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In recent years the research community has accumulated overwhelming evidence for
the emergence of complex and heterogeneous connectivity patterns in a wide range of
biological and sociotechnical systems. The complex properties of real-world networks
have a profound impact on the behavior of equilibrium and nonequilibrium phenomena
occurring in various systems, and the study of epidemic spreading is central to our under-
standing of the unfolding of dynamical processes in complex networks. The theoretical
analysis of epidemic spreading in heterogeneous networks requires the development of
novel analytical frameworks, and it has produced results of conceptual and practical rel-
evance. A coherent and comprehensive review of the vast research activity concerning
epidemic processes is presented, detailing the successful theoretical approaches as well as
making their limits and assumptions clear. Physicists, mathematicians, epidemiologists,
computer, and social scientists share a common interest in studying epidemic spreading
and rely on similar models for the description of the diffusion of pathogens, knowledge,
and innovation. For this reason, while focusing on the main results and the paradigmatic
models in infectious disease modeling, the major results concerning generalized social
contagion processes are also presented. Finally, the research activity at the forefront in
the study of epidemic spreading in coevolving, coupled, and time-varying networks is

reported.
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I. INTRODUCTION

Since the first mathematical approach to the spread
of a disease by Daniel , epidemic models
lie at the core of our understanding about infectious dis-
eases. As experimenting in-vivo epidemics is not a viable
option, modeling approaches have been the main resort
to compare and test theories, as well as to gauge uncer-
tainties in intervention strategies. The acclaimed work
of Kermack and McKendrick| (1927)), defining the modern
mathematical modeling of infectious diseases, has evolved
along the years in an impressive body of work, whose
culmination is well represented by the monumental sum-
mary of |Anderson and May]| (1992). At the same time,
the epidemic modeling metaphor has been introduced
to describe a wide array of different phenomena. The
spread of information, cultural norms and social behav-
ior can be conceptually modeled as a contagion process.
How black-outs spread on a nationwide scale or how effi-
ciently memes can spread on social networks are all phe-
nomena whose mathematical description relies on models
akin to classic epidemic models (Vespignani, [2012). Al-
though the basic mechanisms of each phenomenon are
different, their effective mathematical description often
defines similar constitutive equations and dynamical be-
haviors framed in the general theory of reaction-diffusion
processes (van Kampen) [1981)). It is not surprising then
that epidemic modeling is a research field that crosses
different disciplines and has developed a wide variety of
approaches ranging from simple explanatory models to
very elaborate stochastic methods and rigorous results
(Keeling and Rohani, 2007)).

In recent years we are witnessing a second golden age
in epidemic modeling. Indeed, the real-world accuracy
of the models used in epidemiology has been consider-
ably improved by the integration of large-scale datasets
and the explicit simulation of entire populations down
to the scale of single individuals (Balcan et al. 20092
[Chao et all, [2010} [Eubank et all [2004; [Ferguson et al.
2005} Halloran et ol [2008; [Longini et all 2005} Mer-|
ler et al) |2011). Mathematical models have evolved
into microsimulation models that can be computation-
ally implemented by keeping track of billions of individu-
als. These models have gained importance in the public-
health domain, especially in infectious disease epidemi-

ology, by providing quantitative analyses in support of
policy-making processes. Many researchers are advocat-
ing the use of these models as real-time, predictive tools
(Nishiural |2011; Nsoesie et al., 2013} | Tizzoni et al}|2012).
Furthermore, these models offer a number of interest-
ing and unexpected behaviors, whose theoretical under-
standing represents a new challenge, and have stimulated
an intense research activity. In particular, modeling ap-
proaches have expanded into schemes that explicitly in-
clude spatial structures, individual heterogeneity and the
multiple time scales at play during the evolution of an
epidemics 2007)).

At the core of all data-driven modeling approaches lies
the structure of human interactions, mobility and con-
tacts patterns that finds its best representation in the
form of networks (Butts| |2009; Jackson, 2010; Newman,
2010; [Vespignani, [2009} 2012). For a long time, detailed
data on those networks was simply unavailable. The new
era of the social web and the data deluge is, however, lift-
ing the limits scientists have been struggling with for a
long time. The pervasive use of mobile and wifi technolo-
gies in our daily life is changing the way we can measure
human interactions and mobility network patterns for
millions of individuals at once. Sensors and tags are able
to produce data at the micro-scale of one-to-one inter-
actions. Proxy data derived from the digital traces that
individuals leave in their daily activities (microblogging
messages, recommendation systems, consumer ratings)
allow the measurement of a multitude of social networks
relevant to the spreading of information, opinions, habits,
etc.

Although networks have long been acknowledged as a
key ingredient of epidemic modeling, the recent abun-
dance of data is changing our understanding of a wide
range of phenomena and calls for a detailed theoretical
understanding of the interplay between epidemic pro-
cesses and networks. A large body of work has shown
that most real-world networks exhibit dynamic self-
organization and are statistically heterogeneous—typical
hallmarks of complex systems (Albert and Barabasil
[2002}; Baronchelli et al [2013; Boccaletti et all,[2006} [Cal|

[darelli] 2007; [Cohen and Havlinl [2010} [Costa et al., 2007}

Dorogovisev and Mendes| 2002, 2003} [Newmanl, [2010]
2003b). Real-world networks of relevance for epidemic

spreading are very different from regular lattices. Net-
works are hierarchically organized with a few nodes that
may act as hubs and where the vast majority of nodes
have very few interactions. Both social and infrastruc-
ture networks are organized in communities of tightly
interconnected nodes. Although randomness in the con-
nection process of nodes is always present, organizing
principles and correlations in the connectivity patterns
define network structures that are deeply affecting the
evolution and behavior of epidemic and contagion pro-
cesses. Furthermore, network’s complex features often
find their signature in statistical distributions which are




generally heavy-tailed, skewed, and varying over several
orders of magnitude.

The evidence of large-scale fluctuations, clustering and
communities characterizing the connectivity patterns of
real-world systems has prompted the need for mathemat-
ical approaches capable to deal with the inherent com-
plexity of networks. Unfortunately, the general solution,
handling e.g. the master equation of the system, is hardly
achievable even for very simple dynamical processes. For
this reason, an intense research activity focused on the
mathematical and computational modeling of epidemic
and diffusion processes on networks has started across
different disciplines (Dorogovtsev et al.,[2008). The study
of network evolution and the emergence of macro-level
collective behavior in complex systems follows a concep-
tual route essentially similar to the statistical physics
approach to non-equilibrium phase transitions (Henkel
et all 2008)). Hence, statistical physics has been leading
the way to the revamped interest in the study of conta-
gion processes, and more generally dynamical processes
in complex networks. In the last ten years, an impres-
sive amount of methods and approaches ranging from
mean-field theories to rigorous results have provided new
quantitative insights in the dynamics of contagion pro-
cesses in complex networks (Danon et all 2011} Keeling
and Eames| 2005)).

However, as it is often the case in research areas
pursued by different scientific communities, relevant re-
sults are scattered across domains and published in jour-
nals and conference proceedings with completely different
readership. In some cases, relevant advances have been
derived independently by using different jargons as well
as different assumptions and methodologies. This frag-
mented landscape does not advance the field and is, in
many cases, leading to the compartmentalization and du-
plication of the research effort. We believe that a review
is timely to contextualize and relate the recent results on
epidemic modeling in complex networks. Although infec-
tious diseases will be at the center stage of our presen-
tation, social contagion phenomena and network dynam-
ics itself are discussed, offering a general mathematical
framework for all social and information contagion pro-
cesses that can be cast in the epidemic metaphor. The
final goal is to provide a coherent presentation of our un-
derstanding of epidemic processes in populations, that
can be modeled as complex networks.

After a review of the fundamental results in classical
epidemic modeling and the characterization of complex
networks, we discuss the different methodologies devel-
oped in recent years to understand the dynamic of con-
tagion processes in the case of heterogeneous connectivity
patterns. In particular, in Section IV we specifically spell
out the assumptions inherent to each methodology and
the range of applicability of each approach. In Section
V those theoretical approaches are applied to classic epi-
demic models such as the susceptible-infected-susceptible

(SIS) and susceptible-infected-removed (SIR) models. In
those Sections particular care is devoted to shed light on
the role of the interplay of the time-scales of the epidemic
process and of the network dynamics and on the appro-
priateness of different modeling approximations. In Sec-
tions VI and VII we focus on various approaches to the
mitigation and containment of epidemic processes and
on the analysis of several variations of the basic epidemic
models, aiming at a more realistic description of con-
tagion processes and contact patterns. In Section VIII
we provide a summary of recent results concerning time-
varying networks. Although this is an area that is rapidly
advancing due to both theoretical and data gathering ef-
forts, we report on results that are expected to become
foundational. In Section IX we discuss the generalization
of epidemic processes in complex, multi-species reaction
diffusion processes, an area relevant in the analysis of epi-
demics in structured populations. Finally, in Section X,
we will review the generalization of epidemic modeling
of social contagion phenomena. The number of specific
models for social contagion is extensive and we therefore
confine ourselves to the most relevant to highlight differ-
ences and novel dynamical behaviors in the evolution of
the epidemic process. We conclude with an outlook to
the field and the challenges lying ahead of us.

The upsurge of interest in epidemic modeling in com-
plex networks has led to an enormous body of work: a
query on the Thompson Web of Science database with
the keywords ”epidemic” and ”networks” returns more
than 3600 papers in just the last 15 years. A review of all
these papers is unfortunately hardly feasible. Therefore,
we have concentrated our attention to, what we believe,
are the most influential papers. In providing a unified
framework and notation for the various approaches, we
aim at fostering synergies across application domains and
provide a common knowledge platform for future efforts
in this exciting research area.

Il. THE MATHEMATICAL APPROACH TO EPIDEMIC
SPREADING

A. Classical models of epidemic spreading

In more than 200 years of its history, the mathemat-
ical modeling of epidemic spreading has evolved into a
research area that cuts across several fields of mathe-
matical biology as well as other disciplines and is treated
in the classic books by [Anderson and May| (1992)); |An-
dersson and Britton| (2000); Brauer and Castillo-Chavez
(2010); Diekmann et al.| (2012)); Diekmann and Heester-
beek! (2000); |Keeling and Rohani| (2007). Here, we merely
set the notation and present some of the basic elements
and approximations generally used in the modeling of
epidemic phenomena, in order to provide the necessary
conceptual toolbox needed in the following sections.



Epidemic models generally assume that the population
can be divided into different classes or compartments de-
pending on the stage of the disease (Anderson and Mayl,
1992; IDiekmann and Heesterbeekl |2000; [Keeling and Ro-
hanil 2007), such as susceptibles (denoted by S, those
who can contract the infection), infectious (I, those who
contracted the infection and are contagious), and recov-
ered (R, those who recovered from the disease). Addi-
tional compartments can be used to signal other possible
states of individuals with respect to the disease, for in-
stance immune individuals. This framework can be ex-
tended to take into account vectors, such as mosquitoes
for malaria, for diseases propagating through contact
with an external carrier. Epidemic modeling describes
the dynamical evolution of the contagion process within
a population. In order to understand the evolution of
the number of infected individuals in the population as
a function of time we have to define the basic individual-
level processes that govern the transition of individuals
from one compartment to another.

The simplest definition of epidemic dynamics considers
the total population in the system as fixed, consisting of
N individuals, and ignores any other demographic pro-
cess (migrations, births, deaths, etc.). One of the sim-
plest two-state compartmentalizations is the susceptible-
infected-susceptible (SIS) model with only two possible
transitions: The first one, denoted S — I, occurs when
a susceptible individual interacts with an infectious in-
dividual and becomes infected. The second transition,
denoted I — S, occurs when the infectious individual re-
covers from the disease and returns to the pool of suscep-
tible individuals. The SIS model assumes that the disease
does not confer immunity and individuals can be infected
over and over again, undergoing a cycle S — I — S,
which, under some conditions, can be sustained forever.
Another basic model is the classic three-state susceptible-
infected-recovered (SIR) model. In the SIR model, the
transition I — S of the SIS process is replaced by I — R,
which occurs when an infectious individual recovers from
the disease and is assumed to have acquired a permanent
immunity, or is removed (e.g. has died). Clearly, the SIR
process always stops, when no more infected individuals
are present.

The SIR and SIS models exemplify a basic classifica-
tion of epidemic models given in terms of their long time
behavior, see Fig. In the long time regime, the SIS
model can exhibit a stationary state, the endemic state,
characterized by a constant (in average) fraction of in-
fected individuals. In the SIR model, instead, the num-
ber of infected individuals always tends to zero.

In the SIS and SIR models, the infection and recovery
processes completely determine the epidemic evolution.
The I — R and I — S transitions occur spontaneously
after a certain time the individuals spend fighting the
disease or taking medical treatments; the transition does
not depend on any interactions with other individuals
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FIG. 1 Typical profile of the density i(¢) of infected individ-
uals versus time in a given epidemic outbreak. In the first
regime t < ti, the outbreak is subject to strong statistical
fluctuations. In the second regime, t; < t < t2 there is an ex-
ponential growth characterized by the details of the epidemic
process. In the final regime (¢ > t2), the density of infected
individuals either converges to zero, for SIR-like models, or
to a constant, possibly zero, for SIS-like models.

in the population. The S — I transition instead occurs
only because of the contact/interaction of the susceptible
individual with an infectious one. In this case the inter-
action pattern among individuals is a specific feature of
the transition and has to be taken into account.

For many types of disease, the amount of time spent in
the infectious class is distributed around a well-defined
mean value. The distribution of the ”infectious period”
and the transition probability can be generally estimated
from clinical data. However, in a simplistic modeling
scheme, the probability of transition is often assumed
constant. In this way, a discrete-time formulation de-
fines the recovery probability u, that an individual will
recover at any time step. The time an individual will
spend on average in the infectious compartment, the
mean infectious period, is then equal to p~! time steps.
In a continuous-time formulation and assuming a Pois-
son process (Cox}, [1967), p is a rate (probability per
unit time) and the probability that an individual re-
mains infected for a time 7 follows an exponential distri-
bution Py¢(7) = pe 7, with an average infection time
(r)y = p~!. The Poisson assumption for the processes
of infection and recovery leads naturally to a Markovian



description of epidemic models 1996)).

The probability of the S — I transitions is more com-
plicated and it is dependent on several factors and on
the modeling approximations considered. In the absence
of detailed data on human interactions, the most ba-
sic approach considers a homogenous mixing approxima-
tion (Anderson and May, [1992)) which assumes that in-
dividuals interact randomly with each other. In this as-
sumption, the larger the number of infectious individuals
among an individual’s contacts, the higher the probabil-
ity of transmission of the infection. This readily trans-
lates to the definition of the force of infection «, that
expresses the probability, also called the risk, at which
one susceptible individual may contract the infection in
a single time step. In the continuous-time limit we can
define o as a rate and assume that

where 3 depends on the specific disease as well as the
contact pattern of the population, and N' is the number
of infected individuals. Thus, « is proportional to the
fraction p! = N?/N of infected individuals in the pop-
ulation. In some cases [ is explicitly split in two terms
as Ok, were 8 is now the rate of infection per effective
contact and k is the number of contacts with other indi-
viduals. This form of the force of infection corresponds to
the mass action law , a widely used tool
in the basic mean-field description of many dynamical
processes in chemistry and physics. The force of infec-
tion depends only on the density of infectious individuals
and decreases for larger populations, all the other factors
being equal. It is possible however to consider forces of
infection of the type a = SN, where the per capita in-
fection probability is proportional to the actual number
of infected individuals N!, and assumes that the number
of contacts scales proportionally to the size of the pop-
ulation. Indeed, also intermediate expressions for the
force of infection depending on the size of the population

as N~ have been discussed in the literature (Anderson
1009).

Generalizing the previous approach, an epidemic can
be rephrased as a stochastic reaction-diffusion process
(van Kampen| [1981)). Individuals belonging to the differ-
ent compartments can be represented as different kinds of
“particles” or “species”, that evolve according to a given
set of mutual interaction rules, representing the differ-
ent possible transitions among compartments, and that
can be specified by means of appropriate stoichiomet-
ric equations. In the continous-time limit each reaction
(transition) is defined by an appropriate reaction rate.
We can therefore adopt the reaction-diffusion formalism
to describe the basic epidemic models, see Figure[2} The
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FIG. 2 Diagrammatic representation of different epidemic
models in terms of reaction-diffusion processes. Boxes stand
for different compartments, while the arrows represent tran-
sitions between compartments, happening stochastically ac-
cording to their respective rates.

SIS model is thus governed by the reactions

S+15o0r, 2)
148,

where 5 and p are transition rates for infection and re-
covery, respectively. In this model infection can be sus-
tained forever for sufficiently large 8 or small p. The
Susceptible-Infected-Recovered (SIR) model
land McKendrick| [1927) is instead characterized by the
three compartments S, I and R, coupled by the reactions

S+15 091 (3)
I%R

For any value of 8 and p, the SIR process will always
asymptotically die after affecting a given fraction of the
population.

Many more epidemic models can be defined analo-
gously to the SIS and SIR models. A useful variant is
the SI model, which only considers the first transition in
Eqgs. and (3), ie. individuals become infected and
never leave this state. While the SI model is a some-
what strong simplification (valid only in cases where the
time scale of recovery is much larger than the time scale
of infection), it approximates the initial time evolution
of both SIS and SIR dynamics. More realistic models
are defined in order to better accommodate the biolog-
ical properties of real diseases. For instance, the SIRS
(Susceptible-Infected-Removed-Susceptible) model is an



epidemic model incorporating a temporary immunity. It
can be defined from the SIR model by adding a micro-
scopic transition event

RA S, (4)

where 7 is the rate at which the immunity of a recovered
individual is lost, rendering him/her susceptible again.
The SEIR model is a variation of the SIR model including
the effects of exposed (FE) individuals, which have been
infected by the disease but cannot yet transmit it. The
SEIR model is one of the paradigmatic models for the
spreading of influenza-like illnesses and in the compact
reaction-diffusion notation reads as

s+12E+1, (5)
E5T,
I%R.

All the above models can be generalized to include demo-
graphic effects (birth and death processes in the popula-
tion), the age structure of the population, other relevant
compartments (such as asymptomatic infected individu-
als), etc. A more complete and detailed review of epi-
demic models and their behavior can be found in [Ander-
son and May| (1992); Brauer and Castillo-Chavez (2010));
Keeling and Rohani (2007]).

B. Basic results from classical epidemiology

Although epidemic spreading is best described as a
stochastic reaction-diffusion process, the classic under-
standing of epidemic dynamics is based on taking the
continuous-time limit of difference equations for the evo-
lution of the average number of individuals in each com-
partment. This deterministic approach relies on the ho-
mogeneous mixing approximation, which assumes that
the individuals in the population are well mixed and in-
teract with each other completely at random, in such a
way that each member in a compartment is treated sim-
ilarly and indistinguishably from the others in that same
compartment. This approximation, which is essentially
equivalent to the mean-field approximation commonly
used in statistical physics, for both equilibrium (Stanley,
1971) and nonequilibrium (Marro and Dickman| [1999)
systems, can be shown to be correct in regular lattices
with high dimension, but it is not exact in low dimen-
sions (ben-Avraham and Havlin| 2005). Under this ap-
proximation, full information about the state of the epi-
demics is encoded in the total number N¢ of individuals
in the compartment « or, analogously, in the respective
densities p® = N®/N, where N is the population size.
The time evolution of the epidemics is described by de-
terministic differential equations, which are constructed
applying the law of mass action, stating that the average
change in the population density of each compartment

due to interactions is given by the product of the force of
infection times the average population density (Hethcote),
2000).

The deterministic equations for the SIR and SIS pro-
cesses are obtained by applying the law of mass action
and read as

dp!

IS I
or _ 6
e L (6)
d S
% = —Bp"p% +xp", (7)
where x = p for the SIS process and x = 0 for the SIR
model, and the force of infection is o = Bp’. These

equations are complemented with the normalization con-
dition, p® = 1—p® — p! and p® = 1 — p! for the SIR and
SIS model, respectively. If we consider the limit p! ~ 0,
generally valid at the early stage of the epidemic, we can
linearize the above equations obtaining for both the SIS
and SIR models the simple equation
1
9% (5 o 0

whose solution
P (t) = p! (0)e Pt (9)

represents the early time evolution. Equation [9] illus-
trates one of the key concepts in the classical theoretical
analysis of epidemic models. The number of infectious
individuals grows exponentially if

S Rmy=C s, (10)
I

B—p>0
where we have defined the basic reproduction number Rg
as the average number of secondary infections caused by a
primary case introduced in a fully susceptible population
(Anderson and May| [1992)). This result allows to define
the concept of epidemic threshold: only if Ry > 1 (i.e. if a
single infected individual generates on average more than
one secondary infection) an infective agent can cause an
outbreak of a finite relative size (in SIR-like models) or
lead to a steady state with a finite average density of
infected individuals, corresponding to an endemic state
(in SIS-like models). If Ry < 1 (i.e. if a single infected
individual generates less than one secondary infection),
the relative size of the epidemics is negligibly small, van-
ishing in the thermodynamic limit of an infinite popula-
tiorﬂ (in SIR-like models) or leading to a unique steady
state with all individuals healthy (in SIS-like models).
This concept is very general and the analysis of differ-
ent epidemic models (Anderson and Mayl, [1992)) reveals

1 In the present context, since we do not consider spatial effects,
the thermodynamic limit is simply defined as the limit of an
infinitely large number of individuals.



in general the presence of a threshold behavior, with a
reproduction number that can be expressed as a func-
tion of the rates of the different transitions describing
the epidemic model.

A few remarks are in order here. First, although we
have stated that epidemic processes can be considered
as reaction-diffusion systems, the classic approach com-
pletely neglects the diffusion of individuals. Spatial ef-
fects can be introduced by adding diffusive continuous
terms or by considering patch models. Furthermore,
epidemic spreading is governed by an inherently prob-
abilistic process. Therefore, a correct analysis of epi-
demic models should consider explicitly its stochastic na-
ture (Andersson and Britton, 2000). Accounting for this
stochasticity is particularly important when dealing with
small populations, in which the number of individuals in
each compartment is reduced. For instance, while the
epidemic threshold condition Ry > 1 is a necessary and
sufficient condition for the occurrence of an epidemic out-
break in deterministic systems, in stochastic systems this
is just a necessary condition. Indeed even for Ry > 1
stochastic fluctuations can lead to the epidemic extinc-
tion when the number of infectious individuals is small.
Analogously, all the general results derived from deter-
ministic mean-field equations can be considered repre-
sentative of real systems only when the population size
is very large (ideally in the thermodynamic limit) and the
fluctuations in the number of individuals can be consid-
ered small. Indeed, most of the classical results of math-
ematical epidemiology have been obtained under these
assumptions (Anderson and Mayl [1992).

Another point worth stressing is the Poisson assump-
tion. Although we will mostly focus on Poissonian epi-
demic processes (see Sections and for some
remarks on the non-Poissonian case), a different phe-
nomenology, both more complex and interesting, can be
obtained from non exponentially distributed infection or
reCOVEry processes.

Finally, the classic deterministic approach assumes
random and homogeneous mizing, where each member in
a compartment is treated similarly and indistinguishably
from the others in that same compartment. In reality,
however, each individual has his/her own social contact
network over which diseases propagate, usually differing
from that of other members in a group or compartment.
Diekmann et al.| (2012) illustrate the weakness of Ry by
discussing a line and square lattice topology and they
conclude that network and percolation theory needs to
be consulted to compute the epidemic threshold, lead-
ing to a new definition of the basic reproduction number
depending on the topology of the network. Thus, for
example, in the case of a homogeneous contact network
in which every individual is in contact with the same
number of individuals (k), the basic reproduction num-

ber takes the form

The impact of heterogeneous connectivity patterns, re-
flected by an underlying network topology, on the epi-
demic behavior is the focus of the present review.

C. Connections with other statistical physics models

The interest that models for epidemic spreading have
attracted within the statistical physics community stems
from the close connection between these models and
more standard nonequilibrium problems in statistical
physics (Henkel et al.| [2008; Marro and Dickman) [1999).
In particular, the epidemic threshold concept is analo-
gous to the concept of phase transition in non-equilibrium
systems. A phase transition is defined as an abrupt
change in the state (phase) of a system, characterized
by qualitatively different properties, and that is experi-
enced varying a given control parameter A. The transi-
tion is characterized by an order parameter p (Yeomans,
1992)), which takes (in a system of infinite size) a non-zero
value in one phase, and a zero value in another (see Fig-
ure |3). The phase transition takes place at a particular
value of the control parameter, the so-called transition
point A, in such a way that for A > A, we have p > 0,
while for A < A., p = 0. Apart from the determination
of the transition point, the interest in physics lies in the
behavior of the order parameter around ., which in con-
tinuous, or critical phase tmnsitionsﬂ takes a power law
form, p(A) ~ (A — X\.)Perit | defining the critical exponent
Berit (Yeomans) [1992]).

The SIS dynamics thus belongs to the wide class of
non-equilibrium statistical models possessing absorbing
states, i.e. states in which the dynamics becomes trapped
with no possibility to escape. The paradigmatic example
of a system with an absorbing state is the contact pro-
cess (Harris, [1974), where all nodes of a lattice or net-
work can be either occupied or empty. Occupied nodes
annihilate at rate 1; on the other hand, they can repro-
duce at rate A\, generating one offspring that can occupy
an empty nearest neighbor. The contact process experi-
ences an absorbing-state phase transtion (Henkel et al.,
2008, Marro and Dickman| [1999) at a critical point A,
between an active phase, in which activity lasts forever
in the thermodynamic limit, implying a finite average
density of occupied nodes, and an absorbing phase, in
which activity eventually vanishes, corresponding to an
empty system. In the case of the SIS model, the active

2 In first order transtions the order parameter takes a discontinu-
ous jump at the transition point (Stanleyl |1971)).
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FIG. 3 Phase diagram of a typical non-equilibrium absorbing
state phase transition (SIS-like). Below the critical point A,
the order parameter is zero (healthy phase in an epidemics
interpretation). Above the critical point, the order parame-
ter attains a non-zero average value in the long time regime
(endemic or infected epidemic phase).

phase is given by the infected state, and the absorbing
phase by the state where no individual is infected, see
Figure 8] The order parameter is therefore the preva-
lence or density of infected individuals, and the control
parameter is given by the spreading rate or effective infec-
tion rate, which equals A = 8/u. The epidemic threshold
(critical point) A. separates thus the infected from the
healthy phase. While this distinction is strictly true in
the thermodynamic limit, for finite systems the dynam-
ics for any value of A sooner or later visits the absorbing-
state and remains trapped there. The absorption event
can occur even in the active phase well above the crit-
ical point, because of random fluctuations, illustrating
that the determination of the critical point is a nontriv-
ial task, both for theoretical approaches and numerical
simulations (Henkel et all |2008; Marro and Dickman),
1999). It is interesting to note that the dynamics of the
SIS process is essentially identical to that of the contact
process in lattices; indeed, the difference between the SIS
and the contact process lies exclusively in the number of
offsprings that an active individual can generate. While
in the contact process one particle generates always in
average one offspring per unit time, an infected individ-
ual in the SIS model can infect all his/her nearest neigh-
bors in the same time interval. This difference is trivial
when the number of nearest neighbors is fixed, but it can
lead to a dramatic difference when the number of nearest
neighbors has large fluctuations (see Section .

The SIR model also exhibits a transition between a
phase where the disease outbreak reaches a finite frac-
tion of the population and a phase where only a limited
number of individuals are affected. This is strongly rem-
iniscent of the transition occurring in percolation (Grass-

berger} |1983; [Stauffer and Aharonyl, |1994). In the sim-
plest possible setting of (bond) percolation in a lattice,
the connections between nearest neighbors of a lattice or
network are erased with probability 1 — p and kept with
complementary probability p. A critical value p. sepa-
rates a super-critical percolating phase, where a macro-
scopic connected cluster spans the whole lattice, from a
sub-critical phase where only connected clusters of finite
size exist. The order parameter describing the transition
is the probability Pg(p) that a randomly chosen site be-
longs to the spanning cluster. In the case of networks,
the percolating phase corresponds to the presence of a
largest connected component with a size proportional to
the network size (the giant component, see Section [[ILA)),
while in the sub-critical phase it has a relative size that
vanishes in the termodynamic limit. In the case of net-
works, the order parameter is proportional to the relative
size of the giant component. The mapping between SIR
and bond percolation is made through the assimilation
of the size of connected components with the size of epi-
demic outbreaks, with a control parameter that depends
on the spreading rate A = 3/p. This connection will be
further developed and exploited in Sec. [V.B]

Finally, it is worth mentioning first-passage percola-
tion (Hammersley and Welshl [1965; [Kestenl 2003|) as
another classical problem related to epidemics. In this
model, a nonnegative value 7;; is defined on each edge of
a graph and interpreted as the time needed to cross the
edge. Given a topology and the distribution of the times
T, first passage percolation investigates which points can
be reached in a certain time starting from a fixed origin.
The SI model for epidemics can be seen as the limit of
first-passage percolation with all passage times equal.

I1l. NETWORK MEASURES AND MODELS

Although very common, the homogeneous assumption
used in the previous Section to derive the constitutive de-
terministic equations of basic epidemic processes maybe
inadequate in several real-world situations where individ-
uals have large heterogeneity in the contact rate, specific
frozen pattern of interaction or are in contact with only
a small part of the population. These features may have
different relevance depending on the disease or conta-
gion process considered. However, a wide range of so-
cial and biological contagion processes require capturing
the individuals’ contact pattern structure in the math-
ematical modeling approaches. This is even more rele-
vant, because most real-world systems show very com-
plex connectivity patterns dominated by large-scale het-
erogeneities described by heavy-tailed statistical distri-
butions.

Network theory (Newman, 2010) provides a general
framework to discuss interactions among individuals in
detail. In this Section, we provide a short summary of
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FIG. 4 Component structure of a directed graph. Figure
adapted from [Dorogovtsev et al.| (2001)).

the main definitions and properties of networks, relevant
for epidemic spreading, and a basic introduction to the
language of graph theory that is necessary for a formal
analysis of networks properties. Network science is bur-
geoning at the moment, and for more extensive accounts
of this field we refer to the books (BarabasiLabj 2014}
Caldarelli, 2007; |[Cohen and Havlin), 2010 [Dorogovtsev,
2010; Dorogovtsev and Mendes| |2003; |Newman, [2010)).

A. General definitions

Networks are mathematically described as graphs. A
graph is a collection of points, called vertices, (nodes in
the physics literature or actors in the social sciences).
These points are joined by a set of connections, called
edges, links or ties, in mathematics, physics and social
sciences, respectively. Each edge denotes the presence
of a relation or interaction between the vertices it joins.
Edges can represent a bidirectional interaction between
vertices, or indicate a precise directionality in the inter-
action. In the first case we talk about undirected net-
works, and in the second case, about directed networks
or digraphs. From an epidemiological point of view, the
directedness of a network is indeed relevant since it im-
poses restrictions on the possible paths of propagation of
the contagion. A compact way to specify all connections
present in a graph of size N (i.e. with N vertices) is
the N x N adjacency matrix A, with elements a;; = 1 if
an edge is connecting nodes ¢ and j and zero otherwise.
A is symmetric in undirected graphs, and asymmetric in
directed graphs.

A path P, ; connecting vertices iy and i, is a se-
quence of different edges {(i;,%,+1)}, 7 = 0,...,n — 1;
the number of edges traversed, n, is the hopcount, also
called the length, of the path. A graph is connected if
there exists a path connecting any two vertices in the
graph. A loop is a closed path with iy = i,,. A component

C of a graph is defined as a connected subgraph. The gi-
ant component is the component or subgraph, whose size
scales as the number of vertices in the graph. From an
epidemiological perspective, a disease in the giant com-
ponent may in principle infect a macroscopic fraction of
the graph, while if the disease starts outside of the giant
component, the total number of infected vertices will be
necessarily limited, representing a fraction that decreases
with the network size.

In the case of directed graphs, the structure of the
components is more complex as the presence of a path
from the node i to the node j does not necessarily guar-
antee the presence of a corresponding path from j to <.
In general (see Figure 4) the component structure of a
directed network can be decomposed into a giant weakly
connected component (GWCC), corresponding to the gi-
ant component of the same graph in which the edges are
considered as undirected, plus a set of smaller discon-
nected components. The GWCC is itself composed of
several parts because of the directed nature of its edges:
(1) the giant strongly connected component (GSCC), in
which there is a directed path joining any pair of nodes;
(2) the giant in-component (GIN), formed by the nodes
from which it is possible to reach the GSCC by means of
a directed path; (3) the giant out-component (GOUT),
formed by the nodes that can be reached from the GSCC
by means of a directed path; (4) the tendrils, that connect
nodes that cannot reach the GSCC or be reached from
it and (5) the tubes, that connect the GIN and GOUT,
but do not belong to the GSCC.

B. Network metrics

A large number of metrics have been defined to char-
acterize different aspects of the topology of complex net-
works.

1. Shortest path length and network diameter

In order to characterize the distance among nodes we
introduce the shortest path length, sometimes also re-
ferred to as the chemical distance or geodesical distance.
The shortest path distance ¢;; between two nodes ¢ and
j is defined as the length of the shortest path (not neces-
sarily unique) joining ¢ and j. The diameter of a network
is the maximum value of all the pairwise shortest path
lengths, and the average shortest path length (¢) is the
average of the value of ¢;; over all pairs of vertices in the
network.

2. Degree and degree distribution

The degree k; of vertex ¢ in an undirected network is
the number of edges emanating from 4, i.e. k; = ; @ij-



In the case of directed networks, we distinguish between
in-degree, k', and out-degree, k', as the number of
edges that end in ¢ or start from i, respectively. In undi-
rected networks we define the degree distribution P(k)
as the probability that a randomly chosen vertex has de-
gree k, or, in finite networks, as the fraction of vertices
in the graph with degree exactly equal to k. In the case
of directed networks, there are instead two different dis-
tributions, the out-degree Py (k°"') and the in-degree
Py, (k™) distributions. The in-degree and out-degree of a
given vertex might not be independent. Correlations are
encoded in the joint probability distribution P(k™™, k°ut)
that a randomly chosen vertex has in-degree &' and out-
degree k°Ut. It is useful to consider the moments of the
degree distribution, (k") = >, k" P(k). The first mo-
ment, the average degree (k) = 2L/N, twice the ratio
between the number L of edges (or links) and the num-
ber N of nodes, provides information about the density
of the network. A network is called sparse if its number
of edges L grows at most linearly with the network size
N; otherwise, it is called dense. In directed networks,
since every edge contributes to one node in-degree and
other node out-degree we have that (k") = (k°ut).

3. Degree correlations

Two-vertex degree correlations can be conveniently
measured by means of the conditional probabilility
P(K'|k) that an edge departing from a vertex of degree
k is connected to a vertex of degree k' (Pastor-Satorras
et al) [2001). A network is called uncorrelated if this
conditional probability is independent of the originating
vertex k. In this case, P(k'|k) can be simply estimated
as the ratio between the number of edges pointing to ver-
tices of degree k/, k' P(k')N/2, and the total number of

edges, (k)N/2, to yield P*™(k'|k) = k/fé;fl). The empir-
ical evaluation of P(k’|k) turns out to be quite noisy in
real networks, due to finite size effects. A related, sim-
pler, measure of correlations is the average degree of the
nearest neighbors of vertices of degree k, ky,,, (k) which is

formally defined as (Pastor-Satorras et al., 2001)

Fnn (k) = K P(K/|k). (12)
™

For uncorrelated networks, k% (k) = (k2)/(k) does not
depend on k. Therefore, a varying k,,(k) is the sig-
nature of degree correlations. The analysis of empirical
networks has suggested a broad classification of networks
in two main classes, according to the nature of their de-
gree correlations (Newman, [2002a): Assortative networks
exhibit an increasing &y, (k), indicative that high degree
nodes tend to connect to high degree nodes, while low
degree nodes are preferentially attached to low degree

nodes. Disassortative networks, on the other hand, show
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a decreasing k,,,, (k) function, suggesting that high degree
nodes connect to low degree nodes, and viceversa. As-
sortativity by degree can be characterized by the Pearson
correlation coefficient  (Newmanl, 2002al): Uncorrelated
networks have r = 0, while assortative (disassortative)
networks present r > 0 (r < 0), respectively.

4. Clustering coefficient and clustering spectrum

The concept of clustering refers to network transitiv-
ity, i.e. the relative propensity of two nodes to be con-
nected, provided that they share a common neighbor.
The clustering coefficient C' is defined as the ratio be-
tween the number of loops of length three in the net-
work (i.e. triangles), and the number of connected triples
(three nodes connected by two edges). A local measure
¢; of clustering (Watts and Strogatz, [1998) can also be
defined as the ratio between the actual number of edges
among the neighbors of a vertex i, e;, and its maximum
possible value, measuring thus directly the probability
that two neighbors of vertex ¢ are also neighbors of each
other. The mean clustering of the network {(c) is de-
fined as the average of ¢; over all vertices in the net-
work. The clustering spectrum ¢&(k) is defined as the
average clustering coefficient of the vertices of degree k
(Ravasz and Barabasi, [2003; |Vazquez et al., |2002]), satis-

fying (c) = >y, P(R)e(k).

5. Centrality and structure in networks

The concept of centrality encodes the relative impor-
tance of a node inside a network, a relevant issue in the
context of social network analysis (Wasserman and Faust),
1994). Many different definitions of centrality have been
proposed, based on different indicators of the structural
importance of nodes. The simplest of them is the degree,
referred to as degree centrality. The higher its degree,
the more the node can be considered influential/central
in the network. Alternative definitions are based on the
shortest paths between vertices. Thus, the closeness cen-
trality C; is defined as the inverse of the average of the
shortest path lengths from vertex ¢ to all other vertices
in the network. With this measure, we consider a ver-
tex central if it is situated in average at a short distance
to all other vertices in the network. A very different
perspective on centrality is provided by the betweenness
centrality b; of vertex ¢, defined as number of shortest
paths between any two vertices in the network that pass
through vertex i. More precisely, if Ly ; is the total num-
ber of shortest paths from h to j, and Ly, ; ; is the number
of these shortest paths that pass though vertex i, then
b, = Zh# Ly j/Ln;. Betweeness measures thus cen-
trality from the perspective of the control of information
flowing between different nodes, assuming this informa-



tion flows following the shortest path route (Freeman)
1977).

Another way to characterize the centrality of nodes
resides in the concept of K-coreness. The K-core of a
network is a maximal connected subgraph, such that all
vertices in the subgraph have degree k > K (Seidman)
1983). The K-core decomposition is an iterative proce-
dure that classifies the vertices of the network in nested
levels of increasing connectivity (increasing K-core). The
algorithm runs as follows: One starts with the complete
network, and removes iteratively all vertices with degree
k = 1, until only vertices with degree k > 2 are present.
The set of removed nodes represents the K = 1-shell,
while the remaining nodes constitute the K = 2-core. In
the next iteration of the process, all vertices with degree
k = 2 are removed (the K = 2-shell), are we are left with
the K = 3-core. This iterative process is stopped when
we arrive at the maximum Kg-core, where one more ap-
plication of the algorithm leaves no vertices. At each
node is assigned a centrality measure equal to its K-core
index, the deeper the more central.

It is worth remarking that real networks can display
higher levels of architecture that are difficult to capture
with a single number. Many networks possess a com-
munity structure, in which different sets of nodes, called
communities or modules, have a relatively high density
of internal connections, while they are more loosely con-
nected among them. The problem of computing the com-
munity structure of a given network has been a very ac-
tive topic in network science and a large number of dif-
ferent approaches have been considered (see [Fortunato
(2010) for a specific review).

C. Generalizations of simple graphs

The simple concept of graph considered above can be
refined at different levels, adding more and more com-
plexity and detail in order to better represent the real
system under consideration. A first extension is that of
bipartite graphs, in which we have 2 different kinds of
nodes, and edges join only two nodes of a different kind.
A classical example are the networks of heterosexual sex-
ual relationships (Liljeros et al., [2001).

Another important generalization consists in the defi-
nition of weighted networks, in which a real number w;
(the weight) is associated to the edge between vertices i
and j. Weighted networks constitute the natural choice
to represent many systems, including transportation net-
works (e.g. the airport network), in which the weight of
an edge measures the fraction of people or goods trans-
ported by the edge in a given interval of time, or social
networks, for which weights measure the relative inten-
sity or frequency of contacts between pairs of vertices.
The addition of weights allows to define a complete new
set of topological metrics (Ahnert et al. 2007; Barrat
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et al.l [2004a; [Braunstein et al.l,2003; |Onnela et al., [2005}
Serrano et all 2006). Among those, the strength of a
node s;, defined as the sum of the weights of all edges
incident to it, i.e. s; = Zj w;j, generalizes to weighted
networks the concept of degree.

D. Network classes and basic network models

The recent abundance of data and measurements of
real-world networks has highlighted the existence of dif-
ferent classes of networks, characterized by a large vari-
ability in basic metrics and statistical properties. This
classification in its turn has fueled an intense theoretical
research effort devoted to the study of different network
generation models. The usefulness of these models in
the present context is that they serve as generators of
synthetic networks, with controlled topological proper-
ties, in which the behavior of dynamical processes such
as epidemics can be studied in detail. In the following we
will survey some of the main network classes and mod-
els that are used for exploring the properties of epidemic
processes.

1. Random homogenous networks

The first theoretical model of random networks is the
classical random graph model (Erd6s and Rényil, [1959;
Gilbert|, [1959; [Solomonoftf and Rapoportl [1951)). In its
simplest formulation, the graph G,(IN) is constructed
from a set of N nodes in which each one of the N(N—1)/2
possible links is present with probability p. The degree
distribution is given by a binomial form, which, in the
limit of constant average degree (i.e. p = (k)/N) and
large N can be approximated by a Poisson distribution
Pk) = e‘<k>%. The clustering coefficient is simply
given by (c¢) = p, and the average shortest path length
is (¢) ~ log N/log(k) (Dorogovtsevi [2010). This model
is therefore adequate in the case of networks governed
only by stochasticity, although G,(N) tends to a regular
graph for large N and constant p. The degree distribu-
tion is peaked around the average value, thus denoting
a statistical homogeneity of the nodes. Interestingly, the
model features for (k) > 1 the small diameter observed
in most real-world networks. However, any other struc-
tural properties, including the generally high clustering
coeflicient observed in real world networks, cannot be re-
produced by this model.

2. Small-world networks

The small-world model of [Watts and Strogatz| (1998)
represents a first attempt to obtain a network with small
diameter (¢) and large clustering coefficient. This model



considers an ordered lattice, such as a ring of N ver-
tices, each one of which symmetrically connected to its
2m nearest neighbors. This initial configuration has large
clustering coefficient and large average shortest path
length. Starting from it, a fraction p of edges in the
network are rewired, by visiting all m clock-wise edges
of each vertex and reconnecting them, with probability
p, to a randomly chosen node. In another version of
the model (Monasson, [1999)), a fraction p of edges are
added between randomly chosen pairs of vertices. The
overall effect of the rewiring processes is to add long-
range shortcuts, that, even for a small value of p ~ N1,
greatly reduce the average shortest path length, while
preserving a large clustering for not very large values of
p. This model, although better suited for social networks
with high clustering coeflicient, has a degree distribution
and centrality measures decaying exponentially fast away
from the average value. The small-world model thus gen-
erates homogeneous networks where the average of each
metric is a typical value shared, with little variations, by
all nodes of the network.

3. Heavy-tailed networks

Empirical evidence from different research areas has
shown that many real-world networks exhibit levels of
heterogeneity not anticipated until few years ago. The
statistical distributions characterizing heterogeneous net-
works are generally skewed, and varying over several or-
ders of magnitude. Thus, real-world networks are struc-
tured in a hierarchy of nodes with a few nodes having
very large connectivity (the hubs), while the vast ma-
jority of nodes have much smaller degrees. More pre-
cisely, in contrast with regular lattices and homogeneous
graphs characterized by a typical degree k close to the
average (k), heterogeneous networks exhibit heavy-tailed
degree distributions often approximated by a power-law
behavior of the form P(k) ~ k=7, which implies a non-
negligible probability of finding vertices with very large
degree. The degree exponent v of many real-world net-
works takes a value between 2 and 3. In such cases net-
works are called scale-free, since the second moment of
the degree distribution diverges in the infinite network
size limit (N — o00). It is understood that in real-world
networks the finite size N and the presence of biologi-
cal, cognitive and physical constraints impose an upper
limit to the second degree moment. However, the second
moment of the distribution is in many case overwhelm-
ingly large, reflecting enormous connectivity fluctuations.
The presence of large-scale fluctuations associated with
heavy-tailed distributions is often true not only for the
degree of nodes but it is also observed for the inten-
sity carried by the connecting links, transport flows, and
other basic quantities.

Several variations of the classical random graph model
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have been proposed in order to generate networks with
a power-law degree distribution. One variation, the so-
called configuration model (Bender and Canfield, 1978;
Molloy and Reed)| [1995)), considers a random network
with a fixed degree distribution, instead of the fixed aver-
age degree of classical random graphs. Its construction is
as follows: To each of the vertices, we assign a degree k;,
given by a random number selected from the probability
distribution P(k), subject to the conditions m < k; < N,
where m is the desired minimum degree, and such that
>, ki is an even number. The actual graph is constructed
by randomly connecting the nodes with >, k; /2 edges,
preserving the degree originally assigned. In finite net-
works, an average maximum degree or degree cut-off ki,
known as the natural cut-off of the network (Boguna
et al) |2004) is often observed, which is a function of
the network size of the form k,,(N) ~ N*/(=1 (Cohen!
et all [2000). The original configuration model leads for
power-law distributions with v < 3 to the formation of
networks with multiple and self-connections. The addi-
tional prescription that multiple and self-connections are
removed leads to the generation of disassortative corre-
lations (Maslov et al., |2004; Park and Newman), 2003]).
These correlations are avoided in the uncorrelated con-
figuration model (Catanzaro et all [2005) by imposing a
hard structural cut-off kp, ~ N1/2,

A different modeling paradigm, namely the class of
growing network models, is based on the empirical obser-
vation that many real networks do not have a constant
number of vertices and edges, but are instead growing
entities, in which nodes and links are added over time.
The first undirected model of this kind is the Barabasi-
Albert (BA) model (Barabasi and Albert| [1999), based
on the assumption that newly added edges will tend in
general to be connected to nodes chosen via some prefer-
ential attachment rule. The simplest of these preferential
rules is a degree-biased rule, in which the probability to
add a connection to a vertex i is some function F'(k;)
of its degree. The |Barabési and Albert| (1999) model,
assuming the simplest, linear, form for the preferential
attachment function, is defined as follows: (i) The net-
work starts with a small nucleus of mq connected vertices;
every time step a new node is added, with m (m < my)
edges which are connected to old vertices in the network.
(i) New edges are connected to the i-th node in the net-
work with probability equal to F(k;) = ki/>_;k;. In
the long time limit, the network thus generated has a de-
gree distribution P(k) ~ k=3 (Barabdsi and Albert, 1999
Dorogovtsev et al., [2000). The original growing network
model has been subject to an impressive number of vari-
ations and extensions towards realistic growing dynamics
and to accommodate for different exponents of the degree
distribution and other properties such as high clustering
and tunable degree-degree correlations (Newman, |2010)).



E. Static versus dynamic networks

So far, we have assumed that the topology defining
the network is static: the set of nodes and links do not
change over time. However, many other real networks
are far from static, their links being created, destroyed
and rewired at some intrinsic time scales. In some of
these dynamical networks, such as the Internet (Pastor-
Satorras and Vespignanil,2004)), the time scale of the net-
work evolution is quite slow. A static network provides
a good approximation, when the properties of dynamical
processes evolve at a much faster time scale than topo-
logical changes. The opposite limit defines the so-called
annealed networks (Boguna et all 2009} |Gil and Zanette,
2005; |Stauffer and Sahimil, 2005, 'Weber and Porto, |2007)),
which describe the case when the evolution of the net-
work is much faster than the dynamical processes. In
this limit, the dynamical process unfolds on a network
that is rapidly rewiring so that the dynamics effectively
occurs on an average network in which each connection is
possible according to a specific probability that depends
on the degree distribution P(k) and the two-node degree
correlations P(k'|k). An annealed network is thus de-
scribed by a mean-field version of the adjacency matrix
that will be presented in Section [[V]

The two above limits are relevant in the definition of
the approximations and the limits of applicability of the
most commonly used theoretical approaches to epidemic
spreading in networks. There are, however, several other
instances of networks, such as in social systems, where
the connectivity pattern varies over time scales compa-
rable to those of the dynamical processes on top of it and
it is crucial to take explicitly into account the concurrent
dynamics of the spreading process and the connectivity
pattern. The effect on epidemic spreading of the dynam-
ical nature of such temporal (Holme and Saramaki, [2012))
networks is discussed in Section

Finally, co-evolution of the network and the dynam-
ical process occurs when the topological structure of a
network reacts dynamically to the evolution of a dynam-
ical process taking place on top of it. Indeed, individual
social activity can be altered by the presence of an epi-
demic outbreak (e.g. avoiding contacts that amount to
link deletion), thus affecting the topology of the underly-
ing social network, which in turn feeds back nontrivially
on the spreading dynamics. The coupling of topology
with disease evolution in such coevolving networks is dis-

cussed in Section [VILB.7

IV. THEORETICAL APPROACHES FOR EPIDEMIC
MODELING ON NETWORKS

A continuous-time epidemic process with constant
transition rates between compartments on any graph
can be described by Markov theory. Let us consider a
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network defined by its adjacency matrix A and a gen-
eral epidemic process with g compartments. The state
of node i at time ¢ is specified by a random variable
X;(t) € {0,1,...,q — 1}, where X; (t) = o means that
node i belongs to compartment « at time t. We assume
that all transitions between compartments are given by
independent Poisson processes with given rates. Under
these conditions, the evolution of the epidemic process
can be described in terms of a Markov chain (van Kam-
pen, 1981; Van Mieghem| |2014b)). In a network with N
nodes, the total number of states equals g%, all possi-
ble combinations in which all N nodes can take a value
from 0 to ¢ — 1. The elements of the ¢V x ¢"V infinites-
imal generator () of the continuous-time Markov chain
are explicitly computed for ¢ = 2 in |[Simon et al.| (2011);
Van Mieghem and Cator| (2012)); [Van Mieghem et al.
(2009), while the general case is treated in|Darabi Sahneh
et al.| (2013). Once the infinitesimal generator @) and the
initial infection probabilities are known, the state prob-
abilities Pr[X; (t) = z1,..., XN (t) = zn] at time ¢, for
each z; =0,1,...,¢—1, can be computed using ordinary
matrix operations, from which all desired information can
be deduced in principle.

Although the Markov approach is exact, its use has
been limited to a few exact results in the case of the
SIS model. Indeed, using an exact Markov approach is
impervious for a number of reasons. First, the linear
set of ¢!V x ¢V equations to be solved limits the anal-
ysis to very small graphs. Second, the structure of the
infinitesimal generator @) is rather complex, which pre-
vents from gaining general insights, although it is possible
(Van Mieghem and Cator} 2012)) to deduce a recursion
relation between the ) matrix in a graph with N and
N + 1 nodes. Third, in most cases, we are interested in
the steady-state (or stationary) behavior or in the final
size of the epidemic. The peculiar property of the ex-
act continuous-time Markov process is the appearance of
an absorbing state, which is equal to the overall-healthy
state (x; = 0 for each node j) in which the activity (virus,
information spreading etc.) has disappeared from the
network. Mathematically, an absorbing state means that
the () matrix has a row of zero elements, the Markov
chain is reducible and the steady-state is equal to this
overall-healthy state for finite N. These complications
mean that only a time-dependent analysis, focusing on
metastable states, may answer questions of practical in-
terest.

More in general, few exact results have been derived
for epidemic spreading in networks. For this reason, the
derivation of explicit results on the behavior of epidemic
spreading processes in networks mostly relies on mean-
field theoretical approaches of different kind. In the fol-
lowing we review these approaches, and discuss the differ-
ent approximations and assumptions on which they are
based. The detailed applications of these approaches to
the paradigmatic cases of the SIS and SIR models will be



presented in Section [V]

A. Individual-based mean-field approach

Individual-based mean-field theory (IBMF) represents
a drastic simplification of the exact description presented
above. The basic idea (Chakrabarti et al., 2008} |(Gomez
et al.,2010; [Van Mieghem et al.,[2009; |Wang et al.,[2003)
is to write down evolution equations for the probability
p§* that the node 7 belongs to the compartment «, for any
node ¢, assuming that the dynamic state of every node is
statistically independent of the state of its nearest neigh-
bors. The mean-field equations can be obtained, under
this assumption, by applying an extended version of the
law of mass action, i.e. assuming that the probability
that node 7 is in state a and its neighbor node j in state
o is pf p;?‘l. More systematically, they can be obtained di-
rectly from the governing equations derived from the ¢”-
state Markov chain, assuming that the expected values of
variables pairs factorize: E[X;X;] = E[X;]E[X;]. This
method is akin to the classic assumption of the mean-
field theory, while keeping the full topological structure
of the network encoded in all the entries of the adjacency
matrix a;;, that it is considered to be static or quenched,
using the language of mean-field theory in statistical me-
chanics.

The solutions of IBMF theories depend in general on
the spectral properties of the adjacency matrix, and in
particular on the value of its largest eigenvalue A;. Their
predictions are generally in agreement with numerical
simulation results obtained for static networks. As well-
known from the theory of critical phenomena, the agree-
ment tends to decrease, when the densities p¢ — 0 and
the independence assumption breaks down.

Individual-based mean-field approximations can be ex-
tended by using pair-approximation approaches (ben-
Avraham and Kohler, 1992)), in which the expectation
E[X;X,] are considered as relevant dynamical quanti-
ties, for which the evolution equations are written. In
order to provide these equations in closed form, the three-
point correlations functions E[X,;X;X,,] are factorized
as a function of the single and two points correlation
functions. By the same token it is possible to derive
exact equations for the correlation functions up to n
points|Van Mieghem| (2014al). An approximation is, how-
ever, always required to close the set of equations by
expressing n + 1-points correlations as functions of cor-
relations of lower order. As the order n grows, these ap-
proximations are characterized in general by increasing
levels of accuracy.

Although the IBMF method can be generalized to
time-dependent adjacency matrices and adaptive mod-
els, explicit solutions have been obtained mainly for the
SIS models on static networks.
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B. Degree-based mean-field approach

Degree-based mean field (DBMF) theory was the first
theoretical approach proposed for the analysis of gen-
eral dynamical processes on complex networks, and its
popularity is due to its applicability to a wide range of
dynamical processes on networks (Barrat et all [2008;
Dorogovtsev et al},[2008). The DBMF approximation for
dynamical processes on networks starts with the assump-
tion that all nodes of degree k are statistically equivalent.
This assumption implies that, instead of working with
quantities ®; specifying the state of vertex i (as in IBMF
theory), the relevant variables ®; are specifying the state
of all vertices with degree k, the degree class k (Bogund
and Pastor-Satorras, 2002)). The assumption also implies
that any given vertex of degree k, is connected with the
same probability P(k’|k) to any node of degree k’. The
approach is a convenient complexity reduction technique
that consists in a drastic reduction in the number of de-
grees of freedom of the system.

DBMF theory for epidemic models focuses on the
partial densities of individuals of degree k in the com-
partment «, p¢(t), or, in other words, the probability
that an individual in the population with degree k is
in the compartment a. These variables are not inde-
pendent, but fulfill the condition ) _ pff(t) = 1. The
total fraction of individuals in the compartment a is
p(t) = >, P(k)pj(t). The explicit rate equations for
the quantities pf (¢) are obtained by using the law of mass
action and assuming the independence of the expectation
values (see Section [[LB]).

The DBMF theory implicitly contains an approxima-
tion that is not always clearly stated. The statistical
equivalence within degree classes considers the network
itself in a mean-field perspective, in which the adjacency
matrix a;; is completely destroyed, only the degree and
the two-vertex correlations of each node being preserved.
This is equivalent to replacing the adjacency matrix in
the IBMF theory by its ensemble average @;;, expressing
the probability that vertices ¢ and j are connected (an-
nealed network approximation), taking the form (Boguna
et al., |2009; Dorogovtsev et al.l 2008)

_ ki Pkilk;)

Aij = Np(kl) (13)

In the case of uncorrelated networks, the simple form
G;j = kikj/(N(k)) is obtained.

The solutions obtained from DBMF theories depend
in general on the statistical topological properties of the
underlying networks, and in the case of uncorrelated net-
works, on the moments of its degree distribution. Al-
though the DBMF theory is obviously a strong approx-
imation in the case of dynamical processes occurring on
static networks, it appears to be a suitable approxima-
tion to capture the behavior of epidemics mediated by
interaction patterns changing on a time scale much faster



than the timescales of the spreading process. In this
limit, we can consider the epidemic process to spread on
a network that is constantly rewired, while preserving the
given functional form for P(k) and P(k’|k). This process
amounts to a contagion process spreading on an effective
mean-field network specified by the annealed network ap-
proximation. Furthermore, the DBMF provides a good
description of a wide range of dynamical processes that
include complex compartment transitions, multiple occu-
pancy of nodes and time-varying connectivity patterns.

C. Generating function approach

For the SIR model and similar models without steady-
state, the long time (static) properties of the epidemic
outbreak can be mapped into a suitable bond percola-
tion problem (see Section [[.C]). In this framework, the
probability p that a link exists is related to the probabil-
ity of transmission of the disease from an infected node
to a connected susceptible one.

The problem of percolation in networks (Callaway
et al., [2000; |Cohen et al., 2000; Molloy and Reed, [1995)
can be elegantly tackled with generating functions (Wilf]
2006). Let us consider the case of bond percolation, in
which edges in a network are removed with probability
1 — p and kept with probability p (see Section [[L.C]). Let
us define u as the probability that a randomly chosen
edge does not lead to a vertex connected to the (possi-
bly existing) giant component. A randomly chosen edge
is not connected to the giant component if either it has
been removed, or if it leads to a vertex of degree k, whose
remaining k — 1 edges either do not exist or do not lead
to the giant component, i.e.:

u:l—p-i-zk:k]:k%m(l—p—kpu)k_l. (14)

This equation is valid for degree uncorrelated networks
which have no loopsEL in which a randomly chosen edge
points to a vertex of degree k with probability kP(k)/(k),
see Section The probability 1 — Pg that a ran-
domly chosen vertex does not belong to the giant compo-
nent, is proportional to the probability that it has degree
k, and all of its outgoing edges either have been removed
or do not lead to the giant component, i.e.

Pg(p) =1- P(k)(1—p+up)". (15)
k

Eqgs and can be conveniently written in terms of
the degree distribution generating function (Wilf, |2006])

3 The formalism can be extended to degree correlated networks,

see Section |VII.B.1| and |Goltsev et al.| (2008).
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Go(z) = X, P(k)z" and the excess degree generating
function Gy(z) = Y., (k + 1)P(k + 1)2*/(k), taking the

form

u=1-p+Gi(1—-p+pu) (16)
Pg(p) =1- Go(l —p+pu). (17)

The condition for the existence of a giant component
translates into the condition for the existence of a nonzero
solution of Eq. (16]), which is (Callaway et all, [2000)

Go(1) ()

> = = . 18
PP G~ ) - ) 1s)
In the vicinity of the critical point, the expansion of the
generating functions around the nonzero solution yields
the scaling behavior of the order parameter, Pg(p) ~
(p — pe)Prere, with Bpere = 1 in the case of homogeneous
networks. In the case of heterogeneous networks with
degree distribution P(k) ~ k~7, we surprisingly find that
the percolation threshold tends to zero for 7 < 3 in the
limit of an infinite network size, N — oo (Cohen et al.,
2002)). The critical exponent Sper. assumes in this class

of networks the following values (Cohen et al., [2002)

1/(3—1x) fory <3
Bpere = 1/(y—3) for3 <~y <4 . (19)
1 fory >4

For the case v = 3, a stretched exponential form Pg(p) ~
el/? is expected, based on the mapping to the SIR model,
see Sec. V. Bl

The above expressions are very general, and can be
used also to study immunization strategies and other con-
tainment measures in the case of SIR-like models. See
also [Hamilton and Pryadko| (2014)); [Karrer et al.| (2014)
for very recent further improvements on these results.

V. EPIDEMIC PROCESSES IN HETEROGENEOUS
NETWORKS

A. Susceptible-Infected-Susceptible model

An impressive research effort has been devoted to un-
derstanding the effects of complex network topologies on
the SIS model. The SIS dynamics involves only two-state
variables and may reach a stationary state, making it
ideal for the application of several theoretical approaches.
For this reason, there are a large number of results con-
cerning the SIS model, obtained with approaches ranging
from approximate mean-field theories to exact methods.
In the following, we will follow a historical perspective
that starts with the basic and easily generalizable mean-
field approaches and moves then to recent exact results
that put our understanding of the SIS model in complex
networks on firm theoretical ground.



1. Degree-based mean-field theory

The first approach to the study of the SIS model
in complex networks (Pastor-Satorras and Vespignani,
2001b)) used a degree-based mean-field (DBMF) theory
(commonly referred in the physics literature as the het-
erogeneous mean-field approach), whose general method-
ology can be extended to a wealth of dynamical processes
in networks (Barrat et al, [2008). In the DBMF ap-
proach, the SIS model is described in terms of the prob-
ability pi(t) that a node of degree k is infected at time
t, assuming the statistical equivalence of all nodes of de-
gree k. The SIS dynamical equation for pf(t) is derived
by applying the law of mass action,

= —pi(t) + MR[L = pl(8)] D P(Kk)ps (1), (20)
™

where, without loss of generality, we have rescaled time
by 1!, so that the recovery rate is unitary and the in-
fection rate is equivalent to the spreading rate A = 8/pu.
The first term accounts for the recovery of nodes of de-
gree k, proportional to the probability pi(t) that a node
of degree k is infected. The second term accounts for the
infection of new nodes, and is proportional to the prob-
ability that a node of degree k is susceptible, 1 — pi(¢),
times the probability P(k’|k) that this node is connected
to anode of degree £/, multiplied by the probability p, (t)
that this last node is infected, times the rate of infection
A. This factor is summed over all the possible values of
k'. The extra factor k takes into account all the possible
edges through which the disease can arrive at a node of
degree k.

The set of Eqgs. for the DBMF approximation to
the SIS model cannot be solved in a closed form for
general degree correlations. The value of the epidemic
threshold can however be obtained by means of a linear
stability analysis (Bogund and Pastor-Satorras), 2002)).
Performing an expansion of Eq. at first order in py,(t)
leads to

dpy(t) I
~ E Jiw pr(t 21
dt k kk' P (t), (21)
where the Jacobian matrix element is Jyp = —0pp +

Mk P(K'|k) and where §;; is the Kronecker delta symbol.
A null steady state, corresponding to the healthy phase,
is stable when the largest eigenvalue of the Jacobian is
negative. The endemic phase will thus take place when
—14+AAps > 0, where Ay is the largest eigenvalue of the
connectivity matriz (Boguna and Pastor-Satorras, 2002)),
whose elements are

O = kP(K'|k). (22)

From Perron-Frobenius Theorem (Gantmacher, [1974]),
since C is non-negative, and assuming that it is irre-
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ducible, its largest eigenvalue is real and positive. There-
fore, the endemic state occurs for

1

A > ADBME — T (23)
M

In the case of uncorrelated networks, in which
P(K'|k) = k'P(k")/({k), it is possible to obtain an explicit
solution of the DBMF equations by writing

dpj,(t)
dt

= —pi(t) + Mk[1 = pi(t)]O, (24)

where

o= FLE) 1) (25)

The latter expression gives the probability to find an
infected node following a randomly chosen edge. In
the steady state, imposing the stationarity condition
dpy, (t)

k= =0, we obtain

AKO(N)

I _
Pk = T 00N (26)

where © is now a constant that depends on the spread-
ing rate A\. The set of Eqgs. shows that the higher
the degree of a node, the higher its infection probabil-
ity, indicating that strongly inhomogeneous connectivity
patterns impact the epidemic spreading. The factor ©(\)
can be computed self-consistently, introducing into
the definition Eq. , to obtain

1 AEO(N)
= — kP(k)——————. 27
(k) ; ( )1 + AO(N) (27)
The self-consistent equation admits a non-zero solu-
tion, corresponding to the endemic state, only when the
following threshold condition for uncorrelated networks
is fulfilled (Pastor-Satorras and Vespignani, [2001b))

DBMF,unc __ <k>

A> A =y (28)
The uncorrelated threshold can also be obtained from
the general expression Eq. by noticing that the
elements of the connectivity matrix reduce to Cypr =
kk'P(k")/(k), which has a unique non-zero eigenvector
with eigenvalue (k?)/(k). For a fully homogeneous (reg-
ular) network with (k%) = (k)2, Eq. recovers the
result APBMF — 1/(k) as expected from the simple ar-
guments from Section (see Eq. (1)).

Eq. implies that, in networks with a power-law
degree distribution with exponent 2 < v < 3, for which
(k?) — oo in the limit of a network of infinite size, the
epidemic threshold tends asymptotically to zero. This
was one of the first results pointing out the crucial ef-
fect of degree heterogeneities on epidemic spreading. The



critical behavior of the prevalence in the vicinity of the
epidemic threshold can be obtained by solving Eq.
for © in the continuous degree approximation and intro-
ducing the result into the definition p/(X\) = >, P(k)pf
From these manipulations, one obtains (Pastor-Satorras|

and Vespignani, 2001a)) p!(A) ~ (A — ADBMF)ASE™ with
the critical exponent
1/(3 =) fory <3
DEME — 0 1/(y—=3) for3<~y<4 . (29
1 fory >4

For the case 7 = 3, a prevalence following a stretched
exponential form is obtained, namely p!(\) ~ e~ /(")
(Pastor-Satorras and Vespignani, [2001b). Noticeably,
this exponents take the exact same form as those ob-
served for the percolation problem, Eq. . It is inter-
esting to note that for 2 < v < 3 the exponent governing
the prevalence behavior close to the threshold is larger
than one. As noted in [Pastor-Satorras and Vespignani|
this implies that, while the vanishing thresh-
old makes the spreading of pathogens more easy, the
very slow growth of the epidemic activity for increasing
spreading rates makes epidemic in these networks less
threatening.

2. Individual-based mean-field theory

As introduced in Section[[V] the state of the system in
the SIS model is fully defined by a set of Bernoulli ran-
dom variables X; (¢) € {0,1}: X; (¢) = 0 for a healthy,
susceptible node and X; (¢) = 1 for an infected node. It
is possible to construct a 2%V Markov chain (Simon et al.
2011} [Van Mieghem and Catorl, [2012;[Van Mieghem ef al.
2009), specifying exactly the time evolution of the SIS
model. While exact, as mentioned above, the Markov
chain approach complicates analytical calculations. A
simpler route to derive rigorous results on the SIS model
is to use the property of a Bernoulli random variable X;
that the expectation E [X;] is equal to the probability
that node i is infected, i.e. E[X;] =Pr[X; =1] = pl(t).
This allows to write the exact equations for the expecta-
tion of being infected for each node i of the SIS model
(Van Mieghem, [2014albl),

dE[X; (t)]

=F |—uX;(t 1-—
dt 1% z()"’

N
)8 aiX
j=1
(30)
Eq. holds also for asymmetric adjacency matrices,
i.e. for both directed and undirected networks and for
time-varying networks where the adjacency matrix A(t)
depends on time ¢ (Guo et al) 2013). The SIS govern-
ing equation states that the change over time of
the probability of infection E[X; (¢)] = Pr[X; (¢t) = 1] of

17

node ¢ equals the average of two competing random vari-
ables: (a) if the node i is infected (X; = 1), then dE[Xl]
decreases with rate equal to the curing rate p and (b)
if the node is healthy (X; = 0), it can be infected with
infection rate 8 from each infected nelghbor The total
number of infected neighbors of node 1 is Z 1035 X
For a static network, Eq. ( reduces to 1Schwartz
land Stonel [2013; |Sharkey |0_1|; |[Van Mieghem| [2014Db)

dpf(ﬂ 1 al I
a P (t)+A Z aijp;(t)

N
—AY ayE[X
j=1

where ¢ has been rescaled by 1/p and A = 3/p.

The above equations do not lend themselves to an ex-
plicit solution because the equation for p!(t) depends on
the two-node expectation E [X; () X; (t)]. Its exact com-
putation requires the knowledge of the joint probability
distribution Pr[X; =1, X; = 1] for the state of nodes ¢
and j. In order to derive a closed set of N dynami-
cal equations, the Individual-Based Mean-Field (IBMF)
approximation is usually made [also termed Quenched
Mean-Field (QMF) or N-Intertwined Mean-Field Ap-
proximation (NIMFA)], which assumes that the states
of neighboring nodes are statistically independent, i.e.

X; (0], (31)

E[X; (t) X; (1) = E[X; ()] E[X; (1)] = pi (t)p; (tz |

32

Under this approximation the dynamical equations
for the SIS model become (Chakrabarti et al., 2008; |Het-
hcote and Yorke, [1984; [Van Mieghem et al), [2009; Wang

et al.L 2003))

dpj (t)
dt

= —pl(t) + A1 — p(t Zaij (33)

The physical interpretation is immediate: the change in
the probability p! has a destruction term, equal to the
probability that node 4 is infected times the rate of recov-
ery u =1, and a creation term, equal to the probability
that node 7 is susceptible, times the total probability that
any of its nearest neighbors is infected, times the effec-
tive transmission rate A\ = 3/p. Again, time has been
rescaled in Eq. . Noticeably, Eq. can be de-
rived using other approaches. For example,
propose a discrete time equation taking addition-
ally into account the possibility of reinfection in a single
time step of length At. The equation thus obtained leads
to Eq. in the continuous time limit At — 0.

To obtain a prediction of the threshold, we can apply
a linear stability analysis on Eq. . Indeed, lineariz-
ing Eq. leads to the Jacobian matrix, with elements
Jij = —0ij + Aa;j. An endemic state occurs when the



largest eigenvalue of J is positive. This condition trans-
lates in the epidemic threshold

1
IBMF IBMF
A AEIME (34)
where A; is the largest eigenvalue of the adjacency ma-
trix (Chakrabarti et al., 2008 |Van Mieghem et al., 2009
Wang et al., 2003).

In networks with a power-law degree distribution,
P(k) ~ k77, eq. (34) can be combined with A; ~
max{v/Emax, (k2)/(k)} (Chung et all [2003)), where kpyax
is the maximum degree in the network, to produce an ex-
pression for the scaling of the epidemic threshold (Castel-
lano and Pastor-Satorras), 2010} 2012)

1/ VEmax >5/2
R b OSSN

The relevance of this result is the prediction, in the ther-
modynamic limit, of a vanishing epidemic threshold for
every network for which the maximum degree is a grow-
ing function of the network size, which is essentially the
case for all random, non-regular networks. Although the
expression for the epidemic threshold obtained from the
IBMF theory is not exact, (see |Givan et al.| (2011) for
a detailed assessment of the independence assumption),
it provides a relatively good accuracy when compared
with the results of extensive numerical simulations, see
Section [V A 5l

It is worth bridging the IBMF approach with the
DBMF approach presented in the previous section. As
stated in Section [[V] the DBMF approach is based on
the assumption of the statistical equivalence of all nodes
with the same degree k, actually defining the spread-
ing process on an effective mean-field graph, whose ad-
jacency matrix is given by the annealed form a;; =
k;P(k;|kj)/(NP(k;)). This elucidates the connection be-
tween the IBMF and DBMF approaches. The latter can
be simply derived by substituting the annealed adjacency
matrix in the Eqs. . By performing a degree-based
average pf, = > ;. pi /(NP(k)), the equations are
thus recovered from the IBMF approach. Hence, DBMF
is equivalent to IBMF with the additional approxima-
tion that the detailed topological network structure is
replaced by its annealed version.

Within the framework of IBMF theory, it is also pos-
sible to derive the behavior of the prevalence p’ in the
stationary state just above the epidemic threshold (Golt-
sev et al., [2012; Van Mieghem) [2012a))

,01 ()\) ~ iZ;Vd (ml)j )\ - >\c

=N ) & (36)

where 7 is the principal eigenvector (PEV) correspond-
ing to the largest eigenvalue of the adjacency matrix.
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The complete expansion of the prevalence in the sta-
tionary state around the epidemic threshold is derived
in [Van Mieghem (2012b)).

Based on Eq. , the validity of the IBMF predic-
tion for the epidemic threshold has been recently ques-
tioned (Goltsev et al.l [2012)) according to the following
argument. For AIPMF to be the true epidemic threshold,
the stationary state above it must be endemic, with a
finite fraction of the network infected. This requires that
for N — oo the prefactor

120 (@),
ATNEY @)

in Eq. must tend to a constant of O(1). Whether A
is constant or not depends on the localization of the PEV,
i.e. whether its weight is evenly distributed (delocalized)
on all nodes of the network, or localized in a few nodes.
Goltsev et al. apply this idea to the analysis of power-
law distributed networks, arguing by means of analytical
calculations and numerical experiments (see also Martin
et al.| (2014)) that, for v < 5/2, the PEV is delocalized,
while it is localized for v > 5/2. This would imply that,
while AXIBMF always marks a transition to an active state,
this one is endemic only for v < 5/2, corresponding to a
delocalized PEV; for v > 5/2, instead, a localized PEV
indicates that the transition at AIBMF is not to an en-
demic state, but to a subendemic state, in which activity
is restricted to the neighborhood of the hubs with largest
degree. Support to this argument (which is mean-field
in nature, based on Eq. (36]) is provided in |Lee et al.
(2013), who characterize the sub-endemic state as a Grif-
fiths phase (see also Boguna et al.| (2013)).

(37)

3. Extensions of degree-based and individual-based mean-field
approaches

Several extensions of the degree-based and individual-
based mean-field theories have been proposed, taking into
account the role of dynamical correlations, which are ne-
glected in both approaches.

A natural way to include the effect of correlations is
to consider additional variables representing the state
of pairs, triples etc. of neighboring nodes. [Eames and
Keeling| (2002)) introduced an extended degree-based ap-
proach where the evolution of the average number (I*)
of nodes of degree k in the infected state depends on the
number (S*I') of connections between susceptibles of de-
gree k with infected nodes of degree [. The dynamics can
be written in terms of the properties of triples, such as
(SkS'I™) and so on so forth. If averages for triples are
approximated with averages for pairs and single nodes,
the dynamical equations are reduced to a set of O(k2,...)
nonlinear ordinary differential equations. This procedure
can be iterated, but the increased accuracy is counter-
acted by a rapid growth in the number of equations.



Similarly, |Gleeson| (2011)), building on the results
of Marceau et al.| (2010), proposed a general theory for
binary-state dynamics in networks. This approach takes
into account explicitly the dynamical correlations be-
tween adjacent nodes (see also [Lindquist et al.| (2011)
for a similar approach). The theory is based on a set
of master equations for the quantities sy, ,,, (t) and ik, (t)
which, in the context of the SIS model, are defined as the
fraction of nodes of degree k which are susceptible (resp.
infected) at time ¢t and are connected to m < k infected
neighbors. By means of combinatorial arguments, these
quantities can be related to the prevalence pi of nodes
of degree k, allowing the determination of the prevalence
and epidemic threshold. This theoretical approach pro-
vides a good description of the time evolution of the
prevalence (Gleeson, [2013) and good estimates of the
epidemic threshold for random regular lattices (Gleeson),
2011). Gleeson’s approach presents again the drawback
that the estimation of the threshold in more complex
networks requires the numerical solution of large sets of
coupled equations, which hinders the analysis of large
network sizes.

Another degree-based approach, proposed by Boguna
et al.|(2013]), takes into account long distance correlations
by considering explicitly the possibility of reinfection be-
tween nodes i and j, separated by a topological distance
¢;; possibly larger than one. For this purpose, the orig-
inal SIS dynamics is replaced by a modified description
valid over coarse-grained time scales. In such longer tem-
poral intervals, a given infected node i can propagate
the infection to any other node j at distance ¢;; in the
network, via a sequence of microscopic infection events
of intermediate, nearest neighbors nodes. The infection
rate 3 is then replaced by an effective rate 3(¢;;, 3). On
the coarse-grained time scale also the recovery rate p of
node ¢ is replaced by an effective rate f(k;,3). Both
parameters 3(¢;;,3) and fi(k;, B) can be estimated from
the properties of the network and the SIS model. Writ-
ing down a mean-field theory for such extension of the
SIS model, upper bounds for the epidemic threshold A,
of the original SIS model are deduced, which are in good
agreement with numerical simulations, see Section[V.A.5]

For individual-based approaches, the consideration of
dynamical correlations can be introduced in a system-
atic way, by the analogue of a cluster expansion (ben-
Avraham and Kohler, [1992). The exact SIS Eqgs. (31
are, as discussed above, not closed, due to the presence of
the term involving dynamical correlations between pairs
of adjacent nodes. One way to proceed consists in com-
plementing Eq. with an equation for the evolution of
the pair correlations E [X; (t) X (t)]. The (1;7) governing

dE[X;X;
dt

equations for L for i # j take the form (Cator and
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Van Mieghem)| 2012))
dE [ X; X;
% = “2uE[X:X;] + BN anE[X; X

+ 8300 4 EX X
— B30l (@i + ) BX X, X (38)
while for 7 = j, obviously Eq. holds. Equations (30))
and are still an exact description of the dynamics
involving now the terms E [X;X;X}], that in turn need
to be determined, via (]?\f ) differential equations involving
joint fourth order expectations and so on. In summary,
the approach leads to a set of Zgzl (]Z) =2V _ 1 exact
equations describing the evolution of the SIS process (to
be complemented with the conservation of probability)
that form a hierarchy: the equations for the evolution of
correlations of order n depending on those of order n+1.
To allow computations in practice, this hierarchy must
be limited to some small n by imposing a closure con-
dition for the set of equations. The simplest closure
condition, E[X;X;] = E[X;]E[X]], leads to the IBMF
approximation. Higher order closures include dynami-
cal correlations in a more detailed way, thus providing a
more accurate description of the system dynamics. The
assumption of different closure relations leads to differ-
ent degrees of tractability of the ensuing equations. Some
of those can be proved to be exact for simple networks
(Kiss et al., 2015). For example, focusing on general clo-
sure forms, |Cator and Van Mieghem| (2012) propose the
expression E[X;X;X;| = E[X;X;]E[X}]. Analogously,
Mata and Ferreiral (2013)), applying standard techniques
from pair approximations in statistical physics, propose
the closure
X X;|E[X; Xk]
E[X;]

The particular interest of the closure is that it allows
deriving an explicit expression for the epidemic threshold
in terms of the largest eigenvalue of the new Jacobian
matrix of the dynamical equations (Mata and Ferreiral,

2013):
Nk A2+ A)
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A completely different approach to determine the epi-
demic threshold for the SIS model has been proposed
by [Parshani et al| (2010). The idea is to map the SIS
dynamics with fixed infection time, to a percolation pro-
cess, mirroring the approach successfully used for the SIR
model (see Sec. . In SIS dynamics, however, the
mapping is approximate and one has to take into account
the reinfection probability =, i.e. the probability that an
infected node reinfects the node from which it originally
received the disease. By estimating m and using it in
a modified percolation approach, values of the epidemic
threshold are derived, in good agreement with numerical
simulations, also for heavy-tailed degree distributions.

E[X,X,;X;] = : (39)

(40)



4. Exact results

Although the above mean-field approaches provide a
general theoretical picture of the behavior of the SIS
model in networks, a few exact results exist that provide
rigorous bounds for the threshold and the dynamical be-
havior of the model. A first exact result concerning the
lower bound of the epidemic threshold (Van Mieghem and
van de Bovenkamp), |2013)) can be achieved by revisiting
Eq. . Since 0 < Zivzl ar;i X; (t) X (£), it is possible
to write the inequality:
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Denoting the vector W = (p{, phy e 7p§\,), the solution

of the inequalities is
W (t) < eM=Dtw (0). (42)

The exponential factor is dominated by the fastest grow-
ing mode, which is AA; — 1, where A; is the largest
eigenvalue of the non-negative matrix A, which is real
and positive, by the Perron-Frobenius Theorem (Gant-
macher, 1974). When AA; — 1 < 0, then W; = p!(¢) de-
creases exponentially in ¢ towards zero and the epidemic
dies out fast, so that

1

Ae > —.
=

(43)
Interestingly, this lower bound coincides with the IBMF
result.

Ganesh et al.|(2005) have proven that the average time
E[T] for the SIS Markov process to hit the absorbing
state, when the effective infection rate A < A%, obeys

BT < log N +1

T 1-aA (44)

from which Eq. is deduced.

Above the epidemic threshold instead, the activity
must be endemic, so that the average time to absorption
is E[T] = O(e“N) for some constant ¢ > 0. |Chatterjee
and Durrett| (2009)) proved that in graphs with power-
law degree distribution E [T] > O(elefs) for any J > 0.
This result pointed to a vanishing threshold in the large
N limit, but still left the possibility open for nonendemic
long-lived metastable states, as those predicted by |Golt-
sev et al| (2012); Lee et al.| (2013)). This possibility has
been recently ruled out by the work of Mountford et al.
(2013), showing that for any A > 0 and large N, the
time to absorption on a power law graph grows exponen-
tially in N, implying that there is endemic activity for
any A > 0.

For the complete graph, the exact average survival
time has been determined using the Markov theory (Van
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Mieghem et all 2014)). In particular, for the complete
graph, the average survival time for all A and N is

N j—1 . )
E[T) = ;ZO(JJ(N{J;)!)'/\T (45)

whose asymptotic for large N is
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for an effective infection rate A = 2 above the epi-

demic threshold A.. Since an infection can survive the
longest in the complete graph, the maximum average
lifetime (or survival) time of an SIS epidemic in any
network with N nodes is not larger than , or than
E[T] =0 (eNln%).

For power-law graphs, |Chatterjee and Durrett| (2009)
provide exact bounds for the exponent Bg;s governing
the singular behavior p! ~ As1s of the activity at the
transition, namely v — 1 < Bgrs < 27 — 3. This implies
that the mean-field value Sgrs = 1 does not hold for any
v > 2, as well as the failure of the DBMF prediction,
Eq. .

For a few special classes of simple graphs such as the
complete graph and the star, the 2V-state Markov chain
can be reduced to a much smaller number of states,
enabling an exact solution (Cator and Van Mieghem)
2013} |Schwartz and Stonel 2013} [Van Mieghem| [2013;
Van Mieghem and Cator} 2012)). More results can be
classified as asymptotic exact results, where the network
size N — 0o. An overview of asymptotic exact results is
given by Durrett| (2010]).

5. Numerical simulations of the SIS model on networks

As presented above, the different approximations of
the SIS process on networks yield different results for
the numerical value of the epidemic threshold. This is
particularly important in the case of networks with a
heavy-tailed degree distribution P(k) ~ k=7, where the
two main approximations, IBMF and DBMF, lead to the
same result for v < 5/2, but to noticeable differences for
v > 5/2, especially in the case v > 3. In this region,
while DBMF predicts a finite threshold, IBMF indicates
a vanishing one, albeit at a relatively small rate with the
system size.

Computational efforts have been mostly devoted to the
numerical determination of the epidemic threshold of the
SIS model on power-law distributed networks, in order to
assess the validity of the different theoretical approaches.
For a detailed study on graphs of small size see (Li et al.,
20124).



The standard numerical procedure to study absorbing
phase transitions, such as the epidemic transition of SIS,
is based on the determination of the average of the order
parameter (in this case the density of infected nodes),
restricted only to surviving runs (Marro and Dickman)
, i.e., runs which have not reached the absorbing
state up to a given time t. Such a technique is not ef-
ficient, because close to the threshold long time surviv-
ing configurations are very rare and an exceedingly large
number of realizations of the process are needed in order
to get substantial statistics. This problem is particularly
severe for a large network size, for which very large sim-
ulation times are required, due to the presence of a long
initial transient. These issues make the standard proce-
dure impractical and have not led to reliable conclusions
until recently.

In order to overcome the restrictions of the surviving
runs method, [Ferreira et al| (2012); [Mata and Ferreira
(2013) use the quasi-stationary state (QS) method (Fer-
freira et all [2011} |de Oliveira and Dickman)| [2005)), based
on the idea of constraining the system in an active state.
This procedure is implemented by replacing the absorb-
ing state, every time the system tries to visit it, with an
active configuration randomly taken from the history of
the simulation (see also Van Mieghem and Cator| (2012)
for an implementation of the same idea by means of an
external field). With this technique, the threshold is es-

timated by studying the susceptibility (Ferreira et al.
2012)), defined as

™ = ()?
AT

When plotted as a function of A in a system of size N, the
susceptibility x exhibits a maximum at a value A,(INV),
corresponding to a transition rounded by finite size ef-
fects. In the thermodynamic limit, the position of the
peak tends to the critical point as Ap(IN) — Ac(o0) ~
N~/7 (Binder and Heermann, 2010). Large scale simu-
lations performed using the QS method
[2012; Mata and Ferreiral [2013), see Figure 5| show that,
for v < 5/2, the IBMF and a pair approximation at
the individual level (PQMF) are almost exact, coinciding
asymptotically with the DBMF result in this range of de-
gree exponents. For 5/2 < v < 3, on the other hand, the
IBMF result provides the correct scaling of the thresh-
old with network size. For the crucial case v > 3, where
IBMF and DBMF provide radically different predictions,
the results are not as conclusive. A new numerical ap-

proach has been proposed to explore this region (Bogund)
2013)), based on the study of the lifetime of in-

dividual realizations of the SIS process starting with a
single infected node. Each realization is characterized
by duration T and coverage C, where the latter is the
fraction of distinct nodes ever infected during the real-
ization. In the thermodynamic limit, realizations can be

(46)
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FIG. 5 Numerical thresholds for the SIS model as a function
of the network size N in scale-free networks with degree ex-
ponent v = 2.25, computed using the QS method, compared
with different theoretical predictions. Upper inset shows the
behavior of the susceptibility as a function of the spreading
rate for different values of N = 10%,10%,105,10°,107, from
right to left. Lower inset shows the difference between the
different theoretical thresholds and the peaks of the suscepti-
bility. Figure adapted from |Mata and Ferreira (2013)).

either finite (i.e. having a finite lifetime and, therefore,
vanishing coverage) or endemic (i.e. having an infinite
lifetime and coverage equal to 1.) The average lifetime
E[T)] of finite realizations plays the role of a susceptibility,
exhibiting a peak at the transition, whose position can
then be used to estimate the threshold. The nontrivial
problem to determine whether, in a finite system, a real-
ization is endemic or not, can be overcome by declaring
endemic all realizations for which the coverage reaches a
predefined value (e.g. C' = 0.5). Numerical simulations
performed with this method indicate that the extended
DBMF approach by [Bogund et al.| (2013) provides a very
good fit to the numerical threshold for v > 3, see Fig-
ure [6] with a scaling with network size that is essentially
given by the IBMF expression Eq. .

6. Finite size effects and the epidemic threshold

As we have seen in the previous sections, the connec-
tivity pattern of the network enters explicitly in the de-
termination of the epidemic threshold that generally de-
pends on the moments of the degree distribution and/or
the maximum degree of the network. This finding has
particular relevance in networks with heavy-tailed de-
gree distributions, where the probability of nodes with
very large degree is appreciable. In the limit of infi-
nite size networks, the epidemic threshold may be van-
ishing, thus prompting to the disruption of the classical
epidemic framework where the disease can spread only
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FIG. 6 Numerical thresholds for the SIS model as a function
of the network size N in power-law distributed networks with
degree exponent v = 3.5, computed from the average lifetime
method proposed by [Boguna et al| (2013). Numerical data
are compared with different theoretical approaches as well as
with the the upper bound obtained from the DBMF theory
with long range dynamical correlations, developed by [Boguna
et al.| (2013). Figure adapted from [Boguna et al.| (2013))

for adequate transmissibility of the pathogen. While
mathematically compelling, the argument of a vanishing
threshold has been soon recognized as not realistic in real-
world networks (May and Lloyd} 2001} [Pastor-Satorras
and Vespignani, 2002a). Even if the connectivity pat-
tern of a network is well approximated by a heavy-tailed
distribution in a given range of degree values, any real-
world network is composed by a finite number of nodes
N. For instance, the finite size of scale-free networks is
generally related to the presence of a natural maximum
degree kmax ~ NV~ as reported in Section
that translates into a finite effective epidemic threshold.
Although the finite size of the network is often a determi-
nant element in the estimation of the epidemic threshold,
for instance in the analysis of numerical simulations (see
Section [V.A.F), there are many other limitations to the
maximum degree of the network. These limits are often
imposed by spatio-temporal constraints, such as maxi-
mum occupancy in spatial locations and the finite time
each individual can interact with other individuals. As
well, intrinsic cognitive and biological constraints may
be at work in real-world systems. One example is pro-
vided by the so-called Dunbar’s number that limits hu-
mans’ degree to between 100 and 200 individuals, a size
apparently imposed by the finite neocortical processing
capacity of the brain (Dunbar| [1998)). Interestingly, Dun-
bar’s number has been observed in a wide range of human
activities, including communication on modern informa-
tion technologies, making it a relevant limit in the case of
many information diffusion processes (Gongalves et al.,
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2011} Miritello et al., 2013]).

In view of these inherent limitations, it is often con-
venient to assume that even in the case of heavy-tailed
networks the degree distribution is characterized by the
analytic form P(k) ~ k™ 7Vexp(—k/k.), where k. is a
characteristic degree size. The exponential cut-off makes
it extremely unlikely to observe nodes with degree much
larger than k., effectively introducing an intrinsic limit to
the connectivity capacity of nodes (Pastor-Satorras and
Vespignani, 2002a). Within the DBMF approach this
leads, For large k. and 2 < v < 3, to A\PBMFPunc ~
(ke/m)" ™% where m is the minimum degree of the net-
work, which can be generalized for other values of -y
and which shows the effect of the degree limitations im-
posed by the intrinsic biological, social and cognitive con-
straints in real-world networks. Similar finite size effects
and considerations also apply to the epidemic threshold
obtained with the IBMF theory and other approaches.

It is important to stress however that the presence of
an epidemic threshold because of finite size effects and
other connectivity limitations should not be considered
as an argument to neglect the network heterogeneity. It is
indeed possible to show with simple calculations (Pastor-
Satorras and Vespignani, [2002a)) that simple homogenous
approaches can overestimate the actual epidemic thresh-
old in heterogeneous networks by one or more orders of
magnitude.

B. Susceptible-Infected-Removed model

The SIR model is a cornerstone in infectious disease
modeling. It applies to the wide range of diseases that
do provide immunity to the host and it is also a widely
used modeling scheme in knowledge and information dif-
fusion (see Sec. [X]). Theoretically, the SIR model repre-
sents a different challenge with respect to the SIS model
because it does not allow for a stationary state. The two
most used routes to a general analysis of the SIR model
have been initially the DBMF theory and the mapping
of static properties to the percolation model. Here, we
start with a presentation of the DBMF approach, focus-
ing then on other degree-based, individual-based and al-
ternative methods which have been completing the un-
derstanding of the SIR dynamics in networks in recent
years. We end the subsection with an overview of the
exact results on static properties which can be obtained
by mapping SIR to bond percolation.

1. Degree-based mean-field approach

The DBMF approach can be easily adapted to pro-
vide insight into the dynamical and statical properties
of the SIR model. In the DBMF approximation, we can
define as a function of time three different partial densi-



ties, namely of infected, susceptible and recovered nodes
of degree k, denoted by the variables pi(t), p;(t) and
pE(t), respectively.

The order parameter (prevalence) of the SIR model,
defined as the number of removed individuals at
the end of the epidemics, is then given by pf =
limy— o0 >_p, P(K)pE(t). In describing the time evolution
of these densities, one can follow the analogy with the
SIS model, to obtain the set of equations (Lloyd and
May\, 2001; [Moreno et al., [2002])

dpi(t)

G = PH) + AkpR (OTk(D), (47)
R
W0 _ ot

complemented with the normalization condition pf (t) =
1 —pl(t) — pE(t), where

= 3" PG Ik)pl (1), (48)
-

The value of the epidemic threshold in the case of gen-
eral correlations can be obtained as in the SIS case, by
performing a linear stability analysis. The same result
follows, with the epidemic threshold given by the inverse
of the largest eigenvalue Aj; of the connectivity matrix,
Eq. . As for SIS, in the case of uncorrelated networks
the epidemic threshold is given by . = (k)/(k?) (Lloyd
and May, 2001; Moreno et al., 2002)). For uncorrelated
networks, within the same DBMF approximation, it is
also possible to integrate the rate equations over time,
starting form a small seed, thus obtaining the full tem-
poral evolution of the spreading process. The solution
depends on a differential equation for an auxiliary func-
tion ¢(t), which cannot be solved analytically in general.
However, in the infinite time limit, it is possible to de-
termine the dependence of the final prevalence p% on A

= 3 P(k)(1 - e o), (49)
k
where
Poo =1— <—]1€> - zk: k]:k k) =i (50)

The solution of Eq. leads again to the epidemic
threshold A\. = (k)/(k?), a result that again recovers the
naive expectation for regular networks, see Eq. , Ae =
1/({k). For a power-law degree distribution, P(k) ~ k=7,
a detailed analysis (Moreno et al.,|2002) leads to a preva-
lence, in the vicinity of the epidemic threshold, of the
form pfo ~ (A= )\c)ﬂsm, with exponent Bgir coinciding
with the value for bond percolation, Eq. (19)). The above
results are exact for annealed networks, when the topol-
ogy changes (preserving P(k)) at a very fast rate (Volz
and Meyers, 2009). Instead, when considering it as an ap-
proach to static networks, the DBMF can be improved
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taking into account that, in the SIR process, a vertex can-
not propagate the disease to the neighbor who originally
infected it, because the latter is necessarily not suscepti-
ble. This effect can be included in the DBMF equations
by discounting, from the number of edges pointing from
infected individuals of degree k' to vertices of degree k,
the edge from which the original infection arrived to the
vertices of degree k’. In this way, the Eqs. are recov-
ered but now the I'y () function takes the form (Boguna
et al.l [2003b)

CLPE IR (51)
The value of the eplde{nlc threshold in this case is given
by Ac = 1/A s, where Ay is the largest eigenvalue of the
new connectivity matrix

k(K" —1)

kl

In the case of uncorrelated networks, the largest eigen-
value of the matrix Cyps is Ayy = (k2)/(k) — 1 (the cor-
responding eigenvector has components 7 = k) so that
the epidemic threshold is

Crorr = P(K'|k). (52)

(k)
Ac 07— () (53)
As shown below, Eq. is an approximation of the ex-
act result . However, this modified DBMF approach
captures the correct qualitative behavior, discriminating
between vanishing threshold, for scale-free networks, and
finite threshold, for v > 3.

The DBMF approach allows also to tackle the scaling
of the time evolution of the epidemic outbreak. This is
particularly important in the context of models like SIR
that do not have a stationary state. For the sake of sim-
plicity let us initially focus on the SI model (Anderson
and May, [1992), representing a disease in which infected
individuals never recover and keep propagating the dis-
ease forever. The SI model can be considered the limit
of the SIR model in which the recovery rate u is set to
zero. While this simplification leads to a trivial asymp-
totic state in which the whole population becomes even-
tually infected, it is nevertheless interesting due to its
simplicity, which allows to obtain explicit results for the
initial time evolution of epidemic outbreaks. The DBMF
analysis of the SI model proceeds from the analogue of
Eq. , valid for generic networks (Barthélemy et al.,
2004; Barthelemy et al., [2005)

dpi(t)

) — B[1 - ph(HITw (1), (54)

with

G=ZHMWM® (55)
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Pi(0)].
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The first term in Eq. accounts for a very small initial
seed of infected individuals, with initial partial density
pE(0), which can infect all their neighbors. The second
term represents the contribution of individuals infected
during the outbreak, which can infect all their neighbors,
with the exception of those who transmitted the disease.
Linear stability analysis shows that the time evolution at
very short times (when the partial densities of infected in-
dividuals are very small) follows an exponential growth,
p'(t) ~ e¥/7, where the characteristic time is given by
T= (B[\M)*l, where again Ay is the largest eigenvalue
of the connectivity matrix in Eq. . In the case of un-
correlated networks this implies (Barthélemy et al.l 2004}
Barthelemy et al., [2005)

W
"= Bl — R (56)

The solution for the SI model can be extended to the case
of the general SIR model by allowing a nonzero healing
rate, which leads to the general time scale of the initial
growth (Barthelemy et all 2005)

()
Bk2) = (n+ B) (k)"

T =

(57)

These results readily indicate that the growth time
scale of an epidemic outbreak is inversely proportional
to the second moment of the degree distribution (k?);
when this quantity diverges, as in the case of scale-free
networks, not only the threshold tends to vanish, but also
the time until the establishment of the infection becomes
very small (vanishing in the thermodynamic limit). Com-
puter simulations allow to obtain a detailed picture of the
mechanism of spreading of a disease in a scale-free net-
work (Barthélemy et al., [2004; [Barthelemy et al.l 2005)):
Initially, the infection reaches the hubs and from them
it quickly invades the rest of the network via a cascade
through progressively smaller degree classes. The dy-
namical structure of the spreading is therefore character-
ized by a hierarchical cascade from hubs to intermediate
k, and finally to small k classes.

2. Individual and pair-based mean-field approaches

As in the SIS case, a systematic way to attack the SIR
model is based on the full master equation for the ex-
act evolution of probabilities of microscopic states, and
the derivation, starting from it, of deterministic evolution
equations for dynamical quantities. In this framework,
Sharkey| (2008]) considers SIR with Poissonian infection
and recovery processes and derives from the master equa-
tion the 2NV equations for the probabilities for the state
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of individuals

dpP (t)
prai Xj: aij(Sil;) (58)

dpj (t) I
i P ; aij (Silj) — ppi

where S; and I; are Bernoulli variables equal to 1 when
the node is susceptible (infected, respectively) and 0 oth-
erwise, p7 = (S;) is the probability that node i is in
state S, p! = (I;), is the analogue for state I and (S;I;) is
the joint probability of state S;I;. In order to close the
equations , the simplest possibility is to assume that
the state of neighbors is independent (individual-based
mean-field approximation). Alternatively, one can derive
from the master equation the evolution of the probabil-
ities of pairs of neighbors, which depend in turn on the
state of triples of neighboring nodes. The closure of the
hierarchy at this level (pair-based mean-field) requires
the approximation of probabilities for triples with mo-
ments of lower order. There are several possible ways to
implement the closure and the best choice is not a triv-
ial problem. The validity of the different approximation
schemes is investigated in [Sharkey| (2011)), who shows
that replacing (S;I;) = (S;)(I;) is equivalent to writing
down an equation for the evolution of (S;I;) containing
unphysical terms (i.e. terms assuming that a node is
at the same time susceptible and infected). The conse-
quences of these unphysical terms are relevant: from the
individual-based mean-field approach one can derive an
expression for the SIR epidemic threshold equal to what
is found for the SIS case (Prakash et al., 2012} [Youssef]
and Scogliol 2011): A, = 1/A;, where A; is the largest
eigenvalue of the adjacency matrix. This result, however,
is even qualitatively not correct, as it predicts a van-
ishing threshold for power-law distributed networks with
v > 3, at odds with exact results (see below) and numer-
ical simulations (Castellano and Pastor-Satorras, 2010)).
The pair-based approach instead, complemented with the
closure in Eq. , is proved to be an exact description of
the stochastic system for a tree topology (Sharkey et al.,
2013). In the case of networks with loops it is possible
to find a precise connection between the detailed loop
structure and the closures that leave the description ex-
act (Kiss et all [2015). From these individual and pair-
based approaches, by summing over all nodes, the equa-
tions for the probabilities of the global quantities p! and
p° can be obtained, thus providing a microscopic founda-
tion of equations obtained at population level by means
of the mass action principle. Eq. and similar pair-
based approaches can be written also for heterogeneous
infection and recovery rates (Sharkey} |2008). Hence, the
approaches apply in full generality also to directed and
weighted networks.



3. Other approaches

Due to its great relevance, the time evolution of the
SIR dynamics has been tackled with many other ap-
proaches.

The extended degree-based approach of
(2002) (see Sec. can be applied also to the

SIR model, providing a set of closed ODEs that can be
integrated numerically or used to derive an expression
for the basic reproductive ratio Ry. Also the other ex-

25

standing of the SIR model is the recent application of
the message-passing approach to SIR dynamics
land Newman, 2010). This approach provides an exact
description of the dynamics on trees, via a closed set
of integro-differential equations, allowing the calculation
of the probabilities to be in state S, I or R for any
node and any time. When loops are present, the method
gives instead a rigorous bound on the size of disease out-
breaks. On generic (possibly directed) trees the approach
of Karrer and Newman| (2010)) has been shown

tended degree-based approach of [Lindquist et al.|(2011)

sson and Sharkeyl 2014) to coincide for Poissonian in-

can be applied to SIR, by categorizing each node by its
disease state (i.e., S, I, R), as well as by the number of
neighbors in each disease state. In this way, an excellent
agreement with numerical simulations for both the tem-
poral evolution and the final outbreak size is found. The
threshold condition derived analytically turns out to be
equal to the exact one obtained using percolation theory,
Eq. in Sec.

An alternative approach by describes the
Poissonian SIR epidemics at the global population level.
Based on the probability generating function for the de-
gree distribution, it describes the evolution of the infec-
tion using only 3 coupled nonlinear ordinary differential
equations. The solution of these equations is in excellent
agreement with numerical simulations (Lindquist et al.
; it is shown to be exact in the thermodynamic
limit (Decreusefond et al.,|2012; Janson et al.2014) and
it allows to derive the exact expression, Eq. , for the
epidemic threshold, in the case of static uncorrelated net-
works. In this case, the approach of can be
shown (House and Keeling), |2011) to be a specific case of
the extended degree-based theory of |[Eames and Keeling|
. Volz’s approach can be made more physically
transparent and simpler, reducing to a single evolution
equation . The basic idea of this improved
approach is to focus on the state of a random partner in-
stead of a random individual. From this starting point,
a fully general theoretical framework (edge-based com-
partmental modelling) can be developed, allowing to deal
with many different scenarios, including static and dy-
namic networks, both undirected and directed (Miller
let all 2012; Miller and Volz, |2013} |Valdez et al., 2012b)).
For other approaches to SIR dynamics based on the prob-
ability generating function, see Marder| (2007)); Noél et al.|
(2012); Noél et al (2009).

A derivation of a condition for the possibility of a
global spreading event starting from a single seed in SIR-
like models on generic networks is presented in
and generalized in [Payne et al| (2011). The
approach is based on the state of "node-edge” pairs and
relates the possibility of spreading to the condition that
the largest eigenvalue of a ”gain ratio” matrix (encod-
ing information on both the topology and the spreading
process) is larger than 1.

Finally, a new, substantial step forward in the under-

fections with the pair-based moment-closure presented
by [Sharkey et al| (2013). Remarkably, the message-
passing approach allows dealing with fully generic (non-
Poissonian) infection and recovery processes.

4. Mapping the SIR model to a percolation process

The connection between the static properties of the
SIR model and bond percolation (see Section [[V.C)) was
recognized long ago (Andersson and Britton, 2000; Grass-|
\berger} [1983; Ludwig), [1975)). In the context of epidemics
on complex networks, the mapping has been studied in
detail by [Newman| (2002b)). Considering a SIR model
with uniform infection time 7, i.e. where infected nodes
become removed at time 7 after infectiorﬂ and infection
rate 3, the transmissibility T is defined as the probabil-
ity that the infection will be transmitted from an infected
node to a connected susceptible neighbor before recovery
takes place. For continuous-time dynamics the transmis-

sibility can be computed as 2002b))

T=1- lim(1—85t)/%=1—¢"75,
Him (1 = B5t) ¢

(59)

The set of removed nodes generated by an SIR epi-
demic outbreak originated from a single node is noth-
ing else than the cluster of the bond percolation prob-
lem (with occupation probability 7) to which the initial
node belongs. The correspondence is exact: all late-time
static properties of the SIR model can be derived as di-
rect translations of the geometric properties of the perco-
lation problem. For tree-like networks the exact epidemic
threshold is given by Eq. , so that

(*) 1) -
W e T e ey

The behavior of the outbreak size close to the epidemic
threshold, ruled by the equivalent percolating giant com-
ponent, is given in terms of the exponents in Eq. .
Expression confirms for the SIR model that the

T. = (60)

4 Notice that this does not coincide exactly with the definition
given in Section [[TA]



epidemic threshold has a qualitatively different behav-
ior for scale-free networks (y < 3) and for scale-rich ones
(v > 3). In the former case the second moment of the de-
gree distribution diverges, so that the threshold vanishes:
scale-free networks are extremely vulnerable to disease
spreading.

The above results can be considered exact only for a
tree (completely loopless) structure. In other networks,
the presence of loops and multiple spreading paths leads
in general to correlations, which may invalidate the re-
sults obtained for trees. However, for random networks
which are locally tree-like the presence of long loops (in-
finitely long in the thermodynamic limit) is not sufficient
to perturb the validity of the results obtained using the
tree ansatz (Dorogovtsev et al., [2008). A different con-
clusion holds instead in networks with short loops (finite
clustering) as discussed in Sec.

The derivation of Eq. is based on a uniform in-
fection time. More realistically, we assume that infection
times 7; and rates 3;; vary between individuals. This im-
plies that the transmissibility 7;; depends on the specific
edge (i,7). One possible approach, that reduces to the
solution of the homogeneous case (Newman, 2002b), is
to neglect fluctuations, and replace Tj; by its mean value

(Tyj) =1 / dr / e PTQAP(r),  (61)

where @) and P are the distributions of 8;; and 7;, respec-
tively. The case of nondegenerate 7; includes the usual
definition of the SIR model with constant recovery rate
w for which recovery times are distributed exponentially
with average (7;) = 1/u. In such a case, performing the
integral in Eq. and setting f(r;) = 8/pn = A, yields
(Ti;) = A/(1 + X), implying

IR L))
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This approximation leads to the exact epidemic thresh-
old, the mean outbreak size below it and the final size
above it, but fails in other respects (Kenah and Robins|
2007)) (see also | Trapman/(2007))). The discrepancy is due
to correlations (Karrer and Newman, 2010): “if an in-
dividual recovers quickly, then the probability of trans-
mission of the disease to any of its neighbors is small; if
it takes a long time to recover the probability is corre-
spondingly larger.” Newman’s approximation is not exact
also when the 7; are degenerate and the f;; vary (Miller}
2007).

The correct way to take into account the heterogeneous
transmissibility maps the disease spreading to a bond
percolation process, involving now a semi-directed net-
work (epidemic percolation network) (Kenah and Robins|,
2007; | Miller,2007)), see Section The mapping works
as follows. For each pair of connected nodes i and j in
the contact network, place a directed edge from i to j
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with probability 1 — e=#47 and a directed edge from j
to i with probability 1 — e=%:7. Tools from percola-
tion theory on directed networks (Boguna and Serranol,
2005), see Section allow to characterize exactly
the long time features of the epidemic process. In partic-
ular the epidemic transition is associated with the forma-
tion of a giant strongly connected component (GSCC) in
the directed network. If such a component exists, then
an infection originating in one of its nodes or in the gi-
ant in-component (GIN) will spread to all nodes in the
GSCC and in the giant out-component (GOUT), giving
rise to a macroscopic outbreak. It is crucial to recognize
that the GIN and GOUT components play completely
different roles: nodes in GOUT are necessarily part of
macroscopic outbreaks but cannot originate them. The
opposite is true for nodes in GIN. As a consequence the
probability that an epidemic occurs (given by the size
of GIN U GSCC) and the size of the epidemic (equal
to the size of GSCC U GOUT) do not coincide (Meyers
et al.l [2006; Miller, [2007). The mapping to percolation
on semi-directed networks is valid for any type of contact
network underlying the SIR epidemics. For trees and lo-
cally tree-like networks it is again possible to apply the
machinery of probability generating functions to derive
explicit results for the related percolation properties.

Other discrepancies of the mapping to percolation ap-
proach to the SIR model are reported in [Lagorio et al.
(2009).

VI. STRATEGIES TO PREVENT OR MAXIMIZE
SPREADING

A. Efficient immunization protocols

The fact that epidemic processes in heavy-tailed net-
works have a vanishing threshold in the thermodynamic
limit, or a very small one in large but finite networks (see
Sec. , prompted the study of immunization strategies
leveraging on the network structure in order to protect
the population from the spread of a disease. Immuniza-
tion strategies are defined by specific rules for the iden-
tification of the individuals that shall be made immune,
taking into account (local or non-local) information on
the network connectivity pattern. Immunized nodes are
in practice removed from the network, together with all
the links incident to them, and each strategy is assessed
by the effects of immunizing a variable fraction g of nodes
in the network. The application of immunization does
not only protect directly immunized individuals, but can
also lead, for a sufficiently large fraction g, to an in-
crease of the epidemic threshold up to an effective value
Ac(g) > Ac(g = 0), precluding the global propagation of
the disease. This effect is called herd immunity. The
main objective in this context is to determine the new
epidemic threshold, as a function of the fraction of im-



munized individuals. Indeed, for a sufficiently large value
of g, any strategy for selecting immunized nodes will lead
to an increased threshold. We define the immunization
threshold g.(\), for a fixed value of A such that, for val-
ues of g > g.(A) the average prevalence is zero, while for
g < ge(\) the average prevalence is finite.

The simplest immunization protocol, using essentially
no information at all, is the random immunization, in
which a number gN of nodes is randomly chosen and
made immune. While random immunization in the SIS
model (under the DBMF approximation) can depress the
prevalence of the infection, it does so too slowly to in-
crease the epidemic threshold substantially. Indeed, from
Eq. , an epidemics in a randomly immunized net-
work is equivalent to a standard SIS process in which
the spreading rate is rescaled as A — A(1 — g), i.e. mul-
tiplied by the probability that a given node is not im-
munized, so that the immunization threshold becomes
(Pastor-Satorras and Vespignanil, 2002b])

gc(/\) =1-

Yoot (63)

For heterogeneous networks, for which (k?) diverges and
any value of A, g.(\) tends to 1 in the limit N — oo, indi-
cating that almost the whole network must be immunized
to suppress the disease.

This example shows that an effective level of protection
in heavy-tailed networks must be achieved by means of
optimized immunization strategies (Anderson and May]
1992), taking into account the network heterogeneity.
Large degree nodes (the hubs leading to the large degree
distribution variance) are potentially the largest spread-
ers. Intuitively, an optimized strategy should be target-
ing those hubs rather than small degree vertices. Inspired
by this observation, the targeted immunization proto-
col proposed by [Pastor-Satorras and Vespignani (2002b))
considers the immunization of the g/N nodes with largest
degree. A simple DBMF analysis leads to an immuniza-
tion threshold given, for the SIS model, by the implicit
equation (Pastor-Satorras and Vespignani, |2002b))

“ =5 (64)

where (k™) is the nth moment of the degree distribution
P,(k) of the network resulting after the deletion of the
gN nodes of highest degree, which takes the form (Cohen
et al.l |2001))

ke ,
mn = > p) () )a-a's o)

Eq. can be readily solved in the case of scale-free
networks. For a degree exponent v = 3, the immuniza-
tion threshold reads g.(A\) ~ exp[—2/(mA)], where m is
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the minimum degree in the network. This result high-
lights the convenience of targeted immunization, with an
immunization threshold that is exponentially small over
a large range of the spreading rate A. A similar effect
can be obtained with a proportional immunization strat-
egy (Pastor-Satorras and Vespignani| 2002b) (see also
Dezso and Barabasil (2002)) for a similar approach involv-
ing the cure of infected individuals with a rate propor-
tional to their degree), in which nodes of degree k are
immunized with probability gr, which is some increas-
ing function of k. In this case, the infection is eradicated
when g > 1—1/(\k), leading to an immunization thresh-
old (Pastor-Satorras and Vespignanil, 2002b])

> (1 — k&) P(k), (66)

k>A—1

9e(N) =

which takes the form g.()\) ~ (m\)?/3 for scale-free net-
works with v = 3.

Other approaches to immunization stress that not
only the behavior close to the critical point should be
taken into account, but also the entire prevalence curve
(the so-called viral conductance) (Kooij et all 2009;
Van Mieghem| 2012b; [Youssef et al., 2011). Addition-
ally, strategies involving possible different interventions
on different nodes have been analyzed within a game-
theoretic formalism (Gourdin et all [2011; |Omic et al.,
2009; |[Van Mieghem and Omid} 2008))).

The previously discussed immunization protocols are
based on a global knowledge of the network properties
(the whole degree sequence must be known to target se-
lectively the nodes to be immunized). Actually, the more
a global knowledge of the network is available, the more
effective is the immunization strategy. For instance, one
of the most effective targeted immunization strategies is
based on the betweenness centrality (see Sec. ,
which combines the bias towards high degree nodes and
the inhibition of the most probable paths for infection
transmission (Holme et al. 2002). This approach can
be even improved by taking into account the order in
which nodes are immunized in a sequential scheme in
which the betweenness centrality is recomputed after the
removal of every single node, and swapping the order of
immunization in different immunization sequences, seek-
ing to minimize a properly defined size for the connected
component of susceptible individuals. This approach has
been proved to be highly efficient in the case of the SIR
model (Schneider et all [2011). Improved immunization
performance in the SIR model has been found with an
“equal graph partitioning” strategy (Chen et al., 2008)
which seeks to fragment the network into connected com-
ponents of approximately the same size, a task that can
be achieved by a much smaller number of immunized
nodes, compared with a targeted immunization scheme.

The information that makes targeted strategies very
effective, also makes them hardly feasible in real-world



situations, where the network structure is only partially
known. In order to overcome this drawback, several local
immunization strategies have been considered. A most
ingenious one is the acquaintance strategy proposed by
Cohen et al| (2003), and applied to the SIR model. In
this protocol, a number g/N of individuals is chosen at
random and each one is asked to point to one of his/her
nearest neighbors. Those nearest neighbors, instead of
the nodes, are selected for immunization. Given that
a randomly chosen edge points with high probability to
a large degree node, this protocol realizes in practice a
preferential immunization of the hubs, that results to be
very effective in hampering epidemics. An analogous re-
sult can be obtained by means of a random walk im-
munization strategy (Holme} 2004} Ke and Yi, [2006), in
which a random walker diffuses in the network and im-
munizes every node that it visits, until a given degree
of immunization is reached. Given that a random walk
visits a node of degree k; with probability proportional
to k; (Noh and Rieger} [2004), this protocol leads to the
same effectiveness as the acquaintance immunization.

The acquaintance immunization protocol can be im-
proved by allowing for the consideration of additional
information, always at the local level. For example, al-
lowing for each node to have knowledge on the number
of connections of its nearest neighbors, a large efficiency
is attained by immunizing the neighboring nodes with
the largest degree (Holme, 2004). As more information
is available, one can consider the immunization of the
nodes with highest degree found within short paths of
length ¢ starting from a randomly selected node (Gomez-
Gardenes et all [2006). The random walk immuniza-
tion strategy, on the other hand, can be improved by
allowing a bias favoring the exploration of high degree
nodes during the random walk process (Stauffer and
Barbosay, [2006). Variations of the acquaintance immu-
nization scheme have also been used for weighted net-
works. The acquaintance immunization for weighted net-
works is outperformed by a strategy in which the immu-
nized neighbors are selected among those with large edge
weights (Deijfen, 2011)).

A different approach to immunization, the high-risk
immunization strategy, applied by Nian and Wang (2010)
to the SIRS model, considers a dynamical formulation,
in which nodes in contact with one or more infected indi-
viduals are immunized with a given probability. Again,
by immunizing only a small fraction of the network, a
notable reduction of prevalence and increase of the epi-
demic threshold can be achieved.

Finally, for the SIR model, the mapping to percolation
suggests which nodes to target in a vaccination campaign,
depending on whether the probability of an outbreak or
its size are to be minimized (Kenah and Miller| [2011]). A
targeted vaccination of nodes in the GSCC implies both
a reduction of the probability of a major epidemics and
of its size.
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B. Relevant spreaders and activation mechanisms

Although the problem of immunization is central in
the study of epidemics because of its practical implica-
tions, the attention of the research community has been
recently attracted by the somewhat related theme of dis-
covering which nodes are most influential/effective in the
spreading process. For instance, what node should be
chosen as initial seed in a SIR epidemic, in order to max-
imize the total number of nodes eventually reached by
the outbreak? This is a very natural question to be
posed (Kitsak et al.,[2010), in particular when the propa-
gation process does not involve a disease to be contained
but rather a positive meme (such as a crucial piece of
information, see Section whose spreading is instead
to be maximized.

The traditional common wisdom, derived from early
studies on the immunization problem (Pastor-Satorras
and Vespignanil [2002b)), was that nodes with the highest
degree play the role of superspreaders in networks. This
view has been challenged by |Kitsak et al| (2010) who
pointed out that the K-core index (see Section
is a much better predictor of the final outbreak size in the
SIR model spreading on several real networks where (as
opposed to uncorrelated networks) the set of nodes with
large degrees does not coincide with high K. The intu-
itive reason is that the most densely connected core gets
easily infected by an outbreak initiated by one of its ver-
tices, finally transmitting the infection to a large portion
of the entire network. High degree nodes which are not
part of the core may spread the activity to a large number
of neighbors but the infection hardly extends further.

These findings have stimulated a flurry of activity
aimed at understanding which of several possible topo-
logical centrality measures (degree, betweenness, K-core
index, closeness and many others) are more correlated
with spreading influence in various types of networks and
contagion dynamics (Bauer and Lizier, |2012;|Chen et al.,
2012, [2013;; |[Chung et all 2012; [Hébert-Dufresne et al.,
2013} Hou et al., 2012} |Li et al.l [2012b; |Liu et al., 2013}
da Silva et al, [2012; [Zeng and Zhang, 2013). These
studies consider different issues and features of the in-
terplay between the network and the spreading process,
and such a large variability does not allow to reach firm
conclusions. Various quantities are used to evaluate the
spreading effectiveness: in some cases only top influen-
tial spreaders are considered, in others complete rankings
of all nodes are compared. Moreover, the consideration
of different real networks in different papers does not
help in comparing approaches and in particular to dis-
entangle the effects of specific topological features such
as degree heterogeneity, clustering, or assortativity. Fi-
nally not all studies take properly into account the fact
that results may be largely different depending on which
part of the epidemic phase-diagram is considered: the ab-
sorbing phase, the transition regime or the phase where



activity is widespread. As a consequence, a clear pic-
ture that uniquely determines the best centrality mea-
sure that identifies superspreaders for different epidemic
models and different networks has yet to emerge.

The K-core decomposition is in many cases a good pre-
dictor of spreading efficiency. Nevertheless an interesting
finding (Hébert-Dufresne et al.,2013; Klemm et al.,|2012])
is that the removal of a node with high K-core index has
a limited effect as multiple paths exist among the nodes
in the central cores. Thus in general efficient spreaders
are not necessarily also good targets for immunization
protocols. An extension of the K-core decomposition to
weighted networks with application to a SIR epidemics
on weighted networks (see Sec. has also been
proposed (Garas et al., [2012]).

Similar to the problem of finding efficient spreaders
is the identification of nodes which are infected earlier
than the others, thus playing the role of “sensors” for
epidemic outbreaks (Christakis and Fowler},2010; Garcia-
Herranz et al.,|2014)). The strategy of considering friends
of randomly chosen nodes allows to select, without any
knowledge of the global network structure, individuals
with high degree, high betweenness, small clustering and
high K-core index, which are actually reached early by
epidemic outbreaks. This effect lies at the basis of the
acquaintance immunization strategy (Cohen et al., 2003)
discussed above.

Another problem, conceptually close to the search for
superspreaders, is the identification of what topologi-
cal features trigger global epidemics, i.e. what network
subsets determine the position of the epidemic thresh-
old (Castellano and Pastor-Satorras|, 2012)). For SIS, the
epidemic threshold scales, within the IBMF approxima-
tion, as the inverse of the largest eigenvalue of the ad-
jacency matrix A; (see Section . Applying the
scaling form of A; for large uncorrelated scale-free net-
works (Chung et al. 2003), the scaling of the threshold
with network size is given by Eq. . This result can be
interpreted as follows (Castellano and Pastor-Satorras
2012): For v > 5/2, the node with the largest degree
(hub) together with its direct neighbors forms a self-
sustained nucleus of activity above A, which propagates
to the rest of the system. For v < 5/2 instead, the thresh-
old position is dictated by the set of most densely inter-
connected nodes, as identificated by the K-core of largest
index. Topological correlations may alter the picture.
For SIR dynamics instead, the largest hub is not able to
trigger the transition and the position of the threshold is
always dictated by the max K-core.

All investigations described so far attempt to relate
dynamical properties of the spreading process to purely
geometric features of the contact pattern. Taking a more
general perspective, [Klemm et al.| (2012)) define a ”dy-
namical influence” centrality measure, which incorpo-
rates not only topological but also dynamical informa-
tion. The dynamical influence is the leading left eigen-

29

vector of a characteristic matrix that encodes the inter-
play between topology and dynamics. When applied to
SIR and SIS epidemic models, the characteristic matrix
coincides with the adjacency matrix. The “dynamical in-
fluence” predicts well which nodes are active around the
transition, while it is outperformed by other centrality
measures far from the threshold (Klemm et al., 2012).

A growing activity has also recently been concerned
with the inverse problem of inferring statistically, from
the configuration of the epidemics at a given time, which
of the nodes was the initial seed originating the out-
break (Altarelli et al. 2014} Brockmann and Helbingj,
2013;|Comin and da Fontoura Costal, [2011}; [Lokhov et al.,
2014; |Pinto et al., [2012]).

Finally, the problem of finding efficient spreaders is not
limited to disease epidemics models; it is possibly even
more important for complex contagion phenomena (such
as rumor spreading or the diffusion of innovations), see
Section [X]

VIl. MODELING REALISTIC EPIDEMICS

A. Realistic models

The simple SIS and SIR models considered so far can
be generalized to provide a more realistic description of
the disease progression by introducing additional com-
partments (see Sec. and/or by allowing additional
transitions between the different compartments. These
variations, that can be studied analytically or most of-
ten numerically, may alter the basic phenomenology of
the epidemic process. In this section, we survey some
of those models and refer the reader to the work of Ma-
suda and Konno| (2006)) for more complicated models that
include pathogens’ competition and game-theoretical in-
spired (Webbl, |2007)) contagion processes.

1. Non-Markovian epidemics on networks

The modeling framework presented in the previous sec-
tions is mostly based on the Poisson approximation (Ti-
jms, [2003)) for both the transmission and recovery pro-
cesses. The Poisson approximation assumes that the
probabilities per unit time of transmitting the disease
through a given edge, or recovering for a given infected
node, are constant, and equal to 8 and u, respectively.
Equivalently, the total time 7; that a given node 7 re-
mains infected is a random variable with an exponential
distribution, P;(7;) = pe ", and that the time 7, for
an infection to propagate from an infected to a suscepti-
ble node along a given edge (the inter-event time) is also
exponentially distributed, P,(7,) = Be~™#. A notable
variation assumes that all infected nodes remain infective
for a fixed time 7. The SIR model can be analyzed ex-



actly in this setting by means of the generating function
approach (see Sec. .

From a practical point of view, the Poisson assump-
tion leads to an increased mathematical tractability. In-
deed, since the rates of transmission and recovery are
constant, they do not depend on the previous history of
the individual, and thus lead to memoryless, Markovian
processes (Ross, (1996} [Tijms, 2003; van Kampen, 1981}
Van Mieghem) |2014b)). While the Poisson approximation
may be justified when only the average rates are known
(Lambiotte et al.,2013), it is at odds with empirical evi-
dence for the time duration of the infective period in most
diseases (Blythe and Anderson, |1988), whose distribution
usually features a peak centered on the average value but
exhibits strongly non-exponential tails. Furthermore, the
interest in non exponential transmission processes has
been also fueled by the recent evidence on the patterns
of social and communication contacts between individu-
als, which have been observed to be ruled by heavy-tailed
distributions of inter-event times (see Sec. [VIII).

The framework of non-Poissonian infection and recov-
ery processes can be set up as follows, for either the SIS
and SIR models (Boguna et al. [2014): Infected indi-
viduals remain infective for a period of time 7;, after
which they recover, that follows the (non exponential)
P;(7;) distribution. For the sake of simplicity, it is as-
sumed that this distribution is the same for all nodes.
Infection events take place along active links, connecting
an infected to a susceptible node. Active links transmit
the disease at times following the inter-event distribution
P,(7a), i.e. a susceptible individual connected to an in-
fected node becomes infected at a time 7,, measured from
the instant the link became active. If a susceptible node
is connected to more than one infected node, it becomes
infected at the time of the first active link transmitting
the disease. The complexity of this non-Markovian pro-
cess is now evident: the infection of a node does not only
depend on the number of neighbors, but also on the time
at which each connection became active.

Numerical results on non-Poissonian epidemics in net-
works are relatively scarce. Simple event-driven ap-
proaches rely on a time ordered sequence of events (tick-
ets), that represent actions to be taken (recovery or in-
fection) at given fixed times, which are computed from
the inter-event distributions P;(7;) and P,(7,). These
approaches are quite demanding, so only small system
sizes can be considered. For example, [Van Mieghem
and van de Bovenkamp| (2013)) report results for the SIS
model with Poissonian recovery, with rate p, while in-
fection happens with a non-exponential distribution fol-
lowing the Weibull form, P(7,) ~ (x/b)® e~ (®/0)" 1In
this case, strong variations in the value of the prevalence
and of the epidemic threshold are found when varying the
parameter .. A promising approach is provided by the
general simulation framework proposed by [Boguna et al.
(2014), based on the extension of the the Gillespie al-
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gorithm for Poissonian processes (Gillespiel [1977). This
algorithm allows the simulation of much larger network
sizes.

The consideration of non-Poissonian infection or re-
covery processes does not lend itself easily to analyti-
cal approaches (Lambiotte et al., |2013)). Some simple
forms for the distribution of infectious periods, such as
the Erlang distribution, which can be described as the
convolution of identical Poisson processes (Coxl, [1967)),
can be tackled analytically by postulating an extended
epidemic model with different infective phases and Pois-
sonian transitions among them (Lloyd} 2001ajb). How-
ever, general non-Poissonian forms lead to convoluted
sets of integro-differential equations (Keeling and Gren-
fell, |1997). As a consequence there are not many ana-
lytical results for non-Poissonian transitions in complex
networks. We can mention the results of [Min et al.| (2013])
which consider the SIR process on a network in which in-
fection events follow an inter-event distribution P, (7).
Assuming that infected nodes remain in that state for a
fixed amount of time 7;, it is possible to compute (Min
et al.,|2013) the disease transmissibility as

T(r) = 1- [ w(a)ia, (o7

where )(A) = [ Po(7a)d7a/ [y Pa(Ta)d7a is the proba-
bility distribution of the time between infection (assumed
uniform) and the next activation event. Eq. assumes
that the dynamics of infections follows a stationary re-
newal process (Cox, |[1967; Van Mieghem) [2014b)). Apply-
ing the generating function approach (see Sec. , the
epidemic threshold is obtained, as a function of 7;, from
the implicit equation

()

7o) = 7 - (65)
For a power-law distribution P,(7,) ~ 7, %, it is found
that ;. diverges as a — 2, implying that only diseases
without recovery are able to spread through the network
(Min et al., |2013). An important step forward in the
treatment of generic nonexponentially distributed recov-
ery and transmission times in the SIR model is the appli-
cation of a message-passing method, as reported by [Kar-
rer and Newman! (2010). This approach leads to an exact
description in terms of integro-differential equations for
trees and locally tree-like networks, and to exact bounds
for non-tree-like networks, in good agrement with simu-
lations.

Finally, [Cator et al| (2013)) propose an extension of
the SIS IBMF theory for non-exponential distributions
of infection or healing times. Using renewal theory, their
main result is the observation that the functional form
of the prevalence in the metastable state is the same as
in the Poissonian SIS model, when the spreading rate
A = B/u is replaced by the average number of infection



attempts during a recovery time. The theory by [Cator
et al.| (2013) also allows to estimate the epidemic thresh-
old in non-Markovian SIS epidemics.

2. The SIRS model

The behavior of the SIRS model on complex networks
has been analytically considered by |[Bancal and Pastor-
Satorras| (2010) at the DBMF level. Within this approx-
imation, the steady-state solution of the STRS model can
be exactly mapped to that of the SIS model, via the iden-
tification of the densities of infected individuals

psis(A), (69)

n
psirs (1, A) = |
where 7 is the immunity decay rate. Therefore, within
DBMF, all the critical properties of the SIRS model are
the same as the SIS model, the only effect of n being a
rescaling of the density of infected individuals.

Numerically, the SIRS model was studied by |Abram-
son and Kuperman| (2001)) on small-world Watts-Strogatz
networks (see Sec. within a discrete time deter-
ministic framework, in which infected individuals remain
infective for a fixed time 77, after which they recover,
while recovered individuals remain in this state for a
fixed time 7p. For large values of the Watts-Strogatz
model rewiring probability p, a periodic steady state is
observed, in which the state of all nodes stays synchro-
nized (Abramson and Kuperman| 2001). The level of
synchronization increases with the average degree and
also with p, after a threshold p. depending on (k) for
fixed network size.

The SIRS model can be also interpreted in terms of a
disease that causes death (I — R), leading to an empty
node that can be later occupied by the birth of a new,
susceptible individual (R — S). Within this interpreta-
tion, |Liu et al| (2004) consider a generalized SIRS model,
allowing additionally for simple recovery (I — S with
rate ) and death of susceptible individuals due to other
causes (S — R with rate «). Applying a DBMF for-
malism, they recover again a threshold inversely propor-
tional to the second moment of the degree distribution,
modulated by the diverse parameters in the model, in
agreement with the SIS result.

3. The SEIR model

The SEIR model is generally used to model influenza-
like-illness and other respiratory infections. In the con-
text of networks, this model has been used by [Small and
Tse| (2005) to study numerically the evolution of the Se-
vere Acute Respiratory Syndrome (SARS) in different so-
cial settings, using both deterministic and stochastic ver-
sions of the model, in which different reaction rates were
adjusted using empirical spreading data of the disease.
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The edge-based compartmental modelling approach can
be adapted to deal with multiple infectious stages, includ-
ing SEIR as a particular case (Miller and Volz, 2013)).
Exposed individuals can also play a role in more com-
plex epidemiological models. Thus, for example, the
SEIRS model can be used to mimic the eventual wan-
ing of the immunization of recovered individuals, which
implies one additional transition rule, Eq. . The prop-
erties of the SEIRS model in Watts-Strogatz small-worlds
networks (see Sec. have been described by |Peng
and Li (2009). A variation of the SEIRS model with-
out the recovered compartment, or in other words, in the
limit of the reaction rate n — oo (SEIS), which coincides
with a two-stage variation of the classical contact pro-
cess (Krone, 1999) has been analyzed in heterogeneous
networks by Masuda and Konno| (2006). Application of
DBMF theory recovers the mapping to the simple SIS
model obtained in the case of the SIRS epidemics.

B. Realistic static networks

The analytical and numerical results presented so far
for the paradigmatic SIS and SIR models have focused
mainly on random undirected uncorrelated networks,
which are only characterized by their degree distribu-
tion, assuming that the rest of the properties are essen-
tially random. However, real networks are far from being
completely random. Beyond the degree distribution, a
multitude of other topological properties, such as clus-
tering, degree correlations, weight structure, etc. (see
Sec. , are needed to characterize them.

1. Degree correlations

Most theoretical results on epidemic spreading in net-
works, especially at the DBMF' level, are obtained im-
posing a lack of correlations at the degree level, that
is, assuming that the probability that a vertex of de-
gree k is connected to a vertex of degree k' is given by
P(k'|k) = k' P(K')/(k) (Dorogovtsev and Mendes| [2002).
However, most natural networks show different levels of
correlations, which can have an impact on dynamical pro-
cesses running on top of them.

From a theoretical point of view, the specific effect of
degree correlations, as measured by the different observ-
ables detailed in Sec. [[IL.B.3] is difficult to assess. How-
ever, some specific results are available. At the level of
DBMEF theory (see Sec. it has been shown that for
scale-free networks with v < 3, no sort of degree correla-
tions is able to alter the vanishing of the epidemic thresh-
old in the thermodynamic limit (Bogund et al., 2003ayb]).
From a numerical point of view, however, the precise de-
termination of the effects of degree correlations on the
position of the epidemic threshold and the shape of the



prevalence function is problematic. Indeed, it is generally
not possible to ascertain if the changes in the epidemic
process are due to the presence of correlations or other
topological properties generally related to correlations,
such as local clustering. Initial simulations on network
models (Eguiluz and Klemml [2002; Warren et al., [2002])
claimed that disassortative degree correlations could in-
duce a finite threshold in the SIS model in scale-free net-
works. However, those claims were based on networks
with an underlying finite-dimensional structure (Vazquez
et all 2003)), and most probably the finite threshold ob-
served was due to this effect.

For the SIS model, the main IBMF result, Eq. ,
stating that the epidemic threshold is the inverse of the
largest eigenvalue of the adjacency matrix Aj, remains
unaltered. The presence of correlations has only the ef-
fect of changing the largest eigenvalue. In this respect,
Van Mieghem et al.| (2010) showed that increasing the de-
gree assortativity, by means of an appropriately defined
degree preserving rewiring scheme, increases the largest
eigenvalue of the adjacency matrix, thus reducing the ef-
fective IBMF epidemic threshold, in a network of fixed
size N. On the other hand, the induction of degree dis-
assortativity reduces the largest eigenvalue, with a corre-
sponding increase of the effective IBMF threshold. This
observation is confirmed by |Goltsev et al.| (2012) who
estimate, by means of the power iteration method, the
largest eigenvalue of the adjacency matrix as

A1§7+

(70)

where o is a positive function of the moments of the de-
gree distribution and 7 is the Pearson correlation coef-
ficient (see Sec. [[ILB.2). Thus assortativity with r > 0
(resp. disassortativity with r» < 0) is associated with an
increase (resp. decrease) of the largest eigenvalue. Other
properties of the largest eigenvalue in general networks
with any kind of correlations, such as the bound

max (m, Vi kmam) <A < Eknaz,

are derived in |[Van Mieghem| (2011)).

Regarding the SIR model, the mapping to percolation
(see Sec. allows to obtain more precise information.
Assortative correlations can induce a vanishing thresh-
old in networks with finite second moment of the degree
distribution (Vazquez and Moreno, [2003). The more gen-
eral treatment by (Goltsev et al| (2008), considering the
branching matriz By = (k' —1)P(k'|k) (Bogund et al.,
2003b), allows to explicitly check the effects of degree
correlations on the epidemic threshold. Indeed disassor-
tative correlations increase the threshold from its uncor-
related value, while assortative correlations decrease it
(Goltsev et al., 2008; Miller} [2009a). These results, valid
for the SIR model, can also be extended to the SEIR
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model (Kenah and Miller, 2011). While no explicit ex-
pression for the threshold can be obtained, it is possible
to work out upper and lower bounds, in terms of the
transmissibility 7', that read as

1 (k(k—1))

maxe BOR) = 1° = S5 %k — ) Bk P(R)

(71)

where B(k) = Y, Bri (Goltsev et all 2008). With
respect to the behavior of the outbreak size close to the
epidemic threshold, degree correlations are irrelevant, in
the sense that the critical exponents are not changed,
when the following conditions are fulfilled (Goltsev et al.,
2008): (i) The largest eigenvalue of the branching ma-
trix is finite if (k%) is finite, and infinite if (k?) — oo;
(ii) the second largest eigenvalue of By j is finite; (iii)
the eigenvector associated to the largest eigenvalue has
nonzero components in the limit k& — oo. On the other
hand, if any one of these conditions is not fulfilled (large
assortativity leads to the failure of condition (ii), while
strong disassortativity affects condition (iii)), degree cor-
relations become relevant and they lead to new critical
exponents. At the DBMF level the results of Boguna
et al.|(2003a) for the SIS model extend to the SIR case,
implying again the inability of degree correlations to alter
the vanishing of the epidemic threshold in the thermody-
namic limit for v < 3. This result has been confirmed
numerically by means of the direct numerical solution of
the DBMF equations of the SIR model on scale-free net-
works with weak assortative correlations (Moreno et al.,
2003). The main effect of these correlations is to induce
a smaller overall prevalence and a larger average lifetime
of epidemic outbreaks.

2. Effects of clustering

While a priori entangled with degree correlations and
other topological observables, the effect of clustering on
epidemic spreading has been the subject of a large inter-
est, due to the fact that social networks, the basic sub-
strate for human epidemic spreading, are generally highly
clustered. Initial work in this area (Keeling, |{1999), based
on a simple mean-field approximation (and thus valid in
principle for homogeneous networks) already pointed out
the effects of clustering (measured as the clustering coef-
ficient C, see Sec. on the SIR dynamics. A no-
ticeable departure from the standard mean-field results
in the absence of clustering is observed, and in particu-
lar a decrease of the outbreak size when increasing C'. In
the case of the Watts-Strogatz model (see Sec. [[ILD)), the
paradigm of a network with large clustering, exact ana-
lytical results, confirmed by numerical simulations, were
obtained by Moore and Newman| (2000)) for any value of
the rewiring probability p. Another analytical approach
was proposed by Newman| (2003a)), who considered a net-
work model based on a one-mode projection of a bipartite



network (see Sec. and applied the usual mapping
to percolation. Apart from confirming the observation
by [Keeling (1999) that epidemic outbreaks are a decreas-
ing function of C, it was interestingly observed that, at
odds with the behavior of networks with no clustering, for
large C' the outbreak size saturates to a constant value
when increasing the transmissibility even for moderate
values of T, suggesting that “in clustered networks epi-
demics will reach most of the people who are reachable
even for transmissibilities that are only slightly above
the epidemic threshold” (Newman, |2003al). Along the
same line, Miller| (2009a)), considering a model of ran-
dom networks with assortative correlations and tunable
clustering, was able to show that, for a SIR dynamics
with uniform transmissibility 7', clustering hinders epi-
demic spreading by increasing the threshold and reducing
prevalence of epidemic outbreaks.

A more general approach, valid for any network, con-
firms the previous observations (Serrano and Bogund,
2006). In this approach, the generating function calcu-
lation scheme includes the concept of edge multiplicity
m,;, defined as the number of triangles in which the edge
connecting nodes ¢ and j participate. In the limit of
weak clustering, corresponding to constant m;; = mg,
the clustering spectrum (see Sec. follows the scal-
ing é(k) ~ k1, which is essentially decoupled from two-
vertex degree correlations. The epidemic threshold de-
pends on mg and is shifted with respect to the unclus-
tered result; however, for scale-free networks, this shift
is not able to restore a finite threshold in the thermo-
dynamic limit. For strong clustering, with a clustering
spectrum decaying more slowly than k~!, numerical sim-
ulations in a model with tunable clustering coefficient
(Serrano and Boguna), [2005) confirm the inability of clus-
tering to restore a finite threshold in scale-free networks.
Other numerical and anaytical works (Miller, [2009ab)
have confirmed these results in different clustered net-
work models.

Within the context of IBMF theory for the SIS model,
it is possible to find bounds for the largest eigenvalue
of the adjacency matrix as a function of the clustering
(measured by the number of triangles in the network),
indicating that SIS epidemic threshold decreases with in-
creasing clustering coefficient (Van Mieghem)| [2011]).

3. Weighted networks

If we want to take into account that not all contacts
in a social network are equally facilitating contagion (e.g.
due to the different relative frequency of physical contacts
associated to different edges), we must consider weighted
networks, where a weight w;; > 0 is assigned to the edge
between connected nodes ¢ and j (see Sec. . The
models for epidemic spreading are generalized assum-
ing the rate of disease transmission between two vertices
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equal to some function of the weight of the link joining
them. The simplest possibility occurs when the proba-
bility of infection transmission along an edge is directly
proportional to the edge weight.

The IBMF theory for the SIS model is readily applied,
just replacing in Eq. the adjacency matrix a;; by
the matrix Q;; = w;ja;;. The IBMF threshold is just the
inverse of the largest eigenvalue of Q (Schumm et al.,
2007). [Peng et al| (2010) consider a generalized SIS
model defined by the matrix f3;;, whose terms are the
probabilities that node i is infected by node j through
an edge joining them. Defining the parametrized ad-
jacency matriz M;; = Bi; + (1 — p;)0;;, where p; is
the recovery probability of node i, [Peng et al.| (2010)
(see also [Van Mieghem and Omic| (2008])) show that en-
demic states occur when the largest eigenvalue (in abso-
lute value) of the parametrized adjacency matrix is larger
than one.

The DBMF approach to the SIS process on weighted
networks is simplified by the introduction of additional
assumptions, such as a functional dependence of the
weights of edges on the degree of the nodes at their end-
points (Baronchelli and Pastor-Satorras, 2010)). [Karsai
et al| (2006) consider the SIS process in a network with
local spreading rate, at the DBMF level, Agxr ~ (kk')™°,
with o in the range [0,1]. The resulting equations are
found to depend on the effective degree exponent v =
(v—0)/(1—0). For 4’ < 3, anull threshold in the thermo-
dynamic limit is obtained, while for ' > 3, the thresh-
old is finite. Karsai et al| (2006]) discuss additionally a
finite-size scaling theory, relating the average prevalence
with the network size, which is checked against numerical
simulations. The strict correlation between weights and
degrees is relaxed in other works, such as|Yang and Zhou
(2012), where a purely edge-based mean-field approach
for weighted homogeneous networks for the SIS model is
proposed. By means of this approach, and focusing on
bounded and power-law weight distributions, Yang and
Zhou| (2012)) show that the more homogeneous the weight
distribution, the higher is the epidemic prevalence.

Other approaches to the SIS model include a pair-
based mean-field approach (Rattana et al.,[2013|) for net-
works with random and fixed deterministic weight distri-
butions. The main result is the observation that a weight
distribution leads to the concentration of infectiousness
on fewer target links (or individuals) which causes an in-
crease in the epidemic threshold in both kinds of networks
considered.

Gang et al.| (2005) report numerical results for the be-
havior of the SI model on the growing weighted network
model proposed by |Barrat et al. (2004b) with a local
spreading rate of the form A;; ~ (w;;)®*. The main results
obtained concern the slowing down of the disease spread
in weighted networks with respect to their unweighted
counterparts, which is stronger for larger weight disper-
sion. Interesting, they also report a decay in the veloc-



ity of spread, after a sharp peak, taking a slow power
law form, at odds with the exponential form obtained in
nonweighted networks (Barthelemy et al.l 2005]).

In the case of the SIR model |Chu et al.|(2011) present
a DBMF analysis in the case of weights correlated with
the degree. The analysis is based on a trasmission rate
Ak from vertices of degree k' to vertices of degree k, tak-
ing the form Agpr = Akwgp /si (where sy, is the strength
of a k node) and on an infectivity of nodes ¢(k), denot-
ing the rate at which a node of degree k transmits the
disease. Writing down rate equations for the usual rele-
vant DBMF quantities for the SIR model, and assuming
wirk ~ (kE')? and ¢(k) ~ k>, |Chu et al.| (2011) find the
threshold

<ka+1>

Ao = GarorTy

(72)
By means of numerical simulations, |(Chu et al.| (2011)
report additionally that the size of epidemic outbreaks
increases with the exponent «, while it decreases with
increasing o. An analysis of the SIR model in terms
of pair approximations for IBMF theory is presented by
Rattana et al.| (2013), reaching analogous results as those
obtained for the SIS model within the same formalism.

It is also noteworthy the numerical work of [ Eames et al.
(2009) on the SIR model in a realistic social network
constructed from actual survey data on social encounters
recorded from a peer-group sample of 49 people. The re-
sults of |Eames et al.| (2009) highlight the strong correla-
tions between infection risk and node degree and weight,
in correspondence with the observations at the DBMF
level. Additional simulations considering different immu-
nization strategies (see Sec. indicate that, for this
particular realistic network, targeting for total degree or
total weight provides approximately the same efficiency
levels.

Concerning other models, Britton et al| (2011) have
discussed an epidemic model in a weighted network in
which the weights attached to nodes of degree k are ran-
dom variables with probability distributions g(w|k), in a
construction akin to a weighted configuration model (see
Sec. . In this kind of network, Britton et al.| (2011])
observe, by means of an analysis based on branching the-
ory, that both the epidemic threshold and the outbreak
probability are affected by the correlations between the
degree of a node and the weights attached to it. This ob-
servation is confirmed by numerical simulations of their
weighted network model fitted to empirical data from
different network examples, showing that the epidemic
threshold is different in the original network with respect
to a network with reshuffled weights. On the other hand,
Deijfen| (2011)) analyzes immunization of weighted net-
works with random and degree dependent weights, ob-
serving, in agreement with [Eames et al.|(2009), that tar-
geting the largest weights outperforms other immuniza-
tion strategies.
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In the framework of epidemic models on weighted net-
works it is possible to include also the contact process
(CP) on networks. In this model each infected node may
transmit the disease to at most one neighbor for each
time step. This can be intepreted in continuum time as
a SIS-like model with a spreading rate App = 1/k for any
edge departing from a node of degree k. This modifica-
tion has the effect of reducing the importance of degree
fluctuations in the spreading dynamics: the threshold is
finite for any value of the exponent v (Castellano and
Pastor-Satorras|, 2006; Olinky and Stone, [2004). The
same conclusion can be drawn also for a model where
multiple neighbors can be infected simultaneously, but
up to a fixed maximum value of neighbors (and not for
any k as in SIS) (Joo and Lebowitz, 2004)).

4. Directed networks

Directed networks are useful to represent specific types
of epidemic transmission in which there is an intrinsic di-
rectionality in the propagation. An example is given by
diseases communicated by means of blood transfusions
or needle sharing. The study of epidemic processes in di-
rected networks is difficult due to the component struc-
ture of this kind of networks (see Sec. [[ILA]). Indeed, the
position of a node in a specific network component can
restrict or enhance its spreading capabilities with respect
to other positions. Thus, in order to be able to gener-
ate a macroscopic outbreak, a seed of infection should be
located on the GIN or GSCC components; seeds on the
GOUT or the tendrils will in general produce small out-
breaks, irrespective of the spreading rate. In this sense,
the distribution of outbreak sizes starting from a ran-
domly chosen vertex is proportional to the distribution
of outcomponents.

In the case of the SIR model, the mapping to perco-
lation allows to apply the generating function formalism
developed for percolation in random directed networks
(Newman et al., 2001; |[Schwartz et al.,|2002)). For purely
directed networks (i.e. in which all edges have assigned a
directionality), computations depend on the joint prob-
ability P(k™, k°%), see Section that a randomly
chosen node has in-degree k™ and out-degree k°**, which
in general exhibits correlations between the two values.
In the absence of correlations among the degrees of neigh-
bors EL under the tree-like assumption, the critical trans-
missibility is

(k™)

T.= ————
¢ <k1nk,0ut>’

(73)

5 Notice that these are correlations among two connected vertices,
while correlations between k'™ and k°% are for the same node.



where averages are taken over the distribution
P(k™ k°ut) (Newman et al, 2001). The same re-
sult can be obtained by means of more intuitive
arguments (Schwartz et al, [2002). Eq. high-
lights the important role of correlations between the
in-degree and out-degree in directed networks. Its
full discussion is, however, not easy, since one cannot
impose arbitrary forms to P(k'™, k°*) given the explicit
constraint (k™) = (k°"). |Schwartz et al| (2002)) dis-
cuss the effects of scale-free degree distributions with
exponents 7y, and 7o, for in-degree and out-degree,
respectively, and given correlations P(k™, k°%*) With
this distribution, epidemics in the GWCC behave as
in an undirected network with effective degree dis-
tribution P(k) = Y pw_o P(k™ k — k), while the
Bsrr exponent characterizing the size of supercritical
outbreaks takes the form of Eq. , with an effective
Y = Yout + (Yin — Yout)/(Vin — 1) (Schwartz et al., 2002]).

More generally, it is possible to consider semi-directed
networks, in which edges maybe directed or undirected
(Meyers et all [2006)). The network specification is then
given in terms of the probability P(k™, k°U k) that a
vertex has k'™ incoming edges, k°* outgoing edges and
k bidirectional edges. The presence of undirected links
implies the existence of short loops of length 2, and thus
the violation of the tree-like assumption. Considering
the possibility of different transmissibilities T3, and Ty
for undirected and directed edges, respectively, Meyers
et al.| (2006]) find expressions for the critical values of one
of them, keeping the other fixed. The rather involved ex-
pressions simplify when imposing that the in-degree, out-
degree and undirected degree of each vertex are uncorre-
lated. In particular, when these quantities obey Poisson
distributions, the epidemic threshold is given by (Meyers
et al., |20006])

Tuc<k>u + Tdc<k>d =1, (74)

where (k), and (k)4 are the undirected and directed av-
erage degrees, respectively. The analysis of these re-
sults allows the identification of the key epidemiologi-
cal difference between directed and undirected networks:
while in undirected networks the probability of an out-
break and the expected fraction of the population af-
fected (if there is one) are equal, they differ in directed
networks: depending on the topology any of the two can
be larger (Meyers et al.l 2006]).

The generic case of semi-directed networks with ar-
bitrary one-point and two-point correlations is treated
in Boguna and Serrano| (2005). The temporal evolution
of epidemic outbreaks is considered using the edge-based
compartmental modelling in [Miller and Volz| (2013)).

Epidemic processes on purely directed networks can be
tackled by an extension of the standard DBMF. The key
point is the consideration of new degree classes which
are defined in terms of the pair of in-degree and out-
degree values, (k, k°"*). This implies that the dynam-
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ical quantities characterizing the processes also depend
on these two values, Plin goue > S€€ Sec. |I7VE| and [V.B.]
Equations for the SIS and SIR models (Eqgs. (20) and
Eq. ) translate directly with just one caveat: degree-
degree two-vertex correlations (see Sec. in purely
directed networks translate into the conditional probabil-
ity Pout(kn’ gout’|kin| kout) that an outgoing edge from
a vertex (k™™ k°™) is connected to a vertex (k' kout’).
Lack of two-point degree-degree correlations implies

kin’P(kin'7 k_out/)
<k0ut>

Boguna and Serrano| (2005) developed this DBMF for-
malism for the SIR model, finding a threshold that, in the
general case, is a function of the largest eigenvalue of the
extended connectivity matrix k' P(k, gout’|gin| gout),
and that, without degree-degree correlations, reduces to
Eq. .

In the case of the SIS model, the IBMF result is the
same as in undirected networks, since directionality (i.e.
the asymmetry of the adjacency matrix) does not ex-
plicitly enter into the theory. See also the generaliza-
tion of the IBMF theory presented by [Peng et al.| (2010)
(Sec. . The value of the largest eigenvalue has
been numerically studied in synthetic semi-directed net-
works with directionality £, defined as the fraction of di-
rected edges (Li et al., [2013). The main result obtained
is the increase of the epidemic threshold lower bound
when increasing directionality &, implying that directed
networks hinder the propagation of epidemic processes.
At the DBMF level, an extension analogous to the one
considered for the SIR model leads to a threshold with
the same functional form, Eq. , in degree-degree un-
correlated networks (Tanimoto, [2011)).

Pout (kin/) koutllkin7 kout) — (75)

5. Bipartite networks

Bipartite networks (see Sec. represent the nat-
ural substrate to understand the spreading of sexually
transmitted diseases, in which two kinds of individuals
(males and females) are present and the disease can only
be transmitted between individuals of different kinddf|
In other contexts, bipartite networks can be used to rep-
resent vector-borne diseases, such as malaria, in which
the transmission can only take place between the vectors
and the hosts (Bisanzio et al., [2010), or the spreading
of diseases in hospitals, in which the different kinds of
nodes account for (isolated) patients and caregivers (An-
cel et al., |2003]).

Dealing with the SIR dynamics, Newman| (2002b]) con-
siders a variation of the mapping to percolation, for a

6 We neglect here homosexual contacts.



model on bipartite networks characterized by the partial
degree distributions P,,(k) and Py(k), finding that the
epidemic threshold takes the form of a hyperbola in the
space defined by the male and female transmissibilities,
Ty, and T},

<k>m<k>f
(k(k —1))m(k(k = 1))’

where the moments (k), and (k(k — 1)), are computed
for the degree distribution P, (k).

In the case of the SIS model on bipartite networks,
Gomez-Gardenes et al.| (2008) find analogous results at
the DBMF level, with threshold on the hyperbola defined
by the male and female spreading rates, A,, and Ay, of
the form

T Ty =

(76)

<k>m<k>f
(k) (K2)

see \Wen and Zhong| (2012) for further results with the
DBMF formalism. The general behavior of the SIS model
on multipartite networks, allowing for more than two
different classes of nodes, is discussed by [Santos et al.
(2013)).

Expressing in Eq. the transmissibility in terms
of the spreading rate, T; = A;/(\; + 1) (see Sec.
and comparing with Eq. , an interesting observation
emerges (Hernandez and Risau-Gusman, 2013). In the
SIR case, when Ay diverges the threshold value for A,
goes to a finite value. Hence the possibility of an endemic
outbreak is completely ruled out by reducing the spread-
ing rate of a single type of nodes. In the SIS case instead,
the asymptotic value is A\,;, = 0 and as a consequence re-
ducing only one spreading rate may not be sufficient to
guarantee no endemic spreading. This last conclusion,
however, turns out to be an artifact of the DBMF ap-
proach (Hernandez and Risau-Gusman) 2013): also for
SIS dynamics a finite asymptotic threshold is found in
a theoretical approach based on a pair approximation,
confirmed by numerical simulations. The previous con-
clusions hold when the topology-dependent factors ap-
pearing on the right-hand-sides of Egs. and are
finite. However it is enough that one of the restricted
degree distributions has a diverging second moment to
have an epidemics spreading over the whole network, no
matter how small are the spreading rates A;.

AmAf = (77)

6. Effect of other topological features

Many works have dealt with networks endowed with
a modular (community) structure, i.e., subdivided in
groups with a relative high density of connections within
groups and a smaller density of inter-group links, see
Section SIS dynamics has been studied by [Liu
and Hul (2005 on a generalization of the classical ran-
dom graph model with probability p (g) of intra-(inter-)
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community links. The epidemic threshold is found to
decrease with p/q; this effect, however, cannot be at-
tributed to the community structure only, because of the
concurrent change of the degree distribution, which gets
broader. Other studies have decoupled the two effects, by
comparing spreading dynamics on modular networks and
on randomized networks with the same P(k), obtained by
suitable reshuffling (Maslov and Sneppen, [2002). They
support instead the opposite view that the community
structure of a network tends to hinder epidemic spread-
ing. Using IBMF, (Bonaccorsi et al.l [2014) express the
epidemic threshold explicitly in terms of the sizes and
spreading rates in the clusters.

For the SI dynamics, the modular structure makes the
growth of the infection slower: prevalence at fixed time is
reduced in networks with community structure (Huang
and Li, 2007). The interpretation is that the presence
of communities tends to confine the outbreak around the
initial seed and hinders the transmission to other com-
munities. This effect is further enhanced in weighted
social networks (Onnela et al., 2007) by the correlation
between topology and weights (Granovetter, [1973)): the
ties bridging between strongly connected communities
are typically weak and this greatly delays the propagation
among different communities (Karsai et al.,2011;|Onnela
et al.2007). Investigations on the SIRS model with fixed
infection and recovery times have focused on the oscilla-
tions of the number of infected nodes in the stationary
state (Yan et all [2007; |Zhao and Gao, 2007)). Both for
topologies with scale-free and non scale-free degree distri-
butions it turns out that the modular structure reduces
the synchronization. Also for SIR dynamics modularity
is found to make spreading more difficult: the final value
of p® is smaller for stronger community structure (Wu
and Liu, 2008). More convincingly, |Salathé and Jones
(2010), show, both for empirical and synthetic networks
that community structure has a major hindering effect
on spreading: the final value of pf* and the height of the
peak of p! decrease with the modularity. Moreover, they
show that in networks with strong community structure
targeting vaccination interventions at individuals bridg-
ing communities is more effective than simply targeting
highly connected individuals.

It is also worth to mention the observation that SIS-
like processes on complex networks may give rise to the
nontrivial scenario of Griffiths phases (Vojta, 2006]), re-
gions of the phase-space where the only stationary state is
the absorbing one, which is however reached via anoma-
lously long nonuniversal relaxation (Munoz et al.} |[2010)).
This behavior arises because of rare-regions effects, which
can be due either to quenched local fluctuations in the
spreading rates or to subtle purely topological hetero-
geneities (Juhdsz et al., [2012; Odor and Pastor-Satorras),
2012). Such rare-region effects have been discussed in the
case of the SIS model on loopless (tree) weighted net-
works (Buono et all 2013; Odor, 2013aybl), where they



have been related to the localization properties of the
largest eigenvalue of the adjacency matrix 1 2013b)).

7. Epidemics in adaptive networks

Previous sections have focused on the evolution of
epidemics on static networks or on annealed topologies
where connections are rewired on a time scale much
smaller than the characteristic time scale of the infec-
tion process. For real human disease epidemics, however,
the assumption that the structure of contacts does not
depend on the progression of the contagion is often un-
realistic: In the presence of infectious spreading, human
behavior tends to change spontaneously, influencing the
spreading process itself in a nontrivial feedback loop. The
modifications induced by this coupling may be distin-
guished depending on several features (Funk et al.,[2010):
the source of information about the contagion, the type of
information considered and the type of behavioral change
induced. The source of information about the spreading
process may be local (individuals decide depending on
the state of their direct contacts) or global (info on the
state of the whole system is publicly available). Differ-
ent types of information may influence the behavioural
choice: in prevalence-based models decisions are taken
based on the observation of the epidemic state of oth-
ers; in belief-based models matters the awareness or the
risk perception which may be (at least partially) inde-
pendent from the actual disease dynamics and often be-
haves in turn as a spreading process (Bagnoli et al,[2007
Bauch and Galvani|, 2013} [Funk ef al,[2009}; [Granell et al.
2013; [Perra et all 2011} Salathé and Bonhoeffer, 2008).

Finally, the behavioral change can be of different types:
affecting the state of the individual (for example via vol-
untary vaccination) or the structure of contacts (elimi-
nating existing connections or creating new ones). Many
models incorporating these features have been investi-
gated in mathematical epidemiology, generally assuming
well-mixed populations (Funk et al., 2010). Here we fo-
cus on epidemic spreading on adaptive (or coevolving)
contact networks, where the topology of the interaction
pattern changes in response to the contagion. The co-
evolution between structure and dynamics is a common
theme in many contexts, from game theory to opinion
dynamics (Gross and Blasius|, [2008; Nardini et al., 2008]).

The first investigation of an adaptive topology for SIS
dynamics (Gross et al., 2006) includes the possibility for
individuals to protect themselves by avoiding contacts
with infected people. Infected individuals are allowed at
each time step to infect each of their susceptible contacts
with probability p or recover with probability r (usual
SIS dynamics); in addition, susceptibles can decide (with
probability w) to sever a link with an infected and recon-
nect to a randomly chosen susceptible. The possibility
of rewiring links drastically changes the phase-diagram
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FIG. 7 Density of the infected nodes i* as a function of the
infection probability p for different values of the rewiring rate
w. In each diagram thin lines are computed using a homo-
geneous mean-field approach while circles are the results of
numerical simulations. Without rewiring only a single con-
tinuous transition occurs for p. &~ 0.0001 (a). By contrast,
rewiring causes a number of discontinuous transitions, bista-
bility, and hysteresis loops (indicated by arrows) in (b), (c),
(d). Figure adapted from |Gross et al.| (2006]).

of the model. The threshold p., below which the sys-
tem always converges to the absorbing healthy state, is
much larger than in the case of no coevolution (w = 0):
rewiring hinders the disease propagation. More interest-
ingly, above this threshold a bistability region appears
(see Fig. E[) with associated discontinuous transitions and
hysteresis. In this region both the healthy and the en-
demic state are stable and the fate of the system depends
on the initial condition. If p is further increased above a
second threshold, bistability ends and the endemic state
is the only attractor of the dynamics. The coevolution
has also strong effects on the topology of the contact
network, leading to the formation of two loosely con-
nected clusters of infecteds and susceptibles, with a gen-
eral broadening of the degree distribution and buildup of
assortative correlations. The rich phase-diagram is recov-
ered by a simple homogeneous mean-field approach which



complements the equation for the prevalence with two ad-
ditional equations for the density of links of I-I and S-I
type. A bifurcation analysis predicts also the existence
of a very narrow region with oscillatory dynamics. A
more detailed approach to the same dynamics (Marceau
et al., [2010) takes into account explicitly the degree of
nodes, writing equations for the evolution of the proba-
bilities Sk; (Ix;) that nodes in state S (I) have degree k
and [ infected neighbors. The numerical integration of
the equations is in excellent agreement with numerical
simulations both with respect to the transient evolution
and to the stationary state. Different initial topologies
(degree-regular, Poisson, power-law distributed) with the
same average connectivity may lead to radically differ-
ent stationary states: either full widespread contagion or
rapid disease extinction.

The qualitative picture emerging from the model of
Gross et alf (2006) is found also for the adaptive SIRS
model (Shaw), [2008)) and for the SIS dynamics where a
susceptible individual rewires to any randomly chosen
other vertex (not necessarily susceptible) (Zanette and
Risau-Gusman, [2008). The possibility that also infected
individuals decide to rewire their connections is discussed
in |Risau-Gusman and Zanette, (2009). In the SIS model,
also the interplay of the adaptive topology and vaccina-
tion has been investigated (Shaw and Schwartz, |[2010)). It
turns out that the vaccination frequency needed to sig-
nificantly lower the disease prevalence is much smaller in
adaptive networks than in static ones.

The effect of the very same type of adaptive rewiring
introduced for SIS has been studied also for SIR dynam-
ics (Lagorio et all |2011). In this case the effects of the
coevolution are less strong, as the time needed to reach
the stationary (absorbing) state is short (logarithmic in
the system size N) and the global topology is only weakly
perturbed in this short interval. The phase-diagram re-
mains qualitatively the same of the nonadaptive case
with a single epidemic transition separating a healthy
state from an endemic one. The mapping to percolation
(see Sec. is useful also here. Coevolution leads to
an effective transmissibility 7" which decreases with the
rewiring probability w. One can then identify a critical
value w,. above which the adaptive behavior is sufficient
to completely suppress the epidemics.

The assumptions that disconnected links are immedi-
ately rewired and that the target vertices of the recon-
nection step are randomly selected in the whole network
are highly implausible in real world situations. Attempts
to go beyond these limitations include the consideration
of different rates for breaking and establishing links (Guo
et al., 2013 |Van Segbroeck et al., 2010) and “intermit-
tent” social distancing strategies, such that a link is cut
and recreated (between the same vertices) after a fixed
time interval (Valdez et all|2012a) or with a certain rate
after both endpoints have healed (Tunc et all [2013).
The latter strategies are intended to mimic what hap-
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pens with friends or working partners, with which con-
nections are reestablished after the disease. The overar-
ching structure of the network remains static and there is
no real coevolution (no new links are formed). As a con-
sequence the phase-diagram of epidemic models remains
the same found on static networks, with only an increase
in the epidemic threshold due to social distancing.

C. Competing pathogens

Another generalization of the basic modeling scheme
considers the evolution of multiple epidemic processes in
competition in the same network, a scenario with clear
relevance for realistic situations. The crucial concept
here is cross-immunity, i.e. the possibility that being in-
fected by one pathogen confers partial or total immunity
against the others.

Newman| (2005]) considers two SIR epidemic processes
occuring one after the other in the same static network, in
conditions of total cross-immunity: The second pathogen
can affect only survivors of the first, i.e. in the ”resid-
ual” network obtained once the nodes recovered when
the first epidemics ends are removed. The mapping of
SIR static properties to bond percolation allows to un-
derstand this case. If the first pathogen is characterized
by a transmissibility above a certain value (coexistence
threshold) the residual network has no giant component
and the second pathogen cannot spread globally, even if
it has a huge transmissibility. Global spreading of both
pathogens can occur only for values of the transmissi-
bility of the first infection in an interval between the
epidemic and the coexistence thresholds. A generaliza-
tion to the case of partial cross-immunity is discussed by
Funk and Jansen| (2010). The case of competing SIR in-
fections spreading concurrently is investigated in [Karrer
and Newman (2011), again in the case of complete cross-
immunity: Infection by one pathogen confers immunity
for both. Nontrivial effects occur when both transmissi-
bilities are above the threshold for single spreading (oth-
erwise one of the pathogens does not spread globally and
there is no real interference). If one of the pathogens
has a transmissibility significantly larger than the other,
it spreads fast and the second spreads afterwards in the
residual network, much as in the case of subsequent in-
fections. If the growth rates are very similar the final
outcome shows strong dependence on stochastic fluctu-
ations in the early stages of growth, with very strong
finite size effects. An alternative approach, based on the
edge-based compartmental modelling allows to investi-
gate theoretically also the dynamics of two competing
infectious diseases (Miller, 2013)). Poletto et al. (2013])
consider cross-immune pathogens in competition within a
metapopulation framework (see Sec. The dominance
of the strains depends in this case also on the mobility of
hosts across different subpopulations.



Mutual cross-immunity for two competing SIS dynam-
ics is considered by [Trpevski et al| (2010) (see also

(2006))), while the domination time of two compet-

ing SIS viruses is analysed in (van de Bovenkamp et al.,
. Depending on the network topology, for some
values of the parameters it is possible to find a steady
state where the two processes coexist, each having a fi-
nite prevalence.

Another nontrivial and relevant example of interacting
epidemics is the case of coinfection processes, where the
opposite of cross-immunity holds: The second pathogen
can spread only to individuals that have been already
infected by the first. Newman and Ferrario| (2013)) report
a first theoretical and numerical investigation of this type
of dynamics on complex networks.

Vill. EPIDEMIC PROCESSES IN TEMPORAL
NETWORKS

The majority of the results presented so far considered
the spreading of epidemic process in the limit of extreme
time scale separation between the network and the con-
tagion process dynamics (see however Sec. for a
discussion of adaptive networks, whose topology changes
in reaction to a disease). In static networks, the epidemic
spreads on a network that is virtually frozen on the time
scale of the contagion process. On the opposite limit,
the DBMF theory considers an effective mean-field net-
work where nodes are effectively rewired on a time-scale
much faster than the contagion process. However, in the
case of many real-world networks those assumptions are
rather simplistic approximations of the real interplay be-
tween time scales. For instance, in social networks, no
individual is in contact with all his/her friends simul-
taneously all the time. On the contrary, contacts are
changing in time, often on a time scale that is compara-
ble with the one of the spreading process. Real contact
networks are thus essentially dynamic, with connections
appearing, disappearing and being rewired with different
characteristic time scales, and are better represented in
terms of a temporal or time-varying network
[Saramiki, 2012, 2013), see Fig.

Temporal networks are defined in terms of a contact
sequence, representing the set of edges present at a given
time ¢. By aggregating the instantaneous contact se-
quence at all times ¢t < T, a static network projection
can be constructed, see Fig. In this aggregated net-
work, the edge between nodes ¢ and j is present if it ever
appeared at any time ¢t < T. A more informative static
representation is a weighted network, in which the weight
associated to each edge is proportional to the total num-
ber of contacts (or the total amount of time the contact
was active) between each pair of individuals. These static
network projections, however, do not account for the non-
trivial dynamics of the temporal network and are thus of-
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Integrated network

FIG. 8 A temporal (or time-varying) network can be repre-
sented as a set of nodes that, at every instant of time, are
connected by a different set of edges. A integrated network
over a time window 7" is constructed by considering that nodes
i and j are connected by an edge if they were ever connected
at any time ¢ < T'. Figure adapted from [Perra et al| (2012b)

ten inappropriate when considering dynamical processes
unfolding on time-varying connectivity patterns.

Recent technological advances allow gathering large
amounts of data on social temporal networks, such as
mobile phone communications (Onnela et all, [2007)) and
face-to-face interactions (Cattuto et al.2010). From the
analysis of these datasets, social interactions are char-
acterized by temporally heterogeneous contact patterns.
Indeed it is more the norm than the exception to find
that the temporal behavior of social interactions is char-
acterized by heavy-tail and skewed statistical distribu-
tions. For instance, the probability distributions of the
length of contacts between pairs of individuals, of times
between consecutive interactions involving the same in-
dividual, etc., all follow a heavy tailed form (see Fig. [9)
(Cattuto et all [2010; Doerr et all, [2013; [Holme)
Hui et all |2005; Onnela et al., 2007; Tang et al., [2010).
These properties contrast with the Poissonian behavior
expected in purely random interactions, thus catalyzing
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FIG. 9 Statistical properties of a temporal face-to-face con-
tact network (Cattuto et al| |[2010). The probability distri-
butions of the lenght of conversations At, total time spent in
conversation between pairs of individuals w, and the gap 7 be-
tween conversation with different individuals, all show a long-
tailed form, compatible with a power law. Figure adapted
from |Starnini et al.|(2012).

the recent interest in the study of the burstiness of hu-
man behavior (Oliveira and Barabasi, 2005)).

The time-varying connectivity pattern of networks af-
fects epidemic processes in a number of different ways.
First, the presence of a temporal ordering in the connec-
tions of the network limits the possible paths of propa-
gation of the epidemic process. In particular, not all the
edges of the eventually aggregated network projection are
available for the propagation of a disease. Starting on a
given node, only the nodes that belong to its set of in-
fluence , defined as the nodes that can be
reached through paths that respect time ordering, may
propagate the disease. Furthermore, the Poissonian ap-
proximation for the transmission rate of infectious indi-
viduals is not correct because the time between consec-
utive nodes’ contacts is generally power-law distributed.
However, this non-Poissonian behavior is different from
the one presented in Sec. where we considered
fixed networks in which a disease takes, to propagate
from an infected individual to a susceptible one along a
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fixed link, a time 7, that is not exponentially distributed.
Here we have the situation in which the very link that
can propagate the disease appears at instants of time
that are separated by an inter-event time 7;, that can be
distributed non-exponentially. Finally, the relation be-
tween the intrinsic time scales of the temporal network
and those of the dynamics plays a substantial role. Thus,
for slow dynamics with a very large relative time scale, it
can be a good approximation to consider as a substrate
the weighted integrated network. If the dynamics is fast,
with a small relative time scale, comparable to that of
the temporal network, then the substrate must be the
actual contact sequence defining the temporal network.

Among the effects that a non-Poissonian temporal net-
work induces on epidemic spreading, one of the most re-
markable is a substantial slowing down of the spread ve-
locity. This observation was first made by using an SI
model (Vazquez et all,[2007)) (see also (2011))
in the context of the spreading of email worms among
email users. Empirical data show that the time between
consecutive email activities is heavy-tailed and well ap-
proximated by the form P(7) ~ 77178, The genera-
tion time 7, defined as the time between the infection
of the primary individual and the infection of a sec-
ondary individual is given by the residual waiting time
distribution, assuming a stationary process,
g(t) = [7°P(r')dr’ /{r) ~ 777, where it is assumed that
the time at which emails are received is uniformly ran-
dom. The average number of new infections at time ¢,
n(t) is estimated as n(t) = ZdD:l Z4Ga(t), where Z; is
the average number of users at a distance d (at d email
steps) from the first infected user, D is the maximum
possible value of d, and §4(¢) is the convolution of order
d of g(7). Assuming that the integrated network of email
contacts is sparse, M (2011)) find that n(t) ~ t=7,
independently of the integrated network structure. This
result implies that the disease spreads much more slowly
than in a regular static network, where an exponential
increase of infected individuals is observed. The slowing
down in temporal networks has been empirically mea-
sured in different systems (Karsai et all 2011; [Kiveld)
let all 2012} Stehle et all 2011} [Vazquez et all|2007)), and
also reported in other dynamical processes, such as diffu-
sion (Hoffmann et al., |2012; |Perra et all [2012a; Starnini|
et al., [2012) or synchronization (Fujiwara et al., |2011).
The situation is however not completely clear, since other
works suggest instead a dynamic acceleration (Jo et al.
. These temporal effects are, moreover, entangled
with topological ones, as shown by Rocha et al| (2011)
analyzing the SI and SIR models in empirical spatio-
temporal networks. Temporal correlations accelerate epi-
demic outbreaks, especially in the initial phase of the
epidemics, while the network heterogeneity tends to slow
them down.

The time-varying structure of temporal networks is
also able to alter the value of the epidemic threshold,
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FIG. 10 Prevalence of the SIS model on the temporal network
defined by the activity driven model, as a function of the ba-
sic transmission probability A. The threshold observed for the
dynamics on the temporal network coincides with the theoret-
ical prediction Eq. . Simulations on integrated networks
show instead a threshold that becomes smaller when increas-
ing the integration time 7T'. Figure adapted from [Perra et al.

(20121)

as analytically shown for the SIS and SIR processes in
activity driven network models (Perra et al) [2012D).
The activity-driven network class of models (Perra et al.]
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the dynamics of the network and the epidemic model,
yielding:

I,
I = Am(N, — Ié)a/da’ﬁ" + (78)

Ita
+ dm(N, — Ié)/da’“T,
where N, = F(a)N is the total number of individuals
with activity a and where the recovery probability u = 1.
In Eq. , the first term on the right side takes into ac-
count the probability that a susceptible of class a is ac-
tive and acquires the infection getting a connection from
any other infected individual (summing over all different
classes), while the last term takes into account the prob-
ability that a susceptible, independently of his activity,
gets a connection from any infected active individual. A
linear stability analysis of Eq. leads to an epidemic
threshold

Ae = ;u (79)
m({a) + v/ (a?))

which is independent of the integration time. The same
epidemic threshold is obtained for the SIR model, ap-

plying mean-field approximations (Liu et al), [2014) and
a mapping to percolation (Starnini and Pastor Satorras|,

[2012b; |Starnini and Pastor-Satorras, [2013)) is based on
the concept of activity potential, defined as the probabil-
ity per unit time that an individual engages in a social
activity. Empirical evidence shows that the activity po-
tential varies considerably from individual to individual
and the dynamics of the networks is encoded in the func-
tion F'(a) that characterizes the probability for a node to
have an activity potential a. The activity driven network
model considers N nodes whose activity a; is assigned
randomly according to the distribution F'(a). During
each time step the node 7 is considered active with prob-
ability a;. Active nodes generate m links (engage in m
social interactions) that are connected to m individuals
chosen uniformly at random. Finally, time is updated
t — t 4+ 1. The model output is a sequence of graphs,
depending on the distribution F'(a), which is updated at
every time step t. An integrated network at time 7" can be
constructed by considering the union of the sequence of
graphs, see Fig. [8l This integrated network has a degree
distribution which depends on the activity distribution
as Pp(k) ~ +F (% —(a)) dStarnini and Pastor—SatorrasL
2013)), where (a) is the average activity and for simplicity
we take m = 1. The empirically observed power-law ac-
tivity distributions, F'(a), can thus explain the long tails
in the degree distribution of social networks (Perra et al.
[2012Db). [Perra et al|(2012b)) consider the behavior of the
SIS model in activity driven networks, writing dynami-
cal mean field equations for the infected individuals in
the class of activity rate a, at time ¢, namely I,(¢). The
discrete time dynamical evolution considers concurrently

2014)). This result highlights the crucial fact that scale-
free integrated networks can lead to a vanishing thresh-
old for epidemics with a very large time scale, while epi-
demics with a short time scale, comparable to the one
of the contact sequence, can be associated with a finite,
non-vanishing threshold, see Fig. This observation
has been confirmed in studies of other temporal network
models (Rocha and Blondel, 2013).

Finally, a very recent avenue of research in this area
has been the identification of effective immunization pro-
tocols for temporal networks 2012). The idea
here is to define a training window AT, such that infor-
mation is gathered from the contact sequence at times
t < AT. A set of individuals to be immunized is cho-
sen, and effectively vaccinated at time AT. The effects
of the immunization are then observed for ¢t > AT.
explore two local strategies, inspired by the
acquittance immunization protocol for static networks
(Cohen et al.,|2003): In the Recent strategy, a randomly
chosen individual is asked at time AT for its last contact;
this last contact is immunized. In the Weight strategy,
a randomly chosen individual at time AT is asked for its
most frequently contacted peer, up to time AT'; this most
frequent contact is immunized. By means of numerical
simulations observe that both protocols
offer, for a limited amount of local information, a reason-
able level of protection against the disease propagation.
An interesting issue is the question about the amount of
information (the length AT of the training window) suf-
ficient to achieve an optimal level of immunization for a




fixed fraction of immunized individuals. [Starnini et al.
(2013) find a saturation effect in the level of immuniza-
tion for training windows of about a 20% - 40% of the
total length of the contact sequence, for several immu-
nization protocols, indicating that a limited amount of
information is actually enough to optimally immunize
a temporal network. In the case of the activity driven
networks, analytical expressions for several immunization
strategies can be obtained (Liu et al., 2014).

IX. REACTION-DIFFUSION PROCESSES AND
METAPOPULATION MODELS

So far we have reviewed results concerning spreading
and contagion processes in which each node of the net-
work corresponds to a single individual of the population.
A different framework emerges if we consider nodes as en-
tities where multiple individuals/particles can be located
and eventually wander by moving along the links con-
necting the nodes. Examples of such systems are pro-
vided by mechanistic epidemic models where particles
represent people moving between different locations or by
the routing of information packets in technological net-
works (Gallos and Argyrakis|, 2004 Keeling and Rohanil,
2002; [Sattenspiel and Dietz, [1995; Watts et al., |2005)).
More in general, models of social behavior and human
mobility are often framed as reaction-diffusion processes
where each node ¢ is allowed to host any nonnegative
integer number of particles N'(7), so that the total par-
ticle population of the system is N' = >, A(¢). This
particle-network framework considers that each particle
diffuses along the edges connecting nodes with a diffusion
coefficient that depends on the node degree and/or other
node attributes. Within each node particles may react
according to different schemes characterizing the inter-
action dynamics of the system. A simple sketch of the
particle network framework is represented in Figure

In order to have an analytic description of reaction-
diffusion systems in networks one has to allow the pos-
sibility of heterogeneous connectivity patterns among
nodes. A first analytical approach to these systems con-
siders the extension of the degree-based mean-field ap-
proach to reaction-diffusion systems in networks with ar-
bitrary degree distribution. For the sake of simplicity,
let us first consider the DBMF approach to the case of
a simple system in which non interacting particles (in-
dividuals) diffuse on a network with arbitrary topology.
A convenient representation of the system is therefore
provided by quantities defined in terms of the degree k

1
N = A Z N(i), (80)
kievir)

where Ny = NP(k) is the number of nodes with degree
k and the sum runs over the set of nodes V(k) having de-
gree equal to k. The degree block variable N}, represents
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the average number of particles in nodes with degree k.
The use of the DBMF approach amounts to the assump-
tion that nodes with degree k, and thus the particles in
those nodes, are statistically equivalent. In this approx-
imation the dynamics of particles randomly diffusing on
the network is given by a mean-field dynamical equation
expressing the variation in time of the particle subpopu-
lation N} (t) in each degree block k. This can be easily
written as:

dn;
= N0 + kZ P(K'[k)dirkNi (). (81)

The first term of the equation considers that only a frac-
tion dj, of particles moves out of the node per unit time.
The second term instead accounts for the particles dif-
fusing from the neighbors into the node of degree k. This
term is proportional to the number of links k times the
average number of particles coming from each neighbor.
This is equal to the average over all possible degrees k' of
the fraction of particles moving on that edge, dy Ny (¢),
according to the conditional probability P(k'|k) that an
edge belonging to a node of degree k is pointing to a node
of degree k’. Here the term dj, is the diffusion rate along
the edges connecting nodes of degree k and k’. The rate
at which individuals leave a subpopulation with degree
k is then given by di, = k) ,, P(K'|k)dyi. In the sim-
plest case of homogeneous diffusion each particle diffuses
with rate r from the node in which it is and thus the
diffusion per link dj/, = r/k’. On uncorrelated networks
P(K'|k) = K'P(K')/{k) and hence one easily gets, in the
stationary state dNy/dt = 0 the solution (Colizza et all,
2007b; Noh and Rieger}, [2004)

kN
Ne= o5 (82)

The above equation explicitly brings the diffusion of
particles in the description of the system and points out
the importance of network topology in reaction-diffusion
processes. This expression indicates that the larger the
degree of a node, the larger the probability to be visited
by the diffusing particles.

A. SIS model in metapopulation networks

The above approach can be generalized to reacting par-
ticles with different states by adding a reaction term to
the above equations (Colizza et al.l |2007b]). We now de-
scribe a generalization to this setting of the standard SIS
model in discrete time, with probability per unit time
B of infection and probability u of recovery. We con-
sider A individuals diffusing in a heterogeneous network
with N nodes and degree distribution P(k). Each node
i of the network has a number I(7) of infectious and S(4)
of susceptible individuals, respectively. The occupation
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FIG. 11 a Schematic illustration of the simplified modeling framework based on the particle-network scheme. At the macro-
scopic level the system is composed of a heterogeneous network of subpopulations. The contagion process in one subpopulation
(marked in red) can spread to other subpopulations because of particles diffusing across subpopulations. b At the microscopic
level, each subpopulation contains a population of individuals. The dynamical process, for instance a contagion phenomenon,
is described by a simple compartmentalization (compartments are indicated by different colored dots in the picture). Within
each subpopulation, individuals can mix homogeneously or according to a subnetwork and can diffuse with probability p from
one subpopulation to another following the edges of the network. ¢ A critical value p. of the individuals/particles diffusion
identifies a phase transition between a regime in which the contagion affects a large fraction of the system and one in which
only a small fraction is affected (see the discussion in the text).

numbers (i) and S(¢) can have any integer value, in-
cluding I(i) = S(i) = 0, that is, void nodes with no
individuals. This modeling scheme describes spatially
structured interacting subpopulations, such as city loca-
tions, urban areas, or defined geographical regions
[fell and Harwood, [1997; Hanski and Gaggiottil 2004) and
is usually referred to as metapopulation approach. Each
node of the network represents a subpopulation and the
compartment dynamics accounts for the possibility that
individuals in the same location may get into contact and
change their state according to the infection dynamics.
The interaction among subpopulations is the result of
the movement of individuals from one subpopulation to
the other. We have thus to associate to each individual’s
class a diffusion probability p; and pg that indicates the
probability for any individual to leave its node and move
to a neighboring node of the network. In general the dif-

fusion probabilities are heterogeneous and can be node
dependent; however for the sake of simplicity we assume
that individuals diffuse with probability p; = ps = 1
along any of the links departing from the node in which
they are. This implies that at each time step an individ-
ual sitting on a node with degree k£ will diffuse into one
of its nearest neighbors with probability 1/k. In order
to write the dynamical equations of the system we define
the following quantities:

L=g 310 Si=5 > S6. (89

]VkielKk) i€V (k)

where the sums 3, .\, are performed over nodes of de-
gree k. These two quantities express the average number
of susceptible and infectious individuals in nodes with
degree k. Clearly, N}, = I + S is the average number
of individuals in nodes with degree k. These quantities



allow to write the discrete time equation describing the
time evolution of Ij(t) for each class of degree k as

Lt+1)=kY P(k|k’)% (1= @)L () + BTw (1)
Y

(84)
where I'y/(¢) is an interaction kernel, function of Iy, and
Sk The equation is obtained by considering that at each
time step the particles present on a node of degree k first
react and then diffuse away from the node with probabil-
ity 1. The value of I(t + 1) is obtained by summing the
contribution of all particles diffusing to nodes of degree k
from their neighbors of any degree k’, including the new
particles generated by the reaction term I'y/. In the case
of uncorrelated networks, Eq. reduces to

k _

I(t+1) = 0] [(1—wI(t)+pr], (85)
where I(t) = >, P(k)I} is the average number of in-
fected individuals per node in the network and I' =
> P(k)T'k. Analogously the equation describing the dy-
namics of susceptible individuals is

S(t+1) = <Z> [5(t) + ul(t) — 6T],  (86)
where S(t) =, P(k)Sk.

In order to explicitly solve these equations we have to
specify the type of interaction among individuals. In the
usual case of a mass-action law for the force of infection,
we have T'y = Ij,Sk/N. This implies that each particle
has a finite number of contacts with other individuals.
Considering the stationary state ¢t — oo, and by using
some simple algebra, we can find that an endemic state
I > 0 occurs only if 8/ > 1, thus recovering the clas-
sic epidemic threshold in homogeneous systems (Colizza,
et all [2007b).

A very different result is obtained if we consider the
case in which each susceptible individual may react with
all the infectious individuals in the same node. In this
case I'y, = ISk, i.e. all individuals are in contact with
the same probability (absorbed in the factor 3), inde-
pendently of the total population present in each node.
This law, referred to as pseudo mass-action law, is some-
times used to model animal diseases as well as mobile
phone malwares. In this case, an active stationary solu-
tion I > 0 occurs if (Colizza et al., 2007b)

o _ (k)
N2 N = g
where N' = 3" P(k)N;, = N/N is the average number
of individuals per node. This result implies that a sta-
tionary state with infectious individuals is possible only
if the particle density average A is larger than a spe-
cific critical threshold. However the network topologi-
cal fluctuations affect the critical value. In particular,

; (87)

™=
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in heavy-tailed networks with (k?) — oo we have that
N, =0, ie. topological fluctuations induce a vanishing
of the threshold in the limit of an infinite network.

The different behavior obtained in the two types of pro-
cesses can be understood qualitatively by the following
argument (Colizza et al., [2007b). In a process governed
by the mass action law the epidemic activity in each node
is rescaled by the local population N; and it is therefore
the same in all nodes. In this case, the generation of in-
fected individuals is homogeneous across the network and
an epidemic active state depends only on the balance be-
tween 8 and p, whose values must poise the system above
the critical threshold. In contagion processes determined
by the pseudo-mass action law, whatever the parameters
B and p, there exists a local density of individuals able
to sustain the generation of infected individuals to keep
the system in the active state. In this case topological
fluctuations induce density fluctuations in the network
as the diffusion process brings individuals to each node
proportionally to the degree k, Eq. . Whatever the
average number of individuals per node in the thermo-
dynamic limit, there is always a node (with a virtually
infinite degree) with enough individuals to keep alive the
contagion process, leading to the disappearance of the
phase transition.

Although the above results are obtained by a discrete
formulation that generally suits well simulation schemes
in which reactions and diffusion are executed sequen-
tially, the continuum formalism of the above models has
been derived in|Saldana) (2008) (see alsoBaronchelli et al.
(2008)). In the continuum derivation the same phe-
nomenology is obtained although the results concern-
ing the critical value in pseudo mass reaction-like pro-
cesses scales as the maximum degree in the network:
NC ~ k;l;.x'

It is worth stressing that in most contagion processes,
the mobility of individuals is generally extremely hetero-
geneous and not simply mimicked by constant diffusion
probabilities as those used in the previous simple exam-
ple. The interaction among subpopulations is the result
of the movement of individuals from one subpopulation
to the other. For instance, it is clear that one of the key
issues in the modeling of contagion phenomena in human
populations is the accurate description of the commuting
patterns or traveling of people. In many instances even
complicated mechanistic patterns can be accounted for
by effective couplings expressed as a force of infection
generated by the infectious individuals in subpopulation
7 on the individuals in subpopulation i. More realistic
descriptions are provided by approaches which include
explicitly the detailed rate of traveling/commuting ob-
tained from data or from an empirical fit to gravity law
models (Viboud et all [2006)). For analytical studies,
simplified approaches use the Markovian assumption in
which at each time step the movement of individuals is
given according to a matrix d;; that expresses the rate at



which an individual in the subpopulation ¢ is traveling to
the subpopulation j. This approach is extensively used
in large populations where the traffic w;; between sub-
populations is known, stating that d;; ~ w;;/N;. Several
modeling approaches to the large scale spreading of infec-
tious disease (Balcan et al.l [2009a; Baroyan et al.l 1969;
Colizza et al.l, 2006l [2007a; [Flahault and Valleron, (1991}
Grais et al., 2004; Hufnagel et all |2004; [Rvachev and
Longinil [1985) use this mobility process based on real
data about transportation networks. A detailed descrip-
tion of different mobility and diffusion schemes can be
found in |Colizza and Vespignani (2008)).

B. SIR model in metapopulation networks and the global
invasion threshold

In the analysis of contagion processes in metapopula-
tion networks, the diffusion parameters that mimic the
mobility rate of individuals/particles in the system may
cause severe changes to the phase diagram by inducing a
novel type of critical threshold. To see these effects we
consider SIR-like models with no stationary state pos-
sible. If we assume a diffusion probability p for each
individual and that the single population reproductive
number of the SIR model is Ry > 1, we can easily iden-
tify two different limits. If p = 0 any epidemic occurring
in a given subpopulation will remain confined; no indi-
vidual can travel to a different subpopulation and spread
the infection across the system. In the limit p — 1 we
have that individuals are constantly wandering from one
subpopulation to the others and the system is in prac-
tice equivalent to a well mixed unique population. In
this case, since Ry > 1, the epidemic will spread across
the entire system. A transition point between these two
regimes is therefore occurring at a threshold value p. of
the diffusion rate, identifying a global invasion threshold
that depends on the mobility as well as the parameters
of the contagion process (see Fig. . In other words,
in a model such as the SIR model, the epidemic within
each subpopulation generates a finite fraction of infec-
tious individuals in a finite amount of time, and even if
Ry > 1 the diffusion rate must be large enough to ensure
the diffusion of infected individuals to other subpopu-
lations before the local epidemic outbreak dies out. It
is worth remarking that this does not apply in models
with endemic states such as the SIS model. In this case
the disease produces infectious individuals indefinitely in
time and sooner or later the epidemic will be exported
to other subpopulations.

The invasion threshold is encoded in a new quantity R.
characterizing the disease invasion of the metapopulation
system. R, denotes the number of subpopulations that
become infected from a single initially infected subpopu-
lation; i.e. the analogue of the reproductive number Ry
at the subpopulation level. It defines the critical values
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of parameters that allow the contagion process to spread
across a macroscopic fraction of subpopulations. Inter-
estingly, this effect cannot be captured by a continuous
description that would allow any fraction pI of diffusing
infected individual to inoculate the virus in a subpopula-
tion not yet infected. In certain conditions this fraction
pl, that is a mean-field average value, may be a number
smaller than 1. This is a common feature of continuous
approximations that allow the infection to persist and
diffuse via “nano-individuals” that are not capturing the
discrete nature of the real systems. The discrete nature
of individuals and the stochastic nature of the diffusion
can therefore have a crucial role in the problem of resur-
gent epidemics, extinction and eradication (Ball et al.,
1997;|Cross et al.,[2007,|2005; |Vazquez|, 2007; Watts et al.,
2005)).

In order to provide an analytical estimate of the in-
vasion threshold, we consider a metapopulation network
with arbitrary degree distribution P(k), where each node
of degree k has a stationary population NVj. By using a
Levins-type approach (Colizza and Vespignanil [2007)) it is
possible to characterize the invasion dynamics by looking
at the tree-like branching process describing the conta-
gion process at the subpopulation level (Levinsl [1970).
Let us define DY as the number of diseased subpopu-
lations of degree k at generation 0, i.e. those which are
experiencing an outbreak at the beginning of the process.
Each infected subpopulation will seed—during the course
of the outbreak—the infection in neighboring subpopu-
lations, defining the set Dji of infected subpopulations
at generation 1, and so on. This corresponds to a basic
branching process where the number of infected subpop-
ulations of degree k at the n—th generation is denoted
as Di. We can write the iterative equation relating D
and D,’fl as

F=2 DittK — D)P(kIK)
kl

y (1 - ngkl) [1 _ (%)A] . (88)

In this expression we assume that each infected subpopu-
lation of degree k" at the (n—1)—th generation may seed
the infection in a number of subpopulations of degree k
according to the number of neighboring subpopulations
(k' — 1) that discount the neighboring population from
which the infection was originally transmitted. The right
term takes into account the probability P(k|k’) that each
of the k' — 1 neighboring populations has degree k, the
probability that the seeded population is not infected,
and the probability to observe an outbreak in the seeded
population. This last probability stems from the prob-
ability of extinction P..; = 1/Ry of an epidemic seeded
with a single infectious individual (Bailey, 1975), when
one considers a seed of size App given by the number
of infected individuals that move into a connected sub-




population of degree k¥’ during the duration of the local
outbreak in the subpopulation of degree k.

The quantity Agr can be explicitly calculated by con-
sidering that in the case of a macroscopic outbreak in a
closed population, the total number of infected individ-
uals during the outbreak evolution will be equal to aN
where & depends on the specific disease model and pa-
rameter values used. Each infected individual stays in
the infectious state for a time p~! equal to the inverse
of the recovery rate, during which it can travel to the
neighboring subpopulation of degree k' with rate p. Here,
for the sake of simplicity we consider that the mobility
coefficient p is the same for all individuals. Under this
condition the number of infected individuals that may
move into a connected subpopulation of degree k' during
the duration of the local outbreak in the subpopulation
of degree k is given by

N o_z/fl

(k) 7
where we have considered that each individual will dif-
fuse with the same probability in any of the k available
connections and that N} is given by Eq. .

In order to provide an explicit solution to the above
iterative equation we consider in the following that Ry —
1 <« 1, thus assuming that the system is very close to the
epidemic threshold. In this limit we can approximate
the outbreak probability as 1 — Ry **'* ~ Api(Ro — 1).
In addition, we assume that at the early stage of the

epidemic Dy~ '/N), < 1, and we consider the case of
uncorrelated networks, obtaining

/\kk’ =Dp (89)

Dy = (Ro — l)kggéj)w/\j@ sz/—l(k/ —-1).  (90)
I

By defining ©" = 3", D} (k' — 1), the last expression
can be conveniently written in the iterative form

() — (k) pNa

n— -1 1
that allows a growing epidemic only if
(k%) — (k) pNa
= 1) >1, 2
R (Ro ) )2 B > (92)

defining the global invasion threshold of the metapopula-
tion system.

The explicit form of the threshold condition can be
used to find the minimum mobility rate ensuring that
on average each subpopulation can seed more than one
neighboring subpopulation. The constant & is larger than
zero for any Ry > 1, and in the SIR case for Ry close to
1 it can be approximated by @ ~ 2(Rg — 1)/R2
, yielding a critical mobility value p. below which
the epidemics cannot invade the metapopulation system
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FIG. 12 Global threshold in a heterogeneous metapopulation
system. The left panel shows a 3D surface representing the
value of the final epidemic size in the metapopulation system
as a function of the local threshold Ry and of the diffusion
probability p. If Ry approaches the threshold, larger values
of the diffusion probability p need to be considered in order
to observe a global outbreak in the metapopulation system.
Figure adapted from Colizza & Vespignani, 2007.

given by the equation

(k)* pR3
(k) — (k) 2(Ro — 1)*

pN > (93)

In Fig. we show the total number of infected indi-
viduals across all subpopulations, also called the global
attack rate, as a function of both Ry and p, as ob-
tained from extensive Monte Carlo simulations in an un-
correlated metapopulation network with P(k) ~ k=21,
N = 10°, NV = 10% and x = 0.2. The global attack
rate surface in the p- Ry space shows that the smaller the
value of Ry, the higher the mobility p in order for the
contagion process to successfully invade a finite fraction
of the subpopulations.

The invasion threshold R, > 1 implicitly defines the
critical mobility rate of individuals and is an indicator
as important as the basic reproductive number Ry > 1
in assessing the behavior of contagion processes in struc-
tured populations. It shifts the attention from the local
outbreak to a global perspective where the interconnec-
tivity and mobility among subpopulations is extremely
important in possibly hampering the spreading process.
The presence of the factor (k)?/(k?) in the explicit ex-
pression of the threshold points out that also at the global
level the heterogeneity of the network plays a very im-
portant role. In other words, the topological fluctuations
favor the subpopulation invasion and suppress the phase
transition in the infinite size limit.

While the analysis we have presented here is extremely
simplified, in the last years several studies have provided
insight on metapopulation spreading fully considering the
stochastic and discrete nature of the process in various
realistic contexts: heterogenous schemes for the diffusion



of individuals (Ben-Zion et al.l 2010} |Colizza and Vespig-|
[nanil 2008 |Gautreau et al., 2008; Ni and Weng], 2009);
heterogeneous populations (Apolloni et al., [2013; [Polettol
; non-markovian recurrent mobility patterns
mimicking commuting among geographical regions
[can and Vespignanil, 2011} 2012} Belik et al.| |2011) and
the introduction of individual behavioral responses to the
presence of disease (Meloni et all 2011} [Nicolaides et al.]
2013). Indeed one of the interesting applications of the
particle-network framework and the study of reaction-
diffusion processes in metapopulation networks consists
in providing analytic rationales for data driven epidemic
models.

C. Agent Based Models and Network Epidemiology

In recent years, mathematical and computational ap-
proaches to the study of epidemics have been increas-
ingly relevant in providing quantitative forecast and sce-
nario analysis of real infectious disease outbreaks (Lof-
lgren et al, 2014). For this reason, epidemic mod-
els have evolved into large-scale microsimulations, data-
driven approaches that can provide information at very
detailed spatial resolutions. An example is provided by
agent based, spatially structured models that consider
the discrete nature of individuals and their mobility and
are generally including the stochasticity of interactions
and mobility of individuals. These models, are based on
the construction of synthetic populations characterizing
each individual in the population and its mobility pat-
tern, often down to the level of households, schools and
workplaces (Chao et al., 2010; (Colizza et al., 2007a;
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data driven epidemic models is provided by the GLobal
Epidemic and Mobility (GLEAM) model that integrates
census and mobility data in a fully stochastic meta-
population network model that allows for the detailed
simulation of the spread of influenza-like illnesses around
the globe (Broeck et all [2011). This model uses real
demographic and mobility data. The world population
is divided into geographic census areas that are defined
around transportation hubs and connected by mobility
fluxes. Within each subpopulation, the disease spreads
between individuals. Individuals can move from one sub-
population to another along the mobility network accord-
ing to high quality transportation data, thus simulating
the global spreading pattern of epidemic outbreaks. At
the finer scale of urban areas, synthetic population con-
structions are even more refined and consider a classi-
fication of location such as house, schools, offices etc.
The movement and time spent in each location can be
used to generate individuals-location bipartite networks
whose unipartite projection defines the individual-level,
synthetic interaction network that governs the epidemic
spreading (Eubank et al., 2004; Fumanelli et al) 2012;
[Halloran et al. 2008} Merler et all [2011). Also in this
case, although the model underlying the computational
approach is a network model, each individual is anno-
tated with the residence place, age, as well as many other
possible demographic information, that can be exploited
in the analysis of the epidemic outbreak (see Fig. .

Data driven computational approaches can generate
results at unprecedented level of detail, and have been
used successfully in the analysis and forecast of real epi-
demics (Balcan et al [2009alb} [Hufnagel et all 2004}
[Merler et al., [2011), and policy making scenario analy-

bank et all 2004; Ferguson et al., |2005; [Hufnagel et all
2004} [Longini et al) 2005). The synthetic population
construction is a data hungry process and the resulting
model is in most of the cases non-transparent to an an-
alytical understanding. For this reason, the analysis of
these models relies on computational microsimulations
of the epidemic evolution that keep track of each single
individual in the population. The resulting ensemble of
possible epidemic evolutions is then leveraged to provide
the usual quantitative indicators such as median, mean,
and reference ranges for epidemic observables, such as
newly generated cases, seeding events, time of arrival of
the infection. The statistical information generated by
the computational approaches is then exploited with dif-
ferent visualization techniques that reference the data ge-
ographically. At first sight this modeling approach seems
unrelated to network epidemiology. In reality, most of
the data driven computational approaches are relying
on the construction of synthetic populations and inter-
action patterns that are effectively encoded as multiscale
networks of individuals and locations (Marathe and Vul-|
2013)

An example of the underlying network structure of

sis (Brockmann and Helbing, [2013; |Colizza et al., |2007a;
Eubank et all 2004; [Ferguson et all [2005; Longini|
et al), [2005). Similar approaches are becoming more
and more popular in the simulation of generalized con-
tagion processes and social behavior (Marathe and Vul-|
. Although realistic and detailed, compu-
tational approaches often provides non-intuitive results
and the key mechanisms underlying the epidemic evo-
lution are difficult to identify because of the amount of
details integrated in the models. In such cases, the an-
alytic understanding of the basic models presented in
this review can be the key to the systematic investiga-
tion of the impact of the various complex features of
real systems on the basic properties of epidemic out-
breaks. For instance, the simple calculation of the in-
vasion threshold explains why travel restrictions appear
to be highly ineffective in containing epidemics in large-
scale data driven simulation: the complexity and hetero-
geneity of the present time human mobility network favor
considerably the global spreading of infectious diseases.
Only unfeasible mobility restrictions reducing the global
travel fluxes by 90% or more would be effective (Bajardi
[et all, [2011}; [Colizza and Vespignanil, 2008; [Cooper et al.,
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FIG. 13 Schematic illustration of the construction of a synthetic population and the resulting contact network. a At the
macroscopic level, a synthetic population and its movements are constructed from census and demographic data. b A bipartite
network associating individuals to locations, and eventually weighting the links with the time spent in the location, is derived
from the synthetic population. ¢ The unipartite projection of the bipartite network provides a contact network for the contagion
process. Different transmission rates and weights on the network depends on the location and type of interactions.

[2006} Hollingsworth et al. 2006). The understanding of
the behavior of reaction-diffusion processes in complex
networks is therefore a crucial undertaking if we want
to answer many basic questions about the reliability and
predictive power of data driven computational models.

X. GENERALIZING EPIDEMIC MODELS AS SOCIAL
CONTAGION PROCESSES

Infectious diseases certainly represent the central fo-
cus of epidemic modeling because of the relevance they
played, and continue to play in present days, in human
history. The contagion metaphor however applies in sev-
eral other domains and in particular in the social context:
the diffusion of information (Bikhchandani et al. [1992),
the propagation of rumors, the adoption of innovations
or behaviors (Bass|, [1969; [Rogers|, [2010)), are all phenom-
ena for which the state of an individual is strongly in-
fluenced by the interaction with peers. Mediated by the
network of social contacts, these interactions can give
rise to epidemic-like outbreaks: fads, information cas-
cades, memes going viral online, etc. The term social
(or complex) contagion generally denotes these type of
phenomena. New communication technologies, online
social media, the abundance of digital fingerprints that
we, as individuals, disseminate in our daily life, provide

an unprecedented wealth of data about social contagion
phenomena, calling for theoretical approaches to mea-
sure, interpret, model and predict them. Simple mod-
els for disease epidemics are the natural paradigm for
this endeavour and have been applied to social spread-
ing phenomena (Bettencourt et al., [2006; Goffman), 1966;
|Goffman and Newill, |1964). Some specific features of so-
cial contagion, however, are qualitatively different from
pathogen spreading: the transmission of information in-
volves intentional acts by the sender and the receiver, it is
often beneficial for both participants (as opposed to dis-
ease spreading), and it is influenced by psychological and
cognitive factors. This leads to the introduction of new
ingredients in the models, from which the name complex
contagion derives. In this Section we will discuss recent
developments in this modeling effort, which we divide in
two broad categories depending on whether the spread-
ing process (threshold models) or the recovery process
(rumor spreading models) of the disease epidemic propa-
gation is changed. In the light of the modeling efforts, a
review of papers analyzing empirical data follows next.

As the topics presented here encompass a vast spec-
trum of disciplines, including physics, computer science,
mathematics, and social sciences, the usual caveat about
the impossibility of an exhaustive review of all the liter-
ature is to be particularly stressed. Our limited goal is
to try to outline the most important contributions in a



FIG. 14 Probability P;,s of infection for a susceptible in-
dividual after K contacts with infected individuals. (a) In-
dependent interaction (e.g., SIR-type) model. (b) Stochastic
threshold model. (c) Deterministic threshold model. Adapted
from |Dodds and Watts| (2004)

unitary framework. This endeavor is made even more dif-
ficult by the fact that the propagation of social contagion
is also close to other processes such as failure cascades (in
network routing protocols or mechanical failure (Motter
and Lai, [2002)) or the adoption of strategies in game-
theoretic context (Easley and Kleinberg, 2010) that are
beyond the scope of this review.

A. Threshold models

For disease epidemics it is customary to assume that
a susceptible individual has a constant probability to
receive the infection from a peer upon every exposure,
independently of whether other infected individuals are
simultaneously in contact or other exposures have oc-
curred in the past. While generally reasonable for the
transmission of pathogens (though exceptions may oc-
cur (Joh et al., 2009))) this hypothesis is clearly unrealis-
tic in most situations where a social meme is spreading:
a piece of information is more credible if arriving from
different sources; the push to adopt a technological inno-
vation is stronger if neighboring nodes in the social net-
work have already adopted it. These considerations lead
naturally to the introduction of “threshold models” for
spreading phenomena, where the effect of multiple expo-
sures changes from low to high as a function of their num-
ber. Fig. [14] displays the probability of infection (adop-
tion) P;,; after K attempts in the different scenarios.
In the case of SIR (left panel) each attempt has a fixed
probability p of success and Pi,,; =1 — (1 —p)&.

Threshold models have a long tradition in the so-
cial and economical sciences (Granovetter} [1978; |Morris,
2000). In the context of spreading phenomena on com-
plex networks, a seminal role has been played by the
model introduced by Watts (2002). Each individual can
be in one of two states (S and I) and is endowed with a
quenched, randomly chosen “threshold” value ¢;. In an
elementary step an individual agent in state S observes
the current state of its neighbors, and adopts state I if at
least a threshold fraction ¢; of its neighbors are in state I;
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FIG. 15 Phase-diagram of Watts’ threshold model. The
dashed line encloses the region of the (¢, (k)) plane in which
the condition for the existence of global cascades is satisfied
for a uniform random graph with uniform threshold ¢. The
solid circles outline the region in which global cascades occur
for the same parameter settings in the full dynamical model
for N = 10000 (averaged over 100 random single-node per-
turbations). Adapted from Watts| (2002)).

else it remains in state S. [l No transition from I back
to S is possible. Initially all nodes except for a small
fraction are in state S. Out of these initiators a cascade
of transitions to the I state is generated. The nontrivial
question concerns whether the cascade remains local, i.e.
restricted to a finite number of individuals, or it involves
a finite fraction of the whole population. Given an initial
seed, the spreading can occur only if at least one of its
neighbors has a threshold such that ¢; < 1/k;. A cascade
is possible only if a cluster of these “vulnerable” vertices
is connected to the initiator. For global cascades to be
possible it is then conjectured that the subnetwork of vul-
nerable vertices must percolate throughout the network.
The condition for global cascades can then be derived ap-
plying on locally tree-like networks the machinery of gen-
erating functions for branching processes. In the simple
case of a uniform threshold ¢ and an Erdds-Rényi pat-
tern of interactions the phase diagram as a function of the
threshold ¢ and of the average degree (k) is reported in
Fig.[15 For fixed ¢, global cascades occur only for inter-
mediate values of the mean connectivity 1 < (k) < 1/¢.

7 This is the definition for relative threshold models. In many
cases absolute thresholds are considered (Centola and Macyl
2007} |Galstyan and Cohenl 2007} |Granovetter| 1978 [Karimi and!
Holme} 2013; Kempe et al., [2003; |Kimura et al., |2009). For
strongly heterogeneous networks the different definitions may
lead to important changes.



The transition occurring for small (k) is trivial and is
not due to the spreading dynamics: the average cascade
size is finite for (k) < 1 because the network itself is
composed of small disconnected components: the tran-
sition is percolative with power-law distributed cascade
size. For large (k) > 1/¢ instead, the propagation is
limited by the local stability of nodes. As the transition
is approached increasing (k) the distribution of cascade
size is bimodal, with an exponential tail at small cascade
size and global cascades increasingly larger but more rare,
until they disappear altogether, implying a discontinuous
(i.e., first-order) phase transition in the size of success-
ful cascades. Heterogeneous thresholds reduce the sys-
tem stability, increasing the range of parameters where
global cascades occur. Degree heterogeneity has instead
the opposite effect.

The critical value of the threshold ¢. = 1/(k), separat-
ing global cascades for ¢ < ¢. from localized spreading
for ¢ > ¢, highlights the peculiar features of thresh-
old dynamics (Centola et all [2007)). Adding new links
to the network makes (k) grow, thus reducing ¢. and
making system-wide spreading more difficult; the oppo-
site of what occurs for SIR epidemics. Notice indeed
that the dependence of the threshold on the average de-
gree is the same (for homogeneous networks) in both the
threshold model and in SIR dynamics, but in the latter
case the global spreading occurs above the threshold (for
A > 1/(k)), while in the former case global cascades are
possible below the threshold (¢ < 1/(k)). By the same to-
ken, link rewiring which destroys clustering of a network
is seen to reduce the average cascade size for the thresh-
old model. Instead of the strength of the weak ties (Gra-
novetter} |1973)) here the weakness of long ties (Centola
and Macy, [2007)) is at work.

Watts’ model can be seen as a particular instance of a
more general model (Dodds and Watts, 2004)), which in-
cludes also independent interaction models (SIR, SIRS)
as particular cases. The model incorporates individual
memory, variable magnitude of exposure (dose amount)
and heterogeneity in the susceptibility of individuals.
At each contact with an infected neighbor a suscepti-
ble receives with probability p a random dose d(t) (dis-
tributed according to f(d)). A susceptible individual 4
accumulates the doses d;(t) over a time T and it be-
comes infected if at some time the accumulated dose
D;(t) = Ei,:FTH d;(t') is larger than a threshold df
(random for each node with distribution g(d*)). Recov-
ery is possible with probability r provided the dose D;(t)
falls below d;. The probability that a susceptible indi-
vidual who encounters K < T infected individuals in T
time steps becomes infected is therefore

K
Ping(K) =) (Ik{)pk(l —p)X kP, (94)
k=1

a0

where

o k
P, = /0 dd* g(d*)P (; d; > d*) (95)

is the average fraction of individuals infected after re-
ceiving k positive doses in T time steps. When all doses
d; are identical, all members of the population have the
same threshold d*, and p < 1, then the model reduces to
the standard SIR (see Fig. [[4h). In other cases it is a de-
terministic or stochastic threshold model, depending on
whether thresholds vary (see Fig. ) or are all identical
(see Fig. [14).

Adding a probability p that a recovered individual be-
comes susceptible again leads to a SIRS-like dynamics.
Setting r = 1 and p = 1 gives a SIS-like model, for which
the stationary fraction of active nodes as a function of
p is the order parameter. Three qualitatively different
shapes of the phase-diagram are found, depending only
on T and P; and Ps, the probabilities that an individual
will become infected as a result of one and two exposures,
respectively. If P, > P»/2 there is a standard epidemic
transition between an absorbing healthy phase and an ac-
tive infected one. The phenomenology is the same of SIS,
indicating that successive exposures are effectively inde-
pendent. The two other possible behaviors both exhibit
a discontinuous phase transition for finite p, differing in
the sensitivity with respect to the size of the initial seed.

By means of an analytical approach for locally tree-
like networks, |Gleeson and Cahalane (2007)) extended
Watts’ approach to consider a finite fraction of initia-
tors p'™. It turns out that this change may have dra-
matic effects on the location of the transitions as a func-
tion of (k) and even make the transition for small (k)
discontinuous. |Singh et al.| (2013) have shown that for
any ¢ < 1 there is a critical value p*(¢) such that for
p > pi"(¢) the cascades are global. Further work along
the same lines has generalized the analytical treatment
to modular networks (Gleeson [2008]), degree-correlated
networks (Dodds and Payne, 2009; |Gleesonl 2008) and to
networks with tunable clustering (Hackett et al., 2011]).
In the latter case, it turns out that for large and small
values of (k) clustering reduces the size of cascades, while
the converse occurs for intermediate values of the average
degree.

Watts’ threshold model has been extended in many
directions, to take into account other potentially rele-
vant effects that may influence the spreading process.
Interaction patterns described by layered networks are
found to increase the cascade size (Brummitt et al.| [2012)
while the consideration of temporal networks (Holme and
Saramakil 2012)) with the associated bursty activity of
individuals may either facilitate (Takaguchi et al., 2013)
or hinder (Karimi and Holme, 2013) the spreading pro-
cess. Watts’ model on a basic two-community network is
considered in |Galstyan and Cohen| (2007)). Finally it is



worth mentioning the work of |Lorenz et al.| (2009) which
propose a very general classification of models for cas-
cades, including, among many others, standard epidemic
models and Watts’ model as particular cases.

A large interest in threshold models has also be spurred
by the goal of identifying influential spreaders, i.e. the
starting nodes which maximize the size of cascades, a
topic of interest also for traditional epidemic models (see
Section . Kempe et al.| (2003) show that the prob-
lem of finding the set of initiator nodes such that the total
size of the cascade is maximal (Domingos and Richard-
sonl 2001 is NP-hard, both for linear threshold models
and for an independent cascade model, which is essen-
tially an inhomogeneous SIR. Moreover, they provide a
greedy hill-climbing algorithm that provides an efficient
approximation to the NP-hard solution, outperforming
random choice as well as choices based on degree central-
ity and distance centrality, when tested on some empir-
ical networks. [Kempe et al.| (2003)’s method is compu-
tationally costly. An improvement which makes it much
faster is provided by |[Kimura et al.| (2009).

B. Rumor spreading

Models for rumor spreading are variants of the SIR
model for disease epidemics in which the recovery pro-
cess does not occur spontaneously, but rather is a conse-
quence of interactions. The basic idea behind this mod-
ification is that it is worth propagating a rumor as long
as it is novel for the recipient: If the spreader finds that
the recipient already knows the rumor he/she might lose
interest in spreading it any further. The formalization of
this process is due to|Daley and Kendall (1964, (1965); in-
dividuals can be in one of three possible stateﬂ ignorant
(S, equivalent to susceptible in SIR), spreader (I, equiv-
alent to infected) and stifler (R, equivalent to removed).
The possible events, and the corresponding rates are:

S+1 % o1
R+1 % 2R . (96)
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21 — 2R

In a slightly distinct version, introduced by Maki and
Thompson| (1973)), the third process is different: when a
spreader contacts another agent and finds it in state I,
only the former turns into a stifler, the latter remaining
unchanged, i.e. the third process is

21 & R+ 1. (97)

As for the SIR model, starting from a single informed
individual the rumor propagates through the network

8 For consistency, we use the same symbols of the SIR model.

ol

with an increase in the number of spreaders. Asymp-
totically all spreaders turn into stiflers and in the fi-
nal absorbing state there are only ignorants or stiflers.
The “reliability”, i.e. the fraction r., of stiflers in this
asymptotic state, quantifies whether the rumor remains
localized (ro, — 0 for system size N — o0o) or spreads
macroscopically. The solution of both versions of the
model on the complete graph (Barrat et al. 2008; |Sud-
bury, [1985) gives the whole temporal evolution of the
reliability, yielding 7o, as the solution of

Too =1 — e~ (IHB/Iree (98)
As a consequence, ro, is positive for any 8/a > 0. i.e.
the rumor spreads macroscopically for any value of the
spreading parameters, at odds with what happens for the
SIR dynamics, which has a finite threshold for homoge-
neous networks.

Since models for disease epidemics are strongly affected
by complex topologies, it is natural to ask what hap-
pens for rumor dynamics. When the Maki-Thompson
model is simulated on scale-free networks it turns out
that heterogeneity hinders the propagation dynamics by
reducing the final reliability 7., still without introduc-
ing a finite threshold (Liu et all, [2003; Moreno et al.,
2004aybl). Why this happens is easily understood: large
hubs are rapidly reached by the rumor, but then they eas-
ily turn into stiflers, thus preventing the further spread-
ing of the rumor to their many other neighbors. This
is confirmed by the observation that the density of ig-
norants of degree k at the end of the process decays ex-
ponentially with & (Moreno et al., |2004b). Degree-based
mean-field approaches (Nekovee et al.l [2007; [Zhou et al.,
2007)) are in good agreement with the numerical findings.
The phenomenology of rumor spreading is markedly dif-
ferent from the behavior of the SIR model and this is
due to the healing mechanism involving two individuals,
present in both Maki-Thompson and Daley-Kendall dy-
namics. If spontaneous recovery is also allowed with rate
1, justified as the effect of forgetting, it turns out that
the model behaves exactly as SIR: macroscopic spread-
ing occurs only above a threshold inversely proportional
to the second moment (k?), which then vanishes in the
large network size limit for scale-free networks (Nekovee
et al) 2007). Again the interpretation of this outcome
is not difficult: the forgetting term is linear in the den-
sity of spreaders and thus dominates for small densities,
since the healing terms, due to the processes in Egs. (96))
and , are quadratic.

When the pattern of interactions among individuals is
given by the Watts-Strogatz topology, rumor dynamics
gives rise to a nontrivial phenomenon: a phase-transition
occurring at a critical value of the rewiring probability
p (Zanettel 2001)): For large values of p the network is es-
sentially random and the rumor reaches a finite fraction
of the vertices. For small values of p the spreading occurs
only in a finite neighborhood of the initiator, so that the



density of stiflers vanishes with the system size. In other
transitions occurring on the Watts-Strogatz network, the
critical point scales to zero with the system size N, a
consequence of the fact that the geometric crossover be-
tween a one-dimensional lattice and a small-world struc-
ture scales as 1/N (Watts and Strogatz, [1998)). Strikingly
instead, the threshold p. for macroscopic rumor spread-
ing converges to a finite value as the system size grows.
This indicates that the transition cannot be explained
only in geometrical terms; some nontrivial interplay be-
tween topology and dynamics is at work. Interestingly,
the transition at finite p. persists also when an annealed
Watts-Strogatz network is considered.

Recently, some activity has been devoted to the investi-
gation of the role of influential spreaders in rumor spread-
ing, in analogy to what has been done for disease epi-
demics (Sec.[VL.B). Borge-Holthoefer and Morenol (2012)
have looked for the role of nodes with large K-core index
for the Maki-Thompson dynamics on several empirical
networks. It turns out that the final density of stiflers
does not depend on the K-core value of the initiator.
Nodes with high K-core index are not good spreaders;
they are reached fast by the rumor and short-circuit its
further spreading. An empirical investigation of cascades
on the Twitter social network (Borge-Holthoefer et al.l
2012b)) points out instead that privileged spreaders (iden-
tified by large degree k or large K) do exist in real world
spreading phenomena, in patent contrast with the predic-
tions of rumor spreading models. To reconcile theoretical
predictions and empirical observations it is necessary to
amend Maki-Thompson dynamics. Two possible modifi-
cations are proposed in Borge-Holthoefer et al.| (2012al).
In one case individuals are not always active and do not
spread further twits reaching them while inactive. In the
second an ignorant contacted by a spreader turns into a
spreader only with probability p, while with probability
(1-p) it turns directly into a stifler. Both modified rumor
spreading models are able to reproduce qualitatively the
empirical findings, provided (for the first) that the prob-
ability to be active is proportional to the node degree or
(for the second) that the probability p to actually spread
is very small (of the order of 1073).

C. Empirical studies

Empirical data for a large number of spreading pro-
cesses in the real world have been analyzed in terms of
epidemic-like phenomena. Here we outline some of the
most important contributions.

Leskovec et al| (2007a) analyze an instance of viral
marketing, in the form of the email recommendation net-
work for products of a large retailer. There are large vari-
ations depending on the type of goods recommended, its
price and the community of customers targeted, but in
general recommendations turn out not to be very effec-
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tive and cascades of purchases are not very extended.
The key factor, different from disease epidemics, is that
the “infection probability” quickly saturates to a low
value with the number of recommendations received.
Moreover, as an individual sends more and more rec-
ommendations the success per recommendation declines
(high degree individuals are not so influent). Overall, vi-
ral marketing is very different from epidemic-like spread-
ing.

A case where cascades are large and the spreading
is a real collective phenomenon is the propagation of
chain letters on the internet. |[Liben-Nowell and Kleinberg
(2008) found tree-like dissemination patterns, very deep
but not large. A simple epidemic-like model, with an in-
dividual having a probability to forward the message to a
fraction of his/her contacts, gives instead wide and shal-
low trees. More realistic propagations are obtained intro-
ducing two additional ingredients, asynchronous response
times and ”back-response” (Liben-Nowell and Kleinbergj,
2008).

Cascading behavior in large blog graphs is actively in-
vestigated (Adar and Adamic, 2005; |Gruhl et al.l 2004).
Leskovec et al.| (2007b]) found that in this case cascades
tend to be wide, not deep, with a size distribution fol-
lowing a power law with slope -2. The shape of cascades
is often star-like. A single-parameter generative model
(essentially a SIS-like model in the absorbing phase) is
in good agreement with empirical observations regarding
frequent cascades shapes and size distributions.

Also the behavior of individuals is subject to social
influence and thus giving rise to collective spreading.
Obesity, smoking habits and even happiness (Christakis
and Fowler, 2007, 2008; [Fowler and Christakis|, 2008)
have been claimed to spread as epidemics in social net-
works (see however [Shalizi and Thomas| (2011]) for a crit-
icism of these results). In a nice empirical investiga-
tion |Centola) (2010) analyzed an artificially structured
online community, devised to check whether spreading
is favored by random unclustered structures (as in the
“strength of weak ties” hypothesis (Granovetter} 1973))
or by clustered ones with larger diameter (Centola and
Macy), 2007). The latter structures turn out to favor
spreading, the more so for increasing degree. At the in-
dividual level, the presence of 2 or 3 neighbors adopting
a behavior leads to an increase in the probability of do-
ing the same. For 4 and more neighbors the probability
remains instead constant.

For a long time empirical investigations of spreading
phenomena suffered of the drawback that the network
mediating the propagation was unknown and its proper-
ties had to be in some way guessed from how the spread-
ing process itself unfolds. Online social networks, (such
as Facebook and Twitter) are an ideal tool to bypass
this problem as they provide both the topology of ex-
isting connections and the actual path followed by the
spreading process on top of the contact graph (Lerman



and Ghosh|, [2010). In one of such social networks (Digg),
Ver Steeg et al.| (2011) find that while the network of
contacts has a scale-free degree distribution, the size of
cascades is lognormally distributed, with essentially all
propagations limited to a fraction smaller than 1% of the
whole network. Within the framework of a SIR model
this would imply that the spreading parameter of each
cascade is fine-tuned around the transition point. Two
additional ingredients help to reconcile the empirical find-
ings with models: on the one hand Digg contact network
has a high clustering and this feature leads to a reduc-
tion of outbreak size; on the other hand, as in |Centola
(2010)), the probability to transmit the spreading quickly
saturates as a function of the number of active neighbors.
Another empirical investigation of Digg (Doerr et al.,
2012) (see also [Van Mieghem et al| (2011)) finds that
links between friends in the social network contribute
surprisingly little to the propagation of information.

Another critical element of the spreading of memes in
modern online social networks is the competition among
a large number of them. Weng et al.| (2013) have ana-
lyzed Twitter, finding a very broad variability of the life-
time and popularity of spreading memes. A minimalistic
model, based on the heterogeneous structure of Twitter
graphs of followers and on “limited attention”, i.e. the
survival of memes in agents’ memory for only a finite
time due to competition with others, is sufficient to re-
produce the empirical findings. Surprisingly, it is not
necessary to assume a variability in the intrinsic appeal
of memes to explain the very heterogeneous persistence
and popularity of individual memes.

Another information spreading experiment was per-
formed by |[Iribarren and Moro| (2009), in which sub-
scribers to an online newsletter in 11 European countries
were offered a reward to recommend it via email. The
recommendations were tracked at every step by means of
viral propagation and it was thus possible to reconstruct
the recommendation cascades originated by 7154 initia-
tors. The topology of the observed cascades is essentially
tree-like, in agreement with the results of |[Liben-Nowell
and Kleinberg (2008)), and of very small size, suggesting
again a behavior at or below a possible critical point. The
heterogeneity of the viral spreading process was quanti-
fied by looking at the distribution of time elapsed be-
tween receiving an invitation email, and forwarding it to
another individuals. This distribution can be fitted to
a long-tailed log-normal form. On the other hand, the
average number of informed individuals forwarding the
message at time ¢ was also found to decay slowly (with a
log-normal shape), in contrast with the exponential de-
cay expected in epidemics below the threshold. Similar
results were reported for the retweet time of Twitter mes-
sages, see |Doerr et al. (2013]).
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XIl. OUTLOOK

In the last years the whole field of epidemic model-
ing in networks has enormously progressed in the under-
standing of the interplay between network properties and
contagion processes. We hope to have fairly portrayed
the major advances and achieved clarity of presentation
on the various theoretical and numerical approaches in
a field that has literally exploded. However the results
and understanding achieved so far have opened the door
to new questions and problems, often stimulated by the
availability of new data. For this reason, the research ac-
tivity has not slowed its pace and there is still a number
of major challenges.

As shown in the previous sections, we are just moving
the first steps to access to the mathematical and statis-
tical laws that characterize the co-evolution mechanisms
between the network evolution and the dynamical pro-
cess. This is a key element in most social networks, where
it is almost impossible to disentangle the agents cogni-
tive processes shaping the network evolution and their
perception/awareness of the contagion processes.

Indeed, the adaptive behavior of individuals in re-
sponse to the dynamical processes they are involved in
represents a serious theoretical challenge dealing with
the feedback among different and competing dynamical
processes. For instance, some activity has already been
devoted to coupled behavior-disease models and to the
competition among different contagion processes in net-
works, as reviewed in the previous sections, but much
more work is needed to build a comprehensive picture.
The final goal is not only to understand epidemic pro-
cesses, and predict their behavior, but also to control
their dynamics. The development of strategies for favor-
ing or hindering contagion processes is crucial in a wide
range of applications that span from the optimization of
disease containment and eradication to viral marketing.
Also in this case, much more work is needed investigating
how co-evolution and feedback mechanisms between the
network evolution and the spreading dynamics affect our
influence and ability to control epidemic processes.

Networks show also a large number of interdependen-
cies of various nature: physical interdependency when
energy, material or people flow from one infrastructure
to another; cyber interdependency when information is
transmitted or exchanged; geographic interdependency
signaling the co-location of infrastructural elements; log-
ical interdependency due to financial, political coordina-
tion, etc. Interdependence is obviously a major issue also
in diffusion and spreading processes. One simple example
is provided by the spreading of information in communi-
cation networks that induces an alteration of the physical
proximity contact pattern of individuals or of the flows
and traffic of mobility infrastructure. This has triggered
interest in the understanding of contagion processes in
coupled interdependent networks (Son et al., [2012) More



broadly, the community is becoming aware that, espe-
cially in the area of modern social networks populating
the information technology ecosystem, epidemic spread-
ing may occur on different interacting networks that how-
ever affect each other. This is obviously the case of in-
formation processes where different type of social com-
munication networks (phone, real-world, digital) coexist
and contribute to the spreading process. This evidence
has led recently to the introduction of multilayer or mul-
tiplex networks (Boccaletti et al., 2014} Kivela et al.,
2014). Multiplex networks are defined by a set of N
nodes and a set of L layers, which represent “dimen-
sions” or “aspects” that characterize a node. A node can
belong to any subset of layers, and edges represent inter-
actions between nodes belonging to the same layer. We
can consider that a vertex is connected to itself across
the different layers, or allow for inter-layer connections
between nodes in different layers. Every layer is repre-
sented thus by a network, and the whole multiplex by
a set of interconnected networks. The analysis of epi-
demic processes in these networks shows very interest-
ing and peculiar behaviors. Several studies have focused
on physical-information layered networks and studied the
epidemic dynamics on the different layers as a function of
the inter-layer coupling and the epidemic threshold val-
ues on each layer (Buono et all 2014} Marceau et al.l
2011; [Yagan et al| 2013) For the SIR model it is also
observed that depending on the average degree of inter-
layer connections (Dickison et al.,[2012) a global endemic
state may arise in the interconnected system even if no
epidemics can survive in each network separately (Sahneh
et al., |2013; Saumell-Mendiola et all [2012). SIS dynam-
ics on multiple coupled layers is also analyzed by [Cozzo
et al. (2013) and by |[Sahneh et al.|[(2013) in a generalized
mean-field framework. However, epidemic behavior on
multiplex networks is still largely unexplored for more
complex models, complex contagion phenomena and in
data-driven settings.

The ever increasing computational power is also favor-
ing very detailed models that simulate large-scale popu-
lation networks, including geographic and demographic
attributes on an individual by individual basis. These
models can generate information at unprecedented level
of detail and guide researchers in identifying typical non-
linear behavior and critical points that often challenge
our intuition. These results call for a theoretical un-
derstanding and a systematic classification of the mod-
els’ dynamical behaviors, thus adding transparency to
the numerical results. Results raise new general ques-
tions such as: What are the fundamental limits in the
predictability of epidemics on networks? How does our
understanding depend on the level of data aggregation
and detail? What is the impact of the knowledge on the
state and initial conditions of the network on our under-
standing of its dynamical behavior? These are all ma-
jor conceptual and technical challenges that require the
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involvement of a vast research community and a truly
interdisciplinary approach, rooted in the combination of
large-scale data mining techniques, computational meth-
ods and analytical techniques.

The study of epidemic spreading is a vibrant research
area that is finding more and more applications in a wide
range of domains. The need of quantitative and mathe-
matical tools able to provide understanding in areas rang-
ing from infectious diseases to viral marketing is fostering
the intense research activity at the forefront in the in-
vestigation of epidemic spreading in networks. We hope
that the present review will be a valuable reference for
all researchers that will engage in this field.
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