6 research outputs found

    О системе управления полетом малого беспилотного летательного аппарата

    No full text
    Исследована задача программной адаптации регулятора для системы управления полетом малого беспилотного летательного аппарата.Досліджено задачу програмної адаптації регулятора для системи управління польотом (СУП) малого безпілотного літального апарата (БПЛА). Лінеаризовані моделі динаміки залежать головним чином від істинної повітряної швидкості БПЛА, яка у свою чергу обов'язково вимірюється системою повітряних сигналів. Це дає змогу використовувати її для програмної адаптації СУП в повному діапазоні висот і швидкостей, які визначають робочий діапазон об’єкта. Було обрано СУП з програмною адаптацією на базі статичного зворотного зв’язку (СЗЗ). Параметри СЗЗ для кожного піддіапазону істинної повітряної швидкості визначено за допомогою лінійно-матричних нерівностей у випадку дискретних систем для синтезу субоптимального робастного H∞-регулятора. Використання інтерполяції Лагранжа між піддіапазонами забезпечує неперервну адаптацію. Ефективність такого підходу показано на прикладі системи стабілізації курсу.A problem on the program adaptation of regulator for the system of flight control (FCS) of small unmanned airborne vehicle (UAV) is considered. The linearized models of the flight dynamics depend mainly on the UAV true air speed, which in turn is obligatory measured by onboard air data system. This enables to use these models for the gain scheduling of the flight control system within the full range of altitudes and velocities defined by the flight envelope. Taking in account that the FCS for UAV must be as simple as possible, the gain scheduled static output feedback (SOF) is used as the FCS. The SOF parameters for each sub-range of the true air speed are determined by Linear Matrix Inequalities approach in the case of discrete systems for synthesis of suboptimal robust H∞ -controller. The use of simple Lagrange interpolation between true air speed sub-ranges provides the continuous gain scheduling. An efficiency of proposed approach is demonstrated on an example of the heading-hold system of the real UAV

    Hydraulic pressure and flow control of injection moulding

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre-DSC:DXN041811 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Performance-oriented Adaptive Switching Control

    Get PDF

    Flachheitsbasierte Methode zum stoßfreien Umschalten von Reglerstrukturen

    Get PDF
    Die vorliegende Arbeit beschäftigt sich mit der Frage, wie stoßfreie Rekonfigurationen von Systemen zur Laufzeit realisiert werden können. Es werden Anforderungen an die Rekonfiguration definiert und eine neue Methode zur stoßfreien Rekonfiguration vorgestellt, die sowohl bei einfachen Betriebspunktwechseln als auch beim Wechsel der Reglerparameter oder der Reglerstruktur angewendet werden kann. Die Methodik basiert auf der Zwei-Freiheitsgrade-Reglerstruktur und der (differenziellen) Flachheit, einer grundlegenden Eigenschaft des Systems selbst. Die Methodik wird für lineare und nichtlineare Ein- und Mehrgrößensysteme vorgestellt, wobei die Rekonfigurationen immer mittels in Echtzeit berechneter Vorsteuerungs- und Führungsgrößentrajektorien realisiert werden. Anhand von akademischen und praktischen Beispielen wird die neue Methode mit bestehenden Verfahren zur stoßfreien Reglerumschaltung verglichen und die Anwendbarkeit demonstriert.The present thesis deals with a new approach to bumpless transfer for system reconfiguration at runtime. During a system reconfiguration an operating point change, a change of controller parameters or even a change of the control structure can occur. After the definition of requirements which has to be fulfilled during the reconfiguration, a new flatness-based method for bumpless transfer is presented. The flatness-based method draws on the two-degrees-of-freedom control structure and on the (differential) flatness which is a fundamental feature of the controlled system. Bumpless switching is realised by means of feedforward and reference trajectories computed in real time which are applicable with linear and non-linear SISO and MIMO systems. The new method of bumpless switching is compared to existing bumpless-switching procedures and its advantages are evidenced by practical examples.Tag der Verteidigung: 11.12.2014Paderborn, Univ., Diss., 201

    A fluid power application of alternative robust control strategies

    Get PDF
    This thesis presents alternative methods for designing a speed controller for a hydrostatic power transmission system. Recognising that such a system, comprising a valve controlled motor supplied by the laboratory ring main and driving a hydraulic pump as a load, contains significant non-linearities, the thesis shows that robust 'modern control' approaches may be applied to produce viable controllers without recourse to the use of a detailed model of the system. In its introduction, it considers why similar approaches to the design of fluid power systems have not been applied hitherto. It then sets out the design and test, in simulation and on a physical rig, of two alternative linear controllers using H∞ based methods and a 'self organising fuzzy logic' controller (SOFLC). In the linear approaches, differences between the characteristics of the system and the simple models of it are accommodated in the controller design route as 'perturbations' or 'uncertainties'. The H∞ based optimisation methods allow these to be recognised in the design. “Mixed sensitivity” and “Loop shaping” methods are each applied to design controllers which are tested successfully on the laboratory rig. The SOFLC in operation does not rely on a model, but instead allows fuzzy control rules to evolve. In the practical tests, the system is subjected to a range of disturbances in the form of supply pressure fluctuations and load torque changes. Also presented are test results for proportional and proportional plus integral (PI) controllers, to provide a reference. It is demonstrated qualitatively that performance using the linear controllers is superior to that using proportional and PI controllers. An increased range of stable operation is achieved by the controller designed using “loop shaping” – performance is enhanced by the use of two controllers selected automatically according to the operating speed, using a “bumpless” transfer routine. The SOFLC proved difficult to tune. However, stable operation was achieved.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    A multi-controller with bumpless transfer architecture for industrial switched-mode processes

    Get PDF
    [ES] Los sistemas con conmutación de modos se definen como aquéllos que pueden exhibir diferente comportamiento dinámico en función del estado en que se encuentran. Pueden por tanto ser descritos por un conjunto finito de subsistemas dinámicos y una lógica que rige la conmutación entre ellos. Una alternativa para su control es la arquitectura multi-controlador con supervisión ya que permite utilizar controladores de modo diferentes y alcanzar así múltiples objetivos de control. Pero la conmutación de controladores suele tener como consecuencia la aparición de saltos o transitorios derivados que pueden ser inaceptables. Este tipo de sistemas y problemática son frecuentes en diferentes áreas de aplicación industrial, en donde la tecnología de control más utilizada es el Controlador Lógico Programable (PLC). Es por ello que el objetivo de este trabajo es presentar un método de diseño e implementación de un mecanismo de transferencia sin salto (BT) en una arquitectura multi-modo y multi-bucle para sistemas con conmutación de modos, en PLC y en conformidad con el estándar IEC 61131-3. La estrategia BT se basa en que controladores de modos candidatos a conmutar realicen un seguimiento a los controladores activos, siendo la detección del estado de operación actual y de los posibles estados siguientes, clave en la definición de la forma de ejecución de los algoritmos de control que componen la arquitectura. Se presentan también los pasos del diseño de la arquitectura completa así como resultados experimentales que validan la arquitectura.[EN] Switched mode systems are defined as those represented by a finite set of linear subsystems and a set of logic rules orchestrating the switching among them. A set of dynamic subsystems together with a logical system that orchestrates the switching among them could be used in order to describe it. An alternative to control them is a supervisory multi-mode controller architecture that allows to meeting multiple control objectives. But switching can consequently derived in bumps or undesirable transient responses. This type of problem is commonly encountered in several industrial application fields, where the Programmable Logic Controller (PLCs) is the most used technology. This paper describes a methodology for the design and the implementation of Bumpless Transfer (BT) mechanisms within multi-rate control architecture for switched mode systems, to be implemented in PLC following the IEC 61131-3 standard. The BT strategy is based on to make controllers which are candidate to switch track to active controllers. By detecting the system state and the feasible next states, the supervisor decides the way in which the different controllers of the architecture execute. The steps to design the complete architecture are presented and experimental results that validate the architecture are shown.MCYT y FEDER a través de los proyectos DPI2012-37806-C02-01, UPV/EHU GIU 10/20 y UFI11/28.Iriondo, N.; Estévez, E.; Priego, R.; Marcos, M. (2013). Arquitectura multi-controlador con transferencia sin salto para procesos con conmutación de modos. Revista Iberoamericana de Automática e Informática industrial. 10(2):204-215. https://doi.org/10.1016/j.riai.2013.03.010OJS204215102Åström, K.J., Wittenmark, B., 1990. Computer controlled systems: Theory and Design. 2nd ed., Prentice Hall, New Jersey, Ch. 15, pp. 464-465.Bhagwat, A., Srinivasan, R., & R. Krishnaswamy, P. (2003). Multi-linear model-based fault detection during process transitions. Chemical Engineering Science, 58(9), 1649-1670. doi:10.1016/s0009-2509(03)00008-3Downs, J. J., & Vogel, E. F. (1993). A plant-wide industrial process control problem. Computers & Chemical Engineering, 17(3), 245-255. doi:10.1016/0098-1354(93)80018-iEngell, S., Stursberg, O., 2005. Hybrid Control Techniques for the Design of Industrial Controllers. 44th IEEE Conference on Decision and Control, and 43th European Control Conference, 5612-5617.Fuente, M. J., Moya, E., & Sainz Palmero, G. I. (2007). Esquema de detección de fallos difuso basado en modelado lingüístico-preciso de un motor de inducción. Revista Iberoamericana de Automática e Informática Industrial RIAI, 4(2), 72-80. doi:10.1016/s1697-7912(07)70211-xGomez-Gutierrez, D., Ramirez-Prado, G., Ramirez-Trevio, A., & Ruiz-Leon, J. (2010). Observability of Switched Linear Systems. IEEE Transactions on Industrial Informatics, 6(2), 127-135. doi:10.1109/tii.2009.2034737Graebe S.F., Ahlén, A., 1996a. Bumpless Transfer. The Control Handbook, Levine, W.S. (ed.), 381-388.Graebe, S. F., & Ahlen, A. L. B. (1996). Dynamic transfer among alternative controllers and its relation to antiwindup controller design. IEEE Transactions on Control Systems Technology, 4(1), 92-99. doi:10.1109/87.481772Henriques, J., Cardoso, A., & Dourado, A. (1999). Supervision and c-Means clustering of PID controllers for a solar power plant. International Journal of Approximate Reasoning, 22(1-2), 73-91. doi:10.1016/s0888-613x(99)00017-1Hespanha, J. P., Liberzon, D., & Morse, A. S. (2003). Overcoming the limitations of adaptive control by means of logic-based switching. Systems & Control Letters, 49(1), 49-65. doi:10.1016/s0167-6911(02)00342-0International Electrotechnical Commission, 2003. IEC International Standard IEC 1131-3 Programmable Controllers, Part 3: Programming Languages.Iriondo, N., Marcos, M., Estévez, E., 2006. Implementing Non-Linear Strategies for PID in IEC 61131-3 ST Language. 15th IEEE International Conference on Emerging Technologies and Factory Automation, pp. 969-972.Karl-Heinz, J., Tiegelkamp, M., 2001. IEC 61131-3: Programming Industrial Automation Systems. Springer. Ch. 2, pp. 47, Ch. 6, pp. 233-236.Kinnaert, M., Delwiche, T., Yamé, J., 2009. State Resetting for Bumpless Switching in Supervisory Control. European Control Conference ECC’2009, pp. 2097-2102.Hybrid systems in process control. (1996). IEEE Control Systems, 16(5), 45-56. doi:10.1109/37.537208Liberzon, D., 2003. Switching in systems and control. Birkhäuser, Boston. Ch. III, pp. 75-76.Lin, H., & Antsaklis, P. J. (2009). Stability and Stabilizability of Switched Linear Systems: A Survey of Recent Results. IEEE Transactions on Automatic Control, 54(2), 308-322. doi:10.1109/tac.2008.2012009Liu, J.W.S., 2000. Real-time Systems. Prentice Hall. Ch. 5, pp. 85-92, 103.Lourenco, J. M. A., & Lemos, J. M. (2006). Learning in switching multiple model adaptive control. IEEE Instrumentation and Measurement Magazine, 9(3), 24-29. doi:10.1109/mim.2006.1637975Maestri, M., Cassanello, M., Horowitz, G., 2009. Kernel PCA performance in processes with multiple operation modes. Chemical Product and Process Modeling 4(5), Article 7.Morse A. S., 1995. Control using logic-based switching. En: Isidori, A., (Ed.), Trends in Control, Springer, New York, pp. 69-113.Morse, A. S. (1996). Supervisory control of families of linear set-point controllers - Part I. Exact matching. IEEE Transactions on Automatic Control, 41(10), 1413-1431. doi:10.1109/9.539424Pasamontes, M., Alvárez, J.D., Guzmán, J.L., Berenguel, M., 2010. Bumpless switching in control – A comparative study. 15th IEEE Int. Conf. on. Emerging Technologies and Factory Automation. DOI: 10.1109/ETFA.;1; 2010.5641266.Pasamontes, M., Álvarez, J. D., Guzmán, J. L., Lemos, J. M., & Berenguel, M. (2011). A switching control strategy applied to a solar collector field. Control Engineering Practice, 19(2), 135-145. doi:10.1016/j.conengprac.2010.11.002Peng, Y., Vrancic, D., Hanus, R., 1996. Anti-Windup, Bumpless, and Conditioned Transfer Techniques for PID Controllers. IEEE Control Systems Magazine 16(4), 48-57. PLCopen, 2003. http://plcopen.org/.Ravindranathan, M., & Leitch, R. (1999). Model switching in intelligent control systems. Artificial Intelligence in Engineering, 13(2), 175-187. doi:10.1016/s0954-1810(98)00016-8Real, J., & Crespo, A. (2004). Mode Change Protocols for Real-Time Systems: A Survey and a New Proposal. Real-Time Systems, 26(2), 161-197. doi:10.1023/b:time.0000016129.97430.c6Rodrigues, M., Theilliol, D., Adam-Medina, M., & Sauter, D. (2008). A fault detection and isolation scheme for industrial systems based on multiple operating models. Control Engineering Practice, 16(2), 225-239. doi:10.1016/j.conengprac.2006.02.020Rodriguez, J. A., Romagnoli, J. A., & Goodwin, G. C. (2003). Supervisory multiple regime control. Journal of Process Control, 13(2), 177-191. doi:10.1016/s0959-1524(02)00004-5Sun, Z., Ge, S.S., 2005. Switched Linear Systems: Control and Design. Springer-Verlag, London.van der Wal, E., 2009. PLCopen, IEEE Industrial Electronics Magazine, 3. DOI: 10.1109/MIE. 2009.934799.Yamé, J.J., Hanping, Q., 2010. Conditioned switching between two-degree-of- freedom controllers for plants with changing dynamics, 11th Int. Conf. Control, Automation, Robotics and Vision, pp. 945-951.Zaccarian, L., Teel, A.R., 2005. The L2 (ℓ2) Bumpless Transfer problem for linear plants: its definition and solution, Automatica 41, 1273-1280.Zambrano, D., Garcia-Gabin, W., & Camacho, E. F. (2010). Application of a Transition Graph-Based Predictive Algorithm to a Solar Air Conditioning Plant. IEEE Transactions on Control Systems Technology, 18(5), 1162-1171. doi:10.1109/tcst.2009.203312
    corecore