement
Post Analysis
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3. RESULTS AND DISCUSSION 

Raw EEG signals were pre-processed using a digital filter ranging from 1-30 Hz. Low filter and 

pass filter (IIR Butterworth mode) with a response frequency of 30 Hz and 1 Hz respectively were performed 

in this stage. Then the coherence value was calculated for all electrode pairs, following the pairing as shown 

in Table 2.  

 

3.1.  Interhemispheric coherence 

Interhemispheric coherence represents cortical connectivity between the right and left-brain areas. 

The coherence of the eight electrode pairs (frontal, parietal, central, temporal, and occipital) was calculated. 

The results of mean interhemispheric coherence are shown in Figure 2. It showed that the mean 

interhemispheric coherence in patients with MCI was lower than the normal group. An Independent t-test 

with a 95% confidence level showed that the FP1-FP2 electrode pair generated a significant difference  

(p<0.05) between MCI and normal. 

 

 

 
 

Figure 2. Mean interhemispheric coherence for MCI and normal subjects 

 

 

3.2.  Intrahemispheric coherence 

Intrahemispheric coherence conducted by measuring the functional connectivity between electrodes 

in the same brain area including right and left intrahemispheric. Twenty-eight pairs of electrodes (local and 

distal) in each right and left region were investigated. The results of right intrahemispheric coherence are 

shown in Figure 3(a) and the left intrahemispheric coherence are shown in Figure 3(b). These results are 

consistent with the investigation of interhemispheric coherence where the mean intrahemispheric coherence 

MCI is lower than normal, found in almost all electrode pairs. In the right intrahemispheric, a significant 

difference (p<0.05) is generated by the FP2-F4 and FP2-T4 pairs while the left intrahemispheric is generated 

by FP1-F3, FP1-F7, FP1-C3, FP1-T3, FP1-P3, FP1-T5, FP1-O1, F3-O1 and T3-T5 pairs. 

Coherence analysis represents the functional connectivity of neurons through the synapse network in 

response to stimuli. Disruption or decreased connectivity between brain areas indicates a functional 

abnormality in this case is a cognitive impairment. Generally, MCI patients have a lower coherence value 

compared to normal subjects. These results are consistent with the analysis of coherence related to the MCI 

and Alzheimer's as reported in [36]–[38]. In interhemispheric, a significant decrease in coherence was found 

in the frontal area of the brain. In the Alzheimer's progression analysis, deterioration of function in the frontal 

area of the brain is strongly presumed as the onset of Alzheimer's [39], [40]. The intrahemispheric coherence 

analysis showed a significant decrease in frontal-temporoparietal-central-occipital network connectivity, 

which was significantly found in the FP1 electrode pair. Decreased intrahemispheric coherence in MCI 

patients is related to disconnection of cortico-cortical connectivity which connects the temporoparietal, 

occipital areas with the frontal areas [41]. 

Studies related to EEG coherence have long been reported to analyze the progress of Alzheimer's 

including early detection through the EEG characterization of MCI patients. The coherence measurement 

shows a decrease in MCI patients as a marker of decline in connectivity between brain areas. Beta amyloid 

plaque formation and the death of a number of neurons are closely related to decreased connectivity function 

[41]. In the practical domain, the method proposed in this study is more efficient than the previous studies, 

because it does not compute in detail the signal coherence of each band (delta, theta, alpha, beta, and 

gamma). So, it has less features and will simplify the analysis. However, to support this hypothesis, further 

simulations are needed, for example performing validation using the classification method. Thus, it can be 

* indicate p<0.05 
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seen the performance of the proposed method in MCI detection. Moreover, it is also necessary to validate the 

proposed method in larger dataset. 

 

 

 
(a) 

 

 
(b) 

 

Figure 3. Mean intrahemispheric coherence: (a) right intrahemispheric and (b) left intrahemispheric 

 

 

4. CONCLUSION 

This study investigated the coherence of EEG signals in MCI patients and normal subjects. This 

study aims to obtain the feature of each group observed so that the coherence value can be a candidate for 

early Alzheimer’s detection based on EEG analysis. We measured the coherence of the electrode pairs, both 

of interhemispheric and intrahemispheric. The results showed that the mean coherence in MCI patients was 

lower than in normal subjects. For interhemispheric coherence, significant differences (p<0.05) were found in 

the FP1-FP2 pairs. Meanwhile, for intrahemispheric coherence, a significant difference is generated by  

FP2-F4, FP2-T4, FP1-F3, FP1-F7, FP1-C3, FP1-T3, FP1-P3, FP1-T5, FP1-O1, F3-O1, and T3-T5 pairs. This 

indicates a decrease in coherence due to pathological changes in neuronal network connectivity. There was a 

deterioration of connectivity due to the death of a number of neurons and broken off of the synaptic pathway 

due to beta-amyloid plaque.  

Coherence measurement can provide important information in the analysis of the severity of 

Alzheimer's and early detection. The coherence measures presented in this study may be more efficient than 

the detailed coherence calculations on the traditional EEG band. However, the number of extracted features 

will be less compared to the coherence analysis for each of the traditional EEG bands. We assume that the 

coherence measurement in the wideband represents the conditions for measuring the coherence of delta, 

theta, alpha, and beta. Further validation can be observed by simulating an automatic classifier method so 

that accuracy, sensitivity, and specificity can be known. Finally, it can be seen the performance of the 

proposed method. This study is expected to be a reference for neurology and medical practitioners, as 

* indicate p<0.05 

* indicate p<0.05 
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additional diagnostic criteria for MCI or Alzheimer's. EEG coherence analysis in one frequency band will be 

more efficient than the detailed analysis of delta, theta, alpha, and beta bands. 
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