
Payload analysis and control of
manipulators for human interactive

environments

Jaime Enrique Arango Castro

Universidad Nacional de Colombia
Faculty of Engineering and Architecture, Department of Electrical, Electronic and Computer Engineering

Manizales, Colombia
2014





Análisis de la capacidad de carga y control
de manipuladores en ambientes de

interacción con humanos

Jaime Enrique Arango Castro

Universidad Nacional de Colombia
Facultad de Ingenierı́a y Arquitectura, Departamento de Ingenirı́as Eléctrica, Electrónica y Computación

Manizales, Colombia
2014





Payload analysis and control of
manipulators for human interactive

environments

Jaime Enrique Arango Castro

A Thesis presented for the degree of::
Ph. D. in Engineering - Automatic

Advisor:
Ph. D. Gustavo Adolfo Osorio Londoño

Research Areas:
Automation and Control

Research group:
Perception and Intelligent Control

Universidad Nacional de Colombia
Faculty of Engineering and Architecture, Department of Electrical, Electronic and Computer Engineering

Manizales, Colombia
2014





To my parents and beloved wife for their support
and patience in the difficult moments. You are the
main inspiration and motivation in my life.





Acknowledgements
I would like to thank to PhD. Fabiola Angulo for its support during my Masters studies and some
control analysis in this work; to my advisor and friend PhD. Gustavo Osorio for the continued
feedback and enthusiastic support; to the Automatic Control Department (ESAII) at Technical
University of Catalonia (UPC), the Institut de Robòtica i Informàtica Industrial (CSIC-UPC) and
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Abstract
This doctoral thesis presents the results of numerical simulations and some experimental analysis
of three main topics: the dynamical modeling of multiple degree of freedom (MDoF) manipulators
(n > 2 DoF), dynamic load carrying capacity computation (DLCC) for the payload handling issue
and nonlinear control analysis and design including Unfalsified Adaptive Control (UAC). We per-
formed analysis of two (2) cases of study: the 5 DoF SCORBOT ER V PLUS manufactured by
Intelitech Corp. and the 7 DoF redundant Whole Arm Manipulator (WAM) manufactured by Ba-
rrett Technology Inc. with intrinsic safety, backdrivable and compliant characteristics and suitable
for human-robot interaction (HRI).

Initially, we computed and validated the dynamical model of the cases of study. The inverse and
direct dynamical models of the SCORBOT ER V PLUS were numerically validated. Then, an
experimental validation of inverse dynamical model of the WAM presents a comparison between
numerical and experimental data, identifying the need for better friction models. After that, we
proposed and evaluated a methodology for DLCC computation in the entire workspace of manipu-
lators for different types of controllers. Then, for the analysis of the data-driven UAC with fading
memory for multiple DoF manipulators, we performed a comparison with a traditional model-
based Adaptive Controller and applied to the SCORBOT ER V PLUS manipulator. Finally, the
Unfalsified Control technique was successfully applied to the WAM model for a similar simula-
tion setup.

In conclusion, this work may contribute to the use of advanced nonlinear control and payload
handling techniques for redundant backdrivable multiple DoF manipulators, suitable for human
interactive environments.

Keywords: Robotic manipulator, nonlinear switching control, Dynamic Load Carrying Capacity,
DLCC, Unfalsified Adaptive Control, UAC, WAM, Human-Robot Interaction, HRI.





XIII

Resumen
Esta tesis doctoral presenta los resultados de simulaciones numéricas y algunos análisis experi-
mentales de tres aspectos principales: el modelamiento dinámico de manipuladores de múltiples
grados de libertad (GdL) (n > 2 GdL), el cálculo de la capacidad dinámica de carga asociada al
manejo de dicha carga, y el análisis y diseño de controladores nolineales incluyendo el Control
Adaptitivo por Desfalsificación (CAD). Se desarrollaron análisis de dos (2) casos de estudio: el
SCORBOT ER V PLUS fabricado por Intelitech Corp. de 5 grados de libertad y el manipulador
redundante de 7 grados de libertad conocido como el Whole Arm Manipulator (WAM) fabricado
por Barrett Technology Inc. y que cuenta con caracterı́sticas de seguridad intrı́nseca, manipulación
inversa y docilidad, y es aplicable en la interación humano-robot (IHR).

Inicialmente, se calculó y validó el modelado dinámico de los casos de estudio. Los modelos
dinámicos inverso y directo del SCORBOT ER V PLUS fueron validados numericamente. Luego,
una validación experimental para el WAM presenta una comparación entre los datos numéricos
y experimentales, identificando la necesidad de un mejor modelo de la fricción seca. Después, se
propuso y evaluó una metodologı́a para el cálculo de la capacidad dinámica de carga en el espa-
cio de trabajo completo de manipuladores para diferentes tipos de controladores. Luego, para el
análisis del Control Adaptitivo por Desfalsificación con factor de olvido para manipuladores de
múltiples grados de libertad, se realizó una comparación con un controlador adaptativo tradicional
basado en el modelo y se aplicó al modelo del manipulador SCORBOR ER V PLUS. Finalmente,
la técnica de Control por Desfalsificación fue exitosamente aplicada al modelo del WAM.

En conclusión, este trabajo puede contribuir al uso de técnicas de control nolineal avanzado y ma-
nejo de carga para manipuladores redundantes con manipulación inversa, aplicables en ambientes
de interacción con humanos.

Palabras clave: Manipuldor robótico, control nolineal no suave, Capacidad Dinámica de Carga, CDC,
Control Adaptitivo por Desfalsificación, CAD, WAM, Interacción Humano-Robot..
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1. Introduction

The following sections present a chronological revision of three main current research topics:
Human-Robot Interaction (HRI), the Unfalsified Adaptive Control (UAC) as an adaptive swit-
ching control strategy, and finally, the payload computation for robot manipulators. The purpose
of this chapter is to provide a general framework for the problem statement of this doctoral thesis,
related with the payload analysis of robot manipulators for human interactive environments.

1.1. Robots for human interactive environments

Human-Robot Interaction (HRI) is a field dedicated to study, design and evaluate robotic systems
used by humans in a variety of challenging environments. For HRI, one of the basic topics is the
communication between robots and humans. This interaction may take several forms depending,
among others, to each other proximity (remote or proximate interaction). Proximate interaction
may be represented by mobile assistant robots or required physical interaction. Safety is an im-
portant issue to consider as well. It would also require social interaction, including social, emotive
and cognitive aspects.

In [32], Goodrich et al. present multiple developments in the last decades for cognitive capabilities
in Human-Robot Interaction (HRI). They state that in the near future, there will be robots with
social capabilities to interact with final end-users in multiple scenarios. Hence, HRI would emerge
as a field of science study that requires strong interdisciplinary works with various scientific and
engineering fields. Besides, this field includes many challenging problems and has the potential to
produce solutions with positive social impact.

In [81], Shibata et al. present the concept of “virtual nonholonomic constraints” applied to the end-
effector of a redundant robotic manipulator. This concept relates to common activities like riding a
bicycle, driving a car or handling a wheel barrow, that involve geometrically nonholonomic cons-
traints and require to get used to do. For a robotic manipulator, the operator may use the ability of
the robot to sustain the load, forced by the environment or the operator by holding the end-effector
and moving it as using a shopping cart or a barrow. Users like elderly people and children, may
use robots without any specific knowledge on the robotic system. The system should be easy to
understand and predict how it will move next.
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Robots used to execute tasks in cooperation with humans should include control systems that adapt
to human characteristics in order to successfully accomplish the proposed tasks. A basic example
may be pushing a cart down on a frictionless plane in cooperation with a human, as proposed in
[14]. Controlling the motion of the object down a frictionless plane requires pushing in one direc-
tion and supporting in the opposite direction. Besides, the compliance control method measures
forces and moments exerted by the environment for robotic interaction with the environment, to
avoid saturation of actuator related to increase of contact force or damage of the part in contact.

Rehabilitation robots are widely used for individuals with limited use of their hands and arms.
Hence, it is necessary to consider functionality of the user as a priority. As evaluated in [86], the
devices must be able to accommodate to a wide range of object manipulation tasks in a variety of
unstructured environments. Some common examples are picking things up from the floor or off a
shelf as the most prioritized tasks, opening doors and drawers and personal help in tasks as eating
or personal hygiene. The reaching tasks are generally well-performed by robotic arms mounted in
a wheelchair, depending on the weight and size of the objects to be grasped.

The transfer of objects between humans and robots is a fundamental way to coordinate activities
and cooperatively perform useful work. Some issues have to be considered, like physical contact,
reach direction, and grasp shape, in order to facilitate object transfer [24]. During collaborative
tasks a robot requires understanding intentions and desires of a person, in order to behave as a
partner rather than just a tool [13]. But reaching gestures may be enough for inexperienced sub-
jects in robotics to hand to or take an object from a robot [24].

Results in [96] shown how a robot should approach a human in a fetch and carry task. The authors
propose that seated subjects do not like to be approached by a robot directly from the front even
when seated behind a table. They prefer a frontal approach when standing in an open area. Besides,
humans do not usually like the robot to move or approach directly from behind or out of sight, even
if this means the robot taking a non-optimum path. Domestic and office robots will have to move
physically around in the same space as humans, but robots should not simply move around and
avoid people in the same way as an inanimate object, they should respect social spaces and shared
workspace preferences of the people.

In [21], the perspective of physical Human-Robot Interaction (pHRI) counts with multiple issues
to address in order to approximate to a safe and dependable interaction. Safety is related to mecha-
nical and control issues, and dependability relates to attention mainly by sensors, control architec-
tures and fault handling. Hence, metrics for safety and dependability were developed in order to
introduce the robots in daily environments. This metrics represent an evaluation criterion for me-
chanical design, actuation and control strategies. Robots like the lightweight DLR-III, capable of
operating a payload equal to its own weight, and the Whole Arm Manipulator (WAM) with cable-
actuated and backdrivable joints, are examples of intrinsic safety robots for low inertia compliant
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collision situations and variable gain actuation.

Wearable robots for assistive human upper extremities require interfacing the human and robot,
as analyzed in [61]. These are designed to be a human force increasing systems to allow humans
to use the forces generated by the robot. This systems may operate in multiple environments such
as medical services and military equipments to reduce the load on the back of the users. Also, it
may be applied in industrial settings helping to manage heavy materials. The wearable robots are
categorized according to bio-information sensor types as: biomedical signals, force signals and hy-
brids. They may react before or after human motion depending on the signal used by the feedback
system.

In [60], Kruger et al. evaluated robotic systems as important components in fully automated as-
sembly processes and highly efficient production. Due to the rising demands for augmented fle-
xibility and adaptability to variable assembly tasks, robot assisted but human guided assembly
shows significant advantages to full automation. Flexibility and changeability as cooperative tasks
improves assembly processes, particularly when the robot provides power assistance to the user.
An essential consideration is the safety of the user delivered by sensor systems available in the
market for surveillance of the interaction with the robot. Hence, research in the field of Intelligent
Assist Devices (IAD) is being developed. The next generation of robots should interact with hu-
mans for cooperative manipulation, where the robot is responsible for the management of the load
and precision and the human may help with sensing, intelligence and skills.

Direct physical interaction is used by humans to move objects and guide people in a variety of
settings, from industrial to natural environments, and the same would be expected of robotic sys-
tems. However, most of current mobile robots use non-backdrivable motors for locomotion, ma-
king them potentially dangerous in case of collision. In [28], the robot named AZIMUT-3 shows
steerable wheels using backdrivable and torque controlled Differential Elastic Actuators (DEA),
capable of being force-guided. The robot may move efficiently in response to physical commands
by a human pushing in a desired direction.

A nursing-care assistant robot known as RIBA, presented in [67], deals with direct physical con-
tact with patients, specially elderly people. The robot interacts with its environment and humans
through multiple and distributed contact regions on its arms and body. Tasks including the transfer
of patients, such as lifting and moving a patient from a bed to a wheelchair and back, are among
the most physically challenging tasks in nursing care. RIBA has tactile sensors on a wide area of its
arms to obtain information of that whole-body contact. When controlling position and orientation
of a person, the relative position and orientation of contacting surfaces should be preserved as long
as possible. Stable forces and pressure patterns of each contact region require the use of tactile
feedback to avoid skin grazing.
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Kalakrishnan et al. analyze in [39] how the development of fine manipulation skills with compliant
actuation and control are very important to behave safely in human interactive environments. Ma-
nipulation requires complex contact interaction with the external world and involves control of the
forces and torques to be applied. This often results impractical in contact conditions due to compu-
tational complexity and lack of precise dynamical models of the environment. There are suggested
solutions focused on learning the manipulation skills through teaching position trajectories and
learning forces and torques to be controlled at the end-effector by haptic systems.

In industry, handling heavy objects is a common tasks, as evaluated in [75]. It may be difficult due
to the probability of causing work disabilities or diseases as back pain. In some cases, handling
objects by autonomous devices may not be flexible. Power Assist Robots (PARs) may be a solu-
tion for handling heavy objects, but they are not currently available in practice. At this moment,
the PARs were mainly developed for the elderly, disabled people and for rehabilitation. Although,
there are other applications like assistance for agricultural or manufacturing workers, hydraulic
power-assist for automobiles, assist for sports, baby carriage lifting, etc. Conventional PARs are
not enough safely and friendly interactive for humans. Issues like the need of touch of the object
causes attenuation of perceived heaviness, that may cause excessive load force and sudden increase
of object acceleration, fearfulness of the human, lack of maneuverability and stability, etc. Studies
on lifting and lowering heavy loads for PARs are open fields and may consider the differences in
control for both tasks.

Robots safety functions should become an important part of the robot systems. Safety on manufac-
turing robots uses mechanical equipment or electronic control devices such as safety fences, light
curtains and laser scanners. But these devices use unnecessary space and are not easy to implement
and relative high priced. Strict robot safety functions are necessary for Human-Robot Collabora-
tion (HRC) as an effective way to accomplish tasks with high complexity and variance. Hence,
the definition and development of robot speed and area restrictions are necessary. Besides, HRC
should integrate safety monitoring systems related to identified risks or levels of danger. Some in-
ternational safety standards are applicable to industrial fields, like ISO13849−1 and IEC61508. In
[7], the “Safe Space” systems and algorithms show the hardware and software necessary to ensure
safety for the users and equipment and is applied to the robot safety function of Hyundai Heavy
Industries Co. Ltd. (HHI).

Chen et al. present in [16] the Robot for Humanity project for people with severe motor impair-
ments to interact with their own bodies and manipulate their environment. The project evaluates
the use of Assistive Mobile Manipulators (AMMs) like the PR2 (Personal Robot 2, developed by
Willow Garage). The mobile manipulators may operate away from the user and have a large dex-
terous workspace and not directly burden the user. The project uses an interactive design process
with a quadriplegic to improve the designs and develop the next set of capabilities. Two areas are
covered: understanding how individuals with severe impairments may use these robots for self-
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care tasks and house hold activities, and the exploration of how mobile manipulators may assist
the user in an unstructured domestic environment. Videos an code associated with the project may
be found at http://www.willowgarage.com/robotsforhumanity.

In [76], a power assist robot for lifting objects presents two force control methods. Hence, the aut-
hors evaluate force control methods for a 1 DoF power assist robot with weight perception like the
humans. The performance of the individual controllers is evaluated using perceived heaviness, for-
ce and motion features, safety and stability. The authors present the development of these control
methods for robots in industry and domestic applications to improve productivity. The manipula-
tion of heavy objects is applicable in tasks like loading and unloading heavy bags or luggage from
different public transportation systems or in industries such as automobile, agriculture, military,
ship building, forestry, mining, etc.

1.1.1. Manipulation

Programming-by-demonstration is often used for a multi-fingered multi-joined robotic hand to mo-
ve synchronously and cooperatively to execute a task. In [63], Matsuo et al. propose a segmentation
method of human manipulation tasks based on measurement of contact force of a human hand on
a grasped object. They define an index measure for segmenting a human manipulation task into
primitives. The indexes are computed from the set of contact forces measured at different contact
points during a manipulation task. Then, they applied an expectation-maximization algorithm to
the set of indexes in order to segment the manipulation task into primitives. These primitives map
in the robotic hand to control adequate contact forces on a grasped object. Experimental results
show successful segmentation of manipulation tasks performed in daily human life.

Mitrovic et al. present in [64] an Optimal Feedback Controller (OFC) of movement in large redun-
dant Degree of Freedom (DoF) manipulators (like the WAM), with emphasis on the reaching task.
It is challenging due to redundancy, because the controller has to make a choice between many
different possible trajectories and applicable motor commands for a particular task. The friction
model usually consists of static and kinetic Coulomb component as well as of a viscous friction.
The authors propose to approximate the frictional joint torques as a combination of only kinetic
Coulomb and viscous friction components, using a smooth and continuous sigmoidal function.
Then, they estimated the kinetic Coulomb friction coefficients and the viscous friction coefficients
for the WAM using a least-square estimation method, based on experimental measurements.

Robots are developed to resemble the size an physical abilities of a human in human interactive en-
vironments and to operate autonomously with no physical threat to humans. Paik et al. evaluate in
[68] the construction of a humanoid-applicable anthropomorphic 7-DoF arm with an 8-DoF hand.
The design claims to be compact, compliant, powerful and functionally flexible, with dexterous
hand movements. The arm and hand are capable of sensing and interpreting external force using
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measures of current signals in each motor joint, and without torque sensors. The arm includes obs-
tacle avoidance algorithm and the hand is capable of object grasping.

In [30], Gan et al. propose a human-like manipulation planning method for articulated robots.
The method uses the evaluation and optimization concepts managed by humans. This constrained
optimization problem in robot configuration space is divided into different subregions using the
applied ergonomics strategy of Rapid Upper Limb Assessment (RULA). The proposed method
integrates model based and model free approaches for manipulation planning. The optimization
problem uses task compatibility measurements of the robot velocity transmission ratio along a
specified direction.

In HRI, robot designers need to consider human-oriented constraints to perform various tasks for
humans. Hence, it is not sufficient that the robot selects grasp and placement of the object con-
sidering only the stability. In [69], Pandey et al. propose a set of key configurations for planning
basic interactive manipulation tasks. The authors based on the human behavioral psychology of the
mutually dependent nature of grasp and placement selection. Grasp and placement are constrained
by the task, the environment and the perspective of the subject. As results, they presented a generic
planner to synthesize the configuration, orientation and position for trajectory planning, inspired
in the human behavioral psychology.

In [22], Dumora et al. present a method that allows humans to perform complex large object mani-
pulation tasks with a robot. This is achieved by the use of a set of assistances for a-priori unknown
collaborative tasks. It uses haptic cues to naturally transmit the intention of the user in a collabo-
rative motion and the robot chose on-line from a set the corresponding assistance. Hence, under
the assumption that the task was known and repetitive, a common approach would be to design a
robot able to anticipate to human actions and participate in the effort sharing. It is common to use
programming by demonstration in this kind of tasks.

Robot Learning from Demonstration (RLfD) is a key technique for making robots useful in daily
use. Previous works use learning to obtain a kinematic model related to the task and then the task
is developed with a position controller. But some times that is not enough to achieve the goal,
for example, those task requiring contact or needing specific responses to physical perturbations.
Hence, the adjustment of compliance for different needs is an open field in RLfD. Robots like
the WAM manufactured by Barrett Technology Inc. and the Lightweight Robot (LWR) made by
KUKA, are manipulators with inherent compliance associated to their designs. In [59], the authors
propose teaching interfaces that allow to change the stiffness of the robot by physically interacting
with it.

Quintero et al. in [73] present an interactive semi-autonomous teleoperation control for robot ma-
nipulators. The method focuses in two interactions: a human can control a robot arm by a visually
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tracked human skeleton for rough motion and precise positioning is performed using an auto-
nomous image-based visual servoing routine, launched by a gesture interface. Results show the
gesture interface switching between two modes: in mode 1 the user teleoperates a WAM robot arm
directly from the user arm movements with gesture control commands like opening and closing;
in mode 2 the user selects and object of interest, initiate a tracking algorithm and start a visual
servoing routine with gesture commands. Rough motion is successfully obtained. In cases when
teleoperated motions is fast, the movement is not very smooth and precise, hence, visual servoing
shows to be a good complement.

In a human tasks requiring contact, an approach is to describe those contacts by contact states.
These are kinematic configurations where one or more vertices, edges, or planes of an object
contacts another. The states and transitions between them are organized into a graph. Hence, for
a robot to perform control strategies based in contact like humans requires the identification of
complete sequences of intermediate contact states connecting arbitrary states in the contact graph,
and developing hybrid force-position controllers for the transition between those states. Klingbeil
et al. present in [41] an approach to characterize human contact control strategies for complex
contact manipulation tasks, during rigid body manipulation. Results show than while humans visit
many states, they reliably visit only a small subset of the states (approx. 2%), indicating that their
control strategy is invariant to most contact states.

1.2. Data-driven adaptive switching supervisory control:

Unfalsified adaptive control (UAC)

Safonov and Tsao in [79] define Unfalsified Adaptive Control (UAC or UC). A theory for the
identification of adaptive switching control laws, without the use of the plant model. The control
laws are related to performance objectives and past experimental data, proving these control laws
on-line to decide about its insertion in the feedback loop. This theory may characterize a set of
possible controllers to unstabilize with new experimental data related with prior assumptions or
earlier data. The authors claim as the main feature of UAC theory, its flexibility and simplicity of
implementation to nonlinear time-varying and to linear time-invariant plants.

In [80], Safonov presents an examination of UAC theory using the behavioral perspective of Wi-
llems [100]. This paper presents a min-max optimization problem formulation that unifies direct
adaptive control, learning theory and system identification problems in a common behavioral set-
ting based on the controller unfalsification perspective. Theoretical results show the conceptual
link between adaptive control technique and system identification strategy, related to UAC from
the behavioral view point.

Paul et al. present in [70] a successful application of UAC for transmitted power in wireless net-
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works. The transmitted power in these networks is critical for maintaining the quality of service,
maximize channel utilization and minimize near-far effect for suboptimal receivers. The proposed
data driven algorithm uses multiple candidate PID controller gains for controlling transmitted po-
wer. It adapts to different number of users in a cell, selecting and placing one controller from the
set in the feedback loop depending on stability and performance. Simulation results show that the
proposed scheme performs better than several candidate controllers, including a Distributed Power
Control (DPC) algorithm for higher number of users in the cell.

In [18, 105], the authors present two advanced PI controller tuning methods: unfalsified control and
fussy control. They applied the controllers to an industrial weigh belt feeder that has significant
nonlinearities. Neither method requires an explicit plant model. One advantage of the unfalsified
PI control design method is that is able to directly incorporate multiple performance criteria. The
fuzzy logic allows to incorporate human reasoning in the design process. A detailed comparison of
the two approaches is given in the areas of design specifications, process knowledge requirements,
computational requirements, controller development effort, transient performance, and the ability
to handle motor saturation. Experimental results show effectiveness of both control methods.

Wang et al. present in [99] the stability analysis of Unfalsified Adaptive Control, based in the
Morse-Mayne-Goodwin hysteresis algorithm [66], using multiple controllers. The UAC uses cost
functions with cost detectability properties, as presented in [87]. Simulation results proved that the
stability can be guaranteed whenever the adaptive stabilization problem is feasible, i.e. whenever
there is a stabilizing controller in the set of candidate controllers. The hysteresis algorithm per-
forms safe adaptive control without plant model assumptions. Simulations demonstrated that the
proposed controllers are not only safe, but also quick.

In [98], the authors prove that using L2e-gain-related cost detectable functions together with Stably
Causally Left Invertible (SCLI) candidate controllers is sufficient to ensure that the Morse-Mayne-
Goodwin hysteresis algorithm [66] correctly detects destabilizing candidate controllers without
assumptions on the plant, eliminating plant model-mismatch instability problems. The conditions
ensure that the cost function correctly selects controllers, so that the hysteresis algorithm performs
a safe adaptive control that is guaranteed to be stable if the feasibility requirement is fulfilled, that
is, there exists at least one stabilizing controller in the set of candidate controllers.

In [33], VanHelvoort et al. present a data-driven multivariable controller design using ellipsoidal
UC. It does not require a plant model, only measured input/output data. It uses the concept of
controller unfalsification, where it is recursively checked which of the controllers in a set would
have met the predefined performance requirements without the need to actually implement them.
For ellipsoidal UC, the region of unfalsified controllers is updated each sample, and the continuous
region is described by an ellipsoid. The proof of stability for Multiple-Input Multiple-Output (MI-
MO) systems is deduced from the theory of Simple-Input Simple-Output (SISO) ellipsoidal UC.
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The Annual Reviews in Control in 2008 [4] present a review of challenges in adaptive control. In
the model-free adaptive control section, the analysis of the UAC states that it is not yet mature and
that it has a number of question that are currently unanswered, like: related to the possible mislea-
ding notions of “model-free” and “no prior assumption on the plant”, how much information about
the plant is required to guarantee a practical and safe model-free adaptive control?. It states that
this control approach gives no guarantee of protection against inserting a destabilizing in the loop,
or that controller can remain in the closed loop for a long period of time resulting in very large
control signals. Besides, it proposes that the closed-loop system can actually turn unstable but the
instability need not be revealed by a value of the cost function tending to infinity with time.

In [88], Stefanovic et al. address the theoretical explanation of the model-mismatch instability
problem related to certain adaptive control design schemes and propose a solution. A class of
data-driven cost-detectable functions is introduced, intended to detect evidence of instability with-
out reference to prior plant models or plant assumptions. The solution is proposed as a setting
of standard optimization problem. The result is called “safe adaptive control”, because it robustly
achieves adaptive stabilization goal when it is feasible, without the risk of model-mismatch insta-
bility, improving results of previous hysteresis switching control approaches.

Battistelli et al. propose in [9] a different switching logic, combined with appropriate test functions
for Adaptive Switching Supervisory Control (ASSC). This proposed change makes it possible to
extend UAC, restricted to time-invariant systems, to the case of nonlinear systems with dynamics
that are subject to infrequent but possibly large variations, like payload changing manipulators.
Furthermore, this different switching logic can also be used with model-based test or cost fun-
ctions, making it possible to improve the closed loop behavior in case a set of nominal plant
models are available.

In [8], Baldi et al. present differences between the main current approaches to Adaptive Switching
Supervisory Control (ASSC). The analysis focuses on how to on-line determine stability of a feed-
back control loop with a candidate controller that only uses inputs and outputs from the plant, while
the plant is driven by a different controller. Hence, it is used the concept of Virtual Reference (VR),
related to the unfalsified adaptive switching control. It proposes a supervised switching mechanism
to determine the chance that destabilizing controllers be switched-on and reduce both magnitude
and time durations of starting estimation transients. The asymptotic stability is guaranteed under
the assumption that a stabilizing candidate controller exist, also known as feasibility requirement.

In [10], Battistelli et al. presented the input-output stability analysis of an Unfalsified Adaptive
Switching Control (UASC) in a noisy environment. It is discussed the issue of equivalence among
different input-output definitions. Hence, the authors show than in some cases robustness against
disturbances is more complex to achieve than in a classical time-invariant feedback loop. Besides,
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there is no guarantee of finite-time convergence for switching due to the assurance that test func-
tional (cost detectable functions) remain bounded for indexes related to candidate controllers.

In [38], Jin et al. constructed a new cost-detectable function based on fading memory data to redu-
ce the influence of older data. A new controller switching algorithm is designed to guarantee stops
and that the closed-loop system is stable. Simulation results show that when the plant changes
slowly, the algorithm can detect instability and switch to stabilizing controller, once the currently
active controller becomes destabilizing for the new plant dynamics. Hence, the controller is able
to avoid large magnitudes of the output signal due to instability.

Felicio et al. applied an UAC in [25] to an experimental inverted pendulum. Using a set of six
candidate controllers, of which two are destabilizing, a supervisory program is built. Experimental
results show that the best controllers are selected most of the time. When a destabilizing contro-
ller is put in the loop, it is quickly removed and the performance does not degrade significantly.
Hence, unfalsified control may be useful for control adaption to parameter changes, even though it
may select destabilizing controllers for a short time period. Candidate controllers may be designed
using the plant model, but it is not used by the supervisory system.

In [101], an algorithm for the automatic adaption of linear controllers, based in the idea of the UC,
proposes the adaption of the set of controllers after a change of the operating point of the plant.
Due to problems related to the proposed cost detectable function, based on the so-called fictitious
reference, the authors proposed a different cost function and a new method for online evaluation of
off-line controllers. The new cost function allows the adaptation of the set of controllers based on
an evolution strategy and a diversity operator. The method, demonstrated on a Continuous Stirred-
Tank Reactor (CSTR) model with van der Vusse reaction and PID controllers, shows better and
faster performance compared to a fixed non-adaptive PID controller.

In [17], Cheong et al. proposed a switching algorithm for UAC, developed to use a pair of cost
functions, called primary and secondary cost functions. The primary cost function satisfies cer-
tain conditions to accomplish the stability of the UAC system. The secondary cost function may
be designed based on a performance measure of interest without any condition to satisfy. Hence,
the secondary cost function may use prediction-based and data-based cost functions. Besides, the
secondary cost function may help to find the best stabilizing controller in the controller set. Then,
the authors presented successful simulation results for theoretical models.

Hou et al. presented in [35] a survey about definitions, classifications, relevant topics and state of
the art of the data-driven control methods, including Unfalsified Adaptive Control. It also proposes
a discussion about differences and relationships between the Model-Based Control (MBC) and the
Data-Driven Control (DDC) methods. Conclusions on the comparisons provide a perspective on
those theories and potential future research topics.
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1.3. Payload analysis in the robot load-space and

Dynamic Load Carrying Capacity (DLCC)

computation

The maximum allowable load of a fixed base manipulator is often defined as the maximum pay-
load that the manipulator can repeatedly lift in its fully extended configuration [54]. But some
other factors like the inertia effect of the load for different control tasks and the manipulator dyna-
mics should be considered to compute the maximum allowable load of a manipulator. In [92], the
authors used the load capacity as a criterion for sizing the actuators of a robotic manipulator at the
design stage, considering the maximum load in the neighborhood of the robot configuration.

In [97], Wang et al. proposed that the maximum allowable load of a fixed base manipulator on a gi-
ven trajectory is primarily constrained by the joint actuators torque and its velocity characteristics.
In [103, 51], the rigid body assumption is removed for links and joints. For flexible manipulators,
the authors present additional constraints related to end-effector deflection and a method to deter-
mine maximum allowable load of flexible manipulators subject to both actuator and end-effector
deflection constraints. Then, they applied this methods to two degree of freedom manipulators.

In [54], Korayem et al. present a computational technique for determining the maximum allowable
load of wheeled mobile manipulators for a predefined trajectory, using the augmented Jacobian
technique. The authors state that some applications and motion planning algorithms of mobile ma-
nipulators consider cases of carrying a full load, i.e. in construction, military or hazardous working
sites such as nuclear power plants or chemical production plants. Besides, factors like the dynamic
properties of mobile base and mounted manipulator limit the maximum allowable load manageable
by a mobile manipulator during a tracking task. Hence, the authors propose additional constraints
functions in the task space. Simulation results obtained from a 2 DoF manipulator, mounted on a
differentially drive mobile base, show that the value of maximum allowable load on a given trajec-
tory directly depends on the additional constraint function.

In [45], Korayem et al. presented the load carrying capacity of mobile base manipulators operated
by limited force or torque actuators. The authors propose that the maximum allowable load on a
given trajectory is a function of the base position, considering that the load workspace defines the
set of places where the base may be located carrying a load on a desired trajectory. The workspa-
ce is divided into a grid of possible positions of the base, allowing to move it to each grid point.
Actuators torque constraints applied to each base location define the load carrying capacity of the
mobile manipulator. The optimum base location is a global maximum of the load carrying capacity
of the manipulator for the desired trajectory. Results show that in cases where there is no freedom
to change the load path, the base relocation may maximize the Dynamic Load Carrying Capacity
(DLCC) of the manipulator.
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Korayem et al. in [56] formulate and numerically solve the problem of finding the maximum dy-
namic load of mobile manipulators for a given two-end-point task. The authors considered three
main constraints for computing maximum DLCC of mobile manipulators: actuator capacity of the
manipulator, the kinematic redundancy related to base mobility and nonholonomic constraints. For
the redundancy issue and nonholonomic constraints, the authors used the extended Jacobian matrix
concept. This trajectory constrained nonlinear optimization problem used the Iterative Linear Pro-
gramming (ILP) method for solution. Simulation results show that while the mobile manipulator
moves along an optimal trajectory, the coupling inertia of the manipulator and load are minimized
preserving the constraints. In [55], Korayem et al. presented a computational technique for ob-
taining optimal trajectory of mobile manipulators with flexible links and joints to maximize their
DLCC for a given point-to-point task.

In [26], a control scheme for single-link flexible very lightweight robots consists of two nested
loops: an internal loop (PD regulator) that controls the motor dynamics and an external loop (feed-
back of torques at the base of the link, measured by a strain gauge) that allows the tip to be
positioned in space. Simulation show that the control scheme is robust to payload variations due to
the use of strain gauges to measure link deflection and errors in parameter estimation or motor pa-
rameter change. Then, simulations focus on comparison of the controller with classical controller.
After that, Feliu et al. presented in [27] a robust scheme for trajectory tracking of the same kind
of manipulators. The controller achieves stability during motion for different values of tip mass,
while accurately tracks the desired trajectory. The controller also guarantees stability of small un-
certainties in parameters such as stiffness or motor friction. Analytical development and numerical
simulation with variations in the robot parameters are compared with some of the most efficient
robust control strategies as: Integral resonant control, Wave-based Control, H-Infinity and LQR
Control, showing that the proposed method exhibits the best tip trajectory tracking. Besides, ex-
perimental results show that the controller is very effective in canceling the first vibration mode,
while leaving higher modes unaltered, which is suitable for a very lightweight arm, where vibra-
tion modes higher than the first one may be considered negligible.

In [52, 53], the authors presented a method to compute the DLLC of manipulators with joint
elasticity, subject to accuracy and actuators constraints, using feedback linearization technique to
minimize end-effector deflection. Feedback control law obtained a full state linearization that gives
input-output decoupling. Simulation results drawn for different sets of tracking trajectories show
different load carrying capacities in each case, as expected.

Korayem et.al presented in [47] the maximum dynamic load carrying capacity of flexible joint
manipulators in point-to-point motion as an optimal control problem, using the indirect solution
method. This proposes a Two-Point Boundary Value Problem (TPBVP) solved numerically. The
authors propose two different perspectives: The first one may be used to plan the optimal path for
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a given payload, and the second may be applied to find the maximum payload and corresponding
optimal path. Simulation results show various optimal trajectories with different characteristics and
maximum payloads. A comparison of effects of flexibility with rigid robots shows that the more
stiffness leads to maximum payload and high stiffness values converge to the rigid joint results.

In [46], kinematic and dynamic equations using Finite Element Method (FEM) enables to con-
sider the full nonlinear dynamics of mobile manipulators with flexible links. Results show that
the actuator torque capacity is the dominant constraint for determining the DLCC of the motion.
Besides, there are other alternatives for carrying more loads in comparison with fixed base robots,
due to the fact that the base trajectory may be changed without changing the end-effector trajectory.

Then, [48] analyzes the DLCC and the joint optimal path for kinematically redundant manipula-
tors to track a given end-effector path, subject to actuator torque limits. It uses the indirect solution
of open-loop optimal control problem to solve the path-planing problem and take advantage of
redundancy to increase the load-carrying capacity. Decomposing joint coordinates in redundant
and nonredundant parts allows the derivation of dynamic equations. Then, a Two-Point Boundary
Value Problem (TPBVP) uses numerical methods to solve the optimization problem. Simulation
results, applied to a 3 DoF mobile manipulator with one extra DoF, computed the DLCC for re-
dundant manipulators and the payload increased using the extra DoF.

In [43], Korayem et al. proposed a method based on stability for determining the maximum DLCC
of a coordinated mobile manipulator in an environment with the presence of obstacles. It consi-
ders the tip over stability on zero moment point criterion for a predefined end-effector path but
free position of the mobile platform. The obstacle avoidance scheme uses potential functions. An
iterative method based on the stability criterion and motor restriction (torque and jerk) computes
the maximum DLCC. Simulation and experimental results on a nonholonomic Wheeled Mobile
Manipulators (WMM: differential drive mobile base and a robotic arm) show that in the presence
of one obstacle and a specified path of the end-effector, in some cases, the accuracy of tracking the
desired path is satisfied. Obstacles causes a difference in path, as expected. The stability constraint
may become a dominant constraint. Comparison of simulation and experimental results showed a
difference of 7% between the maximum allowable loads.

In [31], Ghariblu et al. presented a computational technique for determining the maximum DLCC
of cooperative manipulators for a desired trajectory of the load. The configuration of this mani-
pulators considers as most important constraints the dynamic properties related to redundancies,
actuator torque limitations and trajectory accuracy. The proposed methodology first develops the
kinematic and dynamic equations, then computes the maximum torques on each joints and finally
the maximum DLCC. Simulation results of two cooperative three-link manipulators show the va-
lidity of the algorithm for determining the maximum DLCC and that the allowable load is variable
along the desired trajectory.
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In [44], Korayem et al. proposed a DLCC computation method for a cable-suspended parallel ma-
nipulator. The manipulator is assumed to be a rigid manipulator. The joint actuator torque and
cable tension force capacities are the major limiting factors in determining the payload. These
constraints are a common framework for dynamic characterization of the cable-suspended parallel
robot. Two cable robots of 3 and 6 DoFs permits the computation by simulation of the maximum
DLCC. Then, the authors present in [58] a control system based on feedback linearization for both
rigid and flexible joints in cable robots, showing satisfactory simulation results. Again, Korayem
et al. presented in [57] a method for trajectory planning (find the manipulator DLCC in a Point-to-
Point task) for cable robots using optimal control approach by solving the corresponding nonlinear
two point boundary value problem. Finally, the authors presented in [50] an approach for trajec-
tory planning of cable-suspended parallel robots using optimal control, applied to an experimental
prototype. Experimental results show an slightly difference with the simulation results related to
the maximum DLCC computation.

Chen et al. proposed in [15] a methodology to determine the maximum DLCC for reconfigurable
motor-driven Parallel Kinematic Manipulators (PKM). The methodology uses the identification of
the optimal configuration for the maximum DLCC for the desired trajectory, limited to the cons-
traints determined by the kinematics and dynamics of the manipulator structure. The proposed
method uses a two loop optimization process. The Particle Swarm Optimization (POS) algorithm
is used for the outer-loop optimization, and the Linear Programming (LP) algorithm is used for the
inner-loop optimization. Relocating the base points along linear guideways achieves the reconfi-
guration. Simulation results presented the effect of base mobility on maximizing the DLCC along
a prescribed trajectory and shown that optimally changing the base position has a high increase in
the maximum DLCC, due to the use of torque bounds on more actuators.

1.4. Problem statement

The history of robotics is related with the idea of replacing human workers from monotonous,
unpleasant or dangerous tasks. Hence, powerful, large and hazardous robots requires of perimeter-
protected working spaces. This was not a problem in the industry, but excluded environments where
humans were present. Therefore, houses, hospitals, offices and other spaces were not an option for
robotic interventions and new concepts for robots were needed for safely interact with humans.

Multiple applications in HRI involve manipulation: rehabilitation for individuals with limited use
of their hands, transfer of objects between robots and humans for collaborative work, physical HRI
with patients, wearable Power Assistive Robots (PARs) for human extremities in industry or other
applications for handling heavy objects, the use of Assistive Mobile Manipulators (AMMs) like
the PR2, etc.
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Considering the wide research spectrum in robotic manipulation, this work will focus on two is-
sues: payload handling analysis and control systems related to manipulators suitable for HRI.

1. The maximum payload issue in manipulation is commonly treated as the maximum payload
that the manipulator can repeatedly lift in its fully extended configuration, but other factors
like the inertia effect of the load for different control tasks and the manipulator dynamics
should be considered to compute the maximum allowable load of a manipulator. In HRI
the payload is an important issue related with tasks which require lifting or manipulation of
payloads. Hence, it should be proposed a research about a methodology for the computation
of the maximum payload in the entire workspace. We suggest the use of cell to cell mapping,
as an intensive computational strategy, to analyze the DLCC for MDoF manipulators and its
ability to map different paths, with potential use in path planning in various environments,
like in HRI settings.

2. The data-driven Unfalsified Adaptive Control (UAD) has been successfully used in some
applications, motivating us to propose a research of its application in Multiple Degree of
Freedom (MDoF) manipulators (n > 2 DoF). Comparisons with traditional control tech-
niques for robotic arms would serve to identify the usability of this currently developing
control strategy. It should be evaluated the application of UAD with fading memory for two
cases of study, including the compliant Whole Arm Manipulator (WAM).

1.5. Participations and diffusion of results

1. Two (2) international congresses:

“Dynamic Load Carrying Capacity computation Using Nonlinear Analysis” in the 26th
International Conference on CADCAM, Robotics and Factories of the Future (CARs
and FOF), Kuala Lumpur (Malaysia), July 2011.

“Dynamic Load Carrying Capacity computation of manipulators using cell to cell map-
ping concept” in the 5th International Congress of Mechanical Engineering and 3th of
Mechatronic Engineering, Bogotá (Colombia), August 2011.

2. One (1) research stage: “Whole Arm Manipulator (WAM) kinematic and dynamical mode-
ling with experimental validation”, Institut de Robòtica i Informàtica Industrial - IRI, Univer-
sitat Politècnica de Catalunya - Barcelona Tech., Sept - Nov 2012. Continued collaboration.

3. One (1) paper under review: “Unfalsified control for multiple DOF manipulators under load
disturbances and parameter uncertainties” in the International Journal of Advanced Manu-
facturing Technologies, Springer (IF:1.205 in 2012). Submitted in March 2014.
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4. One (1) paper in elaboration: DLCC in the entire workspace for multiple DoF manipulators.

1.6. Document organization

The remaining of this document presents in chapter 2 the theoretical and simulation of the dynami-
cal models of two Multiple Degree of Freedom (MDoF for n > 2 DoF) cases of study, used for the
rest of this work: the 5 DoF SCORBOT ER V PLUS manipulator and the 7 DoF redundant Who-
le Arm Manipulator (WAM). The chapter 3 presents different approaches to manipulator control
techniques, from model-based to data-driven control methods. The chapter 4 proposes a compu-
tational methodology to find the maximum Dynamic Load Carrying Capacity (DLCC) in the entire
workspace, applicable to any kind of manipulator including the lightweight and low inertia used in
HRI applications. Finally, conclusions and future perspectives are presented in chapter 5.



2. Modeling of multiple degree of

freedom (MDoF) manipulators

There are basically two approaches to obtain the dynamical model of manipulators: Dynamics of
Lagrange, based on the balance of energy of conservative systems, and the Newton-Euler dyna-
mics which considers balance of forces and moments [20, 29, 62].

The dynamical model of Newton-Euler consists of a recursive set of equations of motion deve-
loped by Luh et al. [62], with regard to all the velocities, accelerations, inertia matrices, location
of centers of mass, forces and moments related to the coordinates system of each link of the ma-
nipulator. The procedure consists on the application of a recursive algorithm that computes each
articulation force from the base to the end effector and returns from the end effector to the base
computing individual moments.

For convenience, Eq. (2-1) presents the algorithm to compute the Newton-Euler inverse dynamical
model, repeatedly used in this work for numerical simulation and validation results.

iωi =
i−1RT

i
i−1ωi−1 + êzq̇i

iω̇i =
i−1RT

i
i−1ω̇i−1 + êzq̈i +(i−1RT

i
i−1ωi−1)× êzq̇i

iP̈i =
i−1RT

i
(i−1P̈i−1 +

i−1ωi−1× i−1Pi +
i−1ωi−1

(i−1ωi−1× i−1Pi
))

is̈i =
iP̈i +

iω̇i× iŝi +
iωi×

(iωi× iŝi
)

i f̂i = mi
is̈i

in̂i =
iIi

iω̇i +
iωi×

(iIi
iωi
)

i fi =
iRi+1

i+1 fi+1 +
i f̂i

ini =
iRi+1

i+1ni+1 +
in̂i +

iŝi× i f̂i +
iPi+1×

(iRi+1
i+1 fi+1

)
τi = êT

z
ini,

(2-1)

where iωi and iω̇i are the angular velocity and acceleration of the reference frame of the link i; qi, q̇i

and q̈i are the angular positions, velocities and accelerations of the joint i; i−1RT
i is the transposed

rotation matrix of the reference frame of the link i from the reference frame of the previous link;
êz =

[
0 0 1

]T
; i−1Pi, i−1Ṗi and i−1P̈i are the translational positions, velocities and accelera-

tions of the reference frame of the link i with respect to the reference frame of the previous link;
is̈i is the linear acceleration of the center of mass of the link i, iŝi is the distance from the reference
frame of the link i to the center of mass of the same link; mi is the mass of the link i and iIi is the
inertia tensor associated with the link i; i f̂i and in̂i are the forces and moments applied at the center
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Figure 2-1.: SCORBOT ER V PLUS [37]

of mass of the link i; i fi and ini are the forces and moments required for the joints in motion and τi

are the torques applied to the joint i to generate that motion.

The remaining of this chapter shows the process of modeling and validating of those models for
two cases of study, using the Newton-Euler recursion for numerical and experimental validation.

2.1. Modeling a 5 DoF manipulator like the SCORBOT

ER V PLUS

Fig. 2-1 shows a CAD (Computed Aided Design) model of the 5 Degree of Freedom (DoF) mani-
pulator known as the SCORBOT ER V PLUS, manufactured by Intelitek Corp. This case of study
is used in the present section to show the procedures to obtain and numerically validate the dyna-
mical model of multiple degree of freedom (MDoF) manipulators.

The dynamical model of a 5 degrees of freedom manipulator is the mathematical representation of
a Multi-Input Multi-Output (MIMO) system, with specific kinematic and dynamical parameters.
Durango et al. in [23] develop the kinematic and dynamical model of the SCORBOT ER V PLUS,
using the Newton-Euler recursive methodology.
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Using Matlab R© symbolic toobox, Durango et al. obtain an analytical expression of the dynamical
model of the SCORBOT ER V PLUS manipulator using the recursive Newton-Euler algorithm
presented in Eq. (2-1). This model allows the analysis, simulation and control design of the robotic
system as presented in [5]. The application of this algorithm results on a “non-compact” form of
the model [20]. Later in this section, a compact form is obtained to compute the state variable
representation for simulation and design of nonlinear control strategies.

The analytical dynamical model of a 5 DoF manipulator has hundreds of nonlinear terms. The
size of the model significantly grows with the increase on the number of degrees of freedom and
becomes difficult to be operated and transformed. The state equation for the 5 DoF SCORBOT ER
V PLUS manipulator counts with ten highly nonlinear first order differential equations.

2.1.1. Compact representation and end-effector transformation matrix

The compact representation of the analytical dynamical model of the manipulator is used to per-
form analysis of the system and fast simulation. The recursive algorithm developed by Luh et al.
[62] allows to systematically and recursively compute the inverse dynamics of the manipulator,
based on kinematic and dynamical parameters.

The compact form of the dynamical model of a generic manipulator is presented in Eq. (2-2).

H(q)q̈+C(q, q̇)q̇+g(q)+F(q̇) = τ, (2-2)

where, for n = 5 DoF manipulator, q, q̇ and q̈ in R5 are joint position, velocity and acceleration
vectors, respectively; H(q) is the 5×5 inertia matrix, C(q, q̇) contains the 5×1 Coriolis and cen-
tripetal terms, g(q) are the 5×1 gravitational terms, F(q̇) are the 5×1 friction terms and τ is the
5×1 vector of torques applied to each joint of the manipulator.

Durango et al. applied in [23] the algorithm proposed by Luh in [62]. To this end, they used the
Matlab R© symbolic toolbox to obtain the inverse dynamical model. They assumed the inertial pa-
rameters, due to the difficulty to measure or estimate them, and the lack of information provided
by the manufacturer. In [5], reorganization of to the inverse dynamical model in [23] allowed the
computation of a compact representation of the model. Additionally, a complete rotation matrix
including the effects of external forces allowed the representation of the payload as a punctual
mass at the center of gravity of the end-effector.

The Fig. 2-2 states the reference position of the SCORBOT ER V PLUS proposed in [23], and
used in this work.
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Con relación a la geometría del manipulador y con base en la designación hecha por 

Durango y Calderón [4], se cuenta con una posición de referencia mostrada en la figura 2.8. 

En esta ubicación, todas las posiciones son: 1 2 3 4 5 0x x x x x= = = = =  rad. 

 

 
Fig 2.8. Posición de referencia del manipulador 

 

2.3.1 Análisis  de estabilidad  

 

Para realizar análisis de estabilidad y partiendo de la representación en variables de estado 

del sistema, se utiliza el método indirecto de Lyapunov que permite identificar 

características de estabilidad con base en el estudio del modelo linealizado alrededor de un 

punto de equilibrio especifico.  

 

El procedimiento de linealización consiste en realizar el cálculo de la matriz jacobiana 

asociada al sistema y  analizar los valores propios de esa matriz para los diferentes puntos 

de equilibrio.  

 

Debido a la similitud de las características del manipulador con un péndulo con torque, se 

presentará un análisis para la dinámica no lineal de este último, que permita aproximarse  a 

algunas características de estabilidad del robot. 

 

Figure 2-2.: Reference position of the SCORBOT ER V PLUS.

The rotation matrix of the end-effector with respect to the base results from the sequential multi-
plication of the rotation matrices of each element of the manipulator relative to the previous, from
the base to the last element. Hence, the rotation matrix corresponds to the expression presented in
Eq. (2-3).

0RT = RR0
0R1

1R2
2R3

3R4
4R5

5RT , (2-3)

where i−1Ri is the rotation matrix of the element i with respect to the elements i− 1, and the su-
perscript R and subscript T correspond to the frames of reference and the end effector (or tool),
respectively. This rotation matrix is computed in [5], since this calculation is not included in the
model presented by Durango et al. in [23]. It shows that Durango et al. did not consider the ability
of the system to interact with a payload or any external force applied to the end-effector.

To obtain the compact representation, the analytic Newton-Euler recursion computation result is
organized using Matlab R© to isolate the independent symbolic terms of the inertia matrix H(q), the
matrix of Coriolis and centrifugal terms C(q, q̇) and the terms of the gravitational matrix g(q). The
friction F(q̇) only includes the viscous friction for dynamical analysis purposes. These symbolic
matrices have hundreds of nonlinear terms.

2.1.2. State variable representation

The state variable representation for the 5 DoF manipulator uses the symbolic terms of the compact
representation, together with the state vector shown in Eq. (2-4).

x = [q1,q2,q3,q4,q5, q̇1, q̇2, q̇3, q̇4, q̇5], (2-4)

where q and q̇ in R5 are joint position and velocity vectors, respectively.
Thus, for a n DoF manipulator, with k = 1...n, the inverse inertia matrix may be defined as
H(xk)

−1 =
[
h(xk)i j

]
n×n = (H(xk)

−1)i j, with i as the rows and j as the columns of the matrix.
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For a manipulator with n = 5 DoF and k = 1 . . .5, the corresponding transformation results in the
state equation Eq. (2-5).

ẋ1 = x6

ẋ2 = x7

ẋ3 = x8

ẋ4 = x9

ẋ5 = x10

ẋ6 = (H(xk)
−1)1 j(τ−C(x)−g(xk)−F(xk+5))

ẋ7 = (H(xk)
−1)2 j(τ−C(x)−g(xk)−F(xk+5))

ẋ8 = (H(xk)
−1)3 j(τ−C(x)−g(xk)−F(xk+5))

ẋ9 = (H(xk)
−1)4 j(τ−C(x)−g(xk)−F(xk+5))

ẋ10 = (H(xk)
−1)5 j(τ−C(x)−g(xk)−F(xk+5)).

(2-5)

In a more compact form, it may be expressed as: ẋ = f(x,τ), with x ∈ Rp, τ ∈ Rq with p = 10 and
q = 5. For convenience of notation, the size of the matrices for analytical operations related to the
above state equation will not be included.

As a reminder, a quality derived from the geometrical and physical conditions of the manipulator
makes H(xk) a positive definite and invertible matrix in all cases [83].

2.1.3. Numerical validation of the compact inverse dynamical model

The representation in state variables enables the validation of the direct and inverse dynamical
model. A Matlab R© numerical toolbox for robotics used in [23], named Hemero and developed by
Ollero et al. in [11], is also used here for the validation. This toolbox has similar functionalities
than the popular toolbox developed by Corke in [19]. The validation lies in the comparison of
the computed compact dynamical model against the corresponding functions of the recognized
toolboxes. Durango et al. perform in [23] a similar validation by comparison of their models.
The numerical validation requires the solution of the inverse dynamical problem stated in Eq. (2-
6). This solution computes the torques required in each actuator of the manipulator to achieve a set
of desired joint trajectories.

τ = H(q)q̈+C(q, q̇)q̇+g(q)+F(q̇). (2-6)

A Matlab R© function implemented to this end, uses the inputs: positions, velocities, accelerations
and inertial and friction parameters, to compute the torques. This function is recurrently used in
this work and in the stability analysis presented in [5].

The developed function is used for the validation of the inverse dynamical model for predefined
joint trajectories, and compared to the output torques of the rne (recursive Newton-Euler) function
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Figure 2-3.: Validation trajectories, proposed in [23]

of the Hemero toolbox. The comparison computes the related errors, looking for confirmation of
the correct operation of the functions and appropriate modifications to the model. The same trajec-
tories proposed in [23] are used in [5], but applying the compact function to compute the inverse
dynamics.

Thus, the desired trajectories used in the numerical validation process are presented in Table 2-1.

Table 2-1.: Trajectories for validation, proposed in [23].

POSITIONS VELOCITIES ACCELERATIONS
x1 = 5,4106sin(0,1571t)+0,4363 ẋ1 = 0,85cos(0,1571t) ẋ6 =−0,1335sin(0,1571t)
x2 = 0,2879t +0,8727 ẋ2 = 0,2879 ẋ7 = 0
x3 = 0,04538t2−2,2689 ẋ3 = 0,09076t ẋ8 = 0,09076
x4 = e0,17116t−4,8397 ẋ4 = 0,17116e0,17116t ẋ9 = 0,02929575e0,17116t

x5 = 0,02513(t−5)3 ẋ5 = 0,07539(t−5)2 ẋ10 = 0,15078(t−5)

The Fig. 2-3 shows the desired validation trajectories presented in Table 2-1.
The Fig. 2-4 presents the results after the application of the desired trajectories to the compact
inverse dynamical function. The error corresponds to the comparison between torques of the com-
pact model and the rne (recursive Newton-Euler) function of the Hemero toolbox. It is worth to
note that the error percentages are about 10−10 Nm, showing the accuracy of the model.

Similarities with the validation performed by Durango et al. in [23] demonstrates the adequate
implementation of the corresponding function.

The Fig. 2-5 shows a final test, with the fully outstretched position of the manipulator, where x= q.
In this situation, the desired trajectories are defined in Table 2-2.
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Figure 2-4.: Torques and error (percentage) of the compact form of the inverse dynamics compared
to Hemero [11].

Table 2-2.: Trajectories for validation, from the most
effort demanding position.

Positions Velocities Accelerations
x1 = 0 ẋ1 = 0 ẋ6 = 0
x2 = 0,2879t +0,8727 ẋ2 = 0,2879 ẋ7 = 0
x3 = 0 ẋ3 = 0 ẋ8 = 0
x4 =−π

2 ẋ4 = 0 ẋ9 = 0
x5 = 0 ẋ5 = 0 ẋ10 = 0

The desired trajectory is a linear displacement for the second joint (the shoulder), with initial con-
dition defined as the outstretched arm with an inclination given by x2 = 0,87 rad. The motion
results in a planar displacement, maintaining a constant position of the base (x1 = 0 rad) and re-
maining extended over the entire trajectory, up to the end position (x2 = 3,74 rad). The velocity
remains constant for the entire trajectory, as shown in Table 2-2.

Fig. 2-6 presents the torques applied to the joints to achieve the proposed motion. This results are
obtained using the inverse dynamical computation function in the compact form. In the case of
the joint x2, it may be verified the peak torque at startup (τ2 = 9,11 Nm), the zero crossing point
at which the arm is vertical (x2 = π/2 rad) and the maximum absolute value (negative minimum)
in which τ2 = −14,32 Nm, which occurs when the position of the manipulator is fully horizontal
(x2 = π rad). This torque would represent the maximum torque required for the joint q2, in this
particular configuration without payload.
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Figure 2-5.: Trajectories for validation from the most effort demanding position.

Fig. 2-7 shows the graph of comparative errors between the torques of the compact inverse dyna-
mical model and the computed torques with the rne (recursive Newton - Euler) function of Hemero
toolbox. It may be noticed that the errors are about 10−15 Nm, demonstrating again the validity of
the compact function.
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Figure 2-7.: Torque errors (percentage) compared with Hemero torques.
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2.1.4. Validation of direct dynamical model

The direct dynamical problem requires the computation of current positions, velocities and acce-
lerations, based on the knowledge of actual torques applied by the actuators to the joints of the
manipulator. This results a more complex task, since there are several solutions for each set of
torques [20, 23, 29]. In general, the solution of this issue consists of solving the state equation in
Eq. (2-5), using a classic integration algorithms (i.e. Runge-Kutta). A set of integration algorithms,
known as ODEs, are available in Matlab R©. The ODE45 and ODE15, allow the configuration of
automatic or manual integration step, specific time interval and initial condition. These functions
provide a tool for the complete integration of trajectories for smooth and continuous systems.

Thus, from a general view point, the solution to the direct dynamical problem consists in solving
Eq. (2-7):

q̈ = H(q)−1(τ−C(q, q̇)q̇−g(q)−F(q̇)). (2-7)

As presented above, a condition derived from the physical characteristics of the inertia matrix H(q)
ensures that, in all cases, it is a positive definite matrix and always invertible [83].

The effect of the transient response of the open loop system increases the tracking error during this
period and may even destabilize the system. The validation of this model takes into account the
transient response period of the open loop system for analysis purposes. It is desirable to present
the response after that period for comparison with the desired trajectory. In this case, the respon-
se depends on the time constant of the second order coupled systems, related to each DoF. Thus,
the validation involves the analysis of the behavior of the system after a sufficient transient time.
Several numerical simulations for the open loop system, including the first 7 s of simulation sho-
wed a divergent unstable behavior. This could happen due to accumulative errors of the double
numerical integration related with this computation. Hence, final simulations were performed in a
smaller time range, with initial time as 7 s and after the transient response of the open loop system.
This considerations improved the validation results presented by Durango et al. in [23], due to the
reduction of the error in the tracking task.

The same validation procedure proposed in [23] applied to compute tracking errors, corresponding
to predefined torque trajectories, allows the current comparison. To this end, the procedure uses the
same torque trajectories obtained in the inverse dynamical model validation, presented previously
in section 2.1.3. The Fig. 2-8 shows the simulated trajectories, isolating and capturing the response
after 7 s. Fig. 2-9 shows the comparison between reference trajectories presented in Table 2-1 and
the computed positions resulting of the double integration of Eq. (2-7), after a transient time of 7
s.
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Figure 2-8.: Computed position for the direct dynamical model, after 7 s.
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Figure 2-9.: Position error for direct dynamical model, after 7 s.
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2.2. Modeling a 7 DoF manipulator with redundant

joints, like the Whole Arm Manipulator (WAM)

From the Barret Technology Inc. web page [1]: “The WAM R© Arm is a highly dexterous, naturally
backdrivable manipulator. The only arm sold in the world with direct-drive capability supported by
Transparent Dynamics R© between the motors and joints, so its control of contact forces is robust-
independent of mechanical force or torque sensors. It is built to outperform conventional robots
with unmatched human-like grace and dexterity”.

The Whole Arm Manipulator (WAM), presented in Fig. 2-10, is the result of a project developed
by researchers at MIT, who produced a design methodology for robots with intrinsically safety for
interaction with humans and its environment. It has been continuously developed and commercia-
lized by Barrett Technology at USA. The design methodology for the WAM is worried about the
forces over the whole arm and the end effector while the robot interacts with the environment, that
would be the reason for its name.

It is a modular manipulator which has two main configurations: 4 degree of freedom (DoF) and 7
DoF with a three axis attachable wrist, both with kinematics comparable to the human arm. The 4
DoF configuration has a rotary base, a 2 DoF shoulder and an elbow between the upper arm and
forearm.

Besides, it has especial characteristics as [1, 77]:

The joint moving ranges are wider than those for conventional robotic and human arms.

Higher performance than conventional manipulators: smooth motion due to its custom de-
signed electronics with inherently backdrivable cable drives, high performance and most
power-efficient light weight servo-electronics and a light servo-drives (43 grams) included
in the arm structure.

Servo-motors are rare-earth brushless, high torque-inertia ratio [93].

The open-loop backdrivability is one of the most significant characteristics of the WAM. Defined
as the accurate reproduction in the inputs of the manipulator (the motors) of the forces applied at
the output end-effector. Hence, any person may manipulate the arm by applying a force at the end
effector with smooth and safety motion. The WAM senses forces over the hole arm by measure-
ment of the currents in the drive motors, allowing the ability to control forces over the whole arm
for safer operation with humans.

Traditional transmissions using gears have problems with the inverse relation between friction and
backlash. The drives using cables and cylinders are low friction and does not have the problem



2.2 Modeling a 7 DoF manipulator with redundant joints, like the Whole Arm Manipulator
(WAM) 29

Figure 2-10.: Redundant, seven (7) DoF, Whole Arm Manipulator (WAM).

with backlash. That is the main reason why the WAM uses this kind of transmissions [77].

The 4 DoF WAM was designed to provide kinematic redundancy and control of each joint. The
redundancy enables the arm to be driven to a variety of poses for any end position. This enables the
user to teach both the end position and the elbow pose to safely achieve tasks even without direct
“line of sight” and using the compliant contact characteristic for safety interaction with objects or
people in the environment. The 7 DoF configuration adds the 3 DoF wrist to the 4 DoF redundant
configuration, taking advantage of this condition.

2.2.1. WAM Kinematics

The variant form of the Denavit-Hartenberg (D-H) method is used to establish the coordinate fra-
mes in the zero position (or Home). Appendix A presents the configurations for the 4 and 7 DoF
settings.

The D-H parameters obtained from those configurations, and used for numerical simulations in
this work, are shown in Table 2-3 for 4 DoF system and Table 2-4 for 7 DoF system.
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Table 2-3.: D-H parameters for the 4 DoF configuration of the WAM.
Joint i ai αi di θi

1 0 −π/2 0 θ1

2 0 π/2 0 θ2

3 0.045 −π/2 0.55 θ3

4 -0.045 π/2 0 θ4

T 0 0 0.35

Table 2-4.: D-H parameters for the 7 DoF configuration of the WAM.
Joint i ai αi di θi

1 0 −π/2 0 θ1

2 0 π/2 0 θ2

3 0.045 −π/2 0.55 θ3

4 -0.045 π/2 0 θ4

5 0 −π/2 0.3 θ5

6 0 π/2 0 θ6

7 0 0 0.06 θ7

T 0 0 0

Each of the joints has a mechanical stop that limits the motion. Table 2-5 shows a complete listing
of the joint limits for each axis.

Table 2-5.: Joint limits of the WAM
Joint Positive Joint Limit. Rad(deg) Negative Joint Limit. Rad(deg)

1 2.6 (150) -2.6 (-150)
2 2.0 (113) -2.0 (-113)
3 2.8 (157) -2.8 (-157)
4 3.1 (180) -0.9 (-50)
5 1.24 (71) -4.76 (-273)
6 1.6 (90) -1.6 (-90)
7 3.0 (172) -3.0 (-172)
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The relation between adjacent coordinate frames is defined by Eq. (2-8), where c and s stand for
cos and sin trigonometric functions respectively and the parameter stated in Table 2-3 for 4 DoF
system and Table 2-4 for 7 DoF system.

i−1Ti =


cθi −sθicαi sθisαi aicθi

sθi cθicαi −cθisαi aisθi

0 sαi cαi di

0 0 0 1

 . (2-8)

The forward kinematics are determined for any frame on the robot by sequential multiplication
of all the transform matrices up to and including the final frame. To determine the end-effector
location and orientation for the 4 DoF configuration, it has to be used the expression presented in
Eq. (2-9):

0TTool =
0 T 1

1 T 2
2 T 3

3 T 4
4 TTool. (2-9)

And for the 7 DoF configuration the related expression in Eq. (2-10) is:

0TTool =
0 T 1

1 T 2
2 T 3

3 T 4
4 T 5

5 T 6
6 T 7

7 TTool. (2-10)

2.2.2. WAM Dynamics

It is necessary to define the basic dynamical parameters to perform the inverse dynamical model
computation using the Newton-Euler recursion. Generally, 13 values are important and summari-
zed in Tables 2-6 and 2-7 (All units are in kilograms and meters unless otherwise indicated): Table
2-6 presents mass and X, Y, Z location of the center of mass and Table 2-7 presents Ixx through Izz

(9 inertia-tensor values).

This work initially uses the kinematic and dynamic characterization of the friction model estimated
by Mitrovic et al. in 2010 [64]. The authors proposed to approximate the frictional joint torques,

Table 2-6.: Mass and Center of mass position of the WAM [3]
Center of mass

Link Mass X Y Z
1 10,7677 -0,00443 0,12189 -0,00066
2 3,8749 -0,00237 0,03106 0,01542
3 1,8023 -0,03826 0,20751 0,00003
4 2,17266212 0,00553408 0,00006822 0,11927695
5 0,35655692 0,00005483 0,02886286 0,00148493
6 0,40915886 -0,00005923 -0,01686123 0,02419052
7 0,0754827 0,00014836 0,00007252 -0,00335185
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Table 2-7.: Inertia tensor of the WAM [3]
Link Ixx Ixy Ixz Iyx Iyy Iyz Izx Izy Izz

1 0,13488033 -0,00213041 -0,00012485 -0,00213041 0,11328369 0,00068555 -0,00012485 0,00068555 0,0904633
2 0,02140958 0,00027172 0,00002461 0,00027172 0,01377875 -0,0018192 0,00002461 -0,0018192 0,01558906
3 0,05911077 -0,00249612 0,00000738 -0,00249612 0,0032455 -0,00001767 0,00000738 -0,00001767 0,05927043
4 0,01067491 0,00004503 -0,00135557 0,00004503 0,01058659 -0,00011002 -0,00135557 -0,00011002 0,00282036
5 0,00037112 -0,00000008 -0,00000003 -0,00000008 0,00019434 -0,00001613 -0,00000003 -0,00001613 0,00038209
6 0,00054889 0,00000019 -0,0000001 0,00000019 0,00023846 -0,0000443 -0,0000001 -0,0000443 0,00045133
7 0,00003911 0,00000019 0 0,00000019 0,00003877 0 0 0 0,00007614
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Fig. 3. Approximative continuous friction model. Solid black line rep-
resents the theoretical discontinuos Coulomb friction. For an (example)
steepness parameter of s = 200 the derivatives at the start condition (q̇ = 0)
become too large and ILQG diverges whereas for s = 20 it successfully
converges.

and viscous friction in each joint with the following smooth

and continuous sigmoid function

b(q̇) = bc arctan (sq̇)
2

π
+ Bq̇, (10)

where s indicates the “steepness” of the fitted arctan func-

tion (Fig. 3), bC is the kinetic Coulomb friction, and B is

the viscous friction coefficient. We heuristically identified

the steepness parameter as s = 20 (for all joints) such that

it led to overall stable ILQG convergence while providing

sufficient modelling accuracy.

We then used the constant angular velocity motion test

[10] as an identification method for the viscous friction

coefficient and the kinetic Coulomb friction. When a small

step input torque τ
∗(i) is applied to the target joint i

while keeping the other joints fixed, q̇i converges to some

constant angular velocity as t → ∞ by the effect of the

damping torque. By executing the test motions ten times

with various values of τ
∗(i) for each joint, B and bC can

be easily estimated by a least-square method. Table I shows

the obtained results for all joints.

Joint i=1 i=2 i=3 i=4 i=5 i=6 i=7

B(i) 1.142 0.946 0.309 0.255 0.025 0.039 0.004

bc(i) 2.516 2.581 2.038 0.956 0.323 0.315 0.066

TABLE I

ESTIMATED JOINT FRICTION PARAMETERS FOR THE WAM.

Since we are commanding joint torques (τ = u) the

deterministic forward dynamics used in ILQG takes the form

q̈ = M(q)−1 (u − C(q, q̇)q̇ − g(q) − b(q̇)) . (11)

C. Incorporating real world constraints into OFC

The model based control of real hardware must obey

several physical constraints, which somehow need to be

incorporated into the OFC framework. These correspond

to the physical boundaries of the manipulator, namely the

maximally applicable motor torques (umin,umax), the joint

angle limits (qmin,qmax), and the maximally executable
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Fig. 4. Comparison of ILQG results obtained without (left) and with (right)
physical constraint terms P (q) and V (q̇). The unconstrained solution
violates the physical limits which would lead to a self collision applied
to the WAM (top row of simulation screenshots).

joint velocities (q̇min, q̇max). ILQG handles the control con-

straints during optimisation by enforcing control boundaries

on ū and by modifying the feedback gain matrix Lk (i.e.,

setting Lk to zero) whenever an element of the control

sequence lies on the constraint boundary. Applied to the

hardware however we found that control constraints are

rarely violated whereas state constraints are much more

critical (Fig. 4) and ILQG does not handle those constrains in

any form. We therefore propose to incorporate the joint angle

and joint velocity boundaries as optimisation constraints into

the running cost in (3) as

v = wp | r(qK) − rtar |
2 + wv | q̇K | 2 +

∆t
K∑

k=0

(
we |uk |

2 + P (qk) + V (q̇k)
)

(12)

P (q) = wpb

4∑

i=1

(
[qi − qmax

i ]2+ + [qmin
i − qi]

2
+

)
(13)

V (q̇) = wvb

4∑

i=1

(
[q̇i − q̇max

i ]2+ + [q̇min
i − q̇i]

2
+

)
.(14)

For the joint angle boundaries (wpb), and the joint velocity

boundaries (wvb) we use following notational convention

[x]+ = max(0, x) given that for each joint (qmin
i < 0 <

qmax
i ) and (q̇min

i < 0 < q̇max
i ).

Another issue that needs to be addressed is the correct

initialisation of the robot’s joint torque state. Before starting

the optimal reaching movement the robot is assumed to be in

a stationary state, which is achieved by applying the torque

sequence uinit. For the WAM the gravity compensation is

known and we therefore set uinit = g(q
0
). At reaching start

time k = 0 the torque sequences of the plant and the ILQG

4146

Figure 2-11.: Approximate continuous friction model for two values of s. [64]

usually modeled to consist of static and kinetic Coulomb component as well as of a viscous friction
component, as a combination of only kinetic Coulomb and viscous friction components using a
smooth and continuous sigmoidal function, of the form:

b(q̇) = bcarctan(sq̇)
2
π
+Bq̇, (2-11)

where s indicates the “steepness” of the fitted arctan function presented in Fig. 2-11, bc is the
kinetic Coulomb friction, and B is the viscous friction coefficient.

Using experimental results and a least-square estimation method, the kinetic Coulomb friction
coefficients and the viscous friction coefficients are estimated as presented in Table 2-8.
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Table 2-8.: Estimated joint friction parameters of the WAM [64]
Joint q1 q2 q3 q4 q5 q6 q7

B 1,142 0,946 0,309 0,255 0,025 0,039 0,004
bc 2,516 2,581 2,038 0,956 0,323 0,315 0,066

2.2.3. Numerical Validation of the dynamical model of the WAM

The initial objective was to obtain the dynamical model using the recursive Newton-Euler for-
mulation implemented in Matlab R© symbolic toolbox and using Mapple R© engine, but due to the
dimensionality of the problem it was an unproductive intent. The fast growth in the amount of
nonlinear terms, related mainly to the inertia matrix, makes the compact dynamical model of the 7
DoF manipulator an unpractical tool for numerical simulation and control design.

Using the Robotics Toolbox Matlab R© developed by Corke et al. in [19], we performed validations
of the inverse dynamical model. This toolbox allows the definition of parameters of the manipula-
tor and computation of the torques on each joint for a specific trajectory.

The 7th version of the mentioned toolbox, includes a matrix to define all the parameters of a
robot with either rotational or prismatic joints. It uses the matrix named DYN to represent the
manipulator kinematics and dynamics, based on the parameters of the n-axis robot, and defining
the n×20 matrix presented in Table 2-9.

The first 5 columns of the DYN matrix contain the kinematic parameters and may be used any-
where that a D-H kinematic matrix as required, the rest of columns are dynamical information.

The experimental validation of the dynamical model of the WAM implemented a simple process
with the actual manipulator, intended to compare the numerical model with measured data. For
specific trajectories, the process is as follows: the trajectory teaching to the manipulator consists
of defining the initial, intermediate and final positions of the trajectory and taking advantage of
the backdrivability and gravity compensation features of the manipulator; then, data acquisition
using the controller and open-source software provided by the manufacturer and finally an error
comparison of torques measured and computed using the toolbox developed by Corke. After se-
veral tests and with a trial an error process, it was possible to identify problems with the friction
compensation, related to torque errors.

Fig. 2-12 shows a comparison of torques between experimental data and the numerical model using
the mentioned Matlab R© toolbox. It is a difference between numerical and experimental trajectories
mainly at the transient period, due to the friction model used for simulation. This may be conclu-
ded after some trial and error adjustments of Coulomb friction constants of the numerical model,
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Table 2-9.: Robot DYN matrix definition in the toolbox by Corke [19]
COLUMN PARAMETER DESCRIPTION

1 α link twist angle
2 A link length
3 θ link rotation angle
4 D link offset distance
5 σ joint type, 0 for revolute, non-zero for prismatic
6 Mass mass of the link
7 rx Link Center of Gravity (COG) with respect to the link coordinate frame
8 ry

9 rz

10 Ixx Elements of link inertia tensor about the link COG
11 Iyy
12 Izz
13 Ixy
14 Iyz
15 Ixz
16 Jm Motor Armature inertia
17 G Reduction gear ratio. joint speed/link speed
18 B Viscous friction constants, motor refered
19 Tc+ Coulomb friction (positive rotation), motor refered
20 Tc- Coulomb friction (negative rotation), motor refered

showing the lack of accuracy of the Mitrovic et al. [64] estimation of this parameters, and proposes
future experimental work in this specific issue.

For the trajectory presented in Fig. 2-12 it is computed the mean squared error (MSE), and mean,
minimum, and maximum errors. Table 2-10 shows the computed values for each joint of the ma-
nipulator.
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Figure 2-12.: Comparison of experimental and numerical torques of the WAM.

Then, a trial and error correction of the Coulomb friction constant in joint q3 (changing from
bc = 2,036 to bc = 0,5) was applied to verify performance improvement by simulation of the
dynamical model. Tables 2-10 and 2-11 show error comparison before and after correction, res-
pectively. The mean-squared error (MSE) indicator for the joint q3 shows the reduction associated
to that change in the parameter, stating the need for a better estimation process of the friction cons-
tants for the manipulator dynamical model. In Fig. 2-13 it is shown the error reduction after that
correction.

The global tendency of trajectories and decreased error with an improvement in the dynamical mo-
del shows a promising option for simulation and control design of the modeling tool and numerical
model.

Table 2-10.: Mean squared, mean, minimum and maximum errors between experimental and com-
puted torques.

τ1 τ2 τ3 τ4 τ5 τ6 τ7

MSE 3,106 7,691 1,714 0,32 0,039 0,055 0,002
MEAN -0,215 -0,754 -0,245 0,035 0,044 0,112 0,001
MIN -3,274 -5,905 -2,374 -1,346 -0,301 -0,375 -0,068
MAX 3,342 23,203 2,376 1,343 0,388 0,428 0,067
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Table 2-11.: Errors: Joint q3 with improved friction model.
τ1 τ2 τ3 τ4 τ5 τ6 τ7

MSE 3,106 7,691 0,157 0,32 0,039 0,055 0
MEAN -0,215 -0,754 0,072 0,035 0,044 0,112 0,001
MIN -3,274 -5,905 -0,836 -1,346 -0,301 -0,375 -0,068
MAX 3,342 23,203 0,838 1,343 0,388 0,428 0,067
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Figure 2-13.: Torque error reduction for q3, due to Coulomb’s friction correction.



3. Nonlinear control for MDoF

manipulators: From model-based to

data-driven control

Traditional and new control strategies should be tested for different configurations, in order to pre-
pare robotic manipulators to coexist with humans. New challenges emerge from tasks involving
contact, cooperation and any physical interaction. The highly changing and unstructured charac-
teristic of human environments requires flexible, adaptable and robust control systems to support
interactive tasks.

The following sections briefly present three nonlinear control strategies applied to robot manipu-
lation, and used along this work. The first two are traditional model-based control strategies used
in robotic manipulators, the third one is a current developing data-driven control strategy which,
to the knowledge of the author, has not been applied for multiple DoF manipulators (n > 2 DoF),
and requires evaluation and analysis for lightweight and low inertia manipulators like the WAM,
suitable for HRI.

3.1. Feedback linearization control: Computed torque

In systems with multiple inputs and multiple outputs (MIMO), as in the case of a manipulator of
more than one degree of freedom, the design of this control strategy consists of: first, to generate
a linear relationship between input and output, and then formulate a control law based on linear
control strategies [83].

A MIMO system, may be defined as in (3-1):

ẋ = f(x)+G(x)u
y = h(x).

(3-1)

Just as for a SISO systems, if it is necessary to differentiate the system output ri times to obtain
an explicit relationship between the output yi and input ui, then it may be said that the system
has partial relative degree ri. In this case, the total relative degree is the sum of the system partial
relative degrees.
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For the MIMO case, the relation between input and output expressed in terms of the Lie derivative,
can be presented in the form of (3-2) [83]:

y(ri)
i = Lri

f hi +
m

∑
j=1

Lg jL
ri−1
f hiu j, (3-2)

which is equivalent to:
y(r1)

1
...

...

y(rm)
m

=


Lr1

f h1(x)
...

...

Lrm
f hm(x)

+E(x)u, (3-3)

where, E(x) is known as decoupling matrix and is invertible.

Thus, the control law, also known as the decoupling control law can be expressed in the form of
(3-4):

u = E(x)−1


ν1−Lr1

f h1(x)
...

...

νm−Lrm
f hm(x)

 , (3-4)

Leading to m equations of the form:

y(ri)
i = νi. (3-5)

In the case where the total relative degree is equal to the system order no internal dynamic exists
and input-state linearization is obtained. Hence, it may be designed a desired condition in the sa-
me way as is done for the SISO case for regulation and tracking tasks, without worrying about
the stability of the internal dynamics. This is the case of a n DoF manipulator, in which it can be
demonstrated that the total relative degree is equal to the system order, with no internal dynamics.

Later in this work, it is presented and applied the procedure for designing this nonlinear controller
for robotic manipulators.

3.2. Adaptive control: traditional model-based control

strategy

For a system with slow varying parameters is desirable to use control laws and adaptive mecha-
nisms capable of adjusting to those changes. For this end, some fundamental approaches are: Mo-
del Reference Adaptive Control (MRAC), Adaptive Control of Auto-tuning and adaptive versions
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of other control strategies such as the control by feedback linearization and Robust Control.

In general, an adaptive controller is a system that has two feedback loops, the first includes the
outputs of the plant and the controller, and the second contains the elements of adjustment based
on the parameters. The Fig. 3-1 shows a generalized block diagram of this technique, presented by
Åström et al. in [6].

Parameter

Adjustment

Controller System

Controller 

Parameters

Reference

Output

Figure 3-1.: Adaptive Control General Scheme [6]

For cases in which reaching a position (regulation) is not enough, and it is necessary to follow a
specified trajectory (tracking), such as avoiding obstacles or the completion of a task on a prede-
fined time, it must be defined the precision in tracking the trajectory. If in addition, it is required
the variation of the payload handled by the manipulator, it is necessary to use some control laws
that adapt to these changing conditions. In this case, the payload is considered as part of the end-
effector of the manipulator, directly affecting its inertial characteristics.

To find control and adaptation laws for the variable parameter, given a desired trajectory qd(t), ã =

â−a is defined as the error parameter estimation, being a the real and â the estimated parameters. It
uses the possibility to represent the dynamics of the manipulator as a linear function of the variable
parameter. To this end, Slotine et al. in [83] presented a relationship as follows:

H(q)q̈r +C(q, q̇)q̇r +g(q) = Y(q, q̇, q̇r, q̈r)a, (3-6)

where H(q), C(q, q̇) and g(q) are linearly dependent of ai, and q̇r is a notational manipulation
called “reference rate” vector in [83], which is the “error rate” s, related to the first order sliding
surface presented in (3-7):

s = ˙̃q+Λq̃ = q̇− q̇r, (3-7)
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where q̇r = q̇d−Λq̃ is the difference between the desired velocity q̇d and the position error q̃, and
Λ is a positive definite symmetric matrix.

For the adaptive control tracking task, Slotine et al. proposed in [83] an adaptive control law of the
form presented in (3-8), as follows:

τ = Yâ−KDs
˙̂a =−ΓYTs,

(3-8)

where Yâ is the feedforward term, KDs is a proportional derivative term and Γ is a positive definite
symmetric matrix.

In order to determine the stability of the controlled system, the authors used the Lyapunov candi-
date function:

V (t) =
1
2
[
sT Hs+ ãT

Γ
−1ã
]
. (3-9)

Differentiating the previous function, it results:

V̇ (t) = sT Yã− sT KDs+ ˙̂aT
Γ
−1ã. (3-10)

By using the adaptation law presented in (3-8), it may be concluded that:

V̇ (t) =−sT KDs≤ 0. (3-11)

As evidenced by Slotine et al. in [83], using the Barbalat’s lemma it may be verified that q̃ and ˙̃q
tend to zero as t tends to infinity. Thus, it can be assured overall system stability and the conver-
gence of the tracking error.

This alternative does not necessarily allows to accurately estimate the value of parameters, simply
generates values that let the task to be adequately fulfilled [83].

3.3. Unfalsified Adaptive Control (UAC or UC) with

fading memory: data-driven switching control

Over the last decades, a considerable number of model-based control strategies for manipulators
has been proposed. Among them, two commonly used techniques are feedback linearization and
adaptive control [36, 83, 84, 82]. However, as the complexity of manipulators increases, the appli-
cation of model-based control techniques becomes cumbersome and prone to modeling errors. In
these applications, the control strategies have to deal with highly nonlinear and coupled dynamics.
To fulfill a proper regulation, model-based controllers require accurate measurements or estima-
tions of inertial and friction parameters.
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In practice, the measurement or estimation of these parameters is far from trivial and there are
multiple methods to deal with this, like the traditional inverse dynamic identification model and
least squares techniques [90, 102, 91, 34]. Modeling errors, associated with imprecise parameters
measurement or estimation, could lead to undesirable behavior of the controlled plant [90]. Anot-
her problematic issue in the control of manipulators is related to the payload and the ability to
carry a load along the entire workspace. Steady and sudden changes in the load carried by the ma-
nipulator are common and the maximum load that can be carried in a tracking task (Dynamic Load
Carrying Capacity or DLCC) should be taken into account as an operational constraint [53, 42, 57].

The UC theory is a recent approach in the field of adaptive control [79, 78, 89]. The main differen-
ce with respect to previous paradigms is that no prior hypothesis on the plant is used besides the
observed data, without depending on the system model. An UC controller consists of a set of con-
trollers, a performance criterion and a switching algorithm. The last one evaluates the performance
of each controller within the set by using measures of the input and output of the plant without
actually being inserted in the loop. If one of the controllers not inserted into the loop achieves bet-
ter performance, the switching algorithm replaces the current controller by the best one. The UC
approach has been used in several applications, among these, the control of robotic manipulators
[94, 71]. In these works, UC is used as a supervisor, which selects the most suitable controller for
the current operating conditions.

Stefanovic and Safonov published in [89] a compilation of results applied to the Unfalsified Adap-
tive Control and defined by them as Safe Adaptive Control. They state the framework for this
control theory including preliminary definitions and stability lemmas and theorem, some of which
are presented in Appendix B for convenience.

3.3.1. Robot modeling and base controller definition

The classic dynamical model of an n-link rigid manipulator is based on traditional mechanic con-
cepts resulting in a highly nonlinear differential equations of the form

H(θ ,q)q̈+C(θ ,q, q̇)+G(θ ,q)+F(q̇) = τ, (3-12)

where θ∈ Rp is a parameter vector, function of the inertial terms; q,τ ∈ Rn are the joint posi-
tions and torques; q̇, q̈ ∈Rn are the joints velocity and acceleration. H(θ ,q) is the inertia matrix,
C(θ ,q, q̇) includes the Coriolis and centripetal terms, G(θ ,q) encloses the gravitational terms and
F(q̇) = γq̇, is the damping friction with γ as the damping friction constant [82].

The dynamical model for rigid manipulators may be presented as linear to inertial terms which
would be useful for traditional control strategies, as adaptive control [83, 84, 82]. It is also worth
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to notice that saturations of the actuators may be taken into account for the present analysis.

As a linear function of the parameter vector θ , the dynamical model may be presented in the form
[83]

Y(q, q̇, q̈)θ +F(q̇) = τ, (3-13)

where Y : R3n → Rn×p is a matrix function of the joint positions, velocities and accelerations.
Therefore, the dynamical model is linear on the parameter vector θ for a n degrees of freedom
manipulator.

Feedback linearization control (or computed torque control) is a well known control strategy for
robot manipulators and it is used in this section as the UC base controller. For the system (3-12),
the control law using feedback linearization is given by

τ = H(θ ,q)ν +H(θ ,q)q̈+C(q̇,q)q̇+G(θ ,q)+F(q̇), (3-14)

where

ν = (q̈d− q̈)+ k1(q̇d− q̇)+ ko(qd−q), (3-15)

and qd is the desired joint position. The above control law achieves the cancellation of nonlineari-
ties and looks for a pole placement for the input-output system.

Without loss of generality, it may be defined k1 = 2λ and ko = λ 2, where λ determines the con-
vergence rate for the controller [83].

When used as main control strategy, the control law (3-14) assumes a precise knowledge of inertial
and geometrical parameters of the robot, including inertia tensor, friction, flexibility, etc. This
assumptions may result strong in practice because the lack of precision in determining the robot
parameters, leading to errors that may affect the performance of the manipulator [83, 82].

3.3.2. Application of UC to MDoF manipulators

The main ideas regarding the UC are based on the discussions proposed by Popper and his thoughts
in Epistemology [72]. Learning (i.e. controller identification) is achieved by using experimental da-
ta to falsify hypothesis.

Let define the following sets:

P, the set of signals (r,u,y) consistent with past measurements of input u and output y, with
r being the reference.
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M, the set of signals (r,u,y) satisfying the behavioral equations of a controller K.

T, the set of signals (r,u,y) that fulfills the performance specifications.

Then, the controller K is not falsified by the available information set P if

P∩M⊂ T. (3-16)

Otherwise, the controller K is said to be falsified by the available information.

The condition (3-16) formalizes the idea behind controller falsification, which consists basically
in evaluating if a given controller K satisfies the specifications expressed in the form of a subset of
the data P. UC theory claims as its main advantage that a model of the plant is not necessary. The
controller can be falsified or not just with the information given by the data z = (u,y). In addition,
the controller can be falsified without actually being inserted in the closed loop. To this end, the
controllers should be causally left invertible, i.e., it should be possible to compute a fictitious refe-
rence signal r̃ from the inversion of the controller expression and the data z.

The criterion to decide whether or not a controller satisfies (3-16) is based on a cost functional
V (K,z, t), which must be cost-detectable, i.e., the function must be capable of detecting from the
data z if the controller is not stabilizing. A common example, used in this work, of cost-detectable
function is

V (K,z, t) =
Fη(e(t), t)+Fη(u(t), t)

Fη(r̃(t), t)+α
, (3-17)

where ei(t) = r̃i(t)− y(t), α > 0 prevents division by zero and

Fη(y(t), t) =
t

∑
τ=0

yT (τ)y(τ)η t−τ , (3-18)

where η < 1 is a fading factor used to reduce the importance of the oldest samples. This kind
of norm with fading memory provides a better adaptability in case of nonlinear systems since it
allows the UC algorithm to decide which controller is better based on the current operating condi-
tions [38].

With the cost function in Eq. (3-17), it is possible to state an adaptive control strategy. The UC
scheme consists of a set of controllers K = {Ki, i = 1, . . . ,N}, designed with any control theory,
and the switching algorithm that, at each time tk, verifies

mı́n
i
(V (Ki,u,y, tk))<V (K̂,u,y, tk−1)+ ε, (3-19)

where K̂ is the controller acting in the closed-loop at tk−1 and ε is a small constant. If the condition
in Eq. (3-19) holds, the current controller K̂ is replaced by Ki ∈K [65].
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Figure 3-2.: Unfalsified Control scheme for MDoF manipulators

The UC scheme for MDoF manipulators is shown in Fig. 3-2. The fictitious reference generator
computes the set of r̃ from the data (u,y) for each controller Ki ∈K. In this case, the control signal
u corresponds to the torques τ applied to the manipulator joints. With the fictitious references and
the measured data, the falsifier checks the condition in Eq. (3-19) and decides whether or not the
controller should be replaced. This procedure is repeated at each sampling time Ts.

The reference r, input u and output y are defined as

r =
[
qd

T q̇T
d q̈T

d
]T ∈R3n×1,

u = τ ∈Rn,

y =
[
qT q̇T q̈T

]T ∈R3n×1.

(3-20)

The fictitious reference

r̃i =
[
q̂T

d
˙̂qd

T ¨̂qd
T
]T
∈R3n×1 (3-21)

can be computed from the inversion of the controlled dynamic equation in Eq. (3-14) as

¨̂qd +2λ ˙̂qd +λ 2q̂d = H−1 (τ +H(q̈+2λ q̇+λ 2q)
−Hq̈−Cq̇−g−F)

(3-22)

and using the measured data z.



4. Payload analysis and control of MDoF

manipulators

Human Robot Interaction (HRI) has been developed and applied during last decades on situations
like personal support, power assistance, medical care, industrial activities, among others, with the
common issue of handling and controlling unstructured and variable payloads. This chapter pre-
sents a computational methodology to determine the maximum Dynamic Load Carrying Capacity
(DLCC) in the entire workspace of manipulators, including the lightweight and low inertia arms
used in HRI applications. Besides, the Unfalsified Adaptive Controller (UAC) applied on two cases
of study is numerically analyzed and evaluated. The UAC performance is compared with a tradi-
tional Adaptive Controller for the SCORBOT ER V PLUS, and then applied to the Whole Arm
Manipulator (WAM).

4.1. Dynamic Load Carrying Capacity (DLCC)

computation for MDoF manipulators using cell to

cell mapping

The Dynamic Load Carrying Capacity (DLCC) for manipulators has been studied the last decades
by researchers in the field. Some suggested methods for computing the Dynamic Load Carrying
Capacity (DLCC) for multiple degree of freedom (DoF) robotic arms are applied to rigid, flexible
and redundant manipulators. Previous works on DLCC computation are commonly focused on the
trajectory analysis for the tracking control task, based on two constraints: saturation of torques
in the actuators and the accuracy to follow the desired trajectory [49, 104, 97]. On those works,
the saturation constraint considers this nonlinear behavior of motors as a function of its velocity,
using it as upper and lower bounds for DLCC computation. The trajectory accuracy limitation is a
function of the maximum allowed deflection at each trajectory point.

The International Standard ISO9946−99 defines the characteristic presentation for industrial robot
manipulators. In this standard, the maximum allowable load of an industrial fixed base manipulator
is defined as the maximum payload that the manipulator can repeatedly lift in its fully extended
configuration. However, to determine the maximum allowable load of a manipulator, the inertia
effect of the load along a desired trajectory as well as the manipulator dynamics must be taken
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into account, even more if it is a lightweight and low inertia manipulator, like the used in HRI
applications.

This section proposes a methodology to compute the DLCC based on nonlinear numerical analysis
and inspired in cell to cell mapping for the regulation task. The idea with the cell to cell mapping is
to divide the workspace in cells, used in an iterative algorithm to compute the DLCC for the regu-
lation task between each possible combination of these cells . The DLCC computation considers
the torque saturation of actuators as a common behavior in paths that accomplish the regulation
objective. The maximum DLCC computation uses the control task achievement consideration (re-
gulation error) and local joint mechanical constraints (mobility ranges). The maximum DLCC
for the entire workspace would be the minimum of the maximum payloads associated to each
accomplished regulation task in the proposed procedure. Three controllers are used for performan-
ce comparison: feedback linearization (or computed torque), traditional adaptive control and PID
with antiwindup. This approach is intended to be a practical alternative for DLCC computation in
manipulator applications, like in HRI and industry.

4.1.1. Robot dynamical modeling and the regulation control task

The classic dynamical model of a manipulator is based on traditional mechanics laws of Newton-
Euler or Lagrange. The general dynamical equation of a n-link rigid manipulator is highly nonli-
near, and might be formulated as:

H(q)q̈+C(q, q̇)q̇+g(q) = τ, (4-1)

where q, q̇ and q̈ in Rn are position, velocity and acceleration joint vectors, respectively, H(q) is
the n× n inertia matrix, C(q, q̇) contains the n× 1 vector of Coriolis and centripetal terms, g(q)
is the n×1 vector of gravitational terms and τ is the vector of torques applied to the joints of the
manipulator. In general, for the case of a serial kinematic chain configuration with n rotational
joints, there are n degrees of freedom (DoF).

The torque of the actuators in a manipulator is one example of a control input with saturation and
should be considered in the closed loop regulation task as shown in Fig. 4-1.

The control input may be modeled as a piecewise linear (nonsmooth) signal of the form:

τ =


τsat τ ≥ τsat ,

τc −τsat < τ < τsat ,

−τsat τ ≤−τsat ,

(4-2)

with τc the control torque and τsat the saturation torque for each actuator. It has to be mentioned
that τsat is a function of the motor angular velocity, but in this work it is considered as a constant.
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Figure 4-1.: Closed loop control systems with nonsmooth saturation.

Three control strategies are used to compare performance on the DLCC computation process. The
desing process for those strategies is summarized here for convenience as follows:

1. Feedback linearization control design

The Feedback Linearization control, for MIMO systems, is used as a control alternative for
the last decades, and is commonly known as the computed torque control. Consider a region
Ωx which contains the state vector x. Consider a system with the same number m of inputs
and outputs (square system), in the following companion form [83]:

ẋ = f(x)+G(x)u,
y = h(x),

(4-3)

where x is the n× 1 state vector, u is the n× 1 control input vector, y is the m× 1 vector
of system outputs, f and h are smooth vector field, and Gi is a n×m matrix whose columns
are smooth vector fields gi. The standard procedure for the MIMO case is to differentiate the
outputs yi until the inputs ui appears. The control law based on input output linearization for
the manipulator is then developed. For the robot manipulator, the following version of the
companion form for the Eq. (4-1) may be used:

xn = f(x)+b(x)u. (4-4)

Then, Eq. (4-1) may be reformulated in the form:

q̈ = H(q)−1(τ−C(q, q̇)q̇−g(q)). (4-5)

In order to perform regulation tasks, the following control input may be used:

τc = H(q)ν +C(q, q̇)q̇+g(q), (4-6)

where

ν = q̈d− ko(q−qd)− k1(q̇− q̇d). (4-7)
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Where qd is the desired joint position. The above control law achieves cancelation of non-
linearities and looks for a pole placement for the input output system. Besides, it assumes
perfect knowledge of the model [83]. The following linear relation between the output y and
the new input ν is as follows:

q̈ = ν . (4-8)

By combination of Eq. (4-5), Eq. (4-6) and Eq. (4-7) the closed loop error dynamics are
found as:

ë+ k1ė+ koe = 0 , (4-9)

where e = qd−q. The constants k0 and k1 must be chosen so that the closed loop polynomial
Eq. (4-9) has all its roots with negative real part:

K(p) = p2 + k1 p+ ko . (4-10)

Without loss of generality, it can be defined: k1 = 2λ and ko = λ 2, where λ is a design
parameter for the controller [83].

2. Adaptive control with gain scheduling

The uncertain time variation of the system mass properties motivates the use of adaptive
control systems, which can be obtained based on a robust proportional derivative (PD) con-
troller. Given the desired trajectory of position qd and considering that some manipulator
parameters are unknown, the adaptive controller design problem is to obtain a control law
for the actuator torque, and an estimation law for the unknown parameters, such that the ma-
nipulator output q closely tracks the desired trajectory or accomplish the regulation task [83].

Let us define ã = â−a as the parameter estimation error, with a being a constant vector of
unknown parameters describing the manipulator mass properties, and â its estimate. Since
the terms H(q), C(q, q̇) and g(q) depend linearly on a, the system dynamics can be linearly
parametrized as follows:

H(q)q̈r +C(q, q̇)q̇r +g(q) = Y(q, q̇, q̇r, q̈r)a, (4-11)

from the above equation, the matrix Y = Y(q, q̇, q̇r, q̈r) and a are known. Then, the control
law is:

τ = Yâ−KDs, (4-12)

and the parameter estimation law is:

˙̂a =−ΓYT s. (4-13)
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The term s is defined as follows:

s =−ė−Λe , (4-14)

where e = qd−q. With the above control system, the output error converges to the surface
s = 0, e and ė tend to 0 as t→ ∞ [83]. So, the above controller guarantees the following:

The global stability of the system: boundedness of the vectors q, q̇ and â .

The convergence of the tracking or positioning error.

3. PID with Antiwindup

The PID Controller is one of the most used controllers in applications involving manipu-
lators. The antiwindup technique is used to improve the response of the controller when
nonlinearity saturation is present in the system, as occurs in the motors of a manipulator.
There is a variety of antiwindup models [12, 95]. Then, it is used the model presented in the
Fig. 4-2.
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Figure 4-2.: PID Controller with Antiwindup.

4.1.2. Previous works on DLCC computation

Two main constraints related to DLCC computation on flexible and redundant manipulators are:
maximum allowable torques on each actuator and accuracy on the tracking control task [53, 103].
These constraints may be calculated in a trajectory discretized into j = 1...m points and summari-
zed as follows:

The actuators constraint is computed as a function of an upper and lower torque bounds
depending on joint velocities, to calculate a load coefficient as:

(ca) j = mı́n
{

(τa)i
máx{τe}−máx{τn} ; i = 1...n

}
, (4-15)
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with (τa)i the maximum allowable torque at joint i, τe the torque at the end-effector with
added mass and τn the no-load end-effector torque.

The end-effector accuracy constraint is calculated as a function of the no-load deflection
(∆n) j, deflection with loaded end-effector (∆e) j and the maximum allowable deflection for
the loaded end-effector (∆p) at each trajectory point. The load coefficient is defined as:

(cp) j =
∆p−(∆e) j

máx{∆e}−máx{∆n} . (4-16)

Hence, the trajectory load coefficient is computed as

c = mı́n
{
(cp) j,(ca) j

}
, (4-17)

and the maximum load mload for the trajectory would be

mload = cme, (4-18)

with me the mass at the end-effector.

4.1.3. DLCC computation based on cell to cell mapping on the entire

workspace for the regulation task

In the regulation task, there is a maximum payload associated to some predefined accuracy related
to the task. The accuracy is a measure of the error of the final position for a specific regulation task.
On the other hand, the trajectory accomplished by the controller may have mechanical constraints
related to each joint or to the workspace it self. The numerical analysis of the solutions based on
the cell to cell mapping strategy allows to compute the maximum DLCC related to the workspace
of the manipulator and potentially serve as a path planing strategy.

The proposed methodology, presented in the block diagram Fig. 4-3a, may be enumerated as fo-
llows:

1. Divide the workspace into cells. The center of each cell will be used as a candidate position.

2. Examine the workspace, based on the mechanical constraints of the manipulator (applying
the inverse kinematic model), to select possible candidate positions.

3. Compute the DLCC between each pair of candidate positions, building a cell to cell map-
ping, based on position error of the regulation task. The maximum DLCC mrt for each cell
combination may be defined as the maximum load capable of being carried by the manipula-
tor between two points in the workspace, as shown in Eq. (4-19). This procedure is presented
in the flow diagram of Fig. 4-3b. Hence,

mrt = máx
{
(mrt)i

}
. (4-19)
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4. The evaluation of the entire workspace would result to be the minimum of those maximum
DLCCs or the maximum load capable of being carried by the manipulator between all the
candidate positions. Hence, the maximum DLCC mload would be the minimum of the (mrt)i

for i = 1...q regulation tasks as stated in Eq. (4-20):

mload = mı́n
{
(mrt)i , i = 1...q

}
. (4-20)
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Figure 4-3.: Methodology algorithm: a) Main procedure. b) DLCC computation algorithm.
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4.1.4. Numerical analysis of maximum DLCC computation and

controller performance comparison

For a 5 DoF (n = 5) rotational joint manipulator (q = θ), with state vector x = [qk, q̇k] , for
k = 1 . . .5. Let us define:

H(xk)
−1 = [h(xk)

−1
i j ](n×n) = (H(xk)

−1)i j. (4-21)

Hence, the state variable representation:

ẋk = xk+5,

ẋk+5 = (H(xk)
−1)k j(τ−C(x)−g(xk)).

(4-22)

In a compact form, it can be presented as: ẋ = f(x,τ), with x ∈ Rp, τ ∈ Rq, for p = 10 and q = 5.

The considerations used for numerical analysis and simulation for a 5 DoF manipulator are:

1. The controllers are implemented using the following criteria:

The feedback linearization controller is designed to obtain the critically damped tran-
sient response.

The adaptive controller with gain scheduling proved its best setting by minimizing the
convergence time of the adapted parameter (payload). To this end, a trial and error
procedure was applied.

The PID with antiwindup was configured to have a damped solution.

2. The saturation torque related to the actuators is chosen to be τsat = 18,2 Nm.

3. The reference error was defined as εTol = 10−3 rad, for the accuracy constraint in the regu-
lation task.

4. The workspace is a R3 space of the following span: X = (−400,400) mm, Y = (−400,400)
mm and Z = (−0,800) mm.

Fig. 4-4 shows the center of each cell in the workspace division for 1000 candidate positions, re-
sulting from a 10× 10× 10 separation and a cell size of 80× 80× 80 mm. Then, Fig. 4-5 shows
an exemplifying subset of 6 reachable positions, extracted from a random group of 10 candidate
positions using the inverse kinematic model of the manipulator, as applied in the second step of the
proposed methodology. This is obtained by the use of a MatLab R© function plotbot included in [11].

The regulation task is computed for each pair of candidate positions using different controllers. As
shown in Fig. 4-6 for one of the tasks (with the initial and final positions presented below) and using
feedback linearization control, the regulation task is accomplished for a payload of mrt = 2,26 kg.
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Figure 4-4.: Workspace division in 1000 cells (10×10×10).

Notice in Fig. 4-7 the saturation in the control torque τ2 (the most demanding joint) for a simula-
tion time between 1,5 s and 10 s approximately, but the task is fulfilled with the expected accuracy.

The testing condition may be defined as:

The initial position:

1. Workspace: X =−400 mm, Y =−29 mm and Z = 371 mm.

2. Joint space: θ1 = −3,07 rad, θ2 = −1,11 rad, θ3 = −2,03 rad, θ4 = −0,65 rad and
θ5 = 0 rad.

The final position:

1. Workspace: X =−29 mm, Y = 342 mm and Z = 742 mm.

2. Joint space: θ1 = 1,65 rad, θ2 = 0,93 rad, θ3 = 0,46 rad, θ4 = −2,95 rad and θ5 = 0
rad.

The maximum DLCC for the entire workspace, using feedback linearization control on this par-
ticular manipulator configuration resulted to be mload = 0,82 kg, for the adaptive controller the
mload = 0,33 kg and for the PID with antiwindup mload = 0,15 kg.

The Fig. 4-8 presents a comparison histogram between the three proposed controllers. It shows
the frequency of control task achievement for each controller as a function of the payload (with
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Figure 4-5.: Exemplifying reachable configurations for 10 candidate positions.

increments of 1 kg). The exemplifying random group of 10 candidate positions is used to compare
the performance of the controllers for all the possible combinations of the reachable positions on
that subset. It shows that the most of the tasks are grouped in the lower payload scale (≤ 3 kg).
For the Feedback Linearization Controller (FLC) some of the tasks (with close initial and final
positions) can carry payloads above 3 kg, the Adaptive Controller with Gain Scheduling (ADPGS)
has a decreasing performance when the payload increases. The PID controller with Anti-Windup
(PIDAW) shows a relatively consistent behavior in the lower payload range (≤ 3 kg).

Other important issues to be considered are:

As the inverse kinematics is evaluated as part of the methodology, there may be multiple
solutions for some specific candidate position and one of them have to be chosen.

There are mechanical constraints related to possible obstacles in the workspace and the
joints. They may be used as constraints for the regulation task trajectories.

There could be some other controller parameter settings that may contribute to fulfill the
regulation task in cases where it is not accomplished.



4.1 Dynamic Load Carrying Capacity (DLCC) computation for MDoF manipulators using cell
to cell mapping 55

0 5 10 15 20 25 30
−5

0
5

x 1 (
ra

d)
t(s)

Joint Positions (m
rt
= 2.26 Kg)

0 5 10 15 20 25 30
−5

0
5

x 2 (
ra

d)

t(s)

0 5 10 15 20 25 30
−5

0
5

x 3 (
ra

d)

t(s)

0 5 10 15 20 25 30
−4

−2
0

x 4 (
ra

d)

t(s)

0 5 10 15 20 25 30
−0.1

0
0.1

x 5 (
ra

d)

t(s)

Figure 4-6.: Joint trajectories of the SCORBOT’s joints.

The control effort may be computed as an indicator in order to find the most demanding
trajectories.

There are multiple trajectories to go from one cell to another. The control effort or any other
performance criterion may be used to optimize the task. Hence, this procedure may be used
for path planning.

4.1.5. Results

The maximum DLCC for the entire workspace using nonlinear numerical analysis is a different
approach, which may be used for application setting, manipulators design and potentially for path
planning. It would be realistic to consider the saturation as part of the normal performance of the
control tasks, because the behavior of the motors. The comparison between different controllers
shows the best performance of the feedback linearization controller, counting with the fact that it is
based in the perfect knowledge of the manipulator model. The adaptive controller would be more
practical because of the uncertain nature of some manipulator applications. The PID is justified be-
cause of the common use of this controller in industrial applications. The cell to cell mapping used
for DLCC computation in manipulators may help to improve performance based on its structured
nature.
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Figure 4-7.: Control Torques for mrt = 2,26 kg.

Besides, it is recommended the inclusion of the proposed methodology in manipulators design that
would help to improve characterization and application performance. The saturation in manipulator
control may be considered as part of the natural behavior of the tasks, allowing controllers design
and setting that accomplish its objectives based on performance. The cell to cell mapping concept
may be used for trajectory planning based on control effort or other optimization criterion.
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Figure 4-8.: Comparison among control strategies for the proposed methodology.

4.2. Data-driven Unfalsified Control (UC) compared with

the traditional model-based Adaptive control: Effect

of controllers in the maximum DLCC.

The aim of this section is to evaluate in simulation both performance and robustness of the UC
strategy for MDoF manipulators, extending the results in [94, 71] and considering the effect in
the DLCC. The proposed UC scheme includes fading memory to improve the adaptability of the
controller to recent operating conditions. UC with fading memory has been introduced in [38] to
reduce the importance of the oldest information in the switching algorithm. This is more suitable
in nonlinear or time-varying plants as MDoF manipulators and also improves the capability of the
UC algorithm to detect destabilizing controllers. Traditional feedback linearization is used as base
controller for the UC controller set.

This section shows results related to the DLCC computation for the tracking task, with a com-
parison between UC and a traditional model-based adaptive control and then an evaluation of
its relation to the precise estimation of the manipulators model. Three scenarios were conside-
red: performance of controllers for two fixed loads at the end of the manipulator, performance
of controllers with periodic non-smooth load changes between two fixed values and performance
of controllers by the application of worst-case disturbances to the model inertial parameters. The
proposed control is compared in simulation with a well-known adaptive control strategy, showing
that the independence of the robot model may result in better performance and higher DLCC. The
UC is capable of a better behavior in a larger operating range. Also, the UC is more robust as can
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Figure 4-9.: CAD model of the SCORBOT ER V PLUS [37]

be concluded when the system parameters are perturbed.

4.2.1. Analysis of controller performance and robustness

The case of study considered in this section is a 5-DoF manipulator like the SCORBOT ER V Plus
CAD model shown in Fig. 4-9, with the parameters proposed in [23] as:

mi = 1 kg, i = 1, . . . ,5,

l1 = 0,35 m, l2 = l3 = 0,22 m, l4 = l5 = 0,14 m,

Ixy =

{
0,1, if x = 1, . . . ,5 and y = 1,2,3,
0, if x = 1, . . . ,5 and y = 4,5.

Based on previous simulations and analysis presented in [5], the maximum DLCC of the manipu-
lator for the tracking task is assumed to be 2 kg. The load at the end of the manipulator is assumed
attached to the end-effector of mass m5 and unknown for the controller implementation.

For analysis purposes, the following desired trajectories were used:

qdi =


2π

3

(
1− cos

(
2π

5
t
))

, if i = 1,3,5,

π

(
1− cos

(
2π

5
t
))

, if i = 2,4.



4.2 Data-driven Unfalsified Control (UC) compared with the traditional model-based Adaptive
control: Effect of controllers in the maximum DLCC. 59

The initial conditions for all simulations were qdi(0) = 0 and q̇di(0) = 0 (i = 1, . . . ,5). Note that
trajectories are periodic, with period T = 5 s. The damping friction constant for all joints was de-
fined as γ = 0,1. The parameter related to the controller Eq. (3-15) was set at λ = 20 as a result of
several simulations, for the smaller tracking error and fastest response [5]. Although the actuator
saturation torques are a function of the velocity, the upper and lower bounds of the control signal
were assumed to be constant for simplicity, as ±30 Nm.

The controller set K for the UC is defined by Eq. (3-14), where the parameter θ (load applied at
the end of the manipulator, including the mass of the end effector) takes values θ̂ in a set Θ, for an
interval from the no-load condition to the maximum DLCC of the case of study, i.e.

Θ = {1,2,3}. (4-23)

In terms of the payload, and considering that m5 = 1 kg (actual mass of the end effector without
load), this means that the corresponding interval for the controller parameter (payload) is [0,2] kg.

The used cost function is defined in Eq. (3-17), with α = 0,001 and η = 0,9 as the fading constant.
The cost function is evaluated periodically with Ts = 0,01 s, based on the cost minimization hys-
teresis switching algorithm with fading memory presented in Section 3.3.2. The initial controller
parameter used by the UC for the simulation was θ̂(0) = 1. All simulations were performed for a
15 s time interval, which includes three complete periods of the desired trajectories.

Three scenarios were considered: i) performance of controllers for two fixed loads at the end of the
manipulator; ii) performance of controllers with periodic non-smooth load changes between two
fixed values; and iii) performance of controllers applying the worst-case disturbances to the model
inertial parameters.

The control effort (CE) and the integral squared tracking error (ISE) are used as performance eva-
luation criterion. They are related to the performance specifications stated by the cost function Eq.
(3-17), since the errors and inputs (torques) are considered. Besides, the influence of both contro-
llers in the maximum DLCC is analyzed.

Considering the periodic feature of trajectories, and counting with the defined integral quality of
the CE and ISE, it is used a moving window computation of those integrals for the entire period of
the desired trajectory (T = 5 s in this case), defining the integration interval between t−T and t.

The ISE is computed as

ISEqi(t) =
t∫

t−T

e2
i (t)dt, (4-24)
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where ei(t) (i = 1 . . .5) are the tracking errors.

The CE is computed as

CEqi(t) =
t∫

t−T

τ
2
i (t)dt, (4-25)

where τi(t) (i = 1 . . .5) are the control torques. Note that although these calculations are presented
in continuous time, in practice they are computed in discrete time, with relatively small sampling
time compared with the evaluation of the cost functions in Eq. (3-19).

The UC scheme was compared with the model-based adaptive controller proposed in [83], which
uses the linear model presented in Eq. (3-13) and was designed to adapt to load changes, with
proven Lyapunov stable control and converging adaption laws as

u = Yâ−KDs,
˙̂a =−ΓYT s,

(4-26)

where the first-order sliding surface s = ˙̃q+Λq̃, with q̃ = qd−q; Yâ is a feedforward term, â is the
load adaption parameter, Γ, Λ are symmetric, positive definite matrices and KDs is the proportional
derivative term. The adaptive controller tuning for the smaller tracking error and fastest adaption
convergence are given in [5] as a result of several simulations. For the current simulation, KD =

100I5, Λ = 150I5 and Γ = diag(0,3,0,5), where I5 is a 5×5 identity matrix.

4.2.2. Controller performance analysis for two fixed loads at the

end-effector

Initially, it is analyzed the performance of both controllers for the most effort demanding joints
(joints q2 and q3). As the performance of both controllers is tested to be well behaved for light
loads, simulations are performed for fixed loads of 1,5 kg and 1,7 kg (load remains constant along
the entire trajectory), supposing the precise knowledge of the model inertial parameters, meaning
that no disturbances are applied to the model.

In Fig. 4-10, both the desired and real trajectories for joints 2 and 3 (q2 and q3) are shown over-
laid, stating its periodic feature for the case of a 1,5 kg payload. In Fig. 4-11, the comparison of
tracking errors for 1,5 kg and 1,7 kg shows that the error increases considerably at the most effort
demanding points of the trajectories, this would be at the beginning of each period. Although the
tracking errors for a load of 1,5 kg are relatively small, the system with adaptive control behaves
better than the system with the UC, even at the most demanding points of the trajectories. The
tracking errors for the load of 1,7 kg shows that the adaptive controller is not able to accomplish
the control task due to an impractical growth in those errors, meaning that in simulation it can be
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Figure 4-10.: Tracking trajectories and references for joints q2 and q3. Payload of 1,5 kg

observed several turns of the joints, which in reality it would represent saturation due to motion
stops, with the corresponding effect in the errors. On the other hand, the system with UC continues
with its adequate behavior.

A comparison of the ISE for q2 and q3 (shoulder and elbow joints of the manipulator) is shown in
Fig. 4-12, for both loads. The integration window for the period T = 5 s starts at t−T s for the first
computation, and moves along the 15 s simulation time. In the case of 1,5 kg load, the ISE stays
steady after the first period for both controllers, with little changes at the most effort demanding
points of the trajectories. For 1,7 kg the ISE for the UC stays small but the ISE for the adaptive
controller increases along the trajectories as a consequence of its incapability to accomplish the
control task with this load.

In Fig. 4-13 it is presented a comparison between control signals of both controllers for the two
testing loads. It should be noticed for the 1,5 kg load that both controllers are able to recover from
saturation in the entire trajectory. However, UC shows smoother control signals than the adaptive
controller. For the 1,7 kg payload, the control signal for the adaptive controller turns unstable after
5 s, but the UC control signals remains bounded and smooth.

The Fig. 4-14 shows a comparison between CE for q2 and q3, in the cases of 1,5 kg and 1,7 kg,
respectively. The integration window for the period T = 5 s starts at t−T for the first computation,
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Figure 4-11.: Tracking errors for joints q2 and q3. a) Payload of 1,5 kg. b) Payload of 1,7 kg
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Figure 4-14.: Control effort (CE) for q2 and q3. a) Payload of 1,5 kg. b) Payload of 1,7 kg

and moves along the 15 s simulation time span. For the lighter loads, the CEs are similar, but for
the 1,7 kg load, the control effort for the adaptive controller increases constantly after 5 s as a
consequence of the unstable and saturated behavior presented in Fig. 4-13.

The Fig. 4-15 shows for 1,5 kg load a complete trajectory period (between 5 and 10 s) of the cost
functions in Eq. (3-17) and the changes of the controller parameter θ produced by the falsification
algorithm: a change occurs each time the condition in Eq. (3-19) is satisfied. The algorithm sear-
ches for the minimum cost value to falsify and change the current controller parameter.

Table 4-1 shows a normalized performance comparison of controllers for joints 1 to 5, based on
the ISE and CE for a time span of 15 s and an integration window of 5 s. Normalization is based on
the NO LOAD case, presented at the same table. Note that the ISE stays bounded for the UC for
both load values, but there is a significant increase in these performance indicator for the adaptive
controller when the load passes from 1,5 kg to 1,7 kg, showing a performance loss (actually, the
controller is not able to fulfill the control task for 1,7 kg. The mean value is shown in Table 4-1
by the light gray cells). This shows that for the present setting, the adaptive controller provokes a
limited maximum load carrying capacity (DLCC) in the proposed load testing interval, as presented
in [5]. It should be noted how the magnitudes of the CE increase for the adaptive controller when
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Figure 4-15.: UC Cost functions and controller parameter changes for a fixed load of 1,5 kg

the load changes from 1,5 kg to 1,7 kg, as expected, due to the unstable and saturated behavior
of the control signals after the first period, confirming performance decay for the higher load (the
mean value is shown in Table 4-1 by the dark gray cells. For q5 the CE remains relatively small due
to the orientation function of that joint). From Table 4-1, the UC exhibits an acceptable ISE for the
1,7 kg load, showing how the manipulator is able to follow the desired trajectory with satisfactory
behavior.

4.2.3. Controller performance analysis for periodic non-smooth load

changes between two fixed values

This scenario evaluates the controllers performance when the load carried by the manipulator chan-
ges periodically (with period Tl = 3 s) between 0,5 kg and 1,5 kg and between 0,5 kg and 1,7 kg.
Sudden (non-smooth) load changes can occur in real manipulator control tasks, as pick and place
and palletizing (stacking cases of products onto a pallet), among others.

The cost functions and controller parameter changes for the UC are very similar to those presented
in the Fig. 4-15, despite of the load disturbance created by the changes between 0,5 kg and 1,5 kg
and between 0,5 kg and 1,7 kg. There are no significant differences in this functions, related to the
sudden change of load. Hence, the performance of UC did not change significantly with respect to
the first scenario. In fact, in the scenarios to come and due to this consistency in results, they are
summarized in tables focusing in the analysis of the topics of interest.
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Table 4-1.: Controller performance comparison for joints q1 to q5 in a time span of 15 s. Normali-
zation based on the NO LOAD case.
CONTROLLER UC ADAPTIVE
PAYLOAD (kg) NO LOAD 1.5 1.7 NO LOAD 1.5 1.7

ISE q1 MAX 1,80E-05 1,80 2,23 3,40E-07 118,18 3,75E+09
MEAN 1,66E-05 1,84 2,28 2,82E-07 99,26 2,12E+09
STD.DEV. 3,08E-07 1,55 1,97 2,76E-08 566,69 1,82E+10

ISE q2 MAX 1,40E-03 18,21 74,23 8,25E-07 1103,47 1,96E+10
MEAN 1,29E-03 16,72 70,02 5,02E-07 86,66 2,98E+09
STD.DEV. 2,21E-05 69,98 372,99 4,84E-08 2403,66 6,72E+10

ISE q3 MAX 5,39E-03 13,91 47,55 4,43E-07 247,91 3,42E+10
MEAN 5,02E-03 12,74 44,59 3,29E-07 248,83 9,54E+09
STD.DEV. 7,78E-05 55,10 241,64 2,43E-08 607,31 1,46E+11

ISE q4 MAX 2,00E-03 8,38 24,36 3,38E-08 648,56 6,11E+10
MEAN 1,87E-03 7,82 22,96 3,14E-08 227,69 1,68E+10
STD.DEV. 2,85E-05 29,80 117,16 1,33E-09 1990,52 4,12E+11

ISE q5 MAX 8,94E-06 1,72 2,17 1,46E-07 712,70 4,10E+08
MEAN 8,01E-06 1,78 2,25 1,26E-07 148,44 2,14E+08
STD.DEV. 1,76E-07 1,37 1,80 1,29E-08 2073,68 1,53E+09

CE q1 MAX 3,48E+01 4,10 4,68 1,18E+02 10,22 2,71E+07
MEAN 3,35E+01 4,05 4,62 9,77E+01 9,80 1,64E+05
STD.DEV. 3,80E-01 4,71 5,45 8,61E+00 9,74 2,62E+07

CE q2 MAX 4,33E+02 2,16 2,30 4,85E+02 3,73 1,78E+10
MEAN 4,16E+02 2,15 2,30 4,64E+02 3,14 9,33E+07
STD.DEV. 6,25E+00 2,33 2,43 9,53E+00 10,37 6,40E+10

CE q3 MAX 2,43E+02 2,85 3,13 2,95E+02 3,67 2,93E+10
MEAN 2,40E+02 2,81 3,08 2,84E+02 3,47 1,53E+08
STD.DEV. 1,85E+00 2,97 3,30 5,56E+00 6,88 1,10E+11

CE q4 MAX 1,78E+01 3,38 3,80 2,28E+01 27,18 1,01E+07
MEAN 1,76E+01 3,37 3,79 2,19E+01 24,27 5,28E+04
STD.DEV. 1,19E-01 3,41 3,86 6,80E-01 31,71 2,38E+07

CE q5 MAX 7,91E+00 6,31 7,38 4,59E+01 23,20 98,98
MEAN 7,66E+00 6,31 7,38 3,92E+01 20,15 87,44
STD.DEV. 9,29E-02 6,37 7,46 3,81E+00 27,64 353,20
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Table 4-2.: Controller performance comparison for joints q2/q3 and non-smooth change of pay-
load every 3 s. Normalization based on the NO LOAD case.

ADAPTIVE CONTROLLER
PAYLOAD CHANGE 0.5 - 1.5 kg 0.5 - 1.7 kg

ISE rad2 (q2 / q3) MAX 125,54 / 48,69 5,26E+10 / 7,25E+10
MEAN 24,98 / 3,39 2,65E+10 / 3,33E+10
STD.DEV. 654,67 / 159,63 3,34E+11 / 5,00E+11

CE Nm2 (q2 / q3) MAX 2,12 / 2,05 9,37 / 15,39
MEAN 0,39 / 0,31 7,45 / 12,16
STD.DEV. 27,04 / 22,64 136,45 / 247,64

UNFALSIFIED CONTROLLER
PAYLOAD CHANGE 0.5 - 1.5 kg 0.5 - 1.7 kg

ISE rad2 (q2 / q3) MAX 0,01 / 2,26 0,01 / 6,84
MEAN 0,01 / 2,22 0,01 / 6,57
STD.DEV. 0,09 / 17,69 0,12 / 53,54

CE Nm2 (q2 / q3) MAX 0,12 / 0,24 0,12 / 0,24
MEAN 0,12 / 0,23 0,12 / 0,23
STD.DEV. 0,10 / 1,21 0,10 / 1,51

As in Fig. 4-13, a comparison between control signals applied to the robot by the UC and the
adaptive controllers was done for the cases of sudden changes of the load at the end effector,
finding similar results to those presented in Section 4.2.2. For the case of changes between 0,5
kg and 1,5 kg, smoother control signals for the UC were noted. For the case of changes between
0,5 kg and 1,7 kg, the control signal of the adaptive controller presented an unstable behavior,
justifying a growing ISE and CE for this controller.

Table 4-2 shows a normalized performance comparison of both controllers for joints q2 and q3,
based on the ISE and CE in a time span of 15 s, for sudden changes of load (every 3 s) between
0,5 kg and 1,5 kg and 0,5 kg and 1,7 kg, respectively. Normalization is based on the NO LOAD
case presented in Table 4-1. It also shows an increasing ISE for the adaptive controller in the case
of non-smooth changes of payload between 0,5 kg and 1,7 kg, demonstrating that this controller is
not able to fulfill the corresponding task (The mean value is shown in Table 4-2 by the light gray
cell).

The growing CE for the adaptive controller, required to move q2 and q3 for sudden changes of pay-
load between 0,5 kg and 1,7 kg, are related to the unstable and saturated control signal behaviors,
similar to those presented in Fig. 4-13.
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Table 4-3.: Disturbed inertial parameter used for the worst case scenario.
PARAMETER No-dist. 1σ dist. 2σ dist.

mi(i = 1 . . .5) (kg) 1 1,32 1,45
l1 (m) 0,35 0,46 0,51
l2 = l3 (m) 0,22 0,29 0,32
l4 = l5 (m) 0,14 0,18 0,2
Ixy
x = 1−5 and y = 1,2,3 0,1 0,13 0,15

x = 1−5 and y = 4,5 0 0 0

4.2.4. Performance analysis as a function of the payload: from the

no-load condition to the maximum DLCC of the case of study

The precise identification of inertial parameters of real manipulators is not a trivial task, with ca-
tegorizations as: uniquely identifiable, identifiable in linear combinations only, and unidentifiable
[40]. Besides, there are several estimation methods, from robot disassembling and CAD/CAM
databases, to on-line and off-line identification using simple least-squares (LS) methods [74]. Sup-
posing a normal distribution, the deviations from the real values of parameters resulting of an
identification procedure may be grouped in the 68% and 90% standard deviations around the ac-
tual parameters as presented in [90], corresponding to the 1σ and 2σ confidence intervals.

It is studied the robustness for both controllers, showing its model dependence on the application
of disturbances (lack of precision in parameter estimation) to the inertial parameters of the model,
based on the worst case scenario of possible parameter identification deviations of 1σ and 2σ con-
fidence intervals, and presenting that the DLCC is affected by those disturbances. The values used
for parameters from the no-disturbance case to the 2σ disturbance case are summarized in Table
4-3.

The robustness was analyzed for the UC and the adaptive controller for the range between no-load
and the maximum load proposed for the case of study (payload from 0 to 2 kg), with resolution
of 0,1 kg, and considering the 1σ and 2σ confidence intervals of estimated inertial parameter as
model disturbances, finding that the behavior from 0 kg to 1,4 kg is consistent and predictable from
the previous scenarios analysis, even for the proposed disturbances. So, the following analysis is
presented for payloads between 1,4 kg and 2 kg, with resolution of 0,1 kg.

Table 4-4 shows a normalized performance comparison of the controllers based on the ISE and
CE just for joint 3 (q3 as the elbow joint), because the consistency of results related to the other
joints and its significance, as a function of the payload change from 1,4 kg to 2 kg, with 0,1 kg
increments. Normalization is based on the No-disturbance case, shown in the same table. The table
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presents three cases: the no-disturbance case (perfect identification of inertial parameters) and the
cases of disturbances of 1σ and 2σ of the model inertial parameters.

From the Table 4-4 it can be concluded that, in the no-disturbance case, the ISE and the CE are
lower for adaptive control until a load of 1,7 kg, where it looses its ability to fulfill the task (the ISE
and CE values are shown in Table 4-4 by the light gray cells). The ISE and CE for the UC continue
with a bounded tendency, showing how the UC is able to handle higher loads. In the case of 1σ

model disturbance, the behavior is similar to the no-disturbance case, but for the 2σ disturbance,
it is a reduction in the DLCC manageable by the adaptive controller, decreasing to 1,6 kg (the ISE
and CE values are shown in Table 4-4 by the dark gray cells), but the performance of the UC stays
consistent for the entire range, as expected.

Therefore, it shows that the robustness of model-based adaptive controller is related to the accuracy
in the identification of the model parameters and the UC resulted to be more robust to this kind of
disturbances. Besides, the DLCC of the adaptive controller would depend on the same condition.
The UC shows to behave better for the higher loads of the testing interval.

4.2.5. Results

A UC strategy has been proposed for the control of a MDoF manipulator. The proposed scheme
adapts the controller parameters to seek the best performance at different operating conditions ba-
sed solely on the input-output data. This fact makes the control law less prone to modeling errors
and changes in the operating conditions than other classical adaptive control schemes. The propo-
sed UC strategy uses a cost function with a fading factor to achieve a better adaptation to highly
changing operating conditions and the controller set was computed using feedback linearization.
Simulation results under typical scenarios have revealed the advantages of the UC against classical
adaptive control schemes for the higher loads of the testing interval. The UC is capable of a better
behavior in a larger operating range. These results have also shown that the proposed control is
more robust as can be concluded when the system parameters are perturbed. UC has also achie-
ved a proper tracking with smoother control signals and lower control efforts in high loads. As
future research remains the experimental validation of the UC in a Scorbot ER V Plus and more
complex manipulators as the seven DoF Whole Arm Manipulator (WAM) manufactured by Barrett
Thecnology Inc.
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Table 4-4.: Controller robustness comparison using ISE and control effort, for joint q3. Normali-
zation based on the No-disturbance case.

No-disturbance to the model inertial parameters
ISE CE

PAYLOAD (kg) UC ADAPT. UC ADAPT.
1,4 1,41E-02 1,89E-06 6,31E+02 6,18E+02
1,5 6,36E-02 2,75E-05 6,64E+02 6,53E+02
1,6 1,34E-01 9,57E-04 7,00E+02 7,11E+02
1,7 2,23E-01 3,01E+03 7,36E+02 3,15E+29
1,8 3,25E-01 3,45E+03 7,73E+02 1,54E+30
1,9 4,34E-01 3,91E+04 8,12E+02 4,04E+33
2 5,49E-01 3,49E+03 8,53E+02 8,87E+31

Disturbance of 1σ to the model inertial parameters
ISE CE

PAYLOAD (kg) UC ADAPT. UC ADAPT.
1,4 0,2 1,29 0,99 1,00
1,5 0,4 2,20 0,99 1,00
1,6 0,6 2,91 0,99 1,02
1,7 0,8 6,16 0,98 302,20
1,8 0,8 8,94 0,98 116,17
1,9 0,9 0,31 0,98 0,00
2 0,9 31,49 0,98 578,41

Disturbance of 2σ to the model inertial parameters
ISE CE

PAYLOAD (kg) UC ADAPT. UC ADAPT.
1,4 0,04 1,54 0,98 1,00
1,5 0,11 3,23 0,98 1,00
1,6 0,54 1,70E+06 0,98 5,00E+25
1,7 0,67 2,15 0,98 123,87
1,8 0,75 4,63 0,98 12855,81
1,9 0,81 1,28 0,97 1,82
2 0,84 4,49 0,97 36,92
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4.3. Unfalsified Adaptive Control (UAC) for the numerical

model of the Whole Arm Manipulator (WAM)

As a consequence of the previous section, here it is developed and presented the application of the
UAC to the WAM for the case of a fixed load attached at the end-effector and defined as mload = 1
kg, with the purpose of verifying the adequate behavior of the controller and the system.

The load at the end of the manipulator is assumed attached to the end-effector of mass m7 and
unknown for the controller implementation.

For analysis purposes, the same kind of desired trajectories applied for the SCORBOT ER V PLUS
and presented in the last section, were used:

qdi =


2π

3

(
1− cos

(
2π

5
t
))

, if i = 1,3,5,7,

π

(
1− cos

(
2π

5
t
))

, if i = 2,4,6.

The initial conditions for all simulations were qdi(0) = 0 and q̇di(0) = 0 (i = 1, . . . ,7). Note that
trajectories are periodic, with period T = 5 s. The damping friction constant for all joints was
defined as γ = 0,1. The parameter related to the controller Eq. (3-15) was set at λ = 20 as well.
Although the actuator saturation torques are a function of the velocity, the upper and lower bounds
of the control signal were assumed to be constant for simplicity, as ±100 Nm, to avoid saturation
and verify maximum computed torques for the desired trajectories.

The controller set K for the UC is defined by Eq. (3-14), where the parameter θ (load applied at
the end of the manipulator, including the mass of the end effector) takes values θ̂ in a set Θ, for an
interval similar to the one used in the previous section, i.e.:

Θ = {1,2,3}. (4-27)

In terms of the payload, and considering that m7 = 0,0755 kg (actual mass of the last link with-
out load), this means that the corresponding interval for the controller parameter (payload) is
[0,9245;2,9245] kg.

The used cost function is defined in Eq. (3-17), with α = 0,001 and η = 0,9 as the fading constant.
The cost function is evaluated periodically with Ts = 0,01 s, based on the cost minimization hyste-
resis switching algorithm with fading memory presented in Section 3.3.2. The initial UC parameter
used for the simulation was θ̂(0) = 1. The simulation was performed for a 15 s time interval, which
includes three complete periods of the desired trajectories.
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Figure 4-16.: Tracking trajectories of the WAM with UAC.

The results obtained by simulation are presented in the following figures. The Fig. 4-16 shows the
desired trajectories for the seven (7) joints overlaid on the computed tracking trajectories.

The Fig. 4-17 presents bounded tracking errors on all joints, showing maximums on q5 and q6

(wrist joints) which may have effect in the orientation of the tool during the tracking process.
Compared with the SCORBOT ER V PLUS, in general these errors shows to be in a similar range.

The Fig. 4-18 shows control torques without saturation of actuators. It should be noticed that he ma-
ximum torque is lower than ±50 Nm for q2 as the saturation bound parameter for the torques was
defined on purpose as ±100 Nm, for control signals characterization without saturation. Smooth
control signals shows to be similar to those presented in the SCORBOT ER V PLUS analysis of
the last section.
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Figure 4-17.: Tracking errors of the WAM with UAC.
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Figure 4-18.: Control torques of the WAM with UAC.

The Fig. 4-19 shows the UC switching parameter related with the cost functions change and com-
parison. The falsification of the controller occurs whenever it is a better performance related with
the minimum cost function to any of the controllers from the candidate set, as stated by condition
in Eq. (3-19).



4.3 Unfalsified Adaptive Control (UAC) for the numerical model of the Whole Arm
Manipulator (WAM) 75

5 5.5 6 6.5 7 7.5 8 8.5 9 9.5
10

0

10
2

C
os

t f
un

ct
io

ns
 V

(θ
) 

(L
og

)

5 5.5 6 6.5 7 7.5 8 8.5 9 9.5
1

2

3

C
on

tr
ol

le
r 

pa
ra

m
et

er
  θ

 (
K

g)

time(s)

Cost Functions and Controller parameter change

 

 

Cont. Par. θ
V(θ3)

V(θ2)

V(θ1)

Figure 4-19.: UC parameter switching and costs functions. Payload of 1 kg.

4.3.1. Results

An UC strategy has been applied to the MDoF redundant WAM manipulator. As for the SCORBOT
ER V PLUS, the proposed scheme adapts the controller parameters to seek the best performance at
different operating conditions based only on the input-output data. It uses the same cost-detectable
cost function with a fading factor to achieve a better adaptation using recent data. Simulation results
under this typical scenario revealed the possibility of successful application of this controller for the
case of study. For future work it is proposed an evaluation of other scenarios and the experimental
application to the real manipulator in common human-robot interactive tasks like pick and place
and lift and lower payloads.





5. Main Contributions and Future Work

5.1. Contributions

The first chapter presents a chronological revision of three main current research topics:
Human-Robot Interaction (HRI), the Unfalsified Adaptive Control (UAC) as an adaptive
switching control strategy, and the payload computation for robot manipulators. After this,
it is stated the research problem of this work, proposing to work in two aspects: a metho-
dology for the computation of the maximum payload in the entire workspace, suggesting
the use of cell to cell mapping to analyze the DLCC for MDoF manipulators; and then, it
is proposed the application of Unfalsified Adaptive Control (UAD) in Multiple Degree of
Freedom (MDoF) manipulators (n > 2 DoF), including the intrinsically safety, compliant
and backdrivable Whole Arm Manipulator (WAM), suitable for HRI.

The chapter 2 shows the procedure for dynamical modeling of multiple Degree of Freedom
(MDoF) manipulators. This models are computed, numerically validated and used later for
payload and control analysis and design. The compact inverse and direct dynamical models
are analytically computed using the Newton-Euler recursion and applied to the SCORBOT
ER V PLUS numerical model validation. Then, experimental validation of the numerical
model obtained for the redundant Whole Arm Manipulator (WAM) is performed, finding
challenging issues in the Coulomb friction modeling.

In chapter 3, three nonlinear control strategies applied to robot manipulation and used in
this work, are presented. The first two are traditional model-based control strategies known
as Feedback Linearization and Adaptive Control, the third one is a current developing data-
driven control strategy known as Unfalsified Adaptive Control (UAC) which, to the know-
ledge of the author, has not been applied for MDoF manipulators (n > 2 DoF) and required
evaluation for usage in lightweight and low inertia manipulators like the WAM.

In chapter 4, different traditional nonlinear control strategies for MDoF manipulators are
applied for Dynamic Load Carrying Capacity (DLCC) computation. It is developed a met-
hodology for DLCC computation of the entire workspace of MDoF manipulators using cell
to cell mapping for the regulation task, showing a promising application to path planning.
The DLCC computation considers the torque saturation of actuators as a common beha-
vior in paths that reach the regulation objective. The performance of Feedback Linearization
control, Adaptive control and PID with antiwindup for DLCC computation are compared,
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showing a better performance of the Feedback Linearization control strategy, due to its abi-
lity to handle a higher payload in the entire workspace.

In the same chapter, numerical experiments are used for the analysis of the data-driven Unfal-
sified Adaptive Controller with fading memory applied to MDoF manipulators. A compari-
son with the traditional model-based Adaptive controller was performed for three scenarios:
performance of controllers for two fixed loads at the end of the manipulator, performance
of controllers with periodic non-smooth load changes between two fixed values and perfor-
mance of controllers applying the worst-case disturbances to the model inertial parameters.
This control strategy is first applied to the 5 DoF SCORBOT ER V PLUS model, showing
with the UAC a better performance for higher loads, higher DLLC handling abilities and
more robust behavior. Then, the UAC is proved by simulation in the 7 DoF redundant WAM,
showing adequate performance with relatively low tracking errors and smooth and bounded
control signals.

5.2. Future Work

It is required a careful identification or learning process of the friction model of the WAM, to
improve the numerical model for simulation and control design. Then, it would be necessary
to perform experimental validation of the dynamical model of the WAM, using the adequate
friction model.

Analysis of the Unfalsified Adaptive Control (UAC) for different base controllers and the
application to practical settings of the WAM, related with payload handling in HRI configu-
rations and considering saturation of the real actuators.

Implementation of the maximum DLCC algorithm for the characterization of the entire
workspace and evaluation of the potential path planning in different real WAM tasks, like
lifting changing loads and picking different types of objects form shelfs at different heights.

Evaluation of other conditions for maximum DLCC computation, like: the symmetry of
the workspace, optimization of controller parameters and path, analysis of other nonlinear
phenomena and the most effort demanding plane configuration.



A. Appendix: Whole Arm Manipulator

(WAM) frame configuration

The variant form of the Denavit-Hartenberg (D-H) method presented in [85] is used to establish
the coordinate frames in the zero position, presented in Fig. A-1 for the 4 DoF configuration and
in Fig. A-2 for the 7 DoF configuration. A positive joint motion is based on the right hand rule for
each axis.

Figure A-1.: 4 DoF WAM dimensions and D-H frame configuration [2]
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Figure A-2.: 7 DoF WAM dimensions and D-H frame configuration [2]



B. Appendix: UAC definitions and

stability statement

The Fig. B-1 shows the generic switching adaptive control system definition presented in [89].
Where u and y are the plant input and output vector signals. The adaptive controller switches the
currently active controller K̂t at times tk, k = 1,2, ... with tk < tk +1, ∀k. If finite, the total number
of switches is denoted by N, so that the final switching time is tN and the final controller is KN .

Switching Adaptive 
Controller

 𝐾𝑡
Unknown plant

P

r u y

∑

Figure B-1.: Switching adaptive control system definition presented in [89]

For stability in a multi-controller unfalsified setting, consider the system Σ : L2e −→ L2e. Stability
of the system Σ : w 7→ z is said to be unfalsified by the data (w, z) if there exist β , α ≥ 0 such that
the following holds:

‖z‖
τ
< β ‖w‖

τ
+α,∀τ > 0. (B-1)

Otherwise, the stability of the system Σ is falsified by (w, z). In general, α may depend on the
initial state. Furthermore, if (B-1) holds with a single pair β , α ≥ 0 for all w ∈ L2e, then the sys-
tem is said to be finite-gain stable, in which case the gain of Σ is the least such β .
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Lemma B.0.1. ([88]) Consider the switching feedback adaptive control system Σ, where uniformly
bounded reference input r, as well as the output z = [u,y] are given. Suppose there are finitely
many switches. Let tN and KN denote the final switching instant and the final switched controller,
respectively. Suppose that the final controller KN is stably causally left invertible (SCLI) (i.e., the
fictitious reference signal r̃ is unique and incrementally stable). Then

‖r̃‖t < ‖r‖τ
+α < ∞,∀t > 0. (B-2)

The cost minimization ε-hysteresis switching algorithm [66] and the cost functional J(K,z, t) ope-
rate as a switching rule. This algorithm returns, at each t, a controller K̂t which is the active con-
troller in the loop:

Kt = arg mı́n
K∈K
{J(K,z, t)− εδKK̂t−

}, (B-3)

where δi j is the Kronecker’s δ , and t− is the limit of τ from below as t→ τ .

The switch occurs only when the current unfalsified cost related to the currently active controller
exceeds the minimum (over the finite set of candidate controllers K) of the current unfalsified
cost by at least ε . The hysteresis step ε serves to limit the number of switches on any finite time
interval to a finite number, and so prevents the possibility of the limit cycle type of instability. It
also ensures a non-zero dwell time between switches [89].

Definition B.0.1. ([88]) Let r denote the input and zd = Σ(K̂t ,P)r denote the resulting plant data
collected while K̂t is in the loop. Consider the adaptive control system Σ(K̂t ,P) with input r and
output zd . The pair (J,K) is said to be cost detectable if, without any assumption on the plant P

and for every K̂t ∈K with finitely many switching times, the following statements are equivalent:

J(KN ,zd, t) is bounded as t increases to infinity.

Stability of the system Σ(K̂t ,P) is unfalsified by the input-output pair (r,zd).

Theorem B.0.2. ([88]) Consider the feedback adaptive control system Σ, together with the ε-
hysteresis switching algorithm [66]. Suppose the following holds: the adaptive control problem
is feasible (there is at least one stabilizing controller in the candidate set, defined as the robust
optimal controller KRSP), the associated cost functional J(K,z, t) is monotone in time, the pair
(J,K) is cost detectable, and the candidate controllers have stable causal left inverses. Then, the
switched closed-loop system is stable. In addition, for each z, the system converges after finitely
many switches to the controller KN that satisfies the performance inequality

J(KN ,z, t)≤ J(KRSP)+ ε, for all τ. (B-4)

The proof of the previous theorem is provided in [89].
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Cost-detectable Cost Function with fading memory

In [38], the authors provide an example of the cost function and the conditions under which it
ensures stability and finiteness of switches according to Theorem B-4. For the the output signal y
and the controller signal u, let the fading memory functional be

Fη(yt , t) =
t

∑
τ=0

y2(τ)η t−τ , (B-5)

where η < 1 is the fading memory parameter. The cost function is defined as

J(KN ,z,τ) =
Fη((r̃− y)t , t)+Fη(ut , t)

Fη((r̃)t , t)+ c
, (B-6)

where r̃ is a hypothetical signal that would have reproduced exactly the measured data z if the
controller K had been in the loop for the time period over which the data z was collected, known
as fictitious reference signal and c is a constant.
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