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It is challenging to recognize human hand grasp movements through electromyogram (EMG) 
signals. In this paper, EMG-EMG coherence measure is used to describe correlations of EMG 
recordings during different hand grasp movements. Meanwhile, linear discriminant analysis (LDA) 
is utilized to evaluate the performance of the EMG-EMG coherence measure for identifying the 
grasp movements. Experimental results show that the EMG-EMG coherence measure is effective to 
extract correlations among EMG recordings, with which different types of hand grasp movements 
have been successfully distinguished. It is shown that the EMG-EMG coherence measure might be a 
potential tool to reveal the EMG-EMG correlation between the intermuscular interactions during 
hand grasp movements. 
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1. Introduction

The electromyogram (EMG) signal is a measure of the summed activity of a number of 
motor unit action potentials (MUAP) lying in the vicinity of the recording electrode,1 
which contains rich information about users’ motion intention and thus can be utilized in 
the control of rehabilitation devices and assistive robots, such as the prosthetic hand or 
exoskeleton.2,3 Assiduous efforts have been made in recent years to improve 
classification accuracy of EMG signals during human hand movements.4,5 Current 
tendency of EMG-based prosthetic hand is to enable users to perform complex grasps or 
manipulations with natural muscle movements.6,7  

To use EMG signals as command and/or control signals of prosthetic hand, a number 
of methods have been proposed to extract valuable information from EMG signals 
ranging from traditional linear methods such as time and frequency analysis to nonlinear 
methods.8 Graupe et al. used an autoregressive (AR) model to represent EMG signals, 
and motions were determined based on the parameters of the AR model.9 Bu et al. 
proposed a system using five EMG electrodes and a combination of Bayesian and neural 
networks to classify both location and motion in a cooking task.10 Chu et al. used a 
wavelet packet transform to extract a feature vector form EMG signals and a combination 
of multilayer perceptron network to classify nine hand motions.11 On the other 
hand, 
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Tenore et al. proposed a system using traditional time-domain features of EMG signals 
and a multilayer perceptron as a classifier, which can identify ten finger movements with 
the recognition greater than 90%.12 Ju et al. investigated and evaluated nonlinear 
approaches to extract EMG signal features and to identify different types of manipulation 
motions including different hand grasps and in-hand manipulations.13 The experimental 
results demonstrated the proposed nonlinear measures provide important supplemental 
information and the combination of linear and nonlinear measures of EMG signals could 
achieve the highest recognition rate of 96.7%.  

To some extent, results of these experiments indicate that hand movements can be 
identified by a system consisting of EMGs and a classifier.14 There are still some 
shortcomings in aforementioned studies, which have generally focused on the EMG 
activity of a single agonist muscle. However, hand grasping and manipulation often 
involve the recruitment of multiple muscles acting across multiple joints. The 
intermuscular interaction plays an important role in the hand grasp movements.15 More 
recently, coherence measures derived from pairs of EMGs recorded over synergist 
muscles (i.e., EMG-EMG coherence) have been used and are thought to provide a more 
representative measure of rhythmic activity across muscles.16,17 Farmer et al. found 
significant coherence in the frequency band from 16 to 32 Hz that appears related to 
specific motor parameters.18 Baker et al. found that coherence between cortical neurons 
and EMGs was modulated in a task-dependent manner from 20 to 30 Hz in primates 
performing precise hand tasks and that EMG–EMG coherence from intrinsic hand and 
forearm muscles was modulated similarly in humans performing the same task.19 
Coherence can be used as an index of muscle coordination between pairs of muscles by 
identifying the strength and periodicity of common frequency characteristics between two 
EMG signals.20 Motivated by the merits of EMG-EMG coherence analysis, this study 
aims to explore whether the coherence measure can be effectively used to represent the 
intermuscular interactions during hand grasp movements. 

2. Materials and methods

Eight (2 female, 6 male) healthy right-handed subjects were volunteered for this study. 
Their ages range from 23 to 40 and average is 32.5 years; body height average is 175.5 
cm; body mass average is 70 kg. All participants gave informed consent prior to the 
experiments according to the University of Portsmouth CCI Faculty Ethics Committee. 

2.1.   Experimental Procedure 

The experiment consists of both freely and different grasp gestures. Each type of grasps 
is repeated 10 times. Every motion lasts about 2 seconds. Between every two repetitions, 
participants had to relax the hand for 2 seconds in the intermediate state which is opening 
hand naturally without any muscle contraction. Once one motion with ten repetitions was 
finished, participants had to relax the hand for 2 minutes before the next motion started. 
This was designed to overcome the effects of muscle fatigue. 



2.2.   Data Collection 

The two EMG electrodes are applied to the subject’s right forearm muscles, i.e. flexor 
pollicis longus (FPL) and flexor digitorum profundus (FDP). The sEMG data are 
recorded using DataLINK system from Biometrics LTD with a gel-skin contact area of 
about 4 cm2 for each bipolar electrode and a centre to centre recording distance of 20 
mm. The sampling frequency of DataLINK system in our experiment was set to be
1000Hz and sEMG signals were amplified 1000 times and bandwidth is 10 to 300 Hz
using a sEMG amplifier (SX230FW sEMG Amplifier, Biometrics LTD). To obtain good-
quality signals, subjects were scrubbed with alcohol and shaved if necessary and then
electrodes were applied over the body using the die cut medical grade double sided
adhesive tape. Electrodes locations were selected according to the Musculoskelet of these
four muscles and confirmed by muscle specific contractions, which include manually
resisted finger flexion, extension and abduction. The captured sEMG signals were
visualized on a computer screen giving participants feedback to choose the positions of
electrodes with stronger sEMG signals.

To investigate the pattern of EMG-EMG coherence during different grasp gestures, 
EMG signals are selected and dissected from no action (dataset I), Grasp a disc using two 
fingers (dataset II), Grasp a can with three fingers (dataset III), and Grasp a ball with five 
fingers (dataset IV) intervals. In this study, 80 2-channel 1-sec EMG epochs are selected 
for each dataset. Short (1-sec) EMG signals are used since the duration of the grasp 
gesture is only about a few seconds. 

2.3.   Coherence analysis 

Coherence provides the cross-correlation between two sEMG signals at each frequency 
of the signals. It ranges from 0 to 1 with higher value representing higher correlation. In 
this study, Capon's nonparametric spectral estimation which is known as the “minimum 
variance distortionless response” (MVDR) with window length of 100 points and 
frequency resolution of 1 Hz was used.21 MVDR spectral estimation is based on the 
output of a bank of filters where the bandpass filters are both data and frequency 
dependent in comparison to parametric periodogram approach, which is both data and 
frequency independent.22 The details of MVDR can be found in Benesty et al. 2005.21 

2.4.   Statistical analysis 

Significant differences in EMG-EMG coherece values at the specified frequency among 
the different hand grasp movements are tested with one-way ANOVA with Scheffe's 
post-hoc test. Our a priori hypothesis is that hand grasp would cause an increase in 
coherence levels. Differences were considered to be statistically significant at P<0.05. 



2.5.   Linear Discriminant Analysis 

LDA is adopted to evaluate the capability and effectiveness of the coherence measures in 
classifying different hand grasp movements. The basic idea of LDA is to project high-
dimensional data onto a low-dimensional space such that data are reshaped to maximize 
the class separability.23 Consider a classification problem with K classes ( 2≥K ). 
Suppose the data contain M observations Miyx ii ,,2,1),,( != , with p

i Rx ∈  and
},,2,1{ Kyi !∈ . LDA is to find the linear combination xc'  which maximizes the ratio

of WccBcc '' , which B and W denote the pp×  between-class and within-class 
covariance matrices, respectively, defined by: 
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where )(kµ  and Kkk ,,2,1,ˆ !=Σ , are the sample means and covariance matrices of
each class (with kn  samples) and µ  is the total sample mean vector. The maximization 
problem in LDA is equivalent to solving the eigenproblem: 0)( 1 =−− cIBW λ . Thus, if W 
is a non-singular matrix, Fisher’s criterion is maximized when the projection matrix c is 
composed of the eigenvectors of BW 1−  with at most K-1 corresponding non-zero 
eigenvalues.23 

3. Results

The MVDR method is used to estimate the EMG-EMG coherence between the FPL and 
FDP muscles during the diferrent hand grasp movements. In this study, the window 
length L is selected as 100; the sampling frequency of EMG recordings is 1000 Hz; and 
the resolution parameter K is set to be 500. Therefore, the EMG power spectrum is 
computed with the resolution of 1 Hz. As an example, the raw EMG recordings and their 
corresponding power spectra are presented in Fig. 1. An evident increase in the EMG 
amplitude and in a wide frequency range of EMG power spectrum is observed in both 
FPL and FDP muscles, during the hand grasp an object. Then, based on the EMG power 
spectrum and EMG-EMG cross power spectrum between the FPL and FDP muscles, the 
EMG-EMG coherence can be obtained. As shown in Fig. 2, the values of EMG-EMG 
coherence from hand grasp an objective is much higher than those from no action in a 
wide frequency range. 



Fig. 1. Examples of raw EMG recordings from the muscles FPL (left) and FDP (right) and their corresponding 
power spectrum for four different hand movements, i.e. the no action (A), grasp a disc (B), grasp a can (C), and 
grasp a ball (D). 

Fig. 2. Patterns of EMG-EMG coherence over the frequency range 10-300 Hz during four different hand 
movements, i.e. the no action (A), grasp a disc (B), grasp a can (C), and grasp a ball (D). 

Next, the MVDR method is applied to analysing all EMG data. The mean EMG-
EMG coherence between the FPL and FDP muscles are presented in Fig. 3. It is found 
that the pattern of EMG-EMG coherence is changed for different hand grasp movements. 
A significant increase in EMG-EMG coherence during grasp a disc, when compared with 
the no action, is observed in the most frequency range 10-300 Hz (gray areas in Fig. 3A). 
The values of EMG-EMG coherence showed a significant increase in the frequency range 
10-137, 152-165 and 168-184 Hz from no action to grasp a can (gray areas in Fig. 3B)



and a significant increase in frequency range 10-138 Hz from no action to grasp a ball 
(gray areas in Fig. 3C) but there was no significant changes in the higher frequency band. 
Major headings should be typeset in boldface with the first letter of important words 
capitalized. 

Fig. 3. Mean EMG-EMG coherence during the no action (line) and during the hand grasp movements (thick 
line), including grasp a disc (A), grasp a can (B), and grasp a ball (C). Grey areas represent the significant 
differences (p<0.05) between the EMG-EMG coherence at the corresponding frequency. 

Then, in order to investigate whether their distributions over the four groups are 
significantly different, the one-way ANOVA with Scheffe’s post-hoc test is used for 
mean coherence values on the frequency bands 10-30 Hz, 31-60 Hz 61-120 Hz, 121-200 
Hz, and 200-300 Hz, respectively. The population distribution of the coherence of each 
frequency band is shown in Fig. 4 as boxplot. At the frequency band 10-30 Hz, it is found 



that there is significant difference among the EMG-EMG coherence values during four 
diferrent hand movements. Moreover, a gradual increase in EMG-EMG coherence is 
observed from the no action, grasp a disc, grasp a can, to grasp a ball. At the frequency 
band 31-60 Hz and 61-120 Hz, it can also be found that the mean coherence values 
during the no action has significantly lower values than those during grasp a disc, grasp a 
can, and grasp a ball. However, the differences of coherence values can not be 
distinguished among the hand movements of grasp a disc, grasp a can and grasp a ball. 
Similar statistical results can also be obtained from the higher frequency bands, 120-200 
Hz and 201-300 Hz, at which the differences of coherence values can not be 
distinguished among the hand grasp movements. 

Fig.4. Boxplots for the EMG-EMG coherence at the specified frequency bands, grouped by the no action (I), 
grasp a disc (II), grasp a can (III), and grasp a ball (IV). Asterisks represent p-values resulting from a pair-wise 
comparison of the EMG-EMG coherence. Single asterisk (*) represents p<0.05; double asterisk (**) represents 
p<0.01. 

Finally, the ability and effectiveness of the above coherence measures in classifying 
the different hand grasp movements is evaluated using a LDA algorithm. The calculated 
coherence measures are used as input data with 291 features (dimension of the extracted 
feature vectors – coherence on frequency range 10 to 300 Hz) in the LDA classifier. As 
shown in Fig. 5, these features are projected onto a two-dimensional space and the data 
are separated into well-defined clusters. The classification results are illustrated in Table 
1, which show that LDA correctly classifies 313 out of 320 subjects, giving 
approximately 97.8% separability. 



Fig. 5. Linear discriminant analysis of four groups, i.e, the no action, grasp a disc, grasp a can, and grasp a ball. 
The high dimensional feature vectors are projected down to two dimensions.  

Table 1.  Classification results with EMG-EMG coherence measures 

Desired result 
Ouput result 

Free Disc Can Ball 
Free 80 0 0 0 
Disc 0 80 0 0 
Can 0 0 77 3 
Ball 0 0 4 76 

4. Conclusions

In this study, we have analyzed the EMG-EMG correlations between EMG signals during 
different hand grasp movements using the MVDR coherence method. It is found that the 
values of EMG-EMG coherence from hand grasping an objective are significant higher 
than those from no action in a wide frequency range. Moreover, our results have shown 
that there is a significant difference in the pattern of EMG-EMG coherence between the 
FPL and FDP muscles during different hand grasp movements. Finally, the LDA 
classifier is applied to evaluate the performance of EMG-EMG coherence measures to 
discriminate among four hand grasp movements. A total classification accuracy of 97.8% 
is achieved. These results suggest that the EMG-EMG coherence measure has potential in 
identifying the EMG signals from different hand grasp movements. 
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