273 research outputs found

    Epidemic processes in complex networks

    Get PDF
    In recent years the research community has accumulated overwhelming evidence for the emergence of complex and heterogeneous connectivity patterns in a wide range of biological and sociotechnical systems. The complex properties of real-world networks have a profound impact on the behavior of equilibrium and nonequilibrium phenomena occurring in various systems, and the study of epidemic spreading is central to our understanding of the unfolding of dynamical processes in complex networks. The theoretical analysis of epidemic spreading in heterogeneous networks requires the development of novel analytical frameworks, and it has produced results of conceptual and practical relevance. A coherent and comprehensive review of the vast research activity concerning epidemic processes is presented, detailing the successful theoretical approaches as well as making their limits and assumptions clear. Physicists, mathematicians, epidemiologists, computer, and social scientists share a common interest in studying epidemic spreading and rely on similar models for the description of the diffusion of pathogens, knowledge, and innovation. For this reason, while focusing on the main results and the paradigmatic models in infectious disease modeling, the major results concerning generalized social contagion processes are also presented. Finally, the research activity at the forefront in the study of epidemic spreading in coevolving, coupled, and time-varying networks is reported.Comment: 62 pages, 15 figures, final versio

    Detecting the Influence of Spreading in Social Networks with Excitable Sensor Networks

    Full text link
    Detecting spreading outbreaks in social networks with sensors is of great significance in applications. Inspired by the formation mechanism of human's physical sensations to external stimuli, we propose a new method to detect the influence of spreading by constructing excitable sensor networks. Exploiting the amplifying effect of excitable sensor networks, our method can better detect small-scale spreading processes. At the same time, it can also distinguish large-scale diffusion instances due to the self-inhibition effect of excitable elements. Through simulations of diverse spreading dynamics on typical real-world social networks (facebook, coauthor and email social networks), we find that the excitable senor networks are capable of detecting and ranking spreading processes in a much wider range of influence than other commonly used sensor placement methods, such as random, targeted, acquaintance and distance strategies. In addition, we validate the efficacy of our method with diffusion data from a real-world online social system, Twitter. We find that our method can detect more spreading topics in practice. Our approach provides a new direction in spreading detection and should be useful for designing effective detection methods

    Searching for superspreaders of information in real-world social media

    Full text link
    A number of predictors have been suggested to detect the most influential spreaders of information in online social media across various domains such as Twitter or Facebook. In particular, degree, PageRank, k-core and other centralities have been adopted to rank the spreading capability of users in information dissemination media. So far, validation of the proposed predictors has been done by simulating the spreading dynamics rather than following real information flow in social networks. Consequently, only model-dependent contradictory results have been achieved so far for the best predictor. Here, we address this issue directly. We search for influential spreaders by following the real spreading dynamics in a wide range of networks. We find that the widely-used degree and PageRank fail in ranking users' influence. We find that the best spreaders are consistently located in the k-core across dissimilar social platforms such as Twitter, Facebook, Livejournal and scientific publishing in the American Physical Society. Furthermore, when the complete global network structure is unavailable, we find that the sum of the nearest neighbors' degree is a reliable local proxy for user's influence. Our analysis provides practical instructions for optimal design of strategies for "viral" information dissemination in relevant applications.Comment: 12 pages, 7 figure

    Theories for influencer identification in complex networks

    Full text link
    In social and biological systems, the structural heterogeneity of interaction networks gives rise to the emergence of a small set of influential nodes, or influencers, in a series of dynamical processes. Although much smaller than the entire network, these influencers were observed to be able to shape the collective dynamics of large populations in different contexts. As such, the successful identification of influencers should have profound implications in various real-world spreading dynamics such as viral marketing, epidemic outbreaks and cascading failure. In this chapter, we first summarize the centrality-based approach in finding single influencers in complex networks, and then discuss the more complicated problem of locating multiple influencers from a collective point of view. Progress rooted in collective influence theory, belief-propagation and computer science will be presented. Finally, we present some applications of influencer identification in diverse real-world systems, including online social platforms, scientific publication, brain networks and socioeconomic systems.Comment: 24 pages, 6 figure

    The Impact of Social Curiosity on Information Spreading on Networks

    Full text link
    Most information spreading models consider that all individuals are identical psychologically. They ignore, for instance, the curiosity level of people, which may indicate that they can be influenced to seek for information given their interest. For example, the game Pok\'emon GO spread rapidly because of the aroused curiosity among users. This paper proposes an information propagation model considering the curiosity level of each individual, which is a dynamical parameter that evolves over time. We evaluate the efficiency of our model in contrast to traditional information propagation models, like SIR or IC, and perform analysis on different types of artificial and real-world networks, like Google+, Facebook, and the United States roads map. We present a mean-field approach that reproduces with a good accuracy the evolution of macroscopic quantities, such as the density of stiflers, for the system's behavior with the curiosity. We also obtain an analytical solution of the mean-field equations that allows to predicts a transition from a phase where the information remains confined to a small number of users to a phase where it spreads over a large fraction of the population. The results indicate that the curiosity increases the information spreading in all networks as compared with the spreading without curiosity, and that this increase is larger in spatial networks than in social networks. When the curiosity is taken into account, the maximum number of informed individuals is reached close to the transition point. Since curious people are more open to a new product, concepts, and ideas, this is an important factor to be considered in propagation modeling. Our results contribute to the understanding of the interplay between diffusion process and dynamical heterogeneous transmission in social networks.Comment: 8 pages, 5 figure

    Mutual selection in time-varying networks

    Get PDF
    Copyright @ 2013 American Physical SocietyTime-varying networks play an important role in the investigation of the stochastic processes that occur on complex networks. The ability to formulate the development of the network topology on the same time scale as the evolution of the random process is important for a variety of applications, including the spreading of diseases. Past contributions have investigated random processes on time-varying networks with a purely random attachment mechanism. The possibility of extending these findings towards a time-varying network that is driven by mutual attractiveness is explored in this paper. Mutual attractiveness models are characterized by a linking function that describes the probability of the existence of an edge, which depends mutually on the attractiveness of the nodes on both ends of that edge. This class of attachment mechanisms has been considered before in the fitness-based complex networks literature but not on time-varying networks. Also, the impact of mutual selection is investigated alongside opinion formation and epidemic outbreaks. We find closed-form solutions for the quantities of interest using a factorizable linking function. The voter model exhibits an unanticipated behavior as the network never reaches consensus in the case of mutual selection but stays forever in its initial macroscopic configuration, which is a further piece of evidence that time-varying networks differ markedly from their static counterpart with respect to random processes that take place on them. We also find that epidemic outbreaks are accelerated by uncorrelated mutual selection compared to previously considered random attachment

    Temporal Gillespie algorithm: Fast simulation of contagion processes on time-varying networks

    Full text link
    Stochastic simulations are one of the cornerstones of the analysis of dynamical processes on complex networks, and are often the only accessible way to explore their behavior. The development of fast algorithms is paramount to allow large-scale simulations. The Gillespie algorithm can be used for fast simulation of stochastic processes, and variants of it have been applied to simulate dynamical processes on static networks. However, its adaptation to temporal networks remains non-trivial. We here present a temporal Gillespie algorithm that solves this problem. Our method is applicable to general Poisson (constant-rate) processes on temporal networks, stochastically exact, and up to multiple orders of magnitude faster than traditional simulation schemes based on rejection sampling. We also show how it can be extended to simulate non-Markovian processes. The algorithm is easily applicable in practice, and as an illustration we detail how to simulate both Poissonian and non-Markovian models of epidemic spreading. Namely, we provide pseudocode and its implementation in C++ for simulating the paradigmatic Susceptible-Infected-Susceptible and Susceptible-Infected-Recovered models and a Susceptible-Infected-Recovered model with non-constant recovery rates. For empirical networks, the temporal Gillespie algorithm is here typically from 10 to 100 times faster than rejection sampling.Comment: Minor changes and updates to reference

    Epidemic Threshold in Continuous-Time Evolving Networks

    Get PDF
    Current understanding of the critical outbreak condition on temporal networks relies on approximations (time scale separation, discretization) that may bias the results. We propose a theoretical framework to compute the epidemic threshold in continuous time through the infection propagator approach. We introduce the {\em weak commutation} condition allowing the interpretation of annealed networks, activity-driven networks, and time scale separation into one formalism. Our work provides a coherent connection between discrete and continuous time representations applicable to realistic scenarios.Comment: 13 pages, 2 figure

    Fundamentals of spreading processes in single and multilayer complex networks

    Get PDF
    Spreading processes have been largely studied in the literature, both analytically and by means of large-scale numerical simulations. These processes mainly include the propagation of diseases, rumors and information on top of a given population. In the last two decades, with the advent of modern network science, we have witnessed significant advances in this field of research. Here we review the main theoretical and numerical methods developed for the study of spreading processes on complex networked systems. Specifically, we formally define epidemic processes on single and multilayer networks and discuss in detail the main methods used to perform numerical simulations. Throughout the review, we classify spreading processes (disease and rumor models) into two classes according to the nature of time: (i) continuous-time and (ii) cellular automata approach, where the second one can be further divided into synchronous and asynchronous updating schemes. Our revision includes the heterogeneous mean-field, the quenched-mean field, and the pair quenched mean field approaches, as well as their respective simulation techniques, emphasizing similarities and differences among the different techniques. The content presented here offers a whole suite of methods to study epidemic-like processes in complex networks, both for researchers without previous experience in the subject and for experts.Comment: Review article. 73 pages, including 24 figure
    corecore