302 research outputs found

    CLOSED-LOOP AFFERENT NERVE ELECTRICAL STIMULATION FOR REHABILITATION OF HAND FUNCTION IN SUBJECTS WITH INCOMPLETE SPINAL CORD INJURY

    Get PDF
    Peripheral nerve stimulation (PNS) is commonly used to promote use-dependent cortical plasticity for rehabilitation of motor function in spinal cord injury. Pairing transcranial magnetic stimulation (TMS) with PNS has been shown to increase motor evoked potentials most when the two stimuli are timed to arrive in the cortex simultaneously. This suggests that a mechanism of timing-dependent plasticity (TDP) may be a more effective method of promoting motor rehabilitation. The following thesis is the result of applying a brain-computer interface to apply PNS in closed-loop simultaneously to movement intention onset as measured by EEG of the sensorimotor cortex to test whether TDP can be induced in incomplete spinal cord injured individuals with upper limb motor impairment. 4 motor incomplete SCI subjects have completed 12 sessions of closed-loop PNS delivered over 4-6 weeks. Benefit was observed for every subject although not consistently across metrics. 3 out of 4 subjects exhibited increased maximum voluntary contraction force (MVCF) between first and last interventions for one or both hands. TMS-measured motor map volume increased for both hemispheres in one subject, and TMS center of gravity shifted in 3 subjects consistent with studies in which motor function improved or was restored. These observations suggest that rehabilitation using similar designs for responsive stimulation could improve motor impairment in SCI

    A LightGBM-Based EEG Analysis Method for Driver Mental States Classification

    Get PDF
    Fatigue driving can easily lead to road traffic accidents and bring great harm to individuals and families. Recently, electroencephalography- (EEG-) based physiological and brain activities for fatigue detection have been increasingly investigated. However, how to find an effective method or model to timely and efficiently detect the mental states of drivers still remains a challenge. In this paper, we combine common spatial pattern (CSP) and propose a light-weighted classifier, LightFD, which is based on gradient boosting framework for EEG mental states identification. ,e comparable results with traditional classifiers, such as support vector machine (SVM), convolutional neural network (CNN), gated recurrent unit (GRU), and large margin nearest neighbor (LMNN), show that the proposed model could achieve better classification performance, as well as the decision efficiency. Furthermore, we also test and validate that LightFD has better transfer learning performance in EEG classification of driver mental states. In summary, our proposed LightFD classifier has better performance in real-time EEG mental state prediction, and it is expected to have broad application prospects in practical brain-computer interaction (BCI)

    Enhanced feature selection algorithm using ant Colony Optimization and fuzzy memberships

    Full text link
    Feature selection is an indispensable pre-processing step when mining huge datasets that can significantly improve the overall system performance. This paper presents a novel feature selection method that utilizes both the Ant Colony Optimization (ACO) and fuzzy memberships. The algorithm estimates the local importance of subsets of features, i.e., their pheromone intensities by utilizing fuzzy c-means (FCM) clustering technique. In order to prove the effectiveness of the proposed method, a comparison with another powerful ACO based feature selection algorithm that utilizes the Mutual Information (MI) concept is presented. The method is tested on two biosignals driven applications: Brain Computer Interface (BCI), and prosthetic devices control with myoelectric signals (MES). A linear discriminant analysis (LDA) classifier is used to measure the performance of the selected subsets in both applications. Practical experiments prove that the new algorithm can be as accurate as the original method with MI, but with a significant reduction in computational cost, especially when dealing with huge datasets

    Spatial distribution of HD-EMG improves identification of task and force in patients with incomplete spinal cord injury

    Get PDF
    Background: Recent studies show that spatial distribution of High Density surface EMG maps (HD-EMG) improves the identification of tasks and their corresponding contraction levels. However, in patients with incomplete spinal cord injury (iSCI), some nerves that control muscles are damaged, leaving some muscle parts without an innervation. Therefore, HD-EMG maps in patients with iSCI are affected by the injury and they can be different for every patient. The objective of this study is to investigate the spatial distribution of intensity in HD-EMG recordings to distinguish co-activation patterns for different tasks and effort levels in patients with iSCI. These patterns are evaluated to be used for extraction of motion intention.; Method: HD-EMG was recorded in patients during four isometric tasks of the forearm at three different effort levels. A linear discriminant classifier based on intensity and spatial features of HD-EMG maps of five upper-limb muscles was used to identify the attempted tasks. Task and force identification were evaluated for each patient individually, and the reliability of the identification was tested with respect to muscle fatigue and time interval between training and identification. Results: Three feature sets were analyzed in the identification: 1) intensity of the HD-EMG map, 2) intensity and center of gravity of HD-EMG maps and 3) intensity of a single differential EMG channel (gold standard).; Results show that the combination of intensity and spatial features in classification identifies tasks and effort levels properly (Acc = 98.8 %; S = 92.5 %; P = 93.2 %; SP = 99.4 %) and outperforms significantly the other two feature sets (p < 0.05).; Conclusion: In spite of the limited motor functionality, a specific co-activation pattern for each patient exists for both intensity, and spatial distribution of myoelectric activity. The spatial distribution is less sensitive than intensity to myoelectric changes that occur due to fatigue, and other time-dependent influences.Peer ReviewedPostprint (published version

    Advancing Motor Imagery based BCI and its Applications

    Get PDF

    Biosignal‐based human–machine interfaces for assistance and rehabilitation : a survey

    Get PDF
    As a definition, Human–Machine Interface (HMI) enables a person to interact with a device. Starting from elementary equipment, the recent development of novel techniques and unobtrusive devices for biosignals monitoring paved the way for a new class of HMIs, which take such biosignals as inputs to control various applications. The current survey aims to review the large literature of the last two decades regarding biosignal‐based HMIs for assistance and rehabilitation to outline state‐of‐the‐art and identify emerging technologies and potential future research trends. PubMed and other databases were surveyed by using specific keywords. The found studies were further screened in three levels (title, abstract, full‐text), and eventually, 144 journal papers and 37 conference papers were included. Four macrocategories were considered to classify the different biosignals used for HMI control: biopotential, muscle mechanical motion, body motion, and their combinations (hybrid systems). The HMIs were also classified according to their target application by considering six categories: prosthetic control, robotic control, virtual reality control, gesture recognition, communication, and smart environment control. An ever‐growing number of publications has been observed over the last years. Most of the studies (about 67%) pertain to the assistive field, while 20% relate to rehabilitation and 13% to assistance and rehabilitation. A moderate increase can be observed in studies focusing on robotic control, prosthetic control, and gesture recognition in the last decade. In contrast, studies on the other targets experienced only a small increase. Biopotentials are no longer the leading control signals, and the use of muscle mechanical motion signals has experienced a considerable rise, especially in prosthetic control. Hybrid technologies are promising, as they could lead to higher performances. However, they also increase HMIs’ complex-ity, so their usefulness should be carefully evaluated for the specific application

    Corticomuscular co-activation based hybrid brain-computer interface for motor recovery monitoring

    Get PDF
    The effect of corticomuscular coactivation based hybrid brain-computer interface (h-BCI) on post-stroke neurorehabilitation has not been explored yet. A major challenge in this area is to find an appropriate corticomuscular feature which can not only drive an h-BCI but also serve as a biomarker for motor recovery monitoring. Our previous study established the feasibility of a new method of measuring corticomuscular co-activation called correlation of band-limited power time-courses (CBPT) of EEG and EMG signals, outperforming the traditional EEG-EMG coherence in terms of accurately controlling a robotic hand exoskeleton device by the stroke patients. In this paper, we have evaluated the neurophysiological significance of CBPT for motor recovery monitoring by conducting a 5-week long longitudinal pilot trial on 4 chronic hemiparetic stroke patients. Results show that the CBPT variations correlated significantly (p-value< 0.05) with the dynamic changes in motor outcome measures during the therapy for all the patients. As the bandpower based biomarkers are popular in literature, a comparison with such biomarkers has also been made to cross-verify whether the changes in CBPT are indeed neurophysiological. Thus the study concludes that CBPT can serve as a biomarker for motor recovery monitoring while serving as a corticomuscular co-activation feature for h-BCI based neurorehabilitation. Despite an observed significant positive change between pre- and post-intervention motor outcomes, the question of the clinical effectiveness of CBPT is subject to further controlled trial on a larger cohort

    Brain computer interface based neurorehabilitation technique using a commercially available EEG headset

    Get PDF
    Neurorehabilitation has recently been augmented with the use of virtual reality and rehabilitation robotics. In many systems, some known volitional control must exist in order to synchronize the user intended movement with the therapeutic virtual or robotic movement. Brain Computer Interface (BCI) aims to open up a new rehabilitation option for clinical population having no residual movement due to disease or injury to the central or peripheral nervous system. Brain activity contains a wide variety of electrical signals which can be acquired using many invasive and non-invasive acquisition techniques and holds the potential to be used as an input to BCI. Electroencephalogram (EEG) is a non-invasive method of acquiring brain activity which then, with further processing and classification, can be used to predict various brain states such as an intended motor movement. EEG provides the temporal resolution required to obtain significant result which may not be provided by many other non-invasive techniques. Here, EEG is recorded using a commercially available EEG headset provided by Emotiv Inc. Data is collected and processed using BCI2000 software, and the difference in the Mu-rhythm due to Event Related Synchronization (ERS) and Desynchronization (ERD) is used to distinguish an intended motor movement and resting brain state, without the need for physical movement. The idea is to combine this user intent/free will with an assistive robot to achieve the user initiated, repetitive motor movements required to bring therapeutic changes in the targeted subject group, as per Hebbian type learning

    Past, Present, and Future of EEG-Based BCI Applications

    Get PDF
    An electroencephalography (EEG)-based brain–computer interface (BCI) is a system that provides a pathway between the brain and external devices by interpreting EEG. EEG-based BCI applications have initially been developed for medical purposes, with the aim of facilitating the return of patients to normal life. In addition to the initial aim, EEG-based BCI applications have also gained increasing significance in the non-medical domain, improving the life of healthy people, for instance, by making it more efficient, collaborative and helping develop themselves. The objective of this review is to give a systematic overview of the literature on EEG-based BCI applications from the period of 2009 until 2019. The systematic literature review has been prepared based on three databases PubMed, Web of Science and Scopus. This review was conducted following the PRISMA model. In this review, 202 publications were selected based on specific eligibility criteria. The distribution of the research between the medical and non-medical domain has been analyzed and further categorized into fields of research within the reviewed domains. In this review, the equipment used for gathering EEG data and signal processing methods have also been reviewed. Additionally, current challenges in the field and possibilities for the future have been analyzed

    Brain-Computer Interface Robotics for Hand Rehabilitation After Stroke: A Systematic Review

    Get PDF
    Background Hand rehabilitation is core to helping stroke survivors regain activities of daily living. Recent studies have suggested that the use of electroencephalography-based brain-computer interfaces (BCI) can promote this process. Here, we report the first systematic examination of the literature on the use of BCI-robot systems for the rehabilitation of fine motor skills associated with hand movement and profile these systems from a technical and clinical perspective. Methods A search for January 2010–October 2019 articles using Ovid MEDLINE, Embase, PEDro, PsycINFO, IEEE Xplore and Cochrane Library databases was performed. The selection criteria included BCI-hand robotic systems for rehabilitation at different stages of development involving tests on healthy participants or people who have had a stroke. Data fields include those related to study design, participant characteristics, technical specifications of the system, and clinical outcome measures. Results 30 studies were identified as eligible for qualitative review and among these, 11 studies involved testing a BCI-hand robot on chronic and subacute stroke patients. Statistically significant improvements in motor assessment scores relative to controls were observed for three BCI-hand robot interventions. The degree of robot control for the majority of studies was limited to triggering the device to perform grasping or pinching movements using motor imagery. Most employed a combination of kinaesthetic and visual response via the robotic device and display screen, respectively, to match feedback to motor imagery. Conclusion 19 out of 30 studies on BCI-robotic systems for hand rehabilitation report systems at prototype or pre-clinical stages of development. We identified large heterogeneity in reporting and emphasise the need to develop a standard protocol for assessing technical and clinical outcomes so that the necessary evidence base on efficiency and efficacy can be developed
    • 

    corecore