
Utah State University Utah State University 

DigitalCommons@USU DigitalCommons@USU 

All Graduate Theses and Dissertations Graduate Studies 

5-2013 

Cognitive Vehicle Platooning in the Era of Automated Electric Cognitive Vehicle Platooning in the Era of Automated Electric 

Transportation Transportation 

Pooja Kavathekar 
Utah State University 

Follow this and additional works at: https://digitalcommons.usu.edu/etd 

 Part of the Electrical and Computer Engineering Commons 

Recommended Citation Recommended Citation 
Kavathekar, Pooja, "Cognitive Vehicle Platooning in the Era of Automated Electric Transportation" (2013). 
All Graduate Theses and Dissertations. 1411. 
https://digitalcommons.usu.edu/etd/1411 

This Thesis is brought to you for free and open access by 
the Graduate Studies at DigitalCommons@USU. It has 
been accepted for inclusion in All Graduate Theses and 
Dissertations by an authorized administrator of 
DigitalCommons@USU. For more information, please 
contact digitalcommons@usu.edu. 

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F1411&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.usu.edu%2Fetd%2F1411&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/1411?utm_source=digitalcommons.usu.edu%2Fetd%2F1411&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/


COGNITIVE VEHICLE PLATOONING IN THE ERA OF AUTOMATED

ELECTRIC TRANSPORTATION

by

Pooja Kavathekar

A thesis submitted in partial fulfillment
of the requirements for the degree

of

MASTER OF SCIENCE

in

Electrical Engineering

Approved:

Dr. YangQuan Chen Dr. Donald Cripps
Major Professor Committee Member

Dr. Hunter Wu Dr. Mark R. McLellan
Committee Member Vice President for Research and

Dean of the School of Graduate Studies

UTAH STATE UNIVERSITY
Logan, Utah

2012



ii

Copyright c© Pooja Kavathekar 2012

All Rights Reserved



iii

Abstract

Cognitive Vehicle Platooning in the Era of Automated Electric Transportation

by

Pooja Kavathekar, Master of Science

Utah State University, 2012

Major Professor: Dr. YangQuan Chen
Department: Electrical and Computer Engineering

Vehicle platooning is an important innovation in the automotive industry that aims at

improving safety, mileage, efficiency, and the time needed to travel. This research focuses

on the various aspects of vehicle platooning, one of the important aspects being analysis of

different control strategies that lead to a stable and robust platoon. Safety of passengers

being a very important consideration, the control design should be such that the controller

remains robust under uncertain environments. As a part of the Department of Energy

(DOE) project, this research also tries to show a demonstration of vehicle platooning using

robots. In an automated highway scenario, a vehicle platoon can be thought of as a string

of vehicles, following one another as a platoon. Being equipped by wireless communication

capabilities, these vehicles communicate with one another to maintain their formation as a

platoon, hence are “cognitive.”

Autonomous capable vehicles in tightly spaced, computer-controlled platoons will lead

to savings in energy due to reduced aerodynamic forces, as well as increased passenger

comfort since there will be no sudden accelerations or decelerations. Impacts in the oc-

currence of collisions, if any, will be very low. The greatest benefit obtained is, however,

an increase in highway capacity, along with reduction in traffic congestion, pollution, and

energy consumption.



iv

Another aspect of this project is the automated electric transportation (AET). This

aims at providing energy directly to vehicles from electric highways, thus reducing their

energy consumption and CO2 emission. By eliminating the use of overhead wires, infras-

tructure can be upgraded by electrifying highways and providing energy on demand and in

real time to moving vehicles via a wireless energy transfer phenomenon known as “wireless

inductive coupling.” The work done in this research will help to gain an insight into vehicle

platooning and the control system related to maintaining the vehicles in this formation.

(120 pages)
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Public Abstract

Cognitive Vehicle Platooning in the Era of Automated Electric Transportation

by

Pooja Kavathekar, Master of Science

Utah State University, 2012

Major Professor: Dr. YangQuan Chen
Department: Electrical and Computer Engineering

This research focuses on a concept called “cognitive vehicle platooning.” A group of ve-

hicles, either of the same type or different, following one another at highway speeds, coupled

together by wireless communication is vehicle platooning. With this technology, passengers

can comfortably enjoy their rides without having to drive their cars, as the cars will drive

themselves. This automatic car driving is an advanced form of cruise control. These cars

will run on dedicated lanes on highways. The leader of the platoon communicates wire-

lessly to its followers, its position, velocity, and acceleration information. Using this data,

the followers will have a control algorithm that computes the position, velocity, and accel-

eration information necessary for them to keep safe distances between each other, at the

same time, follow the lead vehicle’s speed. Each vehicle preceding the leader communicates

wirelessly with the leader as well as the immediate preceding vehicle. This constitutes two

control systems, “lateral control (steering)” and “longitudinal control (inter-vehicular spac-

ing control).” Such a technology, if introduced on existing highways, will lead to passenger

comfort, reduced fuel consumption, less time needed to travel, reduced traffic congestions,

and increased highway capacity. In addition to this introduction of automatic control into

vehicles, these vehicles will be electric vehicles and will be wirelessly charged by magnetic
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pads buried under the roadways, while in motion. This concept is called “automated electric

transportation.”
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Chapter 1

Introduction

1.1 Overview

The concept of vehicle platooning is relatively new. Vehicle platooning can be consid-

ered as an important innovation in the automotive industry that would have provide the

following benefits:

- Increased highway capacity,

- Improved vehicle safety,

- Improved mileage due to reduced aerodynamic drag,

- Increased efficiency,

- Decreased traffic congestion,

- Reduced environmental pollution,

- Increased passenger comfort.

Automated vehicles resemble the migration of birds or a group of dolphins under coop-

erative driving; aerodynamic efficiency is the main reason for the formation of birds in the

migration, and dolphins communicate with each other while swimming to avoid collisions.

Cognitive platooning, which can be compared to these examples, will contribute to increase

in road capacity as well as road traffic safety. The aerodynamically efficient formation of

vehicles in a platoon will reduce aerodynamic drag, thus improving fuel economy. Vehicle

platooning is illustrated in Fig. 1.1, as implemented by Robinson et al. [1] in the SARTRE

Demo.
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Fig. 1.1: Vehicle platooning as shown by the SARTRE demo.

1.2 Motivation: Why Cognitive and Why Platooning?

Automated highway systems (AHS) have been a well researched topic in literature.

This concept is not exactly new. General Motors showed a working model as far back as in

the 1939’s World Fair. Most of this research has resulted in proof of technical feasibility put

on by national automated highway system consortium (NAHSC) in San Diego in August

1997. As far back as 1970, prototype equipment was operationally tested. Actual research

began in 1960, as can be seen in the paper by Hanson [2] and Shladover [3] has given a very

extensive review of the AHS research done. A lot of advancement has taken place since

then. The main cause of excessive energy consumption is the drag force experienced by a

vehicle. This is highly and linearly dependent on the size and velocity of the vehicle. In

1995, a research report presented a detailed description on the aerodynamic performance of

platoons, revealing that the drag coefficient experienced about 55% reduction on average

in 2, 3, and 4 vehicle platoons leading to a reduction in fuel consumption. This report was

submitted to the California partners for advanced transit and highways (PATH), as cited

by Levedahl et al. [4].

With such benefits obtained with vehicle platooning, it is a well researched topic.

Moreover, introduction of inter-vehicular communications between vehicles not only ensures

individual vehicle stability, but also global platoon stability. Introducing this cognitive

controller design will guarantee stability of the entire platoon.

At its inception, the goal of the research work was to to be able to utilize the mobile
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actuator and sensor network (MASnet) platform developed at CSOIS for a demonstration

of vehicle platooning using the MASmotes. However, due to software and hardware lim-

itations, the research platform was changed to a LEGO mindstorm NXT 2.0. Using this

platform, different control strategies for vehicle platooning were demonstrated. This re-

search focuses on analysis of controller design for stability under uncertain environments as

well as robustness to model uncertainties, parameter uncertainties, noise in measurement

signals, and model errors. Simulation results are presented for the different control designs.

1.3 Platoon Formation Control

Vehicle platooning is a form of formation control. This can be compared to many

animals that exhibit swarm behavior in the world. A swarm is a group of animals that

work together to achieve some common goal. These distributed agents have only local

knowledge and communication. Such local interactions and each individual agent’s behavior

cause a global “emergent behavior,” which allows these agents to form the desired shape.

The control algorithm then maintains this shape with least deviation. The same concept

is utilized in platooning wherein vehicles communicate with each other to remain in the

formation. Robots have been used extensively in formation control to analyze control

strategies. In this research, the LEGO mindstorm NXT 2.0 was used to demonstrate this

behavior of vehicles.

This type of formation control involves lateral control as well as longitudinal control.

In lateral control, the basic goal is lane keeping. It can also be called “steering actuator

control.” In the California partners for advanced transit and highways (PATH) program,

magnetic markers embedded along the center of the road 4 feet apart were used to keep

the vehicles at the center. Sensors on-board the vehicles measured corresponding physical

properties of the magnetic markers to determine the vehicle’s location with respect to

the magnetic markers. This information is then processed by an onboard intelligence to

generate steering commands for the actuator. Another use of these markers is that just

by alternating the polarities of the magnetic markers, information such as upcoming road

geometry and entrance or exit data can be transmitted to the vehicles. By comparing the
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measured magnetic strength to the magnetic field map of a magnet, the relative position

of the vehicle is determined. Longitudinal control aims at keeping the vehicles in a platoon

as closely spaced as possible, with only a few meters gap between them. In California

PATH, eight vehicles traveled in a platoon with fixed inter-vehicular spacings of 6.5 meters

between them, at highway speeds. Shorten the inter-vehicular spacing, and more highway

capacity is obtained. Inter-vehicular spacing is maintained by means of radar and wireless

communication between cars. The velocity and acceleration information of the lead vehicle

and the preceding vehicle is broadcasted to each car. Using this information, longitudinal

control system generates the throttle or brake command.

1.4 Hardware and Software Platforms

In the beginning of this project, work began on the MASnet platform, developed at

CSOIS. The goal was to demonstrate vehicle platooning on the MASnet platform using

the MASmotes. This platform utilizes the concept of wireless sensing and actuation on a

distributed environment. By regularly updating these sensors and actuators, a closed-loop

system, also known as cyber-physical systems (CPS), can categorize and track dynamic

environments. These distributed sensors and actuators are networked together to coordi-

nate with each other to monitor and control the environment. This network is known as

the wireless sensor network (WSN), in the thesis by Rounds [5]. WSN’s have low-power

consumption, low cost, mesh networking, and low-data throughput. However, due to old

software versions and version mismatches, compilation of codes led to a lot of errors. A

great deal of time was spent to solve these errors and get the system running. However,

missing files led to discontinued work on the MASnet platform.

The new platform adopted was the LEGO mindstorms NXT 2.0. These were easy to

use, had the advantage of programming flexibility and design flexibility. The programming

softwares used for the LEGO’s included Matlab 2012a and the laboratory virtual instru-

mentation engineering workbench (LabVIEW) softwares. With the new platform, lateral

and longitudinal control with inter-vehicular communications could be demonstrated.
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1.5 Outline of Thesis and Contribution

The major contributions of this thesis can be categorized as follows:

- An exhaustive literature survey of vehicle platooning is presented which covers work

done in the fields of:

1. Inter-vehicular communication methodologies,

2. Lateral and longitudinal control strategies,

3. Obstacle detection and collision avoidance,

4. Platoon string stability;

- Simulation studies to demonstrate the stability and robustness of various controller

designs and their related performance measures like delay and accuracy;

- Study of the MASnet platform;

- Implementation of platooning on the platform LEGO mindstorm NXT 2.0 using both

Matlab and LabVIEW softwares;

- Study the effect of communication delays on platoon string stability.

This thesis has been organized into six main categories, not taking into account the

conclusions. The introductory chapter encompasses a brief overview of vehicle platooning

and AET, including the benefits of both.

Chapter 2 provides a complete literature survey of vehicle platooning in relation to the

topics mentioned above. This literature survey was conducted as a requirement under the

grant obtained from DOE.

Chapter 3 describes in detail the MASnet platform developed at CSOIS, along with a

description of the softwares issued faced.

Chapter 4 describes the new platform, the LEGO mindstorms NXT, and related work

done on them to demonstrate vehicle platooning.
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Chapter 5 describes various control strategies studied and simulated along with their

effects on performance measures like response time, delays, robustness to uncertainties, and

accuracy.

Chapter 6 describes fractional methods for achieving vehicle formation control, and

also shows the improved performance of fractional controllers over conventional integer

controllers.

Chapter 7 defines “string stability” and related issues. Effect of communication delays

on string stability is analyzed in this chapter.

Chapter 8 is the conclusion and future work.
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Chapter 2

Vehicle Platooning Survey and Categorization

2.1 Introduction

In this chapter, the vehicle platooning literature published since 1994 is categorized and

discussed. The paper includes a general introduction and overview of vehicle platooning

and a technical description of the methodology. Recent trends in vehicle platooning are

presented and discussed. The results are reviewed and the vehicle platooning literature is

categorized into subcategories within the broader division of application focused and theory

focused results. Issues and challenges faced in platooning are discussed in the context of

AET. A brief summary of the survey methodology is presented.

2.1.1 Definition of Platooning in Literature

In platooning,“linked” vehicles are created which travel along the AHS as one unit.

With very small headway spacing, as little as a few meters, these vehicles follow each other,

and are connected with some headway control mechanism, such as radar-based or magnetic-

based systems. The leader of the platoon continuously broadcasts to the following vehicles,

information on the AHS conditions and the maneuvers that the platoon is going to execute.

These vehicles travel in close coordination under fully automated longitudinal and lateral

control. A constant fixed spacing is maintained between all platoon members at all speeds,

upto highway speeds. This short spacing results in increased highway capacity. Automation

and coordination between vehicles lead to increased safety. Even extreme accelerations and

decelerations cannot cause serious impacts and compromise passenger comfort, since the

relative speed between vehicles is small, as shown in Levedahl et al. [4]. This was shown

to be true when the platooning scenario was presented by the PATH program in Desoer et

al. [6]. Eight automated cars were platooned with inter-vehicular distances under ten meters.
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They traveled in a single line formation, laterally controlled by magnets embedded in the

roadways. This platoon showed the ability to start, stop, accelerate, and decelerate, as a

unit. Furthermore, this platoon also demonstrated the ability to split, to allow the entry of

vehicles and then rejoin as one platoon. A heads-up-display unit was used to communicate

information such as speed, distance to destination, and the current maneuver of the vehicle,

to the driver. Thus, it can be said that vehicle platooning is an approach to improve the

current transportation system, both economically and technologically. Ünsal [7] says that

there are two main approaches for the implementation of an AHS, hierarchical structure,

and autonomous vehicle approaches, of which the first approach is centered around the

concept of platooning. In this approach, different layers of control hierarchy are responsible

for performing different tasks needed to implement an AHS.

2.1.2 Evolution of Platooning

The present scenario which is seen in AHS has evolved over many years into what today

is known as vehicle platooning. There is a very distinct pattern seen in this evolution. At the

beginning was the independent vehicle or free agent concept, wherein all smart technology

was put into the vehicle and the vehicle acted individually more like a free agent, or a one

vehicle platoon. Lack of the need of infrastructure support allowed this vehicle to be used on

any existing highways. Then came the cooperative concept which introduced inter-vehicle

communication into the free agent concept. This led to the capability of coordination of the

vehicle’s driving operation. This concept further evolved into the infrastructure supported

concept. This was better than the cooperative concept since it provided dedicated lanes

for the operation of smart vehicles. Smart infrastructure embedded into these lanes could

provide global information regarding the system, needed for the vehicle decision making

and operation. This further evolved into the infrastructure assisted concept, wherein inter-

vehicle communications (IVC) was provided at the entry, exit, and merging maneuvers by

the roadside system that was fully automated. Finally, there was the adaptive concept,

which needed different location requirements, and hence, standards were created which

left the solutions and decisions free for the localities. Currently, the ongoing project on
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platooning is the European Union funded safe road trains For environment (SARTRE ).

Launched in 2009, the 3-year SARTRE project launched its first test in December 2010.

This project will wind up in 2012. According to the project director of intelligent transport

systems, technically the SARTRE platooning could be ready for rollout in 10 years as said

by Kesting [8].

2.2 Technical Overview of Platooning

The feasibility of the usage of a vector field for autonomous navigation has previously

been demonstrated by Borenstein and Koren [9]. The technology of way-points and obstacles

was used by Levedahl et al. [4]. The way-points exhibited attractive forces and obstacles

exhibited repulsive forces which combined to produce a resultant vector indicating the

desired velocity of the vehicle. At every point of space, navigational information is provided

by this vector field. After obtaining the vector field of a specially designed track, the

appropriate points were flagged as track elements and the velocity vector at each track

element was set to be the normalized distance vector between that element and the next

closest track element. At every other point, the vector is taken to be the linear combination

of the distance vector between that particular point and its projection onto the track and

the the vector at the nearest track element.

vdes(r) = α(projt(r)− r) + βvt, (2.1)

where r is the point at which desired velocity vector vdes is calculated, vt is the velocity

vector at the nearest track element, α, β are simulation parameters; and

projt(r) =
〈r, t〉
〈t, t〉

t, (2.2)

is the projection of r onto the track vector, t. For simulation, α = 1, β = 1.2. The vector

field looks like in Fig. 2.1.
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Fig. 2.1: Navigational vector field generated.

2.2.1 Leader Navigation

Leader navigation was achieved by using the feedback of the velocity error, attenuated

by α and then supplied as acceleration a(t) of the platoon leader at every time step as seen

in Eq. (2.3) and Eq. (2.4).

verror = vdes(t)− vveh(t) (2.3)

a(t) = αverror(t)−
Ffriction(t)

mveh
(2.4)

The final positions of the vehicles are calculated using the standard equation of motion

given as

sf = si + vi∆t+
1

2
a(∆t)2, (2.5)

where ∆t is the time step and vi is the vehicle’s velocity at the beginning of the time step.

Further, according to Kesting [8], the “desired minimum gap” is given by

s∗(v,∆v) = s0 + vT +
v∆v

2
√
ab
, (2.6)

∆v = vα − vα−1, where α is the following vehicle and α − 1 is the leader vehicle, s0 is

the minimum distance in case of congested traffic, a is the maximum acceleration, and b is

the “comfortable deceleration.” The last term in Eq. (2.6), however, is significant only in
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nonstationary traffic, when ∆v 6= 0. vT is a term more relevant to the resultant spacing in

stationary traffic as shown by Fernandes and Nunes [10].

Also, according to Fernandes and Nunes [10], the formulation to determine road ca-

pacity, which can be increased by tighter spacing between vehicles, is given as

C = V
n

ns+ (n− 1)d+D
, (2.7)

where d is intra-platoon spacing, D is inter-platoon spacing, s is vehicle length, and V is

the steady state speed in m/min.

2.2.2 Follower Spring Dynamics

Demonstrations of the implementation of collision avoidance modeled on physical sys-

tems have been put forth by many researchers, from potential fields by Khatib [11], to

fluid dynamics by Decuyper and Keymeulen [12] and spring dynamics by Quinlan and

Khatib [13]. However, Levedahl et al. [4] utilized the concept of spring dynamics, wherein

only the platoon’s leader is provided with navigational information, including the vector

field, and the following vehicles are linked together via spring dynamics. It was seen that

although this method did manage to keep the vehicles on the track, the more desirable

approach is to provide all the vehicles in the platoon with navigational information and

have the spring forces act as either amplification or attenuation factors for the vector field,

depending on vehicle proximity. Hooke’s law for an ideal spring exerting a restoring force

is given to be

F = −kx, (2.8)

where x is the distance between two vehicles, and k is the spring coefficient.

2.2.3 Inter-Platoon Dynamics

For inter-platoon dynamics, a proportional controller was examined by Levedahl et

al. [4] which activated when a threshold distance was reached between the lead vehicle of

a platoon and the last vehicle of the platoon with which it wished to merge. Details on a
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nonlinear approach to the inter-vehicle dynamics was studied by Levedahl et al. [4].

2.3 From 1994 to 2012: An Overview

In this section, an overview of the results obtained from the literature search are given.

The statistics presented in this section may vary. Nonetheless, all the relevant Ph.D disser-

tations found have been included. There have not been many previous reviews and surveys

on vehicle platooning. Of particular note, however, is the survey conducted by Tsugawa [14]

which gives a thorough analysis of the control algorithms in AHS with references through

1965.

The present survey began with a search on “IEEE Xplore,” “Web of Science,” and

“ScienceDirect” sites conducted on October 2010. Table 2.1 shows the search results. As

shown in Table 2.1, from the keywords (“Vehicle and Platooning”), we have a total of 284

publications. A broader search was also carried out using the keywords (“Automated” and

“Highway” AND “Platoon” and “System”) from which we have a total of 134 publications.

We also searched under a related topic using the keywords “Vehicle Strings” from which

we obtained 231 publications, and “Platoon String Stability” from which we obtained a

total of 110 publications. These results can be seen in Table 2.1. Given these large

numbers of publications in this paper, our review is restricted to the literature obtained by

searching under the phrases “Vehicle Platooning,” “Inter-vehicle communication in vehicle

platooning,” and “Obstacle detection and collision avoidance in vehicle platoons.” Other

than IEEE conferences, we also include papers published in other conferences like SICE

conferences, mechatronics conferences, IEICE conferences, and the SAE conferences.

Figure 2.2 gives a graphical depiction of the number of vehicle platooning publications

since 1994 in international conference proceedings and journals.

2.4 Vehicle Platooning Related Ph.D Dissertations and Master’s Theses Since

1994

In this section, we will briefly review some Ph.D dissertations and master’s theses pub-

lished in since 1994. Table 2.2 gives an overview of some statistics in this regard. Platoon
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Table 2.1: Vehicle platooning related publications from web of science, IEEE xplore, and
sciencedirect.

Search Options From
Web of
Science

From
IEEE
Xplore

From
Sci-

enceDi-
rect

From
Sco-
pus

Total

Vehicle+Platooning55 118 224 178 575
Vehicle

Platooning
Dynamics

20 23 110 11 164

Platoon String
Stability

33 51 72 71 227

Vehicle
Platooning and
Communication

15 70 108 55 248

Vehicle
Platooning and

Collision
Avoidance

3 16 54 16 89
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Fig. 2.2: Number of vehicle platooning related publications in conference proceedings and
journals.
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Table 2.2: Vehicle platooning related Ph.D dissertations and masters theses.

Year 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 Total
Number 2 0 1 2 0 1 3 0 1 0 1 3 2 2 5 3 2 2 2 32

size remains limited by communication, so there is a need for advances in low bandwidth

control techniques. Sylvester [15] examined a decentralized, low bandwidth control of an

arbitrarily large platoon of autonomous underground vehicles. Dao [16] discussed the design

and experimental results of low-cost lane level positioning system that can support a large

number of transportation applications. Using a Markov-based approach based on sharing

information among a group of vehicles that are traveling within the communication range of

each other, the lane positions of vehicles can be determined. The robustness and effective-

ness of the system is shown in both simulations and real road tests. Also, a decentralized

approach to lane scheduling for vehicles with an aim to increase traffic throughput while en-

suring the vehicles exit successfully at their destinations is presented by Dao [16]. The work

evaluates a proposed strategy which assigns vehicles to platoons by solving an optimization

problem. A linear model for assigning vehicles to appropriate platoons when they enter the

highway is formulated. Simulation results are presented to demonstrate that lane capacity

can be increased effectively when platooning operation is used. Rajamani studied the use

of computational fluid dynamics (CFD) for understanding convoy aerodynamics and air-

flow interaction between vehicles via CFD. In this study, time-averaged characteristics of a

simplified, generic passenger vehicle, called the Ahmed car model, was investigated compu-

tationally. Three different platoon combinations were analyzed for the study which included

two, three, and six model platoon for various rear end configurations of the Ahmed model

geometry. Roberson [17] studied the inter-vehicle communication issues, such as sharing

information via limited bandwidth channels and selecting network architecture to facilitate

control design for an autonomous underwater vehicle platoon with limited communication.

The effects of various communication delays on string stability are analyzed by Mahal [18].

Longitudinal maneuvers for platoons in an AHS are analyzed by Chen [19]. The interaction

between control and communication portions of the vehicle software structure is defined.
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A complete nonlinear hybrid controller was developed to control the lead modes, follower

modes, join transitions and split transitions of an automated vehicle.

A large amount of research work has been done on inter-vehicle communication net-

works. In the thesis by Böhm [20], the multi access channel (MAC) solution is further

enhanced by introducing a prioritization mechanism based on vehicle positions and the

overall road traffic density, which further improves the throughput of both real-time and

best effort data traffic by focusing the communication resources to the most hazardous ar-

eas of the road infrastructure. Various MAC methods are also evaluated. In depth study

of 5.9 GHz dedicated short range communications (DSRC) has been done in the thesis

by Chrysler [21]. In this master’s thesis, a vehicular safety communication architecture

is designed, an effective broadcast message distribution scheme is introduced, a channel

switch protocol is presented, and a communication stack is proposed. In the thesis by

Shooshtary [22], a simulation environment is developed in Matlab for vehicle-to-vehicle and

infrastructure communication based on IEEE 802.11p, which is the wireless access in ve-

hicular environments (WAVE) protocol. In the thesis by Halĺe [23], a hierarchical driving

agent architecture based on three layers (guidance layer, management layer, and traffic

control layer) is proposed, which can be used to develop both centralized and decentralized

platoons.

Recently, in a master’s thesis on vehicle platooning by Nilsson [24], sensor fusion for

heavy duty vehicle platooning is studied. To get an accurate estimate of relative velocity

and distance, both needed for controller, sensor fusion is necessary. In this thesis, a sensor

fusion framework from on board sensor information and other vehicles’ sensor information

is developed using a wifi link. Another thesis that targets heavy duty platooning is by

Kemppainen [25]. In this thesis, a model predictive controller is developed for platooning.

The implementation of two types of model predictive controllers (MPC), centralized and

decentralized, and then integration with two other subsystems is evaluated in this thesis.

It was seen that with a spacing of 10 meters, the energy consumption was reduced when

driving at different velocities, with an average of 11%. A thesis that contributes to a
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framework for the design and implementation of heavy duty vehicles (HDV) platooning is

the one by Alam [26]. The thesis focuses on establishing and validating real constraints

for fuel efficient platoon control. Results showed a fuel reduction of 4.7-7.7% depending on

inter-vehicle time gap, at a set speed of 70km/h. A thesis from the same school as the one

above is by Liang [27], wherein a linear quadratic controller (LQR) controller is designed

for platoon control.

2.5 From 1994 to 2012: Categorization

In this section, we separate the literature into two different parts. The first part is

related to the literature that focuses on vehicle platooning applications and the second part

is related to the literature focused on theoretical developments. It is difficult to separate

the literature into these two parts, so the categorizations in this section are largely based

on the authors’ subjective opinions.

2.6 Literature Related to Vehicle Platooning Applications

Since it was difficult to find a variety of applications related exclusively to platoon-

ing, the search was widened to also include applications related to key concepts involved

in platooning like “inter-vehicle communication” and related issues like “intelligent” and

“unmanned vehicles.” Kasai and Onoguchi [28] examined an application related to image

processing, wherein they present a solution to the challenge of lane detection studied by He

et al. [29] in vehicle platooning which helps overcome the problem conventional methods

face when processing the image captured from a front camera. The proposed method has

been implemented on the image processing hardware whose central processing unit satisfies

on-board specifications. Another application of platooning was seen in mobile robots as

demonstrated in different papers by Sakaguchi et al., Ferrara, Crawford et al., Michaud et

al., Freslund and Mataricx, and Das et al. [30–35]. DellaVedova et al. [36] describe a robotic

application where a coordinated team of mobile robots moves as a platoon. Particularly,

the use of a real time operating system which implements the control algorithm running

on-board for each robot was demonstrated to assess the impact of real time parameters of
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computing tasks on the performance of the control application.

Platooning has some interesting applications for autonomous vehicles in intelligent

transportation systems. Guldner et al. [37] analyze the challenge of communicating infor-

mation from infrastructure to vehicles. Use of magnetic markers as discussed by Lee et

al. [38], enables binary coding for information exchange from roadway to vehicle, to be

utilized for AHS subtasks.

In a platoon of vehicles, detection of overtaking vehicles plays an important role in

safety. Early detection of overtaking vehicles is analyzed by Zhu et al. [39]. Related to

this application, important categories were identified as “blind spot monitoring” and “lane

change support.” Older people generally lose flexibility in their neck, making it harder

to check before changing lanes, so intelligent sensors that monitor the blind spot can al-

low seniors to drive safely. This is studied by Aufrere et al. [40]. In addition, the U.S.

military has increasing interest in intelligent vehicles. Scout vehicles typically operate in

front of the main force and are the first target of the opposition. It is hence desirable to

have autonomous scouts that can investigate hazardous areas leading to increased safety of

soldiers,as demonstrated by Aufrere et al. [40]. Additional applications like “cooperative

robot reconnaissance,” studied by Balch and Arkin [41]; “manipulation,” studied by Ogren

et al. [42]; “formation flight control,” studied by Mesbahi and Hadaegh [43]; “satellite clus-

tering,” studied by Giulietti et al. [44]; and “unmanned vehicles,” studied by Stilwell and

Bishop [45] have also been seen in literature. A major application of platooning is seen in

roadside safety. “Automatic car parking” is also suggested as an application by Klancar et

al. [46]. Willke et al. [47] conducted a detailed survey of inter-vehicle communication based

applications and examples of applications like “truck platooning,” “coordinated braking,”

“runway incursion prevention,” “vehicle formation control,” and “adaptive traffic control”

are cited. These applications are grouped into two types of classes according to the aim,

whether “safety information services” or “individual motion control.” Willke et al. also

surveyed specific applications in the literature and classified the examples of IVC into four

classes.
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Also included are applications of platooning in the agricultural sector as studied by

Zhang et al., Zhongxiang et al., Keicher and Seufert, Benson et al., and Noguchi et al.

[48–52]. Since the demands on agricultural productivity are increasing while there is a

desire to decrease the labor force, automation of agricultural machinery plays an important

role. Platooning of tractors for automation of agricultural tasks like ploughing and sowing

is studied by Zhang et al. [48]. Platooning application can be extended to aerospace systems

as seen in the book by Samad [53]. For example, flight formation control for uninhabited

combat air vehicles (UCAVs) with fleet coordination and autonomy is talked about by

Samad [53]. Girard et al. [54] present a group of coordinated autonomous underwater

vehicles which can search for a coastal area of mines more efficiently. Related to this

application, detailed categories were given as “oceanographic surveys” in the thesis by Gird

[55], “operations in hazardous environments” by Bellineham et al. [56], and “underwater

structure inspection” by BorgerdeSoura et al. [57].

Applications of platooning in railway systems have been proposed and studied by Henke

et al. [58]. In the case of rail-bound vehicles, only the control of the longitudinal dynamics

is required with respect to drive control. The RailCab project, founded at the University

of Padeborn in 1998, is studied wherein the RailCab convoy is built from single RailCabs.

Recent work on improving fuel economy was studied by Alam et al. [59]. An interesting

observation in this paper is the reduction in fuel consumption with adaptive cruise control

in operation, with prior information feed about the road map from the leader. Comparing

experimental results for different masses of lead vehicle, a key result obtained here is the

variation in fuel consumption based on the time gap. Figure 2.3 summarizes the occurrence

of different applications in the platooning literature.

2.7 Literature Related to Vehicle Platooning Theories

It was seen that the literature related to theoretical developments was broadly classified

into following subcategories listed below:

- Inter-vehicle communication methodologies,
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Fig. 2.3: Publication number of application focused platooning results.

- Collision avoidance and obstacle detection methodologies,

- Design of lateral and longitudinal control systems for a platoon,

- String stability of a platoon.

Different techniques have been implemented so far for sensing and detection of obsta-

cles, inter-vehicle communication and the control algorithm implemented. A brief survey

of these techniques are presented here. Figure 2.4 shows statistical results from the survey.

Fig. 2.4: Publication number of theory focused platooning results.
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2.7.1 Obstacle Detection and Collision Avoidance

Inter-platoon cooperative collision cvoidance (CCA) systems form an important aspect

of “vehicular ad-hoc networks” (VANET) safety applications. An efficient CCA strategy

based on a risk-aware MAC protocol tailored for VANET networks has been proposed by

Taleb et al. [60]. In this system, the vehicles were first clustered according to the features

of their movement using information like direction of movement, inter-vehicle distance,

and relative speed. An emergency level was associated with each cluster which indicated

the likelihood a vehicle would experience an accident in the platoon. In another paper,

a broadcast based packet forwarding mechanism for inter-platoon CCA using DSRC was

proposed by Tatchikou et al. [61]. Another publication that talks of DSRC in platooning

is by Fernandes and Nunes [62]. The problems faced in using DSRC when performing

platooning are targeted here. To solve this issue, this paper proposed a new IVC based on

a combination of DSRC and infrared.

Gehrig and Stein [63] have proposed the concept of elastic bands and analyzed collision

avoidance. The original elastic band approach was proposed by Quinlan and Khatib [13].

Forces acting on the elastic band are computed by taking the gradient of the potential

energy at discrete path points. The repelling forces on the elastic band are produced by

obstacles in the vicinity of the path. The path the leader follows is the initial path and

obstacles in the environment exert forces on the band and move it into a final configuration.

This is the path followed by the following vehicles.

The development of a rear end collision avoidance system has been analyzed by Araki

et al. [64] where the system had automatic braking when the headway distance between

the trailing vehicle and the selected vehicle crossed the safety threshold. It informs the

driver of distance headway and warns the driver when there is a potential collision hazard.

While the problem of cruise control has been deeply explored by researchers, more work

still needs to be done on the possibility of enriching the control system of the vehicles with

the ability to autonomously react to the presence of any moving or static obstacles on the

road. This issue is investigated by Ferrara and Vecchio [65] where a cruise control system
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with collision avoidance features is proposed. The concept used by Ferrara and Vecchio [65]

involves the idea of a supervisor for the control system of every vehicle in the platoon. The

supervisor receives data from the car’s sensors. Whenever new data is collected by the

sensors, the supervisor of each vehicle performs a collision detection test which relies on

the concept of a collision cone, studied by Chakravarthy and Ghose [66]. When a possible

collision is detected, the control system switches from the normal “cruise mode” to “collision

avoidance mode,” causing the involved vehicle to stop following the preceding vehicle. The

decision to switch involves which action to take from emergency braking and the generation

of a collision avoidance maneuver. For this, two low-level controllers were implemented. A

sliding mode control methodology was used for the two controllers.

Concerning automatic platooning, processing can be done based on

- the use of radar only;

- the fusion of an active sensor (laser, radar, lidar) and monocular vision, studied by

Steux et al. [67];

- monocular vision only.

A very widely used approach for monocular vision-based vehicle detection analyzed by

Betke et al. and Kyo et al. [68, 69] is to search for specific patterns as shown by Bertozzi

et al. [70]. These patterns could be the shape, analyzed by Xiong and Debrunner, and

Fung et al. [71, 72]; motion, analyzed by Demonceaux et al. [73]; color, analyzed by Steux

et al.; Xiong and Debrunner [67, 71]; symmetry, analyzed by Steux et al. and Hoffman et

al. [67,74]; shadow, analyzed by Steux et al. and Tenakte et al. [67,75]; texture, analyzed by

Tenakte et al. [75]; or the use of a specific model, analyzed by Gregor et al. [76]. Bertozzi et

al. [77] developed a stereo vision algorithm specifically tailored for vehicle detection. Recent

work on localization using monocular vision was done by Avanzini et al. [78]. Since some

sensors are very expensive, and localization data can only be obtained in the virtual vision

world. Avanzini et al. [78] proposed a strategy to obtain this data using monocular vision

and correcting it by removing the distortions.
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Model-based vehicle detection was analyzed by Collado et al. [79], wherein a computer

vision system based on a geometric model is developed for vehicle detection. The shape and

symmetry of the vehicle, along with the shadow it produces, are used to obtain the energy

function of the system. Denasi and Quaglia [80] limited the processing to the image portion

that is assumed to represent the road; borders that could represent a potential vehicle are

looked for and examined. Lützeler and Dickmanns [81] studied an edge detection process

with obstacle modelization. This system is able to detect and track up to twelve objects

around the vehicle. Broggi et al. [82] used stereo images for the identification of free space

in front of the vehicle and showed this method to be robust for obstacle detection. Use

of graph theory for collision avoidance has been analyzed by Gowal et al. [83]. The active

collision avoidance mechanism implemented here uses both lateral and longitudinal axes.

The vehicles not only avoid road obstacles but also themselves when converging to the

desired formation.

Detection of obstacles based on multi sensor fusion between lidar and radar was pro-

posed by Okada and Suganuma [84]. The detection of the lane where the obstacle is present

is done using a digital map, obtained from lane markers.

2.7.2 Inter-Vehicle Communication

Inter-vehicle highway systems (IVHS) architecture also provides a communication sys-

tem which allows vehicles on the highway to share driving information such as the velocity

and acceleration of each vehicle, road condition estimates, and obstacles detected by the

lead vehicle.

One of the earliest studies on inter-vehicle communications was that started by As-

sociation of Electronic Technology for Automobile Traffic and Driving (JSK) in Japan in

the early 1980s, as demonstrated by Tsugawa [85]. It was originally defined as flexible

platooning of automated vehicles, also named super smart vehicle system (SSVS). Several

different IVC models were designed, implemented, and tested in the last decade. Some of

the most notable are cooperative optimized channel access for inter-vehicle communication

(COCAIN) as impemented by Kaltwasser and Kassubek [86], telecommunication network
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for cooperative driving (TELCO) implemented by Verdone [87], and dedicated omni-purpose

inter-vehicle (DOLPHIN) communication protocol implemented by Tokuda et al. [88]. A

previous survey on inter-vehicle communications worth noting is that conducted by Sichitiu

and Kihl [89] which also analyzes applications of IVC.

Infrared and radio waves have been studied as the media for IVC and employed for

experimental systems. The radio waves include very high frequency waves (VHF), mi-

crowaves, and millimeter waves. The communications with infrared and millimeter waves

are line-of-sight and usually directional whereas those with VHF and microwaves are used

for broadcasting. Although VHF waves have been used because of their long communication

distance, microwaves are predominantly used today.

A system which uses 220 MHz band (the VHF wave) has been proposed by Fitz et

al. [90]. Its objectives are safety related systems including an incident warning system.

Since the communication range is 1-2km, the system is feasible even if the penetration rate

of the communication unit is low. The communication system is also applied to a “chat”

system among drivers relayed with a base station on the ground.

Mobile phones can also be used for inter-vehicle communication. A consortium in Ger-

many proposed a system that transmits information about an accident or similar incident

detected by a vehicle to following vehicles through mobile phones using the localization data

provided by the accompanying global positioning system.

As mentioned earlier, microwaves are used in several systems, including the Demo 97

in San Diego and in truck platooning named “Chauffeur,” developed by Daimler Chrysler,

as cited in Gehring and Fritz [91] where commercially available wireless radio was employed

for vehicle control. At the beginning of the Chauffeur project, the 2.4 GHz wave was

used for the inter-vehicle communications. The communication period was 40 ms, and the

transmission rate was 230 kbps. Data transmitted by vehicles included speed, acceleration,

and the intention of joining or leaving the platoon. Later, the inter-vehicle communications

for Chauffeur were updated to the 5.8 GHz band.
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Another medium used for inter-vehicle communications is infrared which is again gen-

erally line-of-sight. Infrared was employed in the cooperative driving phase I of JSK by Fujii

et al. [92]. In this system, a preceding vehicle was equipped with infrared markers on the

roof. One marker functioned as a transmitter and both functioned for inter-vehicle distance

measurement with triangulation. The feature of this system was that the following vehicles

could communicate with preceding vehicles as well as measure the inter-vehicle distances.

Yet another system was developed by California’s PATH wherein the communications were

performed between two vehicles using transceivers located on the bumpers of each vehicle.

The feature of this system was that the transmission rate was controlled by observing the

bit error rate; if the inter-vehicle distance is short, the bit error rate is small, so then the

transmission rate can be increased and vice-versa.

Cooperative vehicle-to-vehicle communication plays a key role in keeping the relative

spacing of vehicles small in a platoon. Static platoon control, where the number of vehicles

remains constant, is sufficient for the information to be transmitted in a suitably fixed

interval. Dynamic platoon control, such as for a merge or split, requires a more flexible

network architecture for the dynamic coordination of the communication sequence. Kim

and Choi [93] used a low-cost, short range industrial, scientific and medical (ISM) band

transceiver and 8-bit microcontroller to implement a wireless communication device and

reliable communication protocol.

In a platoon, the information of the preceding vehicle can be obtained using the range

radar. This information is not available for other members of the platoon, only the leader.

Such a scheme guarantees that each vehicle in the platoon has a chance to transmit its

information every cycle in the case of static platoon control. However, for dynamic platoon

control, the maneuvering vehicle requires frequent update of the control input so more

information needs to be transmitted to the maneuvering vehicle. This coordination of

the communication sequence is achieved by remote control stations (RCS) by Kim and

Choi [93]. To reduce the effect of unreliable wireless data access in vehicular networks, a

new system based on “vehicle platoon aware access solution” is proposed by Zhang and



25

Cao [94]. Simulation studies in this paper have shown this solution to improve data access

in VANET’s to a considerable extent. The 433 MHz RF-module, BIM-433, is used for the

implementation of the wireless communication system of the time division multiple access

(TDMA) with token passing architecture. The data transfer rate of this RF-module is 38

kbps and the carrier sense algorithm is not supported. Also, for stable movement of each

vehicle, the sampling period of a vehicle should be less than 40 ms according to Kim and

Choi [93].

It is generally more effective to use a TDMA method or a round robin method to avoid

collision and interference of packets during communication. However, a TDM method

requires knowing the maximum number of vehicles in a platoon in advance to prepare the

slots, which is challenging for realistic platooning where vehicles can join/exit throughout.

A new data transmission algorithm is proposed by Uno et al. [95] to solve this problem. In

this algorithm, the order of data transmission from a vehicle to another is not based on the

physical order of vehicles in the platoon. Instead, a round robin method is used.

An experimental system of 60 GHz millimeter wave band inter-vehicle communication

system based on DOLPHIN protocol was implemented by Tokuda et al. [88] and a carrier

sense multiple access (CSMA) used Spread Spectrum (SS) was implemented by Maeda and

Nakagawa [96].

An interesting concept using IVC was proposed by Kesting et al. [97]. Here, instead of

using the information in the conventional manner, an alternative mode is proposed wherein

the data is stored by relay vehicles, which are traveling in a direction opposite to that of

platoon flow. This data is then forwarded to the platoon after some delay. Stabilization of

discrete time networked control systems is very crucial when is comes to platooning. Xiao

et al. [98] showed that there is a requirement on the network over which an unstable plant

can be stabilized. Safe platooning without the use of communications has also been studied

by Scheuer et al. [99]. The model in this paper is derived by studying the most dangerous

interaction between vehicles. The leader’s maximum acceptable acceleration is considered

when the previous vehicles all brake at maximum capacity. Proof of collision avoidance for
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this model is also given.

Another communication topology based on a multicast methodology for a platoon is

proposed by Kanda et al. [100]. This is targeted toward improving intra-platoon commu-

nications. A very interesting concept was studied by Caveney and Dunbar [101]. Instead

of utilizing IVC for information sharing, it is also used for shared decision making between

platoon members. A “distributed receding horizon control” is proposed for achieving this.

2.7.3 Protocol

A list of the various protocols used in the different projects has been given by Jawhar

et al. [102]. A survey of both vehicle-to-vehicle and vehicle-to-infrastructure communication

protocols is also provided. There are two requirements on the protocol of the inter-vehicle

communication system. The first is that the protocol must be flexible to maintain a net-

work among vehicles when a new vehicle leaves or joins. Secondly, the protocol should be

able to deal with real time data transmission. In the newly initiated European project

employing the application of infrared, CarTALK 2000, the protocol was based on infrared

data association (IrDA). In the cooperative driving phase I with infrared communications

by JSK, the protocol was network-oriented. Considering the importance of real time data

transmission, the slotted ALOHA was employed by Fujii et al. [92]. In the cooperative

driving phase II with 5.8 GHz DSRC, the protocol based on CSMA was used by Tokuda et

al. [88]. Another project based on 5.8 GHz DSRC was a national project named “Energy

ITS,” led by Tsugawa et al. [103]. Here, three trucks were platooned with a lateral sys-

tem comprising of lane markers, a longitudinal system comprising 76 GHz radar and lidar.

Manzano et al. [104] proposed a MAC protocol based on non-cooperative cognitive radio

techniques to obtain a mechanism complying with the requirements of real time communi-

cations. This technique overcomes the limitations of the WAVE standard. Tank et al. [105]

presented a comparison of TDMA, direct sequence CDMA (DS-CDMA), and multi carrier

CDMA (MC-CDMA) schemes in an AVCS platoon environment with Rician fading and

Rayleigh interference. It was shown CDMA undergoes fast fading while TDMA undergoes

slow fading. Packet erasure rates were found in order to measure the performance of these
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multiple access schemes. It was also shown that bandwidth considerations must be taken

into account when evaluating the performance of each scheme.

2.7.4 Control Strategies

Much work has been done in the study of longitudinal control problems as a part of

the AHS program and a variety of solutions have been presented. A good overview of

these activities is given by Shladover [106]. Sheikholeslam and Desoer [107] used feed-

back linearization techniques, in combination with linear control laws, to obtain a stable

longitudinal vehicle platoon. Adaptive control methods are presented by Yanakiev and

Kanellakopoulos [108] to cope with the nonlinear system behavior of heavy duty vehicles

and to achieve string stability which ensures that position errors do not propagate down

the platoon. Choi and Hedrick [109] presented a nonlinear sliding controller with a multiple

surface technique and the successful operation of the control system is demonstrated with

practical results given for a 4-car platoon. Demonstration of robust control using sliding

mode controllers is also discussed by Ferrara et al. [110].

The control algorithms used by PATH in the 1997 eight vehicle platoon demonstration

are described by Rajamani et al. [111]. For the demonstration, a hierarchical structure

was implemented to provide both longitudinal and lateral control to vehicles within the

platoon. Longitudinal control focuses on maintaining constant spacing between vehicles

while lateral control addresses the left and right motion of vehicles so they can either

maintain or change lanes. The longitudinal control used a high level controller to provide the

desired acceleration for each vehicle while a lower level controller determined the actuation

needed to achieve such an acceleration. At the upper level of the longitudinal control, a

sliding surface controller design method was implemented. The sliding surface for vehicle i

as given in Eq. (2.9) is a function of three tunable gains, the velocity of the lead vehicle vl

as well as the preceding vehicle vi, and the longitudinal velocity error of the ith vehicle ε̇i

Si = ε̇i +
wn

ξ +
√
ξ2 − 1

1

1− C1
εi +

C1

1− C1
(vi − vl), (2.9)
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where S is the sliding surface. ξ, C1 and wn are the controller gains that need to be tuned.

Each follower determines its desired acceleration on this surface using the communicated

velocity and acceleration of both the preceding vehicle and the lead vehicle by setting

Ṡi = −λSi, λ = wn(ξ +
√
ξ2 − 1). (2.10)

C1 ranges between [0, 1] and represents the vehicle’s dependence on communicated infor-

mation from the leader. Setting the damping ratio ξ to one represents a critically damped

system. The lower level controller in each vehicle then determines the actuation needed to

achieve the desired acceleration. Using a physical model of the vehicle engine provided by

the manufacturer and basic fluid laws, the desired acceleration can be linked to a corre-

sponding combustion torque and, through use of another sliding surface controller, a desired

throttle angle α can be obtained. The authors note that if the necessary torque is negative,

the brake actuator provides the torque whereas the throttle is used to generate positive

torque.

Vehicle position and orientation are the primary concern of the lateral control system.

In the PATH demonstration, each vehicle was equipped with a front and rear sensor to

detect the vehicle’s placement in relation to magnets embedded under the roadway. The

lane keeping controller is comprised of three parts: an integral control to provide a steady-

state tracking error of zero, a frequency shaped virtual look-ahead controller, and a servo

controller to direct vehicle actuation in response to the anticipated displacement provided

by the look-ahead controller. Lane changing is a much more challenging problem and two

different schemes are discussed. The first strategy uses magnets between lanes to guide

vehicles between in the merging process, thus reducing the control overhead but limiting

availability of lane changes. Free lane change is a more generic merge strategy that does

not rely on additional infrastructure.

Longitudinal control by adaptive vehicle traction force control (force arising from

tire/road interaction) is implemented by Lee and Tomizuka [112]. Two different traction

force controllers, adaptive fuzzy logic control and adaptive sliding mode control, are pro-
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posed and tested for stable but fast accelerations and decelerations of vehicle platoons. An

issue which, if not considered, could be disastrous to a platoon system is that of control

saturation. Vehicle platooning naturally implies a saturation problem when nonidentical

vehicles are allowed. Warnick and Rodriguez [113] presented a systematic design proce-

dure for adapting a nominal controller, designed without regard to control saturation, to a

higher performance nonlinear controller that explicitly accounts for the saturating nonlin-

earities while preserving stability. A two-layered control structure is proposed by Gehrig

and Fridtjof [114]. The inner control loop includes a nonlinear acceleration controller lin-

earizing a large part of the nonlinearities. A robust platoon controller is introduced for the

outer control loop by the use of a sliding mode control design. With the proposed control

concept, string stability can be achieved in the face of saturation. Systems with combined

lateral and longitudinal control systems are important for a well designed platoon system.

It is shown that longitudinal controllers that directly control the wheel slip are inherently

more stable, especially during lateral maneuvers on very slippery road conditions.

For a platoon of multiple vehicles, lateral error propagation is a serious issue that can

be resolved if vehicle performance is compensated. Lateral control is generally achieved by

the combined use of road and vehicle infrastructure such as magnetometer and lane marker

camera schemes. Lateral platoon stability remains an issue, since the vehicle systems are

interconnected. Addition of inter-vehicle communication ensures lateral platoon stability

and satisfactory performance since it eliminates the interconnection among the vehicles,

provided that the communication delays are sufficiently short.

Stilwell and Bishop [115] proposed an effective decentralized control technique for pla-

toons and underwater vehicles. A lot of research is also being conducted in the application

of fuzzy controllers to design the ACC system. ACC systems should be designed such that

string stability can be guaranteed. In addition, every vehicle in a string of ACC vehicles

which use the same control law should track the arbitrary bounded acceleration and veloc-

ity of its preceding vehicle with bounded spacing and velocity errors. Sang and Lee [116]

proposed and designed a fuzzy logic based ACC which guarantees string stability. The use
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of learning control is also studied by Ünsal [7], wherein a “learning automata approach” was

shown capable of capturing the dynamics of driver behavior. The controller learns the action

in real time instead of learning the parameters or firing rules for deciding the best action to

be taken for achieving a safe and optimal path. A 4-layer hierarchical control architecture

consisting of network, link, planning and regulation layers, as proposed by Varaiya and

Shladover [117], is used in an intelligent controller which can be seen as the planning layer

of an autonomous vehicle. The communication between the planning and regulation layers

was achieved by having the planning layer issue a command to the regulation layer. The

regulation layer in turn returns a reply when the command is carried out. A richer interface

could be achieved if the planning layer were capable of sending multiple parameters to the

regulation layer, which in turn would return parameters indicating “success” or “errors”

and “exceptions.” This, however, requires more research on how the regulation layer should

switch from one control law to another. Unfortunately, the system had the disadvantage of

requiring extensive modifications even for minor changes in rules. The system also failed to

handle unanticipated situations.

Tsugawa [14] conducted a complete survey on lateral and longitudinal control algo-

rithms for the AHS with reference to systems developed since 1965. Gowal et al. [83] used

a “laplacian feedback control” approach for solving the consensus problem. This approach

was also proved to be robust under different realistic conditions. A control strategy that

integrates automatic cruise control and cooperative cruise control is presented by Sentürk

et al. [118]. This controller design is robust since it also considers delays and noise in

communication channels.

A controller based on the internal model principle is designed by Lunze [119] and is

applied to vehicle platooning. Here, it was shown that an appropriate networked controller

can be used to obtain a synchronization between leader follower if and only if the agent

dynamics include the dynamics of the trajectory.

2.7.5 Platoon Control: A Robust Approach

Much interest has been shown in finding a robust controller for vehicle platooning.
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Peng et al. [120] talk of H∞ control theory for robust platoon control. A robust intelligent

backstepping control (RIBC) is proposed for car following platoon control. A cerebellar

model articulation controller (CMAC) is adopted in this paper for closed-loop control of

dynamic systems due to its faster learning characteristics and computations as compared to

neural networks. A “recurrent cerebellar model articulation controller (RCMAC)” is also

proposed. The RIBC is comprised of an adaptive RCMAC and an H∞ robust controller.

Pan [121] applied a robust nonlinear observer and robust output feedback controller to

a decentralized control for interconnected systems. The proposed robust control approach

with nonlinear observer in this paper ensures convergence of the interconnected system

when operated in the region where the system is stable.

Abrishamchian and Modabbernia [122] designed a robust controller for automatic steer-

ing using µ synthesis. Here, the nonlinear parametric uncertainties are modeled in a con-

servative way to form the P −K −∆ structure.

Alternatively, a linear quadratic controller (LQR) based control for vehicle platooning

is analyzed by Liang [123]. LQR control allows for the possibility of extending platoons

while maintaining the locally centralized control properties. Dold and Stursberg [124] in-

troduced a distributed predictive control approach for a platoon of vehicles. Here, a robust

model predictive control for interconnected systems is analyzed. Min-max optimization is

performed where the controller maximizes the cost function with respect to disturbances

and minimizes the cost function with respect to the input. Another paper that talks of

LQR based design is by Alam et al. [125], which focuses on decentralized control. This is

tested for heavy duty vehicle platooning.

2.8 Challenges and Issues in Vehicle Platooning

A very interesting concept was examined by Blum and Eskandarian [126]. Although

platooning can decrease travel time, it has certain underlying security issues. Blum and

Eskandarian consider the problem of hackers using the system to cause accidents. Due to the

utilization of wireless inter-vehicle communication in platooning, which is easily accessible,

the system is exposed to computer security attacks. This wireless network can invite denial-
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of-service attacks and alteration attacks on legitimate network traffic, all of which could

weaken the system’s safety. Because of these weaknesses, attackers could exploit intelligent

transportation systems to cause new roadway danger with severe consequences, “intelligent

collisions.” One way to deal with this is to authenticate the information before it is used

by the platoon by keeping a private key. The key is used to authenticate information from

sensors before it can be used by the system. Blum and Eskandarian [126] explore the IVC

network’s potential susceptibilities to attack and emerging research targeted at reducing

the impact of such attacks.

Another important consideration is that of communication induced random delays.

Hedrick et al. [127] studied the effects of communication delays from the lead vehicle on

string stability. They concluded that any delay in the communicated information using the

existing control algorithms will result in the platoon no longer being string stable over all

conditions. Therefore the authors proposed the development of control algorithms that are

robust to communication delays and to random dropouts. Similarly, measurement losses

among satellites due to the shadowing effect are addressed by Smith and Hadaegh [128]. A

method to handle communication dropouts is studied by Teo et al. [129], wherein, the lead

state is propagated for control. In the event of a loss of the lead vehicle state, a propagation

of the state is computed and used in the control law. Mathematically, this is written as

Eq. (2.11)

v̂il,k = J ikv
−i
l,k + (1− J ik)v̆l,k, ŝil,k = J iks

−i
l,k + (1− J ik)s̆l,k, (2.11)

where l denotes the lead vehicle, v̂il,k is the speed of the lead vehicle at the kth time instant,

si and vi are the distance traveled and speed for a platoon respectively, v̂ is an estimate of

v, v̆ is a measurement of v and J ik = 1 implies a lost link between the lead, and ithvehicle

at time k = 0, and J ik = 0 implies a good link. Maintaining this notation, the propagation

is then given as Eq. (2.12)

v−il,k+1 = v̂il,ks
−i
l,k+1 = ŝil,k + v̂il,kT, (2.12)
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which implies that each vehicle assumes the lead vehicle travels at constant speed during

losses.

Vehicle-to-vehicle radio links are bound to suffer from multipath fading as well as in-

terference from other vehicles. These communication links have to be extremely reliable.

Jakes [130] and Clarke [131] investigated a vehicle-to-base station Rayleigh fading channel

whereas Akki and Haberl [132] investigated a vehicle-to-vehicle Rayleigh fading channel.

However, Tank et al. [105] studied the Rician fading channel. From the MAC point of

view, the delay in processing is a main cause of packet loss. Multiple access schemes such as

TDMA, DS-CDMA, and frequency hopping with TDMA are investigated to determine their

performance with regards to packet erasure rates and reliability. It was shown that CDMA

gives better results than TDMA. Tank et al. [105] also concluded that deep fades and large

probabilities of packet losses can occur for distances less than 3 m due to inherent cance-

lation of ground-reflected and direct line-of-sight waves. Consequences of communication

delays have already been shown by Hitchcock [133] and Shladover et al. [134]. The effect

of information delays on string stability has also been studied by Xiong and Feng [135].

Onboard sensors typically operate with a scan frequency between 3-10 Hz. This implies a

potential information delay varying between 0.10 sec and 0.33 sec.

Wireless communication systems have the additional problem of delays mainly due

to packet losses, transmission times, and the time to analyze and process the transmitted

data, as pointed out by Mahal [136]. Most longitudinal controller designs do not take into

account the effect of communication delays on string stability. Liu et al. [137] analyze this

issue in detail. The robustness of current longitudinal controller designs to communication

delays is examined by the author. The radio spectrum directly limits the data rates on

the wireless channel. As the signal propagates through the channel, it undergoes random

power fluctuations over time due to changing reflections and attenuations. These power

fluctuations cause time-varying data rates and intermittent connectivity, thus introducing

random delays and packet losses. In the following section, the effects of communication

delays analyzed by Liu et al. [137] are summarized.
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2.9 System with Communication Delays

The longitudinal controller considered by Liu et al. [137] is a sliding mode control. The

spacing error is defined in Eq. (2.13)

εi(t) = xi(t)− xi−1(t) + Li, (2.13)

where xi denotes the abscissa of the rear bumper of the ith vehicle and Li is the slot allotted

to the ith vehicle, (i.e., the desired spacing between vehicle i and i − 1 from rear bumper

to rear bumper). εi measures the deviation in the assigned distance between vehicle i and

i− 1.

Considering the feedback information contains relative position, velocity, and acceler-

ation of both the lead vehicle and preceding vehicles, define

Si = ε̇i + q1εi + q3(vi − vl) + q4(xi − xl +

i∑
j=2

Lj), (2.14)

where q1, q3, q4 are design parameters. Si is a function of εi. It is desired that Si approaches

zero as εi approaches zero. By setting

Ṡi = −λSi, (2.15)

for some λ > 0, the control law is given as

uid =
1

1 + q3
[ẍi−1 + q3ẍl − (q1 + λ)ε̇i − q1λεi

−(q4 + λq3)(vi − vl)− λq4(xi − xl +
i∑

j=2

Lj)]. (2.16)

The actuator lag and signal processing delay is modeled as a first order filter

τ u̇i + ui = uid , (2.17)
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where τ is the “time constant,” taken here as 0.05 sec. Differentiating both sides of Eq. (2.13)

results in

ε̇i(t) = ẋi(t)− ẋi−1(t) = vi(t)− vi−1(t), (2.18)

ε̈i(t) = ẍi(t)− ¨xi−1(t) = ai(t)− ai−1(t). (2.19)

The ith vehicle dynamics are given as

v̇i = ui. (2.20)

Substituting Eq. (2.13), Eq. (2.18), Eq. (2.19), and Eq. (2.20) into Eq. (2.17) gives

τ
d3εi
dt3

+ ε̈i = uid − ui−1d . (2.21)

The time delays in both the preceding and lead vehicle information are defined as

- τ
(i)
dp is the timing delay of the preceding vehicle information seen by vehicle i,

- τ
(i)
dl is the timing delay of the lead vehicle information seen by vehicle i.

Substituting Eq. (2.16) into Eq. (2.21) and taking the Laplace transform to get the desired

transfer function yields

H11Ei(s) =
1

1 + q3
[G1Ei−1(s) +G2Al(s)

+G3Ai−1(s)−G4Ai−2(s)], (2.22)

where

H11 = τs3 + s2 + (λ+
q1 + q4
1 + q3

)s+
λ(q1 + q4)

1 + q3
, (2.23)

G1 = λq1, (2.24)

G2 =
1

s2
(e−τ

i
dls − e−τ i−1dl s)(q3s

2 + (q4 + λq3)s+ λq4), (2.25)

G3 =
e−τ

i
dp

s
(s+ (λ+ q1)), (2.26)
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G4 =
e−τ

i−1
dp

s
(s+ (λ+ q1)). (2.27)

For a detailed discussion to distinguish the effects of communication delays in lead and

preceding vehicle information, refer to the works of Liu et al. [137]. Currently, there is no

controller design that takes these communication delays into account and there is a need to

design controllers that adapt to the communication delays.

.
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Chapter 3

Research Platform 1: MASnet Platform

3.1 Overview

The MASnet platform was developed at CSOIS, Utah State University, to conduct

experiments on swarm engineering, like formation building, environmental monitoring as

well as tracking. The initial purpose of this platform was to study diffusion processes and

autonomous agent’s abilities to track them. This platform consists of several robots called

MASmotes, which act as wireless sensors and actuators, and have the capability of commu-

nicating with each other. In this research, the initial goal was to use this platform along

with the MASmotes to develop platooning algorithms and test them for their performance

requirements. Using these motes, a table top demonstration of vehicle platooning com-

plete with merging and splitting capabilities was the initial focus of this research. A brief

description of the platform is given in the next section.

3.2 Description of the MASnet Platform

The MASnet platform is made up of the following elements:

- 2.5 x 4 x 0.15 m Plexiglas surface with wooden supports,

- Sensor array (optional),

- Sensed element,

- Pseudo GPS (pGPS) camera,

- Base station computer,

- MicaZ motes.
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The base station transmits commands wirelessly to the robots which execute them.

The pGPS camera monitors robot position; this camera information is displayed on the

base station. The base station calculates the desires positions and according to position

error, sends commands to the robots. The robots receive these commands and move to the

desired position. Thus, the whole system works as a feedback loop. Figure 3.1 shows an

overview of the MASnet system as seen in the thesis by Rounds [5].

The robots are called MASmotes. They are built from relatively cheap, off-the-shelf,

commercially available parts in order to build a low cost system. The robots’ controller is

the MicaZ mote from crossbow, as shown in Fig. 3.2.

This MicaZ 58 x 32 x 13 mm programming board is developed by Crossbow for com-

munication, sensing, and computation of the individual robots. Specifications of this board

are listed below:

- 8 MHz ATmega 128L main CPU;

- 128 KB programmable flash memory;

- 4KB EEPROM;

- 512KB flash memory;

- Changeable PWM outputs with eight 10-bit ADC channels;

- CC240 RF transceiver chip for wireless communication at 2.4GHz, with maximum

communication rate of 250 kbps.

Fig. 3.1: Layout of the MASnet platform.
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The mote is interfaced to the base station computer via a 51-pin connector. It operates

on a 3V supply (2 AA batteries). It has 3 Led’s for status display.

The MASmotes (Fig. 3.3) have gone through several upgrades in design. The current

version, known as “gen2” motes (second generation), have the following components:

- 1 MicaZ programming board,

- 2 photodiodes,

- 2 IR sensors,

- 2 servos,

- 2 encoders,

- 1 unused sensor port.

3.3 Software Description

The MASnet platform requires two different softwares to function. The programming

language for the robots is tinyOS and nesC. The base station runs a custom written program

called the Robot Commander.

Fig. 3.2: MicaZ mote from Crossbow.
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Fig. 3.3: MASnet robots with their markers attached to the top.

3.3.1 TinyOS and NesC

TinyOs is an event driven operating system developed by University of California,

Berkeley and designed for WSN’s with limited memory [138]. The tinyOS system is devel-

oped in nesC, which is similar to C. This programming language is used mostly for embedded

systems such as the WSN on the MASnet platform. The language has been optimized for

hardware sensor access with the support for interrupts and task management capabilities.

This system is ideal for embedded projects due to its low memory and power requirements

and the ability to multitask.

3.3.2 Robot Commander

The base station runs on a customized program called the Robot Commander. This

is a program written in C++ and uses microsoft foundation classes (MFC). Details can be

seen in the thesis by Burgeous [139]. The base station is programmed to read and process

information coming from the base station mote or gateway mote (a gateway for commu-

nications between base station and MASmotes) and pGPS camera, and send commands

through the gateway. This process is done via Robot Commander. A GUI of the Robot

Commander is shown in Fig. 3.4.

The primary functions of the Robot Commander are listed below:

- Real time image processing

1. Camera control and stream the video,
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2. Capture and analysis of pGPS images,

3. Obtain MASnet platform position coordinates by transforming marker posi-

tions from pGPS images;

- Communication

1. Receive messages from the MASmotes via the gateway mote,

2. Send commands to MASmotes via the gateway mote;

- Data logging;

- Provides the GUI.

Using the pGPS images, Robot Commander finds the positions of the robots from the

unique markers on top. Each robot has a unique marker assigned to it (Fig. 3.3). These

markers are then detected by an ARToolkit, which detects the red frame first and then

identifies the robot from the symbol. On identification of the robot, its unique ID, position

and orientation information is logged and broadcasted to all other robots.

For a tutorial on how to set up the Robot Commander and get the system up and

working, refer to the appendix of the thesis by Rounds [5].

Fig. 3.4: Robot Commander GUI.
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3.4 Issues Faced with the MASnet Platform

In this research, work started on the platform to develop vehicle platooning algorithms

to show a table top demonstration of platooning. However, a lot of technical and hardware

issues were faced. For descriptions of the different softwares, refer to Appendix A, and for a

fix to compilation issues, refer to Appendix B. One of the main issues being faced was that

the base station computer was really old and outdated and had loads of redundant data on

it. Due to the work being done on the platform by students right from the year 2003 and

there being modifications and additions to all the files, problems in locating the required

files were being faced. Missing files, outdated versions of softwares like TinyOS, nesC, and

missing Robot Commander files required the adoption of a new platform in the form of the

LEGO mindstorm NXT 2.0. This platform is explained in the next chapter.
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Chapter 4

Research Platform 2: LEGO Mindstorm NXT 2.0

4.1 Introduction

Due to the issues arising with the MASnet platform, a new platform was adopted which

was the LEGO mindstorm NXT 2.0. The Lego mindstorms NXT robotics kit is a widely

used platform in universities and research facilities. It is being used as a platform for im-

plementing theoretical results and analyzing varied scenarios. The NXT is a programmable

robotics toolkit, released by Lego in July 2006. The NXT came as a replacement for the

“robotics invention system,” a first generation Lego mindstorm kit. Legos are one of the

most widely used platforms in many universities and research facilities. Being an affordable

robotics toolkit that can do wonders, it has been used to implement and analyze both prac-

tical and theoretical results. In this research,the motivation behind using the NXT was to

build a cheap and user friendly platform for verifying theoretical results from research on

platooning, and demonstrate them on the NXT.

4.2 LEGO NXT Brick Description

Initially, a vehicle was built that had differential drive characteristics. Default program-

ming of the brick is done in a graphical programming language that comes along with the

kit, called NXT-G. However,by updating the firmware, the NXT can be programmed using

a variety of languages like LabVIEW, Matlab Simulink, Java (leJOS NXJ), NXC, NBC,

and RobotC, which is similar to C. The NXT Brick is the brain of the robot (Fig. 4.1).

The brick is the main component of the NXT. Specifications are listed below:

- 4 sensor inputs (1,2,3,4 as seen in Fig. 4.1),

- 3 motor inputs (A,B,C as seen in Fig. 4.1),
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Fig. 4.1: LEGO NXT 2.0 intelligent brick.

- 100 x 60 pixel monochrome LCD display,

- 32-bit ARM processor,

- 256 KB flash memory,

- 64 KB RAM,

- 8-bit AVR microcontroller,

- Bluetooth connectivity,

- Powered by 6 AA batteries.

Lego has released an open source firmware for the NXT intelligent brick, hence making

programming flexible and versatile. Simple default programs are present in the menu of the

brick for beginners. Customized and more complicated code can be downloaded onto the

brick either via USB cable, or bluetooth connectivity. Programs can also be shared between

NXTs via bluetooth. The default programming language that comes bundled with NXT is

the NXT-G. Real world programming can be done using NXT-G simply by construction of

blocks and wiring them together. LeJOS NXJ is a high-level open-source language based on

Java that uses custom firmware developed by the LeJOS team. MATLAB and Simulink are

again high-level programming languages for computation, data acquisition, and analysis.

Control of the LEGO NXT is obtained over a bluetooth serial port or USB connectivity.
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Simulink is used for modeling and simulating dynamic systems. In Simulink, a backhand C

code is generated. The code can be compiled and downloaded into the NXT brick.

4.3 Description of the Vehicle Designed Using NXT

Initially, a differential drive vehicle model was developed, as shown in Fig. 4.2.

The vehicle had three motors connected to ports A, B, and C of the brick, an ultrasonic

sensor mounted in the front to measure distances to the vehicle in front and a color sensor

to perform the line following function.

4.4 Programming the NXT in LabVIEW

LabVIEW was used to develop the control algorithms for lateral (line following) and

longitudinal (distance keeping) control. LabVIEW is a graphical programming language

widely used in industries for data acquisition and analysis. It is a system design software

which can be used to create and deploy measurement and control systems through unprece-

dented hardware integration [140]. In LabVIEW, the control system was implemented to

demonstrate vehicle platooning as seen in Fig. 4.3.

The working of the program is explained here. A leader-follower implementation in

LabVIEW uses ultrasonic sensors on the follower which measures the distance to the leader

(in centimeters). The set point for the inter-vehicular distance is entered into the GUI as

shown in Fig. 4.4.

(a) Top view. (b) Side view. (c) Front view.

Fig. 4.2: Overview of the designed vehicle.
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Fig. 4.3: Implementation of the code in LabVIEW.

Fig. 4.4: Graphical user interface in LabVIEW.
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A proportional controller maintains the distance between the vehicles as per the set

point. The gains are set from the graphical user interface. Here, the gain for the longitudinal

controller is 4 and that for the lateral controller is 7. Desired distance between vehicles is

15 cm. The working if longitudinal control is fairly simple. The ultrasonic sensor measures

the distance to the vehicle in front. This value is compared with the desired set point. The

error is then amplified by a gain of 4, to determine the power to be delivered to the motors.

If the error is positive, meaning the measured distance is less than set point, then less

power is delivered to the motors and the robot slows down to maintain the inter-vehicular

spacing. If the error is negative, meaning the measured distance is more than set point,

then the motors get more power and the vehicle speeds up. For the lateral control, a line

following concept is implemented, which is similar to the lateral control implemented by

PATH (using magnetic markers). The color sensor on the robot is used in the light sensing

mode. The value obtained when the sensor is reading white and the value obtained when

the sensor is reading black is averaged out. This average value is given as set point. In

testing the sensor, the values obtained are shown in Table 4.1. Depending on what the color

sensor reads, the robot turns to left or right. The power delivered to the motors depends is

proportional to the turn needed. If the reading is 49, it means the sensor is reading white

and the robot should turn right so more power is delivered to the right wheels as compared

to left. Similarly, if reading is 17, it means robot needs to turn left and left wheels get more

power. The ultrasonic sensor is noisy and when it does not get a good reading, it reads a

default value of 255. This is filtered out in the code by adding some logic. When the sensor

reads 255, the last used value in the loop is used. This is done by adding a shift register to

the case structure. When the sensor gives a good reading, that reading is used instead of

the last reading. This can be seen in Fig. 4.3. A modified version of the code is shown in

Table 4.1: Color sensor readings.

Sensor Reading
for White

Sensor Reading
for Black

Average Reading

49 17 33
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Fig. 4.5. This version introduces bluetooth communication between the vehicles.

This code was better than the previous since in the previous code, if the leader vehicle

stopped when facing an obstacle in its path, the follower would also stop at the predefined

distance, but would continue to oscillate back and forth. This was overcome by introducing

better logic into the code which brought the follower to a complete stop at the predefined

distance. Also, due to lack of inter-vehicular communication, when going along a curved

path, the follower came dangerously close to the leader due to the limitation of the ultrasonic

sensor. This was solved by adding bluetooth communication between leader and followers.

Here, if the leader starts tracing a curve, it sends a message to the followers, which reduces

the velocity of the followers while maintaining safe inter-vehicular distances. As soon as

the leader finishes tracing the curve and follows a straight path, the followers accelerate to

catch up to the leader. The follower code is shown in Fig. 4.6.

When the follower receives a message from the leader, it stores it in its mailbox, and the

logic shown is executed to reduce its velocity on turns. When the leader starts accelerating

and the inter-vehicle spacing increases, the follower starts accelerating to minimize this

gap. Emergency braking scenario is also demonstrated here. If the follower comes within a

specified range of the leader, it is brought to an immediate halt to prevent collisions.

4.5 Programming the NXT in Simulink

Since modeling the motors was not possible in LabVIEW to perform experimental

analysis on the LEGO and develop a controller for them, Simulink was used. Matlab

version 2012a has developed a toolbox for the LEGO mindstorms NXT so that they can

be interfaced with a computer to study the motor performances and similar characteristics.

The vehicle design was modified to have Ackermann steering, to make it more like a real car.

A PID controller was then designed for both speed and position control of the vehicle. In

order to design the speed controller in Simulink, the motor model was derived by performing

an open-loop step response test. The Simulink model in Fig. 4.7 shows the open-loop step

response model.

The response obtained is shown in Fig. 4.8.
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Fig. 4.5: LabVIEW code for the leader vehicle.

Fig. 4.6: LabVIEW code for the follower vehicle.
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Fig. 4.7: Simulink block diagram for open-loop step response of NXT motor.

Fig. 4.8: Open-loop step response of motor.

This response is noisy since it is a speed response and hence involves taking the deriva-

tive of position. Introduction of derivative action leads to noise. A filter is used to eliminate

noise. The motor model is given as

G(s) =
K

τs+ 1
, (4.1)

where τ is the motor time constant and K is the dc gain. From the response, the motor

model is obtained as

G(s) =
0.159

0.125s+ 1
. (4.2)

Nonlinearities associated with the motors are saturation of the power ±100 and a dead zone

of ±12%. The Simulink block diagram and the response obtained using this model is shown

in Fig. 4.9.

The magnitude of the step is 50% of power. A comparison of simulated and experi-

mental responses is shown in Fig. 4.10.
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Fig. 4.9: Simulink model for open-loop step response of motor using model obtained.

Fig. 4.10: Comparison of simulated and experimental responses.

4.6 PID Controller Design

The relay method was used to obtain the controller gains. The closed-loop system is

shown in Fig. 4.11.

The responses obtained are shown in Fig. 4.12.

For the Relay Method, we need to obtain the parameters “H” and “A” as shown in

Fig. 4.13.

These values are: H = 50, A = 1.48, and Pu = 0.12. Using Ziegler-Nichols tuning rules

from Fig. 4.14, Kcu = 4h
πA .

Using these rules, the PID controller was obtained as shown in Table 4.2.

Using these gains, the best response obtained is shown in Fig. 4.15.

After fine tuning the controller, the final PID gains obtained are shown in Table 4.3.

Fig. 4.11: Simulink diagram for the relay method.
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Fig. 4.12: Response from the relay method.

Fig. 4.13: Relay method.

Fig. 4.14: Ziegler-Nichols tuning rules.

Table 4.2: PID controller design for speed.

Kp Ki Kd

25.8 430.15 0.3871
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Fig. 4.15: Step response using obtained PID gains.

Table 4.3: Gains obtained on tuning.

Kp Ki Kd

25.8 400 1.5

The controller hence obtained is shown in Eq. (4.3).

25.8 +
400

s
+ 1.5s (4.3)

This controller was implemented on the NXT but an overshoot of about 12.5% was obtained.

To remove this overshoot, anti-windup was implemented as shown in Fig. 4.16.

The response obtained is shown in Fig. 4.17. The PID gains are shown in Table 4.4

It has 0% overshoot.

The controller obtained was stable and robust. Response to set point changes and

disturbances (Fig. 4.18) proved this controller design to be robust.

Fig. 4.16: PID with antiwindup.
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Fig. 4.17: Step response for PID with antiwindup.

Table 4.4: PID controller design for speed with antiwindup.

Kp Ki Kd

100 600 1

Fig. 4.18: Response to set point changes and disturbances.
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4.7 Position Controller Design

Similar methods were used to design the position controller. However, instead of the

relay method, the critical gain method was used. The model obtained was

G(s) =
0.181

0.125s2 + s
. (4.4)

A comparison plot of simulated vs experimental data is shown in Fig. 4.19(a). The

critical gain and period of oscillations was obtained from Fig. 4.19(b) as Kcu = 170,Pu =

0.8.

By using the Ziegler-Nichols tuning rule from Fig. 4.14, the PID gains were obtained

as shown in Table 4.5. The Simulink block diagram for position controller with anti-reset

windup can be seen in Fig. 4.20.

The controller obtained was found to be stable and robust to disturbances (Fig. 4.21)

and set point changes (Fig. 4.22).

The final Simulink block diagram for position and speed controller can be seen in

Fig. 4.23.

(a) Comparison of simulated and
experimental responses.

(b) Response obtained when gain
is critical gain Kcu.

Fig. 4.19: Simulated and experimental response comparison and critical gain response.
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Table 4.5: PID controller design for position.

Kp Ki Kd

102 10.2 255

Fig. 4.20: Simulink block diagram for position control system.

Fig. 4.21: Responses to disturbances.
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Fig. 4.22: Responses to set point changes.

Fig. 4.23: Speed and position control.
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Chapter 5

Analysis of Control Strategies for Cognitive Vehicle

Platooning

Several control strategies have been proposed in literature for both lateral and longi-

tudinal control of a platoon of vehicles. The word “cognition” means the “mental process

of knowing, including awareness, perception, reasoning and judgement” [141]. This thesis

analyzes a few control strategies and their influence on parameters such as inter-vehicular

spacing, robustness of control design and stability of control design. In the next few sections,

algorithms based on distance-based platoon control and position-based platoon control is

analyzed and their differences are enlisted. A few other strategies are are also defined.

5.1 Cognitive Vehicle Platooning Control

Vehicle platooning control is a type of formation maintainence and control through

cooperation between the platoon members. This cooperation is nothing but IVC. A coop-

erative control system consists of multiple autonomous agents having the ability to sense

and communicate with each other. If only local information is available to the group, then

using this information, predefined agent and group behaviors is achieved via the sensing

and communication devices.

Topology of information flow is important in cooperative control. In platoon formation

control, the main target is to stabilize the relative positions or distances between platoon

members to desired values.

Topology of information exchange between the agents is represented by graph theory.

If agent i can access the information of agent j, then it is said that agent j is the neighbor of

agent i. The information flow between agents is then represented by a graph, wherein each

agent is a “node” and flow of information between nodes is represented by “links.” Group
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objectives are achieved by the use of distributed laws, which use only local information.

5.2 Cooperative Control Using Passivity-Based Design

Cooperative control problems can be targeted using the passivity-based design, as

analyzed by Bai et al. [142]. There are certain advantages of the passivity-based approach

as compared to conventional approaches. These are listed below:

- Design possible for higher order agent dynamics;

- Robust behavior, flexibility of design, and adaptivity;

- Ease of modularity and scalability.

The passivity-based design assumes bidirectional communication topology. This means

that both agents communicate with each other. This type of topology has shown to guar-

antee stability by Bai et al. [142].

The definition of passivity and its relation to stability is given by Bai et al. [142] as

follows.

Passivity of Static Nonlinearity:

A static nonlinearity y = h(u), where h : Rp → Rp, is passive, if, ∀u,∈ Rp

uT y = uTh(u) ≥ 0, (5.1)

and strictly passive if Eq. (5.1) holds with strict inequality ∀u 6= 0.

Passivity and Strict Passivity of Dynamical Systems:

The dynamical system as shown in Eq. (5.2)

H =


ξ̇ = f(ξ, u)

y = h(ξ, u) ξ ∈ Rn, u, y ∈ Rp,
(5.2)

is passive if there exists a C1 storage function S(ξ) ≥ 0 such that Eq. (5.3) holds true
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Ṡ = ∆S(ξ)T f(ξ, u) ≤ −W (ξ) + uT y, (5.3)

for some positive semi-definite function W (ξ). Eq. (5.2) is strictly passive if W (ξ) is positive

definite.

Strict Input and Output Passivity:

For the dynamic system Eq. (5.2), if S in Eq. (5.3) satisfies Eq. (5.4)

Ṡ ≤ −uTψ(u) + uT y, (5.4)

for some function ψ(u) such that uTψ(u) > 0, then Eq. (5.2) is input strictly passive. If

Eq. (5.5) holds for some function ψ(y) where yTψ(y) > 0, Eq. (5.2) is output strictly passive

Ṡ ≤ −yTψ(y) + uT y. (5.5)

Cooperative Control Using Passivity-Based Design

An important consideration when designing controllers for platoon formation control is the

stability of the formation. If only local information is available, it is possible to design

feedback laws to solve the problem of stability. A key assumption however, is bidirectional

communication. Control objective is mainly to bring the differences between the output

variables of all the members of the platoon to some specific values in the form of a compact

set. These output variables could be relative velocities, positions, or accelerations. When

these output variables are positions of the platoon members that need to maintain fixed

inter-vehicular distances, the compact set results in a sphere. If the output variable is

velocity, then this becomes an agreement or consensus problem. In this case, the compact

set is the origin, since we want to steer the velocities of all the platoon members to the

leader velocity. Hence, the ultimate goal is to achieve stability for this compact set. A

stabilizing feedback law can hence be constructed using passivity-based design techniques.

Using additional assumptions detailed by Bai et al. [142], global asymptotic stability can

also be proved.
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5.3 Problem Definition

Consider a platoon of N agents. The variables that need to be coordinated with the

rest of the members can be represented by a vector xi ∈ Rp, where i = 1, ...., N . Information

flow between the agents is represented as a graph “G,” which is said to be an “undirected”

graph due to the assumption of bidirectional information flow. “G” has “l” undirected links.

Since agents are represented as nodes, one of the agents is considered to be a positive end

of the link, for simplicity. Since information flow is bidirectional and symmetric, it does not

matter which node is selected as positive end.

The ultimate objective is to attain limit in Eq. (5.6).

lim
t→∞
|ẋi − v(t)| = 0, i = 1, ..., N (5.6)

Meaning, in the limit, the velocity vector of each platoon member v(t) ∈ Rp is equal

to the leader velocity, and Eq. (5.7),

zk =
N∑
l=1

dikxl =


xi − xj if, k ∈ L+

i ;

xj − xi if, k ∈ L−i ,
(5.7)

converges to a prescribed compact set Ak ⊂ Rp, k = 1, ..., l. Here, dik is the “graph incidence

matrix” given in Eq. (5.8)

dik =


+1 if, k ∈ L+

i ;

−1 if, k ∈ L−i ;

0 otherwise.

(5.8)

Li is the “graph Laplacian matrix”given in Eq. (5.9),

lij =


|Ni| if, i = j;

−1 if, j ∈ Ni;

0 otherwise.

(5.9)
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Ni is the number of neighbors of agent i, zk is the relative position between agents.

There are two steps involved with the passivity-based design procedure.

Step 1 : The dynamics of each agent i = 1, ..., N is rendered passive from an external

feedback signal ui to the velocity error yi = ẋi − v(t) by designing an “internal” feedback

loop.

Step 2 : An external feedback system is designed which is given in Eq. (5.10),

ui =

l∑
k=1

dikψk(zk), (5.10)

where zk is as in Eq. (5.7), and ψk are the nonlinearities, to be designed such that Ak’s are

asymptotically stable and invariant. For design of ψk, refer to the book by Bai et al. [142].

5.4 Position-Based Platoon Formation Control

In platoon formation control, a key consideration is formation stability and mainte-

nance. This means steering the relative positions (zk’s) or relative inter-vehicular distances

to prescribed values. Based on the goal, there are two concepts.

- Distance-based formation control, in which the desired target set Ak is given as Ak =

(zk, |zk| = dk), dk ∈ R>0, k = 1, ..., l.

- Position-based formation control, in which the desired target set Ak is given as Ak =

(zk, zk = zdk), zdk ∈ Rp, k = 1, ..., l.

Differences between these two control strategies are listed later in the chapter. Sim-

ulation results and analysis for position-based control are presented in the following few

paragraphs.

Consider the group members of the platoon have double integrator dynamics in Eq. (5.11),

miẍi = τi, i = 1, ..., N, (5.11)
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where mi is the mass of the agents, xi ∈ Rp is the position vector of agent i, and τi ∈ Rp

is the force input. Referring back to Step 1, we have an internal feedback law given by

Eq. (5.12),

τi = −ki(ẋ− v(t)) +miv̇(t) + ui, ki > 0. (5.12)

Next, applying Step 2, an external feedback law is designed in Eq. (5.13) as

ui = −
l∑

i=1

dikψk(zk − zdk). (5.13)

The overall closed-loop system can be seen in Eq. (5.14) as

mi(ẍi − v̇(t)) + ki(ẋi − v(t)) +
l∑

k=1

dikψk(zk − zdk) = 0. (5.14)

Simulink model and simulation results of the position-based control system Eq. (5.14) are

shown in Fig. 5.1 and Fig. 5.2, respectively.

From simulation results, it can be seen that position-based formation controller achieves

stability of both shape and orientation. If only the shape of the formation is of concern,

the distance-based formation control is used.

Fig. 5.1: Implementation of the position-based controller in Simulink.
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(a) Final formation 1.

(b) Final formation 2. (c) Final formation 3 (Platoon).

Fig. 5.2: Formation control using position-based controller.
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5.5 Distance-Based Platoon Formation Control

The distance-based formation control problem is defined in Eq. (5.15).

Ak = (zk, |zk| = dk), dk ∈ R>0, k = 1, ..., l (5.15)

Design of the distance-based formation controller is slightly different from that of the

position-based controller. Step 1 remains the same as defined previously for position-based

control. In Step 2, the nonlinearities ψk are as designed by Bai et al. [142]. Here, dk, which

is the distance between agents, is set to 1. Simulink model and simulation results are shown

in Fig. 5.3 and Fig. 5.4, respectively. The position variation of agents over time can be seen

in Fig. 5.5.

Fig. 5.3: Implementation of the distance-based controller in Simulink.

(a) Final formation 1. (b) Final formation 2 (platoon).

Fig. 5.4: Formation control using distance-based controller and zero reference velocity.
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(a) x position for formation 1. (b) y position for formation 1.

(c) x position for formation 2. (d) y position for formation 2.

Fig. 5.5: Positions of the agents for Fig. 5.4.
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Simulations results when a reference velocity of [0.1,0.1] is added are given in Fig. 5.6.

Distances of the agents over time can be seen in Fig. 5.7.

From these simulations results, it can be seen that the distance between the agents

reached the desired distance of 1 meter specified in simulations. The controllers are robust

in design and stable to disturbances as well. We can summarize the differences between

distance-based and position-based formation control as follows.

- Equilibria

The desired equilibria are seen to be spheres for distance-based control whereas for

position-based control, these equilibria are nothing but a single point. So, the position-

based control is important when both shape and orientation of the formation needs

to be maintained. On the other hand, distance-based control is important only when

the shape of the formation is to be maintained.

- Control design and flexibility

Distance-based formation control requires the use of nonlinear potential functions,

whereas position-based control can be implemented just by linear feedback laws.

Distance-based control achieves stability only locally when the communication graph

contains cycles, whereas position-based control is able to stabilize the formation glob-

ally.

(a) Final formation 1. (b) Final formation 2 (platoon).

Fig. 5.6: Formation control using distance-based controller and nonzero reference velocity.
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(a) x position for formation 1. (b) y position for formation 1.

(c) x position for formation 2. (d) y position for formation 2.

Fig. 5.7: Positions of the agents for Fig. 5.6.
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- Control law implementation

Difference between control design is seen in Eq. (5.16) and Eq. (5.17).

Position−Based : ẍi = τi = −Kiẋi −
l∑

k=1

dik(zk − zdk) (5.16)

Distance−Based : ẍi = τi = −Kiẋi −
l∑

k=1

diklog(
|zk|
dk

)
1

|zk|
zk (5.17)

Distance-based control is used when no global information about the platoon is available.

5.6 Impedance-Based Control of a Platoon

Another widely used concept in vehicle platooning control is the use of spring damper

system to model the interactions of vehicles with each other within a platoon as well as with

the environment. Such a concept is described by Yi and Chong [143]. Utilization of a series

of spring damper systems for the impedance control of a platoon is a well studied subject.

Robustness of the controller designed to parametric uncertainties, model errors and noise in

sensor measurements should be guaranteed to have safe platooning. Developing a guidance

model and then incorporating vehicle dynamics to follow this guidance model is studied by

Yi and Chong [143]. Since this impedance model consisting of spring damper systems is

stable even to uncertain environments, it is widely used to model such interactions. An

example of a guidance model is seen in Fig. 5.8.

In this model, global communication between platoon members is possible via wireless

communications. All the vehicles are supplied with leader vehicle velocity, position, and

acceleration information. Also, every vehicle has access to the preceding vehicle’s position

and velocity data. This type of communication topology has been proved to be string stable.

However, in cases where a global communication link is absent, local interactions have to be

used to achieve platoon control. Using this communication topology helps counter problems

associated with global communication such as communication delays and packet drops. This

uses a model as shown in Fig. 5.9.
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Fig. 5.8: Guidance model using global communication.

Finally, when no local or global communication is available, the spring damper impedance

model is used to model interactions between vehicles. This model is shown in Fig. 5.10.

In this case, the position and velocity of the vehicle is found from subtracting the

preceding vehicle’s position and velocity from its own. When this guidance model is coupled

with vehicle dynamics, complete platoon control is possible. This includes both lateral and

longitudinal control. Incorporating this model, proposed by Yi and Chong [143], with

vehicle dynamics, and using exiting methods for feedback linearization, provides a unified

controller for lateral and longitudinal control.

5.6.1 Impedance Model for a Vehicle Platoon

Using spring damper system to demonstrate the interactions between vehicles,the forces

between vehicles are given by Yi and Chong [143] as in Eq. (5.18),

ff = k(pn+1 − pn − dn) + c( ˙pn+1 − ṗn), (5.18)

Fig. 5.9: Model using local communication.



71

Fig. 5.10: Model without local communication.

which is the force between the vehicle ‘n’ and vehicle ‘n+1’. Here, ‘k’ is the spring coefficient,

‘c’ is the damper coefficient, ‘pn’ is the position of nth vehicle, and ‘ṗn’ is the velocity of nth

vehicle, and fr is shown in Eq. (5.19).

fr = k(pn − pn−1 − dn−1) + c(ṗn − ˙pn−1) (5.19)

Here, dn = d · pn+1−pn
‖pn+1−pn‖ is the inter-vehicular distance, d > 0. If the vehicle mass is

‘m’, ‘N ’ is the total number of vehicles in the platoon, then the vehicle equation of motion

can be written as in Eq. (5.20).

mp̈n = ff − fr (5.20)

ff = 0 for lead vehicle, and fr = 0 for last vehicle in platoon. Combining Eq. (5.18),

Eq. (5.19), and Eq. (5.20), the controller equations proposed by Yi and Chong [143] are

given in Eq. (5.21) as

p̈n =



k
m(p2 − p1 − d1) + c

m(ṗ2 − ṗ1) n = 1;

k
m(pn+1 − pn − dn)− k

m(pn − pn−1 − dn−1)

+ c
m( ˙pn+1 − ṗn)− c

m(ṗn − ˙pn−1) 2 ≤ n ≤ N − 1;

−k
m (pN − pN−1 − dN−1)− c

m( ˙pN − ˙pN−1) n = N.

(5.21)

5.6.2 Simulation Results

The controller in Eq. (5.21) was implemented in Simulink (Fig. 5.11).
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Simulation results are presented. The leader vehicle trajectory is generated as shown

in Fig. 5.12(a) and heading are shown in Fig. 5.12(b).

Platoon trajectory and inter-vehicular spacing for a reference of 5 meters and arbitrary

initial positions is shown in Fig. 5.13.

It can be seen from the simulation results that the platoon follows the leader trajectory

pretty well. The controller design is robust towards errors in model and other parametric

uncertainties. It also leads to stable platoon behavior. Due to the impedance model,

the error in inter-vehicular spacings gets damped out as the number of platoon members

increases, ensuring that spacing errors do not propagate down a platoon, thus ensuring

string stability. Thus, it can be concluded that stable platoon control can be achieved

through the use of impedance model.

Fig. 5.11: Impedance model implementation in Simulink.
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(a) Trajectory of the leader. (b) Heading of the leader.

Fig. 5.12: Leader vehicle trajectory and heading.

(a) Platoon trajectory. (b) Inter-vehicular spacings variation.

Fig. 5.13: Simulation results for platoon trajectory and inter-vehicular distances.
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Chapter 6

Design of Fractional Order Controller for Optimal Vehicle

Platooning

In this chapter, a fractional order controller for optimal vehicle platooning is designed,

using passivity-based design technique. By minimizing the integral square error (ISE) in

Eq. (6.1) of the position error signal, the order of the fractional controller is determined.

Use of fractional calculus in history is well known for mathematical purposes. However,

utilization of fractional calculus in controls is now an emerging researched topic. It has been

shown by Bhambhani et al., Luo and Chen [144, 145] that fractional control can achieve

much improvement in performance over integer order controllers. Techniques for tuning the

fractional order controllers have been already been designed by Monje et al. [146]. This

chapter analyzes the use of passivity-based control methods to achieve formations. ISE is

given in Eq. (6.1),

ISE =

∫ t

0
(e21 + e22 + e23)dt, (6.1)

where e1, e2, and e3 are the position errors of vehicle 1, 2, and 3, and t is the simulation

time.

6.1 Fixing Optimal Gain K for Fractional Controller

Using the same passivity-based design steps discussed in Chapter 5 and shown below,

simulations were run to determine optimal gain K in Eq. (6.2), for fractional order. Results

showed that minimum ISE occurred at K = 1.

Step 1 : The dynamics of each agent i = 1, ..., N is rendered passive from an external

feedback signal ui to the velocity error yi = ẋi − v(t) by designing an “internal” feedback

loop.
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Step 2 : An external feedback system is designed which is given in Eq. (6.2),

ui =
l∑

k=1

dikψk(zk), (6.2)

where zk is as as discussed in previous chapter, and ψk are the nonlinearities, to be designed

such that Ak’s are asymptotically stable and invariant. For design of ψk, refer to the works

of Bai et al. [142].

The optimal gain K varies with fractional order ‘α’ of the controller. This variation

for X and Y positions can be seen in Fig. 6.1(a) and Fig. 6.1(b), respectively.

Simulation results showing the variation of ISE with controller order α for both x

position and y position can be seen in Fig. 6.2(a) and Fig. 6.2(b), respectively.

6.2 Comparison of Fractional Order and Integer Order Controller Perfor-

mances

Results show that the fractional order controller, with order of 0.27 and gain K = 1,

gives better performance than integer order controller. Simulation results comparing the X

positions of the three agents are presented in Fig. 6.3(a), Fig. 6.3(b), and Fig. 6.3(c); and

Y positions in Fig. 6.4(a), Fig. 6.4(b), and Fig. 6.4(c).

Simulation results also showed that the fractional controller performed better than

the integer order controller when a delay was introduced in feedback loop. The fractional

controller remained stable while integer order control caused instability. This can be seen

in Fig. 6.5(a), Fig. 6.5(b), and Fig. 6.5(c) for X positions; and in Fig. 6.6(a), Fig. 6.6(b),

and Fig. 6.6(c) for Y positions.
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(a) Variation of best gain for X position with
fractional order α.

(b) Variation of best gain for Y position with
fractional order α.

Fig. 6.1: Best gain variation with fractional order α.

(a) Minimization of ISE for X position. (b) Minimization of ISE for Y position.

Fig. 6.2: ISE minimizations.
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(a) Agent 1.

(b) Agent 2. (c) Agent 3.

Fig. 6.3: X positions of the three agents over time.
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(a) Agent 1.

(b) Agent 2. (c) Agent 3.

Fig. 6.4: Y positions of the three agents over time.
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(a) Agent 1.

(b) Agent 2. (c) Agent 3.

Fig. 6.5: X positions of the three agents over time for system with a delay.
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(a) Agent 1.

(b) Agent 2. (c) Agent 3.

Fig. 6.6: Y positions of the three agents over time for system with a delay.
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Chapter 7

String Stability of a Platoon and Effect of Communication

Delays

7.1 String Stability

String stability in leader-follower platoons has been a topic of great concern. Intuitively,

string stability implies uniform boundedness of all states of an interconnected system at all

times if the initial states of the interconnected system are uniformly bounded, as defined

by Swaroop and Hedrick [147]. Spacing errors should not amplify downstream from one

vehicle to another of the platoon. String stability has proved to be an important tool in

analyzing the stability of platoons of vehicles. Shladover [148] pointed out the need for

lead vehicle information to obtain string stability with a linear static controller for spacing

control. Without leader information, string stability is lost. Tanner et al. [149] analyzed

a leader to follower stability, to address issues related to safety and performance due to

error propagation in a platoon. The works of Peppard [150] already introduced the idea

of string stability in connection to moving cell systems. Peppard defined string stability

as the “ability of the vehicle string to attenuate disturbances as they propagate down the

string.” Conditions for string stability were also provided in the works of Peppard [150],

and Shiekholeslam and Desoer [151], in terms of the norm magnitude (|G(jω) < 1|) and

the impulse response (g(t) > 0) of the linear operator G(s), where G(s) maps the deviation

in the assigned distances between vehicle i and i− 1.

String Stability is further studied in the works of Swaroop [152], wherein he introduced

mathematical definitions for: string stability, asymptotical string stability, and lp string

stability. Analysis of the type of information and inter-vehicle spacing strategy that should

be employed to achieve string stability has been debated by many authors like Swaroop,
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and Yanakiev and Kanellakopoulos [152, 153]. In the works of Swaroop, and Yanakiev and

Kanellakopoulos [152,153], it was concluded that it was impossible to achieve string stability

under autonomous operation when the desired inter-vehicle spacing is constant.

Carlos and Brogliato [154] defined string stability as given by the relation in Eq. (7.1),

ej(s) =

j−1∏
l=1

G1(s) · e1(s) = G(s) · e1(s),∀j = 2, 3.....n, (7.1)

that gives the transfer function of the backward error propagation, where Gi(·) : ei → ei+1.

From this relation, we obtain Eq. (7.2),

‖ ei ‖∞≤‖ g ∗ e1 ‖∞≤‖ g ‖1‖ e1 ‖∞, (7.2)

where g(t) is the inverse laplace transform of G(s). A necessary and sufficient condition for

error attenuation is given in Eq. (7.3),

‖ g ‖1≤ 1. (7.3)

Also, if g(t) is positive, then above condition equals Eq. (7.4),

‖ G ‖∞= maxω|G(jω)| ≤ 1, g(t) ≥ 0. (7.4)

If g(t) is not positive, then ‖ G ‖∞≤ 1 only gives L2 stability, because of Eq. (7.5),

‖ ei ‖2≤‖ G ‖∞‖ e1 ‖2 . (7.5)

These conditions have already been presented in the works of Sheikholeslam and Desoer

[151].

For details on linear control strategies based on whether the system is string unstable, l2

string stable or string stable, refer to the works of Carlos and Brogliato [154]. String stability

without communication between the vehicles has been proved by Khatir and Davision [155].
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Using nonidentical controllers for each identical vehicle, string stability can be obtained with

complete decentralized control, even as the platoon size increases.

7.2 Effect on Systems with Communication Delays

When designing longitudinal controllers for vehicle platoons, it is important to take

into consideration, the delays introduced by communication channels in transmitting infor-

mation between vehicles. Packet drops leading to information loss greatly affects stability.

Unreliability of communication channels, limitation on the data transfer rates and random

power fluctuations as a signal travels through these links, gives rise to the need to design

controllers that can tolerate small system delays without compromising string stability.

Liu et al. [137] developed a sliding mode longitudinal controller to counteract this

problem of delays. The spacing error is defined in Eq. (7.6),

εi(t) = xi(t)− xi−1(t) + Li, (7.6)

where xi denotes the abscissa of the rear bumper of the ith vehicle and Li is the allotted

slot to ith vehicle, (i.e., the desired spacing between vehicle i and i − 1 from rear bumper

to rear bumper). εi measures the deviation in the assigned distance between vehicle i and

i− 1.

Considering the feedback information contains relative position, velocity, and acceler-

ation of both the lead vehicle and preceding vehicles, define Eq. (7.7),

Si = ε̇i + q1εi + q3(vi − vl) + q4(xi − xl +

i∑
j=2

Lj), (7.7)

where q1, q3, q4 are design parameters. Si is a function of εi. It is desired that Si approaches

zero that εi approaches zero. By setting Ṡi as in Eq. (7.8),

Ṡi = −λSi, (7.8)
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for some λ > 0; the control law is given as in Eq. (7.9),

uid =
1

1 + q3
[ẍi−1 + q3ẍl − (q1 + λ)ε̇i − q1λεi

−(q4 + λq3)(vi − vl)− λq4(xi − xl +

i∑
j=2

Lj)]. (7.9)

The actuator lag and signal processing delay is modeled as a first order filter.

τ u̇i + ui = uid , (7.10)

where τ is the “time constant,” taken here as 0.05. Differentiating both sides of Eq. (7.6),

we get Eq. (7.11) and Eq. (7.12),

˙εi(t) = ẋi(t)− ẋi−1(t) = vi(t)− vi−1(t), (7.11)

ε̈i(t) = ẍi(t)− ¨xi−1(t) = ai(t)− ai−1(t). (7.12)

The ith vehicle dynamics is given as in Eq. (7.13),

v̇i = ui. (7.13)

Substituting Eq. (7.6), Eq. (7.11), Eq. (7.12), and Eq. (7.13) into Eq. (7.10) gives Eq. (7.14),

τ
d3εi
dt

+ ε̈i = uid − ui−1d . (7.14)

The time delays in both the preceding and lead vehicle information are defined as

- τ
(i)
dp is the timing delay of the preceding vehicle information seen by vehicle i;

- τ
(i)
dl is the timing delay of the lead vehicle information seen by vehicle i.
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Substituting Eq. (7.9) into Eq. (7.14) and taking Laplace transform to get transfer function

yields Eq. (7.15),

H11Ei(s) =
1

1 + q3
[G1Ei−1(s) +G2Al(s)

+G3Ai−1(s)−G4Ai−2(s)], (7.15)

where

H11 = τs3 + s2 + (λ+
q1 + q4
1 + q3

)s+
λ(q1 + q4)

1 + q3
, (7.16)

G1 = λq1, (7.17)

G2 =
1

s2
(e−τ

i
dls − e−τ i−1dl s)(q3s

2 + (q4 + λq3)s+ λq4), (7.18)

G3 =
e−τ

i
dp

s
(s+ (λ+ q1)), (7.19)

G4 =
e−τ

i−1
dp

s
(s+ (λ+ q1)). (7.20)

For detailed discussion to distinguish the effects of communication delays in lead and pre-

ceding vehicle information, see the works of Liu et al. [137]. Currently, there is no controller

design that takes these communication delays into account and there is a need to design

controllers that adapt to the communication delays.
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Chapter 8

Conclusion and Future Work

In this thesis, the concept of vehicle platooning is introduced and a complete, exhaustive

literature review of the subject is presented. This thesis reviews all work done on vehicle

platooning which can be briefly categorized into the following subtopics:

• Inter-vehicle communication methodologies,

• Collision avoidance and obstacle detection methodologies,

• Design of lateral and longitudinal control systems for platooning,

• String stability of platoon,

• Effect of communications delays on stability.

To show a demonstration of platooning, two research platforms were used. The first one

was the Masnet platform. Due to hardware and software issues, this research platform was

replaced with the new platform, LEGO Mindstorm NXT 2.0. The Legos were programmed

in both LabVIEW and Simulink to demonstrate the vehicle platooning scenario. Vehicle

platooning, complete with IVC was achieved on the Lego (programmed in LabVIEW). IVC

is yet to be established between the Legos in Simulink. Furthermore, simulation results to

show different control strategies for vehicle platooning are also presented in this thesis.

This thesis introduces vehicle platooning and is just the beginning to many possibilities.

Future work needs to be done on Simulink to establish inter-vehicular communications

between the legos. Making the controller more robust to sensor noise and jitter will be a

key consideration for future work. Implementing more complicated controllers to achieve

better performance is also needed. The biggest challenge is to implement a fractional order

controller on the Legos to achieve platooning. This type of work is completely new and

novel and has not been researched in literature at all.
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[24] S. Nilsson, Sensor fusion for heavy duty vehicle platooning, Master’s thesis, Linköpings
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[81] M. Lützeler and E. Dickmanns, “Road recognition with MarVEye,” IEEE Interna-
tional Conference on Intelligent Vehicles, pp. 341–346, Oct. 1998.

[82] A. Broggi, M. Bertozzi, A. Fascioli, C. Guarino, L. Bianco, and A. Piazzi, “Visual
perception of obstacles and vehicles for platooning,” IEEE Transactions on Intelligent
Transportation Systems, vol. 1, no. 3, pp. 164–176, Sept. 2000.

[83] S. Gowal, R. Falconi, and A. Martinoli, “Local graph-based distrbuted control for
safe highway platooning,” IEEE International Conference on Intelligent Robots and
Systems, pp. 6070–6076, Oct. 2010.



93

[84] T. Okada and N. Suganuma, “Development of preceding vehicle recognition algorithm
for lead vehicle of autonomous platooning system based on multi sensor fusion and
digital map,” Proceedings of SICE Annual Conference, pp. 247–250, Sept. 2011.

[85] S. Tsugawa, “Road-to-vehicle and vehicle-to-vehicle commnication systems for intelli-
gent vehicle highway systems,” Society of Intstrument and Control Engineers, vol. 31,
no. 12, pp. 1257–1263, 1992.

[86] J. Kaltwasser and J. Kassubek, “A new cooperative optimized channel access for inter-
vehicle communication,” Proceedings of Vehicle Navigation and Information Systems
Conference, pp. 145–148, 1994.

[87] R. Verdone, “Communication systems at millimeter waves for ITS applications,” Ve-
hicular Technology Conference, vol. 2, pp. 914–918, May 1997.

[88] K. Tokuda, M. Akiyama, and H. Fujii, “DOLPHIN for inter-vehicle communications
system,” IEEE Intelligent Vehicles Symposium, pp. 504–509, Oct. 2000.

[89] M. Sichitiu and M. Kihl, “Inter-vehicle communication systems: a survey,” IEEE
Communication Surveys, vol. 10, no. 2, pp. 88–105, June 2008.

[90] M. Fitz, O. Takeshita, and U. Mitra, “SAFENET: working toward vehicle centric
communications,” Technical Digest of the 1st Workshop on ITS Telecommunications,
pp. 41–45, 2000.

[91] O. Gehring and H. Fritz, “Practical results of a longitudinal control concept for truck
platooning with vehicle to vehicle communication,” IEEE International Conference
on Intelligent Transportation Systems, pp. 117–122, Nov. 1997.

[92] H. Fujii, O. Hayashi, and N. Nakagata, “Experimental research on inter-vehicle com-
munictions using infrared rays,” IEEE Intelligent Vehicles Symposium, pp. 266–271,
Nov. 1996.

[93] T. Kim and J. Choi, “Implementation of inter-vehicle communication system for vehi-
cle platoon experiments via testbed,” SICE Annual Conference, pp. 3414–3419, Aug.
2003.

[94] Y. Zhang and G. Cao, “V-PADA: vehicle platoon aware data access in VANETs,”
IEEE Transactions on Vehicular Technology, vol. 60, no. 5, pp. 2326–2339, June
2011.

[95] A. Uno, T. Sakaguchi, and S. Tsugawa, “A merging control algorithm based on inter-
vehicle communication,” IEEE International Conference on Intelligent Transportation
Systems, pp. 783–787, Oct. 1999.

[96] M. Maeda and N. Nakagawa, “Adaptive channel access protocol for asynchronous
inter-vehicle communication network using spread spectrum,” 8th IEEE International
Symposium on Personal, Indoor and Mobile Radio Communications, vol. 3, pp. 928–
932, Sept. 1997.



94

[97] A. Kesting, M. Treiber, and D. Helbing, “Connectivity statistics of store and go-
forward inter-vehicle commnication,” IEEE Transactions on Intelligent Transporta-
tion Systems, vol. 11, no. 1, pp. 172–181, Mar. 2010.

[98] N. Xiao, L. Xie, and L. Qiu, “Feedback stabilization of discrete-time networked sys-
tems over fading channels,” IEEE Transactions on Automatic Control, vol. 57, no. 9,
pp. 2176–2189, Sept. 2012.

[99] A. Scheuer, O. Simonin, and F. Charpillet, “Safe longitudinal platoons of vehicles
without communication,” IEEE International Conference on Robotics and Automa-
tion, pp. 70–75, May 2009.

[100] S. Kanda, M. Suzuki, R. Harada, and H. Shigeno, “A multicast-based cooperative
communication method for platoon management,” IEEE Vehicular Networking Con-
ference, pp. 185–192, Nov. 2011.

[101] D. Caveney and W. Dunbar, “Cooperative driving: beyond V2V as an ADAS sensor,”
Intelligent Vehicles Symposium, pp. 529–534, June 2012.

[102] I. Jawhar, N. Mohamed, and L. Zhang, “Inter-vehicular communication systems, pro-
tocols and middleware,” IEEE International Conference on Networking, Architecture,
and Storage, pp. 282–287, July 2010.

[103] S. Tsugawa, S. Kato, and K. Aoki, “An automated truck platoon for energy saving,”
IEEE Conference on Intelligent Robots and Systems, pp. 4109–4114, Sept. 2011.
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Kungliga Tekniska Högskolsn Electrical Engineering, Stockholm, Sweden, Sept. 2011.

[124] J. Dold and O. Stursberg, “Distributed predictive control of communicating and pla-
tooning vehicles,” 48th IEEE Conference on Decision and Control, pp. 561–566, 2009.



96

[125] A. Alam, A. Gattami, and K. Johansson, “Suboptimal decentralized controller de-
sign for chain structures: applications to vehicle formations,” IEEE Conference on
Decision and Control, pp. 6894–6900, Dec. 2011.

[126] J. Blum and A. Eskandarian, “The threat of intelligent collisions,” IT Professional,
vol. 6, pp. 24–29, Feb. 2004.

[127] J. Hedrick, Y. Chen, and S. Mahal, “Optimized vehicle control/communication inter-
action in an automated highway system,” California Partners for Advanced Transit
and Highways, Technical Report, Oct. 2001.

[128] R. Smith and F. Hadaegh, “Control topologies for deep space formation flying space-
craft,” American Control Conference, pp. 2836–2841, May 2002.
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Appendix A

MASnet Platform List of Softwares

A.1 Cygwin

Cygwin is a collection of tools which provide a Linux look and feel environment for a

Windows based machine. It is a DLL which acts as a Linux API layer providing substantial

linux API functionality.

A.2 TinyOS

It is an open source,component-based operating system and platform,targeting wire-

less sensor networks. It is an embedded operating system, written in NesC programming

language.

A.3 NesC

It is a component-based event driven programming language, used for building appli-

cations for the TinyOS platform.

A.4 MicaZ

It is 2.4 GHz programming board, manufactured by Crossbow, to enable low power,

wireless sensor networks.

A.5 Crossbow

This is a California based company that manufactures MicaZ motes and also makes a

software design platform for its hardware, called Moteworks.
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A.6 Moteworks

Crossbow’s open integrated, standards based platform for the development of wireless

sensor networks OEM devices and systems.
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Appendix B

Upgrading the System to Windows 7 Based Machine

The MASnet platform was used for developing applications right from the year 2003 to

date, and was using a Windows XP based machine. This was upgraded to make the system

functional on Windows7. The following work is needed to in case another upgrade is to be

made.

- Reinstallation of Moteworks, Cygwin and TinyOS

If using Moteworks, a reinstallation of all the related softwares is needed to avoid

compilation errors that arise due to version mismatch. One of the issue that arises in

this process reads as follows:

“C:\Crossbow\cygwin\bin\bash.exe” has stopped working, “\usr\bin\bash\fork:bad

file description”

Note: Cygwin has Setup.exe version 2.510.2.2 Installed with Moteworks. Cygwin

downloaded off the internet has a Setup.exe version of 2.738.

Attempted Fix: Run Setup.exe v2.738 to reinstall all essential cygwin packages. Re-

place Setup.exe v2.510.2.2 with v2.738 in “C:\Crossbow\cygwin-installationfiles.”

Hence, Moteworks has old versions of programs and it might be necessary to find new

versions and install them separately so they replace the older versions. A list of free

software packages that are installed with Moteworks but should be able to be updated

with newer versions are:

[1] nesC Compiler,

[2] Cygwin,

[3] Programmers Notepad,



102

[4] TinyOS.

- Post install script errors for Cygwin

Check the “\var\log\setup.log.full”. Moteworks should have installed the following:

[1] Cygwin,

[2] Programmer’s Notepad 2.0,

[3] Graphviz 2.6,

[4] XSniffer,

[5] MoteConfig 2.0 and OTAP,

[6] Microsoft .Net framework,

[7] nesC 1.2 compiler,

[8] GCC compiler.

- Cygwin Experience Files

These files will never be overwritten nor automatically updated.

[1] ‘./.bashrc’,Location: “/home/MASNET//.bash profile”

[2] ‘./.bash profile’,Location:“/home/MASNET//.inputrc”

[3] ‘./.profile’,Location:“/home/MASNET//.profile”

If an older version of Cygwin is necessary, install Cygwin 1.5 as opposed to the newest

Cygwin 1.7.

B.1 Cygwin Experience Files

- ‘/.bash profile’ - Personal Initialization file. It runs only for bash login shells and is

used to set environment variables, create aliases for shell commands and set default

permissions for newly created files.
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- ‘ /.bashrc’- Individual pre interactive shell startup file. Similar to “.bash profile” and

runs for every new bash shell. Not automatically called for login shells.

- All windows environment variables are imported when Cygwin starts. Some settings

need to be in effect prior to launching the initial Cygwin session. These settings

for Cygwin are placed in an initial file called “Cygwin.bat,” which should be set or

modified in the Windows environment.

- ‘/.profile’ contains bash commands. It runs when bash is started as login shell. Useful

place to define and export environment variables and bash functions that will be used

by bash and the programs invoked by bash. It is recommended to add “:,” at the end

of the path to search for current working directory.

- ‘/.inputrc’- it controls how programs using the read line library behave. It is loaded

automatically.

If Moteworks does not work properly, then a manual installation of TinyOS using

Cygwin on windows is an officially supported method of installation by the TinyOS open

source community. In this case, completely remove Moteworks and focus solely on the

installation instructions provided by the TinyOS community.

Fix to some more errors are given below.

When ‘.bashrc’ or ‘.bash profile’ is read, messages such as “\r” command not found, may

be obtained.

Fix : When you get rid of empty lines, the message disappears. The text file comes in two

formats, DOS or UNIX. In DOS, a new line is represented with two characters. Other errors

include CR (carriage return) and LF (line feed). In UNIX, a new line is represented by only

one character, LF. When bashrc is read, bash thinks the extra character is the name of a

command. Simple fix is to remove that character.
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B.2 Cygwin Issues

If the error like “ls:unkown option” occurs, a simple fix is to add “C:\cygwin\bin” and

“C:\cygwin\usr\sbin” to the path. The procedure is as follows.

Create a new environment variable “Env CYGWIN-HOME =”, add “$CYGWIN.HOME\bin”

and “$CYGWIN.HOME\sbin” If on compilation, the error “OSROOT/support/make/Makerules:no

such file or directory” is obtained, fix it by changing the environment variables MAKEULES

as “$(TOSROOT)/support/make/Moteworks.”
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